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Chapter 2 Background

Snyman [24] for an algorithm that does not use the Hessian. Nocedal and Wright [15] review
the augmented Lagrangian method which reduces the problems with ill-conditioning, but

the theory required for this method is beyond the scope of this work.

Another method of dealing with constraints is to transform the problem so that the new

independent variables can have any value. A possibility reviewed by Bandler [12] is
1 !
T; = Ty + - (Zui — zi;) arceot (z;) (2.20)

where z; is an independent variable of the original problem, z,; and z;; are respectively the
upper and lower bounds of the independent variable, and z} is the new independent variable.
An unconstrained optimisation algorithm can now be applied to the new problem with x’
as the independent variable. Nocedal [15] considers similar algorithms known as barrier
function methods. The main problem with barrier function methods is that ill-conditioning

of the Hessian can occur.

Other approaches using approximations of both the problem and the constraints in the
neighbourhood of the current point have been developed. Nocedal and Wright [15] review
the quadratic programming and sequential quadratic programming approaches. Snyman
[36,37] has recently proposed a new algorithm that uses a very simple approximation to
the problems yet achieves excellent results. The main difficulty with these approaches is
that a complicated sub-problem must be solved at each iteration, limiting the value of these
algorithms where the evaluation of the objective function is fast. The main advantage of
these approaches is that they typically require fewer objective function evaluations than the
algorithms considered above making them very well suited to the case where the evaluation

of the objective function is costly.

2.2 Genetic Algorithms

Genetic algorithms are numerical techniques that attempt to imitate evolution and natural

selection. The motivation for this approach is the remarkable way in which natural systems
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adapt to their environments. Genetic algorithms have been applied to a very wide range
of problems including optimisation [17,33], computer programming [38], circuit design [38],
the traveling salesman problem [17], and training of neural networks [39]. This document
will focus on optimisation, but the conclusions are relevant to all applications of genetic

algorithms.

There are some semantics surrounding the use of the term “genetic algorithm.” The purists
insist that only the binary genetic algorithms proposed by Holland [40] may be called genetic
algorithms, with all other evolutionary techniques having different names. Michalewicz [33]
uses the term “evolutionary program” to refer to any technique based on evolution and
natural selection, but this can lead to confusion with “evolutionary programming,” an
algorithm for evolving finite state machines. For the purposes of this document the term
“genetic algorithm” will be used to denote any technique based on evolution and natural

selection, and the term “binary genetic algorithm” will be used to denote the form proposed

by Holland [40].

Section 2.2.1 will consider genetic algorithms in more detail. Some well known selection
schemes, data representations, and genetic operators will be presented to highlight the
most important points. The Schema Theorem is discussed in Section 2.2.5 to show how
genetic algorithms work. This result leads to some important observations concerning the
implementation of genetic algorithms. Section 2.2.6 gives a brief introduction to messy

genetic algorithms.

This is a very short introduction to genetic algorithms so only the most basic points are
covered. The interested reader is referred to Whitley [41] for a genetic algorithms tutorial
which briefly covers some advanced topics, Goldberg [17] for a detailed consideration of
binary genetic algorithms, Michalewicz [33] for motivations for representations other than
binary, and Béck et al. [42] for a comparatively recent review of the field with over 200

references.
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initialise population;
calculate fitnesses;
do
{
do
{
select two individuals;
apply crossover with probability pc;
apply mutation with probability pm;
} until new generation is full;
calculate fitnesses;

} until termination criterion in met;

Figure 2.5: Pseudo-code implementation of a genetic algorithm.

2.2.1 Background

This section will review the most important characteristics of a genetic algorithm and two
of the best known genetic algorithms will be presented as typical examples. The first
is the binary genetic algorithm originally proposed by Holland [40] and covered in great
detail by Goldberg [17], and the second is the real number genetic algorithm developed by
Michalewicz [33].

As mentioned before, a genetic algorithm works by imitating evolution and natural selection
as found in nature. The first step is to generate an initial population of individuals. Next a
number of individuals are selected, favouring those with higher fitness, but not completely
rejecting those with low fitness. These individuals are then allowed to breed, and some
survive to the next generation. Mutation is also applied with a low probability and the
whole process is then repeated until some termination criteria is met. The basic algorithm

is shown in the pseudo-code implementation given in Figure 2.5.
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From this discussion it is clear that five criteria have to be met for a genetic algorithm
to be applied to a given problem. A representation of the data has to be established, an
initial population of individuals must be created, a selection scheme must be chosen, genetic
operators (crossover and mutation) need to be implemented, and a termination criteria has

to be established.

