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CHAPTER THREE

BUILDING BLOCKS OFCLASSIC CODING
SCHEMES

3.1 CHAPTER OVERVIEW

LASSIC block and convolutional coding scheme encoder building blookdhe focus of the

first part of this chapter. Topics covered include the mathematical désos@and definitions of
several important characterisation parameters for binary convolutiodals, binary and non-binary
linear block codes, interleavers and code puncturers. Both FIR &t/ble binary convolutional
codes are investigated. Classic binary linear block code families desénilieis chapter include
Hamming and BCH linear block codes, whereas RS block codes are catsidehe discussion on
non-binary linear block codes.

The second part of this chapter revolves around the decoder builthogsbencountered in clas-
sic block and convolutional coding schemes. Since the basic ML and MA&dde structures and
algorithms, associated with classic block and convolutional codes, atiyragailable in the liter-
ature, such algorithms are not described in detail in this study. Howetentian is given to the
construction of binary convolutional code trellises. The remainder of #nisgd the chapter details
the inner workings of de-interleavers and code de-puncturers. Adggear is concluded with a short
discussion on the concept of CSI estimation, as well as several vale@bternces to interesting CSI
estimation techniques.

3.2 ENCODER BUILDING BLOCKS

3.2.1 BINARY CONVOLUTIONAL CODES

This subsection is concerned with the basic theory of binary convolutimlgls. Following a concise
mathematical description of convolutional codes, attention is given to the R &hd IIR RSC

classes of convolutional codes.

3.2.1.1 MATHEMATICAL DESCRIPTION OF BINARY CONVOLUTIONAL ESD

A rate R. = k/n binary convolutional code encoder is essentially a finite state linear dexdoe,

sisting of k separate shift registers (one for each input bit), that acdepipple binary inputs and
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generatesi-tupple binary outputs [87]. The linearity property of such an encoelers to the fact
that a linear combination, in Galois fietelF'(2), of a set of binary data blocks, used as input, results
in a linear combination, itz £'(2), of the binary output code blocks, generated for each of the input
blocks [47].

When describing convolutional codes, it is convenient to relate the enandput to the encoder
input by means of a generator mattic (D) [87]: Let thei*? length% sequence contained within
the m™ vector of input bits into the encoder, and tH& length# sequence contained within the
m'™ vector of output bits out of the encoder, be denote@@y = {dm,i,0,dm,i1s -, dmik—1} and
Cm,i = {Cm,i,0, Cm,i,1s--s Cm,in—11, respectively. Using thé@-transform [87], the stream of encoder
inputs can be represented by thelimensional vector sequendg, (D), given by:

dp(D) =Y dmi D’ (3.1)

where D represents a single delay periodTf[s]. Likewise, the stream of encoder outputs can be
represented by the-dimensional vector sequencg (D), given by:

(D) = Zem,iDi (3.2)

The generator matrix:cc (D) of the encoder is then thie x n matrix that satisfies the following
relationship [87]: B
em(D) = dm(D).Goo(D) (3.3)

where the multiplication is carried out ovétF'(2). In general, the form of the generator matrix is as
follows [87]:

90,0 (D) g1 (D) ... gon-1(D)
D D .. n—1 (D
o (D) = 91,0:( ) 91,1:( ) g1, :1 (D) (3.4)
Gh-11 (D) gr—11 (D) ... Gr—1n-1(D)

whereg, (D) is the generator polynomial describing the positions okifeénput bit’s shift register
that must be linearly combined @F(2) to contribute to thé'" output bit.

Directly related to the generator matrix of a convolutional code, is its paritgkchetrix Hoo (D).
It is defined as aiin — k) x n matrix that, for an arbitrary code word vector sequef;€D), gen-
erated using the encoder’s generator mattix- (D), satisfies the conditiody,(D).HL (D) =0 in
GF(2) [47], with HL(D) the transpose aflcc (D).

Convolutional code encoders are classified as FIR or IIR type ere{®id. The aforemention class
of binary convolutional code encoders generate their outputs usindinefr combinations of cur-
rent and previous inputs. Thus, the generator polynomials of FIR typeotdional codes has the
general form [87]:

Vg—1
9ap(D) =Y gap;D’ (3.5)
§=0
wherewv, represents the total number of memory elements in the shift register usedjumatoon
with thea'™ message word bit i, ;. The variabley, 4 ;, which can take on values from the alphabet
{0,1}, indicates the presence or absence of a tap connectirjg'theemory element of the'" shift
register to thé™ output.
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In the case of IIR type convolutional code encoders, not only is thegtand previous inputs used

to generate the current outputs, but also previous outputs. As sudgrikeator polynomials of [IR
convolutional code encoders are rational function®if87].

3.2.1.2 IMPORTANT BINARY CONVOLUTIONAL CODE PARAMETERS ANBINDEIONS

The following parameters and definitions are vital to the understandingnvbtigional codes and
their encoders:

1. Hamming Distance: The Hamming distance (sé&swj. (4.29) inSectior.4.2.1) between two sepa-
rate encoder output vector sequenggg,D) andzZ, (D), which is denoted by (¢}, (D), c2,(D)),
is defined as the number of bit positions in which they differ [47].

. Hamming Weight: The Hamming weightvy (¢,,,(D)) of an encoder vector output sequence
¢m(D) is defined as the Hamming distance betwegiiD) and the all-zero vector sequenge
i.e. wy (¢n(D)) £ d (em(D),0) [47].

. Constraint Length: The constraint length of a rate. = k/n convolutional code encoder is the
number of delay elements used in its realisation. If the number of delay elennaplisyed in the
a'™ input’s shift register is denoted hy,, the constraint length of the encoder is given by [87]:

v = Zva (3.6)

This parameter is the most important measure of the convolutional code’s¢matiiglexity, since
the number of states in the trellis of a binary convolutional code, with a camskeagth ofv, is
2v (seeSection3.3.1.1).

. Minimal Encoders: On closer inspection, it should be apparent that there might exist $ewera
coder structures, each with its own memory (shift register) and tap coafiign that might satisfy
Eg. (3.3). However, it can be shown that there exists a subset of ers;dueiing identical state
diagrams [47], which utilises a minimum number of memory elements to generaterthaco
tional code. Such encoders are calieithimal encoder§d7]. All the convolutional code encoders
considered in this study are minimal encoders.

. Non-systematic Encoders:At a certain encoding instanéef them'™ encoder input vector, the
encoder input data stream of a non-systematic convolutional code dornmoa substream of the
encoder output data stream [87]. Thus, the encoder outputs bits tceolely of parity bits, i.e.
Cmyia = Vm,iaefora=0,1,...n—1.

