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Summary 
 
The South African Weather Service rainfall seasonal forecasts are verified for the 

period of January-February-March to October-November-December 1998-2004. 

These forecasts are compiled using different models from different institutions. 

Probability seasonal forecasts can be evaluated using different skill measures, 

but in this study the Ranked Probability Skill Score (RPSS), Reliability Diagram 

(RD) and Relative Operating Characteristics (ROC) are used. The RPSS is 

presented in the form of maps whereas the RD and ROC are analyses are 

presented in the form of graphs. The aim of the study is to present skill estimates 

of operational seasonal forecasts issued at South African Weather Service 

 

A limited number of forecasts show positive RPSS value throughout the 

validation period. From RD and ROC analysis, there is no skill in predicting the 

normal category as compared to below-normal and above-normal categories. 

Notwithstanding, the frequency diagrams show that the normal category was 

often given a large weight in the operational forecasts.  

 

The value of verifying seasonal forecast accuracy from the user’s perspective is 

important. The understanding of seasonal forecast performance helps decision 

makers to determine when and how to respond to expected climate anomalies. 

Therefore the frequent update of the seasonal forecast verification is important in 

order to help Users make better decisions. 
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Chapter 1 
Introduction 

 

1.1 Winter and summer rainfall region of South Africa 
 

Several studies have been done on the demarcations of the regions of South 

Africa. Schulze (1965) classified the climatic region of South Africa based on 

geographical consideration such as mountain ranges, rivers and political 

boundaries. By applying the above mentioned method, Southern Africa was 

demarcated into 15 regions. These regions were named according to their 

political boundaries, e.g. L and NT for Transvaal Lowveld and Northern 

Transvaal, respectively. The method was declared as outdated because some of 

the political boundaries do not exist anymore. Therefore, in 1900 Koppen 

(Sanderson, 1999) followed with a different classification method.  

 

The climate data of South Africa used for Koppen classifications is for the period 

1961 to 1990. By applying the above mentioned classifications, South Africa was 

demarcated into dry and relatively wet regions.  The Western Cape receives the 

highest amount of rainfall in winter while rainfall occurs throughout the year in the 

Eastern Cape Province. Winter rainfall over the most southern and western 

region, as well as the eastern coastal regions, is due to frontal-type weather. The 

above change abruptly to drier areas is due to the Cape mountain ranges which 

form a natural barrier between the humid area and the dry area in the north. 

KwaZulu-Natal Province which is located in the eastern part of the country is 

humid. Limpopo Drakensberg mountain range which causes very high orographic 

rainfall on the one side of the Mpumalanga province while drier conditions are 

experienced on the other side of the mountain. A greater part of Limpopo and 

Northwest Provinces is characterized by semi-dry conditions. The eastern part of 

the Northwest Province (e.g. Rustenburg) is more of humid while the far west 
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(e.g. Kuruman) is dry. In Limpopo Province, the far northern part (e.g. Musina) is 

drier than the southern part.   

 

1.2 Sea-Surface Temperature associations with South African rainfall 

The strongest links between Sea-Surface Temperature (SST) patterns and mean 

seasonal rainfall and temperature  are found in tropical regions and seasonal 

forecasts in tropical regions are most skillful (Mason et al., 1994). The best 

known ocean-atmosphere link is the El Niño Southern Oscillation phenomenon. 

El Niño occurs when SSTs in the tropical pacific are above average with an 

anomaly greater than 0.5 for three consecutive months. El Niño can disrupt the 

normal pattern of seasonal rainfall and temperature around the globe, bringing for 

example large changes in seasonal rainfall causing droughts in some regions 

and floods in others. Although the strongest links between SST and seasonal 

climate are found in the tropics, there is good evidence that similar, if not weaker, 

links are present in other parts of the globe including South Africa. 

Comprehensive studies were made on the link between the El Niño and La Niña 

events and summer rainfall over South Africa (e.g. Walker and Bliss, 1930 and 

Van Heerden et al.,1988). It was only after the 1982/1983 El Niño event which 

caused large scale drought conditions over South Africa that the importance of 

studying the oscillation in detail was realised. During an El Niño event, South 

Africa generally experiences below-normal summer rainfall conditions, but this 

does not occur during all the events.. The amount of rainfall received over the 

country differs considerably from one event to the other. The 1996/1997 El Niño 

season is a good example of a strong event where normal rainfall conditions 

were experienced over a large part of South Africa. Below normal rainfall 

conditions in South Africa are not always tied to an El Niño event and the same is 

the case with La Niña events, i.e. above-normal rainfall conditions can be 

experienced in the absence of a La Niňa events (Kruger, 1998).  
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SST anomalies of the oceans adjacent to South Africa are also related to 

southern Africa rainfall variability (Walker, 1990) and may help to improve 

predictions of rainfall variability over southern Africa (Landman and Mason, 

1999). Mason (1990) found that the annual rainfall total of the summer rainfall 

region varies closely in phase with the SST gradient intensity in the southwestern 

and southeastern Atlantic Ocean. Mason (1995) discovered that when 

Subtropical Atlantic Ocean SSTs are anomalously cold (warm), southern Africa is 

characterised by dry (wet) conditions with the strongest rainfall SST association 

over the central southern Atlantic ocean. For equatorial Indian Ocean, if the SSTs 

are warm (cool) to the southeast of Africa, wet (dry) condition are experienced 

over southeast Africa (Jury, 1992).  

 

Above average SSTs over the tropical Indian Ocean together with other 

conditions can lead to the development of tropical cyclones and an increase in 

the frequency of cyclones. The association between SSTs in the Equatorial 

Indian Ocean and seasonal rainfall over South Africa is nonlinear (Mason and 

Jury, 1997). The rainfall-SST associations vary during the summer rainfall 

season defined as October to March. The central Equatorial Indian Ocean SSTs 

show very significant associations with February and March South African rainfall 

(Pathack et al., 1993). The western tropical Indian Ocean seems to be an 

important source of atmospheric moisture, especially during the second half of 

summer where most of the summer regions receive tropical moisture. Therefore 

if the SSTs over the western tropical Indian Ocean anomalously high then there 

will be an enhancement of rainfall over South Africa (Landman and Mason, 

1999). Apart from the Equatorial Indian Ocean and Atlantic Ocean SSTs, there is 

also the Agulhas current that contributes to the rainfall over South Africa. The 

variability of Agulhas current together with the atmospheric circulation account for 

some of the variability of the summer rainfall over South Africa (Mason, 1990).  
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1.3 Seasonal forecast models and methods 

Weather forecasts provide information of weather (e.g. prediction of rainfall, 

frontal passages) expected over the next few days, but beyond about a week 

ahead it is not possible to predict these day-to-day changes in detail (Bartman, 

2002). However, mean conditions over a number of months can be predicted and 

these are called seasonal forecast.  Seasonal forecasts are made possible by the 

Earth’s surface conditions, e.g. SSTs that fluctuate slowly fluctuations leaving 

some memory in the atmosphere and therefore making the atmosphere partly 

predictable. The slow fluctuations of SST can be predicted, to some extent, up to 

about 6 months ahead. The links between SST and atmospheric conditions can 

be represented in computer models of the atmosphere and ocean. Computer 

models developed at different institutions, similar to those used in making daily 

forecasts and climate change prediction. 

 

Major understanding of the predictability of the atmosphere at seasonal-to-

interannual time scales has been achieved during the most recent years or so 

(Carson, 1998). In determining the future behaviour of the climate system, for 

example the state of the phase of ENSO or the mean global circulation pattern, 

from knowledge of its present state and past behaviour, two approaches are 

used, namely an empirical- and physically-based models (Trenberth, 1992; 

Mason et al., 1996). Empirical models rely on past statistical associations 

between atmospheric and Oceanic parameters. Physical models attempt to 

forecast the time-average of future atmospheric conditions by simulating the 

dynamic and thermodynamic processes, which determine the state of the non-

linear atmosphere. 