The initial population is normally generated randomly, but this is not a requirement and
individuals that are known to be good can be used to seed the initial population. The
most commonly used termination criterion is to stop the algorithm after a fixed number
of generations, but other possibilities do exist. One of these is to stop the algorithm
when there has been no improvement in the best fitness for a number of generations. The
representation of individuals, selection schemes, and genetic operators are considered in the

following sections.

Section 2.2.2 reviews four of the most important selection schemes. The representation of
the individuals processed by a genetic algorithm is considered in Section 2.2.3. Genetic

operators are considered in Section 2.2.4.

2.2.2 Selection

Once a fitness measure for the problem being considered has been established, a way of
selecting individuals must be implemented. This section will start with a description of
the most important properties of a selection scheme, move on to address elitism, and will
then consider four of the most common selection schemes in Sections 2.2.2.1 to 2.2.2.2. The

information in this section is mainly obtained from Béick [43], and Goldberg and Deb [44]

The selection scheme is what causes a genetic algorithm to converge, and thus has a dra-
matic effect on the performance of the algorithm. The genetic operators considered in
Section 2.2.4 only create new individuals and have a comparatively small effect on the

convergence of the algorithm. A selection scheme should favour the selection of good indi-
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viduals to ensure that the algorithm converges to a good solution. However, poor individuals
should still have a small chance of being selected to maintain diversity in the population

and prevent premature convergence.

One of the problems with all the selection schemes described in this section is that they
select individuals in a structured, but random manner. This means that there is usually
no guarantee that the best individual from the current generation will survive to the next
generation, so convergence is seldom monotonic. The simplest way to overcome this problem
is to copy the best individual to the next generation, a process known as elitism [17]. Elitism
is not required by (1 + A) selection because the best individuals are guaranteed to survive

to the next generation.

2.2.2.1 Description of Selection Schemes

Proportional selection is also known as Roulette wheel selection. Individuals are randomly
selected with a probability equal to the ratio of the fitness of an individual to the sum of

the entire population’s fitnesses. This can be written as

p(x;) = ). (2.21)

n

3 fxy)

j=1
where f(x;) is the fitness of individual x; and p(x;) is the probability of selecting individual
x;. Proportional selection can obviously only be directly applied to problems where the
fitness must be maximised and all possible fitnesses are strictly positive. However it is

often possible to convert the fitness to this form and apply proportional selection to the

modified fitness.

A subtle problem with proportional selection is that it becomes little more than random
selection when a large number of individuals have similar fitnesses. This can happen near
the end of a run when most of the population has converged to essentially the same fitness
value. Another problem is that an individual that is much better than all others in a given

generation will tend to get selected a large number of times, causing the population to
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converge to that solution. This is a problem if an individual that is much better than all
others, but which is not close to the best solution, is generated near the beginning of a run.
Both of these problems can be overcome by scaling the fitness to be between some specified
upper and lower bounds [17,42]. Linear scaling is the most common form of fitness scaling,
but nonlinear scaling can also be used. Nonlinear fitness scaling can be used to adjust
the bias towards individuals with higher fitness [42]. The selection techniques listed below

avoid these difficulties.

Selection probability is based on an individual’s rank within a population in rank-based
selection. Individuals that have a higher rank (better individuals) have a greater chance
of being selected than individuals with a lower rank. The main advantages of rank-based
selection are that it avoids problems with fitness scaling, and it can be used in cases where
there is no absolute measure of fitness and individuals can only be compared. This is the
case in game playing problems where the outcome of a match can only be a victory, loss,
or draw. Linear ranking is the most common form of rank-based selection, but nonlinear
ranking is also possible. As with fitness scaling, the bias towards better individuals can be

adjusted in rank-based selection.

Tournament selection works by randomly choosing a number of individuals from the pop-
ulation to participate in a tournament. The individuals with the best fitnesses in the
tournament are then chosen as the winners of the tournament, and are the results of the
selection. This is usually implemented by randomly choosing two or three individuals at
a time and then either selecting the individual with the best fitness or performing pro-
portional selection on the individuals in the tournament. As with rank-based selection,
tournament selection avoids fitness scaling problems and the bias towards better individu-
als can be adjusted. Tournament selection has the additional advantage that it is simple

to implement.

