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4.3 Parameter Values

The algorithm developed here has a number of parameters that can be adjusted to improve
the performance of the system. This section details the tests that were run to determine

good values for the parameters.

The first important consideration is the component ranges that were used. Smaller com-
ponent ranges will lead to faster convergence because a smaller range of values has to be

searched. The component ranges were previously given in Table 3.3 on page 87.

Unless otherwise stated, each test was run 100 times to obtain statistics about the effect of
each parameter. Individuals with one to six elements were considered. Each test was run
for 40 generations and had a population size of 30000 for the pure genetic algorithm case
and 3000 for the hybrid genetic algorithm case. The default genetic algorithm parameter
values given in Table 3.1 on page 82, the default local optimiser values given in Table 3.5

on page 103, and the default component ranges given in Table 3.3 on page 87, were used.

The six individual length results are combined by normalising each length’s parameters
to its maximum value and adding the results. This result is then also normalised to its
maximum value. This procedure is followed to ensure that large values, like those obtained

with shorter individuals, do not dominate the results.

The minimum, median, maximum, mean, and standard deviation were determined for each
test. The median is favoured over the mean as many of the results are heavily skewed
towards good results because the algorithm usually obtains good results, and outliers can
have a disproportionate effect on the mean. In most cases the difference between the mean
and median is negligible, but there are some cases where the difference is significant. For
example, running the hybrid algorithm on Problem 5 produced the cumulative distribution
shown in Figure 4.4 for a two-element network. The median of the distribution is 0.194,

but the mean is 0.237 despite the fact that 86% of the results are better than this value.
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Figure 4.4: Example of a highly skewed result.

4.3.1 Pareto Effect

The effect of the Pareto-like optimality criterion discussed in Section 3.3.3 is considered
here. The results with and without the Pareto-like optimality are compared to show how

this approach affects the results.

The algorithm was firstly tested with the Pareto-like optimality enabled, and then with
the Pareto-like optimality disabled. The algorithm had to be run once for each of the
six lengths when Pareto-like optimality was disabled because each run only considers one
length. Obviously this is not an entirely fair comparison because the algorithm is run six
times when Pareto-like optimality is disabled, but only once when Pareto-like optimality
is enabled. The results in Table 4.12 are determined from the ratio of the values obtained
using Pareto-like optimality to the values that do not use Pareto-like optimality. The results
are remarkable with the Pareto-like optimality actually improving the results in most cases
despite requiring significantly fewer calculations. The addition of a local optimiser to the

genetic algorithm decreases the effect of the Pareto-like optimality, but the results are
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Table 4.12: Pareto-Like Optimality Effect.

Statistic Pure Genetic Local Optimiser
1 2 3 1 5 6 1 2 3 4 5 6
Minimum | 1.00 1.00 0.48 0.59 0.79 0.81 |1.00 1.00 0.78 0.80 0.89 0.72
Median |1.00 1.00 096 0.93 0.97 0.99 |1.00 1.00 1.00 1.00 0.98 1.00
Maximum | 1.00 1.26 1.02 1.12 1.07 1.18 |1.00 1.00 1.00 1.00 1.02 1.07
Mean 1.00 1.04 088 090 096 0.99|1.00 1.00 096 0.94 097 0.97
Std Dev. | 0.00 0.09 0.19 0.15 0.08 0.09 |0.00 0.00 0.08 0.09 0.04 0.10

still impressive. The greatest improvements are obtained for networks with three and four

elements.

4.3.2 Local Optimiser Effect

The effect of the local optimiser discussed in Section 3.4 is considered here. The results

with and without the local optimiser are compared to show how it affects the results.

