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 ADSORBENT COMPOSITION 

SURFACE 

AREA 

(m2/g) 

PORE 

DIAMETER 

(nm) 

APPLICATIONS ADVANTAGES DISDAVANTAGES 

C
A

R
B

O
N

 –
 B

A
S

E
D

 

Activated 

carbon 

Anasorb 747 

Coconut/ 

petroleum based 

charcoal 

800-1000 2.0 / 1.8-2.2 Non-specific i.e. Most 

organic and inorganic 

compounds. Non-polar, 

polar, reactive and/or 

volatile. Mercury-

vapour. 

Cheap, efficient, 

permanent gases 

not adsorbed – 

H2, N2, O2, CO, 

CH4. Anasorb 

absorbs less H2O 

and desorption 

efficiencies for 

polar compounds 

are improved. 

Polar compounds 

irreversibly adsorbed. 

Incomplete desorption. 

H2O reduces sorption of 

other compounds. 

Catalytic activity. 

Reacts with oxygen or 

sulphur derivatives. 

 

Graphitised 

carbon black 

Carbotraps 

Pre-treated carbon 

black under 

vacuum and inert 

gas/ reductive 

atmosphere at 

3000ºC 

  Non-specific, as above. No irreversible 

adsorption sites. 

No retention of 

H2O and low 

molecular mass 

compounds 

(COx, CH4) 

 

High desorption 

temperatures (400ºC) 

required. 

Tiny particles of carbon 

can enter desorption 

unit. 
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 ADSORBENT COMPOSITION 

SURFACE 

AREA 

(m2/g) 

PORE 

DIAMETER 

(nm) 

APPLICATIONS ADVANTAGES DISDAVANTAGES 

C
A

R
B

O
N

 –
 B

A
S

E
D

 

Carbon 

molecular sieves 

Carbosieves 

 

 

 

 

 

Thermally 

decomposed 

polymer e.g. 

polyvinyl chloride 

  Adsorption of 

hydrocarbons and low-

boiling C1-C4 

hydrocarbons, methyl 

formate and alkyl 

mercury compounds. 

High capacity 

for small volatile 

molecules. 

Suitable for 

thermal 

desorption. 

Inefficient retention of 

polar compounds. 

Solvent with high heat 

of adsorption required 

for displacement of 

adsorbates. H2O can 

block cryotrap. 

 

 

 

IN
O

R
G

A
N

IC
 

Silica gel Si-OH groups on 

surface 

100-800 2-4 Polar compounds from 

air. Amines, halogens, 

oxygen derivatives, 

organo-metallics, 

MeOH, HCHO and 

DMF. Silica gel is often 

used as a substrate for 

coating with 

derivatizing reagents. 

Cooling the 

sorbent allows 

trapping of C1-

C4 hydrocarbons 

Hydrophilicity 

decreases sorption 

capacity. 

Thermal desorption 

difficult. 

Silica gel retains H2O 

and CO2 

Aluminium 

oxide 

Al 2O3   
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 ADSORBENT COMPOSITION 

SURFACE 

AREA 

(m2/g) 

PORE 

DIAMETER 

(nm) 

APPLICATIONS ADVANTAGES DISDAVANTAGES 

IN
O

R
G

A
N

IC
 

Molecular 

sieves 

Zeolites Varied Varied Toxic inorganic 

compounds. Small 

conc. of H2S 

Thermally 

desorbed at 

240ºC/extract 

with ice H2O 

Organic compounds are 

irreversibly adsorbed 

excl. HCHO, acrolein 

and certain S-

compounds. H2O block 

cryotrap 

P
O

R
O

U
S

 P
O

LY
M

E
R

S
 

Tenax Poly-2,6-diphenyl-

p-phenylene oxide 

19 140 Organic bases, neutral 

and high boiling 

compounds. 

Chlorohydrocarbons. 

Support for derivatising 

reagents. Broad 

trapping range of 

compounds of varied 

molecular mass and 

polarity. 

Tenax has a high 

thermal limit 

350-400ºC. Ideal 

for thermal 

desorption.  

Not suited to solvent 

extraction due to low 

capacity for volatiles 

and is incompatible with 

many solvent systems. 
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 ADSORBENT COMPOSITION 

SURFACE 

AREA 

(m2/g) 

PORE 

DIAMETER 

(nm) 

APPLICATIONS ADVANTAGES DISDAVANTAGES 

P
O

R
O

U
S

 P
O

LY
M

E
R

S 

XAD-2 

(Amberlite, 

Chromosorb 

102) 

Copolymer in 

which one moiety 

is styrene or 

ethylvinylbenzene 

and the other 

monomer a polar 

vinyl compound. 

300-400 8.5 Nitroso-compounds and 

polychlorinated 

biphenyls, aromatic, 

aliphatic nitro-

compounds. 

XAD’s, 

Porapaks and 

Chromosorbs 

come in wide 

ranges of 

polarity. 

Chromosorb 106 

greater capacity 

than Tenax, 

suited to thermal 

desorption. 

 

Porapak 600-650 

 

7.5 

 

Depending on polarity. 

Non-polar to polar 

compounds can be 

adsorbed. Chromosorbs 

adsorb inorganic 

compounds 

Polar Porapaks retain 

H2O and require great 

amount of energy to 

remove sorbates. Can’t 

withstand the high 

temperature. 

Chromosorb101, 

103, 104, 106, 

108. 

50 

varied 

300-400 

varied 
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Appendix 2 
 

Reaction efficiency data 
 
Additional experimental data obtained for results discussed in section 5. 4. 
 

Acrolein Reaction Efficiency
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Figure A2.1 Reaction efficiency graphs for the on-line derivatization of acrolein 

and crotonal with phenylhydrazine. The graph displays i) the amount of gas 

standard released over that time interval as determined by their permeation rate 

and ii) the amount of analyte gas trapped using in-situ derivatization on the 

SPME fibre as calculated using the internal standard and effective carbon 

number response for the signal obtained from the GC-FID for the derivative. A 

comparison of the gradients obtained from the standard and the actual amount 

of analyte trapped gives an approximation of the reaction/trapping efficiency for 

this reaction.     
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Figure A2.2 Reaction efficiency graphs for the on-line derivatization of 

propylamine and butylamine with benzaldehyde. The graph displays i) the 

amount of gas standard released over that time interval as determined by their 

permeation rate and ii) the amount of analyte gas trapped using in-situ 

derivatization on the SPME fibre as calculated using the internal standard and 

effective carbon number response for the signal obtained from the GC-FID for 

the derivative. A comparison of the gradients obtained from the standard and 

the actual amount of analyte trapped gives an approximation of the 

reaction/trapping efficiency for this reaction.     
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Appendix 3 
 

Confirmation of the alkylphenol-TFA derivatives  
 
 

 
 
 
Figure A3.1 

 

A) GC-TOFMS chromatogram obtained for the underivatized phenols, TOP tR = 17.47 min, 

NP tR= 20.30 min and BPA tR= 26.25 min.  

 

B) GC-TOFMS confirmation chromatogram for the trifluoroacetate derivatives prepared in a 

vial in acetone as described in section 6.2.6. TOP-TFA tR = 15.99 min, NP-TFA tR= 19.00 min 

and BPA-TFA tR= 20.35 min. Notice the absence of underivatized phenols. 

