
CHAPTER THREE

BUILDING BLOCKS OF CLASSIC CODING

SCHEMES

3.1 CHAPTER OVERVIEW

CLASSIC block and convolutional coding scheme encoder building blocks are the focus of the
first part of this chapter. Topics covered include the mathematical descriptions and definitions of

several important characterisation parameters for binary convolutionalcodes, binary and non-binary
linear block codes, interleavers and code puncturers. Both FIR and IIR type binary convolutional
codes are investigated. Classic binary linear block code families describedin this chapter include
Hamming and BCH linear block codes, whereas RS block codes are considered in the discussion on
non-binary linear block codes.

The second part of this chapter revolves around the decoder building blocks encountered in clas-
sic block and convolutional coding schemes. Since the basic ML and MAP decoder structures and
algorithms, associated with classic block and convolutional codes, are readily available in the liter-
ature, such algorithms are not described in detail in this study. However, attention is given to the
construction of binary convolutional code trellises. The remainder of this part of the chapter details
the inner workings of de-interleavers and code de-puncturers. The chapter is concluded with a short
discussion on the concept of CSI estimation, as well as several valuable references to interesting CSI
estimation techniques.

3.2 ENCODER BUILDING BLOCKS

3.2.1 BINARY CONVOLUTIONAL CODES

This subsection is concerned with the basic theory of binary convolutionalcodes. Following a concise
mathematical description of convolutional codes, attention is given to the FIR NSC and IIR RSC
classes of convolutional codes.

3.2.1.1 MATHEMATICAL DESCRIPTION OF BINARY CONVOLUTIONAL CODES

A rate Rc = k/n binary convolutional code encoder is essentially a finite state linear device,con-
sisting ofk separate shift registers (one for each input bit), that acceptsk-tupple binary inputs and
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CHAPTER THREE BUILDING BLOCKS OF CLASSIC CODING SCHEMES

generatesn-tupple binary outputs [87]. The linearity property of such an encoder refers to the fact
that a linear combination, in Galois fieldGF (2), of a set of binary data blocks, used as input, results
in a linear combination, inGF (2), of the binary output code blocks, generated for each of the input
blocks [47].

When describing convolutional codes, it is convenient to relate the encoder output to the encoder
input by means of a generator matrixGCC(D) [87]: Let theith length-k sequence contained within
the mth vector of input bits into the encoder, and theith length-n sequence contained within the
mth vector of output bits out of the encoder, be denoted bydm,i = {dm,i,0, dm,i,1, ..., dm,i,k−1} and
cm,i = {cm,i,0, cm,i,1, ..., cm,i,n−1}, respectively. Using theD-transform [87], the stream of encoder
inputs can be represented by thek-dimensional vector sequencedm(D), given by:

dm(D) =
∑

i

dm,iD
i (3.1)

whereD represents a single delay period ofTb [s]. Likewise, the stream of encoder outputs can be
represented by then-dimensional vector sequencecm(D), given by:

cm(D) =
∑

i

cm,iD
i (3.2)

The generator matrixGCC(D) of the encoder is then thek × n matrix that satisfies the following
relationship [87]:

cm(D) = dm(D).GCC(D) (3.3)

where the multiplication is carried out overGF (2). In general, the form of the generator matrix is as
follows [87]:

GCC (D) =








g0,0 (D) g0,1 (D) . . . g0,n−1 (D)
g1,0 (D) g1,1 (D) . . . g1,n−1 (D)

...
...

. . .
...

gk−1,1 (D) gk−1,1 (D) . . . gk−1,n−1 (D)








(3.4)

wherega,b(D) is the generator polynomial describing the positions of theath input bit’s shift register
that must be linearly combined inGF (2) to contribute to thebth output bit.

Directly related to the generator matrix of a convolutional code, is its parity check matrixHCC(D).
It is defined as an(n − k) × n matrix that, for an arbitrary code word vector sequencecm(D), gen-
erated using the encoder’s generator matrixGCC(D), satisfies the conditioncm(D).HT

CC(D) = 0 in
GF (2) [47], with HT

CC(D) the transpose ofHCC(D).

Convolutional code encoders are classified as FIR or IIR type encoders [87]. The aforemention class
of binary convolutional code encoders generate their outputs using onlylinear combinations of cur-
rent and previous inputs. Thus, the generator polynomials of FIR type convolutional codes has the
general form [87]:

ga,b(D) =

υa−1∑

j=0

ga,b,jD
j (3.5)

whereυa represents the total number of memory elements in the shift register used in conjunction
with theath message word bit indm,i. The variablega,b,j , which can take on values from the alphabet
{0, 1}, indicates the presence or absence of a tap connecting thejth memory element of theath shift
register to thebth output.
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CHAPTER THREE BUILDING BLOCKS OF CLASSIC CODING SCHEMES

In the case of IIR type convolutional code encoders, not only is the current and previous inputs used
to generate the current outputs, but also previous outputs. As such, thegenerator polynomials of IIR
convolutional code encoders are rational functions inD [87].

3.2.1.2 IMPORTANT BINARY CONVOLUTIONAL CODE PARAMETERS AND DEFINITIONS

The following parameters and definitions are vital to the understanding of convolutional codes and
their encoders:

1. Hamming Distance: The Hamming distance (seeEq. (4.29) inSection4.4.2.1) between two sepa-
rate encoder output vector sequences,c1

m(D) andc2
m(D), which is denoted bydH

(
c1
m(D), c2

m(D)
)
,

is defined as the number of bit positions in which they differ [47].

2. Hamming Weight: The Hamming weightwH (cm(D)) of an encoder vector output sequence
cm(D) is defined as the Hamming distance betweencm(D) and the all-zero vector sequence0,
i.e. wH (cm(D)) , dH

(
cm(D), 0

)
[47].

3. Constraint Length: The constraint length of a rateRc = k/n convolutional code encoder is the
number of delay elements used in its realisation. If the number of delay elements employed in the
ath input’s shift register is denoted byυa, the constraint length of the encoder is given by [87]:

υ =
k−1∑

a=0

υa (3.6)

This parameter is the most important measure of the convolutional code’s trelliscomplexity, since
the number of states in the trellis of a binary convolutional code, with a constraint length ofυ, is
2υ (seeSection3.3.1.1).

4. Minimal Encoders: On closer inspection, it should be apparent that there might exist several en-
coder structures, each with its own memory (shift register) and tap configuration that might satisfy
Eq. (3.3). However, it can be shown that there exists a subset of encoders, having identical state
diagrams [47], which utilises a minimum number of memory elements to generate the convolu-
tional code. Such encoders are calledminimal encoders[87]. All the convolutional code encoders
considered in this study are minimal encoders.

5. Non-systematic Encoders:At a certain encoding instancei of themth encoder input vector, the
encoder input data stream of a non-systematic convolutional code do notform a substream of the
encoder output data stream [87]. Thus, the encoder outputs bits consist solely of parity bits, i.e.
cm,i,a = vm,i,a for a = 0, 1, ..., n − 1.

6. Systematic Encoders:A systematic convolutional code is one for which, at a certain encoding
instancei of themth encoder input vector, the encoder input data stream forms a substreamof the
encoder output data stream [87]. The convention used throughout thisstudy is that encoder output
bits0 to k − 1 are the systematic bits, i.e.cm,i,a = dm,i,a for a = 0, 1, ..., k − 1, and outputs bitsk
to n − 1 are the parity bits, i.e.cm,i,a = vm,i,a for a = k, k + 1, ..., n − 1.