 

Statistical methods use techniques such as regression equations to relate the 

atmospheric conditions to a set of independent variables such as SSTs or earlier 

states of the atmosphere (Ward and Folland, 1991; Barnston, 1994; Drosdowsky, 

1994; Hastenrath et al., 1995; Huang et al., 1996). The first principles approach 
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utilises equations believed to represent the physical, chemical and biological 

processes governing the climate system. These models are called General 

Circulation Models (GCMs) and are being used extensively in seasonal 

forecasting (Palmer and Anderson, 1994; Ji et al., 1994; Hunt, 1997; Mason et 

al., 1999; Gates et al., 1999). The Statistical forecast techniques have predictive 

skill that can be ascribed to low frequency changes in SSTs of the oceans, 

particularly the tropical Pacific Ocean. Graham and Barnett (1995) discovered 

that statistical models perform better than physical models in many regions of the 

globe but the climate variables such as rainfall are very difficult to model 

statistically (Wilks 1995). On the other hand, physical models at long-range 

climate forecasting perform badly if they are used without the appropriate SST 

forcing.  

 

A combination of Physical Ocean models, Atmospheric General Circulation 

Models (AGCMs) and statistical models is helpful in predicting seasonal rainfall 

and temperature because different models address different problems. Coupled 

dynamic ocean-atmosphere models are successfully used in the forecasting of 

climate parameters such as SSTs (Kirtman et al., 1997).  

 

Meteorological institutes around Africa and other continent use several AGCMs 

that produce seasonal climate predictions as input to the final seasonal forecast. 

During the period 1997-2000, CCM3.2 developed at the National Centers for 

Atmospheric Research (Hack et al. 1998) and run at the IRI; ECHAM3.6, 

developed by the Max-Planck Institute for Meteorology (DKRZ 1992) and the 

NCEP-MRF9 developed by the National Centers for Environmental Prediction 

(Livezey et al 1996) and run by collaborators at the Queensland Center for 

climate Applications in Australia where some of the AGCMs used by the South 

African Weather Service (SAWS). Multi-decadal simulations of approximately 50 

years, using observed SSTs, have been produced for each of these models, 

each of which has produced at least 10 ensemble members. These long 

historical runs provide estimates of model potential predictability and 
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characteristics of model climatology that are essential to interpreting the seasonal 

predictions from each model (Mason et al., 1999).  

 

1.4 Seasonal forecasting at South African Weather Service (SAWS) 

 
Since the early 1990s different research groups within South Africa were involved 

in research to investigate suitable seasonal climate prediction methods (Mason et 

al., 1996). This was motivated by the loss of life and damages that were 

experienced due to flooding and drought in the country (Klopper, 1997).  

University of Pretoria (Rautenbach and Smith, 2001), the University of Zululand 

(Jury, 1995), the Climate Research Group (CRG) at the University of 

Witwatersrand (Mason, 1998), and the Climate System Analysis Group (CSAG) 

at the University of Cape Town (Tennant and Hewiston, 2001) were part of this 

research.   

 

At SAWS, which was then called South African Weather Bureau, the Research 

Group for Seasonal Climate Studies (RGSCS) was founded in 1994 and its main 

goals were to investigate statistical relationship of rainfall over southern Africa 

and other climate system variables (Klopper, 2002). Its task is also to issue a 

regular seasonal rainfall forecasts for South Africa, Namibia and Botswana.  The 

RGSCS continued with research and development of statistical model and later 

expanded its work to include dynamical models to improve the long-term climate 

prediction in South Africa. The Long-Range Forecasting Group was subsequently 

established at the SAWS. This group makes use of the empirical, dynamical and 

empirical-dynamical forecasting techniques to compile forecasts. 

 The Long-Range Forecasting Group at the SAWS and Climate Systems 

Analysis Group based at the University of Cape Town are currently the two main 

institutions in South Africa issuing seasonal forecast. A number of institutions in 

South Africa are involved in the production and dissemination of long-range 

seasonal forecasts and the Global Forecasting Center for Southern Africa 
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(GFCSA, www.gfcsa.net ) serves as a focal point for such activities. South 

African Weather Service also uses product from three institutions from overseas 

namely United Kingdom Meteorological Office (UKMO), International Research 

Institute for Climate and Society (IRI) in the United State of America and the 

European Center for Medium-Range Weather Forecast (ECMWF) in Europe.  

 

The Long-Range Forecasting Group meets every month to make seasonal 

forecasts for the next seasons using information from the above-mentioned 

institutions (Klopper, 2002). The consensus takes place and at the end, there will 

be a final seasonal forecast in the form of a map (figure1.1) given as the 

probability (in percentage) for each of three equi-probable categories (above-

normal, normal and below-normal) expected to occur over a certain region 

(Klopper, 2002). The Long-Range Forecasting Group issues probabilistic rather 

than deterministic forecasts in order to account for the uncertainties in the climate 

system. The category with the highest probability is the most likely to occur but 

there are also lesser probabilities assigned to each of the remaining two 

categories and they are never small enough to be disregard.  
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 Figure 1.1 Probability seasonal forecasts issued by South African Weather Service. 
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1.5 Importance of seasonal forecasts 

 

Seasonal forecasts possess a certain level of economic value for some sectors 

even though they exhibit considerable uncertainty (Klopper, 2002). The 

economical benefits of climate forecasts were shown during the past years 

(Sonka et al., 1988) especially during the past ENSO events. On longer time 

scales social, environmental and economic activities will partly govern the 

sensitivity towards climate events and determine the type of information to 

respond to (Klopper, 2002).  Social benefits directly associated with the use of 

climatological information include stability or improvement of the environment, 

living, traveling and working conditions. For people to travel from one place to 

another they must have the climate information of the area. For example if people 

want to travel to Zimbabwe, they must know the seasonal forecast because if the 

season will be wet, then it will be characterized by malaria. Again if the area is 

likely to be cold, they must be prepared and carry warm clothes. Climate 

information is also used by contractors. If a contractor has a project to build a 

shopping mall, he/she must know what the season will be like. During a wet 

season, the project will be delayed because concrete may take a longer time to 

dry. Climate information can also be of use by Amalgamated Beverages Industry 

(ABI). If a summer season is expected to be characterised by many cold days, 

then that implies that ABI should not produce more drinks than usual. 

 

There are many users of climate information in South Africa but the agricultural 

sector is affected the most by climate variability (O’Loughlin, 1988). Farmers use 

climate information as one of the tools in the planning process for example when 

to plant, fertilizer applications, stock management etc (Klopper, 2002). The 

farmer needs to know the right time to plough. During a season when below-

normal rainfall conditions are experienced, seasonal forecasts can help farmers 

save money by planting fewer crops.   
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1.6 What makes a good seasonal forecast? 

 
In order to determine whether or not the forecast is valuable, there is a need to 

monitor the quality of the seasonal forecasts and its use (Thorne and 

Stephenson, 2001). There must be a clear link between quality and value. 

Therefore combination of quality and value statistics could be used by users to 

choose the best seasonal forecast provider and to set limits for performance 

related contracts.  

 

Stanski et al. (1989) reviewed six attributes of a weather forecast that make up 

the total quality which are reliability, accuracy, skill, resolution, sharpness and 

uncertainty. They also make an important point that no single verification 

measure provides complete information about the quality of a product. Value is 

the degree to which the forecast helps the decision-maker to realise some 

incremental economic and/or other benefit (Jolliffe et al., 2003). Unlike quality, 

the value of seasonal forecast depends on user requirements (Thorne and 

Stephenson, 2001). It shows that there is a difference between seasonal forecast 

quality and seasonal forecast value. A seasonal forecast has a high quality if it 

predicts the observed conditions well according to some objective or subjective 

criteria and it has value if it helps users to make better decisions.  