. Systematic Encoders:A systematic convolutional code is one for which, at a certain encoding
instance of them'™ encoder input vector, the encoder input data stream forms a subsiféaen
encoder output data stream [87]. The convention used throughowstullig is that encoder output
bits0 to £ — 1 are the systematic bits, i.€,, ; , = dyio fOra =0,1, ...,k — 1, and outputs bitg
ton — 1 are the parity bits, i.ec,, ;o = Vo fora=kk+1,...,n— 1.

. Minimum Free Distance: The minimum free distancéy,.. of a binary convolutional code is
defined as [47]:
— i dy (¢t (D), é (D 3.7
pree = i, i (@n(D), (D)) 3.7)
wherez! (D) = d,,(D).Gee (D) ande2, (D) = d-,(D).Gee(D) in GF(2). Essentiallyd;,. is
a measure of how good a convolutional code is: The ladggr, the better a code’s performance,
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i.e. more code bits must be in error in order for one code word to be mistakemdther by the
decoder. Determining the structure of an optimal convolutional code enedth a preset code
rate and number of states in its trellis, involves an exhaustive search thatiygpssible minimal
encoders capable of generating the code, finally selecting the code wiéingbstd ;... Although
not of crucial importance to this study, it is worth mentioning that.. can be determined ef-
fortlessly from the code’sransfer function which in turn is determined from the encodestaite
diagram[47].

8. Asymptotic Coding Gain in AWGN Channel Conditions: The asymptotic coding gain for bi-
nary convolutional codes, operating in AWGN channel conditions, distaising soft decision
ML decoding and employing QPSK modulation with coherent demodulation, isrugpunded as
follows [47]:

CGHI <10logyy (Re-dfree)  [dB] (3.8)

If hard decision decoding is employed2a@B degradation in BER performance can be expected
when compared to soft decision decoding, resulting in the following upmend[47]:

CGhrd < 10logyy (Re-dfrec) — 2 [dB] (3.9)

3.2.1.3 TYPES OF BINARY CONVOLUTIONAL CODES

Discussed in the following subsections are the two main types of binary kaioral codes, namely
NSC and RSC codes. Although only NSC codes are used in classic cadiegngs employing
convolutional codes (due to the fact that RSC codes exhibit inferior p&Rrmances at low values
of E,/Ny when compared to NSC codes), both classes have found applicationsam @&tently
proposed iteratively decoded concatenated coding schemes.

3.2.1.3.1 Finite Impulse Response Non-Systematic Convolutional Cade

Although both IIR and FIR NSC codes can be constructed, FIR type M8Eschave proven to be a
more attractive solution in classic convolutional coded systems, as weller#t8rial Concatenated
Convolutional CodéSCCC) schemes [27,29]. As such, this study only concerns itself WRHINSIC
codes.

Tables with the generator polynomials of the most optimal binary convolutiani encoders, along
with their associated;,.. values, have been extensively documented in the literature. As an example,
Fig. 3.1 shows the encoder structure of a minirgatate, rateR, = 1/2, v = 3, FIR NSC code,
taken from [47]. Using the generator matrix encoder description methtadlatbin Section3.2.1.1,

the generator matrix defining this encoder is:

Gee(D)=[1+D+D* 1+D+D*+D? | (3.10)

It has been shown [47] that the NSC code generated by this generatdr has a free distance of
dtree = 6. This specific NSC code is used extensively in the simulations detail€tlapter6.

3.2.1.3.2 Recursive Systematic Convolutional Codes

The importance for the constituent encoder®afallel Concatenated Convolutional Co@@@CCC)
encoding schemes to be both systematic for decoding simplicity, and recirgivder to maximise
theinterleaver gainis now well recognised in the literature [19, 88]. As such, a class désyatic
IIR codes have been proposed [89] for the building blocks of PCCQ0BdrTs. These codes are com-
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Figure 3.1: Optimag-State, Raté?. = 1/2 NSC Code Encoder

monly referred to as RSC codes.

The RSC CC encoders used in a PCCC coding scheme need not be idetthicedgard to their
constraint lengths or rates. When designing a PCCC encoder, the goahisose the best compo-
nent codes by maximising the effective free distance [90] of the PCCCargé¢ values off}, /Ny,
this is tantamount to maximising the minimum weight code word [91, 92]. Howewterwavalues of
Ey/Ny (the region of greatest interest) optimising the weight distribution of the caaidsanis more
important than maximising the minimum weight [91].

Listed in Appendix Aare the encoder parameters of one of the most extensive sets of opti@al RS
encoders, as determined BgnedettpGarello andMontorsithrough exhaustive searches [88]. Also
specified for each of the encoders listed, is the minimum free distgnge The construction of the
optimal8-state,y = 3, rate R, = 2/3 RSC encoder (sdeg. A.2) in SectionA.3 illustrates how the
listed encoder parameters are interpreted. The generator matrix of thdegnehich is employed in
several of the simulations discusseddhapter6, is given by:

10 1+D2+D33
GeeD) = | | | LR (3.11)
14+D+D:

According toTableA.5, the minimum free distance of this codelis... = 4.

Another example of an RSC code encoder is showkign 3.2. In this figure, the encoder structure
for an optimal8-state,u = 3, rate R, = 1/2 RSC code is depicted. FroiableA.3 in Appendix A
it follows that this code has a minimum free distanceigf.. = 6 and is defined by the following

generator matrix:
Goo(D) = [ 1 LeDEpiep? } (3.12)

3.2.2 LINEAR BLOCK CODES

The focus of this subsection falls on linear block codes. Following a centéghematical description
of general linear block codes, a number of important linear block cofileitittns and parameters are
explained. A short description of the characteristics of binary HammingrpBCH and non-binary
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Figure 3.2: Optimag-State, Ratd?. = 1/2 RSC Code Encoder

RS block codes conclude the subsection.

3.2.2.1 MATHEMATICAL DESCRIPTION OF LINEAR BLOCK CODES

Consider ann, k, d,n;,) linear block code with message and code word symbols m(%).
This code hag¢* uniquen-symbol code words and a minimum Hamming distance &eetion
3.2.2.2) ofd,,;,, [symbols]. Suppose, at encoding instamegthe n-symbol code word vectat,, =
{m.,0,Cm.1,Cm.2,...,cmn—1} 1S the output produced by the linear block code encoder, giver-the
symbol input message wort),, = {dm.0,dm1,dm 2, ...,dm k—1}. The encoding process performed
by the linear block code encoder can be described by means of arskheér equations [47,93,94]:

Cm,j = dmp.gaj + dm,1~gi]‘ + ..+ dm7k_1.gz_17j forj=0,1,...,n—1 (3.13)

where the variableg; ;, withi = 0,1,....,k — 1 andj = 0,1,...,n — 1, dictate the one-to-one rela-
tionship, specific to the type of linear block code and the code constra@tige®rt,, andd,,. These
variables can only take on values fra#t’ (25). Furthermore, the multiplication and addition opera-
tions of Eq. (3.13) and all subsequent equations are also performétﬂrﬁzf). A more convenient
method that can used to describe the encoding process, is as folloWws [84]:

em = Tm-GBC (3.14)

whereG ¢, commonly referred to as the generator matrix of the block code, is akraidek x n
matrix, given by:

95,0 98,1 e gs,n—l
9ip 911 cor 9in
Gpe = . . " (3.15)
913—1,0 92—1,1 e gz—l,n—l

The linearity characteristic of a linear block code refers to the fact that#i¢2¢) linear combina-
tion of two distinct code words!, andc?,, generated by z¢ for the respective message WOE_dﬁ

andﬁfn, is equal to the encoder output code wapd for the input message WorEfn = Ein + 331-
Thus, any of the¢* code words in the linear block code can be constructed by linearly combining
several of the other code wordsGhF (2¢) [47,93,94].
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Closely related to the generator matiikzc, is a linear block code’sn — k) x n parity check
matrix H g, defined by the following relationship [47,93,94]:

Gpo.-Hbe =0 (3.16)

where0 denotes an all-zerb x (n — k) matrix andH 5., is the transpose dff 5. With the linearity
property in mind, it can be shown that all of the* code words in the linear block code is orthogonal
to every row of the parity check matri{ . As such, the parity check matrix is used extensively in
algebraic linear block code decoding techniques [47, 93, 94], susyralsome decoding, in order to
isolate and possibly correct errors in corrupted code words.

3.2.2.2 IMPORTANT LINEAR BLOCK CODE PARAMETERS AND DEFINI'HON

Several parameters and definitions that are crucial for the undeirsgeartti characterisation of linear
block codes are listed below. Since these parameters and definitionsiiferaoth binary and non-
binary linear codes, all addition and multiplication operations present in thesst®n are carried
out in the Galois field over which the linear block code is defined.

1. Hamming Distance: Identical to the definition given for binary convolutional codesSiection
3.2.1.2, the Hamming distance between two block code encoder output codeajyoandz?,,
denoted by (E,ln,EQ ) is defined as the number of code word symbol positions in which they
differ [47,93, 94].

2. Minimum Hamming Distance: Analogous to thels,.. of a binary convolutional code (s&ec-
tion 3.2.1.2), the minimum Hamming distance of a linear block code, denotdg, fy is the most
salient measure of the error detection and correction capabilities of tlee dtelmathematical
definition is as follows [47,93, 94]:

dmin = min dy (2,,5) (3.17)

my-m
dy, #dz,

wherez!, = d...G ande2, = d.,.G. If the minimum Hamming distance of a linear block code is
known, it can be shown [47, 93, 94] that the number of code word syerbars that is detectable
by the code for a single code word tig:cc: = dmin — 1, Whereas the number of correctable code
word symbol errors itcoprect = |3 (dmin — 1)].

3. Hamming Weight: The Hamming weightvy; (¢,,,) of a linear block code’s output code wofg
is defined as the Hamming distance betwegnand the all-zero code wor@, i.e. wy (¢,,) =
dp (Tm,0) [47,93,94].

4. Non-systematic Linear Block Codes:ldentical to the definition for binary non-systematic con-
volutional codes, the message watgl used as input into a non-systematic linear block code
encoder at timing instance,, does not form a substream of the encoder output code @ord
Thus, the encoder output code word symbols consist solely of paritydgmie. c,,, ; = v, ; for
i=0,1,2,...,n—1.

5. Systematic Linear Block Codes:An (n, k, d,n, ) linear block code is said to be systematic if the
lengths» encoder output code word,,, generated at encoding instanege contains a lengtl-
substring that is an exact replica of thesymbol encoder input message wakg. The convention
adopted throughout this study for such linear block codes, is that thé ficede word symbols of
¢, are the systematic symbols, i, ; = d,,, ; fori =0,1,2, ..., k—1, and the lask — & code word
symbols are the parity symbols added by the encoder;)},e.= v, ; fori = k, k+1,...,n — 1.
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Hence, the generator matrix of such a systematic linear block code hadldierfg general form
[47,93,94]:

10 0| o Fo1 - ok
01 ... 0 Py Py PP g

Gpe = [I|P] = . N ; . ’": (3.18)
00 ... 1| Py Piyy o Py

wherel} is thek x k identity matrix andP? is ak x (n — k) matrix that determines the — &
parity symbols added to each code word during encoding. An importardaieastic of linear
block codes, is that any non-systematic generator matrix, givelbgby3.15), can be reduced to
the systematic form oEq. (3.18) by means of a number of row operations and column permuta-
tions [47] (using Gaussian elimination is a popular approach).

Recalling that addition and subtraction are equivalent#i(2), it can be shown that the parity
check matrix of a binary linear systematic block code is easily determined as$dUa, 93, 94]:

Hpc = [(PS)T ’In—k} (3.19)

where(P#)” represents the transposeff and/,,_; the (n — k) x (n — k) identity matrix.

6. Weight Enumerating Function: The Weight Enumerating FunctioWEF) of an (n, k, d;nin)
linear block code is a compact method to describe its weight distribution. Itfisedeas fol-
lows [47,93,94]:

A(Z) = zn: Ay 2" (3.20)
w=0

where A,, is the number of code words in the block code that has a Hamming weight ®he
WEF can be used to compute the exact expression of the probability ofeatet errors, as well
as upper bounds on the word error probability.

7. Input-Output Weight Enumerating Function: Thelnput-Output Weight Enumerating Function
(IOWEF) of an(n, k, d,i») linear block code, also sometimes referred to as the input-redundancy
weight enumerating function, splits each term in the WEF into the separateébctioins of the
parity and message word symbols to the total Hamming weight of each codeltisrdefined as
follows [27, 63,66, 87]:

k n
AW, Z) =" Ay ,We 2" (3.21)
w=0 h=0
where A, ;, is the number of code words in the block code that has a Hamming weight of
generated by message words with a Hamming weight. of

8. Cyclic Linear Block Codes and Their Generator Polynomials: Cyclic linear block codes have
the property that all possible cyclic shifts of the elements of one code westdts in another valid
code word [47, 93, 94]. When describing these block codes, it iservent to express a message
word d,, = {dm.0, dm 1, - dm -1} and its associate code WOEG, = {¢m 0, Cm.1, s Cmon—1} N
terms of a degregé — 1 message polynomial,, (p) = dp 10" + dimg—2.0* "2 + ... + dmo
and a degree. — 1 code word polynomiat,,(p) = c¢mn—1.""" + cmn—2.0""2 + ... + Cm.0,
respectively. Using this notation, the cyclic nature of the code can be esified: If ¢, is a
code word from the cyclic linear block code?, will also be a valid code word, given that the

DEPARTMENT OFELECTRICAL, ELECTRONIC AND COMPUTERENGINEERING 46



University of Pretoria etd — Staphorst, L (2005)

CHAPTER THREE BUILDING BLOCKS OFCLASSIC CODING SCHEMES

following condition is satisfied [47,93, 94]:

¢ =p'el mod (p"+1) (3.22)

wherei can take on any integer value.

