Chapter 2

Support Vector Machine
Training Methods

An overview of current methods of Support Vector Machine training is given in this chapter.
The method of decomposing the training problem into subproblems is discussed in detail,
and includes conditions for optimality of the training problem, methods for selecting good
subproblems, and different optimisations to the decomposition algorithm itself. The chapter

concludes with a complete Support Vector Machine training algorithm.

2.1 Introduction to Support Vector Machine training

methods

Training a Support Vector Machine (SVM) involves solving a linearly constrained quadratic
optimisation problem. The SVM fits a decision function to a labelled set of ! training
patterns, which correspond to the total of [free parameters in the optimisation problem.
The training data set consists of a total of I N-dimensional patterns x; and their respective

class labels y;. The quadratic programming (QP) problem, from chapter one, is to find

max W) = afl- %aTQa
subject to Ty = 0 (2.1)
a > 0
Cl-a > 0

In the QP problem, the objective function — the function to be maximised — depends on

the a; quadratically, while the parameters «; only appear linearly in the constraints. € is

15

Chapter 2. Support Vector Machine Training Methods 16

an [by [matrix that depends on both a kernel function of the training inputs, and their
respective labels: (Q)i; = vy k(xi, x;).

The QP problem is equivalent to finding the maximum of a bowl-shaped objective func-
tion. The search for the maximum occurs in { dimensions, and is constrained to lie inside a
hypercube and on a hyperplane. Due to the definition of the kernel function, the matrix ¢
always gives a convex QP problem. The convexity of the optimisation problem implies that
every local maximum is also a global maximum [20]. A global maximum means that there is
no other point inside the feasible region at which the objective function takes a higher value.
When @ is positive definite, the objective function will be bowl-shaped; when @ is positive
semi-definite, the objective function will have flat-bottomed troughs. The objective func-
tion will never be saddle-shaped. Thus there exists a unique maximum or a connected set
of maximums. Certain optimality conditions — the Karush-Kuhn-Tucker (KKT) conditions
[20] — give conditions determining whether the constrained maximum has been found.

The SVM QP problem is simple and well understood; yet solving the QP problem for real-
world cases can prove to be very difficult. Analytic solutions are possible when the number
of training patterns is very small, or when the data is separable and it is known beforehand
which vectors will be support vectors. In most real-world cases, numeric solutions are called
for. Small problems can be solved with general-purpose optimisation packages that solve
linearly constrained convex QPs. Larger problems, however, bring about difficulties in both
the size and density of @.

The matrix @ has a dimension equal to the number of training examples. A training
set of 60,000 vectors gives rise to a matrix @ with 3.6 billion elements, which does not fit
into the memory of a standard computer. For large learning tasks, off-the-shelf optimisation
packages and techniques for general quadratic programming quickly become intractable in
their memory and time requirements.

In general (Q));; is nonzero, which makes () completely dense. Most mathematical ap-
proaches either assume that @ is sparse (i.e. most (Q);; are zero), or are only suitable for
small problems.

Since standard QP techniques cannot easily be used to train SVMs with several thousands
of examples, a number of other approaches have been invented. These algorithms allow for

fast convergence and small memory requirements, even on large problems.

2.1.1 Chunking

The chunking algorithm is based on the fact that the non-support vectors play no role in the
SVM decision boundary. If they are removed from the training set of examples, the SVM
solution will be exactly the same.

Chunking was first suggested by V. Vapnik in [57]. The large QP problem is broken

Chapter 2. Support Vector Machine Training Methods 17

down into a number of smaller problems:

A QP routine is used to optimise the Lagrangian on an arbitrary subset of data. After
this optimisation, the set of nonzero a; (the current support vectors) are retained, and all
other data points (@; = 0) are discarded. At every subsequent step, chunking solves the
QP problem that consists of all nonzero a;, plus some of the a; that violates the KKT
conditions. These are in general the worst M violations, for some value of M. After
optimising the subproblem, data points with a; = 0 are again discarded. This procedure
is iterated until the KKT conditions are met, and the margin is maximised. Solving each
subproblem still requires a numeric quadratic optimiser.

The size of the subproblem varies, but tends to grow with time. At the last step, chunking
has identified and optimised all the nonzero a;, which correspond to the set of all the support
vectors. Thus the overall QP problem is solved.