 

The TFA derivatives elute earlier than the underivatized phenols allowing for shorter 

chromatographic runs, while the mass spectra yields masses higher up in the mass range 

allowing for improved selectivity during analysis. 
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15-Sep-200416:06:05trifluoroacetyl esters of phenols

40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600
m/z0

100

%

maria_esters_phenols_a 960 (15.986) Cm (958:960-933:957) TOF MS EI+ 
9.88e4231.0345

203.0296

115.054157.0696 175.0319133.0637 230.0627
232.0677

233.0533 302.1365

 

 

Figure A3.2 GC-TOFMS mass spectrum obtained for the TOP-TFA derivative tR = 15.99 min. 

M+ m/z 302, base peak m/z 231. 
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Figure A3.3 GC-TOFMS mass spectrum obtained for the NP-TFA derivative tR = 19.00 min. 

M+ m/z 316, base peak m/z 203. 

 

 
 
 



Appendix 3 

 202
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Figure A3.4 GC-TOFMS mass spectrum obtained for the BPA-TFA derivative tR = 20.35 min. 

M+ m/z 420, base peak m/z 405. 
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Figure A3.5 Reconstructed ion chromatgrams for m/z 231 and m/z 203 representing the TFA 

derivatives of TOP and NP respectively, along with m/z 135 and m/z 213 representing ions for 

the corresponding underivatized alkylphenols. The PDMS degradation peaks are indicated by 

the m/z 73 ion trace.  

From figure A3.1, the unreacted phenols are expected to elute after the TFA derivatives. There is 

no clear evidence from the RICs that the underivatized phenols are present. Ions 213 and 135 

that are present appear to originate from the PDMS thermal degradation peaks. See section 

6.7.1. 
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Figure A3.6 Reaction efficiencies, determined by placing 1µµµµl 42 ng/µµµµl TOP, 44 ng/µµµµl NP and 

54 ng/µµµµl BPA in acetone on the PDMS trap, 5 µµµµl TFAA is added after the solvent has 

evaporated. The trap is then sealed with glass caps for the duration of the reaction. The 

reaction appears to be complete after 5 minutes. See section 6.7.2. 
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Appendix 4 
 

Significance test for comparing extraction efficiency from two different 

PDMS batches 

 

1. An F-test is used to compare the population standard deviations between the two batches of 

PDMS. These need to be the same in order to perform a t-test to compare the two mean 

results between the batches. The equation used to determine F is shown below [276]: 

 

2
2

2
1

s

s
F =         A.4.1 

Where s1 and s2 are the standard deviations for the measurement series and are arranged so 

that F > 1. 

 

Critical values of F for a two-tailed test (P=0.05) are obtained from table A.4, page 256 

[276].Where ν1 and ν2 are the degrees of freedom (n-1) for the number of measurements 

made (n) in the respective measurement series. 

 

2. A t-test can now be used to compare the two mean results between the batches. The variance 

(s2) needs to be calculated as shown in equation A.4.2, in order to determine t from equation 

A.4.3 [276]. 
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Where n is the number of measurements performed in each measurement series and x the 

average measurement result obtained. 

 

Critical values of t for a two-tailed test (P=0.05) obtained from table A.2, page 254 [276], 

where t has (n1 + n2 – 2) degrees of freedom (ν). 
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Summary of results obtained using the equations as described above: 

 

Table A.4 Summary of significance test results 

 TOP 

batch 1 

TOP 

batch 2 

NP  

batch 1 

NP  

batch 2 

BPA  

batch 1 

BPA 

 batch 2 

x 70 79 84 43 10 26 

s 2.8 2.37 21.8 9.5 1.5 2.08 

n 7 5 8 5 8 5 

Fcrit 9.197 9.074 9.074 

F 1.396 5.330 1.923 

F < Fcrit Population standard 

deviation of the two 

batches are equal 

Population standard 

deviation of the two 

batches are equal 

Population standard 

deviation of the two 

batches are equal 

tcrit 2.23 2.20 2.20 

t 5.83 3.92 16.19 

t > tcrit Means of the two 

batches differ 

significantly 

Means of the two 

batches differ 

significantly 

Means of the two 

batches differ 

significantly 
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Appendix 5 
 

PDMS MCT trap drying investigation 

 

 

A few drops of bromothymol blue indicator was added to a 5 ml Milli-Q water sample. The water 

was sampled at a flow rate of ~ 50 µl/min through the PDMS MCT. The presence of the 

bromothymol blue gave a visual indication of water still trapped inside the PDMS channels. These 

drops of water were best removed by mechanical dropping of the trap, as opposed to purging with 

gas. Dropping the trap down a 1.5 m length of tube provided enough force to break the capillary 

action occurring between the water and PDMS walls. 

 

After sampling the PDMS MCT was weighed on a 4 decimal place balance. The trap was weighed 

after each drying step. A summary of the results obtained for the drying steps performed in series 

are shown in the graph below. The trap appears to reach a constant mass after purging with 

hydrogen gas for 2 minutes at a flow rate of 500 ml/min. An equivalent result is obtained by 

purging for 1 min at 1L/min. The mass difference between the last drying step and thermal 

desorption of the trap is 0.2 mg. The mass balance performance was not monitored and this mass 

difference could easily fall within the uncertainty of the balance. However, this mass difference was 

later assumed to be residual water vapour, even though no water could be visually observed after 

the last drying step, degradation on the PDMS trap was still observed. 

 

Weighing the trap after plugging with the silica gel caps was not performed as such a small mass 

cannot be determined accurately on the available mass balance. 
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Figure A.5 Summary of the drying steps performed in series with the resulting PDMS MCT mass 

loss achieved from each drying step. 
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On-Line Derivatization for Resonance-Enhanced
Multiphoton Ionization Time-of-Flight Mass
Spectrometry: Detection of Aliphatic Aldehydes
and Amines via Reactive Coupling of Aromatic
Photo Ionization Labels

Maria Fernandes-Whaley,† Fabian Mu1hlberger,‡ Alexander Whaley,† Thomas Adam,‡
Ralf Zimmermann,*,‡,§,⊥ Egmont Rohwer,*,† and Andreas Walte|

Department of Chemistry, University of Pretoria, Pretoria, 0002, South Africa, Institute for Ecological Chemistry, GSF
Research Centre, 85764 Oberschleissheim, Germany, Analytische Chemie, Institut für Physik, Universität Augsburg,
D-86159 Augsburg, Germany, BIfA-Bayerisches Institut für Angewandte Umweltforschung und -technik GmbH, Abteilung für
Umwelt- und Prozesschemie, D-86167 Augsburg, Germany, and Airsense Analytics, Hagenower Str. 73, 19061 Schwerin,
Germany.