7. Minimum Free Distance: The minimum free distancedfree of a binary convolutional code is
defined as [47]:

dfree , min
d1

m(D) 6=d2
m(D)

dH

(
c1
m(D), c2

m(D)
)

(3.7)

wherec1
m(D) = d

1
m(D).GCC(D) andc2

m(D) = d
2
m(D).GCC(D) in GF (2). Essentially,dfree is

a measure of how good a convolutional code is: The largerdfree, the better a code’s performance,
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CHAPTER THREE BUILDING BLOCKS OF CLASSIC CODING SCHEMES

i.e. more code bits must be in error in order for one code word to be mistaken for another by the
decoder. Determining the structure of an optimal convolutional code encoder with a preset code
rate and number of states in its trellis, involves an exhaustive search through all possible minimal
encoders capable of generating the code, finally selecting the code with thelargestdfree. Although
not of crucial importance to this study, it is worth mentioning thatdfree can be determined ef-
fortlessly from the code’stransfer function, which in turn is determined from the encoder’sstate
diagram[47].

8. Asymptotic Coding Gain in AWGN Channel Conditions: The asymptotic coding gain for bi-
nary convolutional codes, operating in AWGN channel conditions, decoded using soft decision
ML decoding and employing QPSK modulation with coherent demodulation, is upper bounded as
follows [47]:

CGsoft
CC ≤ 10 log10 (Rc.dfree) [dB] (3.8)

If hard decision decoding is employed, a2 dB degradation in BER performance can be expected
when compared to soft decision decoding, resulting in the following upper bound [47]:

CGhard
CC ≤ 10 log10 (Rc.dfree) − 2 [dB] (3.9)

3.2.1.3 TYPES OF BINARY CONVOLUTIONAL CODES

Discussed in the following subsections are the two main types of binary convolutional codes, namely
NSC and RSC codes. Although only NSC codes are used in classic coding schemes employing
convolutional codes (due to the fact that RSC codes exhibit inferior BERperformances at low values
of Eb/N0 when compared to NSC codes), both classes have found application as CCs in recently
proposed iteratively decoded concatenated coding schemes.

3.2.1.3.1 Finite Impulse Response Non-Systematic Convolutional Codes

Although both IIR and FIR NSC codes can be constructed, FIR type NSC codes have proven to be a
more attractive solution in classic convolutional coded systems, as well as recentSerial Concatenated
Convolutional Code(SCCC) schemes [27,29]. As such, this study only concerns itself with FIR NSC
codes.

Tables with the generator polynomials of the most optimal binary convolutional code encoders, along
with their associateddfree values, have been extensively documented in the literature. As an example,
Fig. 3.1 shows the encoder structure of a minimal8-state, rateRc = 1/2, υ = 3, FIR NSC code,
taken from [47]. Using the generator matrix encoder description method detailed inSection3.2.1.1,
the generator matrix defining this encoder is:

GCC(D) =
[

1 + D + D3 1 + D + D2 + D3
]

(3.10)

It has been shown [47] that the NSC code generated by this generator matrix has a free distance of
dfree = 6. This specific NSC code is used extensively in the simulations detailed inChapter6.

3.2.1.3.2 Recursive Systematic Convolutional Codes

The importance for the constituent encoders ofParallel Concatenated Convolutional Code(PCCC)
encoding schemes to be both systematic for decoding simplicity, and recursive in order to maximise
the interleaver gain, is now well recognised in the literature [19, 88]. As such, a class of systematic
IIR codes have been proposed [89] for the building blocks of PCCC encoders. These codes are com-
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CHAPTER THREE BUILDING BLOCKS OF CLASSIC CODING SCHEMES

Delay
Tb

Delay
Tb

Delay
Tb

Shift Register

vm i, ,1

vm i, ,0

dm i, ,0

Figure 3.1: Optimal8-State, RateRc = 1/2 NSC Code Encoder

monly referred to as RSC codes.

The RSC CC encoders used in a PCCC coding scheme need not be identicalwith regard to their
constraint lengths or rates. When designing a PCCC encoder, the goal isto choose the best compo-
nent codes by maximising the effective free distance [90] of the PCCC. Atlarge values ofEb/N0,
this is tantamount to maximising the minimum weight code word [91,92]. However, at low values of
Eb/N0 (the region of greatest interest) optimising the weight distribution of the code words is more
important than maximising the minimum weight [91].

Listed in Appendix Aare the encoder parameters of one of the most extensive sets of optimal RSC
encoders, as determined byBenedetto, Garello andMontorsi through exhaustive searches [88]. Also
specified for each of the encoders listed, is the minimum free distancedfree. The construction of the
optimal8-state,υ = 3, rateRc = 2/3 RSC encoder (seeFig. A.2) in SectionA.3 illustrates how the
listed encoder parameters are interpreted. The generator matrix of this encoder, which is employed in
several of the simulations discussed inChapter6, is given by:

GCC(D) =

[

1 0 1+D2+D3

1+D+D3

0 1 1+D+D2

1+D+D3

]

(3.11)

According toTableA.5, the minimum free distance of this code isdfree = 4.

Another example of an RSC code encoder is shown inFig. 3.2. In this figure, the encoder structure
for an optimal8-state,υ = 3, rateRc = 1/2 RSC code is depicted. FromTableA.3 in Appendix A
it follows that this code has a minimum free distance ofdfree = 6 and is defined by the following
generator matrix:

GCC(D) =
[

1 1+D+D2+D3

1+D2+D3

]

(3.12)

3.2.2 LINEAR BLOCK CODES

The focus of this subsection falls on linear block codes. Following a concise mathematical description
of general linear block codes, a number of important linear block code definitions and parameters are
explained. A short description of the characteristics of binary Hamming, binary BCH and non-binary
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CHAPTER THREE BUILDING BLOCKS OF CLASSIC CODING SCHEMES

Delay
Tb

Delay
Tb

Delay
Tb

Shift Register

dm i, ,0

dm i, ,0

vm i, ,0

Figure 3.2: Optimal8-State, RateRc = 1/2 RSC Code Encoder

RS block codes conclude the subsection.

3.2.2.1 MATHEMATICAL DESCRIPTION OF LINEAR BLOCK CODES

Consider an(n, k, dmin) linear block code with message and code word symbols fromGF
(
2ξ

)
.

This code has2ξ.k uniquen-symbol code words and a minimum Hamming distance (seeSection
3.2.2.2) ofdmin [symbols]. Suppose, at encoding instancem, then-symbol code word vectorcm =
{cm,0, cm,1, cm,2, ..., cm,n−1} is the output produced by the linear block code encoder, given thek-
symbol input message worddm = {dm,0, dm,1, dm,2, ..., dm,k−1}. The encoding process performed
by the linear block code encoder can be described by means of a set ofn linear equations [47,93,94]:

cm,j = dm,0.g
e
0,j + dm,1.g

e
1,j + ... + dm,k−1.g

e
k−1,j for j = 0, 1, ..., n − 1 (3.13)

where the variablesge
i,j , with i = 0, 1, ..., k − 1 andj = 0, 1, ..., n − 1, dictate the one-to-one rela-

tionship, specific to the type of linear block code and the code constraints, betweencm anddm. These
variables can only take on values fromGF

(
2ξ

)
. Furthermore, the multiplication and addition opera-

tions ofEq. (3.13) and all subsequent equations are also performed inGF
(
2ξ

)
. A more convenient

method that can used to describe the encoding process, is as follows [47,93, 94]:

cm = xm.GBC (3.14)

whereGBC , commonly referred to as the generator matrix of the block code, is a rankk sizek × n
matrix, given by:

GBC =








ge
0,0 ge

0,1 . . . ge
0,n−1

ge
1,0 ge

1,1 . . . ge
1,n−1

...
...

