
A SOFTWARE FRAMEWORK TO SUPPORT DISTRIBUTED COMMAND

AND CONTROL APPLICATIONS

by

Arno Duvenhage

Submitted in partial fulfilment of the requirements for the degree

Master of Engineering (Software Engineering)

in the

Faculty of Engineering, Built Environment and Information Technology

Department Electrical, Electronic and Computer Engineering

UNIVERSITY OF PRETORIA

July 25, 2011

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

SUMMARY

A SOFTWARE FRAMEWORK TO SUPPORT DISTRIBUTED COMMAND

AND CONTROL APPLICATIONS

by

Arno Duvenhage

Promoters: Prof G.P. Hancke and Prof D.G. Kourie

Department: Electrical, Electronic and Computer Engineering

University: University of Pretoria

Degree: Masters (Software Engineering)

Keywords: Distributed simulation, interoperability, command and control,

legacy systems, net-centric systems, IPC, middleware,

software framework, software quality, software architecture

This dissertation discusses a software application development framework. The framework
supports developing software applications within the context of Joint Command and Control,
which includes interoperability with network-centric systems as well as interoperability with
existing legacy systems.

The next generation of Command and Control systems are expected to be built on
common architectures or enterprise middleware. Enterprise middleware does however not
directly address integration with legacy Command and Control systems nor does it address
integration with existing and future tactical systems like fighter aircraft. The software
framework discussed in this dissertation enables existing legacy systems and tactical systems
to interoperate with each other; it enables interoperability with the Command and Control
enterprise; and it also enables simulated systems to be deployed within a real environment.

The framework does all of this through a unique distributed architecture. The architecture
supports both system interoperability and the simulation of systems and equipment within
the context of Command and Control.

This hybrid approach is the key to the success of the framework. There is a strong
focus on the quality of the framework and the current implementation has already been
successfully applied within the Command and Control environment. The current framework
implementation is also supplied on a DVD with this dissertation.

OPSOMMING

’N SAGTEWARERAAMWERK WAT BEVEL- EN BEHEERTOEPASSINGS

ONDERSTEUN

deur

Arno Duvenhage

Studieleiers: Prof G.P. Hancke en Prof D.G. Kourie

Departement: Elektriese, Elektroniese en Rekenaaringenieurswese

Universiteit: Universiteit van Pretoria

Graad: Magister (Sagteware Ingenieurswese)

Sleutelwoorde: Verspreide simulasie, interoperabiliteit, bevel en beheer,

ouderwetse stelsels, netwerkgesentreerde stelsels, IPC, middelware,

sagtewareraamwerk, sagtewarekwaliteit, sagtewareargitektuur

Hierdie verhandeling bespreek ’n sagtewareraamwerk wat gebruik kan word om toepassings in
die bevel- en beheeromgewing te ontwikkel. Hierdie tipe toepassings sluit die interoperabiliteit
met netwerkgesentreerde stelsels sowel as interoperabiliteit met ouderwetse militêre stelsels
in.

Die volgende generasie van bevel- en beheerstelsels gaan heelwaarskynlik geskoei wees op die
tipe middelware wat algemeen in die besigheidswêreld voorkom. Hierdie tipe middelware
spreek ongelukkig net nie die integrasie van bevel- en beheerstelsels, operasionele stelsels
of taktiese stelsels aan nie. Die sagtewareraamwerk wat in hierdie verhandeling bespreek
word, help met die integrasie van ouderwetse stelsels, taktiese stelsels en bevel- en beheer
besigheidsagteware. Dit vergemaklik ook die ontplooing van gesimuleerde stelsels in die regte
wêreld.

Die raamwerk doen al hierdie dinge deur ’n unieke verspreide agitektuur. Die argitektuur
ondersteun interoperabiliteit en die simulasie van bevel- en beheerstelsels en -toerusting.
Hierdie tweevoudige argitektuur is die geheim vir die sukses van die raamwerk. Daar is ’n
baie sterk fokus op die kwaliteit van die raamwerk en die raamwerk word tans gebruik om
suksesvolle bevel- en beheertoepassings te ontwikkel. Die raamwerk is op ’n DVD saam met
hierdie verhandeling ingesluit.

LIST OF ABBREVIATIONS

List of abbreviations where the notation is different than the norm.

ADC Air Defence Control

JC2 Joint Command and Control

GBADS Ground Based Air Defence System

MSDS Modelling and Simulation based Decision Support

OIL Operator In the Loop

OT&E Operational Testing and Evaluation

VGD Virtual GBADS Demonstrator

Contents

INTRODUCTION 1

1 Background 3

1.1 The Software Application Framework . 3

1.2 Modelling and Simulation . 4

1.3 C2/M&S Interoperability . 4

1.4 Supporting the C2 Enterprise . 6

2 Research Overview 9

2.1 Research Characterisation . 9

2.2 Research Plan and Dissertation Outline . 9

LITERATURE REVIEW 13

3 Software Architecture 15

3.1 Moving from Stovepipe to Network-Centric Architectures 15

3.2 Key Architectural Styles . 16

3.3 Design Patterns . 17

3.3.1 Creational Patterns . 18

3.3.2 Structural Patterns . 18

3.3.3 Behavioural Patterns . 19

3.3.4 Service Access and Configuration Patterns 20

3.3.5 Event Handling Patterns . 20

3.3.6 Synchronisation Patterns . 20

3.3.7 Concurrency Patterns . 21

3.4 Publish/Subscribe Networking . 21

3.5 Service Oriented Architecture . 22

3.6 Software Frameworks . 23

3.7 The OSI Reference Model . 23

4 Formal Analysis of Software Behaviour 25

4.1 UML Use Case Diagrams . 25

4.2 UML Finite State Machines . 25

4.3 Communicating Sequential Processes . 26

4.3.1 Language Constructs . 26

4.3.2 Describing Distributed Simulators . 27

5 Distributed Simulation 29

5.1 SIMNET . 29

5.2 NPSNET . 31

5.3 DIS . 32

5.4 HLA . 32

5.4.1 An Overview of the HLA . 33

5.4.2 An Overview of the HLA Evolved . 35

5.5 VGD . 36

5.5.1 VGD 2 . 36

5.5.2 VGD 3.0 . 37

5.5.3 VGD 3.1 . 39

5.5.4 Migrating to a Quantised Discrete Event Architecture 40

6 System Interoperability 43

6.1 System Interoperability and Joint Command and Control 43

6.1.1 Tactical Networks . 44

6.1.2 C2/M&S Protocol Gateways . 45

6.2 The Command and Control Enterprise . 46

6.2.1 Enterprise Services . 46

6.2.2 The Enterprise Service Bus . 47

FRAMEWORK IMPLEMENTATION 49

7 Framework Requirements 51

7.1 Framework Use Case . 51

7.2 Framework Requirements . 52

7.2.1 Interoperability with C2 Systems . 53

7.2.2 Virtualisation of C2 equipment using M&S 53

7.2.3 Application Development . 53

7.2.4 Good Code Quality . 54

7.2.5 Performance and Portability . 54

8 Framework Design and Implementation 55

8.1 Design Overview . 55

8.2 The Backbone Layer . 57

8.2.1 Inter Object Communication . 57

8.2.2 Inherent Object Construction . 59

8.2.3 Distributed Object Execution . 59

8.2.4 Subscriptions and Publications . 60

8.2.5 Core Backbone Components . 61

8.3 The Infrastructure Layer . 62

8.3.1 Spatial Reference and Environment Models 62

8.3.2 The Bootloader . 63

8.3.3 The Node Hub . 63

8.3.4 Information Representation and Translation 64

8.4 The Interoperability Layer . 65

8.5 The Simulation and Application Layers . 66

8.5.1 Application Integration . 66

9 Framework Evaluation 69

9.1 Performance and Scalability Testing . 69

9.1.1 Expected Behaviour . 70

9.1.2 Parallel Performance . 71

9.1.3 Distributed Performance . 74

9.2 Application Examples . 77

9.2.1 A Simulation of Flocking Behaviour 79

9.2.2 Conway’s Game of Life . 80

9.2.3 An Tactics Evaluation Tool for Fighter Aircraft 82

9.2.4 A Command and Control Protocol Gateway 83

9.2.5 A Radar Emulator . 84

9.2.6 A Joint Operations Operator Console 85

9.3 Formal Evaluation . 87

9.3.1 Distributed Execution . 87

9.3.2 The Frame Execution and Multi-threading 90

9.4 General Discussion . 93

CONCLUSION 95

10 Conclusion 97

10.1 The Framework Implementation . 97

10.2 Future Work . 98

10.3 An Open Unified Architecture for System Development 98

10.4 Final Thoughts . 98

INTRODUCTION

This part of the dissertation introduces the reader to the relevant concepts that help clarify
what the Command and Control enterprise is and the role software plays in it. An overview
of the research and the general layout and flow of the dissertation are also provided.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

1

1. Background

The software framework discussed in this dissertation represents an hybrid approach to
building support software within the context of Command and Control (C2). It combines
Modelling and Simulation (M&S) and system interoperability and provides a distributed
infrastructure for application development.

The framework allows legacy systems and tactical systems (like fighter aircraft) to com-
municate with each other and with the C2 enterprise. This is achieved by supporting the
native protocols of the relevant systems and by being able to translate between them. The
modelling and simulation capabilities of the framework also make it possible to model systems
and equipment that are not available or maybe do not even exist yet (i.e. filling gaps in a real
deployment with virtual systems). Applications developed with the framework can also be
executed and distributed over multiple hosts using a proprietary internal publish-subscribe
backbone to speed up the simulation of equipment and systems.

This chapter will give a brief overview of some C2 and M&S concepts to help the reader
understand what the C2 enterprise is and the role interoperability and modelling and
simulation plays within it.

1.1 The Software Application Framework

A real-time distributed M&S capability has been under development since 1998. This
M&S capability was used to simulate potential system configurations within the air defence
environment. This provided the South African National Defence Force (SANDF) with
valuable information for their acquisition risk reduction efforts (specifically on the Ground
Based Air Defence System (GBADS) acquisition program of the SANDF). In this way the
M&S capability was used to establish a credible acquisition and decision support capability
(Nel, Roodt and Oosthuizen, 2007).

The M&S capability has also successfully been used by the South African Army to assist
in concurrent tactical doctrine development as well as the evaluation of operational doctrine:
tactical doctrine addresses issues such as troop deployment, operational procedures and roles
and responsibilities within the military environment; concurrent tactical doctrine development
refers to the development of tactical doctrine in parallel to the system acquisition process—to
such an extent that the doctrine for using a system could be ready by the time the system
becomes operational (Naidoo and Nel, 2006).

The software application framework discussed in this dissertation replaces the existing M&S

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

3

CHAPTER 1 BACKGROUND

capability, with a strong focus on building high quality software applications that support
Joint Operations. Joint Operations involves the integration of C2 systems with each other
and with M&S systems. The framework makes it possible to support Joint Operations in
three ways:

• The inherent M&S capability within the framework makes it possible to create
applications and tools that can deploy virtual systems and equipment. The virtual
systems and equipment are deployed to interact with the environment as the real
systems would. This fools the other systems into thinking all systems are available,
even though specific systems are not even deployed.

• Applications and tools created with the framework are ideally equipped with the right
components to interoperate with existing systems and simulators.

• The framework can be used to create software bridges, adapters or gateways for existing
systems that do not support the correct protocols or interfaces to interact with other
systems. An example of this might be: an Air Traffic Control (ATC) terminal has the
ability to communicate to other ATC terminals, but nothing else; a gateway could then
be created that translates the ATC terminal’s native protocol and information format
to be understood by other systems.

This environment also requires rapid application development with ad-hoc user requirements.
The applications can range from simple system-level protocol translation (making different
systems communicate with each other) to military commander consoles.

1.2 Modelling and Simulation

Simulations are often classified as either live, virtual or constructive (Fujimoto, 2000):

• A live simulation has human operators interacting with simulated systems using real
world equipment and terminals. An example of this would be operators manning real
equipment that has a built in simulation or training capability.

• A virtual simulation has human operators interacting with simulated equipment and
terminals in a simulated world. This is also referred to as operator-in-the-loop (OIL)
simulation (i.e. operators manning virtual terminals).

• A constructive simulation has simulated operators interacting with simulated systems in
a simulated word. A constructive simulation contains only computer controlled models.

Distributed simulation refers to a simulation with models spread out over multiple hosts that
are communicating over a local area network (LAN), a wide area network (WAN) or the
internet. The remote hosts are connected together to share resources and collaborate in a
simulated environment (Tanenbaum and van Steen, 2007).

1.3 C2/M&S Interoperability

Integrating C2 systems and M&S systems is comparable to constructing software enterprise
systems. System interoperability can be broken up into the following two levels of

4 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

CHAPTER 1 BACKGROUND

Figure 1.1: The Physical Deployment of a Distributed Simulation.

interoperability:

• low-level issues like protocols, links standards and data models (interoperability at a
tactical level), and

• higher level interoperability, which involves understanding and applying the relevant
information to be able to make decisions (Daly and Tolk, 2003).

The following software architecture concepts describe the interoperability of legacy and future
systems:

• Stovepiped Systems gather, process and present specific sets of data independently,
with little or no opportunity to intercept or utilise the data until it has been completely
processed by the system.

• In Network-Centric Systems all elements are robustly networked (tightly coupled) and
system interoperability is required at both the systems-of-systems level and at a sub-
system level.

• Systems built using a Service Oriented Architecture (SOA) are loosely coupled through
the use of commercial messaging technologies. A good example of this would be
applications built using web-services.

• Enterprise Systems are created from existing systems by connecting the systems using
a layer of software called middleware. This is very similar to the SOA approach, but
enterprise middleware takes the concept one step further by formalising the way in
which applications are created with services. Large business or banking systems fall
into this category with many loosely coupled systems providing services to each other.

In this dissertation, military system will be referred to as either operational or not qualified :
operational systems refer to military systems that have been qualified and officially included

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

5

CHAPTER 1 BACKGROUND

as part of the capabilities of the military; systems that are not qualified are not officially part
of any military capability and can be seen as experimental systems or prototypes. This may
apply to hardware and software.

Systems can additionally be classified as tactical systems which refer to operational military
systems and equipment that have an immediate influence over the current military situation.
A Tactical Data Link Standard is a message-based link standard used for communication
between real-world systems. Tactical Data Link (TDL) standards are often included in
simulation to either simulate communication more realistically or to interoperate with the
real-world systems.

1.4 Supporting the C2 Enterprise

The next generation of C2 applications are expected to be web-based or follow a service
oriented architecture with common sets of enterprise middleware enabling integration. The
C2 enterprise refers to an aggregate of loosely coupled C2 systems, software systems and
simulations.

Figure 1.2: The Modelling and Simulation Competencies

The support work discussed in (le Roux, 2008) relies extensively on M&S. Figure 1.2 shows
the different competencies enabled by M&S:

• Technology Demonstrators: this is the ability to develop new technologies that
demonstrate a set of new capabilities within a specific user environment.

• Capability/Concept Demonstrators: this is the ability to quickly and effectively take
existing technologies, put them together and then use it to demonstrate and evaluate
potential capabilities or concepts within a specific user environment.

• Operational testing and evaluation (OT&E): this is the ability to validate the behaviour
of operational systems.

• Modelling and Simulation based Decision Support (MSDS): modelling and simulation
can be used to evaluate scenarios provided by the user; the analysis of the results from
the simulations then help the user make smart decisions; Technology Demonstrators,
Capability Demonstrators and OT&E can contribute to decision support.

It is important to note the difference between enterprise middleware and the framework
discussed in this dissertation: enterprise middleware is used to construct the actual C2

6 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

CHAPTER 1 BACKGROUND

enterprise; applications and tools created using the framework will only support the enterprise
by providing concept evaluation, system integration and system virtualisation.

In this chapter the reader was introduced to the concepts and terminology required to
understand the rest of this dissertation. The next chapter states the research objective
and research question and explains the research plan. A chapter outline is also presented to
help explain how the different chapters of this dissertation fit together.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

7

2. Research Overview

The methodology followed in conducting the research is laid out in this chapter. The research
problem, research question, expected outcomes and the relevance of the work are discussed.

2.1 Research Characterisation

The research objective was to design, implement and evaluate a software application
framework for supporting the C2 enterprise. The research question is: What should a
software application framework for creating support software within the command and control
environment look like? The research outcomes include the actual software application
framework as well as the key requirements for supporting the C2 enterprise. These research
outcomes will contribute to further research in the field of system interoperability and M&S
within the context of C2. The work also contributes to a larger vision of a unified open
architecture for C2 system development.

2.2 Research Plan and Dissertation Outline

Figure 2.1 shows the chapter outline of this dissertation and shows that it is divided into four
distinct parts. Part one gives the reader a brief overview of some C2/M&S concepts to help
the reader understand what the C2 enterprise is and the role interoperability and modelling
and simulation plays within it. Part one also gives an overview of the research performed
and gives the reader the general layout and flow of the dissertation.

A literature review is done in part two of this dissertation. The literature review follows two
separate paths:

• The first research path looks at how software architecture can be described. This
path leads up to the formal methods required to describe and evaluate the simulation
framework.

• The second research path reviews distributed simulation and system interoperability in
the context of command and control software. There are a large number of technologies,
specifications and standards that need to be reviewed to be able to understand the
requirements and the role of software in the C2 enterprise.

The literature review places the work into perspective and provides the tools required to define

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

9

CHAPTER 2 RESEARCH OVERVIEW

the architecture and behaviour of the software framework. Part three defines the requirements
for the software framework based on existing experience within the command and control
domain. The focus quickly shifts to the current framework design and implementation and
the evaluation of it. The evaluation of the framework is based on a wide range of criteria that
cover performance, scalability, fault-tolerance, usability, maintainability, extensibility and
reliability. Critical components of the software framework design are also formally described
and evaluated using the methods identified in part two of this dissertation.

Part four of this dissertation discusses the lessons learned and possible future work on the
framework.

10 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

CHAPTER 2 RESEARCH OVERVIEW

Figure 2.1: The Dissertation Chapter Outline

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

11

LITERATURE REVIEW

This part of the dissertation presents a literature review that follows two separate paths.
The first research path reviews how software architecture can be described and leads up to
the formal methods required to define and evaluate software behaviour. The second research
path reviews distributed simulation and system interoperability in the context of Command
and Control software. The literature review places the work into perspective and provides
the tools to define the architecture and behaviour of the software framework.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

13

3. Software Architecture

This chapter marks the start of the first research path of this dissertation (refer to Figure 2.1)
and gives an overview of software architecture and its importance in both the design and
analysis of distributed simulation and software systems. The software architecture concepts
and terms discussed here are used to formally describe the proposed application framework
architecture in part three of this dissertation. The different sections of this chapter discuss
different views of software architecture that complement each other, but cannot necessarily
be mapped to each other.

3.1 Moving from Stovepipe to Network-Centric Architectures

Stovepiped systems gather, process and present specific sets of data independently, with little
or no opportunity to intercept or utilise the data until it has been completely processed by the
system. The analogy comes from the clusters of chimneys from wood or coal burning stoves
visible on the rooftops of some old residential buildings—if new data needs to be processed
a new system is simply added in parallel to the existing systems and not all the systems
process and present data in a consistent way. Stovepiped systems are not designed to be
interoperable with other systems. Each individual system is kept operational until the entire
system can be replaced by a new system.