Resonance-enhanced multiphoton ionization time-of-flight
mass spectrometry (REMPI-TOFMS) is a powerful tech-
nique for the on-line analysis of aromatic compounds with
unique features regarding selectivity and sensitivity. Ali-
phatic compounds, however, are difficult to address by
REMPI due to their unfavorable photo ionization proper-
ties. This paper describes the proof of concept for an on-
line derivatization approach for converting nonaromatic
target analytes into specific, photoionizable aromatic
derivatives that are readily detectable by REMPI-TOFMS.
A multichannel silicone trap or poly(dimethylsiloxane)
(PDMS) open tubular capillary was used as a reaction
medium for the derivatization of volatile alkyl aldehydes
and alkylamines with aromatic “photoionization labels”
and to concentrate the resulting aromatic derivatives. The
aldehydes formaldehyde, acetaldehyde, acrolein, and
crotonal, which when underivatized are poorly detectable
by REMPI, were converted into their easily photoionizable
phenylhydrazone derivatives by the on-line reaction with
phenylhydrazine as reagent. Similarly, the methyl-, ethyl-,
propyl-, and butylamines were converted into their REMPI-
ionizable benzaldehyde alkylimine derivatives by the on-
line reaction with benzaldehyde as reagent. The deriva-
tives were thermally desorbed from the PDMS matrix and
transferred into the REMPI-TOFMS for detection. The
REMPI-TOFMS detection limits obtained for acetalde-

hyde; acrolein; crotonal; and methyl-, ethyl-, propyl-, and
butylamine using this photo ionization labeling method
were in the sub-parts-per-million range and, thus, readily
below the permissible exposure limits set by OSHA.

There is an increasing awareness of the harmful effects that
volatile aldehydes and amines, particularly formaldehyde, can have
on human health. Formaldehyde is classified as a probable human
carcinogen by the EPA, OSHA, NIOSH, and the ACGIH.1-3 Low-
molecular-mass aldehydes and amines are typically eye, nose, and
throat irritants.3-5 As volatile polar compounds, they are notori-
ously difficult to analyze. Real time monitoring of these trace

* Direct correspondence to either author. E-mails: erohwer@
postino.up.ac.za, ralf.zimmermann@gsf.de.

† University of Pretoria.
‡ GSF Research Centre.
§ Universität Augsburg.
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organic compounds in air or process gases is not easily achieved.
Measurement usually requires extended sample preconcentration,
cleanup, and instrumental analysis, for example, by gas chroma-
tography/mass spectrometry (GC/MS) in a well-equipped analyti-
cal laboratory.6-8 It involves a time-consuming and labor-intensive
process that prevents the timely data generation required, for
example, for effective pollution control measures.

Recently, several on-line monitoring methods based on direct
inlet mass spectrometry (MS) with soft and selective ionization
methods were established. This includes chemical ionization MS9

as well as photoionization MS techniques.10-19 One particularly
powerful approach for real time monitoring of aromatic com-
pounds is resonance-enhanced multiphoton ionization time-of-flight
mass spectrometry (REMPI-TOFMS). The REMPI-TOFMS method,
for example, has been used for the on-line monitoring of dioxin
surrogates and other aromatic trace species in waste incinerator
emissions,15,16 characterization of the formation of phenolic
compounds during coffee roasting,17,18 and puff-resolved analysis
of toxic aromatic compound release during the cigarette smoking
process19 as well as the characterization of wood combustion.20

In addition to the analysis of gaseous matrixes, solid matrixes
can be handled as well in a two-step process using laser desorption
followed by REMPI of the volatilized compounds.21-25 The REMPI
process is based on a two-UV-photon absorption/ionization utiliz-
ing excited intermediate states (i.e., UV absorption bands) for
resonance enhancement. Most aromatic compounds exhibit strong

absorption bands in the 220-300-nm region. This wavelength
region is easily accessible by commercial laser systems. The
combination of selectivity and immediate availability of mass
spectral information eliminates the time-consuming separation step
of gas chromatography. Unfortunately, many compounds not
possessing an aromatic chromophore, such as aliphatic aldehydes
and amines, cannot be easily detected by the rather simple one-
color two-photon REMPI process. For example, many aldehydes
require complicated REMPI schemes, which are based either on
multilaser wavelength excitation or the inclusion of nonresonant
multiphoton absorption steps. In other cases, as for many amines,
the suitable REMPI wavelengths for the various compound
homologues are different, preventing a simultaneous detection of
the homologue profile.

A fast method for the on-line detection of aldehydes and
amines, however, would have several potential applications in the
field of process gas analysis, ambient air monitoring, or emission
analysis. Furthermore, it would be desirable to also make use of
the advantages of the REMPI-TOFMS method (i.e., selectivity,
sensitivity, and measurement speed) for the detection of these
aliphatic compounds. To make aldehydes and amines accessible
to REMPI-TOFMS detection, a concept to convert the nonaromatic
analytes into specific aromatic derivatives, which would then be
detectable by the REMPI-TOFMS, was developed (“photoioniza-
tion labeling”). Derivatization reactions which in principle can be
used for “photoionization labeling” usually are performed in liquid
solutions or, as recently demonstrated, in a poly(dimethylsiloxane)
(PDMS) matrix as reaction medium. PDMS, for example, has been
used for in situ derivatization of low-molecular-mass aldehydes
for GC/MS analysis.26,27 The work presented here describes the
development of a PDMS-based on-line “photoionization labeling”
derivatization technique which can be directly hyphenated to the
REMPI-TOFMS system. The PDMS devices are shown in Figure
1A. The principle of the “photoionization labeling” derivatization
is as follows (depicted in Figure 1B).

The analytes from the sample gas current (i.e., containing
traces of amines or aldehydes to be analyzed) as well as the
derivatization reagent are coabsorbed in a PDMS trap. After a
short enrichment phase, the trap is heated. The heating induces
both the derivatization reaction itself and the thermal desorption
of the formed derivatives. The desorbed derivatives are subse-
quently transferred to the REMPI-TOFMS spectrometer for
analysis. This procedure can be repeated rapidly for a (quasi) on-
line analysis.

At first, potential derivatization reactions were selected (de-
rivatization of aldehydes with phenylhydrazine to form the
respective phenylhydrazone derivatives and derivatization of
amines with benzaldehyde to form the respective benzaldehyde
alkylimine derivatives). The proof of principle (i.e., of efficient
PDMS-mediated derivatization) was tested in a solid-phase mi-
croextraction (SPME) approach with GC/MS and GC-FID detec-
tion. Subsequently, an experimental on-line derivatization setup
was built and coupled to the REMPI-TOFMS system. Two different
setup variants were used for the derivatization procedure. In the
first setup, a thermal modulator array28 with a fused-silica capillary

(4) Occupational Safety and Health Administration, U.S. Department of
Labor. OSHA Permissible Organic Method #36 Ethylamine; http://www.
osha-slc.gov/dts/sltc/methods/organic/org036/org036.html; Accessed
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(8) Berezkin, V. G.; Drugov, Y. S. J. Chromatogr. Libr. 1991, 49, 190-194.
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(13) Miller, J. C.; Compton, R. N. J. Chem. Phys. 1982, 76 (8), 3967.
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column (3-µm silicone film, DB-1 equivalent) is used to absorb,
derivatize, desorb, and refocus the analytes. The second setup
consists of an enrichment desorption unit (EDU; Airsense Ana-
lytics, Schwerin, Germany)29 with a multichannel silicone rubber
trap27,30,31 as PDMS medium for derivatization followed by the
above-mentioned arrangement with the thermal modulator array.28

These experimental setups are shown in Figure 2A, B, and C,
respectively.