. . .
...

ge
k−1,0 ge

k−1,1 . . . ge
k−1,n−1








(3.15)

The linearity characteristic of a linear block code refers to the fact that theGF
(
2ξ

)
linear combina-

tion of two distinct code wordsc1
m andc2

m, generated byGBC for the respective message wordsd
1
m

andd
2
m, is equal to the encoder output code wordc3

m for the input message wordd
3
m = d

1
m + d

2
m.

Thus, any of the2ξ.k code words in the linear block code can be constructed by linearly combining
several of the other code words inGF

(
2ξ

)
[47, 93, 94].
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CHAPTER THREE BUILDING BLOCKS OF CLASSIC CODING SCHEMES

Closely related to the generator matrixGBC , is a linear block code’s(n − k) × n parity check
matrixHBC , defined by the following relationship [47, 93, 94]:

GBC .HT
BC = 0 (3.16)

where0 denotes an all-zerok × (n− k) matrix andHT
BC is the transpose ofHBC . With the linearity

property in mind, it can be shown that all of the2ξ.k code words in the linear block code is orthogonal
to every row of the parity check matrixHBC . As such, the parity check matrix is used extensively in
algebraic linear block code decoding techniques [47, 93, 94], such assyndrome decoding, in order to
isolate and possibly correct errors in corrupted code words.

3.2.2.2 IMPORTANT LINEAR BLOCK CODE PARAMETERS AND DEFINITIONS

Several parameters and definitions that are crucial for the understanding and characterisation of linear
block codes are listed below. Since these parameters and definitions are valid for both binary and non-
binary linear codes, all addition and multiplication operations present in this discussion are carried
out in the Galois field over which the linear block code is defined.

1. Hamming Distance: Identical to the definition given for binary convolutional codes inSection
3.2.1.2, the Hamming distance between two block code encoder output code words c1

m andc2
m,

denoted bydH

(
c1
m, c2

m

)
, is defined as the number of code word symbol positions in which they

differ [47, 93, 94].

2. Minimum Hamming Distance: Analogous to thedfree of a binary convolutional code (seeSec-
tion 3.2.1.2), the minimum Hamming distance of a linear block code, denoted bydmin, is the most
salient measure of the error detection and correction capabilities of the code. Its mathematical
definition is as follows [47, 93, 94]:

dmin , min
d1

m 6=d2
m

dH

(
c1
m, c2

m

)
(3.17)

wherec1
m = d

1
m.G andc2

m = d
2
m.G. If the minimum Hamming distance of a linear block code is

known, it can be shown [47, 93, 94] that the number of code word symbol errors that is detectable
by the code for a single code word, istdetect = dmin − 1, whereas the number of correctable code
word symbol errors istcorrect =

⌊
1
2 (dmin − 1)

⌋
.

3. Hamming Weight: The Hamming weightwH (cm) of a linear block code’s output code wordcm

is defined as the Hamming distance betweencm and the all-zero code word0, i.e. wH (cm) ,
dH

(
cm, 0

)
[47, 93, 94].

4. Non-systematic Linear Block Codes:Identical to the definition for binary non-systematic con-
volutional codes, the message worddm used as input into a non-systematic linear block code
encoder at timing instancem, does not form a substream of the encoder output code wordcm.
Thus, the encoder output code word symbols consist solely of parity symbols, i.e.cm,i = vm,i for
i = 0, 1, 2, ..., n − 1.

5. Systematic Linear Block Codes:An (n, k, dmin) linear block code is said to be systematic if the
length-n encoder output code wordcm, generated at encoding instancem, contains a length-k
substring that is an exact replica of thek-symbol encoder input message worddm. The convention
adopted throughout this study for such linear block codes, is that the first k code word symbols of
cm are the systematic symbols, i.e.cm,i = dm,i for i = 0, 1, 2, ..., k−1, and the lastn−k code word
symbols are the parity symbols added by the encoder, i.e.cm,i = vm,i for i = k, k + 1, ..., n − 1.
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CHAPTER THREE BUILDING BLOCKS OF CLASSIC CODING SCHEMES

Hence, the generator matrix of such a systematic linear block code has the following general form
[47, 93, 94]:

GBC = [Ik|P ] =








1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

∣
∣
∣
∣
∣
∣
∣
∣
∣

P s
0,0 P s

0,1 . . . P s
0,n−k−1

P s
1,0 P s

1,1 . . . P s
1,n−k−1

...
...

. . .
...

P s
k−1,0 P s

k−1,1 . . . P s
k−1,n−k−1








(3.18)

whereIk is thek × k identity matrix andP s is ak × (n − k) matrix that determines then − k
parity symbols added to each code word during encoding. An important characteristic of linear
block codes, is that any non-systematic generator matrix, given byEq. (3.15), can be reduced to
the systematic form ofEq. (3.18) by means of a number of row operations and column permuta-
tions [47] (using Gaussian elimination is a popular approach).

Recalling that addition and subtraction are equivalent inGF (2), it can be shown that the parity
check matrix of a binary linear systematic block code is easily determined as follows [47, 93, 94]:

HBC =
[

(P s)T |In−k

]

(3.19)

where(P s)T represents the transpose ofP s andIn−k the(n − k) × (n − k) identity matrix.

6. Weight Enumerating Function: The Weight Enumerating Function(WEF) of an (n, k, dmin)
linear block code is a compact method to describe its weight distribution. It is defined as fol-
lows [47, 93, 94]:

A(Z) =
n∑

w=0

AwZw (3.20)

whereAw is the number of code words in the block code that has a Hamming weight ofw. The
WEF can be used to compute the exact expression of the probability of undetected errors, as well
as upper bounds on the word error probability.

7. Input-Output Weight Enumerating Function: TheInput-Output Weight Enumerating Function
(IOWEF) of an(n, k, dmin) linear block code, also sometimes referred to as the input-redundancy
weight enumerating function, splits each term in the WEF into the separate contributions of the
parity and message word symbols to the total Hamming weight of each code word. It is defined as
follows [27, 63, 66, 87]:

A(W, Z) =

k∑

w=0

n∑

h=0

Aw,hWwZh (3.21)

whereAw,h is the number of code words in the block code that has a Hamming weight ofh,
generated by message words with a Hamming weight ofw.