Generation of the code word polynomigl,(p), given the message polynomig),(p), can be de-
scribed using a degree-k generator polynomialgc(p) = g _,.p" F4g° 10" P 4gs.
The encoding process is as follows:

1. Non-systematic Encodindf a cyclic linear block code has to generate non-systematic code
words, the encoding process of message polynodhiép) to code word polynomiat,,, (p)
is as follows [47]:

cm(p) = dn(p)-gBc(p) (3.23)

2. Systematic EncodingThe systematic encoding of a message polynomjdlp) by a cyclic
linear block code encoder to give the code word polynomjdp), entails the following [47]:

(@) Multiply the message polynomidy}, (p) by p"*.
(b) Obtain the remainder polynomia), (p) from the division ofp™ .z, (p) by gsc(p).
(c) Construct the systematic code word polynomial as follows:

em(P) = " F.d(p) + T (p) (3.24)

The construction of a non-systematic generator matrx (seeSection3.2.2.1) for a cyclic linear
block code from its generator polynomial, is easily accomplished by firstly g@g;i(r;kkfjm =
g5 fori =0,1,....k—1andj =0,1,2,...,n — k. All the remaining elements @¥ g~ are then set
to zero [47].

9. Coding Gain in AWGN Channel Conditions: The coding gain of arin, k, d,:,) linear block
code, operating in AWGN channel conditions, decoded using softidedi4l. decoding and em-
ploying QPSK modulation with coherent demodulation, is upper boundedlas$d47]:

C’Gggt < 10logy (Rc.dmm — k.%. ln(2)> [dB] (3.25)
b

Typically a2 dB degradation in BER performance can be expected if hard decisiadidgcis
employed. Hence, the following upper bound can be calculated for thiedsaision decoding
approach [47]:

No
k.ﬁ.ln(2)> —92  [dB] (3.26)

CGlrd < 101og, (Rc.dmm —
b

3.2.2.3 LINEAR BLOCK CODES OF IMPORTANCE FOR THIS STUDY

The next two subsections describe the main characteristics of binary HaramdrigCH block codes,
respectively. This is then followed by a subsection that gives a briefrigg¢ion of non-binary RS
block codes.

3.2.2.3.1 Binary Hamming Block Codes

R. W. Hammindirst presented the well-known class of linear Hamming block codd$30 [95].
Since then, it has been shown that these single error correcting systematin-systematic block
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codes can be classified as cyclic linear block codes $&etion3.2.2.2). Although both binary and
non-binary Hamming block codes can be constructed, this study is limited to theylitass of
Hamming block codes, characterised by the following properties [47]:

(n,kydmin) = (24— 1,2 =1 —a, 3) (3.27)
whereaq is a positive integer.

Another property of an(n, k, 3) binary Hamming block code, frequently used in its construction,
is that then columns of its parity check matri¥/ 5~ consists of all possible binary vectors with
n — k = a elements, except the all-zero vector.

3.2.2.3.2 Binary Bose-Chaudhuri-Hocquenghem Block Codes

BCH block codes, discovered independently Wgcquenghemn 1959 [96], and Boseand Ray-
Chaudhuriin 1960 [97, 98], comprise of a large class of cyclic linear block codes defimedlmnary
and non-binary symbol alphabets. Although this subsection only couessybBCH block codes,
the popular class of RS block codes, which is a subclass of non-bir@H/Bock codes, is briefly
described irSection3.2.2.3.3.

Binary BCH codes are constructed in compliance with the following codenpetea restrictions:
The number of code word bits per code word is given by [47]:

n=2"—1 (3.28)

wherea > 3 is an integer value. If the number of correctable bit errors per codd i80f,,c.:, the
number of parity bits added to each message word during encoding isdsbaadollows [47]:

n—k =< a.terrect (3.29)
resulting in the following minimum Hamming distance [47]:
dmin = 2.tcorrect + 1 (330)

The generator polynomialz-(p) for such a binary BCH code can be constructed from the factors
of p>*~1 + 1. An extensive list of binary BCH block code generator polynomialfef a < 34 is
presented in [99].

3.2.2.3.3 Non-binary Reed-Solomon Block Codes

The subclass of maximum distance non-binary BCH block codes, commoalyrkas RS block

codes [14], is the focus of this subsection. The subsection starts byiog#imumber of basic RS
block code parameters and characteristics. This is then followed by arséwibpresents a short
discussion on classic cyclic encoding.

3.2.2.3.3.1 Parameters and Characteristics of Reed-Solomon Block Codes

Consider ann, k, d,,;») RS block code with message and code word symbols from the extended
binary Galois field7F (2¢), where¢ > 1. Assuming that the RS block code has to cortggt.c.:
symbol errors, it can be characterised by the following set of paraméibe number of code word
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and parity symbols per code word are given by [14, 93]:
n=2—1 (3.31)

and
n—k= 2. tcorrect (332)

respectively. Measured ¥ F’ (25) symbols, the minimum Hamming distance of the RS block code
is [14]:
dmin = 2.tcorrect + 1 (333)

An important characteristic of RS block codes is that these codes are maxiistamce codes, i.e. for
a givenn andk, there is no other linear block code that has a laggy, than an RS code [14,47,93].

Since encoding takes place @iF (25), message and code word symbols will consist of lerggth-
binary streams, uniquely defined for each of #esymbols inGF (2¢). Thus, the total number of
bits used per message and code wordwgyg = n.£ andk;:s = k.€, respectively.

3.2.2.3.3.2 Classic Encoding of Reed-Solomon Block Codes

Recall fromSection3.2.2.3.2 that BCH block codes are cyclic linear block codes. Consequantly
(n, k,dmin) RS block code, with message and code word symbols ’@dﬁw(Zﬁ), is also a cyclic
linear block code, which can be described by means of a dégreek) generator polynomial with
generator coefficients frod F' (25) [93]. Assuming the RS block code can corrégt. .. symbol
errors, the general form of this generator polynomial is as follows [14]

2.tcorrect

gse )= [ (+¢) (3.34)
=1

wherey is the primitive element of/F' (2¢). Note that this element satisfies the conditiofy’) =
0 for any integeri. For example, consider thg,...c. = 1 symbol correcting R§7,5, 3) code,
operating inGF (23). SinceGF (2?) is defined by the irreducible (primitive) polynomig},(p) =
1+ p + p3, it follows from Eq. (3.34) that the generator polynomial of the RS5, 3) code is the

following:
2

gc (@) =[] (p+¢") =+ e)p+¢") =¢"+o'p+p (3.35)
=1
The generator polynomial can now be used to generate either systematio-sysiematic code
words, as described fBection3.2.2.2.