In Network-Centric Systems all elements are robustly networked and system interoperability
is required at both the systems-of-systems level and at a sub-system level. Systems are moving
away from the traditional strict hierarchical approach (stovepipe approach) of processing and
presenting information. Network-centric command and control (C2) systems endeavour to
share as much information as possible by making the information flowing between the sub-
systems of a system available to other systems (Daly and Tolk, 2003).

Network-centric operations require sharing both situational awareness (tactical awareness)
information and operational context information. Operational context information includes
objectives, plans, orders and priorities. This allows global access to a fused homogeneous
view of the situation, enabling the commander to make the desired decisions more effectively
(Chaum and Lee, 2008):

• Net-centric operational concepts seek to flatten, broaden and speed information sharing
between people, between information systems and between people and information
systems.

• Net-centric operational concepts seek to help military commanders be better informed
about the situation and synchronise their actions with the rest of his forces.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

15

CHAPTER 3 SOFTWARE ARCHITECTURE

3.2 Key Architectural Styles

Software architecture describes the top-level structure of the over-arching system and
describes the software components. An architectural style defines a set of components and
connector types, and a set of constraints on how they can be combined. The information
contained in this section is taken from (Shaw and Garlan, 1996). The following is a list of
the key architectural styles:

• Pipes and Filters: Multiple independent components, each with a set of inputs and a
set of outputs, are stringed together. The components act as filters taking the output
from the previous filter and transforming it into input for the next filter. A linear
sequence of filters is called a pipe.

• Data Abstraction and Object-Oriented Organisation: Data representations and their
associated primitive operations are encapsulated in an abstract data type or object.

• Event-Based, Implicit Invocation: Instead of invoking a procedure directly, a component
can announce (or broadcast) one or more events. Other components in the system can
register an interest in an event by associating a procedure with it. When the event is
announced, the system itself invokes all of the procedures that have been registered for
the event.

• Layered Systems: The system is organised hierarchically, each layer providing service
to the layer above it and serving as a client to the layer below. In some layered systems
inner layers are hidden from all except the adjacent outer layer.

• Repositories: The system consists of a central data store and independent components
that operate on the data store.

• Interpreters: Interpreters or virtual machines are software systems that execute
programs like a real machine would. Interpreters separate program execution from
the underlying systems or hardware and the program semantics provide a level of
abstraction between the system capabilities and the underlying system implementation.

Most systems are built using some combination of several styles. This allows the system
architect to utilise the benefits of two or more architectural styles. The system architect
can also, in some cases, use the benefits of one style to mask the drawbacks of another
style. Distributed systems can be analysed using the Data Abstraction and Object-Oriented
Organisation, Event-Based Implicit Invocation and Layered Systems styles. The pipe and
filter and interpreter styles are also found in distributed systems, but are not as prevalent.

The advantages of data abstraction and object-oriented organisation are:

• It is possible to change the implementation of a component without affecting the
interface to it.

• Problems can be decomposed into collections of interacting agents.

The disadvantages of data abstraction and object-oriented organisation are:

• An object must know the exact identity of any object it interacts with (An object needs
to know which object’s interface to use, even though multiple objects could have the
same interface).

16 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

CHAPTER 3 SOFTWARE ARCHITECTURE

• If one object is replaced with another, all objects that interact with it will have to be
informed of the new identity.

The advantages of event-based, implicit invocation are:

• Strong support for reuse. Any object can gain access to the system by just registering
for the relevant events.

• Eases system evolution. Components may be replaced without affecting the interfaces
of any other components.

The disadvantages of event-based, implicit invocation are:

• A component that sends out an event has no control over the processing of that event.

• If a system only supports data transfer through events then accessing/changing data
in a central repository, for example a terrain database, could become complicated or a
performance bottleneck.

• The meaning of a procedure that sends out an event depends on the procedures
registered on that event. This can make analysing and debugging a system complicated.

The advantages of layered systems are:

• Support design based on increasing levels of abstraction.

• Changes to the function of one layer affects at most the two adjacent layers.

• Support reuse—different implementations of the same layer can be used interchange-
ably.

The disadvantages of layered systems are:

• Not all systems are easily structured in a layered fashion.

• The overhead of having to call through all the layer interfaces might be too much.

• It might be difficult to find the right levels of abstraction.

Identifying which style(s) a system uses can help identify the good and bad traits of the
system during system evaluation as well as during system design. This is used to evaluate
some distributed simulation technologies in Chapter 5.

3.3 Design Patterns

A design pattern abstracts or describes key aspects within software architecture that help
make the architecture reusable and extendable. Design patterns are like templates for
software design that free software developers from thinking about implementation details
when designing or describing software systems. This section serves as a quick reference and

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

17

CHAPTER 3 SOFTWARE ARCHITECTURE

provides only a short definition of the various design patterns from (Gamma, Helm, Johnson
and Vlissides, 2004) and (Schmidt, Stal, Rohnert and Buschmann, 2000). Part three of
this dissertation describes key components of the simulation software framework architecture
using specific design patterns.

The standard set of design patterns are defined in (Gamma et al., 2004). Design
patterns can be divided into creational patterns, structural patterns and behavioural patterns.
Design patterns can also be divided into class patterns and object patterns, with class
patterns utilising inheritance while object patterns utilise object composition and association.
Additional design patterns, specialised for concurrent and networked objects, are discussed
in (Schmidt et al., 2000).

3.3.1 Creational Patterns

Creational patterns hide how instances of classes are created and put together. The creational
patterns are:

• Abstract Factory: Provides a class for creating objects without having to specify the
exact type of the object. The abstract factory has to be extended for each class that
needs to be constructed.

• Builder: Separate the construction and representation of a complex object to allow
the same builder to represent an object in many different ways. One object can be
represented in many different ways by using a hierarchy of builder classes.

• Factory Method: Defer class instantiation to subclasses by only defining an abstract
interface to create objects. Subclasses of the creator knows how to construct the relevant
set of objects.

• Prototype: The creator uses a cloning operator on a example instance of the relevant
class. Each creator only has one example instance or prototype and can only create one
type of object.

• Singleton: This creational pattern ensures that a class has only one instance that can
be accessed globally.

3.3.2 Structural Patterns

Structural patterns specify how sets of classes and objects are composed into larger structures.
The structural patterns are:

• Adaptor: Wrap a class to convert its interface into another interface to be used within
a different context.

• Bridge: The bridge pattern supports having only one full class hierarchy that can
operate on various implementations. Each class or object in the hierarchy would have
an implementor object for each implementation. Client requests are forwarded to the
relevant implementor objects.

• Composite: Objects are composed into hierarchies using recursive composition (all
objects in hierarchy have the same interface). Clients can then manipulate objects or
aggregates of objects in exactly the same way.

18 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

CHAPTER 3 SOFTWARE ARCHITECTURE

• Decorator: A decorator is a wrapper that adds additional responsibilities to a object.
The decorator’s interface conforms to the object’s interface and clients use the decorator
in the same way as the object. A decorator can also be wrapped by another decorator
making it possible to add several layers of added responsibility to a object.

• Facade: Hide the complexity of a subsystem by providing a simple unified interface
(high-level interface) to clients.

• Flyweight: An object operates on external attributes (i.e. attributes that are associated
with the object in some way, but are not part of it). Associating different sets of
external attributes with the object allows the object to assume the responsibilities of
many different objects. This makes fine grained object support possible without the
overhead of having a large amount of object instances.

• Proxy: A proxy is a placeholder for another object to be able to defer instantiation,
control access to the object or provide a local representation of a remote object.

3.3.3 Behavioural Patterns

Behavioral patterns describe the behaviour of sets of classes or objects as well as the flow of
control or communication between them. The behavioural patterns are:

• Chain of Responsibility: Senders and receivers of messages or requests are decoupled
by having one or more handler objects between them. The sender has no explicit
knowledge of who will handle the request.

• Command: Requests are encapsulated in objects with the same interface to execute
them. Requests can then be handled like any other object and users of the requests do
not have to know the exact format of a request or even what a request does.

• Interpreter: The interpreter pattern describes how to define a grammar for a specific
language, represent constructs in the language and how to interpret the constructs.

• Iterator: The iterator pattern allow aggregate objects like vectors and maps to accessed
sequentially without exposing the type or implementation of the aggregate objects.

• Mediator: A mediator is responsible for controlling and coordinating the interactions
of a group of objects. The objects only have to know the mediator. This reduces the
coupling between objects. It also reduces the amount interconnections between objects
and make the objects more reusable.

• Memento: Allow objects to use opaque tokens to save and restore their state.

• Observer: The observer design pattern defines a one-to-many relationship between
objects. One or more observers can be registered on one subject with the observers
called inherently when the subject changes state.

• State: Object behaviour can be encapsulated into specific state objects that allow the
object’s behaviour to change when its internal state changes.

• Strategy: The strategy design pattern encapsulates algorithms to make them inter-
changeable (have the same interface). Clients can use any algorithm from a family of
algorithms by instantiating the relevant strategy from the strategy hierarchy.

• Template Method: Defines an algorithm or operation in terms of abstract operations
that subclasses can override to create concrete behaviour.

• Visitor: A visitor is an object that encapsulates an operation that can be performed on
the elements of an object structure. A new operation can be defined by a new visitor
without having to change the implementation of the object structure.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

19

CHAPTER 3 SOFTWARE ARCHITECTURE

3.3.4 Service Access and Configuration Patterns

Service Access and Configuration patterns address how to effectively design and configure
application access to the interfaces and implementations of services and components in stand-
alone or networked systems:

• Wrapper Facade: This pattern addresses application portability by wrapping low-level
or system specific application programming interfaces (APIs) with more generic reusable
interfaces.

• Component Configurator: This pattern allows an application to link and unlink its own
component implementations during runtime.

• Interceptor: The interceptor pattern allows additional application-specific services to
be plugged into existing software. This is different from the component configurator
pattern since these plugins are unknown to the application framework.

• Extension Interface: This pattern allows interfaces to be defined that specify how
application extensions may be created. This helps to make the behaviour of plugins
safe for the rest of the application.

3.3.5 Event Handling Patterns

Event Handling patterns describe the handling of events in networked event-driven systems:

• Reactor: The reactor pattern allows an event-driven application to accept service
requests from multiple clients and then route the requests to the correct components
within the application.

• Proactor: The proactor pattern allows an event-driven application to accept service
requests that are triggered by the completion of asynchronous operations and then
route the requests to the correct components within the application.

• Asynchronous Completion Token: This pattern allows an application to accept and
process the responses of asynchronous operations it invoked on services.

• Acceptor-Connector: This pattern decouples the connection and initialisation of
cooperating peer services in a networked system from the processing they perform
once connected and initialised.

3.3.6 Synchronisation Patterns

Synchronisation patterns simplify locking in concurrent systems to prevent the corruption of
a system’s internal state:

• Scoped Locking: The scoped locking pattern ensures that a lock is automatically
acquired when entering a specific scope and then released automatically when leaving
the scope, regardless of the return path.

• Strategised Locking: This pattern parameterises the synchronisation mechanisms of a
component. This allows one component to use different synchronisation mechanisms,
depending on the concurrency architecture being used.

20 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

CHAPTER 3 SOFTWARE ARCHITECTURE

• Thread-Safe Interface: This pattern minimises locking overhead and also ensures that
a component does not try to acquire a lock when it already has it (re-acquiring a lock
can cause self-deadlock).

• Double-Checked Locking Optimisation: This pattern ensures that critical sections of
code that only need to be run once are accessed in a thread safe manner, but avoids the
locking overhead in consequent calls. This can be used, for example, with singletons,
where the singleton needs to be created safely once and then only accessed.

3.3.7 Concurrency Patterns

Concurrency patterns address the various types of system architectures that address specific
concurrency problems:

• Active Object: The active object design pattern allows method execution to be
separated from the method invocation i.e. the method invocation and execution run
concurrently. This simplifies synchronised access to objects that reside in their own
thread of control.

• Monitor Object: This pattern synchronises concurrent method execution to ensure that
only one method runs at a time within an object.

• Half-Sync/Half-Async: This pattern allows asynchronous and synchronous service
processing in concurrent components. The system can make use of either or both
components without the disadvantages of the one affecting the other.

• Leader/Followers: The Leader/Followers pattern has a pool of threads that can accept
and process service requests from a set of event sources. Free threads wait in a queue
for new service requests with the first one in the queue called the leader and the others
the followers.

• Thread-Specific Storage: This pattern allows multiple threads to access the logically
global state of operations without a locking overhead. This is done by keeping thread-
local state copies for all the relevant operations and having the operations operate on
the thread-local states.

A software system can utilise many different design patterns that together create the correct
architecture. Describing and analysing a software system using design patterns provides a
common understanding of what the software architecture looks like and how it behaves.

3.4 Publish/Subscribe Networking

The publish/subscribe interaction scheme can provide the loosely coupled connections
between simulation nodes required for web-based simulation. It is an event-based interaction
style and provides time, space and synchronisation decoupling between hosts (Eugster, Felber,
Guerraoui and Kermarrec, 2003):

Time decoupling : The interacting hosts do not have to be connected (or online) at the same
time.

Synchronisation decoupling : Hosts do not block when sending events and hosts get notified
asynchronously of events from other hosts.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

21

CHAPTER 3 SOFTWARE ARCHITECTURE

Space decoupling : The hosts do not need to know each others’ identities.

The more decoupled the simulation nodes are the more scalable the simulation will be. This
is because decoupled nodes operate independently of each other. The publish/subscribe
style is very similar to the event-based implicit invocation architecture style. Subscribers
express their interest in a specific set of events to a central event service. The event service
then intelligently forwards events from publishers to the relevant subscribers when they are
available (Eugster et al., 2003).

There are three subscription schemes that can be used to specify the set of events a subscriber
is interested in (Eugster et al., 2003):

• Topic-Based: The event topic or group is identified using a keyword. This scheme is
very simple to implement.

• Content-Based: The subscription is based on the actual content of the events. This is
more powerful than topic-based subscriptions since an event’s desired internal properties
can be specified using this scheme. But it is less efficient than the topic-based scheme.

• Type-Based: The subscription is based on the event type. This is meant to be
used instead of topic-based since it enables closer integration between the actual
programming language and the middleware.

Publish/subscribe systems can also provide quality of service like persistence, priorities,
transactions and reliability. Transactions provide a way for events to be grouped into
sequences that have to be delivered completely or not at all. This provides mechanisms
to help ensure not only the delivery of individual events, but also ensure complete delivery
of sets that consist of more than one event (Eugster et al., 2003).

One possible drawback of this particular scheme is the use of the central event service.
The event service will undoubtedly be a bottleneck for both communication and processing
performance in large virtual environments. Distributing the event service over multiple nodes
or hosts could help alleviate this problem. The publish/subscribe scheme can be used to
construct a real time distributed simulation architecture as described in (Duvenhage and
Kourie, 2007) where the event dispatching is shared among six to eight machines.

The publish/subscribe scheme is also used for service oriented architectures and message
oriented middleware (MOM). In both these cases implicit invocation and abstraction allow
services or entities to be added or removed without affecting the rest of the system. Services
receive messages or event notifications implicitly and the messages themselves are normally
part of a predefined set of objects, also called an object model.

3.5 Service Oriented Architecture

Service Oriented Architecture defines middleware1 architectures based on the concept of
reusable services (Keen, Acharya, Bishop, Hopkins, Milinski, Nott, Robinson, Adams and
Verschueren, 2004a):

1Middleware is computer software that connects software components or applications. The software can
function on a single node or on multiple nodes across a network.

22 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

CHAPTER 3 SOFTWARE ARCHITECTURE

• Services are defined by explicit, implementation-independent interfaces.

• Services are loosely bound and invoked through communication protocols that stress
location transparency and interoperability.

• Services encapsulate reusable business functions.

A system built using interacting web-services is a good example of a system utilising an SOA.
A C2 enterprise will likely utilise an SOA and any software or tools that will form part of
the enterprise must then be deployable as services. A SOA implementation usually includes
standardised technologies that enable information exchange and the discovery of services
(Schulte, 2002):

• SOAP: The Simple Object Access Protocol is a protocol for exchanging structured
information. It makes use of Extensible Markup Language (XML) and Remote
Procedure Calls (RPC) or HTTP. SOAP provides basic messaging capabilities and
forms the bottom layer of the web-services protocol stack.

• WSDL: The Web-Services Description Langauge is an XML-based language for
describing web services. WSDL is used to describe what functions are available on
a web-server. SOAP can then be used to call these functions.

A well defined software architecture is critical to system interoperability and is a means of
defining systems composed of systems. The concept of an Enterprise Architecture addresses
architecture on this larger scale. The enterprise architecture defines how a set of systems will
achieve its vision and goals (Hamilton and Catania, 2003).

3.6 Software Frameworks

Software can be divided into three broad classes: applications, toolkits and frameworks.
This dissertation is primarily concerned with frameworks. Frameworks have the following
properties (Gamma et al., 2004).

• A framework is a specific set of cooperating classes that make up a reusable design for
a specific class of software.

• A framework encapsulates the application i.e. the framework calls the application code.
This is contrary to an application calling a library or toolkit.

• A framework specifies the structure and interaction of classes in the application. The
framework therefore specifies the application architecture and design to a large extent.

• Different applications using the same framework seem more consistent.

• Frameworks can consist of loosely coupled and reusable components to make the
framework flexible and extendable.

3.7 The OSI Reference Model

The ISO model of architecture for Open Systems Interconnection (OSI) is a layered
architecture with seven distinct layers. The model serves as a framework for the definition

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

23

CHAPTER 3 SOFTWARE ARCHITECTURE

of standard networking protocols. It will be used in part three of this dissertation to aid in
the discussion of the proposed software application framework architecture.

Figure 3.1: The OSI Reference Model

Figure 3.1 shows the different layers of the model (Zimmermann, 1980):

• The Application Layer : This layer interfaces with the software application and
represents the application protocol.

• The Presentation Layer : The presentation layer enables the application layer to
interpret the meaning of the data exchanged.

• The Session Layer : The session layer supports the higher-level interaction between
presentation entities.

• The Transport Layer : This layer hides the complexity of transferring data in a reliable
way between session entities.

• The Network Layer : The network layer allows two transport entities to transfer data
over a network connection using logical addressing—the routing of data occurs between
network entities and is transparent to transport entities.

• The Data Link Layer : This layer is in charge of link control and physical addressing
between network entities.

• The Physical Layer : This layer provides the mechanical and electrical characteristics
to establish, maintain and release physical connections and transfer data.

This chapter gave an overview of software architecture and its importance in the design
and analysis of software systems. The next chapter will discuss some more formal methods
required to evaluate concurrent software systems.

24 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

4. Formal Analysis of Software
Behaviour

The behaviour of software systems can be attributed to or even explained by the architecture
of the system. The previous chapter showed that a system’s structure and behaviour can
be defined by the architectural styles or design patterns employed in the system and its
components. There are however formal specification techniques that can be used to analyse
the behaviour of software systems. This chapter gives an overview of three such techniques
that are applied in the third part of this dissertation to help evaluate the proposed software
application framework.