EXPERIMENTAL SECTION
(A) Derivatization Reaction for “Photoionization Labeling”

of Amines and Aldehydes. Phenylhydrazine32,33 and benzalde-
hyde33 were selected as “photoionization labeling compounds” and
were used to derivatize the aldehydes (formaldehyde, acetalde-
hyde, acrolein, and crotonal) and amines (methylamine, ethyl-
amine, propylamine, butylamine), respectively. Methylamine,
ethylamine, propylamine, benzaldehyde, formaldehyde (36.5% in
water), and phenylhydrazine were purchased from Aldrich
(Taufkirchen, Germany). Acetaldehyde, acrolein, and crotonal
were obtained from Merck (Darmstadt, Germany). Butylamine
was obtained from ChemService (Johannesburg, S. A.). Caution:
Because phenylhydrazine is highly poisonous and formaldehyde is a
potential carcinogen, it is essential always to wear gloves and avoid
inhalation when working with these reagents.

Schemes for the derivatization reagents, analytes, and products
formed are shown in Figure 3A and B. These reagents were
selected to introduce a REMPI-active chromophore to the analyte
structure. Substituted rings, such as pentafluorinated benzalde-
hyde, were discarded because they pose the risk of reducing the
REMPI efficiency. In addition, in order for the reaction to occur
efficiently, both reagents had to possess a significant vapor
pressure to ensure that the reagent would be present in excess
in the gas phase. Stable gaseous concentrations of the analytes
were obtained by preparing permeation and diffusion gas stan-
dards of the respective aldehydes and amines. Gas standard
preparation and measurement has been described in the litera-
ture.34,35 Concentrations provided by the gas standards are listed
in Table 1. Headspace from formaldehyde (stabilized with metha-
nol in water) was used as the formaldehyde gas source. This
concentration is rather high and could not be determined in the
framework of the experiments presented here.

(B) Setup for SPME GC-FID-Based Testing of the PDMS-
Mediated Derivatization Reactions. Simple reaction tests were
performed to determine whether the selected derivatization
reaction would take place in the PDMS and to estimate how
efficiently the arrangement would trap the analyte. Figure 2A
shows the on-line setup used to determine the approximate
reaction efficiency for the various derivatization reactions. The
gas standards were purged with nitrogen gas at a flow rate of 4
mL/min. The gas standards provide a known concentration of
analyte gas into the glass Y press-fit connector36 (obtained from
Chromatography Research Supplies, Inc., Louisville, KY) via an
uncoated length of fused-silica capillary. Similarly, the derivatizing
reagent, also being purged with nitrogen gas at 4 mL/min, was
introduced at the other end of the Y press-fit connector. A 1-mL
portion of the derivatizing reagent was placed in a 2-mL vial and
sealed with a crimp cap. Two holes were pierced into the septum
of the vial. A length of uncoated fused-silica capillary was pushed
through each hole in the septum. One capillary was connected to
the nitrogen gas, the other to the Y press-fit connector. Leading
from the combined exit of the Y press-fit connector was another
length of uncoated fused-silica capillary. The measured flow rate
at this point was 8 mL/min, similar to the flows obtained from
the REMPI-TOFMS vacuum. The exiting capillary was sealed into
another glass press-fit connector, the opposite end of which was
modified to house the exposed SPME fiber.

Current concentration methods are mainly off-line.37-39 Solid-
phase microextraction (SPME)26,40 and the multichannel silicone
rubber trap (MCSRT)27 are two examples of a novel technique
that uses poly(dimethylsiloxane) as the concentration and reaction
medium, eliminating problems experienced with earlier concentra-
tion methods.27,37-39 In situ derivatization in PDMS has been used
to trap low-molecular-mass aldehydes for GC-FID and GC/MS
analysis.26,27 The PDMS concentrators used in this study are

(29) Walte, A. Airsense Analytics Dilution, Enrichment and Desorption Unit
Handbook, WMA Airsense Analysentechnik, GmbH: Schwerin, Germany,
2001.

(30) Ortner, E. K.; Rohwer, E. R. J. High Resolut. Chromatogr. 1996, 19, 339-
344.

(31) Ortner, E. K.; Rohwer, E. R. J. Chromatogr., A 1999, 863, 57-68.
(32) Vogel, M.; Büldt, A.; Karst, U. Fresenius’ J. Anal. Chem. 2000, 366, 781-

791.
(33) Blau, K.; King, G. S. Handbook of derivatives for chromatography; Heyden

& Son Ltd.: London, U.K., 1979.

(34) Namiesnik, J. J. Chromatogr., A 1984, 300, 79-108.
(35) Scarangelli, F. P.; O’Keefe, A. E.; Rosenberg, E.; Bell, J. P. Anal. Chem.

1970, 42, 871-876.
(36) Rohwer, E. R.; Pretorius, V.; Apps, P. J. J. High Resolut. Chromatogr. 1983,

9, 295-297.
(37) Berezkin, V. G.; Drugov, Y. S. J. Chromatogr. Libr. 1991, 49, 35-119.
(38) Namiesnik, J. Talanta 1988, 35, 567-587.
(39) Stashenko, E. E.; Ferreira, M. C.; Sequeda, L. G.; Martinez, J. R.; Wong, J.

W. J. Chromatogr., A 1997, 779, 360-369.
(40) Pawliszyn, J. Solid-Phase Microextraction - Theory and Practice; Wiley-

VCH: Canada, 1997.

Figure 1. Two variations of silicone (PDMS) concentrators are
shown in A, namely, the thick film capillary trap, used in the thermal
modulator array (TMA), and the multichannel silicone rubber trap
(MCSRT) used in the EDU. B Cross section of a capillary trap, which
demonstrates the concentration and reaction within these concentrat-
ing devices.
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depicted in Figure 1A. The SPME device consists of a 100-µm
PDMS-coated fiber mounted on the tip of a syringe needle, which
is housed within the syringe barrel when not exposed during
sampling.40 A 100-µm PDMS SPME fiber was exposed over
increasing time intervals to a similar on-line arrangement used
for the REMPI-TOFMS shown in Figure 2B. The SPME assembly
and 100-µm PDMS fibers were obtained from Supelco (Bellefonte,
PA). The fiber was desorbed in the heated inlet of a Varian 3300
GC at 150°C for 1 min. Quantitation was performed by flame
ionization detection (FID) using undecane as internal standard
and relative effective carbon number responses of the deriva-
tives.27,41,42 Thermal desorption of the SPME fiber is performed
simply and quickly in the heated inlet of the GC oven; however,
desorption of the silicone trap requires a desorption unit with some
form of cooling in order to focus the desorbed contents onto the
GC column. This is usually a longer process.27 When the above

procedure is carried out in GC-FID or GC/MS, the low initial
temperature of the GC oven also acts to focus or concentrate the
derivatized analyte in a short band. For real-time on-line applica-
tions, in the absence of such a focusing mechanism in the direct
coupling of the trap to the TOFMS, another concentration device
is required to enhance detectability. The results for this experi-
ment are shown in Figure 4.