 

The value of seasonal forecasts to a particular activity is measured by the 

expected increase in economic benefits arising from the use of these seasonal 

forecasts in the decision making process (Klopper, 1999). A seasonal forecast 

structure has economic value if user’s decisions are influenced by various 

seasonal forecasts. If the quality of the seasonal forecast is such that the user 

makes the same decision with or without the seasonal forecast, then the 

seasonal forecast is of no value.  In general, seasonal forecasts of a variety of 

weather variables over a wide range of time scales possess positive economic 

value for a spectrum of decision makers (Klopper, 1999). 
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Brier and Allen (1951) classified the value and quality of seasonal forecast based 

on administrative, scientific and economic aspects.  They call these a three way 

classification. According to them no classification is perfect and they have 

common characteristics. A common important characteristic is that any 

verification measure should be informative and it should be chosen to answer the 

questions of interest and not simply for reasons of convenience (Jolliffe et al., 

2003). 

 

For administration purposes, there is a need to have some statistics of 

performance of seasonal forecasts (Jolliffe et al., 2003). This shows effectiveness 

of seasonal forecast using a small number of forecasting models and various 

numbers of forecasting models. It also measures the performance and the 

involvement of forecasters. For this purpose, a small number of overall 

verification measures of seasonal forecast performance are usually preferred. A 

verification measure can then be used to justify whether the seasonal forecast is 

better with involvement of forecasters or not. It also determines the value of 

seasonal forecasts using a small number or a bigger number of forecast models 

(Jolliffe et al., 2003). Therefore, they can guide strategy for future investment of 

resources in seasonal forecasting. 

 

The scientists will be more concerned with understanding and improving the 

seasonal forecast system (Jolliffe et al., 2003). Many meteorological scientists 

are busy implementing new forecasting models and verification can deduct 

whether a forecast has quality or not. There is a need for using different skill 

scores in verifying the seasonal forecast and the result can show whether these 

models have problems or not. Sometimes the models can lack skill in predicting 

the season and this can lead to lack of information. Therefore, seasonal forecasts 

verification can lead to an improvement in the scientific understanding of the 

underlying processes to improve models, and eventually to improve seasonal 

forecasts (Klopper, 2002). 
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Economic use is usually taken to mean something closer to the users of the 

seasonal forecasts (Jolliffe et al., 2003). The verification structure should be kept 

as simple as possible in terms of communicating results to users but complexity 

arises because users have different interests. For example, seasonal forecasts of 

summer rainfall that can be of interest to both a farmer, and to an insurance 

company covering risks of the event cancellations due to wet weather (Jolliffe et 

al., 2003). However different aspects of the seasonal forecast are relevant to 

each. The farmer will be interested in the total rainfall, and its distributions across 

the season, whereas the insurance company’s concern is mainly restricted to 

information on the likely number of wet days (Klopper, 2002). 

 

The economic view of seasonal forecast verification needs to take into account 

the economic factors underlying the user’s needs for seasonal forecasts when 

devising a verification measure. It is sometimes known as ‘customer based 

verification’, as it provides information to be understood by the ‘customer’. 

Another aspect of forecasting for specific users is the extent to which users prefer 

a simple, less informative seasonal forecast (Klopper, 2002). The seasonal 

forecast is more informative (e.g. a probability seasonal forecast) but is difficult to 

interpret. It confuses users because all three categories are assigned a certain 

probability. 

 

1.7 How to verify the seasonal forecast 
 

It is more appropriate to judge probabilistic seasonal forecast in the aggregate 

rather than individually but a time series of all seasonal forecasts should help 

users visualize aggregate performance (Klopper, 2002). The demonstrated 

seasonal forecast skill, or lack thereof, provides a basis of experience for 

exploring the implications of seasonal forecast performance. Seasonal forecast 

quality can have implications for prioritising scientific efforts, realizing competitive 

advantages, adjusting management processes, and changing seasonal 
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forecasting efforts (Klopper, 2002). With the verification structure in place, users 

will realise the potential of seasonal forecasts. 

 

1.8 The truth when verifying the seasonal forecast 
 

When verifying seasonal forecast, there must be an observational dataset that 

comes from an observational data source (Jolliffe et al., 2003). These could be 

rain-gauge measurements, satellite derived cloud cover, geopotential height 

analyses and so on. In many cases it is difficult to know the exact truth because 

there are errors in the observations. Sources of uncertainty include random and 

bias errors in the measurements themselves when the observational data are 

analyzed or otherwise altered to match the scale of the forecast (Jolliffe et al., 

2003). Rightly or wrongly, most of the time, errors in the observational data sets 

are ignored. This happens only if the errors in the observations are much smaller 

than the expected error in the forecast (high signal to noise ratio). Even skewed 

or under-sampled verification data can give us a good idea of which seasonal 

forecast products are better than others when inter-comparing different seasonal 

forecast methods.  
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1.9 Eye-ball verification 
 

  

 
 

  

Table 1: Eye-ball verification with different lead-times (SAWS) 
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Eye-ball verification is the method that looks at the forecast and observations 

side by side and uses human judgment to distinguish the forecast errors, Joliffe 

et al., 2003 Eye-ball verification is a verification method that is currently used by 

South African Weather Service and it can be found on 

www.weathersa.co.za/FcastProducts/LongRange/ViewSeasonEyeBall.jsp. The method is 

subjective because it does not give quantitative verification statistics. The 

judgments come from different individuals with different views. For example one 

user can see a seasonal forecast useful and others not, depending on their 

judgment. Eye-ball verification can sometimes mislead people because of lack of 

statistics that can show quality and value of the forecast. Therefore verifying 

forecasts in terms of skill measures showing statistics is important.  

 

1.10 Objective of the research 

 

The objective of the study is to present skill estimates of SAWS 
operational seasonal forecast for the period 1998 to 2004. 
 

The verification structure provides several methods that accommodate variations 

in user’s interpretive abilities. It offers trade-offs between different levels of 

informativeness and understandability, and enables users to increase the 

cleverness of their understanding about seasonal forecast, their reliability, and 

implications of using them for decision making. SAWS currently uses eye-ball 

verification to judge the seasonal forecast. Therefore, there is a need of 

performing a more comprehensive verification of seasonal forecast products, 

which must be done in a rational manner such that the administrative, scientific 

and economic needs are met. This has become a requirement, since SAWS 

could begin to generate income from its seasonal forecast services. SAWS 

issues their operational seasonal forecasts probabilistically. The seasonal 

forecast must be verified and should be available to potential users of seasonal 

forecast outlooks (Goddard et al, 2003). Goddard et al (2003) found that the skill 
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level associated with the normal category is generally low but this also needs to 

be tested using the SAWS operational seasonal forecasts.  
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Chapter 2 
    Data and Method 

2.1 Introduction 
 

Verification is the process of determining the quality of forecasts (Jolliffe et al., 

2003). A wide variety of seasonal forecast verification structures exist, but all 

involve measures of the relationship between a seasonal forecast or a set of 

seasonal forecast and the corresponding observation(s) of the predictand. Any 

seasonal forecast verification method thus necessarily involves comparisons 

between matched pairs of seasonal forecasts and the observations to which they 

pertain. There is a need to verify the forecast in order to present skill estimates of 

operational probabilistic seasonal forecast.  

 

2.2 Verification data  

 
In this study the South African Weather Service seasonal forecast outlook issued 

for October-November-December 1998 to October-November-December 2004 

are analysed. The seasonal forecast is issued at different lead-times but the 

study only concentrates on 0-lead-time, which is the seasonal forecast issued a 

month prior to the target season. This study only concentrates on 0-lead time 

because it is the only lead-time that has a complete set of forecasts for the seven 

year period being studied. The observation dataset is the averaged monthly total 

rainfall data from January 1998 to December 2004 for 963 stations.   
                         

2.3 Verification measure 

 
The seasonal rainfall forecast is verified using three skill measures which are the 

Ranked Probability Skill Score (RPSS), Reliability Diagram (RD) and Relative 

Operating Characteristics (ROC). These verification measures take account of 

the probability assigned for each category using the forecast climatology as a 
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reference. The skill measures are more appropriate to measure the quality of a 

probabilistic forecast, since the magnitude of the error depends on the 

probabilities assigned to the different categories.  