3.2.3 INTERLEAVERS

An interleaver can be described as a simple single input, single output dbeictakes symbols
from a fixed alphabet as input and produces an identical set of syrabtige output in an altered
temporal order [87]. Thus, the basic function of an interleaver is ta&ffdy shuffle the order of a
sequence of symbols. In traditional applications, interleaving was usedriddmise” the locations

of errors caused by bursty (correlative) channels, which in turn ivgsr¢the performance of classic
block and convolutional coding schemes designed and optimised forarcglative channels, such
as the AWGN channel (se®ection2.2). With iteratively decoded concatenated coding schemes,
however, interleavers are used mainly to decrease the correlation bettveemformation encoded

by the different CCs, thereby improving the distance properties of tht@aes concatenated code.
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3.2.3.1 MATHEMATICAL DESCRIPTION OF INTERLEAVERS

Let them'" length-V sequence of symbols used as input to an interleavee denoted byi!” =
{Him00 i1 - o 2y (v 1y }- The interleaving ofz;}; by 7 can be described as follows:

i (ﬁfn) =T = {Mggto?ﬂfr?tlw vﬂgﬁ?Nfz)?ﬂ%it(N—l)} (3.36)
where2“ represents théV-symbol/sample output of the interleaver This output can also be
written as:
= {1n0s e s M 2y i v— 1)} = {Hn 10y Fm (1) s Hom TN —2)s B Ti(N—1) }

(3.37)
wherell(7), with ¢ any integer value, is a function that describes the mapping of the interieatyert
time indices to interleaver input time indices. Since interleaving can be condidsra periodic re-
ordering of blocks ofV symbols, the functiofl(:) describes a one-to-one mapping over the integers
7 modulo the periodV. Thus, it follows that:

—out

II(i) = N ==n(i — N) for all i (3.38)

For example, the simpl&/ = 3 interleaver described in [87] is defined by the following mapping
function:

) if imod3 =0
(i) =<i—3 ifimod3 =1 (3.39)
1—6 ifimod3 =2
The interleaver mapping function can also be described in termduwfdamental permutatiqrie-
fined as follows:

0 1 - N-1 > (3.40)

Nm:(n@ M) ... (N —1)
For example, the fundamental permutation of the interleaver, defined by @mgdunction ofEq.
(3.39), is given by
0 1 2
o(IT) = ( 0 -9 —4 ) (3.41)

The remaining values of the interleaver mapping function, spanning all intediges ofi, are ob-
tained by combining the fundamental permutation, givefy(3.40), and the periodicity condition,
given byEq. (3.38). Shown inTable3.1 is the interleaver mapping function for the example inter-
leaver ofEq. (3.39), calculated fof = —1,0,...,5. To further the understanding of interleaving,

Table 3.1: Mapping of the Simpl& = 3 Interleaver, Described biyq. (3.39)
i 110112 (3[4]5

mG) | -7{0|-2|-4|3[1]-1

the stream of interleaver input sequences can be represented NydimeensionalD-transform [87]
vector sequencg™ (D), given by:

—zn Z anm (342)
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where D represents one interleaver delay period\dofsymbols. Using this representation for the
interleaver input stream, the interleaver output stream can be descsili@tbas:

™ (D) = u™(D) - Gx(D) (3.43)

whereG, (D), referred to as thgenerator matriof the interleaver, is aiv x N non-singular matrix
with the following restrictions:

1. Only one entry in each row/column can be non-zero to ensure a aneetorapping.
2. Non-zero entries are of the forf¥, wherei is an integer.

For example, the generator matrix associated with the interleaver mappieg,lgi€qg. (3.39) and
illustrated inTable3.1, is as follows:

0 0
D' 0 (3.44)
0 D?

From this generator matrix it is clear that the implementation of the interleaverreésdgbe use of
delay elements. In general, such interleavers are calbegolutional interleaverssince they are
constructed using shift registers, not unlike convolutional code eneddeeSection3.2.1.1). More
information concerning the structure and characteristics of these interteean be found in [87].
Interleavers that do not require the use of delay elements are referasthlock interleavers This

type of interleaver is discussed in more detaibiection3.2.3.3.

3.2.3.2 INTERLEAVER PARAMETERS

The following parameters are often encountered in the study and chiésatitm of interleavers and
de-interleavers:

1. Interleaver Delay: The delay of an interleaver is defined as the total delay introduced inte a sys
tem by first interleaving and then de-interleaving a blocRio$ymbols [87].

2. Interleaver Causality: A causal interleaver has the property that all elemen€g;itD) are of the
form D?, with i > 0 for elements on, or under the diagonal@f (D), andi > 1 for elements
above the diagonal [87]. Therefore, the interleaver defineldhy3.39) is causal.

3. Interleaver Memory: The memory of an interleaver is defined as the minimum number of mem-
ory elements required to implement a causal version thereof [87]. Itilg eakulated by summing
the absolute values of the exponents of thelements irG (D).

4. Interleaver Spreading Factor: If an interleaver has the spreading factdf,,cqq, tpurst), it in-
dicates that the individual symbols in a burst of a length smallerthar symbols at the input of
the interleaver are separated into distinct blocks of a length greater tie@uakto)/,,, ... at the
output [87].

5. Interleaver Dispersion: The dispersion of an interleaver can be used to study its "randomness”
[87]. Itis calculated by determining the number of unigligplacement vectorsf the interleaver,
normalised with respect ty - (N — 1)/2. The interested reader is referred to [87] for a discussion
on the calculation of interleaver displacement vectors.
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3.2.3.3 BLOCKINTERLEAVER STRUCTURES

It has been shown [87] that block interleavers, i.e. interleavers witbrg&r matrices: (D) having
elements with only exponents of zero, are better suited than convolutiongaviers for both classic
block and iteratively decoded concatenated coding techniques. dherehly block interleavers are
of importance for this study.

Several types of block interleaver structures are available to the comrtiangangineerAppendix
C considers several popular deterministic and random block interlea\srbdkie attracted the at-
tention of classic block and concatenated code designers over rezanst yThe deterministic in-
terleaver structures discussed comprise of classic block interled®emsuGlavieuxinterleavers
and JPL interleavers, whereas the random interleavers of interéd3Nagenerator interleavers, ran-
dom number generator interleavers anthndom interleavers. A description of theiform inter-
leaver[100, 101], a probabilistic device frequently encounter in the mathemateafation of BER
performance bounds for concatenated codes, concludes the append

3.2.4 CODE PUNCTURERS

The price of the performance gains obtained by employing low rate codesimunication systems,
is increased transmission bandwidths and/or lower data rates. Fortubgtaking a process called
code puncturing102-105], it is possible to maintain most of a code’s error correctingluéifies,
but increase the code rate, thereby decreasing the required transntiasiwidth. Consequently,
this technique allows for the use of a single code over a wide variety of redde with negligible
performance losses. As such, it has become an indispensable comipattienchannel coding sub-
systems of numerous prevalent wireless communication standards. Rgplexd is used extensively
in the voice, data and signalling channel coding schemes employed by GS\Jlas thet coding
schemes (denoted CS-1 through CS-4%Geheral Packet Radio Servi¢6PRS).