Although this technique of reducing the Q matrix’s dimension from the number of train-
ing examples to approximately the number of support vectors makes it suitable to large
problems, a limitation still exists. The number of support vectors may exceed the maximal
number of parameters «; that the quadratic optimiser can handle, and even the reduced

matrix may not fit into memory.

2.1.2 Decomposition

Decomposition methods solve a sequence of smaller QP problems, and are similar in spirit to
chunking. The difference from chunking is in the size of the subproblems: the size remains
fixed.

Decomposition methods were introduced in 1997 by E. Osuna et al. [41]. The large QP
problem is broken down into a series of smaller subproblems, and a numeric QP optimiser
solves each of these problems. It was suggested that one vector be added and one removed
from the subproblem at each iteration, and that the size of the subproblems should be kept
fixed. The motivation behind this method is based on the observation that as long as at least
one a; violating the KKT conditions is added to the previous subproblem, each step reduces
the objective function and maintains all of the constraints. In this fashion the sequence of
QP subproblems will asymptotically converge. For faster practical convergence, researchers
use different unpublished heuristics to add and delete multiple examples.

While the strategy used in chunking takes advantage of the fact that the expected number
of support vectors is small (< 3000), decomposition allows for training arbitrarily large data
sets.

Another decomposition method was introduced by T. Joachims in [25]. Joachim’s method
is based on the gradient of the objective function. The idea is to pick a; for the QP

subproblem such that the «; form the steepest possible direction of ascent on the objective

Chapter 2. Support Vector Machine Training Methods 18

function, where the number of nonzero elements in the direction is equal to the size of the

QP subproblem. As in Osuna’s method, the size of the subproblem remains fixed.

2.1.3 Sequential Minimal Optimisation

The most extreme case of decomposition is Sequential Minimal Optimisation (SMO) — where
the smallest possible optimisation problem is solved at each step [42]. Due to the fact that
the a; must obey the linear equality constraint, the smallest set of a; that can be optimised
at each step is two. At every step, SMO chooses two a; to jointly optimise, finds the optimal
values for these ;, and updates the SVM to reflect these changes.

SMO avoids numerical QP optimisation and large matrix storage entirely: if the two
chosen a; are optimised and the rest of the parameters a; kept fixed, it derives an analytic
solution which is executed in a few numerical operations. The method therefore consists of a
heuristic step for finding the best pair of parameters to optimise, and the use of an analytic
expression to ensure the objective function increases monotonically. Because the smallest
possible subproblem is optimised at each iteration of the algorithm, SMQ solves more sub-
problems than other methods of decomposition. Optimising each subproblem, however, is
so fast that the overall QP problem can be solved quickly. Due to the decomposition of the
QP problem and its speed, SMO is probably the method of choice for training SVMs [11].

In this chapter a decomposition algorithm based on the ideas of T. Joachims [25] is
discussed. Joachims’ method is presented in Section 2.3.2. This algorithm makes no as-
sumption on the expected number of support vectors, and allows training arbitrary large
data sets. In constructing the algorithm, conditions for optimality, decomposition and opti-
mality conditions on the working set are discussed. Finally, a complete training algorithm

is presented.

2.2 Conditions for optimality

In this section, conditions for optimality of a solution a to problem (2.1) are introduced.
Since @ is a positive semi-definite matrix (the kernel function used is positive definite), and
the constraints are linear, the Karush-Kuhn-Tucker (KK T) conditions [20] are necessary and
sufficient for optimality.

The KKT multipliers are introduced by letting p be the associated multiplier of aZy = 0,
w7 = (m1,...,m) be the associated multiplier of —a < 0, and vT = (vy,---,v;) be the
associated multiplier of &« — C1 < 0. The following KKT conditions must then hold for
optimality:

VW(a) - Vol(a-C1) - VaT(—a) - Vu(eTy) = 0

Chapter 2. Support Vector Machine Training Methods 19

=>VW(a)-v+m—py = 0 (2.2)
vI(@-C1) = 0 (2.3)

mfa = 0 (2.4)

v > 0 (2:5)

™ > 0 (2.6)

The Lagrange multipliers a; can have three possible values: The value of «; can be at zero,

at the upper bound C, or somewhere in the interval (0, C)). By defining the classifier function
[
FAx) =) yiaik(x, %) + b (2.7)
=]
similar to (1.27), each of these cases are now considered and expanded separately.