 

2.3.1 Ranked Probability Skill Score (RPSS) 

 
The RPSSs are calculated from Ranked Probability Scores (RPSs) values. A 

RPS is a verification measure that is sensitive to the difference between the 

probabilities assigned to each category and the category observed (Wilks, 2006). 

If a high probability was assigned to a certain category and that category 

occurred a high score will be assigned, however if the category is not observed, a 

penalty will be given. Therefore RPS can be calculated by the square errors with 

respect to cumulative probabilities in the forecast and observation distribution of 

categories (Wilks, 1995).  

 

Let pj be the probability assigned to the jth category; the cumulative forecast 

vector Pm for the first m categories can be defined as 

 

Pm = ∑           i 
m

j
pj

 

Similarly, 0m defines the cumulative observation vector for the first m categories  

  

Om =           ii ∑
=

m

j
oj

1

 

The components of the vector oj are all zero except for the category in which the 

observation occurs. The RPS is defined as the sum of the squared differences 

between the components of the cumulative forecast and observation vectors of 

Equations (i) and (ii) 
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RPS =         iii 

          

(∑
=

−
J

m
OmPm

1

)

 where J represents the number of categories. A perfect forecast would assign a 

probability equal to one to the category that is observed, and a probability equal 

to zero to all the other categories. Therefore, the vectors Pm and Om will be the 

same and RPS will be zero. If the forecast departs from perfection, then the 

square differences will depart from zero and RPS will be greater than zero.  

 

Equation (iii) was used to calculate the RPS of every seasonal forecast and 

averaged the Ranked Probability Scores in order to obtain the mean RPS value. 

Therefore, the Ranked Probability Skill Score is expressed relative to the 

reference probability RPSreference as follows                         

 

 

 RPSS= 
ceRPSreferen

RPS
ceRPSreferen

ceRPSreferenRPS
−=

−
− 1

0
         iv 

 

Where reference can be any point, but in this study climatology is the reference. 
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2.3.2 Reliability diagram (RD) 

 

 

 

Figure 2.1 Reliability diagram (www.bom.gov.au/bmrc/wefor/staff/eee/verif/verif_web_page.html) 
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The Reliability diagram is used to graphically represent the performance of 

probability forecasts of dichotomous events (Wilks, 1995). A reliability diagram 

consist of only the plot of observed relative frequency as a function of forecast 

probability, the 1:1 diagonal perfect reliability line, and a summary of the 

frequency of use of each value (figure 2.1). The reliability diagram allows a more 

prominent display of the frequency of use of the forecasts (Wilks, 2006). This is 

an important consideration, since the plotted points on the reliability diagrams 

represent the conditional distribution of observations given the forecasts, p(oj │yj), 

and the frequency of use of the forecasts is just the unconditional distribution of 

the forecasts, p(yj). Thus the reliability diagram is a compact display of the full 

distribution of forecasts and observations and is a more informative 

representation of forecast performance than single scalar scores, which in the 

study is RPSS. The graph in the top left corner of figure 2.1 is known as 

sharpness diagram which shows the frequencies of the forecast probabilities 

divided by the total number of forecasts (Wilks, 2006). The sharpness diagram 

gives estimate of the marginal probability distribution of the forecast probabilities. 
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2.3 Relative Operating Characteristics (ROC)  

 

 

Figure 2.2 Relative Operating Characteristics  

(www.bom.gov.au/bmrc/wefor/staff/eee/verif/verif_web_page.html) 
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Relative Operating Characteristics (ROC) comes from quality control and signal 

detection theory where the quality of performance is assessed by the relation 

between probability of detection (POD) and false alarm rates (Swets 1973; Egan 

1975; Mason 1982). The graph (figure 2.2) of POD against false alarm rates 

within the range of probability thresholds is called the relative operating 

characteristics. The POD and false alarm rates are closely related to the 

threshold used in transforming from probabilistic forecasts to yes/no forecasts. 

The POD can be increased by reducing the probability threshold, but at the same 

time the false alarm rate is increased (Zhang and Casey, 2000). Similarly, 

reducing the false alarm rate is at the expense of reducing the POD. In the ROC 

curve, the seasonal forecast is considered to be perfect if the seasonal forecasts 

are located at the point (0,1). In this case, the score will be either 0% or 100% for 

probabilistic seasonal forecasts. The worst seasonal forecast locates at the point 

(1,0) in which the seasonal forecast gives either 0% or 100% probabilistic 

forecasts where the constant value forecasts and random forecasts will locate on 

the straight line between (0,0) and (1,1).  

 

The shape of the ROC curve gives a total description of the skill of the seasonal 

forecasts at all probability thresholds. Seasonal forecast with a good skill will 

have its ROC curve lying above and to the left of the (0,0) to (1,1) diagonal. 

However, a seasonal forecast with low skill will have its ROC curve lying below 

and to the right of the (0,0) to (1,1). ROC can be quantified in two different 

methods (Zhang and Casey, 2000). The first method is the area beneath the 

ROC curve whereas the second method is POD versus the false alarm rate 

(Green and Swets, 1966). The study will only use the area beneath the ROC 

curve because it gives one value for a score and is easily understood. The larger 

the area, the better the seasonal forecast skill. If the area of the seasonal 

forecast is less than 0.5 of the whole (unit area), then the seasonal forecast is 

less skillful than a random or constant forecast.  
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Chapter 3 
 
Ranked Probability Skill Score (RPSS) Results 
 
3.1 Introduction 

In this study the Ranked Probability Skill Score (RPSS) is the Ranked Probability 

Skill (RPS) of the forecast compared with the RPS of the forecast of climatology 

(RPSclm) that assigns 0.33 for each of three categories. The value of RPSclm 

depends on which category value was observed, being lower for the middle 

category than the two outer categories. RPSS gives credit for forecasting the 

observed category with high probabilities, and penalties for forecasting the wrong 

category with high probabilities is substantial (Goddard et al., 2003). The 

maximum RPSS is 1, but a score of 1 could only be obtained by forecasting the 

observed category with a 100% probability. The RPSS is used to verify South 

African Weather Services operational seasonal forecast. Only seasonal forecasts 

issued a month before the target season (0-lead-time) are verified over a 7-year 

period (1998 to 2004).  If the RPSS for the forecasts is 0 then there is no skill in 

the seasonal forecasts, because that is the same score one would get by 

consistently issuing a seasonal forecast of climatology (0.33 0.33 0.33). On the 

other hand, a negative score suggests that forecasts of climatology are better 

than seasonal forecasts. The results are shown in figure 3.2 to 3.5 for the nine 

provinces of South Africa (figure 3.1).  
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Figure 3.1 Nine provinces of South Africa (Map from SAWS website) 
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3.2 January-February-March (JFM) 

 

The Ranked Probability Skill Scores (RPSSs) for seasonal rainfall forecasts of 

the January-February-March (JFM) late summer seasons for the period 1998-

2004 are shown in figure 3.2. For the JFM seasons, most of Limpopo province 

and Northern Cape, western and southwestern parts of North West receive 

between fifteen and twenty percent of the annual total rainfall. The rest of the 

provinces receive between ten and fifteen percent of the annual total rainfall 

except the south and south-western coast which receive between zero and ten 

percent of their annual total rainfall. The RPSS for JFM seasonal forecasts is 

positive over the eastern parts of the Western province and most parts of 

KwaZulu-Natal. There is a positive score over the borders of Lesotho and the 

central areas of Free State and North-west. For Limpopo, Gauteng, 

Mpumalanga, Northern Cape, Eastern Cape and most parts of the North-West 

and Free State, the RPSS for the JFM seasonal forecasts is negative. Overall, 

the SAWS forecast was worse than climatology, which suggests that users would 

have been better of using climatology than these forecasts.  
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Figure 3.2 Ranked Probability Skill Score for January-February-March 

 

3.3 April-May-June (AMJ) 

 

The Ranked Probability Skill Scores (RPSS) for April-May-June (AMJ) seasonal 

forecasts for the period 1998-2004 are shown in figure 3.3. This season is the 

beginning of winter season where the western parts of Northern and Western 

Cape Provinces receive between ten and fifteen percent of annual total rainfall. 