The algorithm was run with the default parameters in both cases. The only exception to
this is that the pure genetic algorithm used a population of 50,000 and was run for 60
generations to ensure that similar numbers of fitness evaluations were used in both cases
(approximately 2.6 million in the local optimiser case and approximately 2.3 million in the
pure genetic algorithm case). The results in Table 4.13 are obtained from the ratio of the
values using the local optimiser to the values that only use the genetic algorithm. The
results obtained are better when the local optimiser is used and this in agreement with
the results obtained by Renders and Flasse [34]. The effect of the local optimiser increases
as the individuals become longer with significant differences being obtained for individuals

with lengths of five and six elements.
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Table 4.13: Local Optimiser Effect.

Statistic Individual Length
1 2 3 4 5 6
Minimum | 0.99 0.86 0.83 0.60 0.50 0.29
Median | 1.00 0.99 0.99 0.96 0.88 0.80
Maximum | 1.00 0.99 0.99 0.99 0.98 0.98
Mean 1.00 0.98 0.96 091 0.85 0.74
Std Dev. | 0.00 0.04 0.056 0.12 0.14 0.23

4.3.3 Genetic Algorithm Operators

This section will consider the effect of changing the various genetic algorithm parameters.
Only lumped elements were used for this round of testing because the results will be sim-
ilar in the distributed and mixed cases, and lumped element tests are much faster. The
genetic operators considered are arithmetic crossover, binary crossover, boundary mutation,

uniform mutation, non-uniform mutation, and binary mutation.

The default values for the genetic operator probabilities were determined during the de-
velopment of the algorithm and are given in Table 3.1. The probabilities were then varied
round their default values to determine the effect of such variations. Both a pure genetic
algorithm and a hybrid genetic algorithm with an integrated local optimiser were used for

these tests, allowing the effect of the local optimiser to be observed.

The arithmetic and binary crossover results are given in Figures 4.5 and 4.6 respectively.
The arithmetic crossover probability is varied to maximum value of 0.7 because the proba-
bility of crossover (arithmetic and binary) is one at this value. The maximum probability
used for binary crossover is 0.6 for the same reason. The average results show that the
error initially decreases to a minimum and then increases to a maximum as the crossover
probability increases. The standard deviation results show a similar trend. The default

binary and arithmetic crossover values of 0.3 and 0.4 are seen to fall inside the minima of
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Figure 4.5: Arithmetic crossover results.

the average and standard deviation plots.

The results for boundary, binary, uniform, and non-uniform mutation are given in Fig-
ures 4.7 to 4.10. The average results show little or no trend as the mutation probability
increases and the standard deviation results also show only a small trend. Where there is
a trend, the error is seen to increase with mutation probability. The only exception to this
is obtained with uniform mutation where the error decreases as the probability of uniform

mutation increases. The default values for each type of mutation (given in Table 3.1) are
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Figure 4.6: Binary crossover results.

thus shown to have only a very small effect on the performance of the algorithm.

This does not mean that mutation should be ignored as shown in Table 4.14. The values
in Table 4.14 are the error obtained without mutation divided by the error with mutation,
averaged over all possible lengths. The standard deviation for networks with only one
element is zero, so the error cannot be calculated in that case. It is clear from these results
that, while mutation has only a small effect on the algorithm, it is still necessary with the

mean, median, and standard deviation being higher without mutation in almost all cases.
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Figure 4.7: Boundary mutation results.

4.3.4 Tournament Size

The tournament size was varied around its default value of three to determine the effect
of the bias towards good individuals. Both a pure genetic algorithm and a hybrid genetic

algorithm with an integrated local optimiser were considered.

The combined results as the tournament size varies are given in Figure 4.11. The average

results show that the error decreases rapidly and then slowly increases as the tournament
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. Figure 4.8: Binary mutation results.

size increases. The standard deviation results show a similar trend. The default value of

three for the tournament size is inside the minima of all of these results.

4.3.5 Number of Optimisation Steps

The number of local optimisation steps per iteration of a hybrid genetic algorithm is con-

sidered here. This parameter is very important because it has a major influence on both
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Figure 4.9: Uniform mutation results.

the performance of the algorithm and the amount of time required to run the algorithm.