Case 1: O0<a; < O

Consider a single value of ;, i.e. the Lagrange multiplier associated with some input vector

7. Then, from equation (2.2),

1-(Qa)i —vi +m—pyi =0

Since this case examines a; from the interval (0, C), the term (a — C1); from (2.3) must
be non-zero and negative. For equations (2.3) and (2.5) to hold, v; must be equal to zero.

By using a similar argument, conditions (2.4) and (2.6) imply that m; can only be zero.

This gives
1 - (Qa)i —py: =0 (2.8)
Because the equation
i
yaf*(xi) = i (3 wresk(xs, x;) +b) =1 (2.9)
=1

holds when 0 < a; < C, and given that

L
Qa)i = D wiyjoik(xi,x;)
=1
I
= ¥ waik(xi,x;)

i=1

= yi(f*(xi) - b)

]

Chapter 2. Support Vector Machine Training Methods 20

equation (2.8) can be rewritten, and simpifies as

1-(Qa)i —pyi = 1—u(f*(x:) —b) — pyi

= I-1+yb—pyi=0

From this the value of b is equal to the KKT multiplier u, i.e.
pw="b (2.10)

Case 2: a; =C

As in the previous case, consider equation (2.2) for a single Lagrange multiplier a; at the

upper bound C"

1-(Qa)i —vi +m — py; = 0

Because a; = C, conditions (2.4) and (2.6) imply that m; must be equal to zero. Then,

1-(Qa)i —vi —uy; =0 (2.11)

Equation (2.5) specifies that v; > 0, and thus

v
o

1 - (Qor); — py;
L=y (f (%) =) —byi=1—yif*(x)) > 0

Thus for a value of a; = C to meet the KKT conditions, it must be true that
yif*(xi) <1 (2.12)
Case 3: a; =0
In the case of a; = 0, equation (2.2) becomes
1—(Qa);—vi+m—py; =0
Conditions (2.3) and (2.5), with «; = 0, imply that v; = 0. Therefore,

1-(Qa)i+m—py; =0 (2.13)

Using similar reasoning as the above case of a; = C, it can be shown that a value of a; = 0

meets the KKT conditions if

yif*(x:) > 1 (2.14)

Chapter 2. Support Vector Machine Training Methods 21

Concluding on the KKT conditions

From the three cases presented above, a solution e of problem (2.1) is an optimal solution

if the following relations hold for each a;:

ai=0 = uf(x)>1
D€y <0 =gy) =1
a;=C = yf(x)<1 (2.15)

If, for some given stage in the process of training a SVM, all Lagrange multipliers meet the

KKT conditions, an optimal solution to (2.1) is found and SVM training can stop.

Computing the value of the threshold b

A value for the threshold b is needed for (2.7), and can be computed for each of the support

vectors. From (2.9),

l
by = yi— Y _ yjaik(xi,x;) (2.16)
j=1

The average of these values is taken as the value for b.

2.3 A decomposition method

Decomposition methods break the large QP problem down to a series of smaller subproblems,
and these subproblems are optimised to improve the objective function.

In the process of decomposition, a subset of variables is chosen for optimisation. The
original set of Lagrange multiplier variables is divided into two sets, called B and N. Set
B is called the “working set,” and is created by picking ¢ sub-optimal variables from all
! a;. The working set of variables is optimised while keeping the remaining variables (set
N) constant. After subset B is optimised, it is “put back” into the original set and a new
working set is selected for optimisation.

Since it is known when a solution e is an optimal solution (the solution satisfies all KKT
conditions), the problem can be decomposed and optimised until these conditions are met

with an adequate tolerance. The general decomposition algorithm is summarized as follows:

Algorithm 2.1 - General decomposition algorithm

1. While the optimality conditions (2.15) are violated

(a) Select g variables for the working set B. The remaining [— ¢ variables are fixed

at their current values.

i V15760

bib 251253

Chapter 2. Support Vector Machine Training Methods 29

(b) Decompose the problem and solve the quadratic program subproblem, i.e. opti-

mise W(a) on B.
2. Terminate and return .