Code puncturing is accomplished by deleting selected encoder outputdutsliag to a chosen per-
foration pattern, also known aspancturing profile In general, the period4,,,.; puncturing profile
used to increase the code rate of a binary fate= k/n code, can be expressed by the following
matrix:

To,0 To1 - YoMpune—1
Y10 Tii - Yom 1
) ) ) unct —
T = _ _ pume (3.45)
Tnfl,O Tnfl,o e TTl—lyMpunct_l

where the elements &f can only take on the valuésand1. The puncturing profile specifies that the
4" code bit of the*" n-bit encoder output is deleted from the stream of coded bits to be transmitted,
if T;, =0, wherea = i mod My, Alternatively, if T; , = 1, the specific code bit is preserved.
The code rate achieved after puncturing is easily calculated as follows:

k'Mpunct
Rp - n—1 Mpunct—l (346)

> TYja
a=0

j=0
For example, assume a single rdte = 1/3 RSC code (se&ection3.2.1.3.2) has to be used in a
communication system, but the required code rate/’s A further requirement is that the system-
atic output bits generated by the encoder may not be punctured. Oribl@gssiodd puncturing
approach is to permanently delete one of the two parity bits generate by theéeerfior every input
bit. However, this might lead to an unacceptable degradation in the codé&®rpance. A more
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attractive solution is to alternate the puncturing between the two parity bits.ollbeihg period2
puncturing profile is one of two possible profiles that will implement the aforgimeed puncturing
requirements:

T = (3.47)

O =
—_ O

3.3 DECODER BUILDING BLOCKS

3.3.1 BINARY CONVOLUTIONAL CODE DECODERS

Since classic ML decoding technigues [106] have become cornerdsgorlans in convolutional
code decoding, they are not repeated here. The unenlightened igaeferred to [106] for com-
prehensive explanations and examples of the application of the VA in tlualidecof convolutional
codes, and [107] for a discussion on the non-optiRaado sequential decoding technique.

Most ML convolutional code decoding algorithms (such assfiding windowVA) and MAP convo-
lutional code decoding algorithms (such as the BCJR algorithm [2]) makefwsvolutional code
trellises The trellis of a rateR. = k/n binary convolutional code is essentially a time-indexed state
diagram for the underlying binary circuit defined by the generator métrix (D) [47]. As such,

it contains all relevant information crucial for ML and MAP decoding aitjons. The following
subsection describes the construction of binary block code trellises.

3.3.1.1 CONSTRUCTING THE TRELLIS OF A BINARY CONVOLUTIONALEOD

Given that the constraint length of the convolutional code encodertlee trellis of the code ha®’
states, with trellis statebeing defined as the decimal equivalent of thkit binary number created
by concatenating the encoder’'s memory elements’ outputs at a certairirgnostiance. The number
of branches leaving or entering a state (node) in a binary convolutiodaitrellis, is eithed (in
the fan-out section of the trellis) @ [47].

An important characteristic of a depffz..;ons COnvolutional code trellis, distinguishing it from
a linear block code trellis (se®ection4.2), is that it can be constructed by concatenafing.;;o.
identical trellis sections, where a trellis section is defined as a single depthdheilisng all possible
state transitions of the convolutional code encoder under investigatipn@énsequently, a convo-
lutional code’s trellis can be described as being "time-invariant”, wheadiagar block code’s trellis
is "time-variant”, since each trellis section is unique.

Construction of a single convolutional code trellis section involves determthimgestination state
and associated-bit encoder output, given that thée, fori = 1,2,...,2F, possiblek-bit encoder
input is used with the encoder in an origin statéor [ = 0,1,...,2Y — 1. The transition from an
initial (origin) state to a destination state is indicated by the presence of ahbrBlach branch has
an associated-bit branch weight or decoder input branch vector, as well As# decoder output
branch vector. The decoder input and output branch vectors gfith@anch leaving thé&" state at

a trellis depth of are denoted b%{? andagl), respectively.

In the graphical representation of a single trellis section, the decoderr ampuoutput sequences,
associated with each branch, are usually indicated by meansDdader Output SequendeDe-
coder Input Sequencdor equivalentEncoder Input SequendeEncoder Output Sequenceabel.
Fig. 3.3 shows such a trellis section, obtained by following the foregoing ptweddr the optimal
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8-statey = 3, rate R, = 1/2 RSC code, defined bi¥q. (3.12).

1=0 0/00/0

=1 z
<
Q

=3 S ‘\/
|=4 0/0 \

Figure 3.3: Trellis Section of the Optim&lState, Rate?. = 1/2 RSC Code, Defined biq. (3.12)

3.3.2 LINEAR BLOCK CODE DECODERS

Since the classic algebraic algorithms employed in the decoding of linear btmids are well
known, these algorithms are not repeated in this dissertation. Howeventéhested reader is re-
ferred [47,93,94] for descriptions of the classic syndrome and Milodig techniques used for most
classes of binary linear block codes. TBerlekamp-Masseyyndrome decoding algorithm [74, 75],
which is the classic hard decision decoding algorithm, employed for both B@MR& block codes, is
addressed idppendix B Since it falls beyond the scope of this study, the claBsidekamp-Massey
algorithm is not described in much detail. However, several valuablesrefes that focus on varia-
tions of this decoding algorithm are cited for the interested reader.

Chapter4 focusses on the trellis decoding of linear block codes by means of auixetbw (or
block-wise) VA. This chapter not only describes this decoding algorithatetail, but also investi-
gates the construction of BCJR block code trellises.

3.3.3 DE-INTERLEAVERS

De-interleavers are in actual fact also interleavers. Their functioneber, is to undo the temporal
ordering of the symbols, created by the associated interleaver. The ifulj@ubsection presents a
short mathematical description of de-interleavers, buildingention3.2.3.1’s discussion of inter-
leavers.
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3.3.3.1 MATHEMATICAL DESCRIPTION OF DE-INTERLEAVERS

If the m*® length<V sequence of interleaved symbols used as input to a de-interleavenassociated
with an interleaverr, is denoted by, = {0l o, it 1, ... ,gj;:,(Nﬂ), gﬁ}}?(]\,fl)}, the de-interleaving

of 2" by 7! can be described as follows [87]:

ﬂ-_l (—Z”) = Q?rqllt {Q?#%v Q?O#th . 7@?::5(]\[_2)7 Q;):’t(]\[_l)} (348)
whereg?“! represents théV-symbol/sample output of the de-interleaver. The de-interleaver output
can also be written as [87]:

_OUt - {Q?#t(]v Q?rqjtl)' 7@?711115(]\[_2)) Q?#’t(]\[_l)} (3 49)