The last selection methods considered here work by creating a population larger than that
required and eliminating the worst individuals. In (g, A) selection the next generation is

formed by selecting the best y individuals from A offspring, where p is smaller than A. The
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process for (y£+ A) selection is similar except that the next generation is formed from the p
best individuals from the population consisting of both offspring and parents (u individuals
from g+ A individuals). The main advantage of (4+ A) selection over (u, ) selection is that
(1 + A) selection ensures that the best value improves monotonically. These two selection
schemes have similar advantages to tournament selection, but they can have a stronger bias
towards better individuals, and finer tuning of the bias can be achieved. These two schemes

are common in algorithms based on Evolution Strategies [43].

2.2.2.2 Comparison

Detailed comparisons of these and other selection schemes can be found in the literature
[17,43,44]. Goldberg and Deb [44] compare these selection schemes in terms of growth

ratio, takeover time and time complexity, while Back [43] only considers takeover time.

Growth ratio is the ratio of the number of copies of an individual in the next generation
to the number of copies of that individual in the current generation. The genetic operators
(crossover and mutation) are ignored during a growth ratio calculation so that only the
effect of the selection scheme used is seen. Proportional selection was found to have a
growth ratio that is heavily dependent on the fitness function, and is high early on and low
near the end of a run. Rank-based and tournament selection were found to have similar
growth ratios that are much better than proportional selection. Genitor selection (a type
of (1 + A) selection) was found to have a growth ratio that is so high it actually causes

problems.

Takeover time is defined as the time taken for the best individual to be copied to every
position in a population but one. Again, the effect of crossover and mutation are ignored.
Goldberg and Deb [44] found that the takeover times of all the selection schemes were of the
same order of magnitude. The more detailed study conducted by Béack [43] also considered
the effect of changing the bias towards better individuals. Proportional selection was found

to have a very high takeover time. Linear rank-based selection was shown to have a much
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better takeover time than proportional selection, and tournament selection was better than
linear rank-based selection. The shortest takeover times are obtained by (i, A) and (z+ A)
selection. The takeover times for rank-based, tournament, and (i, A) and (u + A) selection
can be varied, with the largest range of variation being achieved by (u,A) and (u + A)

selection followed by tournament selection.

The last parameter considered by Goldberg and Deb [44] is the time complexity (an indi-
cation of how much processing time is required) of each of these selection schemes. The
most complex is proportional selection with a time complexity of order n?, where n is the
population size, followed by rank-based and Genitor (a type of (x+ A)) selection with time
complexities of order nlog(n). The simplest of the selection schemes considered here is
tournament selection with a time complexity of order n. It is difficult to imagine a selec-
tion scheme with a time complexity of order less than n because n individuals must be

selected.

2.2.3 Representation

The representation chosen for the individuals in a population can have a large effect on the
-performance of a-genetic algorithm. Some general points will be considered here and two
examples will be highlighted. Obviously different operators will be required for different

representations.

The representation used should follow directly from the problem itself wherever possible.
Important points to take note of are that the amount of data should be kept to a mini-
mum, and features that are close together in the problem should be close together in the
representation. An example of the first point is that a representation with 10 decimal digits
accuracy shouldn’t be used if only 3 decimal digits are required. The problems with having
unnecessary data are that the algorithm takes longer to converge, and the chances that it
will converge to a sub-optimum result are increased. An example of the principle that fea-

tures that are close together in the problem should be close together in the representation
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is that a two dimensional matrix would be a better representation for a two dimensional
problem than a one dimensional vector. Both these points arise from the Schema Theorem

presented in Section 2.2.5 and will be discussed further there.

The first genetic algorithms proposed by Holland used a binary string of the form
X = Tp_1Zn—a+is L3TaT1Tp (2.22)

where z; are binary digits, and n is the length of the string. This representation can then
be decoded to a single variable of n bits, two variables of n/2 bits, or m variables of n/m
bits. The motivation for a binary representation comes from natural systems where genes
are either present or absent. While this representation works well for integer variables, a
large number of bits is required to encode real numbers which require very high accuracy

or large ranges.

Michalewicz [33] overcomes this problem by using a number of floating point values to
encode variables that are real numbers. In other words, each individual uses one floating
point value to encode each system variable. In terms of (2.22), this means that each z; is

a real number and the problem has n variables.

2.2.4 Operators

After individuals have been selected, genetic operators are applied to create new individuals.
The most important properties of genetic operators are presented below, followed by a

consideration of mutation in Section 2.2.4.1 and crossover in Section 2.2.4.2.