4.1 UML Use Case Diagrams

The Unified Modelling Language (UML) defines Use Case Diagrams as a way to specify
the functionality of a system. A use case diagram consists of two types of elements (see
Figure 4.1): ellipsoidal elements, called use cases and stick figures, called actors.

The ellipsoidal use cases can be associated with actors or other use cases using a series
of arrows or lines which can indicate communication and dependencies like aggregation and
extension of use cases (see Figure 4.1). Each use case describes a functional requirement from
the perspective of the relevant actor (Alhir, 2003). Actors may be human users or external
systems. A use case diagram can be used to help verify the requirements of a system. Use case
diagrams can however not be used to capture non-functional or implementation requirements.

4.2 UML Finite State Machines

Finite State Machines (FSMs) enables one to describe the logic of a system. A FSM consists of
the system states and the transitions between them. States are drawn as rounded rectangles
and transitions are drawn as arrows from one state to another. Transitions are labelled with
the event that triggers the transition as well as an action to be performed. A black dot with
an arrow is used to point towards the initial state.

Figure 4.2 shows a FSM with two states, A and B. State A is the initial state.

A FSM models the behaviour of a system with a finite number of states. FSMs help to test all
the possible system states against the relevant system events. FSMs can be used to evaluate

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

25

CHAPTER 4 FORMAL ANALYSIS OF SOFTWARE BEHAVIOUR

Figure 4.1: UML Use Case Diagrams

the completeness and robustness of a system design.

4.3 Communicating Sequential Processes

Communicating Sequential Processes (CSP) is a language capable of describing interaction
in concurrent systems. CSP is a form of process algebra and can be used to specify and verify
the concurrent aspects of systems. This section will give a brief overview of CSP.

4.3.1 Language Constructs

In CSP, a process can be any thread, buffer, etcetera, that acts on communications events.
A communications event is a transaction or synchronisation between two or more processes.
Communications events are instantaneous with an abstract sense of time. Communication
events are assumed to be drawn from a set, called the event alphabet, which contains all
possible events for all processes under consideration. The event alphabet for a process P is
defined by αP . Some fundamental language constructs are (Roscoe, 2005):

26 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

CHAPTER 4 FORMAL ANALYSIS OF SOFTWARE BEHAVIOUR

Figure 4.2: UML Finite State Machine

• Prefixing : Let x be an event and let P be a process. Then (x → P) (pronounced x
then P) describes a process which first engages in the event x and then behaves exactly
as described by P.

• Guarded Alternative: If x and y are distinct events, (x → P | y → Q) describes a
process that initially engages in either of the events x or y, depending on which event
is first offered by the environment. If x is first offered, then the process subsequently
behaves as process P. If y is first offered, then the process subsequently behaves as
process Q.

• Recursion: Let P = (x → P) then P = (x → x → P) = (x → x → x → P). This
can easily be generalised to more than one process. Let MP = (x → P |y → Q) with
αMP = αP = αQ and something like P = y → Q.

• External Choice: P 2 Q allows the environment to choose the first events of P and
of Q and then behaves accordingly. Also (a → P) 2 (b → Q) means the same as
(a→ P |b→ Q).

• Nondeterministic Choice: P u Q describes a process that either behaves as process P or
as process Q. However, the behaviour is determined by conditions internal to P and/or
Q, rather than controlled by events offered by the environment. Thus, even though
the environment might, at some moment, offer an event in which P can engage, the
process P u Q might not respond, but instead—for reasons not apparent to the outside
environment—only respond at that moment to an event in which Q can engage. The
behaviour of P u Q as seen from the environment thus appears as non-deterministic.

• Conditional Choice: P <I b>I Q can be read as if b then P else Q. These conditionals can
be applied to events as well.

4.3.2 Describing Distributed Simulators

Distributed simulations will have two or more concurrent processes. ?x : A→ P (x) indicates
that the process P communicates in the alphabet A. The following operators may apply to
concurrent processes (Roscoe, 2005):

• Synchronous Parallel Operator : ?x : A → P (x) ‖?x : B → Q(x) insists that the two
concurrent processes P and Q agree on all events that occur (P and Q synchronise on

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

27

CHAPTER 4 FORMAL ANALYSIS OF SOFTWARE BEHAVIOUR

events in A ∩ B and ignore other events) where P =?x : A → P (x) and Q =?x : B →
Q(x).

• Alphabetised Parallel Operator : P A‖B Q is a more general version of the synchronous
parallel operator. P is allowed to communicate in the alphabet A and Q is allowed to
communicate in the alphabet B. P and Q must synchronise on the events in A ∩ B.
P X‖X Q is the same as P ‖ Q.

• Generalised Parallel Operator : P ‖
X

Q states that P and Q must synchronise on any

event in X, but may proceed independently with events outside X. This also means
that P and Q cannot execute on any event in αP ∩αQ outside of X at the same time.

• Interleaving Operator : P ||| Q states that P and Q execute independently i.e. P ‖
{}
Q.

This also means that P and Q cannot execute on any event in αP ∩ αQ at the same
time.

Deadlock can be defined as the situation where one or more processes are waiting for access
to a specific resource like a lock and cannot continue. Livelock can be defined as the
situation where a process is not progressing, but also not deadlocked. Passage of time
in concurrent processes may be indicated by a communications event that can be used to
represent synchronisation between two or more processes. Distributed simulator specifications
in CSP can be analysed for both deadlock and livelock between communicating sequential
processes.

This concludes the first research path (refer to Figure 2.1) of part two of this dissertation.
The next chapter will start with the second research path and does an in depth literature
review of the history as well as current trends in distributed simulation, command and control
systems and system interoperability.

28 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

5. Distributed Simulation

This chapter marks the start of the second research path of part two of this dissertation
(refer to Figure 2.1) and it reviews specific distributed simulation technologies. This is done
to understand the evolution of distributed simulation as well as understand the context
of C2/M&S interoperability. Figure 5.1 shows a time line populated with the distributed
simulation technologies discussed in this chapter.

Figure 5.1: The Simulation Architecture Developments.

5.1 SIMNET

Early simulation efforts were largely fuelled by the need to scale up training and/or evaluation
of new concepts and designs with ever more limited resources. Simulator Networking (SIM-
NET) was the first successful large-scale, real-time, man-in-the-loop distributed simulator.
It was used for team training and mission rehearsals in military operations. SIMNET was
developed between 1983 and 1990 by the Advanced Research Projects Agency (ARPA), then
still called DARPA. It is considered to be one of the seminal contributions to the field of
distributed virtual simulation technology development (Miller and Thorpe, 1995).

SIMNET’s goal was to create a virtual battlefield with combatants joining from anywhere on
the network using his/her simulator. As SIMNET’s development progressed, its application
was extended from training to evaluation of new ideas, concepts, tactics, etcetera. It was
possible to manage several independent virtual worlds simultaneously. Given that the
participants adhered to the rules they were subject to in the specific world, the following

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

29

CHAPTER 5 DISTRIBUTED SIMULATION

was possible (Miller and Thorpe, 1995):

• training,

• mission rehearsal,

• concept development,

• doctrine and tactics development,

• testing, and

• after-mission review.

SIMNET models the virtual world as a collection of objects that interact with each other
using a series of events. Terrain and other objects (buildings, trees, etcetera) are assumed to
be known to all objects. SIMNET does not support changing cultural features (destroying a
bridge for example) (Miller and Thorpe, 1995).

There is no central control process and simulation nodes broadcast events to each other. This
means that each node on the simulation network has to receive, decode and at least partially
process every event in the entire simulation. Each simulation node is in charge of processing
any relevant events (like being killed) and then updating its state accordingly. Nodes always
transmit their correct state and the receiver has the responsibility of, for example in a radio
communications case, degrading or denying the message based on line of sight, etc. Objects
are very loosely synchronized and it is possible for objects of different fidelities1 to be part
of the same virtual world (Miller and Thorpe, 1995).

SIMNET has features of a event-based, implicit invocation architecture style since nodes
react to events broadcast by other nodes. The advantages of this style are reuse and easy
evolution of system objects. This style can however be quite hard to analyse and debug since
it is unclear what an event generated by an object means if one does not know exactly what
each object does with that event (Shaw and Garlan, 1996).

Dead Reckoning is a technique SIMNET uses to minimise the amount of state update events
sent by nodes: the simulation nodes agree on the dead reckoning prediction algorithm to
use and each node should be able to predict the state of any object in which it is interested
based on the last state update for that object; nodes also run the prediction algorithms for
the objects for which they are responsible and send out state updates if the prediction and
actual state are too different (Miller and Thorpe, 1995).

SIMNET has several limitations that prevent it from scaling well to more complex virtual
environments. The nodes broadcast all events and each node has to read every single event on
the network. The network would simply be overloaded if the simulation has too many objects
or nodes and the nodes would not be able to process network packets or Protocol Data Units
(PDUs) fast enough. SIMNET does not support any means of transferring static data, like
terrain information, between nodes. This means that each node should have a complete copy
of all static objects in the virtual world. Additionally there is no guarantee that each node’s
static view will be consistent or complete. It is expected that SIMNET can not support more
than 1000 objects (Macedomia, Zyda, Pratt, Brutzman and Barham, 1995).

1Model fidelity can range from simple behavioural models to complex engineering models that infer
behaviour by simulating internal components, dynamics, etc.

30 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

CHAPTER 5 DISTRIBUTED SIMULATION

5.2 NPSNET

The Naval Postgraduate School Network (NPSNET) was developed around 1990. It was
aimed at providing features similar to SIMNET, but unlike SIMNET, be able to run on
off-the-shelf hardware—providing a significant cut in cost.

NPSNET went through several versions and is compliant with the Distributed Interactive
Simulation (DIS) standard. The initial NPSNET-1 was demonstrated at ACM’s Siggraph
91 conference. NPSNET-2 and -3 focussed mainly on improving the visualisation of the
simulation. NPSNET-IV was the most popular version and was compliant with almost all
DIS virtual environments and incorporated techniques like dead reckoning to reduce network
traffic. NPSNET-V focuses on improving the NPSNET code base by employing component
based solutions in the Java programming environment (Capps, McGregor, Brutzman and
Zyda, 2000).

The fundamental idea behind NPSNET is to divide the virtual world into logical partitions
in order to limit the amount of redundant or unnecessary information on the simulation
network. NPSNET associates spatial, temporal and functionally related entity classes with
network multicast groups (Macedomia et al., 1995). Multicasting is similar to broadcasting
except that only a specific set of recipients receive the messages. This helps to lift the burden
of nodes having to read and decode each event on the simulation network.

NPSNET divides the terrain into hexagonal cells (spatial partitioning). Each simulation
entity’s node only sends state update PDUs to the multicast channel associated with the cell
it is currently in and listens for all PDUs in its current cell and all adjacent cells (within a
certain radius). This limits the network traffic and also prevents entities from missing PDU’s
as they move from one cell to another (Macedomia et al., 1995). Functional partitioning can
be used to simulate, for example, radio communications since it can stretch over large spatial
areas.

The Area Of Interest Manager (AOIM) is responsible for the partitioning of the virtual
environment. The AOIM is a software concept while multicasting is a hardware concept. Each
node has a AOIM to distribute partitioning processing among hosts (Macedomia et al., 1995).

NPSNET is still very similar to SIMNET in the sense that it sends out events that inherently
trigger specific behaviours in the relevant simulation entities. This indicates that NPSNET
also has an event-based, implicit invocation architectural style. The combination of implicit
invocation and data abstraction can be extremely powerful. It promotes a natural way of
component reuse and modification. Components can be modified or swapped with other ones
without having to change the relevant interfaces, leaving the rest of the system unchanged
(and unaware of any changes) (Shaw and Garlan, 1996).

The disadvantages of the event-based, implicit invocation style largely remain, but if the
system is constructed correctly the disadvantages of the data abstraction style can become
completely trivial or even disappear from a simulation developer’s point of view. The review
of the HLA, later in this chapter, shows this.

SIMNET, DIS and NPSNET use either broadcasting or multicasting for communication
among simulation nodes. Multicasting and broadcasting are not efficient (and quite often
not supported) over WAN networks like the internet. This means that SIMNET, DIS and
NPSNET will not be able to compete with web-enabled simulation technologies. SIMNET

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

31

CHAPTER 5 DISTRIBUTED SIMULATION

and NPSNET also only support running objects in real-time. Faster or slower than real-time
execution is also not possible since there is no dedicated time management between nodes.

5.3 DIS

The SIMNET protocols went through various revisions and extensions around 1991 and 1992.
This led to the Distributed Interactive Simulation (DIS) standard which was made a IEEE
industry standard in March 1993 (IEEE 1278-1993 and its successors). DIS is still extensively
used in military training simulators (Miller and Thorpe, 1995).

DIS adopted the basic SIMNET Protocol Data Unit (PDU) structure for message transfer,
but there are some differences: DIS was planned for larger scale environments and it was
decided to move from SIMNET’s local flat earth coordinate system to a spherical coordinate
system to take the curvature of the earth into account. DIS also uses Euler angles to represent
rotation instead of rotation matrices as used in SIMNET PDU’s (Miller and Thorpe, 1995).

DIS standardised the SIMNET features and added more features in an effort to provide
support for larger scale environments and more advanced training capabilities. The inherent
limits of the SIMNET architecture are still present though—DIS has the same architectural
limits as SIMNET that prevent it from scaling well to more complex environments.

5.4 HLA

The High Level Architecture (HLA) is the current IEEE standard (IEEE 1516) architectures
for distributed simulation systems. HLA and DIS are the two most common military or
defence training simulation architectures or technologies in use today.

During the 1990s it became apparent that none of the existing simulation architectures would
hold for the ever increasing budget limits and scalability requirements. For a simulation
architecture to survive it had to be reusable and appeal to the larger simulation community
outside the defence industry. In 1995 investigations into the HLA (High Level Architecture)
began with the HLA baseline being approved later on as the standard simulation architecture
for all DoD simulations (Kuhl, Weatherly and Dahmann, 1999).

HLA implementations provide a way for standalone simulations, called federates, to
collaborate with other federates. The power of the HLA lies in its ability to separate the
complexities of the simulation middleware (or Runtime Infrastructure (RTI) in the HLA case)
from the federate implementations. The RTI and federates together are called a federation
(Kuhl et al., 1999).

The internet age has brought about exciting web-based technologies like XMSF that are
extremely portable (cross-language and cross-platform) that enable true cross-platform
application development (Pokorny, 2005). Web-based middleware has now become more
popular than the traditional middleware architectures like CORBA (Common Object Request
Broker Architecture) and RMI (Remote Method Invocation). XMSF (the eXtensible
Modelling and Simulation Framework) has successfully been applied to web-enable DoD and
non-DoD HLA RTIs. This allows existing HLA federates to collaborate with each other

32 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

CHAPTER 5 DISTRIBUTED SIMULATION

over the web (web-based simulation) without any changes to the federations being necessary
(Morse, Drake and Brunton, 2004). XMSF has however now given way to HLA Evolved
which will be discussed after the next section.

5.4.1 An Overview of the HLA

The HLA standard only defines a software architecture or set of services with no implementa-
tion details specified. The HLA separates the implementation of the simulation infrastructure
(RTI) and the simulation-specific federates. By doing this RTIs can be reused for many
different simulations and federate developers do not need to bother with the complexities of
the simulation infrastructure (Kuhl et al., 1999).

A federate is a single point of attachment to a RTI and could internally represent one or
many simulated entities. A federate would normally either be a self-contained simulation or
a viewer, database, etcetera. Federates use a common object model called the Federation
Object Model (FOM) to communicate with each other (Kuhl et al., 1999). The FOM defines
the names of the events that federates can send to the RTI, but does not describe things
internal to any federate and is only used to transfer information between federates (Kuhl
et al., 1999).

HLA exhibits several architectural styles:

• data abstraction and object-oriented organisation,

• event-based, implicit invocation, and

• layered systems.

In the Data Abstraction and Object-Oriented Organisation style data representations and
their associated primitive operations are encapsulated in an abstract data type or object
(Shaw and Garlan, 1996). A generic interface is provided by the RTI to a federate and
by a federate to the RTI behind which the implementation details of the federate and RTI
respectively are hidden from each other. Each federate still needs to know which RTI to join
and each RTI still needs to maintain a list of federates, but federates never communicate
directly with each other. The advantage of this style is that changing the implementation of
either the RTI or federate will not influence the other as long as the interface stays consistent.
The disadvantage of this style is that the objects or components interact using explicit
procedure calls and each object needs to know the identities of interfaces it needs to call.
This is not a problem in the HLA since federates only need to explicitly connect to the RTI.

In the Event-Based, Implicit Invocation Organisation style instead of invoking a procedure
directly, a component can announce (or broadcast) one or more events. When an
event is announced the system itself notifies interested parties or components (Shaw and
Garlan, 1996). Federates do not communicate directly with one another. A federate has to
communicate via the RTI and rely on the RTI to invoke it whenever an event in which it
has an interest comes through. A federate announcing an event would call the RTI explicitly
and then let the infrastructure take care of invoking the relevant interested federates. The
advantage of this style is that it supports reuse and eases system evolution. Components
can easily be added or swapped with other ones without affecting the relevant interfaces
or import/registration structure. A possible disadvantage of this style is that the invoking

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

33

CHAPTER 5 DISTRIBUTED SIMULATION

component has no control over how events are understood or processed when received by
interested federates.

A layered system is organised hierarchically, each layer providing service to the layer above it
and serving as a client to the layer below (Shaw and Garlan, 1996). In the HLA the low level
networking code and simulation infrastructure is found in the RTI while simulation specific
code can be found in the relevant federate. Having the RTI in a separate layer makes it
very easy to, for example, transfer the simulation from a small network or single machine to
a web-based environment by just swapping out RTIs. One disadvantage of layered systems
that affect the HLA is the added complexity or overhead of having to make calls through the
layer interfaces (RTI Ambassador and Federate Ambassador shown in Figure 5.2).

Figure 5.2: The HLA Interface between RTI and Federates

The interfaces are sets of procedure calls that take and return parameters with pre- and post
conditions on the calls and with exceptions. Alternatively the RTI Ambassador (figure 5.2)
can be seen as the interface to the RTI (from a federate’s point of view) and the Federate
Ambassador can be seen as the interface to a federate (from the RTIs point of view).
An ambassador is similar to an object with a set of methods representing the interface
(Straßburger, 2000).

In addition to the HLA Object Model specification and the HLA interface specification there
are also the HLA rules and HLA services that form part of the IEEE standard. The HLA
rules are a set of conventions that must be followed to achieve proper interaction of federates.
The rules are design principles for the interface specification and object model template. The
rules also describe the responsibilities of federates and federation designers. The HLA offers
services in six areas or groups. The services are as independent as possible and are listed
below (Kuhl et al., 1999):

• federation management,

• declaration management,

• object management,

• ownership management,

• time management, and

• data distribution management.

The services are meant to be independent so that a federate developer who does not need the
functions of specific services can ignore those services without undesirable side effects (Kuhl
et al., 1999).