The default values for the local optimiser parameters were determined during the develop-
ment of the algorithm and were previously given in Table 3.5 on page 103. These parameters
were then fixed and the number of local optimiser steps was varied around its default value

of two. Obviously only the hybrid genetic algorithm was considered because the pure genetic

algorithm does not have a local optimiser.

The results as the number of local optimisation steps are varied are given in Figure 4.12.

Electrical, Electronic and Computer Engineering



&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Q= YUNIBESITHI YA PRETORIA

Chapter 4 Testing

1 1 T T
098 1
0.995 t
-} ! e 096 1
S 099 g
g ‘§ 0-94 r
= 5 L
£ oss E o2
=] (=}
4 z 09 -
0.98
088
0.975 . - ' + 0.86 A : - L
0 0.04 0.08 0.2 016 0.2 0 0.04 0.08 0.12 0.16 0.2
Non-uniform mutation probability Non-uniform mutation probability
(a) Pure genetic algorithm mean and median. (b) Pure genetic algorithm standard deviation.
1 1
0.998 0.98
0.99 Ff 0.96
Q o
2 099 b 2 054
- N >
g 0.992 g 0.92
T 09 09
g 0.988 g 0.8
g o S o088
0.986 0.86
0.984 0.84
0.982 . : - ; - 0.82 . : : ’
0 0.04 0.08 0.12 0.16 0.2 0 0.04 0.08 0.12 0.16 0.2
Non-uniform mutation probability Non-uniform mutation probability
(c) Hybrid algorithm mean and median. (d) Hybrid algorithm standard deviation.

Figure 4.10: Non-uniform mutation results.

The average results show that the error decreases as the number of local optimisation steps
increases and the standard deviation results show a similar trend. The default value of two
is seen to be a little low, but it must be borne in mind that the run time increases linearly

with the number of local optimisation steps.
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Table 4.14: Effect of Ignoring Mutation.

Number of Pure Genetic Algorithm Hybrid Genetic Algorithm
Elements | Median Mean Std Deviation | Median Mean Std Deviation

1 1.000 1.000 - 1.000  1.000 i

2 1.008  1.007 1.110 1.000 1.003 1.175

3 1.057 1.038 1.188 1.019 1.015 1.303

4 1.053 1.046 1.274 1.021 1.011 1.107

5 1.014  1.025 1.075 1.007  1.008 0.973

6 1.007 1.012 1.084 0.983 1.005 0.981

4.3.6 Population Size and Run Length

Once the parameters of the algorithm have been determined, the last step is to ascertain
how long the algorithm should be run for. This section will consider how population size
and run length (number of generations) affect the performance of the algorithm. Lumped,
distributed, and mixed lumped-distributed networks will be considered with both a pure

genetic algorithm and a hybrid genetic algorithm.

The combined results as the number of local optimisation steps are varied are given in
Figures 4.13 and 4.14 on pages 133 and 134. The results show that the error decreases
as the population size and the number of generations increase. The change in error slows
down dramatically once a certain threshold has been reached, so increasing the population
size and number of generations only leads to a small improvement once good results are

obtained.
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Figure 4.11: Tournament size results.

4.4 Run Times

The time required to run the algorithm is considered in this section. The lumped, mixed,
and distributed cases are considered, with the distributed case being considered for both

perfect transmission lines and microstrip lines.

The time was determined using a 500 MHz Personal Computer (PC) with 192 MB of mem-
ory running Linux with kernel version 2.4.8-26mdk and version 2.96 of the GNU C++
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Figure 4.13: Results as population size and number of generations are varied

for a pure genetic algorithm.
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Figure 4.14: Results as population size and number of generations are varied

for a hybrid genetic algorithm.
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compiler (g++). The tests were run in single user mode to ensure that the results only
depend on the current algorithm. The command line options used to compile the algorithm
are: -pg -Wall -mcpu=i686 -march=i686 -funroll-loops -03. The GNU code profil-
ing utility, gprof was used to determine the amount of time required by the algorithm and
the proportion of the time spent in each function. The proportion of time spent calculating

the fitness is included in the results.