= {gm,H_l(O)’ Qm,H_1(1)7 ) @%,H-l(mp Qfg,n—l(zvq)}

whereIl~!(7), with i any integer value, is the de-interleaver mapping function that describes the
mapping of the de-interleaver output time indices to de-interleaver input timeesdithe mapping
function, I (), is defined such that it will undo the temporal shuffling caused by the mgppin
functionIl(7) of the interleaverr. For example, the mapping function for the de-interleaver associated
with the example periodv = 3 convolutional interleaver, defined by the mapping functiorEqf
(3.39), is as follows:

1 if imod3 =0

O 'i)=<i+3 ifimod3=1 (3.50)
i+6 ifimod3=2

From this mapping function, the de-interleaver’s fundamental permutatimwireadily:

oMt = < 8 i 2 ) (3.51)

Following a similar approach as with interleavers, the stream of de-interleguet sequences can
be presented by th¥-dimensional vector sequengéD), given by:

2" ( Z omD™ (3.52)
where D represents one de-interleaver delay perio&asymbols. Defining the generator matrix of
the de-interleave@ -1 (D), the de-interleaver output stream can be described as follows:

0*(D) =" (D) - Gr-1(D) (3.53)

Obviously the de-interleaver generator matrix is/dn< N non-singular matrix with the same re-
strictions ag7 (D). Assuming perfect channel conditions, employing interlea&putput (se€q.
(3.43)) as input for the de-interleaver!, Eq. (3.53) can be rewritten as follows:

?out(D) _ Em(D) . Gw—l (D) _ (ﬁm(D) . GW(D)) . Gﬂ.—l(D) (3.54)

Since the de-interleaver—! has to undo the shuffling of the interleaveri.e. 3°“/(D) = u"(D),
the de-interleaver’s generator matrix can be determined as follows [87]:

G.-1(D) =G (D) (3.55)
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For example, the generator matrix associated with the de-interleaver mappemgby Eq. (3.50)
must be the inverse of the matrix given By. (3.44):

1 0 0
G.1(D)=G'(D)=|0 D' 0 (3.56)
0 0 D2

From this generator matrix it is clear that the example de-interleaver is nmaicas will always be
the case for de-interleavers associated with causal interleavers [87].

3.3.4 CODE DE-PUNCTURERS

Code de-puncturing, also knowniasertion is the process whereby the bits punctured from a stream
of encoded bits prior to modulation, are reinserted into the received anddigated stream before
being decoded. Since de-puncturing fills all the "holes” in the stream added bits used as input
by the decoder, decoding can be accomplished by the standard destvdiigre associated with the
transmitter’'s encoder, eliminating the need for an altered decoder, wradbelea adapted to accom-
modate a punctured stream of bits as input [105].

An important question now arises: Were the punctured code bits onesow?z8ince the receiver
has no way of knowing the answer to this question, the best solution is torelecésuresin the
deleted bit positions. Erasures can be though of as "I am not suregsjahe size of which depends
on the code bit alphabet employed by the encoder/modulator and demoflidetater, as well as
the a-priori probabilities for the code bit ones and zeros. The erasiwel’,, ; , for the a'™ delete
code bit in thei*® symbol of them'™ n-symbol GF (2¢) channel coder output can be calculated as
follows for slow Rayleigh flat fading channel conditions with AWGN noisteets: Assuming the
receiver has perfect knowledge of the instantaneous channa phdso puncturing was performed,
coherent demodulation renders the following demodulator output far'thkit in the i** symbol of
them'™ set of received code word symbols:

Ym,i,a = Omyi,a-Cmyia T NMmja (357)

wherea,, ; . andn,, ; , represents the average fading amplitude @eetiors.2.3 andSectionb.3.3)
and AWGN demodulator output components for this code bit, respectiveith thé demodulator
output defined byeqg. (3.57), it can be shown that the conditional PPEy,, ; o|cm,iq) IS given
by [60]:

1 (ym,i,a - am,i,a-cm,aﬂ')2

N |
NMm,i,a

Nm,i,a
whereagm_iya is the variance in the AWGN component. Furthermore, assume the code hakeaon
values from the amplitude alphabeft..,,, Conc }. Calculation of the appropriate erasure valyg; ,
involves finding the intersection between the PDFs for the demodulator ogitpen,c,, .; = Cero
Of ¢ i = Cone Was transmitted [81]:

(3.58)

PrOb-(Cm,a,i = Czero) -p (ym,a,z"cm,a,z’ = Czero)‘ym’a’izpmﬁi’a = (3 59)

PrOb-(Cm,a,i = Cone) -p (ym,a,i‘cm,a,i = Cone)|

Ym,a,i=L'm,i,a
1@y 525

where Prob(c;, 4.; = Cone) and Prob(cy, o.; = C.ero) represent the a-priori probabilities of trans-
mitting ones and zeros, respectively. Solvieg. (3.59) yields the following expression for the
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optimal erasure value:

PrOb(Cm,i,a:Cone) 2 — 2 — 2
log (Pl’ob(cm,i,a=0zem)> .271'0'77”1’7:‘(1 - (am,i,a-cone) + (am,i,a'czero)

(2-am,i,a -Czero - 2-am,i,a ~Cone>

(3.60)

Fm,i,a =

For example, assuming an antipodal code bit representation from théatgha , 1} for equiprob-
able code bits, the de-puncturer will replace the deleted code bitdwith, = 0.

Although de-puncturing has a definite influence on the performance ofaMlL MAP decoders,
the gains obtained by employing punctured low rate codes surpass theofjilgher rate codes
with equivalent overall code rates [105]. Furthermore, the combinafi@eae puncturing and de-
puncturing allows the use of a single code over a wide variate of transmrssés) without requiring
alteration of the encoder or decoder structures. As such, code puagcisifrequently encountered
in coded communication systems that support rate adaptation.

3.3.5 CHANNEL STATE INFORMATION ESTIMATORS

Although the accurate estimation of mobile communication channel parameteabvags been an
area of particular appeal to communication engineers, classic cham®tiesigners refrained from
using CSl in their decoder algorithms. This was due to the fact that therpenfice improvements
obtained using side information in classic ML decoding did not necessariifyjtise required in-
creased system complexity [56]. However, the introduction of TA993 sparked a renewed interest
into this research field, since these codes, like most modern concatehatewkcodes, require the
use of reliable CSI during iterative decoding [87,108].

Explained in terms ofChapter2’s mathematical framework for mobile communication channels,
CSI estimator structures, integrated into current and future wireless coication systems, must
accomplish one or more of the following tasks:

1. Estimate the AWGN present at the output of the receiver/demodulataten torpredict the current
operationalE;,/Ny. Accurate knowledge of the SNR per bit [47] is crucial during the iteeativ
decoding of PCCs, SCCs, HCCs, product codes and LDPCs. Thispter forms an integral part
of the Log-Likelihood RatigLLR) calculations performed by each of tis®ft-Input Soft-Output
(S1S0O) decoding modules (for example, MAP and SOVA decoders)pocated into these codes’
iterative decoder structures [28,30-33,87,108].