The eastern part of Western Cape, the central part of Northern Cape and western 

part of Eastern Cape receive between five and ten percent of the annual total 

rainfall. The rest of the country receives between zero and five percent of the 

annual total rainfall.  The RPSS for AMJ seasonal forecast is positive over the 

entire Gauteng Province, the most part of Mpumalanga Province, western of 

Eastern Cape Province and along the border of Western and Northern Cape. The 

rest of the country shows negative RPSS values. The seasonal forecast is in 

most of the areas worse than the forecast of climatology especially in the area 

where the rainfall is expected to be high i.e. Western Cape Province. 
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Figure 3.3 Ranked Probability Skill Score for April-May-June 
 

3.4 July-August-September (JAS) 

 

The Ranked-Probability-Skill-Scores (RPSS) for rainfall seasonal forecast of the 

July-August-September (JAS) season for the period 1998-2004 are shown in 

figure 3.4. For the JAS season, the areas of highest rainfall are the western parts 

of the Northern and Western Cape Provinces with ten to fifteen percent of annual 

total rainfall. Five to ten percentage of the annual total rainfall is received in the 

Western interior of the Northern Cape Province, the central interior of the 

Western Cape Province and the south coast of the Eastern Cape Province. The 

larger part of the country receives between zero and five percent of their annual 

total rainfall. The skill of the JAS seasonal forecasts is positive over the western 

part of the Western Cape and the larger part of the Northern Cape Province with 

a few patches of positive values over the Limpopo Province. Most of the area in 
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the country shows negative RPSS. The entire Eastern Cape, KwaZulu-Natal, 

Mpumalanga, Gauteng, most parts of the Limpopo and Northwest province show 

negative RPSS values. Even though most of the country behaves worse than a 

forecast of climatology, there are a few areas that show positive RPSS values.  

 

 
Figure 3.4 Ranked Probability Skill Score for July-August-September 
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3.5 October-November-December (OND) 

 

For the October-November-December (OND) season, south of Mpumalanga 

along the Free State Province north of Gauteng Province and the Northwest 

Province receive fifteen to twenty percent of annual total rainfall. The Western 

part of Northern and Western Cape Provinces receive respectively zero and five 

percent of the annual total rainfall whereas the most part of Northern Cape 

Province, the eastern parts of Western Cape Province, western part of the 

Eastern Cape Province and along the eastern coast of KwaZulu-Natal receive 

five to ten percent of the annual total rainfall. The rest of the country receives 

between ten to fifteen percent of the total annual rainfall. The RPSS of the OND 

seasonal forecasts (figure 3.5) is positive over the most part of the Northern 

Cape, Northwest, Limpopo, Eastern Cape, KwaZulu-Natal and Free State 

Provinces and eastern part of the Western Cape. There are only a few areas that 

show negative Ranked Probability Skill Score (RPSS) which include the whole of 

Gauteng, western part of the Western Cape, and south of the Eastern Cape. For 

the OND season, the forecast was better for the most part than the forecast of 

climatology.  

 

The SAWS seasonal forecasts are more skillful in this season compared to other 

seasons. The reason for an improvement in the skill in this season is the high 

association of rainfall in this season with the ENSO. The summer season of 

1997/1998 was an El Nino season, and it was followed by La Nina events from 

1998 to 2000. Dynamical models are more skillful in forecasting rainfall during 

ENSO years and therefore that skill will automatically transfer to subjective 

forecasts where there would be a lesser confusion when all models agree.  
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Figure 3.5 Ranked Probability Skill Score for October-November-December 
 

Summary  

 
The South African Weather Services operational seasonal forecasts verified in 

this study is for the period 1998 to 2004. These probabilistic three-category 

forecasts for seasonal rainfall result from the use of forecast models from 

different institutions both run in South Africa and abroad. The seasonal forecast 

issued by South African Weather Service for the period 1998 through 2004 were 

assessed here using the Ranked Probability Skill Score (RPSS), a measure that 

considers the probabilistic content of the forecast. The seasonal forecasts show 

more coherent coverage of the skill over most of the region of October-

November-December (OND) seasons than the other three seasons (January-

February-March (JFM), April-May-June (AMJ) and July-August-September (JAS)) 
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because of the strong link between OND and ENSO. A verification study done at 

the IRI for multi models also found the average RPSS model for South Africa to 

be low as compared to other countries for JFM, AMJ and JAS (Goddard et al, 

2003).For JAS, the skill is higher over the winter rainfall area than for summer 

rainfall areas. This may be attributable to the fact that for each season 

forecasters pays more attention to a region which receives the most rainfall. 

Seasonal forecasts over regions for which positive skill exists should be 

considered by users because the seasonal forecasts are potentially useable for 

input to decision making (Goddard et al, 2003). However, the forecasts were 

subjected to a very strict measure of forecast performance and regions that 

exhibit good skill in this analysis are likely to appear skillful when subjected to 

other verification measures i.e. RD and ROC. Forecasters definition of forecast 

quality may even vary among users. 

 

Negative RPSS implies that there is a need to add more models and improve the 

existing models. For meantime, users can be cautioned when using the forecast 

that has low skill because there might be cost loss in terms of economy. When 

taking a decision they can at least rely on climatology for their decision making. 
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Chapter 4 

 
Reliability Diagram (RD) Results 
 
4.1 Introduction 

 

The Reliability diagram examines the joint frequency distribution of forecasts and 

observations in order to diagnose particular strengths and weakness of a set of 

forecasts (Wilks, 2006). It also scores each category individually i.e. below-

normal, near-normal and above-normal. An unconditional bias is when the 

forecast is consistently too high or too low and conditional bias is when the 

systematic forecaster has over- or under-confidence (Wilks and Godfrey, 2002). 

In particular, unbiased forecast exhibiting an appropriate level of confidence 

produce reliability diagrams whose points fall close to the 1:1 line. If the SAWS 

operational seasonal forecasts exhibit points predominantly left of the 1:1 line, 

then the seasonal forecast is under-forecast or if the seasonal forecast exhibits 

points predominantly right of the 1:1 line, then the seasonal forecast is over-

forecast. The Reliability diagrams for the SAWS operational seasonal forecasts 

are shown in figure 4.2(a-c) to figure 4.5(a-c), separately for the below-normal, 

near-normal and above-normal categories. The thin lines through each 

calibration function show weighted least-squares regressions (Murphy and Wilks, 

1998) that help guide the eye through the irregularities that are in the seasonal 

rainfall forecasts. The bars in each refinement distribution identify the forecast 

probabilities. The averaged forecasts are shown by triangles on the horizontal 

axes and the average observations are indicated by the pentagons on the vertical 
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axes. The arrows in horizontal and vertical axes indicate the forecasts of 

climatology. 

 

4.2 January-February-March (JFM)  
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Figure 4.2a Reliability Diagram for the below-normal category 
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Figure 4.2b Reliability Diagram for the near-normal category 
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Figure 4.2c Reliability Diagram for the above-normal category 

 

 

The Reliability diagrams for the January-February-March (JFM) seasonal rainfall 

forecasts are shown in figure 4.2 (a-c) separately for the below-normal, near-

normal and above-normal outcomes for 0-month lead-time. A forecast of 

climatology (33.3%, 33.3%, 33.3%) was never issued for this season. The 

forecast of climatology is issued when there is a big uncertainty amongst all 

models used for the seasonal operational forecast. The above-normal JFM 

rainfall seasonal forecast (fig 4.2c) exhibit a good calibration function because 

the regression line lies close to the 1:1 line. It is even shown (Fig 4.2c) that there 

is not much difference between the average observation (horizontal axes) and 

the average forecast (vertical axes). For the below-normal JFM rainfall seasonal 

forecast, there are forecasts that are below and above the forecast of 

climatology. The forecasts that are below forecast of climatology are reasonably 

well calibrated, while forecast above forecast of climatology do not resolve 

differences in the event outcomes. The near-normal rainfall JFM seasonal 

forecast exhibits essentially no skill, approximately flat calibration function (Wilks 

and Godfrey, 2002). The JFM seasonal forecast was in favour of the above-

normal category and the forecast of above-normal category should have been 

given more weight. 