The results were averaged over ten runs of the algorithm in each case to characterise vari-
ations that can occur. The test problems have complex impedances at both the input and
output with the impedances being constant over the whole frequency range. One of the
test problems has ten frequency points and the other twenty, but only the results with ten
frequency points are given because the trends are very similar for twenty frequency points.
The results are given in Table 4.15 where “Distributed” indicates ideal transmission lines
and “Microstrip” indicates microstrip transmission lines with discontinuities. The twenty
point problem takes about 1.9 times as long to run as the ten point problem, and requires
the same number of function evaluations. The fitness calculation time proportion is about
2 percentage points higher in the microstrip case than in the ideal transmission line case.
Significantly, discontinuity calculations (microstrip impedance, width step, and T-junction

effects) take almost 80% of the total time in the microstrip case.

4.5 Results

The results obtained when the current algorithm is applied to the ten test problems consid-
ered in Section 4.1 are given in this section. Results for lumped, distributed (ideal trans-
mission line), mixed lumped-distributed, and microstrip tests are given here. Section 4.5.1

compares the results obtained by the current algorithm with published results.

The default genetic algorithm parameter values given in Table 3.1 on page 82, the default

local optimiser values given in Table 3.5 on page 103, and the default component ranges
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Table 4.15: Run Time Results.

Parameter Lumped Mixed  Distributed Microstrip
Minimum time 98.6 s 98.8 s 979 s 1700.7 s
Median time 99.7 s 99.7 s 99.7 s 1706.2 s
Maximum time 101.7 s 100.5 s 102.1 s L7177 s
Minimum fitness % 97.0% 96.9% 96.9% 99.5%
Median fitness % 97.2% 97.1% 97.2% 99.5%
Maximum fitness % 97.4% 97.2% 97.4% 99.6%
Minimum evaluations | 3,408,870 3,042,606 3,406,437 3,362,304
Median evaluations 3,415,986 3,415,792 3,418,184 3,368,012
Maximum evaluations | 3,435,256 3,429,292 3,430,717 3,376,443

given in Table 3.3 on page 87 were used for these tests. The microstrip substrate parameters
used are given in Table 3.4 on page 87. The transmission line elements in the distributed
results given below do not use the default parameters given in Table 3.3, but rather have the
same parameters as the microstrip lines to allow comparisons between the ideal case and the
case where dispersion and discontinuities are accounted for. The microstrip parameters were
converted to characteristic impedances and line lengths using the low-frequency equations
given in Sections 2.4.1 and 2.4.2 on pages 66 and 68. The ratios of the widths of microstrip
lines at a discontinuity was limited to a maximum value of 5, and crosses were not allowed

to ensure that the discontinuity calculations are accurate.

The mixed results do not consider discontinuities and dispersion for the transmission lines,
and solder pads for the lumped components. These effects could have been included, but the
inclusion of these effects would have dramatically increased the time to run the algorithm
to closer to the time required for microstrip tests (see Section 4.4) without greatly adding

to the value of the results.

The microstrip networks can start with a parallel element because the algorithm assumes

that all microstrip networks are bounded by 50 €2 transmission lines. This is necessary to
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Table 4.16: Results for Problem 1 (VSWR).

Present algorithm | Elements = Minimum Median Maximum
Lumped 6 1.180 1.184 1.257
Distributed 3 1.242 1.273 1.324
Mixed 3 1.245 1.285 1.347
Microstrip 3 1.245 / 1.268 1.277 / 1.281 1.339 / 1.263

Table 4.17: Results for Problem 2 (VSWR).