(C) REMPI-TOFMS. The resonance-enhanced multiphoton
ionization time-of-flight mass spectrometer used for this application
is a home-built system containing a pulsed Nd:YAG laser (Quanta-
Ray INDI 50; Spectra Physics, Stratford, CT). The initial 1064-nm
laser beam (repetition rate 10 Hz, pulse duration 10 ns) is
frequency tripled, and the resulting wavelength of 355 nm is used
to pump a â-BBO crystal of a thermally stabilized type II OPO-
laser system (GWU-Lasertechnik, Germany) to generate wave-
length-tuneable laser pulses in the range of 220 nm to 2.5 µm.
The generated laser pulses (∼106 W cm-2) are directed into the
ionization chamber of the TOF (Kaessdorf Instruments, Germany)

(41) Scanlon, J. T.; Willis, D. E. J. Chromatogr. Sci. 1985, 23, 333-340.
(42) Tong, H. Y.; Karasek, F. W. Anal. Chem. 1984, 56, 2124-2128.

Figure 2. Experimental setup used for (A) determining the reaction efficiencies for the on-line derivatization reactions, (B) on-line concentration
and derivatization for REMPI-TOFMS using the thermal modulator array (TMA) with a thick-film capillary as enrichment and reaction medium,
and (C) on-line concentration and derivatization for REMPI-TOFMS using a MCSRT in an EDU as enrichment and reaction medium and the
TMA with a thick film capillary for analyte modulation.

Table 1. Gas Standard Concentrations and Calculated Detection Limits for the Aldehydes and Amines Studieda

analytes (m/z)

gas std concn
EDU-TMA
(ppm v/v)

detection limit
(S/N ) 2 av 10)

EDU-TMA (ppm v/v)
gas std concn

TMA (ppm v/v)

detection limit
(S/N ) 2 av 10)
TMA (ppm v/v)

PEL OSHA
(ppm)

formaldehyde (120) 0.75
acetaldehyde (134) 79.4 2.04 200
acrolein (146) 37.4 0.101 0.1
crotonal (160) 199 1.52 2
methylamine (119) 34.3 0.257 10
ethylamine (133) 1.4 0.010 21.7 0.324 10
propylamine (147) 1.8 0.024 27.6 0.138
butylamine (161) 2.9 0.100 44.7 0.501 5

a Permissible exposure limits (PEL) as set by OSHA are also listed (see ref 2).
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underneath the jet capillary inlet by optical elements. Molecular
ions formed are accelerated and extracted into the flight tube
of the reflectron TOFMS. Mass spectra are recorded via a
transient recorder PC card (Aquiris, Switzerland, 250 MHz, 1 GS/
s, 128 k) whereby data processing is done by LabView (National
Instruments, Austin, TX)-based home-written software. Wave-
lengths of 244 and 246 nm were selected for REMPI-TOFMS
analysis of the formaldehyde- and acrolein-phenylhydrazone
derivatives, respectively, and 240 nm for the benzaldehyde
alkylimine derivatives. Spectroscopic investigations showed that
for the REMPI-TOFMS setup used, these wavelengths are very
efficient.

(D) On-Line Derivatization Setup for REMPI-TOFMS.
Figure 2B and C shows the on-line derivatization REMPI-TOFMS
setups. Unlike the arrangement for principal testing (SPME), the
gas standards and reagents were not purged with nitrogen gas.
In this case, the mass spectrometer vacuum provides the flow
into the REMPI-TOFMS. On-line in situ derivatization was
investigated using two different enrichment desorption devices:

(i) a thermal modulator array with a PDMS thick-film capillary
trap (TMA) and (ii) an enrichment desorption unit with a
multichannel PDMS rubber trap . Two setup variants were tested.
In the first setup, only the thermal modulator array (i) with a
PDMS thick-film capillary trap was used, whereas in the second
setup, the enrichment desorption unit with a multichannel PDMS
rubber trap (ii) was applied in combination with the thermal
modulator array with a PDMS thick-film capillary trap (i).

In the following, the two experimental setups are described
in more detail.

First Setup: Direct Supply of Analytes and Reagents through the
Thermal Modulator Array (TMA-REMPI-TOFMS). The center-
piece of the derivatization setup is the segmented thermal
modulator array.28 The modulator houses a narrow bore capillary
coated on the inside with a thick film of PDMS (capillary trap).
This capillary represents the concentrating/derivatizing device.
The amount of PDMS within the capillary is comparable to the
amount of PDMS forming the SPME fiber. In detail, the modulator
capillary consisted of a fused-silica capillary column (0.2-mm i.d.)
coated with nonpolar phase PS-255 (3-µm film, DB-1 equivalent).
A capillary of 20-cm length was used with 5 cm of the stationary
phase stripped off on either end, as described in reference 28.

A stainless steel capillary (105 mm × 0.6 mm o.d. × 0.35 mm
i.d.) was converted to a modulator.28 An electronic sequencer was
used to provide current to the modulator in steps from 1 to 10 A
at 5 V with a time duration of 10-2500 ms. To maintain reasonable
flow rates and operate at atmospheric pressure, jet restrictors
yielding a flow rate of between 0.6 and 1.0 mL/min were prepared
according to the method described in reference 43 from an
uncoated capillary (30 cm × 0.32 mm i.d.). The restrictor was
coupled to the modulator capillary with a suitable press-fit. All
transfer capillaries and connection points were either directly
heated to 150 °C, by a heating mantle or surrounded by a copper
tube, which was then heated by a heating mantle.

Modulators have predominantly been developed for use as an
interface between two columns in comprehensive two-dimensional
gas chromatography.44 Its function is to rapidly focus fractions of
effluent from the first column onto the head of the second column.
In this work, a modulator is used to transfer and focus the effluent
from the capillary trap into the REMPI-TOFMS.

In principle, the sorption and desorption of effluent from the
stationary phase in the modulator capillary can be controlled by
careful manipulation of the capillary temperature. This was
originally achieved by painting a segment of the modulator
capillary with an electrically conductive paint, thus allowing the
capillary to be resistively heated.45,46 This modulator was tedious
to prepare and did not prove robust. Alternatively, a copper wire
could be coiled around the modulator capillary.47 A mechanically
driven thermal sweeper was developed to eliminate the high
thermal inertia experienced by the metal painted modulator.48 A
moveable slotted heating element was used to “sweep” periodically
over the modulator capillary. This design demonstrates good

(43) Hafner, K.; Zimmermann, R.; Rohwer, E. R.; Dorfner, R.; Kettrup, A. Anal.
Chem. 2001, 73, 4171-4180.

(44) Phillips, J. B; Beens, J. J. Chromatogr., A 1999, 856, 331.
(45) Liu, Z.; Phillips, J. B. J. Microcolumn Sep. 1994, 6, 229.
(46) Phillips, J. B, Xu, J. J. Chromatogr., A 1995, 703, 327.
(47) de Geus, H. J.; de Boer, J.; Phillips, J. B.; Brinkman, U. Th. J. Chromatogr.,

A 1997, 767,137.
(48) Phillips, J. B.; Ledford, E. B. Field Anal. Chem. Technol. 1996, 1, 23.