Concerns of the above algorithm are the creation of KKT criteria for knowing when the
working set B is optimised, and methods of picking the optimal working set.

Firstly, however, it is necessary to rewrite equation (2.1) as a function that is only
dependent on the working set. Let a be split into two sets ap and ay. If o, y and @ are
appropriately rearranged, one has

ap YB QBB QBN
a= j y= h Q=

ay YN Qns Qnn

Since only ap is being optimised for the subproblem, W is rewritten from equation (2.1)

in terms of g to give

1
l:’E')’(C‘LB) = (agl + C!El) — § (QEQBBC!B + QEQBNQN
+ayQnpap + Q%QNNGN) (2.17)

If terms that do not contain aup are dropped, the optimisation problem remains essentially
the same. Also, since (J is a symmetric matrix, with Qgy = Q% 5, the problem reduces to
finding

1
max W(ag) = abl - EQEQBBGB - afQpran

subject to afyp+akyn =0 (2.18)
ap 2 0
Cl—-ap >0

With |B| « |N|, the term afQ@pnay consumes the majority of computing time when
determining W(ap). As a performance optimisation, define a vector qzny = Qgnay in the

following way:

(g8N)i =i D ajysk(xi,x;) (2.19)
JEN
The vector qpy is computed once at the start of every subset optimisation. The complex-
ity of the optimisation problem then becomes proportional to the size of the working set,
independent of [. Given that [can be very large and that ¢ = |B| will be relatively small, it
is a vast improvement. The optimisation problem becomes equivalent to finding

1
Igaﬂx Wl(ag) = agl — §a§QBBGB - C“EQBN

Chapter 2. Support Vector Machine Training Methods 23

subject to afyp+alyn =0 (2.20)
ap > 0
Cl—ap >0

2.3.1 Optimality of the working set

The optimisation problem in (2.20) has one particularly useful property: one can computa-
tionally determine if a solution is an optimal solution. This gives a stopping criterion for
optimising the working set B.

The decomposed problem (2.20) consists of a convex objective function (since matrix
() gp is positive semi-define), and linear constraints. The KKT conditions are thus necessary
and sufficient for optimality.

The KKT conditions must hold for each element in a, and by again considering the

possible values of (ag);, as in Section 2.2, the conditions are:

(ap)i =0 = (@pBap)i + (gBN)i + p(yp)i > 1
0 < (ap)i <C = (@ppap)i+ (gan)i + u(ys)i =1
(ap)i=C = (@sBap)i + (gBn)i + u(yp)i £ 1 (2.21)

When the Lagrange multiplier a; lies between zero and C, the value of ;¢ can be computed
with

p=(ys)i(l1— (@BBOB)i — (4BN)i)

The value of u, as it appears in the above KKT conditions (2.21), can be taken as the
average of u computed for each i where 0 < (ap); < C.

Apart from the optimality conditions described here, a method for selecting good or
optimal working sets — a decomposition algorithm — is needed. Such a method will choose
the working set B, while the KKT conditions presented here determines the termination

criteria on optimising B.

2.3.2 Selecting the working set

One of the most important issues in a decomposition algorithm is the selection of the working
set. The working set selected plays a major role in the speed of the SVM training algorithm.
Selecting working sets at random causes the training algorithm (Algorithm 2.1) to converge
very slowly, while continually selecting optimal variables causes the training algorithm to
cycle. A method for selecting approximately optimal working sets is presented below.

The decomposition method presented in this section is due to [25, 39]. It works on the

classical method of feasible directions, proposed in the optimisation theory by [63]. If € is

Chapter 2. Support Vector Machine Training Methods 24

a feasible region of a general constrained problem, then a vector d is a feasible direction at
the point a in §, if there exists a A such that a + Ad lies in € for all 0 L A2 X

The main idea of the method of feasible directions is to start with an initial feasible
solution, and to find the optimal solution by making steps along feasible directions. At
each iteration of a feasible directions algorithm, the optimal feasible direction (the direction
giving the largest rate of increase of the objective function) is found. The algorithm then
aims to maximise the objective function along this direction, by making a line search to
determine a step length along the feasible direction. The solution is moved by “stepping”
along the feasible direction to the better solution found. The algorithm terminates when no
feasible directions can be found which improve the objective function.