 

The reliability diagrams scored the forecast better than the RPSS as discussed in 

the precious chapter. This is because the RPSS scores all categories together 
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while the reliability diagrams score the different categories separately and from 

the results it is evident that the problem is with the above-normal category. This 

category should be forecast with bigger probabilities than what the forecasters 

assigned to it during the study period. The problem here is not with the model 

forecasts as such but rather forecasters seem to be hesitant of forecasting this 

category with more weight. Forecasters should therefore forecast this probability 

as directed by the models and not be hesitant. 

 

4.3 April-May-June (AMJ) 
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Figure 4.3a Reliability Diagram for the below-normal category 
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Figure 4.3b Reliability Diagram for the near-normal category 
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Figure 4.3c Reliability Diagram for the above-normal category 
 

The Reliability diagrams for the April-May-June (AMJ) seasonal rainfall forecasts 

are shown in figure 4.3 (a-c) separately for the below-normal, near-normal and 

above-normal outcomes for 0-month lead-time. The seasonal forecast of 

climatology was issued several times during 1998 to 2004. The below-normal 

AMJ rainfall seasonal forecast (fig 4.3a) exhibit less resolution where there are 

seasonal forecasts below the forecast of climatology and there are also forecasts 

above forecast of climatology. The near-normal AMJ rainfall seasonal forecast 

exhibits essentially no resolution (Wilks and Godfrey, 2002). The near-normal 

category was over-forecast because most of the time it was forecast (horizontal 

axes) but not observed (vertical axes). The above-normal AMJ rainfall seasonal 

forecasts are reasonably well calibrated because the forecast are smaller than 

the climatological forecast (Wilks, 2002). The above-normal category was 

observed most of the times when it was forecast. (figure 4.2c).  

 

The results suggest that the near-normal category should be forecast as less 

often as possible because it exhibits no skill. The outer-categories must be given 

more weight especially the below-normal category for this season. The RPSS 

showed that the forecast does not have skill for this AMJ season. The forecast 

models need to be improved to help users in terms of decision making especially 

over the winter-rainfall region knowing that this is the beginning of winter-rainfall 

season. This will also help forecasters not to issue forecast of climatology. 
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4.4 July-August-September (JAS) 

 

 
Figure 4.4a Reliability Diagram for the below-normal category 

 

 
Figure 4.4b Reliability Diagram for the near-normal category 

 

 
Figure 4.4c Reliability Diagram for the above-normal category 
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The Reliability diagrams for the July-August-September (JAS) seasonal rainfall 

forecasts are shown in figure 4.4 (a-c) separately for the below-normal, near-

normal and above-normal outcomes for 0-month lead-times. A forecast of 

climatology was issued in this season for the period 1998 to 2004. The below-

normal JAS rainfall seasonal forecast (fig 4.4a) exhibits less resolution. There 

was a small number of times where the below-normal category was observed 

(vertical axes) but not forecast (horizontal axes). The near-normal JAS rainfall 

seasonal forecasts are reasonably well calibrated because the forecasts are 

smaller than the forecasts of climatology (Wilks, 2002). There is a slight 

difference between the averaged forecast (horizontal average) and the average 

observation (vertical axes). The above-normal rainfall category for the JAS 

seasonal forecast is essentially where the line of regression is under the perfect 

line (1:1).  

 

There is usually no skill in forecasting the near-normal category, but for these 

JAS seasons there was skill. This category should however still be avoided 

because it is a narrow category. The outer categories should be forecast instead. 

Forecast models need to be improved because a forecast of climatology was 

issued in one of the instances. Skillful forecast will help users decide whether to 

plant or not in the winter-rainfall region since this is the mid-winter season. It will 

also help the summer-rainfall region in terms of coldness especially the electricity 

consumption since there is a serious electricity shortage in the country. If the 

winter will be too cold there will too much of electricity consumption and therefore 

the skillful forecast is needed for preparation in advance. 
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4.5 October-November-December (OND) 
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Figure 4.5a Reliability Diagram for the below-normal category 
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Figure 4.5b Reliability Diagram for the near-normal category 
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Figure 4.5c Reliability Diagram for the above-normal category 

 

 40

 
 
 



The Reliability diagrams for the October-November-December (OND) seasonal 

rainfall forecasts are shown in figure 4.5 (a-c) separately for the below-normal, 

near-normal and above-normal outcomes for 0-month lead-times. In this season 

the forecast of climatology was never issued for the three categories (figure 4.5 

(a-c)). The below-normal category for the OND rainfall seasonal forecast (fig 

4.5a) is under-forecast. The above-normal category for the OND rainfall seasonal 

forecast (fig 4.5b) exhibit forecasts above and below climatology forecasts. The 

category is under-forecast because the category was observed (horizontal axes) 

but not forecast (vertical axes). The near-normal rainfall OND seasonal forecast 

exhibits essentially no resolution. The near-normal category is over-forecast 

because it was forecast a number of times but not observed. 

 

Out of this four season, OND is the only forecast that shows skill from the result 

of RPSS but the outer categories still need to be given more weight. The 

forecasters must not use the middle category when issuing the forecast since it 

does not have skill. The forecast models are not that bad since the forecast of 

climatology was never issued for this season. The summer-rainfall region users 

can use this forecast for decision making shown by the result of RPSS but for 

winter-rainfall region more has to be done to improve the forecast. The forecast 

shows skill over the summer rainfall region since the OND season has correlation 

with ENSO. 

 

4.6 Summary 

 
January-February-March (JFM) is the late summer season.  A dry spell occurred 

mainly in the years 1998 to 2000 during the JFM season.(Wilks and Godfrey, 

2002). The below-normal rainfall was observed even though the above-normal 

category was forecast most of the time. The averaged seasonal forecast for 

below-normal outcomes was equal to forecast of climatology. April-May-June 

(AMJ) is the beginning of the winter season and rainfall is not expected over a 

bigger part of the eastern part of the country. October-November-December 
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(OND) is the first half of summer rainfall season but the below-normal category 

was observed most of the times. The near-normal category was forecast a lot of 

times but not observed as frequently as forecast. 

 

Forecasters need to improve their forecasts to advice users correctly.  The outer-

categories need to given more weight in most of the season. The winter-rainfall 

region needs to be improved because in most of the season there was no skill. 

Users can be advised to base their decision on skillful OND season but other 

seasons need to be improved. It was found that the skill in OND is caused by the 

correlation with ENSO and indirectly associated with changes in Indian Ocean 

Sea Surface Temperatures (SSTs) 
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Chapter 5  
 

Relative Operating Characteristics (ROC) Results  
 
5.1 Introduction 

The Relative Operating Characteristics (ROC) assesses the performance of the 

fisting system that distinguishes between the intrinsic discrimination capacity and 

the decision threshold of the system. It is also a pure index of accuracy in the 

sense of the inherent capacity of the system to discriminate one state from 

another. It is a quantitative estimate of the probabilities of forecast outcome for 

any decision threshold that the system might use and the tradeoff between 

probabilities as the decision threshold. An index of the decision threshold which 

makes it possible to incorporate climatology probabilities, the value and costs of 

the various forecast outcome to determine the threshold that is optimal for the 

forecast in a given situation. A potential advantage of the skill measure is that it is 

indirectly related to a decision theoretic approach and so can be easily related to 

the economic value of probability forecast for forecast users. Therefore it is 

technically a skill measure, as it doesn’t compare with the reference. 

For this study, a forecast skill is evaluated using the area under the ROC curve. 

The area under the ROC curve is favoured because it assesses the seasonal 

forecast using a scalar value. The seasonal forecasts for each of the eight 

homogenous regions (figure 5) are verified. The homogenous regions are 

constructed from 970 rainfall stations whereby the stations are grouped 

according to their seasonal climate variability to make up the eight regions. If a 

ROC score is one then the score area is consider to be perfect since the ROC 

curve for a perfect seasonal forecast pass through the upper-left corner. 