Genetic operators are applied to modify current solutions in an attempt to produce im-
proved solutions. As mentioned in Section 2.2.2, genetic operators have a comparatively
small effect on the convergence of a genetic algorithm, but good genetic operators can lead

to improved results.

Genetic operators are applied with a probability less than 1, so not all individuals are
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affected, with unaffected individuals being copied to the new generation unaltered. This
is necessary because genetic operators tend to have a disruptive effect as shown in Sec-
tion 2.2.5.2. Allowing individuals to survive to the next generation without any modifica-

tions ensures that current solutions to the problem are retained.

Operators depend heavily on the representation used and fall into two general categories,
mutation and crossover, with mutation being applied after crossover in most implemen-
tations. The binary operators originally proposed by Holland [40], and the floating point
operators suggested by Michalewicz [33] will be presented below.

2.2.4.1 Mutation

Mutation operators take one individual as an input and randomly change that individual
to ensure that genetic diversity is maintained in the population. This is necessary to
ensure that the population does not prematurely converge to a poor solution. Mutation
is a background operator that has a very small effect on the operation of most genetic
algorithms, so it is applied with a very low probability. This does not mean that mutation in
unnecessary, and a genetic algorithm that does not have mutation will not give good results.
Binary, uniform, boundary, and non-uniform mutation will be presented as examples of

typical mutation operators.

Binary mutation was originally suggested by Holland [40] as part of a binary genetic algo-
rithm. Binary mutation works by randomly inverting a bit in the binary representation of
an individual, which means that binary mutation can only be used with a binary represen-
tation. Binary mutation is usually applied with a probability such that one in a hundred

to one in a thousand bits is affected [17].

Uniform mutation was introduced as part of a real number genetic algorithm by Michalewicz
[33]. Uniform mutation modifies an individual by changing one of the variables in an
individual to a random value uniformly distributed between the maximum and minimum

allowable values of that variable.
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Boundary mutation was introduced by Michalewicz [33] as part of a real number genetic
algorithm to counteract the bias inherent in arithmetic crossover, and to effectively search
the extreme values of each variable. Arithmetic crossover will be covered in detail below,
but at this point it is sufficient to state that it tends to favour values near the middle of
each variable’s allowable range. Operators should not introduce any kind of bias because
this will affect the operation of the genetic algorithm by favouring regions that do not
necessarily produce good results. Boundary mutation randomly assigns either the maximum

or minimum allowable value to one variable in an individual.

Non-uniform mutation was also introduced by Michalewicz [33] for use with a real number
representation. This operator is similar to simulated annealing [14,45] in the sense that
the amount by which an individual is changed depends on the age of the population. Large
changes are possible during the early part of a run when individuals are still far from good
results, but only small changes are allowed near the end of a run when individuals are near
good values. This is done to ensure that the search space is adequately covered near the
beginning of the algorithm by allowing large changes, but good results are not lost near the
end of the algorithm. One of the variables in a representation of the form shown in (2.22)
will be changed according to

i+ A(t,u; —x;) s=0
g (2.23)

.’L'z'—A('f,',IEi—li) 5 =1
where z; and z} are the old and new values of the variable respectively, /; and u; are the
minimum and maximum values of the variable respectively, and s is a random bit that has

an equal probability of being 0 or 1. The value of A used by Michalewicz [33] is given by
b
Alt,y) =y [1 —r(1-%) ] (2.24)

where r is a random number uniformly distributed between 0 and 1, £ and T are the current
and final values of the population age (usually numbers of generations) respectively, and b
is a parameter used to determine how much the mutation range changes with population

age. Michalewicz [33] uses a value of 5 for b.
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2.2.4.2 Crossover

Crossover is analogous to breeding in natural systems. The basic principle of crossover is
that genetic information from two or more individuals is combined to form a new individ-
ual. Crossover is the most important operator in the vast majority of genetic algorithm

implementations. This section will consider binary, simple, and arithmetic crossover.

Binary crossover was originally proposed by Holland [40] and is intended for use with a
binary representation. Binary crossover works by selecting two parents and a cross point,
and then copying the data from one parent before the cross point and from the other parent
after the cross point. An example where two 8 bit parents are crossed after bit 5 to produce

two offspring is shown below. The parents are given by

Ty X Ts5 | Ta T3 To T T
7 Ts ITs 4 3 2 1 0 (2.25)
Yr Y Ys | Y+ Y3 Y2 Y1 Yo
and the offspring by
Ir Ts Ts5 | Y4+ Yz Y2 U1 Yo (2 26)
Yr Ye¢ Ys | T4 T3 T2 Ty o

where z; and y; are the bits of the parents, and | shows the cross point. In this case two
offspring are generated for every crossover, but generating one offspring per crossover is

also possible. Binary crossover is normally applied with a probability of around 0.6.