34 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

CHAPTER 5 DISTRIBUTED SIMULATION

5.4.2 An Overview of the HLA Evolved

The XMSF (eXtensible Modelling and Simulation Framework) is not a replacement for HLA
and is not meant for developing distributed simulations. XMSF is a series of exemplars
and descriptions (called profiles) that are intended to enhance interoperability of distributed
simulation using web-based technologies (Pokorny, 2005).

One example of an exemplar employs the Simple Object Access Protocol (SOAP) and the
Block Extensible Exchange Protocol (BEEP) to map the HLA RTI API to XML to create
a Web-Enabled RTI. The Web-Enabled RTI still maintains a consistent HLA RTI interface
to federates. An exemplar can be seen as an example or pattern of implementation for a
specific purpose (Morse et al., 2004). A profile is supposed to explain how an exemplar works
and how it fits into the M&S domain (Pokorny, 2005). A profile can be defined as (Morse
et al., 2004):

• a tailoring of the set of selected standards,

• data and meta-data standards, and

• recommendations and guidelines for implementation.

The Web Enabled RTI has the potential for creating new simulation capabilities that did not
exist before. Using open mainstream web-based technologies for distributed simulation has
seen the following benefits (Pokorny, 2005):

• really large scale virtual environments now possible,

• multi-language federates working together,

• managing the RTI through open standards like the Jabber (XMPP) instant messaging
protocol,

• web-service based simulation clients running on portable devices like PDAs, and

• rapid development of simulation clients like remote 2D/3D viewers with great benefit
to the client/stakeholder.

The major technical improvements of HLA Evolved (the new version of the HLA) are (Möller,
Morse, Lighter, Little and Lutz, 2008):

• modular FOMs and simulation object models (SOMs),

• web services support through the new Web Services Description Language (WSDL)
API,

• federate and federation fault tolerance support for handling network errors and
unreliable federates,

• smart update rate reduction to reduce network traffic, and

• dynamic link RTI interfaces that allow switching between different RTIs without having
to recompile federates.

Existing IEEE 1516 HLA federates can be migrated to HLA Evolved (Morse, Lighter, Lutz,
Saunders, Little, Möller and Scrudder, 2005), but this includes changing the federates to
use the updated API and data types. The new HLA functionality should make it easier to
develop (or extend) and deploy high-quality federates (Möller et al., 2008).

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

35

CHAPTER 5 DISTRIBUTED SIMULATION

5.5 VGD

VGD is a Virtual GBADS (Ground Based Air Defence Simulator) Demonstrator developed
by the CSIR DPSS2. VGD represents a modelling and simulation capability for acquisition
decision support and concurrent tactical doctrine development. VGD has gone through
several versions (figure 5.3).

Figure 5.3: The VGD Versions and Acquisition Phases
Taken from (le Roux, 2006), with permission.

5.5.1 VGD 2

VGD 2 (developed in 2000 to 2002) extended the original VGD to include environmental
information like terrain elevations and made reusable high fidelity simulation models possible.
The VGD 2 architecture also made features like OIL (Operator In the Loop) and HIL
(Hardware In the Loop) possible.

Figure 5.4 shows the architecture of VGD 2. It is essentially an HLA Federation with
G23, STAGE4, Simulator, C++ and MATLAB federates. The Simulator Manager federate
provides time management services to the other federates in VGD 2. The ModIOS package
provides 3D visualisation of the simulation entities and is developed by Motorola. HLA
wrappers are used to transform C++ and MATLAB models as well as OIL and HIL equipment
and software into federates compatible with the rest of the federation. HeliSim and FLSim
are high fidelity modelling applications developed by Virtual Prototypes Inc (le Roux, 2002).

2DPSS (Defence Peace Safety and Security) is a division of the CSIR (Council for Industrial and Scientific
Research) South Africa.

3G2 is a real-time expert system developed by Gensym Corporation.
4STAGE is a product of Virtual Prototypes Inc and provides an environment for high fidelity models and

environmental entities. It can be used for scenario planning and 2D visualization.

36 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

CHAPTER 5 DISTRIBUTED SIMULATION

Figure 5.4: The VGD 2.0 Architecture
Taken from (le Roux, 2002), with permission.

5.5.2 VGD 3.0

VGD 3.0 (developed in 2002 to 2004) has a less complex distributed architecture than VGD
2. VGD 3.0 uses a client/server type architecture and does not use the HLA as VGD 2.0 does.
VGD 3.0 uses a lightweight architecture instead of the HLA to reduce simulation overheads.
This is because the focus shifted towards batch processing and statistical analysis. The
performance benefits of running distributed over multiple nodes were not required (Duvenhage
and Senekal, 2004).

Figure 5.5 shows a deployment diagram of VGD 3.0. The simulation can run on one or two
machines as shown. The VGD 3.0 architecture has three primary components (Duvenhage
and Senekal, 2004):

• the Entity Model Server (EMS),

• the Air Defence Control (ADC), and

• the ADC Communications Server (ACS).

The Entity Model Server (EMS) is a constructive simulation with optional virtual simulation
capabilities. As mentioned in Chapter 1 constructive simulation contains only computer
models where a virtual simulation can also contain operator-in-the-loop (OIL) capabilities.
The EMS maintains all the equipment-related models and threat models. Additionally
the EMS provides the required natural environment services to the entity models and also
maintains the connections to the various consoles and viewers (Duvenhage and Senekal, 2004).

The Air Defence Control (ADC) component determines the behaviour of the simulated

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

37

CHAPTER 5 DISTRIBUTED SIMULATION

Figure 5.5: The VGD 3.0 Architecture
Taken from (Duvenhage and Senekal, 2004), with permission.

operators of the simulated equipment. From the EMS’s point of view, operators modelled by
the ADC are indistinguishable from human operators connected via OIL consoles. The ADC
normally runs on a different machine to the EMS and connects via a TCP link (Duvenhage
and Senekal, 2004).

The ADC Communications Server (ACS) simulates radio communications between operators.
It is integrated with the EMS (Duvenhage and Senekal, 2004).

There are optional viewers and consoles that change the simulation from a constructive to a
virtual one by allowing humans to replace some of the operator models that control simulated
equipment. The OIL (Operator In the Loop) console can replace computer models in the
ADC with real human operators without the EMS knowing the difference. The Simulation
Scenario Viewer (SSV) is an online 2D viewer of the EMS scenario with a perfect view of the
simulated environment (Duvenhage and Senekal, 2004).

The ServerADC allows multiple ADC and OIL clients to connect to the EMS and ADC. Each
client connects via a ServerClient interface directly to the EMS and ACS. The Server2DViewer
allows multiple SSV clients to connect to the EMS (Duvenhage and Senekal, 2004).

The VGD 3.0 architecture does not scale well to large scenarios since the simulation models

38 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

CHAPTER 5 DISTRIBUTED SIMULATION

all run on one machine (except the operator models that can run on a different machine—in
the ADC component). This prevents VGD 3.0 from running complex scenarios in real-time
(batch processing stays possible, but at slower than real-time speeds).

5.5.3 VGD 3.1

VGD 3.0 does not support real-time execution of complex scenarios since all the models run
on one or two machines. VGD 3.1 (developed 2004 to 2008) has a lightweight distributed
simulation architecture to be able to run complex scenarios in real-time, but still maintains
an efficient batch running capability if all models run on one host. VGD 3.1 allows for
connection of human operators (OIL), 2D/3D viewers and external sensors (HIL) through
consoles or gateways provided by the simulation. Simulation services like terrain and line
of sight calculations are also part of VGD3.1 (Duvenhage and le Roux, 2007b). The entity
models and services are distributed over all available nodes for the best performance of
complex scenarios.

Figure 5.6: The VGD 3.1 Architecture
Taken from (Duvenhage and le Roux, 2007b), with permission.

The VGD 3.1 simulation backbone uses a publish-subscribe type infrastructure. This provides
time, space and synchronisation decoupling (Eugster et al., 2003) between nodes and also
between communicating models, making the VGD 3.1 architecture very scalable. The time
decoupling is limited though since simulation nodes have to run in a lock-step mode for the
hosts to stay synchronised. The backbone infrastructure runs distributed with each node
being intelligent enough to either service its own models or forward events or states to the
correct node. Models wishing to be notified of states or events from a specific model have to
make the appropriate subscription to that model.

VGD 3.1 uses a topic-based subscription style. Subscriptions are made using a category
keyword (topic) and title name (model or object id). Wildcard title names (only ’*’ currently
implemented) can also be used if events from all objects are of interest.

VGD 3.1 also supports tactical communications simulation through the addition of a
very basic communications framework. The backbone supports delayed message delivery
that makes it possible for the communications framework (integrated into the simulation
infrastructure) to delay or not deliver messages at all. This decision is based on the results

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

39

CHAPTER 5 DISTRIBUTED SIMULATION

from simple radio and link models and line of sight queries (Duvenhage and le Roux, 2007b).

5.5.4 Migrating to a Quantised Discrete Event Architecture

VGD 3.1 follows a Discrete Time System Specification (DTSS) for modelling. It is
proposed to update the VGD 3.1 backbone architecture to a hybrid architecture that
contains some Discrete Event System Specification (DEVS) modelling elements (Duvenhage
and Kourie, 2008). This hybrid DTSS/DEVS modelling lowers communication bandwidth
between models and consequently between nodes, increasing performance and making the
simulation more scalable.

Figure 5.7: The State Quantisation and Integration
Taken from (Duvenhage and Kourie, 2008), with permission.

The hybrid modelling approach is referred to as Quantised DEVS and existing DTSS models
can be wrapped with quantiser and quantised integrator pairs to make them compatible with
the Quantised DEVS architecture (Duvenhage and Kourie, 2008). Model state quantisation
can be done with techniques similar to dead-reckoning where a prediction/error-estimation
algorithm is used to quantify the state of the model with state updates sent only if the model’s
state changed.

An alternative to using dead-reckoning for model state quantisation is suggested in
(Duvenhage and Duvenhage, 2008). This approach uses an algorithm developed for
live aircraft engagement to do the model state quantised integration. The live aircraft
engagement algorithm provides a simpler approach and its application has been very
successful (Duvenhage and le Roux, 2007a). The algorithm is however less formal and not
proven to be more effective than dead-reckoning in this case.

The next chapter will help the reader understand what the current trends in Joint Command
and Control (JC2) are and also help the reader understand what the C2 Enterprise would

40 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

CHAPTER 5 DISTRIBUTED SIMULATION

look like.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

41

6. System Interoperability

Modelling and simulation (M&S) applications can form the basis for planning and decision
support tools and can also assist with the processing required for the visualisation and
presentation of information. This chapter reviews the current trends in Joint Command
and Control (JC2) and helps the reader understand what the C2 Enterprise looks like.

6.1 System Interoperability and Joint Command and Control

Interoperability implies the ability of systems to provide services to other systems as well
as use services from other systems. Joint Command and Control (JC2) further implies the
use of aggregates of existing C2 systems. The JC2 capability relies on software to integrate
the increasing number of existing C2 systems into the JC2 environment in a robust manner
(Daly and Tolk, 2003).

Figure 6.1: The Interoperability Layers

Figure 6.1 gives a layered view of system interoperability. The physical and protocol layers
provide the connectivity mechanisms, for example TCP/IP over Ethernet, that determine
the network bandwidth and link quality. The structure layer represents the higher level data
structures or syntax of the information defined by the relevant communications protocols
or data-link standards. The semantics layer represents the understanding of the data at
the command level. Network-Centric operations require the sharing of situational awareness
information as well as operational context type information, which includes objectives, plans,
orders and priorities—information sharing can be at any level (Chaum and Lee, 2008).

The Multinational Information Sharing (MNIS) requirements are identified as (Chaum and
Lee, 2008):

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

43

CHAPTER 6 SYSTEM INTEROPERABILITY

• It should be possible to share, collaborate on, or synchronise information with partners
to be able to make decisions with partners.

• It should be possible to interoperate with and use partners’ systems.

• It should be possible to extend own capabilities into the partner environments as well
as utilise capabilities from partners.

6.1.1 Tactical Networks

Tactical Data Links (TDLs) are used for the exchange of tactical command and control
data and near real-time exchange of situational awareness information. TDL standards
often include the whole protocol stack to support encryption, jamming resistance, etc.
No information history is kept in TDL networks. Only the most recent information is
considered to be relevant. TDLs have the advantage of near real-time information exchange
and resistance to jamming, but have the disadvantage of requiring expensive hardware to
implement the relevant protocol stacks. The hardware also lacks modularity (Larsen, 2006).
TDLs can operate on low-bandwidth ad-hoc networks and are well suited to tactical
environments (Crane, Campbell and Scannell, 2008).

Systems can communicate with each other using specific sets of messages. Messaging
standards usually specify a fixed structure and syntax for the messages. The Message
Text Formats (MTFs) used by US and NATO systems are text based, but the contents
of the messages are fixed to be validated easily (for example, XML based message standards
can be validated using the relevant XML schemas). Messaging has the advantage of loose
coupling, but may be non-real time and may require man-in-the-loop operation if the message
processing cannot be automated (Larsen, 2006).

Systems interoperability can be achieved by adapting all the relevant systems to support
a very specific interface to communicate via a set of web-services. Web-services have the
ability to easily integrate with other web-services using open standards like the Simple Object
Access Protocol (SOAP). Web-services are self-descriptive with a standardised interface for
establishing connectivity and transferring data. This approach was used to integrate systems
from America, Spain, Germany, Sweden and France, but the level of interoperability was
limited by the latency and bandwidth of the internet (Daly and Tolk, 2003). Enterprise
Services and the Enterprise Service Bus (discussed in the next section) are more formal ways
of using web-services to integrate application services.

Interoperability through a database or central repository has the advantages of being modular
with near real-time information exchange, but has the disadvantages of closer coupling
between systems and a increasing data size because the database normally retains a history
of all the information (Larsen, 2006). Collaboration is likely to be more successful and
efficient when the participants have a common understanding of the shared information.
Establishing a Community of Interest (COI) helps to have consensus on operational processes,
activities, and the supporting data standards. A COI is a collaborative group of users
who exchange information in pursuit of their shared goals, interests, missions or business
processes (Larsen, 2006). The Joint Consultation, Command and Control Information
Exchange Data Model (JC3IEDM) from the Multilateral Interoperability Program (MIP)
is a shared multinational C2 data model that enables network-centric information sharing
among different COIs (Chaum and Lee, 2008).

44 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

CHAPTER 6 SYSTEM INTEROPERABILITY

6.1.2 C2/M&S Protocol Gateways

The simulation capability of the CSIR DPSS is continually being extended for Joint Command
and Control (JC2). This was done to such an extent that a separate application was required
to manage all the different types of protocols, interfaces and link standards used to connect
external systems to the simulation. This application can be called a C2 gateway or protocol
bridge, since it translates different link standards or protocols to the native data format of
the simulation. A gateway can provide the following (Duvenhage and Terblanche, 2008):

• time management and synchronisation,

• time stamping of data from external systems,

• translation between different data models,

• information storage to allow for partial or incomplete updates from external systems,

• fault tolerance, and

• easy access to the functionality of commercial packages like 3D game engines for
visualisation, etcetera.

Each gateway operates as a bridge between an external system and the simulation and allows
the simulation to participate in live C2 interoperability and training exercises. Multiple
gateways can also be linked together which allow external systems to interoperate through
the gateways (Duvenhage and Terblanche, 2008). The shared information allows simulations
to collectively create a more complex simulation. A simulation can, for example, operate
on, engage or kill models from other simulations with all relevant events from one simulation
being reflected in the other participating simulations (Nel, le Roux, van der Schyf and Mostert,
2007).

The HLA federates use adaptors to bridge the gap between different versions and brands of
RTIs or to translate between different FOMs. This is required because HLA federates created
for different RTIs or HLA federates using different FOMs are not compatible. An adaptor
is essentially a software gateway between a federate and the relevant RTI and handles the
required syntactic and semantic transformations. Adaptors also allow non-HLA federates or
legacy systems to become part of a federation (Moller and Olsson, 2004). Using adaptors are
and important part of HLA federations and can extend the life or enhance the reusability of
existing federates. Harless and Roos (Harless and Roose, 1999) recommend using gateways
as part of the HLA interoperability tool suite to prolong the life of legacy HLA systems, to
interoperate with non-HLA systems and to integrate dissimilar federations.

Saab Systems have also developed an integration platform called the Widely Integrated
System Environment (WISE). WISE can connect to any external system if a custom WISE
platform driver for that system is available or can be created. The WISE platform driver
connects to the external system and translates the information model used by the external
system to the information model used internally by WISE. Multiple external systems can be
integrated using WISE if the relevant drivers are available or can be created. The information
models used by the external systems should also map well to the information model used
internally by WISE for the integration to be successful. The internal WISE information
model is specified using a XML based format and platform drivers can be implemented using
C++ (Olsson and Michalski, 2008).

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

45

CHAPTER 6 SYSTEM INTEROPERABILITY

6.2 The Command and Control Enterprise

Enterprise systems are created from existing systems by loosely coupling the systems together
in an ad-hoc fashion or through middleware. The capabilities or scalability of the aggregated
system depends on the middleware architecture. The C2 Enterprise also requires existing
legacy systems to interoperate, which can be hard to achieve. Scenario Definition Languages
and Battle Management Languages may however help to initialise the state and behaviour of
the enterprise systems and simulations (Hamilton and Catania, 2003).

Figure 6.2: The Tactical Network and C2 Enterprise

Enterprise systems operate in a non-realtime fashion, but information can be provided in a
timely manner that is still suited to JC2. The C2 enterprise can however not replace the
existing tactical networks, since TDLs, messaging, etcetera. have superior bandwidth and
security capabilities. Tactical systems (including Live, Virtual and Constructive simulations)
integrate with enterprise systems through gateways or adaptors. The C2 enterprise will then
actually consist of two layers (see Figure 6.2): the tactical network layer and the business or
enterprise layer. The tactical network provides connectivity to tactical systems.

6.2.1 Enterprise Services

Enterprise Services refers to high-level cross-entity web-services-based components with
(Daly and Tolk, 2003):

• loose coupling,

• broad application,

• inherent security,

• availability and reliability,

• reduced cost and complexity, and

• increased levels of interoperability and information sharing.

Web-services transfer information at the syntatic level and the higher level semantics still need
to be agreed upon when constructing the enterprise (Larsen, 2006). A net-centric enterprise,

46 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

CHAPTER 6 SYSTEM INTEROPERABILITY

utilising an SOA, is not ideally suited for the tactical environment because of the bandwidth
and connectivity limitations of tactical networks. The enterprise can however provide and
consume tactical data through tactical services that act as gateways between legacy protocols
and the net-centric enterprise (Crane et al., 2008).

6.2.2 The Enterprise Service Bus

An Enterprise Service Bus (ESB) can create an enterprise with a heterogeneous set of
application servers from different vendors, built with different technologies and using different
communication protocols—something that is not possible with a traditional SOA design.
All the applications communicate through middleware with no direct contact between the
applications. An ESB supports service-oriented architectures, message-driven architectures
and event-driven architectures to be able to support all the interaction patterns that are
required in a comprehensive enterprise (Keen, Acharya, Bishop, Hopkins, Milinski, Nott,
Robinson, Adams and Verschueren, 2004b). ESBs provides an abstraction layer on top of
some form of Message Oriented Middleware (MOM) and is not specific to web-services. An
ESB usually supports the following (Schulte, 2002):

• the Simple Object Access Protocol (SOAP),

• the Web-Services Description Language (WSDL),

• the Universal Description Discovery and Integration (UDDI),

• asynchronous store-and-forward delivery,

• limited message transformation, publish-and-subscribe, and

• content based routing.