Present algorithm | Elements  Minimum Median Maximum
Lumped 3 2222 2.222 2.222
Distributed 3 2,197 2.340 2.433
Mixed 3 2.189 2.222 2.587
Microstrip 6 1.433 / 6.202 1.654 / 13.81 1.934 / 374.7

complete the discontinuities (width steps or T-junctions) at the extremities of the networks.

Note that two results are given in the microstrip cases. The first set of results are those
obtained using the present algorithm while the second set are those obtained using EEsof.

A comparison between these two sets of results has already been given in Section 4.2.2.

The results for Problems 1, 2, 3, 4, 9, and 10 are listed as VSWR values, and the results for
Problems 5, 6, 7, and 8 are given as decibel errors. This was done because the first group
of problems require the match to be as good as possible (matching network gain must be as
high as possible), and the second group of problems requires a specific gain to be obtained

at each frequency.

The results for some specific cases are given in Tables 4.16 to 4.25. The best networks
obtained in these cases are given in Figures B.1 to B.10 on pages 175 to 184. The number
of elements used in each case is the same as published results where these are available,

and produces a VSWR of less than 1.5 or a gain error of less than 0.1 dB where published
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Table 4.18: Results for Problem 3 (VSWR).
Present algorithm | Elements = Minimum Median Maximum
Lumped 3 1.676 1.676 2.024
Distributed 3 1.779 1.848 2.020
Mixed 5 1.586 1.680 1.795
Microstrip 2 1.308 / 2.514 1.643 / 9.728 2.293 / 33.74
Table 4.19: Results for Problem 4 (VSWR).
Present algorithm | Elements  Minimum Median Maximum
Lumped 5 2.929 2.940 2.988
Distributed 6 1.478 2.387 3.892
Mixed 6 2.455 2.980 3.430
Microstrip 6 1.269 / 49.83 1.708 / 251.9 2.324 / 952.7
Table 4.20: Results for Problem 5 (dB error).
Present algorithm | Elements Minimum Median Maximum
Lumped 4 4.538x1072 0.1302 0.1589
Distributed 3 8.192x1072 0.1046 0.1353
Mixed 3 8.796x 1072 0.1021 0.1336
Microstrip 3 0.0846 / 0.1017 0.0978 / 0.1150 0.1278 / 0.1336

results are not available. Six element solutions are given where a VSWR of less than 1.5 or

a gain error of less than 0.1 dB is not possible. The number of elements in the microstrip

case is the same as in the distributed case to allow comparisons to be made. The only

exceptions are the solutions to Problems 2 and 3, and the lumped and mixed solutions to

Problem 7, where adding extra elements has a small (< 5%) effect.

The complete lumped, distributed, mixed, and microstrip results are given in Tables A.1
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Table 4.21: Results for Problem 6 (dB error).
Present algorithm | Elements Minimum Median Maximum
Lumped 5 7.960x1072 0.1750 0.2046
Distributed 4 6:513%107* 0.2289 0.3273
Mixed 3 9.332x1072 0.2335 0.4957
Microstrip 4 0.2302 / 0.2855 0.3165 / 0.3578 0.4621 / 0.4773

Table 4.22: Results for Problem 7 (dB error).

Present algorithm | Elements Minimum Median Maximum
Lumped 5 0.3166 0.4611 0.7700
Distributed 6 0.2214 0.2625 0.2891
Mixed 5 0.2442 0.2861 0.3390
Microstrip 6 0.2041 / 0.2277 0.2558 / 0.2835 0.2778 / 0.3398

Table 4.23: Results for Problem 8 (dB error).

Present algorithm | Elements Minimum Median Maximum
Lumped 6 0.2449 0.3005 0.4640
Distributed 6 6.850% 1072 0.1841 0.3166
Mixed 6 9.805x1072 0.2451 0.4516
Microstrip 6 0.0967 / 0.2389 0.2304 / 0.3059 0.4620 / 0.5000

to A.40 on pages 159 to 172.