Simple crossover was introduced by Michalewicz [33] and is very similar to binary crossover,
except that it is applied to representations with real numbers. The only difference to the

case shown in the previous paragraph is that z; and y; are real numbers.

Simple crossover is very limited because it does not affect the values of the variables, so
Michalewicz [33] also uses arithmetic crossover. This operator copies variables from one
parent before the cross point, modifies the variable at the cross point using data from both
parents, and then copies the remaining variables from the other parent. An example for

the case where two parents with eight variables are crossed at variable 4 is shown below.
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The parents are given by

Ty Tg IT5 | Xy | T3 To Ty To

(2.27)
Y7 Ys Ys [ Ya | Y3 Y2 Y1 Yo
and the offspring is given by
T Te s ’ a4 } Ys Y2 U1 Yo (2.28)
where z; and y; are real numbers, | shows the cross point, and a; is given by
a; =rz; + (1 —1)y; (2.29)

where r is a random number between 0 and 1. It is also possible to generate two offspring

from two parents as with binary crossover.

2.2.5 Schema Theorem

So far this work has concentrated on what genetic algorithms are and how to implement
them, but nothing has been said about how and why genetic algorithms work. This is
addressed by the Schema Theorem which explains the operation of genetic algorithms in
terms of schemata (singular: schema). The Schema Theorem is covered by most books
and tutorials that deal with genetic algorithms including [17,33,41]. While the Schema
Theorem is only valid for binary genetic algorithms, the results can be applied to any
genetic algorithm. This section will give a brief overview of the Schema Theorem to allow

the reader to gain an understanding of how and why genetic algorithms work.

2.2.5.1 Schema Definition

The first step towards deriving the Schema Theorem is defining a schema. A schema is a
template used to show similarities between different individuals. This is done by specifying

the value of some of the bits in an individual, and leaving the values of all the other bits

Electrical, Electronic and Computer Engineering 44



&+

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Q=P YUNIBESITHI YA PRETORIA

Chapter 2 Background

unspecified. An asterisk is typically used as a “don’t care” symbol to show which bits’
values are unspecified. For example, all individuals which have the first bit of an eight
bit string set to 1 are represented by the schema 1******* Angther example is that the

strings 10101110 and 11101101 both contain the schema 1*1* *¥**

Schemata have two fundamental properties, order and length. The order of a schema,
denoted by o( H), is the number of bits whose values are specified (they are not “don’t care”
values). The schemata 1¥¥¥¥¥¥* okk(*kxk gnd **** ¥*¥1* 311 have order 1 because only
one bit’s value is specified. Examples of second order schemata are *¥1¥* ¥0** *Q0* *** and
1¥¥****]1 High order schemata match fewer strings than low order schemata, so the order
of a schema is an indication of how general a schema is. The length of a schema, denoted
by 6(H), is the number of bit positions from the first specified bit to the last specified bit.
For example, the schema **1*0*0* has a length of 4 because the first specified bit is in
position 1 and the last specified bit is in position 5, where the bits are numbered from right

to left as shown in (2.22).

2.2.5.2 Derivation

The fundamental result of the Schema Theorem is a lower bound on the quantity of a given
schema which will be present in a new generation. This value is affected by the number of
copies of that schema in the current generation, the fitness of the schema relative to the
average schema fitness, and the probability that crossover and mutation will disrupt the

schema..

The first important step is thus to define the fitness of a schema, denoted by f(H). A
schema’s fitness is the average of the fitnesses of all strings that contain that schema. For
example, the fitness of the schema 1101 011* is the average of the fitnesses of the strings
11010110 and 11010111, and the fitness of *101 *001 is the average of the fitnesses of the
strings 0101 0001, 1101 0001, 0101 1001, and 1101 1001. The fitness of a schema, is implicitly

processed by a genetic algorithm and need not be explicitly calculated. Schema fitness is
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processed by fact that the individuals in a population which contain good schemata should
have higher fitnesses than individuals that contain poor schemata. The accuracy of this
assumption will improve as the population size increases because the number of copies of

each schema will increase.