8. Cyclic Linear Block Codes and Their Generator Polynomials:Cyclic linear block codes have
the property that all possible cyclic shifts of the elements of one code word results in another valid
code word [47, 93, 94]. When describing these block codes, it is convenient to express a message
worddm = {dm,0, dm,1, ..., dm,k−1} and its associate code wordcm = {cm,0, cm,1, ..., cm,n−1} in
terms of a degreek − 1 message polynomialdm(p) = dm,k−1.p

k−1 + dm,k−2.p
k−2 + ... + dm,0

and a degreen − 1 code word polynomialcm(p) = cm,n−1.p
n−1 + cm,n−2.p

n−2 + ... + cm,0,
respectively. Using this notation, the cyclic nature of the code can be easilyverified: If c1

m is a
code word from the cyclic linear block code,c2

m will also be a valid code word, given that the
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CHAPTER THREE BUILDING BLOCKS OF CLASSIC CODING SCHEMES

following condition is satisfied [47, 93, 94]:

c2
m = pi.c1

m mod (pn + 1) (3.22)

wherei can take on any integer value.

Generation of the code word polynomialcm(p), given the message polynomialdm(p), can be de-
scribed using a degreen−k generator polynomialgBC(p) = gc

n−k.p
n−k+gc

n−k−1.p
n−k−1+...+gc

0.
The encoding process is as follows:

1. Non-systematic Encoding- If a cyclic linear block code has to generate non-systematic code
words, the encoding process of message polynomialdm(p) to code word polynomialcm(p)
is as follows [47]:

cm(p) = dm(p).gBC(p) (3.23)

2. Systematic Encoding- The systematic encoding of a message polynomialdm(p) by a cyclic
linear block code encoder to give the code word polynomialcm(p), entails the following [47]:

(a) Multiply the message polynomialdm(p) by pn−k.

(b) Obtain the remainder polynomialrm(p) from the division ofpn−k.xm(p) by gBC(p).

(c) Construct the systematic code word polynomial as follows:

cm(p) = pn−k.dm(p) + rm(p) (3.24)

The construction of a non-systematic generator matrixGBC (seeSection3.2.2.1) for a cyclic linear
block code from its generator polynomial, is easily accomplished by firstly setting ge

i,(n−k−j+i) =
gc
j for i = 0, 1, ..., k − 1 andj = 0, 1, 2, ..., n− k. All the remaining elements ofGBC are then set

to zero [47].

9. Coding Gain in AWGN Channel Conditions: The coding gain of an(n, k, dmin) linear block
code, operating in AWGN channel conditions, decoded using soft decision ML decoding and em-
ploying QPSK modulation with coherent demodulation, is upper bounded as follows [47]:

CGsoft
BC ≤ 10 log10

(

Rc.dmin − k.
N0

Eb
. ln(2)

)

[dB] (3.25)

Typically a 2 dB degradation in BER performance can be expected if hard decision decoding is
employed. Hence, the following upper bound can be calculated for the hard decision decoding
approach [47]:

CGhard
BC ≤ 10 log10

(

Rc.dmin − k.
N0

Eb
. ln(2)

)

− 2 [dB] (3.26)

3.2.2.3 LINEAR BLOCK CODES OF IMPORTANCE FOR THIS STUDY

The next two subsections describe the main characteristics of binary Hammingand BCH block codes,
respectively. This is then followed by a subsection that gives a brief description of non-binary RS
block codes.

3.2.2.3.1 Binary Hamming Block Codes

R. W. Hammingfirst presented the well-known class of linear Hamming block codes in1950 [95].
Since then, it has been shown that these single error correcting systematicor non-systematic block
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CHAPTER THREE BUILDING BLOCKS OF CLASSIC CODING SCHEMES

codes can be classified as cyclic linear block codes (seeSection3.2.2.2). Although both binary and
non-binary Hamming block codes can be constructed, this study is limited to the binary class of
Hamming block codes, characterised by the following properties [47]:

(n, k, dmin) = (2a − 1, 2a − 1 − a, 3) (3.27)

wherea is a positive integer.

Another property of an(n, k, 3) binary Hamming block code, frequently used in its construction,
is that then columns of its parity check matrixHBC consists of all possible binary vectors with
n − k = a elements, except the all-zero vector.

3.2.2.3.2 Binary Bose-Chaudhuri-Hocquenghem Block Codes

BCH block codes, discovered independently byHocquenghemin 1959 [96], and Boseand Ray-
Chaudhuriin 1960 [97,98], comprise of a large class of cyclic linear block codes defined over binary
and non-binary symbol alphabets. Although this subsection only covers binary BCH block codes,
the popular class of RS block codes, which is a subclass of non-binary BCH block codes, is briefly
described inSection3.2.2.3.3.

Binary BCH codes are constructed in compliance with the following code parameter restrictions:
The number of code word bits per code word is given by [47]:

n = 2a − 1 (3.28)

wherea ≥ 3 is an integer value. If the number of correctable bit errors per code word is tcorrect, the
number of parity bits added to each message word during encoding is bounded as follows [47]:

n − k =≤ a.tcorrect (3.29)

resulting in the following minimum Hamming distance [47]:

dmin = 2.tcorrect + 1 (3.30)

The generator polynomialgBC(p) for such a binary BCH code can be constructed from the factors
of p2a−1 + 1. An extensive list of binary BCH block code generator polynomials for2 ≤ a ≤ 34 is
presented in [99].

3.2.2.3.3 Non-binary Reed-Solomon Block Codes

The subclass of maximum distance non-binary BCH block codes, commonly known as RS block
codes [14], is the focus of this subsection. The subsection starts by outlining a number of basic RS
block code parameters and characteristics. This is then followed by a section that presents a short
discussion on classic cyclic encoding.

3.2.2.3.3.1 Parameters and Characteristics of Reed-Solomon Block Codes

Consider an(n, k, dmin) RS block code with message and code word symbols from the extended
binary Galois fieldGF

(
2ξ

)
, whereξ > 1. Assuming that the RS block code has to correcttcorrect

symbol errors, it can be characterised by the following set of parameters: The number of code word
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CHAPTER THREE BUILDING BLOCKS OF CLASSIC CODING SCHEMES

and parity symbols per code word are given by [14, 93]:

n = 2ξ − 1 (3.31)

and
n − k = 2.tcorrect (3.32)

respectively. Measured inGF
(
2ξ

)
symbols, the minimum Hamming distance of the RS block code

is [14]:
dmin = 2.tcorrect + 1 (3.33)

An important characteristic of RS block codes is that these codes are maximumdistance codes, i.e. for
a givenn andk, there is no other linear block code that has a largerdmin than an RS code [14,47,93].

Since encoding takes place inGF
(
2ξ

)
, message and code word symbols will consist of length-ξ

binary streams, uniquely defined for each of the2ξ symbols inGF
(
2ξ

)
. Thus, the total number of

bits used per message and code word arenbits = n.ξ andkbits = k.ξ, respectively.

3.2.2.3.3.2 Classic Encoding of Reed-Solomon Block Codes

Recall fromSection3.2.2.3.2 that BCH block codes are cyclic linear block codes. Consequently, an
(n, k, dmin) RS block code, with message and code word symbols fromGF

(
2ξ

)
, is also a cyclic

linear block code, which can be described by means of a degree-(n − k) generator polynomial with
generator coefficients fromGF

(
2ξ

)
[93]. Assuming the RS block code can correcttcorrect symbol

errors, the general form of this generator polynomial is as follows [14]:

gBC (p) =

2.tcorrect∏

i=1

(
p + ϕi

)
(3.34)

whereϕ is the primitive element ofGF
(
2ξ

)
. Note that this element satisfies the conditiong

(
ϕi

)
=

0 for any integeri. For example, consider thetcorrect = 1 symbol correcting RS(7, 5, 3) code,
operating inGF

(
23

)
. SinceGF

(
23

)
is defined by the irreducible (primitive) polynomialgip(p) =

1 + p + p3, it follows from Eq. (3.34) that the generator polynomial of the RS(7, 5, 3) code is the
following:

gBC (p) =
2∏

i=1

(
p + ϕi

)
= (p + ϕ)(p + ϕ2) = ϕ3 + ϕ4p + p2 (3.35)

The generator polynomial can now be used to generate either systematic or non-systematic code
words, as described inSection3.2.2.2.