However, if the ROC curve for a random forecast lies along 45° diagonal of the 

unit square then it will give the area of 0.5 therefore indicating no skill. There is 

also no skill if the area is less than 0.5. The ROC of the SAWS operational 
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seasonal forecasts are shown in figure 5.1(a-c) to figure 5.4(a-c), separately for 

the below-normal, near-normal and above-normal for the eight homogenous 

regions.  
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Figure 5.1 Eight homogenous regions (SAWS)  
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5.2 January- February-March (JFM)           
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Figure 5.2a Relative Operating Characteristics area score for below-normal category 
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Figure 5.2b Relative Operating Characteristics area score for near-normal category 
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Figure 5.2c Relative Operating Characteristics area score for above-normal category 
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The Relative Operating Characteristics (ROC) area score for the January-

February-March (JFM) seasonal rainfall forecasts are shown in figure 5.2 (a-c) 

separately for the below-normal, near-normal and above-normal categories for 0-

month lead-time. For JFM, there is skill in predicting below-normal rainfall for 

stations in regions 4, 5 and 6 (figure 5.2a). The area under the ROC curve for 

stations in those regions is greater than 0.5. The area under the ROC curve for 

stations in other regions is under 0.5 which implies that there is no skill in 

predicting the below-normal category for those stations in the remaining 5 

regions. There is no skill in predicting the near-normal category for stations in all 

eight homogenous regions (figure 5.2b). The area under the ROC curve is less 

than 0.5 for all the regions (figure 5.2b). There is skill in predicting above-normal 

category for stations in regions 2, 3, 4, 7 and 8 (figure 5.2c). The area under the 

ROC curve is greater than 0.5 as shown in figure 5.2c. The area under the ROC 

curve for stations in other regions is under 0.5 which implies that there is no skill 

in predicting the above-normal category for stations in regions 1, 5, and 6.  

 

The result shows that, there is skill in predicting summer rainfall for regions that 

receive their rainfall in summer with the above-normal category and a few regions 

with the below-normal category. For winter rainfall regions, there is no skill in 

predicting rainfall for the JFM season. This finding may be attributed to the fact 

that forecasters do not pay much attention to the winter rainfall regions during 

summer because this season is not an important rainfall season for the region. 

Forecasters should either mark out the area that is dry and not produce forecasts 

for this region, or they should pay attention to these regions in as much as they 

do for summer rainfall regions. 

 

 

 

 

 

 

 47

 
 
 



5.3 April-May-June (AMJ) 
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Figure 5.3a Relative Operating Characteristics area score for below-normal category 
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Figure 5.3b Relative Operating Characteristics area score for near-normal category 
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Figure 5.3c Relative Operating Characteristics area score for above-normal category 

 48

 
 
 



The Relative Operating Characteristics (ROC) area score for the April-May-June 

(AMJ) seasonal rainfall forecasts are shown in figure 5.3 (a-c) separately for the 

below-normal, near-normal and above-normal outcomes for 0-month lead-time. 

For AMJ, there is skill in predicting below-normal category for stations in regions 

5, 6, 7 and 8 (figure 5.3a). The area under the ROC curve for stations in those 

regions is greater than 0.5 as shown in figure 5.3a. The area under the ROC 

curve for stations in other regions is under 0.5 which implies that there is no skill 

in predicting the below-normal category for stations in regions 1, 2, 3 and 4. 

There is no skill in predicting the near-normal category for stations in most of the 

eight homogenous regions (figure 5.3b) except in regions 6 and 7. The area 

under the ROC curve is less than 0.5 in most of the eight homogenous regions 

(figure 5.3b). There is skill in predicting above-normal category for stations only in 

regions 3 and 5 (figure 5.3c). The area under the ROC curve for stations in those 

regions is greater than 0.5 as shown in figure 5.3c. The area under the ROC 

curve for stations in other regions is under 0.5 which implies that there is no skill 

in predicting the above-normal category for those 6 stations. 

 

As AMJ is the beginning of winter, it shows that the area that receives rainfall 

throughout the year does not have a skill with below-normal category and also 

the winter rainfall region. Models need to be improved and forecasters must not 

use middle-category. Above-normal category is favoured in the summer rainfall 

region even in the beginning of winter.   
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5.4 July-August-September (JAS) 
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Figure 5.4a Relative Operating Characteristics area score for below-normal category 
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Figure 5.4b Relative Operating Characteristics area score for near-normal category 
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Figure 5.4c Relative Operating Characteristics area score for above-normal category 
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The Relative Operating Characteristics (ROC) area score for the July-August-

September (JAS) seasonal rainfall forecasts are shown in figure 5.4 (a-c) 

separately for the below-normal, near-normal and above-normal outcomes for 0-

month lead-time. For JAS, there is skill in predicting the below-normal category 

for stations in regions 1 and 2 (figure 5.4a). The area under the ROC curve for 

stations in those regions is greater than 0.5 as shown in figure 5.4a. The area 

under the ROC curve for the rest of the stations in other regions are under 0.5 

which implies that there is no skill in predicting the below-normal category for 

those stations in regions 3, 4, 5, 6, 7 and 8. There is no skill in predicting the 

near-normal category for stations in most of the eight homogenous regions 

(figure 5.4b) except in region 4. The area under the ROC curve is less than 0.5 in 

most of the eight homogenous regions (figure 5.3b). There is skill in predicting 

the above-normal category for stations in regions 1, 5 and 8 (figure 5.4c). The 

area under the ROC curve for stations in those regions is greater than 0.5 as 

shown in figure 5.4c. The area under the ROC curve for stations in other regions 

is under 0.5 which implies that there is no skill in predicting the above-normal 

category for those stations in the other remaining regions.  

 

Winter rainfall regions show skill with the below-normal category but for summer-

rainfall regions, models need to be improved because in most of the regions 

there is no skill. Forecasters are advised not use the middle category because it 

lacks skill in most of the time. 
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5.5 October-November-December (OND) 
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Figure 5.5a Relative Operating Characteristics area score for below-normal category 
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Figure 5.5b Relative Operating Characteristics area score for near-normal category 
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Figure 5.5c Relative Operating Characteristics area score for above-normal category 
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The Relative Operating Characteristics (ROC) area score for the October-

November-December (OND) rainfall seasonal forecasts are shown in figure 5.5 

(a-c) separately for the below-normal, near-normal and above-normal outcomes. 

For OND, there is skill in predicting the below-normal category for stations in 

regions 2, 3, 4, 5, 6 and 7 (figure 5.5a). The area under the ROC curve for 

stations in those regions is greater than 0.5 as shown in figure 5.5a. The area 

under the ROC curve for stations in other regions is under 0.5 which implies that 

there is no skill in predicting the below-normal category for those stations in 

regions 1 and 8. OND is the only season that has skill when predicting the near-

normal category for stations in most of eight homogenous regions (figure 5.5b) 

which are regions 1, 3, 4, 7 and 8. The area under the ROC curve is greater than 

0.5 in the most of the eight homogenous regions (figure 5.5b). There is no skill in 

predicting the near-normal category for stations in regions 2, 5 and 6. There is 

skill in predicting above-normal category for stations in most of the regions 

except stations in region 1 (figure 5.5c). The area under the ROC curve is greater 

than 0.5 as shown in figure 5.5c.  

 

OND shows skill in most of regions for the three categories, but the use of the 

middle-category is not a good idea as it was supported by other skill measure, 

RD and RPSS.  

 

5.6 Summary 

Relative Operating Characteristics (Mason, 1982) is considered by the World 

Meteorological Organization (WMO) as a recommended method of indicating the 

skill of probabilistic seasonal forecasts. The area under the ROC curve is a 

simple index summarizing the skill of a forecast system but is sensitive to the 

number of points that are plotted. For January-February-March (JFM), the 

forecast of below-normal rainfall category can be issued with confidence as 
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compared to the forecast of above-normal category in this season. April-May-

June (AMJ) rainfall is associated with low skill because the below-normal rainfall 

category was observed but not forecast. The area under the ROC curve has 

shown that the South African Weather Service operational seasonal forecast is 

more successful for the above-normal category as compared to the below-normal 

category for October-November-December (OND). Such information is valuable 

because a forecaster can provide higher level of confidence in seasonal 

forecasts for above-normal category for this time of the year.  