The number of copies of a given schema that are selected is now derived assuming that
proportional selection (see Section 2.2.4.2) is used. Similar growth measure results for other
selection schemes have been derived by Goldberg and Deb [44], but are not considered here
because the results are similar. The probability that an individual, and thus a particular
instance of a schema, will be selected is given by (2.21). The probability that any copy of
a schema is selected is this probability multiplied by the number of copies of that schema
in the current generation. This process is repeated until one individual has been selected
for every space in the new generation. The number of copies of a schema that are selected

for the next generation is thus given by

m(H,t+ 1) = m(H, t)nﬁ— (2.30)

Zf(xj)

where m(H, t) is the number of copies of schema H in generation t, and n is the population
size. This can be simplified by noting that the sum of all fitnesses divided by the population

size is the average fitness of all individuals in the current population. So (2.30) becomes

m(H,t+1) = m(H, t)@ (2.31)

where f is the current population’s average fitness.

The result in (2.31) shows that the number of good schemata (those with a fitness greater
than the population average) will increase and the number of bad schemata (those with a
fitness lower than the population average) will decrease. While this is desirable, it serves no
purpose unless those schemata are processed to produce better results, and this requirement
is met by the genetic operators described previously. Some schemata are destroyed and
others are created during the application of genetic operators. When binary crossover

takes place, schemata are destroyed when the cross point falls between bits whose values
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are specified as shown below.

Xi = Ty Tsg T5 | T4 Tz T2 T1 Tp
H = 1 * # 1 * * 0 (2.32)
H, = * * * 1 * * 0 *

In this example the cross point is chosen between bits 4 and 5. This is between two
specified bits of schema H; so it will be destroyed unless the other individual taking part
in the crossover has the same values in those bit positions. The cross point does not lie
between any specified bits of schema Hs,, so it is not affected by this crossover. Binary
mutation will disrupt any schema that has a specified value that is mutated. Obviously
new schemata that were not present in the individuals processed by the genetic operators

will also be created.

The probability with which schemata are created and destroyed needs to be included in
(2.31) to account for the effect of genetic operators. This analysis will only consider the
probability that a schema will survive crossover and mutation, ignoring the creation of new
schemata. This is a worst case analysis which establishes a lower bound on the probability

that a schema will survive to the next generation.

A schema is disrupted by binary crossover if the cross point falls between the first and last
specified bits of the schema. The cross point for binary crossover can be between any two
bits, which means that an individual of length n has n — 1 potential cross points. Every
potential cross point has the same probability of being used, so the probability of using
a specific cross point is 1/(n — 1). The number of cross points between the first and last
specified bits of a schema is equal to the length of the schema §(H) so the probability of
a schema being disrupted by binary crossover is thus §(H)/(n — 1). Binary crossover is
not applied in every case, so this value must be multiplied by the probability that binary
crossover is applied. The probability that a schema will survive crossover is given by

§(H)

n—1

ps=1-pc (2.33)

where p, is the probability that crossover is applied. Equation (2.31) can now be modified
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to account for the effect of crossover, giving

m(H,t+ 1) =m(H, t)@ [1 - ch] : (2.34)
Binary mutation can disrupt a schema by inverting any of the specified bits in a schema.
The probability that any particular bit will be mutated is equal to the mutation probability
Pm- The number of bits specified by a schema is given by the order of the schema o(H) so
the probability that a schema will be disrupted is given by p,0(H). This can be included
in (2.34) to give the number of copies of a particular schema that can be expected in the

next generation:

m(H,t+1) =m(H, t)f—(?—) [1 - pc% —pmo(H)| . (2.35)

As mentioned above, (2.35) ignores the fact that schemata are also created by crossover
and mutation. This means that the value given above is actually a lower bound on the
quantity of a schema that can be expected in the next generation, and thus represents the
worst, case. This can be shown explicitly by modifying (2.35) to use an inequality, giving

d(H)
n—1

m(H,t+ 1) > m(H, t)@ [1 - Pe —pmo(H)| . (2.36)

2.2.5.3 Implications of the Schema Theorem

This section will consider some of the implications of the Schema Theorem and how they

can be used to design better genetic algorithms.

The first important result is given in (2.31) and shows the expected number of copies of
a schema in a new generation. The factor f(H)/f means that the number of copies of a
given schema grows with the ratio of the fitness of the schema to the average population
fitness. If the ratio of the schema fitness to the average population fitness is assumed to
be a constant, (2.31) becomes a geometric progression. In other words, a schema with a

fitness higher than the average fitness will get an exponentially increasing number of trials
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assigned to it over time, assuming it is not disrupted by the genetic operators. A schema
with fitness lower than the average fitness will get an exponentially decreasing number of
trials assigned to it. This means that a population should very rapidly converge to a good
result. Section 2.2.2.2 notes that proportional selection has the lowest growth ratio of the

selection schemes considered, so the other selection schemes will do even better.