The optimal feasible direction of a general constrained optimisation problem of the form
Maximise f(a) subject to Aa < b

is found by solving the direction finding linear program
Maximise VfTd subject to Ad <0, ||d||, <1

SVM training solves a constrained quadratic optimisation problem, therefore the method
of feasible directions is directly applicable to training a SVM. Finding the optimal feasible
direction when solving the SVM problem (2.1) can be stated as

Maximise VW (a)?d
subject to yTd =0
>0 ifa;=0
d; <0 ifo=C
[|d]]2 <1 (2.22)

Optimisation problem (2.22) is a full-scale linear program of dimension /, which is computa-
tionally expensive to solve at every iteration of the decomposition method of SVM training.
An approximate solution to this problem, which can be obtained in linear time, was proposed
by T. Joachims [25].

A requirement is added to (2.22), specifying that only ¢ components of d be non-zero.
The variables corresponding to these ¢ non-zero components are included in the working
set. Since this only gives an approximation to (2.22), d is only used to identify B, and not
as a search direction. Instead of doing a line search on d, the optimum solution is found in
the entire subspace spanned by the non-zero components of d.

By specifying that only ¢ components of d be non-zero, the problem becomes intractable.

This problem of intractability is overcome by letting d; be equal to either —1, 0 or +1,

Chapter 2. Support Vector Machine Training Methods 25

T

g' = -1 -2 +43+4 4 +5+1/ 0 -2/+5
1. .) e i e o
g’ = -1]-2 +3[+4]-4|+5]+1] 0 [-2[+5 v eI N T
y o= +1 +1}—1 -1 41 -1 4141 -1 +1 yg = -1 -2/-3|-4|-4|-5/+1| 0 +2|+5
L i ™ —
2 B | T G
d"=[ofofo[+1|-1][+1{0][0]0[+1 & ={ofo]
‘ B (G s | -
Mdf:o}olo‘q-l-yo‘oJoﬂ, yd =0 0]
— 1 — 1
(a) Selecting the four largest val- (b) Selecting the two smallest and
ues of |g;|, and setting each corre- largest y;g;, and respectively letting
sponding d; to the sign of g;, max- d; be of opposite and similar sign to
imises g7'd, but the equality con- i, g7 d is maximised such that the
straint y7'd = 0 is not met. equality constraint y7d = 0 is also

met.

FIGURE 2.1: Selecting a working set of size four.

such that the Lagrange multipliers a; corresponding to d; = £1 are included in B. An

approximation of (2.22) is thus found by

Maximise VW (a)Td

subject to yI'd=0
d; >0 ifa; =0
d; <0 fa; =C
d; € {-1,0,1}
{di: di 0} = ¢ (2.23)

From this approximation the question arises: how is the direction d determined? Firstly,
assume that the constraints y’d =0, d; > 0if a; =0, and d; < 0 if a; = C, are all absent.
Also, to simplify the notation used, let the shorthand g = VW (a) denote the directional
derivative of W. With the equality and inequality constraints absent, the maximum of the
objective function is achieved by selecting ¢ points with the highest values of |g;|. Then d;
will take the value of sign(g;).

As an example, consider Figure 2.1(a), with g equal to four. The four largest values of
|gi| are chosen (|g4| = 4, |gs| = 4, |gs| = 5 and |g10| = 5), and each corresponding d; is set
to the sign of g;. In this way g7d is maximised.

The first remark that can be made about the example in Figure 2.1(a), is that the
equality constraint yTd = 0 is being violated. For y7d to be equal to zero, the number of
elements with sign matches between d; and y; must be equal to the number of elements with

sign mismatches between d; and y;. This means that if a working set of size ¢ is selected,

Chapter 2. Support Vector Machine Training Methods 26

with ¢ being even, each number must be equal to . The working set can thus be selected
by making two passes over the data. A “forward pass” will select 1 sign mismatches, while
a “backward pass” will select £ sign matches. To implement selection of the working set, let
v« denote the largest contribution to the objective function g7 d by some point k, subject to
the equality constraint y7d = 0. The two passes over the data, each selecting % variables,

are expanded in the following way:

“Forward pass”

The forward pass attempts to select variables such that y,dy is negative. This implies
that the signs of yx and di must be different in maximising g7d. To maximise g’d, the
minimum g; is chosen when d; is negative, while the maximum g; is selected when d; is

positive, i.e.
=1 =dp=-1= % =mingy=1(g9:) = W = mingy,=1(yig:)
yk=—1=de =1 = v =maXyy=—1(9:) = v = mingy,—_1(yig:)

If the subscripts are combined, the largest contribution to the objective function (with yy

and di having different signs), subject to the equality constraint, is

T = miin(yigi) (2.24)

“Backward pass”

The backward pass over the data selects a total of { variables, such that yxdy is positive.