Open ESB is a Java based open source ESB implementation and is built purely on open
standards. Using open standards imply that applications and services from different vendors
can be moved freely between different enterprises.

This now concludes the second part of this dissertation. The next part discusses the
implementation of the proposed software application framework.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

47

CHAPTER 6 SYSTEM INTEROPERABILITY

48 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

FRAMEWORK IMPLEMENTATION

This part of the dissertation defines the requirements for the software framework based on
existing experience within the Command and Control domain. The focus quickly shifts to
the framework design and implementation. The framework implementation is then evaluated
and the evaluation covers enough aspects of the implementation to address how well the
design fits the original requirements. Critical components of the software framework design
are formally described and evaluated. This is done using the software architecture concepts
and behaviour analysis techniques reviewed in the previous part of this dissertation.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

49

7. Framework Requirements

This chapter marks the start of the third part of this dissertation, which discusses the
design and implementation of the proposed simulation software framework. The use case
for the software framework is created based on existing experience with M&S as well as
the requirements, identified in the previous part of this dissertation, for supporting the
C2 Enterprise. The use case is then used to generate the requirements for the framework
implementation.

7.1 Framework Use Case

Figure 7.1 shows a simple use case diagram for the software framework. There are five
different actors defined for the framework: the software developer, the operator, the C2
system, the LVC simulator(s) and the user or stakeholder. The developer has to be able to
extend the framework and use it to develop applications according to the user’s requirements.
The operator has to be able to use the developer’s tools and applications within the C2
enterprise. The user may also be the operator.

The use case shows that the developer can also be the operator, but this is mainly for
testing and evaluation. The operator is responsible for running the application and possibly
managing the simulation execution or the links to external systems. The operator could also
form part of the simulation in the case of virtual simulations or human-in-the-loop (HIL) type
applications. The operator might require additional feedback or insight through a debriefing
capability provided by the application. For this the application should be able to capture the
relevant information and present it in a sensible way.

Developers have several tasks: they have to maintain the framework and ensure that the
code-base is of a high enough quality; they have to build and test the application(s); they
have to extend the framework to accommodate new features; and, they have to build the
relevant models of systems in order to virtualise them.

The external C2 systems and LVC simulators can be anything from real equipment like search
radars, aircraft and ships, to simulators used for training and/or planning.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

51

CHAPTER 7 FRAMEWORK REQUIREMENTS

Figure 7.1: Framework Use Case Diagram

7.2 Framework Requirements

The software framework requirements are generated from the use case diagram. The
focus is placed on supporting the tactical networks that feed data into and out of the C2
enterprise. The interoperability, M&S and application development capabilities provided by
the framework supports the enterprise by enabling the integration of the tactical layer with
the enterprise business layer and by filling any gaps in the tactical layer.

The knowledge gained during the literature review, presented in the previous part of
this dissertation, also contributed to formulating the framework’s requirements. These
requirements can be divided into five main points: interoperability with C2 systems,
virtualisation of C2 equipment using M&S, application development, good code quality and

52 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

CHAPTER 7 FRAMEWORK REQUIREMENTS

performance and portability. Figure 6.2 in Chapter 6 shows how the framework capabilities
should fill the gap between the C2 Enterprise and the operational tactical systems.

7.2.1 Interoperability with C2 Systems

To function within the C2 enterprise the framework should enable the following:

• interoperability with legacy and net-centric C2 systems and simulators,

• protocol translation when communicating with systems and simulators,

• automatic attribute translation when translating to and from external data represen-
tations,

• unified and extendable internal information model,

• protocol bridging (acting as an adaptor or gateway for systems that do not support the
correct protocol or interface).

7.2.2 Virtualisation of C2 equipment using M&S

Applications and tools created with the framework can support the C2 enterprise by deploying
virtual systems when the real systems cannot be deployed. This introduces the following
requirements:

• dynamic addition and removal of simulation objects like services and models,

• operator in the loop (OIL) support,

• running in real-time and the ability to catch up if the simulation was slowed down
temporarily (soft real-time),

• running in reverse, running as fast as possible and pausing execution,

• the ability to jump in time, and

• a configurable frame rate.

It should be possible to distribute the execution over multiple nodes for increased performance
and fault tolerance.

7.2.3 Application Development

The users and operators require a means of interacting with the virtual environment or
controlling the system interoperability. This interaction could be through anything from a
text console to a full Graphical User Interface (GUI). The framework should provide the
software developer with a concise way of integrating with user interfaces and applications.
The framework should also define how the application should interact with the underlying
virtualisation and interoperability capabilities of the framework.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

53

CHAPTER 7 FRAMEWORK REQUIREMENTS

7.2.4 Good Code Quality

The framework is intended for rapid development of technology demonstrators and prototyp-
ing of software. More often than not the applications are also subject to ad-hoc changes in
user requirements. The quality of the framework code base will determine how the framework
is used. The framework code base should be characterised by the following:

• a common interoperability infrastructure across the tactical environment,

• a common M&S infrastructure across the tactical environment,

• seamless integration of the M&S and interoperability infrastructures.

• unified data collection and analysis,

• fault-tolerance and reliability,

• usability, maintainability and extensibility

7.2.5 Performance and Portability

Real-time performance is desired, but in most cases this is actually soft real-time since the
targeted operating systems do not support hard real-time. Parallel execution (distribution
over multiple CPU/Cores on one node) should also be considered to utilise the power of the
new generation of multi-core processors. There are cases where interoperability is required
with equipment and systems that might have very strict timing requirements: this requires
that some components of the framework have to be run in separate high priority threads to
achieve the desired execution speed and reliability.

Ultimately the framework should make it easy for application developers to create good
quality applications and tools that support the C2 Enterprise. The framework design and
implementation should not be specific to any platform or operating system. The next chapter
discusses the current framework design and implementation.

54 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

8. Framework Design and
Implementation

This chapter discusses the design and implementation of the software application framework.
The framework architecture is also described using the various software architecture concepts
and terms reviewed in part two of this dissertation.

8.1 Design Overview

The framework is split into five functional layers: the backbone layer, the infrastructure layer,
the interoperability layer, the simulation layer and the application layer. Figure 8.1 shows the
layers of the framework mapped onto specific layers of the OSI model to give some perspective
on the functionality of each layer.

Figure 8.1: The Framework Layers

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

55

CHAPTER 8 FRAMEWORK DESIGN AND IMPLEMENTATION

The layers are implemented as separate C++ libraries. There is a clear separation between
the layers in terms of functionality and each layer can be compiled or modified without
affecting the other layers. This layered architecture accommodates multiple teams of
software developers either working on different layers of the framework or building different
applications using the framework.

The work discussed in this dissertation covers all the layers depicted in Figure 8.1, but the
framework implementation focuses on the backbone, infrastructure and interoperability layers.
The simulation and application layers are more application specific, with some examples
given in the next chapter. This chapter does however discuss the simulation and application
layers in enough detail to show how these layers should be extended and how the framework
interfaces with higher level user applications.

Figure 8.2: The Framework Supporting the C2 Enterprise

Figure 6.2 in Chapter 6 shows that the C2 enterprise consists of a tactical network layer and
a enterprise layer—two distinct layers. Figure 8.2 shows how the framework supports the
integration of the tactical layer with the enterprise business layer (the framework enables
interoperability with C2 systems). The framework also helps fill any gaps in the tactical layer
through virtualisation of C2/tactical equipment using M&S.

The use of proven cross-platform libraries improves the quality and usability of the applica-
tions created with the framework. The framework and current application implementations

56 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

CHAPTER 8 FRAMEWORK DESIGN AND IMPLEMENTATION

make use of the following open-source or standardised libraries:

• The framework relies extensively on the Standard Template Libraries (STL) for C++
for data structures, containers, sorting, etcetera. STL is proven, well documented and
comes standard with C++.

• The framework also relies on some of the Boost C++ libraries (http://www.boost.org)
for things like multi-threading, string hashing and random number generation. Boost
is a free cross-platform set of libraries with some of the libraries being considered for
inclusion into the new C++ standard (currently being finalised).

• The applications created with the framework make use of user interface technologies
like wxWidgets (http://www.wxwindows.org) and Qt (http://qt.nokia.com/products) for
building the relevant user interfaces. wxWidgets and Qt are cross-platform and open-
source—either can be used to create good user interfaces for applications.

• The applications use Open Scene Graph (OSG, http://www.openscenegraph.org) to
create 2D and 3D visualisation panels in the user interfaces. OSG is a cross-platform,
open-source 3D graphics toolkit.

• The framework builds on libxml (http://xmlsoft.org) to create a simple object-oriented
XML reading and writing capability. libxml is a cross-platform XML processing library
for C.

The remainder of this chapter discusses the five layers of the framework.

8.2 The Backbone Layer

The backbone layer provides Inter Process Communication (IPC) and object execution (i.e.
functionally it corresponds to the OSI Transport and Session layers, as well as in part to
the Presentation layer, as shown in Figure 8.1). The backbone also contains a set of core
components that contribute to the portability and quality of the framework.

The executable objects are commonly referred to as backbone objects. The backbone object
execution can be distributed among multiple hosts or among multiple CPUs of a single host
(or both) (see Figure 8.3). The process responsible for managing a set of backbone objects is
referred to as a backbone node. Data flows from one backbone object to another in the form
of issues, where issues encapsulate events which are called titles.

The backbone is loosely based on the work described in (Duvenhage and Kourie, 2008):
objects communicate with each other using topic-based publish/subscribe-type message
passing (Eugster et al., 2003). The backbone architecture can also be described as having an
event-based, implicit invocation style, since the backbone objects exchange data through the
backbone and do not access each other directly (see Chapter 3). In this context the backbone
layer follows the mediator design pattern, since backbone objects only communicate through
the backbone and not directly with each other (see Chapter 3).

8.2.1 Inter Object Communication

What issues a backbone object can publish and where the issues go are determined by the
publications which backbone objects register and by the subscriptions which backbone objects

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

57

CHAPTER 8 FRAMEWORK DESIGN AND IMPLEMENTATION

Figure 8.3: The Hosts, Nodes and Objects of the Framework

make. Issues are also inherently generated by the backbone layer for each backbone object
in the following cases:

• The backbone generates a publication issue whenever an object registers a publication.
The issue is then broadcast to all objects on all nodes.

• The backbone generates a subscription issue whenever an object registers a subscription.
The issue is then broadcast to all objects on all nodes. Any object that has a matching
publication then processes the subscription.

• The backbone generates a subscription issue in response to the delivery of a publication
issue if there is a relevant subscription. The subscription issue is then sent to the
publisher.

This passing of issues allows backbone objects to register and delete publications and to
add and remove subscriptions to other titles in an ad-hoc fashion (i.e. during runtime).
Registering a publication will trigger a subscription issue from all objects that have an interest
in the publication. Making a subscription will create a subscription issue that is processed
by all the objects that have the relevant publication registered.

The title interface contains methods for streaming and de-streaming the title attributes to
and from a binary stream. Title objects are automatically identified and constructed (this
is explained in the next part of this section) and are converted to and from binary when
transmitted from one node to another. This makes it very easy to support any number of
title types without having to modify the backbone layer.

58 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

CHAPTER 8 FRAMEWORK DESIGN AND IMPLEMENTATION

8.2.2 Inherent Object Construction

The built in runtime type information of C++ is not good enough to uniquely identify the
type of objects. Because of this the backbone includes its own type system, referred to the
object hierarchy. The backbone layer also contains an object factory that can automatically
construct any class within the object hierarchy.

A class can be added to the object hierarchy by inheriting from a specific interface and
including the relevant class members These class members are then used to identify classes
within the object hierarchy. Classes are identified within the hierarchy in two ways: based
on the class name (string value) or based on the hash value of the class name (for faster
identification).

The object type information also indicates its parent type which allows an object to be
identified by the object’s type as well as by the type of any one of the object’s parents within
the object hierarchy. Operations to check the type of objects as well as perform safe casting
between types are available as part of the backbone.

The object factory follows the factory method design pattern (see Chapter 3) and enables
automatic construction of objects based on its type (as defined in the object hierarchy).
Titles and backbone objects are part of the object hierarchy. The object factory and object
hierarchy make it possible to identify and construct titles with the correct type when reading
data from other nodes—other layers of the framework as well as applications can add new
object and title types without having to explicitly specify them in the backbone layer.

8.2.3 Distributed Object Execution

The backbone runs at a fixed frame rate which determines the simulation time step size. The
backbone calls an object to give it time to update itself and read and publish issues. Each
backbone object has a very simple interface that is called by the backbone. Not all objects
would have to run on every frame and for this an object can specify a trigger-frame which
specifies the intervals at which the object should be called.

Figure 8.4: The Backbone Object Execution Frame

The backbone executes each simulation frame in five steps with conservative (or lock-step)
time management between nodes (see Figure 8.4).

1. The backbone receives all the issues that were published in the previous frame. The
backbone keeps on reading issues until all nodes are finished with the previous frame.

2. The backbone then delivers the issues to the correct backbone objects.

3. The backbone then calls all the backbone objects that have a trigger frame matching
the current frame. The backbone objects update themselves and get a chance to publish
any new issues. Newly published issues are temporarily stored in the backbone.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

59

CHAPTER 8 FRAMEWORK DESIGN AND IMPLEMENTATION

4. The backbone then sends out all the published issues to the other nodes.

5. The backbone then indicates to other nodes that it is finished with its current frame
and continues to the next frame.

The backbone layer uses a separate component, called a hub, to transfer issues from one node
to another. The hub manages the inter process communication (IPC) without affecting the
rest of the backbone layer. The hub interface is part of the backbone layer, but the hub
implementations are part of the infrastructure layer and will be discussed in more detail in
the next section. The node also uses the hub interface to signal the end of its current frame
and then to wait for all the other nodes. The application should then wait for the proper
period of time before starting a new frame to keep to the relevant object execution frame
rate (see Figure 8.4).

Backbone objects always publish issues for the next frame and the backbone only sends out
those issues once all the objects have been called. This can be seen as a form of double
buffering, since objects only have access to new issues in the next frame. This situation is
ideally suited to parallelisation and the backbone objects can be executed concurrently within
a frame. For this the backbone divides the object execution among several worker threads to
better utilise the potential of multi-processor systems or multi-core CPUs.

The worker threads execute objects concurrently (and independently). Each worker thread
has a fixed set of backbone objects it executes. Each worker thread is also responsible for
delivering the relevant issues that were published in the previous frame to its set of backbone
objects. The worker threads all use the same set of delivered titles since these titles are not
modified by the backbone objects.

There might be multiple hub implementations in the framework and it is assumed that the
hub implementations are not thread safe (i.e. allowing multiple threads to access the hub at
the same time would result in undefined behaviour or errors)—this is to make it easier to
implement new hubs. For this reason, one of the worker threads have to execute its objects
and then wait for all the other worker threads before sending all the published issues to the
hub. This worker thread is also referred to as the main thread.

8.2.4 Subscriptions and Publications

The backbone manages publications and subscriptions as queues of titles. A backbone object
can push data onto the back of its publications and the backbone would pop the data off
the front of the object’s publications when the object execution has finished. The backbone
also pushes titles onto the back of an object’s subscriptions and an object could then pop
the titles off the front of its subscriptions. Each backbone object has direct access to all the
publications and subscriptions it has registered. The subscription and publication classes
have specific interfaces that allow the backbone object to push titles to publications and pop
titles from subscriptions.

The publication and subscription interfaces do not however accommodate quantisation of
states or integration of events (see QDEVS at the end of Chapter 5). For this the backbone
layer includes several template functions that control how titles are pushed to publications
or popped from subscriptions. This enables title quantisation at the publisher and title
integration at the subscriber, which makes things like dead-reckoning possible. The template

60 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

CHAPTER 8 FRAMEWORK DESIGN AND IMPLEMENTATION

functions, combined with the object type casting and checking provided by the backbone,
control how sets of titles are updated and published and then rebuilt at the subscriber.

8.2.5 Core Backbone Components

The backbone contains a set of core components that contribute to the portability and
quality of the framework. The backbone abstracts aspects such as multi-threading, memory
management and networking to be operating system independent. This means that the
framework can run on any operating system for which the core components have been
implemented.

Multi-threading abstractions are implemented in the backbone using one of the boost cross-
platform libraries. The framework also makes use of Boost mutexes and barriers for thread
synchronisation. Scoped locks are used extensively throughout the framework to make it
easier for the developer to manage the locking and unlocking of resources (see Chapter 3).
Process-control abstractions also make it possible to control operating system specific things
like thread-priority, thread affinity and process-priority in a operating system independent
way.

The backbone includes a custom memory manager that helps track down memory leaks. The
memory manager is created as a singleton (see Chapter 3). All objects in the backbone object
hierarchy inherit from a base class that has the memory operators overloaded to store the
file and line number of the allocation and to register the allocation. It is then possible to
at any time examine the registered memory allocations. Doing this when a application exits
provides the location in the source code of memory allocations that were never de-allocated
(i.e. potential memory leaks).

Figure 8.5: The Backbone Network Interface Classes

The backbone provides networking classes that are divided into network interfaces and
network coders (see Figure 8.5). A network interface does the low-level reading and writing of
binary data from various interfaces like files, network transport interfaces and even hardware
interfaces like RS232. A network coder is a wrapper for a network interface and is responsible
for translating the binary data of the interface to titles when receiving data and from titles
when transmitting data.

The network interface classes all present the exact same interface, providing a unified way of

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

61

CHAPTER 8 FRAMEWORK DESIGN AND IMPLEMENTATION

accessing binary streams (including files). This means that a network coder can operate on
any one of the network interfaces, making the networking much more flexible. The network
coders also log all the binary data (received and sent) to a file. These raw logs can then be
used for playback at a later stage by using a file interface with the relevant coder.

The network coders run on separate threads to ensure that interface creation or slow data
transfer do not interfere with the backbone object execution. The interoperability layer uses
extended network coders referred to as protocol coders that operate on various data formats
and protocols. Protocol coders are discussed in more detail later in this chapter. The network
coder thread also includes mechanisms to recover and possibly re-connect when a network
interface fails.

The backbone contains components that can measure the performance of the backbone object
execution. This helps to optimise the object execution and distribution. The performance
measures look at the following:

• the overall application load, which provides an indication of how well the application
in running in general,

• the backbone overhead, which shows how much of the time is spent on modelling versus
time spent on reading and writing titles,

• the hub bandwidth throughput, which gives an indication of the utilisation of the
underlying transport medium when running in distributed mode, and

• the ratio of titles sent to local objects vs. titles sent to objects on other nodes, which
indicates how well the objects are distributed among the different nodes.

The overhead is an indication of the amount of data transported over the backbone and gives
an indication of how successfully an application could be distributed. Objects that interact
closely, exchanging a lot of data, should typically be located on the same node to minimise
inter-node bandwidth usage.