The final result given in (2.36) adds the effect of crossover and mutation to the result in
(2.31). This equation shows that short schemata have a greater chance of surviving crossover
than long schemata, and low order schemata have a higher probability of surviving mutation

than high order schemata.

These conclusions lead to a result known as the building block hypothesis. A building
block is simply a short, low order schema. The main result of the Schema Theorem is
that good building blocks will be combined in such a way as to improve the population’s
fitness. This means that the representation chosen should be such that important parts of
the problem are close together to minimise the possibility of being disrupted by crossover,
and the amount of data required should be kept to a minimum to reduce the chances of

disruption by mutation. Both these points were mentioned in Section 2.2.3.

The last issue that needs to be considered is the number of schemata that are processed by
the algorithm per generation that contribute useful information about the problem. Not
every schema that is present in the population will be usefully processed because long, high
order schemata have a high probability of being disrupted by genetic operators. Goldberg
[17] shows that the number of usefully processed schemata is of order n3. So despite only
explicitly processing n individuals per generation, a genetic algorithm implicitly processes

on the order of n® schemata. This important result is known as implicit parallelism.

While the Schema Theorem is a very useful result which gives an insight into the operation
of genetic algorithms, it is only valid for binary genetic algorithms and does not constitute a
rigorous mathematical proof. The search for a generally applicable, mathematically rigorous

proof of the convergence of genetic algorithms is ongoing. Leung et al. [46] give a brief
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review of the most important results that have been achieved, and suggest a new model for

analysing genetic algorithms.

2.2.6 Messy Genetic Algorithms

Genetic algorithms are a very powerful technique for solving difficult problems, but they
are not perfect. One of the most difficult aspects of implementing a useful genetic algorithm
is determining the representation. This is complicated by the fact that it is usually not
possible to know in advance which ordering of variables will produce good results. Messy
genetic algorithms [47,48] overcome this problem by modifying genetic algorithms to reduce

ordering problems.

Section 2.2.6.1 will consider the motivation for messy genetic algorithms in more detail.
The unique initialisation of messy genetic algorithms is presented in Section 2.2.6.2. Sec-
tion 2.2.6.3 considers the representation used by messy genetic algorithms and highlights
the difficulties this representation causes for fitness calculation. Section 2.2.6.4 considers
the modifications that have to be made to conventional selection algorithms before they
can be used for messy genetic algorithms. Section 2.2.6.5 presents the operators used in
messy genetic algorithms. Lastly, Section 2.2.6.6 briefly considers the Schema Theorem as

applied to messy genetic algorithms.

2.2.6.1 Motivation

The performance of a genetic algorithm can depend very strongly on the representation
used. This is particularly evident in deceptive problems — problems that are known to be

difficult for genetic algorithms. This section will give a brief overview of this difficulty.

The Schema Theorem states that short, low order, high fitness building blocks are combined

to improve the population fitness. This means that features of a function must be tightly
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linked (close together) in the representation so that the length of the important schemata
are as short as possible. Unfortunately, it is not always possible to know in advance which
ordering of the data will produce good results. This effect is accentuated when deceptive
problems are considered. A number of techniques have been suggested for overcoming this

problem, but none is satisfactory.

The first possibility is just to use a random ordering for every problem, but this is not a good
solution because the probability of obtaining a good ordering is low. The other possibility
is to introduce an operator which changes the ordering used in the representation during
a run of the algorithm. This can be considered as a mutation operator for representation
ordering. Goldberg et al. [47] give a number of difficulties with this approach. The most
important objection to a reordering operator is that the genetic algorithm will then be
trying to optimise both the ordering and fitness at the same time, producing a much more

difficult problem than just improving fitness.

The problems highlighted above suggest that a new approach to genetic algorithm rep-
resentation ordering is required. The messy genetic algorithm proposed by Goldberg et

al. [47,48] overcomes these ordering problems.