 

In general, the use of the near-normal category is not a good idea, since there 

was no skill in most of the seasons except OND. Models need to be improved 

especially in terms of seasons, when is mid-summer or winter. Forecasts show 

skill in summer-rainfall region during summer and also happen with winter-rainfall 

region where it shows skill in winter. This need to be looked at because it 

disadvantages Users especially when they are in the summer-rainfall region and 

during winter and other way round. They also need forecast for some other 

reason, i.e. for coldness, if the winter will be too cold, then they need to prepare 

for that especially since South Africa experiences shortage of electricity lately. 
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Chapter 6 
Conclusion 

 

The South African Weather Service (SAWS) started issuing probabilistic 

seasonal rainfall and temperature forecasts in 1994. Seasonal forecasts are 

issued probabilistically to reflect the amount of forecast uncertainty involved in 

this time range. When the forecasts were started, the main contribution to the 

forecasts was from statistical models. In 1997, output from a number of GCMs 

run at SAWS as well as one run at IRI was used as part of input to the final 

SAWS seasonal forecast. With time forecast from the ECMWF and UKMO 

models were used and now model output from the Universities of Pretoria and 

Cape Town are also considered. The forecasts that are available for the whole 

year that had input from both GCMs and statistical models started in 1998. Until 

recently the SAWS seasonal forecasts were not verified. In 2004, eye-ball 

verification was introduced; however there is a need for forecasts to be verified 

using statistical skill measures because eyeball verification is very subjective.  

 

The objective of the research is to use statistical measures to verify the SAWS 

operational seasonal forecasts. Verification is done for the years 1998 to 2004. 

Verification is made for four seasons that are defined by three months following 

each other from January until December. Verification can be done using a 

number of skill measures, however, in this study only three measures are used 

namely Ranked Probability Skill score (RPSS), Reliability Diagram (RD) and 

Relative Operating Characteristic (ROC). Each of these skill measures provides 

valuable information about the skill of the forecasts. The RD includes a full 

depiction of forecasts and observations whereas RPSS gives credit for 

forecasting the observed category with high probabilities, and penalties for 

forecasting the wrong category with high probabilities is substantial. Therefore to 

evaluate the seasonal forecasts with different skill measures is advantageous. 
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An RPSS of 1 reflects a perfect forecast, 0 shows that the forecast is not 

performing better than climatology, while a score less than 0 indicates that 

forecasts are worse than climatology. The forecasts for the season October-

November-December (OND) are more skillful as compared to the other three 

seasons. During the JAS season the forecasts are skillful over the western parts 

of the country where most of the rainfall is expected during this season. During 

the other two seasons skill scores of less than 0 dominate the country which 

means that the forecasts performed worse than forecast of climatology. 

 

RD shows skill when the seasonal forecast lies on a perfect line (1:1). If the 

seasonal forecast lies above of the perfect line then it is over-forecast, but if it is 

under the perfect line then it is under-forecast. The forecast of climatology was 

never issued for JFM and OND which are summer seasons but for JAS and AMJ 

the forecast of climatology was issued during the period of 1998 to 2004. There is 

skill in predicting JFM and OND seasons with the above-normal category. The 

line of regression is close to perfect reliability; however, the average observation 

is more than the averaged forecast. On the other hand, there is skill in predicting 

the below-normal category for AMJ and JAS.  

 

For the ROC diagram, a score of one represents perfect forecasts. The area of 

less than 0.5 of the forecasts shows no skill because the area given by a random 

forecast is 0.5. The ROC curve shows that the above-normal category is forecast 

with more skill as compared to the below-normal category for the JFM and OND 

seasons. In three of the four seasons there is no skill in predicting the season 

with the near-normal category.   

 

Among the three skill measures, RPSS shows negative values in the in most of 

the seasons except in OND. Most of the positive scores are shown in the 

summer rainfall season of OND. The rest of the season shows small area of 

positive values. For the RD and ROC, below-normal rainfall was observed even 
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though above-normal was forecast most of the time. The RD and ROC show 

almost the same pattern. Both of them have larger magnitudes of positive skill 

than RPSS. This is because of the fact that the ROC score and RD do not 

distinguish the severity of errors across categories while the RPSS give different 

penalties in terms of categorical distance errors. Again in both RD and ROC, 

there is no skill in prediction for the near-normal category.  

From RD and ROC, it shows that there is skill in predicting the two seasons with 

outer-categories. This also reflected by RPSS where OND has a skill because of 

outer-categories but JFM didn’t have skill because of not using the above-normal 

category in most of the times.  For AMJ and JAS, below-normal category is 

favoured and it shows skill but in RPSS result, the skill is reflected especially in 

the winter-rainfall regions. Forecasters need to be advised to use the outer-

categories but a lot need to be done in terms of models. The skill is mainly in 

summer rainfall region when is summer and same applies to winter-rainfall region 

where there skill happen in winter but for beginning of summer (OND) and mid-

winter (JAS). For mid-summer (JFM) and beginning of winter (AMJ) lot need to 

be done because there is luck of skill. This was reflected by all the skill measured 

and it also shows that the use of outer-categories could improve the forecasts. 

Forecasters need to be advised not to use the middle category because of luck of 

skill as shown by the skill measures. They must also be advised not to issue the 

forecast of climatology since does not help Users in terms of decision making. 

The largest areas for which the SAWS seasonal rainfall forecasts show skill for 

all the rainfall categories is found during the summer season of OND. In winter, 

the forecasts are more skillful over the western coast and the adjacent interior. 

Therefore the higher skills are found during the rainfall seasons associated with 

the highest climatology means. When the analysis for the three categories is 

made separately, it becomes obvious that there is more skill in predicting the 

above-normal and the below-normal categories than the normal category. The 

above finding is in agreement with the results that were found at the IRI (Goddard 

et al., 2003). The above results suggest that the SAWS seasonal forecasts 
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provide useful information on above-normal category (summer rainfall regions) 

and below-normal category (winter rainfall regions).  However, the forecasts are 

still very far from perfect and so there is still a lot of research that has to be 

directed towards improving operational forecasts at the SAWS. 

 

The seasonal forecasts are made using models as well as human intervention. It 

is not clear whether or not human interventions improves the model forecasts, or 

worsen them. Verification based on the seasonal forecasts made using the 

different models and an objective method to combine the forecasts, and those 

that are combined subjectively, should be made to determine which one performs 

the better. Research done at the IRI for models show that some models have no 

skill but this cannot be the only contributing factor to errors in the forecasts, 

because SAWS does not only use the IRI models for their decision making. 

Regional Climate Models could also be used because they represent small scale 

events better than Global models. Forecasters should be careful with the 

probabilities assigned to the near-normal category, because as shown by the 

ROC and RD skill measures, there is no skill in predicting this category for most 

of the regions.  

 

Updated forecast skill scores using different skill measures should be available to 

users of seasonal forecast. It enables users to be informed and understand 

seasonal forecasts and its limitations, and this should increase the usefulness of 

seasonal forecasts for decision making. Decision makers can begin to determine 

essential forecast attribute requisite performance thresholds and relationship 

among the quality of forecast and their usefulness in decision making and 

ultimately their economic value. Ultimately, a meteorologist’s determination of 

skillful forecast is only valuable to the extent that the forecast can provide benefit 

to those incorporating the information into their decision process. However, 

forecast provider’s definition of forecast quality may vary greatly from user’s 

definition of quality and such definition may even vary among different users 
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(Hartmann et al, 2002). Some countries have started to verify the forecast 

according to users needs (Hartmann et al, 2002) and South African Weather 

Service can follow the lead and verify the forecast according to these needs.  
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