3.2.3 INTERLEAVERS

An interleaver can be described as a simple single input, single output devicethat takes symbols
from a fixed alphabet as input and produces an identical set of symbolsat the output in an altered
temporal order [87]. Thus, the basic function of an interleaver is to effectively shuffle the order of a
sequence of symbols. In traditional applications, interleaving was used to ”randomise” the locations
of errors caused by bursty (correlative) channels, which in turn improves the performance of classic
block and convolutional coding schemes designed and optimised for non-correlative channels, such
as the AWGN channel (seeSection2.2). With iteratively decoded concatenated coding schemes,
however, interleavers are used mainly to decrease the correlation between the information encoded
by the different CCs, thereby improving the distance properties of the resultant concatenated code.
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3.2.3.1 MATHEMATICAL DESCRIPTION OF INTERLEAVERS

Let themth length-N sequence of symbols used as input to an interleaverπ be denoted byµin
m =

{µin
m,0, µ

in
m,1, ..., µ

in
m,(N−2), µ

in
m,(N−1)}. The interleaving ofµin

m by π can be described as follows:

π
(
µin

m

)
= µout

m = {µout
m,0, µ

out
m,1, ..., µ

out
m,(N−2), µ

out
m,(N−1)} (3.36)

whereµout
m represents theN -symbol/sample output of the interleaverπ. This output can also be

written as:

µout
m = {µout

m,0, µ
out
m,1, ..., µ

out
m,(N−2), µ

out
m,(N−1)} = {µout

m,Π(0), µ
out
m,Π(1), ..., µ

out
m,Π(N−2), µ

out
m,Π(N−1)}

(3.37)
whereΠ(i), with i any integer value, is a function that describes the mapping of the interleaveroutput
time indices to interleaver input time indices. Since interleaving can be considered as a periodic re-
ordering of blocks ofN symbols, the functionΠ(i) describes a one-to-one mapping over the integers
i modulo the periodN . Thus, it follows that:

Π(i) − N = π(i − N) for all i (3.38)

For example, the simpleN = 3 interleaver described in [87] is defined by the following mapping
function:

Π(i) =







i if i mod 3 = 0

i − 3 if i mod 3 = 1

i − 6 if i mod 3 = 2

(3.39)

The interleaver mapping function can also be described in terms of afundamental permutation, de-
fined as follows:

ð (Π) =

(
0 1 · · · N − 1

Π(0) Π(1) · · · Π(N − 1)

)

(3.40)

For example, the fundamental permutation of the interleaver, defined by the mapping function ofEq.
(3.39), is given by

ð (Π) =

(
0 1 2
0 −2 −4

)

(3.41)

The remaining values of the interleaver mapping function, spanning all integer values ofi, are ob-
tained by combining the fundamental permutation, given byEq. (3.40), and the periodicity condition,
given byEq. (3.38). Shown inTable3.1 is the interleaver mapping function for the example inter-
leaver ofEq. (3.39), calculated fori = −1, 0, ..., 5. To further the understanding of interleaving,

Table 3.1: Mapping of the SimpleN = 3 Interleaver, Described byEq. (3.39)

i -1 0 1 2 3 4 5

Π(i) -7 0 -2 -4 3 1 -1

the stream of interleaver input sequences can be represented by theN -dimensionalD-transform [87]
vector sequenceµin(D), given by:

µin(D) =
∑

m

µin
mDm (3.42)
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whereD represents one interleaver delay period ofN symbols. Using this representation for the
interleaver input stream, the interleaver output stream can be described as follows:

µout(D) = µin(D) · Gπ(D) (3.43)

whereGπ(D), referred to as thegenerator matrixof the interleaver, is anN ×N non-singular matrix
with the following restrictions:

1. Only one entry in each row/column can be non-zero to ensure a one-to-one mapping.

2. Non-zero entries are of the formDi, wherei is an integer.

For example, the generator matrix associated with the interleaver mapping, given byEq. (3.39) and
illustrated inTable3.1, is as follows:

Gπ(D) =





1 0 0
0 D1 0
0 0 D2



 (3.44)

From this generator matrix it is clear that the implementation of the interleaver requires the use of
delay elements. In general, such interleavers are calledconvolutional interleavers, since they are
constructed using shift registers, not unlike convolutional code encoders (seeSection3.2.1.1). More
information concerning the structure and characteristics of these interleavers can be found in [87].
Interleavers that do not require the use of delay elements are referredto asblock interleavers. This
type of interleaver is discussed in more detail inSection3.2.3.3.

3.2.3.2 INTERLEAVER PARAMETERS

The following parameters are often encountered in the study and characterisation of interleavers and
de-interleavers:

1. Interleaver Delay: The delay of an interleaver is defined as the total delay introduced into a sys-
tem by first interleaving and then de-interleaving a block ofN symbols [87].

2. Interleaver Causality: A causal interleaver has the property that all elements inGπ(D) are of the
form Di, with i ≥ 0 for elements on, or under the diagonal ofGπ(D), andi ≥ 1 for elements
above the diagonal [87]. Therefore, the interleaver defined byEq. (3.39) is causal.

3. Interleaver Memory: The memory of an interleaver is defined as the minimum number of mem-
ory elements required to implement a causal version thereof [87]. It is easily calculated by summing
the absolute values of the exponents of theD elements inGπ(D).

4. Interleaver Spreading Factor: If an interleaver has the spreading factor(Mspread, tburst), it in-
dicates that the individual symbols in a burst of a length smaller thantburst symbols at the input of
the interleaver are separated into distinct blocks of a length greater than orequal toMspread at the
output [87].

5. Interleaver Dispersion: The dispersion of an interleaver can be used to study its ”randomness”
[87]. It is calculated by determining the number of uniquedisplacement vectorsof the interleaver,
normalised with respect toN · (N − 1)/2. The interested reader is referred to [87] for a discussion
on the calculation of interleaver displacement vectors.
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CHAPTER THREE BUILDING BLOCKS OF CLASSIC CODING SCHEMES

3.2.3.3 BLOCK INTERLEAVER STRUCTURES

It has been shown [87] that block interleavers, i.e. interleavers with generator matricesGπ(D) having
elements with only exponents of zero, are better suited than convolutional interleavers for both classic
block and iteratively decoded concatenated coding techniques. Therefore, only block interleavers are
of importance for this study.

Several types of block interleaver structures are available to the communications engineer.Appendix
C considers several popular deterministic and random block interleavers that have attracted the at-
tention of classic block and concatenated code designers over recent years. The deterministic in-
terleaver structures discussed comprise of classic block interleavers,Berrou-Glavieux interleavers
and JPL interleavers, whereas the random interleavers of interest arePN generator interleavers, ran-
dom number generator interleavers ands-random interleavers. A description of theuniform inter-
leaver[100, 101], a probabilistic device frequently encounter in the mathematical derivation of BER
performance bounds for concatenated codes, concludes the appendix.