8.3 The Infrastructure Layer

The infrastructure layer extends the capability of the backbone layer from simple object
execution to the simulation of virtual environments. The infrastructure layer is also
responsible for the simulation time management and synchronisation between different nodes.

The backbone objects and basic object titles are extended for modelling and simulation of
spatial, time-based phenomena. The backbone objects are also extended to allow saving and
loading object attributes in a XML format. The framework uses this to read and write XML
scenario files which specify what object are loaded into the backbone.

8.3.1 Spatial Reference and Environment Models

This layer adds spatial reference models for coordinate representation and translation. The
models support Meridian and Cartesian coordinates and vectors as well as orientation. This
layer also includes the relevant coordinate conversion operations.

62 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

CHAPTER 8 FRAMEWORK DESIGN AND IMPLEMENTATION

The infrastructure layer also adds the environment model for terrain. The environment
model can also include things like atmosphere and sun position. The terrain gives objects
the ability to get the terrain altitude as well as the ability to test for line of sight. The terrain
components are designed to be easily extendable to support different terrain formats. The
terrain is loaded as a set of terrain tiles.

8.3.2 The Bootloader

The bootloader introduces the backbone object XML interface. It allows backbone object
attributes to be loaded (and saved) from XML scenario files. The bootloader identifies
and creates objects from the object hierarchy based on the type of the object. The XML
element names correspond to the relevant object class names as defined in the backbone
object hierarchy.

Any backbone object that is in the object hierarchy and inherits from the XML interface
can be loaded by the bootloader. This, along with the use of the backbone object factory,
allows the bootloader to support an arbitrary number of objects without having to modify
or recompile the infrastructure layer.

8.3.3 The Node Hub

The backbone uses a separate component, called a hub, to transfer issues from one node
to another. The hub implementations are found in the infrastructure layer and not in the
backbone layer since it was desirable to be able to configure the hub through the XML
scenario file.

The hub specifies the type of inter process communication (IPC) used. It controls the inter-
node communication, synchronisation, node addressing and inter-node connection setup. This
makes it possible to change the backbone infrastructure from a distributed peer-to-peer TCP
scheme to a parallel memory-mapped scheme or even a web-based scheme by using different
hub implementations.

The current framework implementation includes two hub implementations. The first is a very
simple single node hub implementation that just delivers everything that was published in
the previous frame to the local node. It is very fast and ideal when all the backbone objects
are run on one node (no distribution).

The second hub implementation is a peer-to-peer TCP/IP node hub that allows two or more
nodes to be connected (i.e. distributed backbone object execution). The hub implementation
creates a mesh network with every node connected to all nodes except itself (see Figure 8.6).
The hub implementation is then intelligent enough to only send issues to the nodes that
have the relevant subscribers. The peer-to-peer TCP/IP node hub can be used to run nodes
distributed over multiple hosts, but there can also be more than one node per host.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

63

CHAPTER 8 FRAMEWORK DESIGN AND IMPLEMENTATION

Figure 8.6: The TCP/IP Node Hub Inter-connection

8.3.4 Information Representation and Translation

The data model of a virtual environment implemented with the framework is the specific
set of titles published by the simulation objects. A title does however not specify how
an object should react when it receives a title through a specific subscription. The data
model also includes how, in the military case, objects are classified as units, equipment,
weapons, etcetera. For this the current infrastructure layer implements the MIL-STD-2525B
warfighting symbology standard.

Real-world systems use tactical data links or proprietary protocols to communicate. The
information exchanged by these systems may not match the titles and symbology used by
the virtual environment. The internal titles would have to be translated to and from the
external data models used by the real-world systems to interoperate with those systems.

Translating titles to and from the various external data models is done by the protocol coders,
discussed in the next section, but the infrastructure layer contains the components for defining
and matching the symbology used by external systems with the internal symbology. For
example: the internal data model will identify an fighter aircraft as a fixed wing military
aerial unit with a fighter role; an external system might only have aircraft or bomber defined.

Tactical data links have very specific ways of addressing different systems in the network, but
the backbone uses a single string (the simulation ID) to identify objects. The infrastructure
layer also contains components for system address translation, which allow the protocol coders
to translate to and from external system addresses.

64 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

CHAPTER 8 FRAMEWORK DESIGN AND IMPLEMENTATION

8.4 The Interoperability Layer

The interoperability layer adds the required components to interoperate with real-world
systems and other simulators. This is where all tactical systems and enterprise services
link into the framework. All the relevant protocols and data representations of the legacy
and net-centric systems have to be understood and translated. The interoperability layer
consists of the following:

• the protocol coders,

• the backbone link objects for the protocol coders, and

• the gateway interoperability service.

The protocol coder components are extended network coder components (see Figure 8.5).
Communicating with real-world systems involves creating one or more network coders which
are responsible for translating between the external systems and the internal application
components built with the framework. These protocol coders operate on the syntax or
structure of the foreign data and only map the information onto titles without understanding
the data (i.e. on a syntax level and not on a semantic level).

The protocol coder components all run on their own threads to prevent slow or blocking
interfaces from holding up the backbone object execution. The coders are responsible for link
setup, link tear-down and handshaking (maintaining the link). These functions may be slow
depending on the type of interface to the external system and the link requirements. Having
the coders run on separate threads makes it very easy to execute these functions without
causing the backbone object execution to be delayed—the coder executes independently of
the backbone. For example: a coder can wait four seconds for a reply and only then return
titles to the backbone with no delay in the object execution.

Normally the coder thread priority is set to below normal while the backbone worker thread
priority is set to normal. This caused the operating system to give the backbone object
execution priority above protocol coder execution. This helps to improve the backbone object
execution when there are many protocol coders. The drawback of this is that the coder
threads might starve (i.e. not be run by the operating system if the backbone object execution
is using too much CPU resources).

Some protocol coders have very strict timing requirements and have to run with a very high
confidence or at a very high rate. This is typically required when virtualising or emulating
systems that normally send messages at very specific intervals. In these cases the developer
can set the protocol coder thread priority very high. This commands the operating system to
give the coder thread priority above all other threads. The coder execution should however
be carefully controlled since high-priority threads can starve the rest of the operating system
threads.

The protocol coders are not backbone objects and have to be wrapped inside extended
backbone objects, called link objects that can be loaded and executed by the framework.
The interoperability layer includes a basic link object that handles the locking of the coder
for thread-safe access; manages the publications and subscriptions; and reports the link-
state. The interoperability layer includes many different link objects that extend the basic
link object.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

65

CHAPTER 8 FRAMEWORK DESIGN AND IMPLEMENTATION

The basic link also adjusts titles to have the correct time reference: incoming titles are
adjusted to be relative to the simulation time while outgoing titles are adjusted to be relative
to the clock of the external system. The link buffers incoming titles if the adjusted time
reference is in the future. This normally occurs when reading from a file interface (i.e. all
the protocol information is available immediately) or when the backbone object execution is
too slow (i.e. real-time execution cannot be maintained).

There is also a gateway service which is a backbone object extended to act as a router for
the titles from the different links. The gateway service subscribes to titles from all links and
selectively publishes titles back to links based on the configured routes.

8.5 The Simulation and Application Layers

The application layer (and to a certain extent the simulation layer as well) is very application
specific. A typical rapid application development code-base would consist of many different
simulation and application layer implementations that could be reused or extended to quickly
create new tools and applications. The simulation layer allows developers to create unique
simulations or tools by adding the required models and services.

The virtualisation (or emulation) of systems happens on this level. A simulation model
is created by extending a backbone object to simulate the behaviour of an actual system.
Models of aircraft, for example, would simulate the flying qualities of a specific aircraft and
then publish certain attributes of the aircraft (like position and velocity).

The simulation layer is built on top of the infrastructure layer and the interoperability layer.
The simulation layer is therefore ideally equipped to create models of systems that interface
with the C2 enterprise as the real systems would. The next chapter discusses the Radar
Emulator application, which is an example of this.

The framework will be used to create many different types of applications, but there are
some generic components that most applications will share. This is discussed in the next few
paragraphs.

8.5.1 Application Integration

Applications might require specific command-line arguments. For this the framework
includes, as part of the core operating system abstractions, a command line argument parser
that gives any part of an application access to the command line arguments.

Applications also require the ability to load application specific parameters from disk and save
them again. The application layer provides an extendable XML parameter loader. It works
similarly to the backbone object boot-loader and application developers can add additional
parameter sets.

Applications need an interface for loading and saving scenarios as well as managing the
backbone object execution. The application layer provides a generic framework execution
thread that manages scenario loading, object execution, object locking and provides access
to the spatial environment. This component frees the application from the complexities

66 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

CHAPTER 8 FRAMEWORK DESIGN AND IMPLEMENTATION

of loading and saving XML files, locking backbone objects for safe access and managing the
object execution. All the applications built with the framework have access to this framework
execution component.

The application layer has to provide a means of collating the capabilities of the framework and
integrating it with the relevant technologies for building the user applications and tools. The
framework uses control services which are normal backbone objects that are instantiated by
the user application rather than from the XML scenario file. The user application can create
the control service and add it to the backbone (using the framework execution component)
as soon as a scenario is loaded.

Control services can be simple or complex, depending on the application requirements. A
control service can subscribe and publish like any other backbone object, but it also allows
the application to access the title information through an application specific interface. This
means that the application still works with titles, but the control services manage how the
information gets processed and then distributed to other backbone objects. Applications can
dynamically add and remove control services. One restriction is that an application should
lock a control service before it uses it—this is to prevent the backbone from accessing a
control service while the application is busy using it.

The next chapter evaluates the framework implementation to determine how well the
implementation fits the requirements. This evaluation covers a wide range of criteria. Critical
components of the framework are also evaluated using the software architecture concepts as
well as the behaviour analysis techniques reviewed in part two of this dissertation.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

67

9. Framework Evaluation

In this chapter the evaluation of the framework implementation is discussed. The evaluation
covers enough aspects of the implementation to address how well the implementation fits the
original requirements discussed in Chapter 7 (interoperability with C2 systems, virtualisation
of C2 equipment using M&S, application development, good code quality and performance
and portability).

This chapter is divided into three sections. The first section evaluates the performance
and scalability of applications created with the framework. The next section discusses the
existing C2 applications created with the framework. The third section formally evaluates
the framework implementation. The formal evaluation is done using the software architecture
concepts and behaviour analysis techniques reviewed in part two of this dissertation.

This chapter uses the terms host, node, object, title and worker thread extensively. Please
refer back to Chapter 8 for a description of these.

9.1 Performance and Scalability Testing

Object execution performance and scalability is important when virtualising C2 equipment.
This section discusses the evaluation of the general M&S performance of the framework
implementation. A small test application was created with the framework. It is a very
simple simulation that runs multiple instances of the same model. The model has a constant
execution time of 2.5ms and only publishes one type of title. The number of titles published
are however configurable. The title has several attributes and has a size of 135 bytes when
streamed.

The simulation frame rate is set at 100Hz with 160 models in total. Each model subscribes
to every other model (i.e. each model will receive 159 sets of titles per frame—one set of
titles from every model). The model execution is distributed over multiple hosts as well as
distributed over multiple CPU cores of one host. The test application is run multiple times
with the models evenly distributed over a varying number of hosts and CPU cores. This tests
both the distributed performance and parallel performance of the object execution.

The fact that the test application only has one type of model and one type of title makes it
easy to analyse the distributed and parallel performance of the test application. Normally
one would get several different types of models, publishing different types of tiles at lower
rates (each model subscribing and publishing to every other model is actually the worst case
scenario).

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

69

CHAPTER 9 FRAMEWORK EVALUATION

Figure 9.1: The 10 Toshiba Qosmio Laptops

The hosts used for the tests are Toshiba Qosmio laptops. Each laptop runs MS Windows 7
and has an Intel i7 processor with four hyper-threaded cores. The hyper-threading effectively
provides eight execution units per CPU. Each execution unit is also referred to as a core in
the rest of this chapter (the difference between a hyper-thread and a real CPU core is beyond
the scope of this discussion). All the hosts are connected using a 1Gbps Local Area Network
(LAN). Ten laptops were used for the tests.

9.1.1 Expected Behaviour

The test hosts can schedule eight threads of execution to run concurrently (one per core). An
application running on a single thread only has access to one core at a time which amounts
to 12.5% of the total CPU resources. An application that can use eight threads effectively
should be able to fully utilise the host CPU.

The object execution can be distributed among several worker threads in the same node (i.e.
parallel execution utilising multiple CPU cores of one host). The objects are divided up
equally among the worker threads and the worker threads all operate independently of each
other on the same set of delivered titles. Something that may affect execution performance
is resource locking : the framework uses a memory manager that keeps track of all memory
allocations within a node and each node has its own memory manager. Allocating and
deleting memory involves locking some parts of the the memory manager. The contention
caused by backbone objects allocating or deleting memory from different worker threads may
then decrease the execution performance. The contention at the memory manager should be
the only thing affecting the worker thread performance.

Distributed model execution involves executing backbone objects on different nodes and
transferring data between nodes. The amount of data to transfer increases as more nodes
are added, for example: 160 models distributed over two nodes adds up to 80 models per

70 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

CHAPTER 9 FRAMEWORK EVALUATION

node (i.e. 80 models are publishing to another node, giving 80 sets of titles being received
and published per frame by each node); 160 models distributed over four nodes gives 40
models per node (i.e. 40 models are publishing to three nodes, giving 120 sets of titles being
received and published per frame by each node). The inter-node data transfer overhead in
the test application can be controlled by configuring the number of titles each test model
publishes per frame. The network throughput is measured as the total amount of bytes sent
and received by each node per second.

Nodes can be deployed per host (i.e. distributed) or as multiple processes on the same
host. Communication between the nodes occur in exactly the same way in both cases
(using TCP/IP). In the first case (the distributed case) the inter-host data transfer and
synchronisation may reduce the overall performance and in the second case the overhead
should be very low. In both cases the network overhead and host synchronisation should
be the only thing affecting the execution performance if there is only one worker thread
per node (since resource locking or worker thread contention within the nodes do not affect
performance in these cases).

9.1.2 Parallel Performance

The framework object execution can be distributed among several worker threads in the
same node (parallel execution utilising multiple CPU cores of one host). The test application
was run with varying worker thread counts and detailed results are shown in Figure 9.2. A
number of summarised views of this data are presented in subsequent figures.

Each table in Figure 9.2 shows the following:

• the number of titles published per model per frame,

• the number of worker threads,

• the CPU utilisation,

• the time per frame it takes to run all the models,

• the time per frame it takes to read and publish titles (overhead) and

• the speedup compared to using only one worker thread.

The model exec time here includes the time it takes to process the received titles.

Figure 9.3 shows how well the model execution can be sped up when the models are not
publishing any titles. The figure shows the thread count (worker count) on the horizontal
axis and the speed increase and CPU utilisation on the vertical axis. The speed increase and
CPU utilisation are very close to linear in the number of threads (i.e the work is distributed
very well with almost no overhead). The CPU utilisation shows an increase from 13 to 98
percent which is almost perfect. Unfortunately these results are very optimistic since the
models are not publishing information.

The effect of the memory manager contention can already be seen in Figure 9.4 and Figure 9.5.
As more worker threads are added, the speed increase and CPU utilisation no longer increase
linearly in the number of threads: backbone objects that are publishing and processing titles
need access to the memory manager and contention caused by the objects being executed by
multiple worker threads increases as more threads are used.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

71

CHAPTER 9 FRAMEWORK EVALUATION

Figure 9.2: Parallel execution results

Figure 9.3: Performance with no publications

72 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

CHAPTER 9 FRAMEWORK EVALUATION

Figure 9.4: Performance with 1 title published per model per frame

Figure 9.5: Performance with 2 titles published per model per frame

Figure 9.6: Performance with 10 titles published per model per frame

Figure 9.7: Performance with 50 titles published per model per frame

When the models publish even more titles per frame the performance suffers further.
Figure 9.6 and Figure 9.7 show a decrease in performance as more worker threads are added.
This indicates that the backbone objects actually spend more time waiting for access to
the memory manager than they spend executing. The key to good parallel performance is
minimising the number of titles published to help alleviate the contention issue between the
threads.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

73

CHAPTER 9 FRAMEWORK EVALUATION

9.1.3 Distributed Performance

This subsection discusses two sets of tests relating to distributed object execution. The first
set of tests involved running multiple nodes on one of the hosts. The results are given in
Figure 9.8. Each table in the figure shows the following:

• the number of titles published per model per frame,

• the number of worker threads,

• the CPU utilisation,

• the time per frame it takes to run all the models,

• the time per frame it takes to read and publish titles (overhead) and

• the total amount of data sent and received by each node (throughput in MBps), and

• the speedup compared to running all the models on only one node (see previous section).

As before, the model exec time here includes the time it takes to process the received titles.
Each node is configured to use only one worker thread.

Figure 9.8: Distributed execution results with all nodes on one host

Figure 9.9 shows the speed increase and CPU utilisation when each model is publishing one
title per frame. The figure shows the node count on the horizontal axis and the speed increase

74 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

CHAPTER 9 FRAMEWORK EVALUATION

Figure 9.9: Performance with 1 title published per model per frame

Figure 9.10: Performance with 10 titles published per model per frame

Figure 9.11: Performance with 50 titles published per model per frame

Figure 9.12: Performance with 200 titles published per model per frame

and CPU utilisation on the vertical axis. There is a linear speedup and full CPU utilisation,

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

75

CHAPTER 9 FRAMEWORK EVALUATION

which is expected since the overheads are very low.

The execution performance decreases as the overhead increases (Figure 9.10), but the CPU
utilisation is however still very good. Figure 9.11 shows that the speedup is less than half of
what it was for the first graph, but the CPU utilisation stays very high. This is expected,
since the overheads are increasing and there is no contention between the nodes (i.e the nodes
are spending more time processing titles, but without having to wait for each other). When
the overheads become too big the nodes start spending more time on exchanging data than
they do on executing models. This results in a decrease in performance as more nodes are
used (Figure 9.12). Nevertheless, the CPU utilisation still stays very high.

The second set of tests for the distributed object execution involves several hosts, running
one node each. The results are given in Figure 9.13. Each table in the figure shows exactly
the same data as in the previous table, namely:

• the number of titles published per model per frame,

• the number of worker threads,

• the CPU utilisation,

• the time per frame it takes to run all the models,

• the time per frame it takes to read and publish titles (overhead) and

• the total amount of data sent and received by each node (throughput in MBps), and

• the speedup compared to running all the models on only one node (see previous section).

Again, the model exec time here includes the time it takes to process the received titles.
There is no restriction on the number of hosts that can be used (as opposed to the previous
tests where only eight processor cores were available per host). Each node is configured to use
only one worker thread and with only one node per host, the CPU utilisation stays constant.

Figure 9.14 shows the speed increase and network throughput when each model is publishing
50 titles per frame. The figure shows the node count on the horizontal axis and the speed
increase and network throughput on the vertical axis. Figures 9.14 and 9.15 clearly show that
distributing the model execution among several hosts increases the performance. It actually
performs better than expected, since it outperformed the local host case (see Figure 9.8)
which was expected to be faster. It appears that the local host TCP/IP capability of the
host operating system is slower than expected.