The inspiration for messy genetic algorithms, as with conventional genetic algorithms,
comes from nature. Conventional genetic algorithms use the assumption that evolution
takes place with a fixed number of genes which are either absent or present, but this is
only true over comparatively short periods in evolution. Over longer periods of time this
approximation is seen to be incorrect. In nature, individuals frequently have genes which
are present more than once (overspecification), genes which are required but absent (un-
derspecification), and chromosones which can vary in length. Messy genetic algorithms are
unique because they allow varying length representations, underspecification, and overspec-

ification.
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2.2.6.2 Initialisation

The first major difference between messy genetic algorithms and conventional genetic algo-

rithms is in the initialisation of the population.

The messy genetic algorithm starts with a large number of short individuals. These individ-
uals are initialised to contain all possible building blocks of a specified, short length. The
first phase of a messy genetic algorithm, known as the primordial phase, proceeds by only
applying selection and gradﬁally reducing the population size. This is necessary because a
large number of individuals are produced during initialisation and it would be impractical
to consider all these individuals in the complete algorithm. An additional advantage is that
the use of selection means that mostly good individuals survive to the next phase, known as
the juxtapositional phase, giving a very good starting point. In the juxtapositional phase

both selection and genetic operators are applied.

2.2.6.3 Representation

The next important characteristic of any genetic algorithm is the representation used, and

the unique aspects of the messy genetic algorithm representation are presented below.

In the case of messy genetic algorithms, the representation is of the form
x=(n—1,z,1)(n—2,Zp-2)...(3,23)(2,22)(1, 21)(0, o) (2.37)

where the first number in each bracket is an index (), and z; is the value of bit ¢. The most
important difference between this case and the binary genetic algorithm case given in (2.22)
is the fact that each bit carries a label in this case. This is necessary because a messy genetic
algorithm allows underspecification and overspecification in its representation. Another
important difference is that the order of the bits in an individual is not important in a

messy genetic algorithm. A typical individual is

2,1) 41 (5,0 (40 (7,1) (1,1) . (2.38)
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Note that bits are not in order, bits 6, 3 and 0 are not present, and bit 4 is present more
than once. The major challenge arising from this representation is finding a sensible way

to calculate fitness.

There are two cases that cause difficulties with fitness calculation in a messy genetic algo-
rithm: overspecification and underspecification. Overspecification is the simpler of the two
cases to deal with, and Goldberg et al. [47, 48] simply use the first instance of any bit, so
bit 4 would be 1 in the example in (2.38). The problem of underspecification is significantly
more complex. Goldberg et al. [47] consider a number of possibilities and show that taking

the missing bits from a locally optimal solution produces excellent results.

2.2.6.4 Selection

Once the fitness is calculated, the next step is to select individuals to create the next
generation. Messy genetic algorithms can use the same selection algorithms as conventional
genetic algorithms (see Section 2.2.2), but the fact that not all variables will be present in

every individual does result in a few difficulties.

The main problem is to ensure that comparisons between individuals are valid. Comparing
two individuals that do not have any variables in common is obviously not a good approach,
but requiring too many variables to be common will limit the number of possible compar-
isons. Goldberg et al. [48] overcome this difficulty by only comparing individuals where the
number of variables common to both individuals is greater than the number of variables
that are expected to be common to both individuals due to the randomness inherent in the
system. Goldberg et al. [48] have conducted a number of tests to prove the viability of this

approach.
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2.2.6.5 Genetic Operators

The last important characteristic of any genetic algorithm is the implementation of genetic
operators. The messy genetic operators described by Goldberg et al. [47] are presented

below.

The mutation operator is essentially the same as for the binary genetic algorithm with bits

in the representation being randomly inverted with some low probability.

Crossover is also very similar to the binary genetic algorithm case except that the variable
length of individuals must be accounted for. This is done by choosing the cross point for
each parent independently. The offspring is then generated by copying data from one parent
before its cross point and then from the other parent after its cross point. For example, if

the parents are given by

(1, 1) (6,0) (3.1) {6::1) . (1,:0) (2.39)
(5,0) (6,1)(3;0)
the offspring will be
(1,1) (5,0) (3,1)|(3,0) (2.40)
where | shows the cross points. Note that the length of the offspring is different to that of

its parents, and it is possible to produce more than one offspring.

2.2.6.6 Schema Theorem

Goldberg et al. [47] have extended the Schema Theorem to consider messy genetic algo-
rithms. The most important differences from the form derived in Section 2.2.5 are that
individual length is not a constant, and that variables can be masked if they are present
more than once in an individual. The extension is significant because it shows that, despite
the differences between messy genetic algorithms and conventional genetic algorithms their
operation is similar. This is a very important result because the Schema Theorem was used

to justify the development of messy genetic algorithms in the first place.
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