Figure 3. Reaction schemes for the derivatization of (A) the
aldehydes with phenylhydrazine and (B) the alkylamines with ben-
zaldehyde.
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temperature control and focusing, but is too bulky and complex,
requiring the heating element to be at least 100°C higher in
temperature than the capillary to effectively focus the effluent.45

Thus, much attention has been given to cryogenic modulators. A
longitudinal modulating cryogenic system49,50 consists of a move-
able steel sleeve, which surrounds the capillary. Liquid CO2 is
supplied at timed intervals into the sleeve to cool the capillary.
The GC oven provides heating to the capillary segments not being
cooled by the moving sleeve. A similar approach in which the
CO2 is sprayed directly onto the capillary51 was also used; however,
contact of the moving modulator with the second column often
causes column breakage. Therefore, a nonmoving dual jet cooling
modulator was developed. Two different types exist: the first uses
two nonmoveable CO2 jets to cool the capillary trap while the GC
oven is used for heating.52 The second, from the ZOEX Corpora-
tion, uses two cold and two warm nonmoveable nitrogen jets to
cool and reinject the effluent from the capillary into the second
column.53 Although the cryomodulators provide excellent refocus-

ing of effluent, they require expensive cryogens that require
attention when in use.

The thermal modulator array28 is an improved combination of
the metal-painted and “sweep” modulators described above. Rapid
resistive heating of consecutive segments of a stainless steel
tube surrounding the capillary focuses the effluent inside the
modulator capillary. This provides the “sweeping” heat motion
without the disadvantageous cold spots or moveable parts. The
segmented heating of the effluent in the capillary speeds up the
chromatographic process in the capillary column, “compressing”
zones from the rear and providing a focused chromatographic
band that enters the REMPI-TOFMS. Although not providing
the shortest injection pulse widths, the TMA is simple and
compact; it does not require cryogenic cooling and can operate
unattended, making it suitable for on-line analysis with the REMPI-
TOFMS.

The outlet of the TMA device was directly coupled to the
TOFMS . This setup was tested for detecting amines using
benzaldehyde as photoionization labeling compound. Reagent and
analytes (amine gas standard) were introduced simultaneously
for 10 min into the cooled, PDMS, narrow bore, thick-film capillary
trap (inside the modulator steel tube) where the reaction occurred.
In this case, the MS vacuum provided a sampling flow rate of 0.7
mL/min. During modulation, the derivatives were desorbed into
the REMPI-TOFMS. Similarly, the derivatization of the aldehydes

(49) Kinghorn, R. M.; Marriot, P. J. Anal. Chem. 1997, 69, 2582.
(50) Kinghorn, R. M.; Marriot, P. J.; Dawes, P. A. J. Microcolumn Sep. 1998,

10 (7), 611.
(51) Beens, J.; Delluge, J.; Adahchour, M.; Vreuls, R. J. J.; Brinkman, U. Th. J.

Microcolumn Sep. 2001, 13 (3) 134.
(52) Beens, J.; Adahchour, M.; Vreuls, R. J. J.; van Altena, K.; Brinkman, U. Th.

J. Chromatogr., A 2001, 919, 127.
(53) Ledford, E. B., Jr.; Billesbach, C. J. High Resolut. Chromatogr. 2000, 23,

202.

Figure 4. Reaction efficiency results for the on-line derivatization of (A) formaldehyde and (B) acetaldehyde with phenylhydrazine. Both graphs
display (i) the amount of gas standard released over that time interval, as determined by their permeation rate, and (ii) the amount of analyte
gas trapped using in situ derivatization on the SPME fiber as calculated using the internal standard and effective carbon number response for
the signal obtained from the GC-FID for the derivative. The graphs on the right-hand side represent an enlargement of the left-hand side graphs,
where the initial accumulation on the SPME fiber appears linear. A comparison of the gradients obtained from the standard and the actual
amount of analyte trapped gives an approximation of the reaction/trapping efficiency for this reaction.
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with phenylhydrazine was demonstrated using only the modulator
trap, followed by REMPI-TOFMS detection. The results obtained
with the TMA-REMPI-TOFMS setup are given in Table 1 and
Figures 5 and 6.

Second Setup: Supply of Analytes and Reagents to an Enrichment
Desorption Unit prior to the TMA (EDU-TMA-REMPI-TOFMS).
The second setup used is as shown in Figure 2 C. Here, the
multichannel silicone rubber trap in the enrichment desorption
unit is used as concentration-reaction medium, and the TMA is
used for subsequent temporal focusing. The multichannel silicone
rubber trap consists of a glass tube containing several smaller
silicone rubber tubes, each 10 cm long, arranged in parallel,27,30,31

as shown in Figure 1A. SIL-TEC medical grade silicone tubing
for the silicone rubber trap was obtained from Technical Products
Inc. (Georgia, U.S.A). It has been shown that the MCSRT can be
used as an inert absorptive (off-line) concentrator27,30,31 having a
very low pressure drop (or flow resistance) with properties similar
to the packed PDMS trap,54-56 which has demonstrated better
properties than other current off-line concentration methods.

The MCSRT is placed within the enrichment desorption unit
that is connected via the TMA to the REMPI-TOFMS (EDU-TMA-
REMPI-TOFMS). The EDU is an automated stand-alone sampling

and desorption device (Airsense Analytics, Schwerin, Germany).
The principal difference between SPME (or the application of TMA
solely) and MCSRT is the amount of PDMS available for
concentration of analytes, with the MCSRT having a considerably
larger amount of PDMS (approximate PDMS volumes are TMA
trap 0.2 mm3 and the MCSRT 135 mm3). Thus, the MCSRT can
concentrate and derivatize more analyte and, therefore, has the
potential to provide lower detection limits.

The EDU system used in this work is a unique trap and
thermal desorption system developed by Airsense Analytics for
the Institute of Ecological Chemistry, GSF. Gaseous substances
are trapped at sampling temperatures (ambient or less) on, for
example, Tenax adsorption tubes and analyzed after thermal
desorption. The enrichment factor is related to many different
physical and sampling parameters. It can be calculated on the basis
of breakthrough volumes known from common tables. Typically,
the detection limit can be reduced by a factor of 20 with volatile
compounds and up to 1000 with low volatiles. Temperatures of
the adsorbent during sampling and desorption phases can be
adjusted via settings within the related software EDU.

(54) Baltussen, E.; David, F.; Sandra, P.; Janssen, H. G.; Cramers, C. A. J. High
Resolut. Chromatogr. 1997, 20, 385-393.

(55) Baltussen, E.; David, F.; Sandra, P.; Janssen, H. G.; Cramers, C. A. J. High
Resolut. Chromatogr. 1998, 21, 332-340.

(56) Baltussen, E.; den Boer, A.; Sandra, P.; Janssen, H. G.; Cramers, C. A.
Chromatographia 1999, 49, 520-524.

Figure 5. Mass spectra obtained for the formaldehyde-phenyl-
hydrazone derivative using two different ionization techniques. The
EI mass spectrum was obtained from a prepared derivative on an
accurate mass GC/TOFMS. The REMPI mass spectrum at 244 nm
was obtained from the on-line concentration and derivatization
experiment (using the TMA setup).