A number of trends can be observed in the results. The worst results are typically very

poor, but the good median results show that the solutions are heavily skewed towards

good results. Solutions with more elements typically have a higher standard deviation than

solutions with fewer elements. The distributed results are usually worse than the lumped

results because the range of parameter values is much more limited to ensure that the
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Table 4.24: Results for Problem 9 (VSWR).

Present algorithm | Elements = Minimum Median Maximum
Lumped 4 1.214 1.268 1.333
Distributed 4 1.377 1.619 1.845
Mixed 3 1.259 1.484 1.867
Microstrip 6 1.576 / 3.050 2.662 / 18.83 3.498 / 460.2

Table 4.25: Results for Problem 10 (VSWR).

Present algorithm | Elements  Minimum Median Maximum
Lumped 3 1.467 1.557 2.063
Distributed 3 1.427 1.551 1.711
Mixed 3 1.416 1.592 1.816
Microstrip 3 1.604 / 1.680 1.807 / 1.832 1.964 / 1.987

distributed elements are realisable. The mixed results are typically at least as good as the
better of the lumped and distributed results, but this is not always the case. Some of the
solutions to Problems 2, 3, 4, and 7 have a number of series transmission lines that all have
the same impedance in the ideal transmission line case, and the same line widths in the

microstrip case.

The maximum line width ratio at discontinuities in the microstrip case is violated by a
small amount in some of the solutions as shown in Table 4.26. The best solutions of every
length for each run of the algorithm are considered in Table 4.26. Of a total of 19650 width
steps, only 216 (1.1%) violate the maximum width ratio, with 203 (94%) of these violations
being accounted for by problem 8. There are 3675 T-junctions in the best solutions with

only 6 of these (0.2%) having width ratio violations.

The microstrip results are comparable to the distributed results in most cases, but there

are some cases where the microstrip results are worse than the distributed results. The best
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Table 4.26: Maximum Line Width Violations.

Problem Width Step T-Junction
Number | Max. Ratio Total Violations | Max. Ratio Total Violations
4 4.89 2664 0 (0.0%) 3.03 18 0(0.0%)
2 5.02 1450 1 (0.1%) 5.59 625 1 (0.2%)
3 4.94 1654 0 (0.0%) 5.02 523 1 (0.2%)
4 3.38 1450 0 (0.0%) 5.43 625 1 (0.2%)
5 5.48 2498 8 (0.3%) 3.55 101 0 (0.0%)
6 5.01 1458 1 (0.1%) 5.10 621 1 (0.2%)
7 5.00 2534 0 (0.0%) 4.23 83  0(0.0%)
8 5.10 2578 203 (7.9%) 4.88 61 0 (0.0%)
9 5.01 2308 3 (0.1%) 5.01 196 1 (0.5%)
10 4.90 1056 0 (0.0%) 5.01 822 1 (0.1%)
total 5.48 19650 216 (1.1%) 5.59 3675 6 (0.2%)

solutions for Problems 1, 2, 5, 7, and 8 are examples of solutions that are very similar in
the distributed and microstrip cases, and the best solutions for Problems 3, 5, 8, 9, and 10
are examples of solutions where the microstrip case gives worse results than the distributed
case. The best solutions to Problems 2, 4, and 6 show that the microstrip solutions can be

better than the distributed solutions.

4.5.1 Comparison to Published Results

This section will compare the results obtained using this algorithm with those that have
been published in the literature. Obviously only those test problems that were obtained
from the literature can be considered here. The main difficulty with these comparisons is
that the vast majority of published results only consider lumped network synthesis, but the

current algorithm can consider other cases.

Most of the published results use the transducer gain (Gr) or VSWR to determine how good
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Table 4.27: Results for Problem 1 (VSWR).