The model execution time increases when more data is published (Figure 9.13). This is
expected since the model execution time includes the processing of the received titles. The
node throughput however changes very little when more data is published. This indicates
that the node throughput is at its maximum and that the execution performance is limited
by the sending, receiving and processing of titles rather than the actual model execution.
Figure 9.17 shows the maximum throughput achieved when the test model is modified to
have an execution time of 0ms. The maximum values are very close to what is shown in
Figure 9.13, further indicating that the execution performance is limited by the processing of
titles rather than the actual model execution. The key here to good distributed performance
is minimising the data exchange between hosts.

76 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

CHAPTER 9 FRAMEWORK EVALUATION

Figure 9.13: Distributed execution results with one node per host

Figure 9.14: Performance with 50 titles published per model per frame

9.2 Application Examples

The previous section discussed the general M&S performance of the framework. This
section discusses applications which served to further verify some of the interoperability
and virtualisation (i.e. M&S) capabilities of the implemented framework. Four applications
within the C2 domain were developed and successfully applied. In addition, three test
applications were also developed. These test applications served to verify the behaviour and
performance of the backbone and infrastructure layer implementations of the framework. The
C2 applications are more complex and their successful implementation provides additional

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

77

CHAPTER 9 FRAMEWORK EVALUATION

Figure 9.15: Performance with 200 titles published per model per frame

Figure 9.16: Performance with 400 titles published per model per frame

Figure 9.17: Performance with a model exec time of 0ms

positive evidence in verifying the interoperability and application layers of the framework.

The framework and the three test applications were designed and implemented by the author.
However, the four C2 applications discussed below were developed by the relevant CSIR
project teams in which the author was merely the technical lead1. Although the development
of the C2 applications cannot be regarded as part of the research discussed in this dissertation,
the fact that they were successfully implemented using the framework bears testimony to its
validity and usability and, for this reason, deserves to be mentioned here.

The test applications are:

• the performance test application discussed in the previous section of this chapter,

• a test application that simulates the flocking behaviour of birds, and

• an implementation of Conway’s game of life.

The C2 applications are:

1Because these C2 applications deal with restricted information they are only discussed in broad overview.
The author can be contacted for additional information.

78 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

CHAPTER 9 FRAMEWORK EVALUATION

• an air to air tactics evaluation tool for fighter aircraft,

• a protocol gateway that facilitated air force, navy and military system interoperability
during preparatory field exercises for the soccer world cup 2010,

• a radar emulator for adding additional information sources to an air force system, and

• a joint operations operator console concept demonstrator.

The C2 applications all use custom user interface and 2D/3D visualisation layers that are
integrated with the framework. These layers use technologies like wxWidgets, Qt and Open
Scene Graph. The user interface and visualisation layers are application specific and do
not form part of the research effort discussed in this dissertation. The previous chapter
(Chapter 8) did however discuss how such application specific layers integrate with the
framework.

The framework source code has been included on the DVD accompanying this dissertation.
The complete source code for the three test applications is also included 2.

9.2.1 A Simulation of Flocking Behaviour

Craig Reinolds developed an artificial life program called Boids in 1986 which simulates the
flocking behaviour of birds. The test application discussed in this section implements that
same boid behaviour. The flocking behaviour is simulated by creating multiple instances of
a model (or boid) that moves around according to a fixed set of rules. The rules define how
each boid behaves within its flock: each boid tries to stay close to the center of the flock;
each boid tries to move in the same direction as the flock; and, each boid tries to avoid flying
into other boids. It is possible to create very realistic flocking behaviour with these simple
rules.

In order to test the infrastructure layer the flocking behaviour is simulated in a spherical
coordinate system (i.e. the boid positions are represented using latitude, longitude and
altitude). The model rules however operate within a local cartesian coordinate system and
the infrastructure layer contains the components that represent the two coordinate systems
and can translate between them.

Each boid subscribes to the state of every other boid and also publishes its own state using a
state title. The state title provides the position (in spherical coordinates) and the velocity of
a boid. Each boid builds up a set of flock-mate positions (in local coordinates) with the state
titles from its subscriptions. Each boid then calculates its own velocity based on the boid
rules, updates its own state and then publishes it. This type of simulation, with the models
operating at discrete time steps, can be referred to as discrete time simulation (DTS).

The boid models follow smooth trajectories that can be approximated by some form
of prediction. The framework accommodates techniques like dead-reckoning by allowing
subscribers to predict the future state of the information received from publishers. The boid
model updates the set of flock-mate positions with state titles that come through on the
subscriptions or by predicting the last known state for flock-mates that did not update. The
boid model does not publish its own state if it knows that the prediction used by other boids

2The four C2 applications created with the framework can not be included on the DVD since the applications
contain restricted or sensitive information.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

79

CHAPTER 9 FRAMEWORK EVALUATION

Figure 9.18: A 3D View of 40 Flocking Models in Test Application

would produce an accurate enough result (this functionality is part of the framework). This
can be used to make a trade off between accurate boid movement and publishing fewer titles.

Figure 9.18 shows a simple custom 3D view that was created as part of this test application.
This instance had 40 models specified in the XML scenario file. The boid model execution
can also be distributed and parallelised in exactly the same way as in the performance test
application discussed in the previous section of this chapter.

This test application simulated the flocking behaviour as expected and ran without problems.
The application can be found on the accompanying DVD.

9.2.2 Conway’s Game of Life

John Horton Conway developed Conway’s Game of Life in 1970. The game has no players
and takes place on a two dimensional grid of square cells. The cells switch on and off based
on specific game rules and the game grid evolves based on the initial cell pattern. The game
runs through multiple iterations, each cell changing in each evolution step on the basis of
rules relating to the cell states of its immediate neighbours.

Each cell has eight immediate neighbours (cells that are directly vertically, horizontally and
diagonally adjacent). The rules are:

• a cell that is off and has exactly three on neighbours switches on in the next iteration
of the game;

• a cell that is on and has more than three on neighbours switches off in the next iteration;

• a cell that is on and has less than two on neighbours switches off in the next iteration.

80 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

CHAPTER 9 FRAMEWORK EVALUATION

The rules aim to mimic the behaviour of cells living and dying as a consequence of
reproduction, overcrowding and under-population. The test application discussed in this
section implements the game of life with one model per cell subscribing to the state of its
eight neighbours and publishing its own state whenever it changes.

Figure 9.19: The Initial Cell Pattern Used by the Test Application

Figure 9.19 shows the initial pattern used by the test application: the cell models are created
in either the on state or in the off state based on this pattern. This particular pattern, when
being evolved by the game of life, is called the Gosper Glider Gun and the cells switch on
and off in such a way that it looks like a gun firing bursts that fly off indefinitely.

Figure 9.20: A View of 2000 Cells in Test Application

Each cell in the test application publishes its initial state and then only publishes its state
again when it changes. Each cell also remembers the last state of each of its neighbours in
case they do not publish. The test application uses a 50 by 40 cell grid—that is 2000 cell
models running in the backbone (shown in Figure 9.20). The performance is still extremely
good since each cell only reacts if it gets a new update from one of its neighbours and then
only publishes its own state if its state changes. This type of simulation, where the models
only react to events and only publish events, is referred to as discrete event simulation.

The cell model execution can also be distributed and parallelised in exactly the same way
as in the performance test application discussed in the previous section of this chapter.
This application can be found on the accompanying DVD. It demonstrates how scalable

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

81

CHAPTER 9 FRAMEWORK EVALUATION

the backbone object execution is—it easily runs 2000 models.

9.2.3 An Tactics Evaluation Tool for Fighter Aircraft

In 2008 an early version of the framework implementation was used to develop an air-to-air
tactics evaluation tool for the new generation Gripen fighter aircraft acquired by the South
African Airforce (SAAF). The Gripen has a higher situational awareness than previous SAAF
aircraft and it also has the ability to share information with other aircraft over a tactical data
link.

Figure 9.21: The Tactics Evaluation Tool (3D view)

The goal of the tool was to help develop new air-to-air tactics for the Gripen aircraft
using modelling and simulation (M&S). The key is simulating accurate aircraft flight paths,
correctly simulating the behaviour of the tactical data link between aircraft and correctly
simulating the behaviour of the aircraft radar. The tool helps the SAAF to quickly generate
information regarding the aircraft performance. This information can then be applied to help
the SAAF use the official Gripen mission planning systems more effectively.

The tool is currently still being extended by the Defence Peace Safety and Security,
Aeronautics research group within the CSIR. A custom 3D view component, developed by
the CSIR, is also integrated into the tool in order to visualise various aspects of the aircraft,

82 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

CHAPTER 9 FRAMEWORK EVALUATION

Figure 9.22: The Tactics Evaluation Tool (Closeup of Aircraft Model)

radar and data link models. Figure 9.21 and Figure 9.22 show what the tool looks like.

9.2.4 A Command and Control Protocol Gateway

The framework was used to build a gateway application that can act as a message router for
various systems and simulators (Duvenhage and Terblanche, 2008). The gateway implements
all the links required to connect to the relevant systems and to exchange information
with these systems. The gateway also translates the information to and from an internal
representation. This allows the gateway to route information between systems, acting as
a C2 hub. Most of the gateway functionality is implemented in the infrastructure and
interoperability layers of the framework, giving all applications access to it. The gateway
consists of multiple link objects and one gateway object.

The gateway links are implemented as different backbone objects that publish the information
they receive. The link objects are reusable across multiple applications. The links are fault
tolerant and translate the information of the various external systems to a unified internal
representation that is used throughout the rest of the application.

The gateway object subscribes to all the links; it routes and filters information; and it
publishes back to the links. The links also subscribe to information from the gateway. The

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

83

CHAPTER 9 FRAMEWORK EVALUATION

subscriptions and publications are registered in such a way that the gateway object can receive
information from any link object and publish back to specific link objects based on the routing
rules. The gateway implements special internal links that enable filtering and exchanging of
information with other backbone objects. The internal links allow the gateway to be part of
any application created with the framework. The routing rules, links and internal links are
setup in the XML scenario file.

This gateway was used extensively to facilitate system interoperability during preparatory
military field exercises for the Soccer World Cup 2010—the police, air force, army and navy
had to work together and system interoperability was crucial. The gateway was used to relay
tactical information between operational air force, navy and army systems. This helped
create awareness of the importance of interoperability for joint operations.

9.2.5 A Radar Emulator

The gateway also has the ability to emulate (i.e. virtualise) a specific type of radar system
by implementing the same link protocol (in a link object) as an actual radar system does.
Several radar systems used by the South African Air Force (SAAF) use this protocol.

Figure 9.23: The Radar Emulator Test Setup at the SAAF Head Quarters

Figure 9.23 shows a test setup of this radar emulator at the SAAF Head Quarters, Pretoria,
South Africa. The machine running the gateway/emulator software is on the right and a
stand-alone SAAF air picture display system is on the left. The SAAF system accepts radar
inputs via an HDLC interface card. The emulator machine also has an HDLC interface card
and connects to the SAAF system via a serial cable (as the real system would). For all intents
and purposes the emulator machine then looks like a real radar system to the SAAF system.

The radar emulator has been used during SANDF field trials to integrate additional sensors
into a specific SAAF system. The gateway translates information from systems that would
normally not function with the SAAF system into something that looks like information from
one of the standard SAAF radars. This gives operators access to additional information that
would otherwise not have been so readily available.

84 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

CHAPTER 9 FRAMEWORK EVALUATION

In the test setup shown in Figure 9.23 the gateway listens in on a SAAF aircraft tactical
radio link (using a compatible link radio) and receives reports of each aircraft’s own position
as well as contact reports from each aircraft’s onboard radar. These reports are then sent to
the SAAF air picture display system as radar plots. This test setup was built in collaboration
with Saab Systems South Africa who provided all the relevant protocol specifications, the
HDLC card interface and the radio interface. Saab also assisted with setting up the radio
link to the aircraft.

9.2.6 A Joint Operations Operator Console

The Joint Operations Operator Console (JOOC) is a generic platform for technology demon-
strators within the Joint Command and Control (JC2) context. The JOOC demonstrates
concepts concerning air picture management, multi-sensor fusion and system interoperability.
Air picture management concerns sensor tracks of aircraft and the management thereof—an
air picture manager can classify or modify existing tracks to be more accurate. Multi-sensor
fusion is the process whereby tracks from two or more sensors are associated and combined
into a single set of tracks (i.e. only one track for each aircraft in the air).

The JOOC includes the C2 Protocol Gateway capabilities as well as a 3D view for geospatial
information and additional services that enable air picture management and multi-sensor
fusion. A geospatial view displays the situational picture and allows the user to interact with
it.

Figure 9.24: The JOOC with Various Air Tracks in the View

The JOOC is currently being extended for the Ground Based Air Defence (GBAD)
environment. It will be used to test concepts in regimental-level air defence (a role of the
South African Army). Regimental-level air defence concerns the control and management
of multiple air defence deployments, optimising air defence by looking at all the deployed
equipment and resources in a holistic fashion and collating the air defence efforts.

The extended JOOC (shown in Figure 9.24 and figure 9.25) will allow one to set up different
mock-up air defence terminals and have real military personnel experiment with and evaluate

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

85

CHAPTER 9 FRAMEWORK EVALUATION

Figure 9.25: The JOOC With Some Air Tracks and GBADS Elements

their operational procedures for regimental fire control. What the role of each air defence
operator should be and how different operators should interact with each other, could then
be optimised.

Figure 9.24 and Figure 9.25 show the JOOC user interface. In both figures, the geospatial
view is in the top-center panel, and the main user interface panels are at the bottom and to
the right. The bottom panel contains tabs for logging and a text based console that reports
framework event and status information—the M&S capability of the framework is always
active. The two panels to the right show the gateway routes and link status, some view
controls and several tabs related to air defence control. The panels are user interface widgets
that use control objects (see Chapter 8) to exchange the relevant information and events with
backbone objects.

This extended JOOC will also be used to evaluate possible ways of integrating the GBAD
systems with air defence systems from the South African Air Force (SAAF) and the South
African Navy (SAN). Integration of the Army, Air Force and Navy air defence capabilities is
referred to as Joint Air Defence (JAD).

Figure 9.26 shows an earlier version of the JOOC that was integrated with the base station
of a military UAV during a demonstration at the CSIR. The integration was done via the
gateway that forms part of the JOOC. The UAV position as well as the positions of targets
of interest could be sent from the UAV’s base station (via a serial interface) to the JOOC and
displayed in 3D. The gateway also has a link that can get civilian air traffic information from
local air traffic control centres. This demonstration verified that it is possible to integrate
and present military UAV and civilian air traffic information on one view.

86 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

CHAPTER 9 FRAMEWORK EVALUATION

Figure 9.26: The JOOC Integrated With a Military UAV Base Station

9.3 Formal Evaluation

Part two of this dissertation showed how to describe the structure and behaviour of software.
In this section, critical components of the software framework design are identified and then
formally described and evaluated using the methods discussed in Chapter 4.

9.3.1 Distributed Execution

Distributed model execution involves executing backbone objects on different nodes and
transferring data between nodes. The backbone object execution is divided up into frames
and the nodes operate in a lock-step fashion (i.e. a node will not start a new frame until all
the other nodes have finished the previous frame). Each frame goes through several steps or
states which can be summarised as follows:

1. The node receives communications events, generated in the previous frame, from all
other nodes (the information from each node is abstracted into one event). The node
will not continue until it has received communications events from all nodes.

2. The node processes the communications events (delivering the issues generated in the
previous frame to all backbone objects; and then executing the relevant backbone
objects).

3. The node sends out the new information published by the objects and generated by the
backbone as communications events to all the other nodes.

4. The node goes back to step one and starts waiting for communications events from

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

87

CHAPTER 9 FRAMEWORK EVALUATION

Figure 9.27: A Finite State Machine Showing the States of a Node Frame

other nodes. This ignores the additional wait the framework can make to keep the
simulation from running faster than real-time.

These steps match the backbone object execution steps discussed in Chapter 8, but have been
adapted for this discussion. Figure 9.27 shows the FSM for a node frame (the layered blocks
indicate that multiple nodes can be in that state). The start of the FSM is also not shown,
since the very first frame of each node does not include the read step—this FSM excludes
the first frame.

The following CSP analysis provides an alternative view to the FSM shown in Figure 9.30.
Figure 9.28 shows the communication events between three nodes. The nodes are numbered 1
to 3 (NODE1, NODE2, NODE3) and each node can be seen as a process reading and writing
communications events. The communication events are C12, C13, C21, C23, C31 and C32.
To make the analysis simpler the events are reduced to C1, C2, C3 for the events that are
received from the nodes and D1, D2 and D2 for the events that are sent from the nodes. It
is correct to rename the sent events from C to D, since sent events are only read in the next
frame. The CSP for the individual processes can be written as follows:

NODE1 = (C2→ C3→ D1→ NODE1) |
(C3→ C2→ D1→ NODE1) (9.1)

NODE2 = (C1→ C3→ D2→ NODE2) |
(C3→ C1→ D2→ NODE2) (9.2)

NODE3 = (C1→ C2→ D3→ NODE3) |
(C2→ C1→ D3→ NODE3) (9.3)

88 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

CHAPTER 9 FRAMEWORK EVALUATION

Figure 9.28: The Communication Events Between Three Nodes

The processes run in parallel, but have to synchronise on common events. This can be
expressed as:

NODES = NODE1 ‖ NODE2 ‖ NODE3 (9.4)

Figure 9.29: The LTSA transition diagram for NODES

This CSP model was evaluated using a tool called the Labelled Transition System Analyser
(LTSA). The tool uses a Finite State Process (FSP) textual notation to represent the CSP.
The tool can analyse the models for deadlock. The CSP model for NODES can be expressed
in FSP as:

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

89

CHAPTER 9 FRAMEWORK EVALUATION

NODE1 = (c2− > c3− > d1− > NODE1 |
c3− > c2− > d1− > NODE1). (9.5)

NODE2 = (c1− > c3− > d2− > NODE2 |
c3− > c1− > d2− > NODE2). (9.6)

NODE3 = (c1− > c2− > d3− > NODE3 |
c2− > c1− > d3− > NODE3). (9.7)

||NODES = (NODE1 ‖ NODE2 ‖ NODE3)/{d1/d3, d1/d2}. (9.8)

The events d2 and d3 are renamed to d1 in the FSP model for NODES. This is legitimate,
since the order in which the different nodes write is not important (the nodes only have to
write something after the reads). The model forces synchronisation on the write and on the
reads. Using the LTSA tool it was determined that there is no possibility of deadlock. The
transition diagram generated for NODES by the LTSA tool is also shown in Figure 9.29.

9.3.2 The Frame Execution and Multi-threading

The backbone objects can be executed concurrently (i.e. by multiple worker threads), since
backbone objects do not interact directly with each other. The backbone has to interact with
the node hub to send and received information. This can only happen on a single worker
thread, called the main thread, since the node hub implementations might not be thread safe
(see Chapter 8). Because of this the other worker threads have to block or wait while the
main thread does the extra work. The Distributed Object Execution is discussed in detail in
Chapter 8.

The states of each node frame can be summarised as follows:

1. The main thread receives communications events from all the other nodes via the node
hub (these communications events were generated in the previous frame). The main
thread will not continue until it has received communications events from all nodes.
The worker threads wait for the main thread to continue.