Figure 6. REMPI-TOF mass spectra obtained for the on-line
concentration and derivatization of (A) acetaldehyde, acrolein, and
crotonal with phenylhydrazine at 246 nm (using the TMA setup) and
(B) methylamine, ethylamine, propylamine, and butylamine with
benzaldehyde at 240 nm (using the EDU-TMA setup).
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For increasing the speed of analysis, very small tubes with
inner diameters of 1.5 mm filled with Tenax-TA can be used. With
applications in very damp environments, this hydrophobic polymer
is advantageous because it eliminates the negative influence of
humidity on the analysis.

Peltier cooling is used in order to achieve sampling temper-
atures of 4 °C. After sampling, the tubes are desorbed by resistive
heating. With this flash desorption, temperature increments of
200 °C are possible in just 4 s. The complete system is controlled
by a microprocessor unit, which is programmed through a serial
port.

By sucking air through a cold adsorption tube, the analytes
are trapped. In the case of sampling hot gases, it is also possible
to dilute the sampling gas to reduce the temperature of the gas.
After sampling, a postsampling step is possible to sweep away
noninteresting gases and vapors (e.g., humidity).

To extract analytes off the trap, thermal desorption is per-
formed. For injection, the gas flow is reversed and leads into the
detection system. Afterward, the tube is cleaned by heating it to
a higher temperature than the desorption temperature and
flushing the tube with cleaned air. After cooling to near ambient
temperatures, the trap is ready for the next measurement. All
analytical steps, sampling, postsampling, desorbing, injecting,
cleaning, and cooling are performed automatically.

For in situ derivatization, illustrated in Figure 1B, the aromatic
derivatizing reagent, in the gas phase, dissolves into the PDMS.
Carbonyl compounds (aldehydes and ketones etc.), which pass
through the trap, react selectively with the reagent and remain
in the trap until they are thermally desorbed for analysis.26,27 In
the case of the above-mentioned SPME-GC-FID approach, the
desorption is performed for some time in the heated GC injec-
tor,26,27,40 and the derivatized analytes are refocused in a short band
due to low initial temperature of the GC oven. For on-line real-
time analytical applications, however, analyte focusing can also
be important, although not for the enhancement of the chromato-
graphic resolution, but for time resolution and sensitivity. Analyte
focusing can be achieved, as described in the first setup, by
repetitive thermal modulation. Therefore, in this setup, the EDU
is used in combination with a segmented thermal modulator array,
as described above. Conditions for the EDU used in these
experiments were as follows: sampling for 130 s at 6 °C with a
sampling flow rate of 230 mL/min and thermal desorption for 60
s at 180 °C. Injection occurs under reversed flow conditions.
During injection, the desorbed compounds are drawn into the
REMPI-TOFMS at a flow rate of 15 mL/min, as restricted by the
capillary jet leading into the ion source. Both the sampling line
and the transfer line into the MS are heated at 150°C. Benzalde-
hyde was sampled for 60 s through the heated sampling line. After
10 s, the amine gas mixture was sampled through the sampling
line for 60 s. The sampling flow rate was 230 mL/min. Benzal-
dehyde accumulates in the PDMS multichannel trap, cooled to 6
°C. The introduced amine gas subsequently reacts with the
benzaldehyde in the trap. The reaction is further encouraged
during desorption at 150 °C for 1 min. During the injection phase,
the derivatives are transferred to the TMA, which submits timely
focused concentrated pulses to the REMPI-TOFMS system. The
results obtained with the EDU-TMA-REMPI-TOFMS setup are
given in Table 1 and Figure 6.

RESULTS AND DISCUSSION
In the first experiments, the reaction efficiency of the selected

derivatization reagents with the selected analytes was tested with
the SPME GC-FID approach. The reaction efficiency graphs
shown in Figure 4 for the on-line derivatization of formaldehyde
and acetaldehyde with phenylhydrazine display the increasing
mass accumulation of derivative on the SPME fiber over time.
Both graphs display (i) the amount of gas standard released over
that time interval, as determined by their permeation rate, and
(ii) the amount of analyte gas trapped using in situ derivatization
on the SPME fiber, as calculated using an internal standard and
the effective carbon number response for the signals obtained
from the GC-FID for the desorbed derivatives.27,41,42 The graphs
on the right represent an enlargement of the graphs on the left,
where the initial accumulation on the SPME fiber appears linear.
A comparison of the initial gradients obtained from the analyte
standard and the actual amount of analyte trapped gives an
approximation of the reaction/trapping efficiency for this reac-
tion.27 The flattening off of the accumulation curves over time is
the result of increased loss or “breakthrough” of the reaction
product from the SPME fiber concentrator. The reaction efficiency
data, shown in Table 2, were obtained at room temperature using
the arrangement in Figure 2A. In Table 2, approximate reaction
efficiencies of 28% for the reaction of propylamine and butylamine
with benzaldehyde, 30% for the formaldehyde reaction with
phenylhydrazine, and around 70% for the aldehydes with phenyl-
hydrazine are indicated.

Incomplete reaction was confirmed by single photon ionization
time-of-flight mass spectrometry (SPI-TOFMS)15,42 of the on-line,
in situ derivatization of propylamine (59 m/z) and butylamine (m/z
73) with benzaldehyde (m/z 106). The presence of both deriva-
tized (161 and 147 m/z) and underivatized analyte (59 and 73 m/z)
was observed. Although these derivatization reactions are not 100%
efficient at room temperature, they still occur readily without the
aid of any catalysts. Thus, for quantitation, the use of internal or
external standards is required. The results of the on-line tests with
REMPI-TOFMS detection are given below. The experiments
demonstrated that all investigated amines and aldehydes could
be successfully derivatized, desorbed, and identified by REMPI-
TOFMS using the on-line setups described above. Figure 5
displays the results obtained for formaldehyde. In the upper part
(A), a conventional 70-eV EI mass spectrum for the formaldehyde-
phenylhydrazone derivative is shown. This mass spectrum was
obtained from a formaldehyde-phenylhydrazone derivative, pre-

Table 2. Approximation of On-Line Derivatization
Reaction Efficiencies at Room Temperature without
Catalyst, as Determined by SPME Setup (see Figure
2A)

compound reagent % reaction efficiency R2 (n)

formaldehyde phenylhydrazine 41 0.9579 (4)
acetaldehyde phenylhydrazine 92 0.9404 (4)
acrolein phenylhydrazine 61 0.9990 (4)
crotonal phenylhydrazine 74 0.9251 (4)
propylamine benzaldehyde 28 0.9570 (4)
butylamine benzaldehyde 28 0.9205 (4)
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pared using the method described by Vogel et al.,58 on an accurate
mass TOFMS (Micromass, GCT, U.K.). The formaldehyde-
phenylhydrazone derivative is detected at 120 m/z, together with
its H loss of similar intensity (119 m/z). The base peak of the
spectrum, however, is due to the C6H5NH+ fragment at 92 m/z.
The peak at 93 m/z is probably due to C6H5NH2

+ formed in a
rearrangement. Figure 5 also displays the REMPI mass spectrum
(244 nm, averaged over 10 transients) obtained from the equiva-
lent on-line derivatization reaction of formaldehyde using the TMA-
REMPI-TOFMS setup described above. The soft ionization capa-
bility of REMPI provides simple mass spectra with nearly no
fragmentation. The mass peak 94 m/z in the REMPI spectrum is
suspected to be due to an impurity in the phenylhydrazine reagent
(most likely phenol).