Network Result  Elements Transformers
Abrie (lumped) 1.19 6 0
Abrie (commensurate) 1.06 4 0
Abrie (non-commensurate) 1.25 6 0
Abrie (microstrip) 1.41/1.40 4 0
Present algorithm Minimum  Median Maximum
Lumped (6 elements) 1.180 1.184 1.257
Distributed (4 elements) 1.089 1.156 1.258
Distributed (6 elements) 1.048 1.090 1.146
Mixed (4 elements) 1.089 1.179 1.295
Mixed (6 elements) 1.048 1.098 1.184
Microstrip (4 elements) 1.25/1.26 1.28/1.30  1.32/1.35
Microstrip (6 elements) 1.06/1.11 1.11/1.08  1.23/1.16

a match is. Note that, unlike the other error functions considered here, a higher transducer
gain indicates a better match, and a perfect match corresponds to a transducer gain of
one. The results for the current algorithm given below were derived from the decibel errors
obtained during the tests. This was done by using equations (3.25) and (3.28) to convert
to transducer gain, and (3.20) and (3.29) to calculate the VSWR. The mean, median, and

maximum results were then calculated.

Note that non-ideal transformers are considered as a single element in the determination
of the number of elements in the network. Many of the references do not consider an ideal
transformer to be an element and this convention will be followed here, but the number of
ideal transformers required will be given. The present algorithm will use the same number

of elements as the published results without any ideal transformers.

The algorithm parameters used for these tests are the same as the parameters used in

Section 4.5.
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Table 4.28: Results for Problem 2 (Gr).

Author Result  Elements Transformers
Fano [57,58] 0.816 4 0
Carlin [4] 0.837 3 0
Chen [5] 0.831 4 0
Carlin and Amstutz [5] | 0.849 3 0
Dedieu et al. [82] 0.855 3 0
Present algorithm Minimum Median Maximum
Lumped (3 elements) 0.8562 0.8562 0.8562

Problem 1 is taken from Abrie [2]. This problem in unique because lumped and distributed
results are available. Unfortunately, the distributed results were obtained by fixing either
the line length (commensurate case) or the line impedances (non-commensurate case), so
the results are not completely comparable. The results published by Abrie and the results
obtained using the present algorithm are given in Table 4.27 with the errors given as
VSWR values. The best solutions obtained are shown in Figure B.1 on page 176. The
lumped solution is similar to the solution obtained by Abrie [2]. The microstrip line results
were obtained using one of the examples that is supplied with the demonstration version
of MultiMatch Mosaic which was obtained from Ampsa’s web page (www.ampsa.com).
The only differences in the MultiMatch example are that two extra transmission lines are -
included at the load and source, and the line impedances are constrained to be between 25
and 85 €. These changes were also made to the current algorithm in the microstrip case to
allow the results to be compared directly. The second value given in each of the microstrip
cases is the value obtained using EEsof. The performance of the current algorithm on this
problem is seen to be comparable to the published results, although the worst results are
poor. The microstrip results are particularly impressive because they include discontinuity

effects.

Problem 2 was originally proposed by Fano [57,58], but has also been used by Carlin [4],
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Table 4.29: Results for Problem 3 (G7).

Author Result  Elements Transformers
Carlin and Yarman [8] (analytic) 0.847 3 1
Carlin and Yarman [8] (real-frequency) 0.932 3 1
Yarman and Fettweis [9] 0.927 3 1
Yarman and Aksen [87] ~0.94 3 0
Dedieu et al. [82] 0.938 3 1
Present algorithm Minimum Median Maximum
Lumped (3 elements) 0.8853 0.9362 0.9362
Mixed (3 elements) 0.9105 0.9362 0.9362

Carlin and Amstutz [5], and Dedieu et al. [82]. Carlin and Amstutz [5] have also applied the
formulae developed by Chen [63] to this problem, and these analytic results are also given.
The results are shown in Table 4.28 with the errors given as transducer gains. The best
solutions are shown in Figure B.2 on page 177 where the component values have been scaled
back to the original frequency band. The results are similar to the solutions obtained by
Carlin [4], Carlin and Amstutz [5], and Dedieu et al. [82]. The performance of the algorithm

developed here is seen to at least as good as the published results.