2. The worker threads (including the main thread) process the communications events.
The threads are responsible for delivering all issues published in the previous frame
and executing the relevant objects. The threads can all work on the same set of issues,
since the issues are not modified while delivered.

3. Once all the threads have finished processing, the threads continue. The main thread
collects all the new information published by the backbone objects and then sends the
information as new communications events to all the other nodes. The worker threads
are finished until the next frame and start waiting for the main thread.

4. The node goes back to step one and starts waiting for communications events from
other nodes. This ignores the additional wait the framework can make to keep the
simulation from running faster than real-time.

These steps also match the backbone object execution steps discussed in Chapter 8, but have

90 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

CHAPTER 9 FRAMEWORK EVALUATION

Figure 9.30: A Finite State Machine Showing the States of the Main Thread and Worker
Threads

been adapted for this discussion. Figure 9.30 shows the Finite State Machine (FSM) for the
main thread combined with the FSM for the worker threads (the layered blocks indicate that
multiple threads can be in that state).

The worker threads are synchronised with the main thread by two barriers (see Chapter 8).
This is to ensure that worker threads stop executing objects while the published issues are
being sent out by the main thread. The worker threads wait at the first barrier for the main
thread and the second barrier effectively forces the main thread to wait for all the worker
threads to finish executing objects before continuing. Using barriers like this is very efficient,
since threads use very little CPU resources when waiting on a barrier.

Having some threads do work while other threads have to wait might decrease the CPU
utlisation. The backbone could be configured to have more worker threads than CPU cores.
Another, probably better solution, would be to balance the load of the different worker
threads in some way.

The following CSP analysis provides an alternative view to the FSM shown in Figure 9.30.
There are two types of processes executing objects: the main thread and the worker threads.
The main thread has to first read all the information from other nodes, synchronise with
worker threads, do some processing, synch with worker threads again and then send out new
information to other nodes. This can be expressed in CSP as follows:

MAIN = Read→ Sync1→ Sync2→ Send→MAIN (9.9)

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

91

CHAPTER 9 FRAMEWORK EVALUATION

Similarly the CSP for the worker thread can be expressed as:

WORKER(i) = Sync1→ Sync2→WORKER(i) (9.10)

The threads run in parallel and synchronise on the two barriers (the Sync1 and Sync2 events).
This can be expressed as:

NODE = MAIN ‖WORKER(1..n) (9.11)

Figure 9.31: The LTSA transition diagram for NODE

The CSP model for NODE can be expressed in FSP as:

MAIN = (read− > sync1− > sync2− > send− > MAIN). (9.12)

WRK1 = (sync1− > sync2− > WRK1). (9.13)

WRK2 = (sync1− > sync2− > WRK2). (9.14)

WRK3 = (sync1− > sync2− > WRK3). (9.15)

||NODE = (MAIN ‖WRK1 ‖WRK2 ‖WRK3). (9.16)

The FSP model for NODE has three worker thread processes (WRK1, WRK2 & WRK3).
All the worker threads (and the main thread) must jointly synchronise on sync1 and sync2
(i.e. every worker thread will wait for all the others and for the main thread to execute sync1,
and similarly for sync2). Using the LTSA tool it was found that there is no possibility of
deadlock in this model. The transition diagram generated for NODE by the LTSA tool is
also shown in Figure 9.31.

92 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

CHAPTER 9 FRAMEWORK EVALUATION

9.4 General Discussion

This chapter discussed the framework implementation in three sections: the first evaluated the
performance and scalability of applications created with the framework; the second discussed
the existing C2 applications created with the framework; and, the third formally evaluated
the framework implementation. This section provides some additional comments on the
framework implementation.

Successful distribution of the object execution depends on how much information each model
is publishing. This applies to both the parallel and distributed cases:

• When the object execution is distributed among several worker threads within one
node (parallel execution) the execution speedup decreases as threads start waiting for
each other. This is clear from the CPU utilisation that decreases as more objects are
published. The data exchange overhead is also very small in this case since all the
objects are running on one node.

• When the object execution is distributed among several nodes (on one or more hosts)
the execution speedup decreases as more time is spent on exchanging data. The CPU
utilisation stays high, even though the speedup decreases.

The backbone is designed for distributed object execution. Parallel object execution augments
the distributed execution by utilising more of the host resources. The key to good parallel
performance is CPU utilisation and solving the contention issue between the multiple threads.
The key to good distributed performance is load balancing and optimising the data exchange
between hosts. In general the number of titles published should be kept to a minimum.

The infrastructure and interoperability layers add to the functionality of the backbone by
giving applications access to spatial simulation and interoperability capabilities. The object
execution and inter object communication is however not compromised by the additional
layers: each model or interoperability link is also a backbone object. The framework is also
flexible enough to allow for discrete time and discrete event based simulation.

Each framework layer extends the capabilities of the layer below it (for example, the
infrastructure layer adds capabilities to the backbone layer and the interoperability layer adds
capabilities to the infrastructure layer—see Figure 8.1). Each layer does however depend on
the layer that it extends. This means that the infrastructure, interoperability and simulation
layers can be modified or replaced with new implementations, but the dependencies need
to be managed (for example, modifying the information model defined in the infrastructure
layer might affect the link implementations in the interoperability layer).

The application layer serves as a set of templates or rules that help guide developers on
how to develop the relevant user interfaces and then integrate those user interfaces with the
simulation and interoperability capabilities. Many of the application layer components are
reusable across multiple applications. The application examples discussed in this chapter
give a clear indication of the virtualisation and interoperability capabilities of the framework.
The user interface and visualisation layers are application specific and do not form part of
the research effort discussed in this dissertation.

Good code quality and portability is hard to measure in isolation. In general the acceptance
of the framework and the way in which it is used to create applications can be taken as

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

93

CHAPTER 9 FRAMEWORK EVALUATION

an indication of the code quality. Each new application developed with the framework also
provides the opportunity to identify and solve potential deficiencies in the framework and to
add more capabilities to the relevant layers.

The next part of this dissertation provides the lessons learned and possible future work on
the framework.

94 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

CONCLUSION

The current status of the framework, the lessons learned and possible future work on the
framework are discussed in this final part of the dissertation. The work discussed in this
dissertation also contributes to a larger vision of unified system development within the
command and control environment.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

95

96 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

10. Conclusion

This chapter provides the lessons learned and possible future work on the framework. The
bigger vision of unified system development within the Command and Control environment
is also discussed.

10.1 The Framework Implementation

Early versions of the framework have been in use since March 2008 and this has already
resulted in four applications that have successfully been applied within the C2 domain (see
Chapter 9):

• an air to air tactics evaluation tool for fighter aircraft,

• a protocol gateway that facilitated air force, navy and military system interoperability
during preparatory field exercises for the soccer world cup 2010,

• a radar emulator for adding additional information sources to an air force system, and

• a joint operations operator console concept demonstrator.

Software requirements can change often and more command and control systems might have
to be supported—the success of the applications created with the framework depends on
the quality of the framework design and implementation. From the application examples,
discussed in Chapter 9, it should be clear that the current implementation of the framework
is successful. The test applications created with the framework (see Chapter 9) also show
that the framework is flexible enough to allow for discrete time and discrete event based
simulation.

The code-base has however not undergone the rigorous testing and validation required to
qualify it for use in safety critical systems. Creating operational systems is in fact outside
the scope of the framework and this should rather be done by the local defence industry. For
now the framework remains part of the support services provided to the defence force.

The framework source code has been included on the DVD accompanying this dissertation.
The complete source code for the three test applications, discussed in Chapter 9, is also
included. The four C2 applications created with the framework can however not be included
on the DVD since the applications contain restricted or sensitive information. The source code
for the user interface and visualisation layers used by the C2 applications is not included on
the DVD, since it is not directly part of the software framework discussed in this dissertation.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

97

CHAPTER 10 CONCLUSION

Essentially all the components of the framework can be made open source (i.e. the source code
would be publicly available): making the framework open could advance the development of
the framework as well as increase the number of applications created with it. Unfortunately,
at this stage, contractual complications with the armaments industry prevents this from
happening and the source code remains the property of the CSIR.

10.2 Future Work

Distribution of the applications over wide area networks is becoming more important and the
current simulation time management and information distribution will have to be updated.
The node hub implementation would have to be updated to support nodes entering and
leaving the simulation on the fly. This has the added benefit of improving the fault tolerance
of the framework by allowing backup nodes to take over when primary nodes fail.

It is worthwhile mentioning that the use of the framework in no way negates the use of
something like the High Level Architecture (HLA) for simulation interoperability. The
framework can be applied to enhance the capability and quality of HLA federates and could
very well be extended to be a federate development environment. The framework also has
the potential to parallelise a federate’s internal model execution.

10.3 An Open Unified Architecture for System Development

The current framework addresses system virtualisation and system interoperability. The work
presented in this dissertation however also contributes to a bigger vision of unified system
development within the context of command and control. There is a need for a unified
software architecture for system software development that enables modular C2 systems with
reusable sub-systems. The current framework implementation can be used to create the
software for systems within the C2 environment, but falls short when it comes to operational
systems since it is not qualified for safety critical applications. An M&S capability is also not
necessarily required by operational C2 systems and equipment.

Any system that would function within the C2 environment would have to be compatible
with this unified architecture for to be a success. Sub-systems bought from international
vendors would also have to be comply with this architecture. This would lead to an open
middleware implementation for creating the software for all local C2 systems. One would
need buy-in and acceptance of the unified architecture (and the middleware implementation)
from the local defence industry. This might seem excessive, but it might also prove to be a
necessary evil in achieving truly modular systems. A unified architecture will also reduce the
required skill set of system developers, potentially extending the operational lifetime of the
systems.

10.4 Final Thoughts

This now concludes the final part of this dissertation. This dissertation discussed the design,
implementation and evaluation of a software framework for supporting distributed Command

98 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

CHAPTER 10 CONCLUSION

and Control applications. The work represents an unique hybrid approach that combines
M&S and system interoperability to build distributed C2 support software.

The work was put into perspective by an extended literature review and it was shown
that the current design and implementation of the framework is of a high quality and is
successful. The research outcomes include the framework implementation as well as the key
requirements for providing interoperability and M&S support to the C2 enterprise. These
research outcomes will contribute to further research in system interoperability, M&S and
unified system development within the C2 environment.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

99

Bibliography

Alhir, S. (2003). Learning UML, O’Reilly & Associates Inc., California, USA.

Capps, M., McGregor, D., Brutzman, D. and Zyda, M. (2000). NPSNET-V: A new
beginning for dynamically extensible virtual environments, IEEE Computer Graphics
and Applications pp. 12–15.

Chaum, E. and Lee, R. (2008). Command and control common semantic core required to
enable net-centric operations, Critical Issues in C4I, AFCEA-GMU C4I Center, George
Mason University, Fairfax, Virginia Campus.

Crane, S., Campbell, C. and Scannell, L. (2008). Bridging the digital devide with net-
centric tactical services, Critical Issues in C4I, AFCEA-GMU C4I Center, George Mason
University, Fairfax, Virginia Campus.

Daly, J. and Tolk, A. (2003). Modeling and simulation integration with network-centric com-
mand and control architectures, SISO Fall SIW, Simulation Interoperability Standards
Organization, pp. 40–49.

Duvenhage, A. and Duvenhage, B. (2008). An alternative to dead reckoning for model state
quantisation when migrating to a discrete event architecture, ECMS, The European
Council for Modelling and Simulation.

Duvenhage, A. and le Roux, W. (2007a). A state estimation approach for live aircraft
engagement in a C2 simulation environment, SISO Fall SIW, Simulation Interoperability
Standards Organization.

Duvenhage, A. and Terblanche, L. (2008). The evolution of a command and control protocol
gateway, SISO Euro SIW, Simulation Interoperability Standards Organization, pp. 51–
58.

Duvenhage, B. and Kourie, D. (2007). Migrating to a real-time distributed parallel simulator
architecture, 2007 Summer Computer Simulation Conference, California.

Duvenhage, B. and Kourie, D. (2008). Migrating to a real-time distributed parallel simulator
architecture, Master’s thesis, Department of Computer Science, University of Pretoria,
South Africa.

Duvenhage, B. and le Roux, W. (2007b). A peer-to-peer simulation architecture, In
Proceedings of the 2007 High Performance Computing and Simulation Conference
(HPC&S 2007), European Council for Modelling and Simulation, pp. 684–690.

Duvenhage, B. and Senekal, F. (2004). VGD 3 architecture review, Technical report, Council
for Industrial and Scientific Research, South Africa.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

101

CHAPTER 10 BIBLIOGRAPHY

Eugster, P., Felber, P., Guerraoui, R. and Kermarrec, A.-M. (2003). The many faces of
publish/subscribe, ACM Computing Surveys (CSUR) 35(2): 114–131.

Fujimoto, R. (2000). Parallel and Distributed Simulation Systems, Wiley Interscience.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (2004). Design Patterns: Elements of
Reusable Object-Oriented Software, Addison Wesley.

Hamilton, J. and Catania, G. (2003). A practical application of enterprise architecture
for interoperability, International Conference on Infomation Systems and Engineering,
pp. 183–188.

Harless, W. and Roose, K. (1999). Considerations for the inclusion of the gateway in the
long term HLA interoperability tool suite, SISO Fall SIW, Simulation Interoperability
Standards Organization.

Keen, M., Acharya, A., Bishop, S., Hopkins, A., Milinski, S., Nott, C., Robinson, R., Adams,
J. and Verschueren, P. (2004a). Patterns: Implementing an SOA Using an Enterprise
Service Bus, WebSphere software, IBM, chapter 3, p. 55.

Keen, M., Acharya, A., Bishop, S., Hopkins, A., Milinski, S., Nott, C., Robinson, R., Adams,
J. and Verschueren, P. (2004b). Patterns: Implementing an SOA Using an Enterprise
Service Bus, WebSphere software, IBM, chapter 4, p. 73.

Kuhl, F., Weatherly, R. and Dahmann, J. (1999). Creating Computer Simulation Systems,
An Introduction to the High Level Architecture, Prentice Hall, Upper Saddle River, NJ.

Larsen, P. (2006). Coalition C2 interoperability challenges, The 11th Command and Control
Research and Technology Symposium, DOD Command and Control Research Program.

le Roux, W. (2002). VGD 2.0 architectural design considerations, Technical report, Council
for Industrial and Scientific Research, South Africa.

le Roux, W. (2006). Implementing a low cost distributed architecture for real-time behavioural
modelling and simulation, SISO Euro SIW, Simulation Interoperability Standards
Organization.

le Roux, W. (2008). Interoperability requirements for a south african joint command
and control test facility, SISO Euro SIW, Simulation Interoperability Standards
Organization, pp. 87–96.

Macedomia, M., Zyda, M., Pratt, D., Brutzman, D. and Barham, P. (1995). Exploiting reality
with multicast groups: a network architecture for large-scale virtual environments,
Virtual Reality Annual International Symposium, pp. 2–10.

Miller, D. and Thorpe, J. (1995). Invited paper - SIMNET: The advent of simulator
networking, Proceedings of the IEEE 83(8): 1114–1123.

Möller, B., Morse, K., Lighter, M., Little, R. and Lutz, R. (2008). HLA evolved - a summary
of major technical improvements, 2008 Fall Simulation Interoperability Workshop.

Moller, B. and Olsson, L. (2004). Practical experiences from HLA 1.3 to HLA IEEE 1516
interoperability, SISO Fall SIW, Simulation Interoperability Standards Organization.

Morse, K., Drake, D. and Brunton, R. (2004). Web enabling HLA compliant simulations to
support network centric applications, Command and Control Research and Technology
Symposium.

102 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

CHAPTER 10 BIBLIOGRAPHY

Morse, K., Lighter, G., Lutz, R., Saunders, R., Little, R., Möller, B. and Scrudder,
R. (2005). Evolving the high level architecture for modeling and simulation, The
Interservice/Industry Training, Simulation & Education Conference (I/ITSEC).

Naidoo, S. and Nel, J. (2006). Modeling and simulation of a ground based air defense
system and associated tactical doctrine as part of acquisition support, SISO Fall SIW,
Simulation Interoperability Standards Organization.

Nel, J., le Roux, W., van der Schyf, O. and Mostert, L. C. M. (2007). Modelling joint air
defence doctrinal issues with a LinkZA-based integration of two c2 simulators - a case
study, Military Information and Communications Symposium of South Africa (MICSA),
Armscor, Command and Management Information Systems (CMIS).

Nel, J., Roodt, J. and Oosthuizen, R. (2007). The design of the M&S acquisition support
effort of the SANDF GBADS acquisition programme, SimTecT, Simulation Industry
Association of Australia (SIAA).

Olsson, J. and Michalski, R. (2008). Serious games—integrating games in military training,
Master’s thesis, LTH School of Engineering at Campus Helsingborg, Lunds University,
Sweden.

Pokorny, T. (2005). Practical XMSF: Open source tools for enabling web based simulation,
SimTecT.

Roscoe, A. (2005). The Theory and Practise of Concurrency, Prentice Hall.

Schmidt, D., Stal, M., Rohnert, H. and Buschmann, F. (2000). Pattern-oriented Software
Architecture: Patterns for Concurrent and Networked Objects, Vol. 2, Wiley.

Schulte, R. (2002). Predicts 2003: Enterprise service bus emerge, Predicts 2003: SOA Is
Changing Software, Gartner, Inc.

Shaw, M. and Garlan, D. (1996). Software Architecture, Perspectives on an Emerging
Discipline, Prentice Hall, Upper Saddle River, NJ.

Straßburger, S. (2000). Distributed Simulation Based on the High Level Architecture in
Civilian Application Domains, PhD thesis, Otto-von-Guericke University MagdeBurg.

Tanenbaum, A. and van Steen, M. (2007). Distributed Systems, Principles and Paradigms, 2
edn, Prentice Hall, Upper Saddle River, NJ.

Zimmermann, H. (1980). OSI reference model - the ISO model of architecture for
open systems interconnection, IEEE Transactions on Communications, Vol. COM-28,
pp. 425–432.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

103

Appendix A: Papers Published
Related to Framework

This appendix contains four papers, authored or co-authored by Arno Duvenhage, that
discuss research related to the work presented in this dissertation. All four papers were
also presented by Arno Duvenhage.

• The Evolution of a C2 protocol gateway, The Simulation Interoperability Standards
Organization (SISO) Euro SIW 2008 Conference, Edinburgh, Scotland, 16-19 June
2008.

• Effectively Utilizing a 3rd Party 3D Visualization Component in a Discrete Event
Simulation Environment for Joint Command and Control (JC2), Fall Simulation
Interoperability Workshop 2009, Orlando, Florida, 21-25 September 2009.

• Experiences From Constructing Command and Control Simulations Using a Tactical
Data Link Standard, Fall Simulation Interoperability Workshop 2009, Orlando, Florida,
21-25 September 2009.

• A Layered Distributed Simulation Architecture To Support The C2 Enterprise, The
Simulation Interoperability Standards Organization (SISO) Fall SIW 2009 Conference,
Orlando, Florida, 21-25 September 2009.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

105