2. Determine the power delay profiles (or impulse responses) of multipaithgfatiannels [109].
For anL-path channel, this entails estimating the average path poWeasd path delays;, for
i=1,2,..., L. For wideband DS/SSMA communication systems, full exploitation of the potential
diversity gains achievable by using MRC during RAKE reception, is onsjiide if these parame-
ters are perfectly known at all time instances [110]. Power control ithges in DS/SSMA systems
also require such knowledge in order to avoid near-far problems in CE@MAronments [111].

3. Approximate the fading amplitude and phase for each propagation pathiirpath multipath
fading channel, i.e. find;(¢t) and¢;(t), for: = 1,2,..., L. Tracking of the phase changes in-
troduced by the channel (as well as other system components, sudieray, fare essential not
only for coherent demodulation [86], but also for bit, frame and secgiéin DS/SSMA systems)
synchronisation. On the other hand, obtaining real-time estimates of the fadjplgudes are not
crucial to the signal detection process. However, these estimates ategralipart of the metric
calculations of any channel coded system employing CSl-enhancedidgc Although perfect
tracking of these parameters for each path in a multipath fading channsiriedjemplementation
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thereof might require excessive system complexity. Therefore, modivaee implementations
of RAKE receivers (se&ection5.3.2) usually only attempt to track the fading amplitudes and
phases of the dominant propagation path, partially forfeiting informatiamecklby the precursor
and post-cursor [47,112] paths.

4. Efficient multi-user detection in CDMA systems is a crucial component ot maodti-user can-
cellation techniques, which are geared at minimising the effects of the Mdepten the chan-
nel [43,44,113].

Over the last few decades, numerous channel parameter tracking satibdlgorithms have been
proposed. However, this field is still in its infancy. A universal chamstimation technique, capable
of handling all modulation schemes and mobile channel characteristics, slifselbe communica-
tion engineering society. Current schemes are mostly application sped#ip,dated into the modula-
tion technigue, MA scheme, channel equalisation subsystem or chathetfecoding algorithms
employed by modern communication systems. That being said, it is still possiblgdnige the
myriad of proposed schemes into two main categories:

1. Blind Channel Estimation: With this approach, no additional information, which might assist
with CSI estimation, is embedded into data transmissions. At the receivinglesnthel parame-
ters must be extracted directly from the modulated information signals. Olyisasemes falling
in this category are highly complex, but also much sought after, sincemsntiasion bandwidth is
relinquished for CSI estimation purposes. Many classic carrier, sequbit and frame synchro-
nisation loops fall in this category, for examl@stadoops [47], decision directed early-late code
locked loops [43, 47], etc. Multipath fading channel impulse resporae@dpdelay profile) and
AWGN power level estimations via first, second and higher order statisédsufation of mean
values, variances, auto-correlations, cross-correlations, etcalsiabe grouped into this category.
One might also consider free-running equalisers (after successfailyriy) to be blind channel
estimators. Unfortunately, very few fading amplitude estimation schemes extisizth be consid-
ered to be purely blind. However, for constant envelope transmitter tsignals, blind estimation
of the fading amplitude is easily accomplished.

2. Pilot Assisted Channel Estimation: This approach relies on the use of dedicated pilot informa-
tion (such as pilot tones, pilot symbols, etc.) from which channel paraseser effortlessly be
determined. This category can be further subdivided into:

1. In-band pilot signalling, where pilot signalling occupies the same barthkvaisl the infor-
mation being transmitted. For example, willot Symbol Assisted Modulatigi SAM),
non-information carrying symbols are injected directly into the transmitted datnsteffec-
tively sacrificing a percentage of the transmission bandwidth. At theviageend,Kalman
filters [114,115] can be used to interpolate between the amplitude chalngmyed in con-
secutive pilot symbols, thereby estimating the fading amplitude of the mobile ehatin-
other example of in-band signalling is the use of equaliser training sequgmesent in every
normal burst of GSM.

2. Out-of-band pilot signalling, where dedicated bandwidth is assigmgullés signalling pur-
poses. A system that uses a pilot channel to carry a pilot tone for icaymehronisation
purposes, is a good example of out-of-band pilot signalling.

Although an in depth investigation into channel estimation schemes falls outsidedpe of this
study, the list of journal articles and conference papers below attemppsatti the curiosity of the
interest reader:

e PSAM techniques for the estimation of flat fading channel parameterdatigtiss are discussed
and analysed in [116-118].
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e Maximum Likelihood Sequence Estimat{diLSE) algorithms (such as the VA) and per-survivor
processing for channel estimation purposes are covered in [11p-123

e In [109, 124-126] the estimation of multipath fading channel power delafilgs (impulse re-
sponses), as well as other channel statistics are addressed.

e Several joint data detection and channel estimation approaches argetedsn [122, 123, 125]
for flat and frequency selective fading channels.

¢ Blind equalisation and channel estimation techniques, including secondayadestationary sta-
tistical methods, the use of chaotic coded signals, least-squares adpmspdioear prediction
methods, periodic modulation precodeBnft Output Viterbi Equalise(SOVE) algorithms and
tricepstrum-based algorithms are presented in [127-136].

e Various multipath fading channel estimation techniques, targeted at DS/S$8fss, are given
in [111, 137,138]. In [139] the influence of channel state estimation erp#rformance of a
coherent DS/SSMA system is investigated.

¢ A technique for multi-user detection through adaptive channel estimatiosésided in [140].

Chapter6 presents a great number of simulated BER performance curves f@igtonal and linear
block codes, employing soft decision VA decoding with perfect fadinglémnadg CSI. This infor-
mation was directly extracted (s&ection2.6.2.5) from the novel complex flat fading and multipath
fading channel simulator structures, presentefiention2.6.2.3 andsection2.6.3.2, respectively.

3.4 CONCLUDING REMARKS

The encoder and decoder building blocks encountered in classic bimtlkcanvolutional coding

schemes were considered in this chapter. This included discussionsasy bimvolutional codes,

binary and non-binary linear block codes, interleaver and de-intenestwuctures, the concept of
code puncturers and de-puncturers, and last, but not least, CSl tesimdhe following unique,

albeit insignificant contributions were made in this chapter:

1. A unified generator matrix approach is employed to describe convolutiodas, linear block
codes, interleavers and de-interleavers. Although this is commonplaliedar block codes, the
same can not be said for binary convolutional codes, interleaversiatatteavers.

2. In Section3.3.4, which focuses on the issue of code de-puncturing, a simple formuiaessnted
that calculates an optimal erasure value for non-equiprobable cod&dnitsmitted through a slow
Rayleigh flat fading channel with AWGN effects.
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