Problem 3 is used by Carlin and Yarman [8], Yarman and Aksen [87], Yarman and Fettweis
[9], and Dedieu et al. [82]. Yarman and Carlin [8] give results for both the analytic and
real-frequency algorithms developed in that work. The results by Yarman and Aksen [87]
are for a mixed lumped-distributed network where a lumped prototype is transformed to
a mixed network with three elements, two of which are series transmission lines, and then
optimised. Yarman and Aksen [87] do not give a value for the final network obtained, so
the value given in Table 4.29 was read off the frequency response of the final network. The
results are shown in Table 4.29 in the form of transducer gains, and the current algorithm
is again seen to achieve results that are at least as good as the published results in the

vast majority of cases. The best solutions are shown in Figure B.3 on page 178 where the
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Table 4.30: Results for Problem 4 (Gr).

Author Result  Elements Transformers
Carlin and Yarman (8] 0.742 5 1
Yarman and Fettweis [9] | 0.722 5 1
Dedieu et al. [82] 0.750 5 1
Present algorithm Minimum Median Maximum
Lumped (5 elements) 0.7515 0.7576 0.7590

Table 4.31: Results for Problem 5 (decibel error).

Network Result Elements Transformers
Abrie (lumped) 0.05 dB 4 0
Present algorithm Minimum  Median Maximum
Lumped (4 elements) | 0.04538 dB 0.1302dB  0.1481 dB

component values have been scaled back to the original frequency band. The results are
similar to the solutions obtained by Carlin and Yarman [8], Yarman and Fettweis [9], and

Dedieu et al. [82].

Problem 4 appears in the papers by Carlin and Yarman [8], Yarman and Fettweis [9], and
Dedieu et al. [82]. The results are shown in Table 4.30 as transducer gains, and the current
algorithm is seen to obtain better results than the published algorithms. The best solutions
are shown in Figure B.4 on page 179 where the component values have been scaled back
to the original frequency band. The results are similar to the solutions obtained by Carlin
and Yarman [8], but have a different structure to the solutions obtained by Yarman and

Fettweis [9], and Dedieu et al. [82].

Problem 5 is a double matching problem taken from Abrie [2]. The results are given in
Table 4.31, where the results are given as maximum gain errors in dB. The best solutions

are shown in Figure B.5 on page 180. The lumped solution is seen to be similar to one
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of the solutions obtained by Abrie [2]. The current algorithm has tremendous difficulty
obtaining a good result on this problem, despite the fact that the best result is comparable

to the best published result.

Problem 6 is also taken from the literature, but unfortunately, Abrie [2] only gives results
for the amplifier this network is part of, not the network itself. The best solutions are shown
in Figure B.6 on page 181. The lumped solution has a different structure to the solution
obtained by Abrie [2].

4.6 Summary

A large number of tests were conducted to quantify the performance of the algorithm

developed here, with the results being summarised in this chapter.

Ten test problems from a variety of sources were used to test the algorithm as thoroughly
as possible. The problems include many different cases, and are a mix of established and

new problems.

The accuracy of the fitness calculations was verified by comparing results to those obtained
by EEsof. The models used for ideal components were found to be exact, and the models
used for microstrip dispersion and discontinuities were found to be in very good agreement
with the EEsof models. The only notable exception is the cross model which is poor. The
results obtained using complete circuits are also excellent except where the substrate is

thick and has a low dielectric constant.

The algorithm options and parameters were then modified to determine their effect on the
performance of the algorithm. The Pareto-like optimality and local optimiser were found
to improve the results obtained, and the default parameters were found to be very close to

the optimal values.
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The results obtained are impressive with the best results being at least as good as the best
published results. The main drawback is that the results are not consistent, and the worst
results are usually poor. Results for longer individuals, and mixed and distributed networks

display more variance than the results for shorter individuals in the lumped case.

The implications of these results are discussed in Chapter 5.
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