3.2.4 CODE PUNCTURERS

The price of the performance gains obtained by employing low rate codes in communication systems,
is increased transmission bandwidths and/or lower data rates. Fortunately,by using a process called
code puncturing[102–105], it is possible to maintain most of a code’s error correcting capabilities,
but increase the code rate, thereby decreasing the required transmission bandwidth. Consequently,
this technique allows for the use of a single code over a wide variety of coderates with negligible
performance losses. As such, it has become an indispensable component in the channel coding sub-
systems of numerous prevalent wireless communication standards. For example, it is used extensively
in the voice, data and signalling channel coding schemes employed by GSM, as well as the4 coding
schemes (denoted CS-1 through CS-4) ofGeneral Packet Radio Service(GPRS).

Code puncturing is accomplished by deleting selected encoder output bits according to a chosen per-
foration pattern, also known as apuncturing profile. In general, the period-Mpunct puncturing profile
used to increase the code rate of a binary rateRc = k/n code, can be expressed by the following
matrix:

Υ =








Υ0,0 Υ0,1 · · · Υ0,Mpunct−1

Υ1,0 Υ1,1 · · · Υ0,Mpunct−1
...

...
. . .

...
Υn−1,0 Υn−1,0 · · · Υn−1,Mpunct−1








(3.45)

where the elements ofΥ can only take on the values0 and1. The puncturing profile specifies that the
jth code bit of theith n-bit encoder output is deleted from the stream of coded bits to be transmitted,
if Υj,a = 0, wherea = i mod Mpunct. Alternatively, if Υj,a = 1, the specific code bit is preserved.
The code rate achieved after puncturing is easily calculated as follows:

Rp =
k.Mpunct

n−1∑

j=0

Mpunct−1∑

a=0
Υj,a

(3.46)

For example, assume a single rateRc = 1/3 RSC code (seeSection3.2.1.3.2) has to be used in a
communication system, but the required code rate is1/2. A further requirement is that the system-
atic output bits generated by the encoder may not be punctured. One possible period-1 puncturing
approach is to permanently delete one of the two parity bits generate by the encoder for every input
bit. However, this might lead to an unacceptable degradation in the code’s performance. A more
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CHAPTER THREE BUILDING BLOCKS OF CLASSIC CODING SCHEMES

attractive solution is to alternate the puncturing between the two parity bits. The following period-2
puncturing profile is one of two possible profiles that will implement the aforementioned puncturing
requirements:

Υ =





1 1
1 0
0 1



 (3.47)

3.3 DECODER BUILDING BLOCKS

3.3.1 BINARY CONVOLUTIONAL CODE DECODERS

Since classic ML decoding techniques [106] have become cornerstone algorithms in convolutional
code decoding, they are not repeated here. The unenlightened reader is referred to [106] for com-
prehensive explanations and examples of the application of the VA in the decoding of convolutional
codes, and [107] for a discussion on the non-optimalFanosequential decoding technique.

Most ML convolutional code decoding algorithms (such as thesliding windowVA) and MAP convo-
lutional code decoding algorithms (such as the BCJR algorithm [2]) make useof convolutional code
trellises. The trellis of a rateRc = k/n binary convolutional code is essentially a time-indexed state
diagram for the underlying binary circuit defined by the generator matrixGCC(D) [47]. As such,
it contains all relevant information crucial for ML and MAP decoding algorithms. The following
subsection describes the construction of binary block code trellises.

3.3.1.1 CONSTRUCTING THE TRELLIS OF A BINARY CONVOLUTIONAL CODE

Given that the constraint length of the convolutional code encoder isυ, the trellis of the code has2υ

states, with trellis statel being defined as the decimal equivalent of theυ-bit binary number created
by concatenating the encoder’s memory elements’ outputs at a certain encoding instance. The number
of branches leaving or entering a state (node) in a binary convolutional code’s trellis, is either0 (in
the fan-out section of the trellis) or2k [47].

An important characteristic of a depth-Msections convolutional code trellis, distinguishing it from
a linear block code trellis (seeSection4.2), is that it can be constructed by concatenatingMsection

identical trellis sections, where a trellis section is defined as a single depth trellisshowing all possible
state transitions of the convolutional code encoder under investigation [47]. Consequently, a convo-
lutional code’s trellis can be described as being ”time-invariant”, whereasa linear block code’s trellis
is ”time-variant”, since each trellis section is unique.

Construction of a single convolutional code trellis section involves determiningthe destination state
and associatedn-bit encoder output, given that theith, for i = 1, 2, ..., 2k, possiblek-bit encoder
input is used with the encoder in an origin statel, for l = 0, 1, ..., 2υ − 1. The transition from an
initial (origin) state to a destination state is indicated by the presence of a branch. Each branch has
an associatedn-bit branch weight or decoder input branch vector, as well as ak-bit decoder output
branch vector. The decoder input and output branch vectors of thejth branch leaving thelth state at
a trellis depth ofi are denoted byu(j)

i,l ando
(j)
i,l , respectively.

In the graphical representation of a single trellis section, the decoder input and output sequences,
associated with each branch, are usually indicated by means of a”Decoder Output Sequence/ De-
coder Input Sequence”(or equivalent”Encoder Input Sequence/ Encoder Output Sequence”) label.
Fig. 3.3 shows such a trellis section, obtained by following the foregoing procedure for the optimal
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8-state,υ = 3, rateRc = 1/2 RSC code, defined byEq. (3.12).

0/00l=0

l=1

l=2

l=3

l=4

l=5

l=6

l=7

1/11

0/00

1/11

0/01

1/10

0/01

1/10

1/11

0/00

0/00

1/11

0/01

1/10

0/0
1

1/10

Figure 3.3: Trellis Section of the Optimal8-State, RateRc = 1/2 RSC Code, Defined byEq. (3.12)

3.3.2 LINEAR BLOCK CODE DECODERS

Since the classic algebraic algorithms employed in the decoding of linear block codes are well
known, these algorithms are not repeated in this dissertation. However, theinterested reader is re-
ferred [47,93,94] for descriptions of the classic syndrome and ML decoding techniques used for most
classes of binary linear block codes. TheBerlekamp-Masseysyndrome decoding algorithm [74, 75],
which is the classic hard decision decoding algorithm, employed for both BCH and RS block codes, is
addressed inAppendix B. Since it falls beyond the scope of this study, the classicBerlekamp-Massey
algorithm is not described in much detail. However, several valuable references that focus on varia-
tions of this decoding algorithm are cited for the interested reader.

Chapter4 focusses on the trellis decoding of linear block codes by means of a fixedwindow (or
block-wise) VA. This chapter not only describes this decoding algorithm indetail, but also investi-
gates the construction of BCJR block code trellises.