Figure 6 shows the REMPI-TOF mass spectra obtained for the
TMA and EDU-TMA on-line derivatization of the aldehydes (A)
and the amines (B), respectively. The REMPI mass spectrum of
the aldehyde derivatives at 246 nm, Figure 6A, displays the [M -
1] and [M - 2] mass peak for the acrolein-phenylhydrazone
derivative (145 and 144 m/z). [M - 1] corresponds to the loss of
a hydrogen atom and [M - 2] to the loss of two hydrogen atoms.
The [M - 2] signal is off-scale. These peaks were also observed
on the electron impact (EI) mass spectrum of the derivative (not
shown here). Only the [M - 1] peak was observed for the
acetaldehyde-phenylhydrazone derivative (133 m/z). The crotonal
phenylhydrazone was detected as a [M + 1] peak (161 m/z).
Additionally, only a very weak [M - 2] peak is visible (158 m/z).
[M + 1] adduct peaks commonly are visible in chemical ionization
mass spectra, also to a lesser extent in EI mass spectra obtained
from ion trap mass spectrometers, when some unintentional
chemical ionization can occur. However, [M + 1] peaks do not
occur in photoionization TOF mass spectra under the chosen
conditions (i.e., a pressure of 10-4 mbar in the ion source, avoiding
protonation via ion-molecular reaction). The strong [M + 1] peak
for crotonal phenylhydrazone, thus, is unexpected and indicates
that most likely a side reaction has occurred during the deriva-
tization. Because phenylhydrazine, like hydrazine, is a reducing
agent, one possible explanation is the hydrogenation of the double
bond of crotonal (either before or after the derivatization). The
resulting derivative would be butanal phenylhydrazone (162 m/z),
which may be detected as an [M - 1] peak (161 m/z), as found
for the acetaldehyde and acrolein derivatives. However, it remains
unexplained at the current level of research why the same
hydrogenation does not take place for acrolein. If we summarize
the result for the aldehydes,it can be stated that only formaldehyde
can be detected at the unfragmented derivative mass [M] of 120
m/z. The other aldehyde derivatives, however, were identifiable
at either the respective [M - 1] or [M - 2] peak ([M + 1] for
crotonal). The molecular ion [M] for acetaldehyde, acrolein, and
the crotonal phenylhydrazone were not observed at the applied
REMPI wavelength of 246 nm. An EI mass spectrum of the
acrolein phenylhydrazone product, however, clearly shows the

molecular ion mass peak at m/z 146. (Note that the peak at m/z
146 in Figure 6A is due to the 13C isotope peak for the [M - 1]
ion, not the molecular ion). This indicates that for higher
aldehyde-phenylhydrazone derivatives, a photoinduced fragmen-
tation is observable, which is, however, not a problem for the
analytical application because the mass spectra are still very soft;
i.e., only one (or two) peak(s) dominate the spectra. Phenylhy-
drazine itself was not observed at the used REMPI wavelength.
Note, with other REMPI wavelengths or power densities, different
relative sensitivities or photoinduced fragmentation activities for
the different aldehydes may be observed.

The REMPI mass spectrum (240 nm) of the amine derivatives
is shown in Figure 6B. Benzaldehyde-methylimine, -ethylimine,
-propylimine, and -butylimine display two mass peaks of similar
intensities, [M] and [M - 1], corresponding to the molecular ion
and the hydrogen atom loss. This trend was also observed on
the EI mass spectra. In addition, the derivatizing reagent, ben-
zaldehyde, is also observed in the mass spectrum (Figure 6B).
The signal [M] m/z 106 is off-scale. The [M + 1] m/z 107 peak
is, therefore, the 13C isotope peak. The presence of m/z 106
confirms that the reagent is present in excess during the on-line
reaction. A mass gate is required during on-line derivatization
when an excessive quantity of reagent, such as benzaldehyde, is
present to deflect these ions from the detector. The mass gate
will prevent “blinding” of the detector to masses occurring after
106 mass units (the mass of benzaldehyde).

To summarize, the REMPI detectability of the amine deriva-
tives is as successful as for the aldehydes: all analytes were
detected as [M] and [M - 1] with no further fragments.

Detection limits were determined and are summarized in Table
1. They were calculated using the combined method of Heger et
al.16 and Williams et al.,59 using a S/N of 2 and an average of 10
mass spectra. These results demonstrate the potential of this
technique in future applications. The calculated detection limits
for the analytes are markedly below permissible exposure limits
set by the Occupational Safety and Health Administration (OSHA).2

The EDU, constructed specifically for use with the on-line
REMPI-TOFMS, allows for the use of a multichannel silicone
rubber trap for preconcentration. Lower detection limits were
achieved with this setup, since more PDMS is available for
preconcentration. This is confirmed by the results obtained for
the benzaldehyde-methylimine, -ethylimine, -propylimine, and
-butylimine derivatives using the EDU-TMA and the TMA,
respectively (see Table 1). In addition, off-line sampling together
with a portable pump is also made possible, since the MCSRT
trap is easily removed from the EDU.

CONCLUSIONS
The work presented here, on one hand, demonstrates that on-

line derivatization concepts can be used to expand the unique on-
line analytical properties of the resonance-enhanced multiphoton
ionization time-of-flight mass spectrometer to aliphatic compound
classes. In detail, a method for on-line in situ derivatization of
alkylamines with benzaldehyde and alkyl aldehydes with phenyl-
hydrazine followed by thermal desorption and detection by the
REMPI-TOFMS was successfully tested. The detection limits
obtained for all analytes, for which concentration standards were
made, are below the permissible exposure limits set by OSHA.
Formaldehyde, which is not easily detected by mass spectrometry,

(57) Pallix, J. B.; Schuhle, U.; Becker, C. H.; Huestis, D. L. Anal. Chem. 1989,
61, 805-811.

(58) Furniss, B. S.; Hannaford, A. J.; Smith, P. W. G.; Tatchell, A. R. Vogel’s
Textbook of Practical Organic Chemistry, 5th ed.; Longman Scientific and
Technical: Essex, England, 1989; p 1258.

(59) Williams, B. A.; Tanada, T. N.; Cool, T. A. In Twenty-Fourth Symposium
(International) on Combustion; The Combustion Institute: Pittsburgh, 1992,
p 1587-1596.
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can be detected as the phenylhydrazone derivative. In the future,
formaldehyde gas standards of known concentration must be
prepared to determine formaldehyde’s detection limit for the on-
line reaction.

The potential analytical impact of the concept presented here
should not be underestimated. Through coupling of suitable
photolabels to nonaromatic compounds, a larger variety of
compound classes can now be considered for REMPI-TOFMS
detection, including compounds such as sugars, sulfur com-
pounds, organic acids, or alcohols. Fast screening methods, for
example, for environmental samples, biological samples, or medi-
cal applications, may be developed on this basis.
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