3.3.3 DE-INTERLEAVERS

De-interleavers are in actual fact also interleavers. Their function, however, is to undo the temporal
ordering of the symbols, created by the associated interleaver. The following subsection presents a
short mathematical description of de-interleavers, building onSection3.2.3.1’s discussion of inter-
leavers.
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3.3.3.1 MATHEMATICAL DESCRIPTION OF DE-INTERLEAVERS

If themth length-N sequence of interleaved symbols used as input to a de-interleaver,π−1, associated
with an interleaverπ, is denoted by̺ in

m = {̺in
m,0, ̺

in
m,1, ..., ̺

in
m,(N−2), ̺

in
m,(N−1)}, the de-interleaving

of ̺in
m by π−1 can be described as follows [87]:

π−1
(
̺in

m

)
= ̺out

m = {̺out
m,0, ̺

out
m,1, ..., ̺

out
m,(N−2), ̺

out
m,(N−1)} (3.48)

where̺out
m represents theN -symbol/sample output of the de-interleaver. The de-interleaver output

can also be written as [87]:

̺out
m = {̺out

m,0, ̺
out
m,1, ..., ̺

out
m,(N−2), ̺

out
m,(N−1)}

= {̺in
m,Π−1(0), ̺

in
m,Π−1(1), ..., ̺

in
m,Π−1(N−2), ̺

in
m,Π−1(N−1)}

(3.49)

whereΠ−1(i), with i any integer value, is the de-interleaver mapping function that describes the
mapping of the de-interleaver output time indices to de-interleaver input time indices. The mapping
function, Π−1(i), is defined such that it will undo the temporal shuffling caused by the mapping
functionΠ(i) of the interleaverπ. For example, the mapping function for the de-interleaver associated
with the example periodN = 3 convolutional interleaver, defined by the mapping function ofEq.
(3.39), is as follows:

Π−1(i) =







i if i mod 3 = 0

i + 3 if i mod 3 = 1

i + 6 if i mod 3 = 2

(3.50)

From this mapping function, the de-interleaver’s fundamental permutation follows readily:

ð
(
Π−1

)
=

(
0 1 2
0 4 8

)

(3.51)

Following a similar approach as with interleavers, the stream of de-interleaver input sequences can
be presented by theN -dimensional vector sequence̺(D), given by:

̺in(D) =
∑

m

̺in
mDm (3.52)

whereD represents one de-interleaver delay period ofN symbols. Defining the generator matrix of
the de-interleaverGπ−1(D), the de-interleaver output stream can be described as follows:

̺out(D) = ̺in(D) · Gπ−1(D) (3.53)

Obviously the de-interleaver generator matrix is anN × N non-singular matrix with the same re-
strictions asGπ(D). Assuming perfect channel conditions, employing interleaverπ’s output (seeEq.
(3.43)) as input for the de-interleaverπ−1, Eq. (3.53) can be rewritten as follows:

̺out(D) = ̺in(D) · Gπ−1(D) =
(
µin(D) · Gπ(D)

)
· Gπ−1(D) (3.54)

Since the de-interleaverπ−1 has to undo the shuffling of the interleaverπ, i.e. ̺out(D) = µin(D),
the de-interleaver’s generator matrix can be determined as follows [87]:

Gπ−1(D) = G−1
π (D) (3.55)
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For example, the generator matrix associated with the de-interleaver mapping given by Eq. (3.50)
must be the inverse of the matrix given byEq. (3.44):

Gπ−1(D) = G−1
π (D) =





1 0 0
0 D−1 0
0 0 D−2



 (3.56)

From this generator matrix it is clear that the example de-interleaver is non-causal, as will always be
the case for de-interleavers associated with causal interleavers [87].

3.3.4 CODE DE-PUNCTURERS

Code de-puncturing, also known asinsertion, is the process whereby the bits punctured from a stream
of encoded bits prior to modulation, are reinserted into the received and demodulated stream before
being decoded. Since de-puncturing fills all the ”holes” in the stream of encoded bits used as input
by the decoder, decoding can be accomplished by the standard decodingstructure associated with the
transmitter’s encoder, eliminating the need for an altered decoder, which has been adapted to accom-
modate a punctured stream of bits as input [105].

An important question now arises: Were the punctured code bits ones or zeros? Since the receiver
has no way of knowing the answer to this question, the best solution is to declare erasuresin the
deleted bit positions. Erasures can be though of as ”I am not sure” values, the size of which depends
on the code bit alphabet employed by the encoder/modulator and demodulator/decoder, as well as
the a-priori probabilities for the code bit ones and zeros. The erasurevalueΓm,i,a for theath delete
code bit in theith symbol of themth n-symbolGF

(
2ξ

)
channel coder output can be calculated as

follows for slow Rayleigh flat fading channel conditions with AWGN noise effects: Assuming the
receiver has perfect knowledge of the instantaneous channel phase and no puncturing was performed,
coherent demodulation renders the following demodulator output for theath bit in theith symbol of
themth set of received code word symbols:

ym,i,a = αm,i,a.cm,i,a + ηm,i,a (3.57)

whereαm,i,a andηm,i,a represents the average fading amplitude (seeSection5.2.3 andSection5.3.3)
and AWGN demodulator output components for this code bit, respectively. With the demodulator
output defined byEq. (3.57), it can be shown that the conditional PDFρ (ym,i,a|cm,i,a) is given
by [60]:

ρ (ym,a,i|cm,a,i) =
1√

2πσηm,i,a

exp

[

−(ym,i,a − αm,i,a.cm,a,i)
2

2σ2
ηm,i,a

]

(3.58)

whereσ2
ηm,i,a

is the variance in the AWGN component. Furthermore, assume the code bit cantake on
values from the amplitude alphabet{Czero, Cone}. Calculation of the appropriate erasure valueΓm,i,a

involves finding the intersection between the PDFs for the demodulator output,givencm,a,i = Czero

or cm,a,i = Cone was transmitted [81]:

Prob.(cm,a,i = Czero) .ρ (ym,a,i|cm,a,i = Czero)|ym,a,i=Γm,i,a
=

Prob.(cm,a,i = Cone) .ρ (ym,a,i|cm,a,i = Cone)|ym,a,i=Γm,i,a

(3.59)

where Prob.(cm,a,i = Cone) and Prob.(cm,a,i = Czero) represent the a-priori probabilities of trans-
mitting ones and zeros, respectively. SolvingEq. (3.59) yields the following expression for the
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optimal erasure value:

Γm,i,a =
log

(
Prob.(cm,i,a=Cone)
Prob.(cm,i,a=Czero)

)

.2πσ2
ηm,i,a

− (αm,i,a.Cone)
2 + (αm,i,a.Czero)

2

(2.αm,i,a.Czero − 2.αm,i,a.Cone)
(3.60)

For example, assuming an antipodal code bit representation from the alphabet{−1, 1} for equiprob-
able code bits, the de-puncturer will replace the deleted code bits withΓm,i,a = 0.

Although de-puncturing has a definite influence on the performance of MLand MAP decoders,
the gains obtained by employing punctured low rate codes surpass the gainsof higher rate codes
with equivalent overall code rates [105]. Furthermore, the combination of code puncturing and de-
puncturing allows the use of a single code over a wide variate of transmissionrates, without requiring
alteration of the encoder or decoder structures. As such, code puncturing is frequently encountered
in coded communication systems that support rate adaptation.

3.3.5 CHANNEL STATE INFORMATION ESTIMATORS

Although the accurate estimation of mobile communication channel parameters hasalways been an
area of particular appeal to communication engineers, classic channel code designers refrained from
using CSI in their decoder algorithms. This was due to the fact that the performance improvements
obtained using side information in classic ML decoding did not necessarily justify the required in-
creased system complexity [56]. However, the introduction of TCs in1993 sparked a renewed interest
into this research field, since these codes, like most modern concatenated channel codes, require the
use of reliable CSI during iterative decoding [87, 108].

Explained in terms ofChapter2’s mathematical framework for mobile communication channels,
CSI estimator structures, integrated into current and future wireless communication systems, must
accomplish one or more of the following tasks:

1. Estimate the AWGN present at the output of the receiver/demodulator in order to predict the current
operationalEb/N0. Accurate knowledge of the SNR per bit [47] is crucial during the iterative
decoding of PCCs, SCCs, HCCs, product codes and LDPCs. This parameter forms an integral part
of the Log-Likelihood Ratio(LLR) calculations performed by each of theSoft-Input Soft-Output
(SISO) decoding modules (for example, MAP and SOVA decoders) incorporated into these codes’
iterative decoder structures [28, 30–33, 87, 108].

2. Determine the power delay profiles (or impulse responses) of multipath fading channels [109].
For anL-path channel, this entails estimating the average path powersβi and path delaysτi, for
i = 1, 2, ..., L. For wideband DS/SSMA communication systems, full exploitation of the potential
diversity gains achievable by using MRC during RAKE reception, is only possible if these parame-
ters are perfectly known at all time instances [110]. Power control algorithms in DS/SSMA systems
also require such knowledge in order to avoid near-far problems in CDMAenvironments [111].

3. Approximate the fading amplitude and phase for each propagation path in an L-path multipath
fading channel, i.e. findαi(t) andφi(t), for i = 1, 2, ..., L. Tracking of the phase changes in-
troduced by the channel (as well as other system components, such as filters), are essential not
only for coherent demodulation [86], but also for bit, frame and sequence (in DS/SSMA systems)
synchronisation. On the other hand, obtaining real-time estimates of the fadingamplitudes are not
crucial to the signal detection process. However, these estimates are an integral part of the metric
calculations of any channel coded system employing CSI-enhanced decoding. Although perfect
tracking of these parameters for each path in a multipath fading channel is desired, implementation
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thereof might require excessive system complexity. Therefore, most hardware implementations
of RAKE receivers (seeSection5.3.2) usually only attempt to track the fading amplitudes and
phases of the dominant propagation path, partially forfeiting information carried by the precursor
and post-cursor [47, 112] paths.

4. Efficient multi-user detection in CDMA systems is a crucial component of most multi-user can-
cellation techniques, which are geared at minimising the effects of the MUI present in the chan-
nel [43, 44, 113].

Over the last few decades, numerous channel parameter tracking methods and algorithms have been
proposed. However, this field is still in its infancy. A universal channelestimation technique, capable
of handling all modulation schemes and mobile channel characteristics, still eludes the communica-
tion engineering society. Current schemes are mostly application specific, integrated into the modula-
tion technique, MA scheme, channel equalisation subsystem or channel coding/decoding algorithms
employed by modern communication systems. That being said, it is still possible to organise the
myriad of proposed schemes into two main categories:

1. Blind Channel Estimation: With this approach, no additional information, which might assist
with CSI estimation, is embedded into data transmissions. At the receiving end, channel parame-
ters must be extracted directly from the modulated information signals. Obviously, schemes falling
in this category are highly complex, but also much sought after, since no transmission bandwidth is
relinquished for CSI estimation purposes. Many classic carrier, sequence, bit and frame synchro-
nisation loops fall in this category, for exampleCostasloops [47], decision directed early-late code
locked loops [43, 47], etc. Multipath fading channel impulse response (power delay profile) and
AWGN power level estimations via first, second and higher order statistics (calculation of mean
values, variances, auto-correlations, cross-correlations, etc.) canalso be grouped into this category.
One might also consider free-running equalisers (after successfully training) to be blind channel
estimators. Unfortunately, very few fading amplitude estimation schemes exist that can be consid-
ered to be purely blind. However, for constant envelope transmitter output signals, blind estimation
of the fading amplitude is easily accomplished.

2. Pilot Assisted Channel Estimation: This approach relies on the use of dedicated pilot informa-
tion (such as pilot tones, pilot symbols, etc.) from which channel parameters can effortlessly be
determined. This category can be further subdivided into:

1. In-band pilot signalling, where pilot signalling occupies the same bandwidth as the infor-
mation being transmitted. For example, withPilot Symbol Assisted Modulation(PSAM),
non-information carrying symbols are injected directly into the transmitted data stream, effec-
tively sacrificing a percentage of the transmission bandwidth. At the receiving end,Kalman
filters [114, 115] can be used to interpolate between the amplitude changes observed in con-
secutive pilot symbols, thereby estimating the fading amplitude of the mobile channel. An-
other example of in-band signalling is the use of equaliser training sequences, present in every
normal burst of GSM.

2. Out-of-band pilot signalling, where dedicated bandwidth is assigned for pilot signalling pur-
poses. A system that uses a pilot channel to carry a pilot tone for carrier synchronisation
purposes, is a good example of out-of-band pilot signalling.

Although an in depth investigation into channel estimation schemes falls outside thescope of this
study, the list of journal articles and conference papers below attempts to spark the curiosity of the
interest reader:

• PSAM techniques for the estimation of flat fading channel parameters and statistics are discussed
and analysed in [116–118].
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• Maximum Likelihood Sequence Estimation(MLSE) algorithms (such as the VA) and per-survivor
processing for channel estimation purposes are covered in [119–123].

• In [109, 124–126] the estimation of multipath fading channel power delay profiles (impulse re-
sponses), as well as other channel statistics are addressed.

• Several joint data detection and channel estimation approaches are considered in [122, 123, 125]
for flat and frequency selective fading channels.

• Blind equalisation and channel estimation techniques, including second order cyclostationary sta-
tistical methods, the use of chaotic coded signals, least-squares approaches, linear prediction
methods, periodic modulation precoders,Soft Output Viterbi Equaliser(SOVE) algorithms and
tricepstrum-based algorithms are presented in [127–136].

• Various multipath fading channel estimation techniques, targeted at DS/SSMA systems, are given
in [111, 137, 138]. In [139] the influence of channel state estimation on the performance of a
coherent DS/SSMA system is investigated.

• A technique for multi-user detection through adaptive channel estimation is described in [140].

Chapter6 presents a great number of simulated BER performance curves for convolutional and linear
block codes, employing soft decision VA decoding with perfect fading amplitude CSI. This infor-
mation was directly extracted (seeSection2.6.2.5) from the novel complex flat fading and multipath
fading channel simulator structures, presented inSection2.6.2.3 andSection2.6.3.2, respectively.

3.4 CONCLUDING REMARKS

The encoder and decoder building blocks encountered in classic block and convolutional coding
schemes were considered in this chapter. This included discussions on binary convolutional codes,
binary and non-binary linear block codes, interleaver and de-interleaver structures, the concept of
code puncturers and de-puncturers, and last, but not least, CSI estimators. The following unique,
albeit insignificant contributions were made in this chapter:

1. A unified generator matrix approach is employed to describe convolutional codes, linear block
codes, interleavers and de-interleavers. Although this is commonplace forlinear block codes, the
same can not be said for binary convolutional codes, interleavers or de-interleavers.

2. In Section3.3.4, which focuses on the issue of code de-puncturing, a simple formula ispresented
that calculates an optimal erasure value for non-equiprobable code bits,transmitted through a slow
Rayleigh flat fading channel with AWGN effects.
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