Thus the signs of yx and dy must be the same in maximising g7d, i.e.

ye=1 =dp=1 = 7 =maX;y=1(9;) = V% = MaXiy,=1(¥:9:)
Ye = =1 = dp = =1 =y =mingy=_1(9;) = e = max;y,—_1(¥ig:)

If the subscripts are combined, the largest contribution to the objective function (with yx

and dj. having the same signs), subject to the equality constraint, is

7k = max(yigs) (2.25)

The working set is thus selected based on the equations (2.24, 2.25) defined above. The
example of Figure 2.1(a) selected an optimal but useless working set, since it does not include
the equality constraint.

In Figure 2.lv(b) the two smallest and largest y;9; (y1494 = —4, ysg6 = —5, yogy = +2 and
Y10910 = +5) are selected, such that the example correctly meets the equality constraint
yId =0.

Chapter 2. Support Vector Machine Training Methods 27

It is clear that the quantity y;g; gives an indication of an element’s contribution to
the objective function subject to the equality constraint. This quantity is used to select
the working set, by sorting the data elements according to y:g; and selecting the top and
bottom %.

Accounting for the inequality constraints in (2.23) then becomes a trivial task — when
selecting the top and bottom Lagrange multiplier variables a; from the sorted list, a variable
is skipped if the inequality constraints are violated. Thus variables are skipped if d; = —y;
(or in the case of the backward pass, if d; = y;) violates d; > 0 ifa; =0, and d; <0 if
a; = C. Consider the forward pass: if d; = —y;, then variables should be chosen when
—y; > 0if o; =0, and —y; < 0 if @; = C. These conditions hold when y; = —1 and a; =0,
or when y; = 1 and a; = C. A similar argument on the backward pass states that variables
should be chosen when y; = 1 and a; =0, or when y; = —1 and a; = C.

The decomposition algorithm, which selects variables with a forward and backward pass

over the data, is implemented below:

Algorithm 2.2 - Decomposition algorithm
1. Let L be a list of all Lagrange multipliers.
2. While the optimality conditions (2.13) are violated

(a) sort L by y;g; in increasing order
(b) select & samples from the front of L such that

e 0<ao; < Cor

o (yi=-landa; =0) or (y; =1and a; = C)
(c) select £ samples from the back of L such that

e 0<a;<Cor

e (yi=1and a; =0) or (y;: = -1 and a; = C)

(d) optimise the newly selected working set

3. Terminate and return a.

2.3.3 Shortcuts and optimisations to the decomposition algorithm

The speed of the decomposition algorithm is hampered by many redundant computations.
This section discusses some of these performance bottlenecks, and ways minimise additional
computations.

Let ¢ define a certain iteration in Algorithm 2.2. At time ¢, a number of factors consume

the algorithm’s execution time: Its efficiency greatly depends on the amount of time taken to

Chapter 2. Support Vector Machine Training Methods 28

compute the vector g = VIV (a!*)) and matrices Qpp and @pn-. Its speed is also influenced
by the time taken to compute the KKT conditions at each iteration, since it too requires
the kernel matrix.

Due to the approach taken by the decomposition method, the quantities g = VIV (a®)
(needed for selecting the working set) and y; f*(x;) (needed for KKT conditions), can be
defined using knowledge of only ¢ rows of the Hessian Q). These ¢ rows correspond to the g
elements in the current working set.

For this purpose, define a vector s®*), that is computed directly after working set selection,

and is stored throughout the training iteration:

t

- Z afi.t)yjk(xi, X3 = Z a;t)yjk'(xi, 3.) 4 Z ag-t)yjk(xi,xj) (2.26)
Jj=1 JEB JEN

As a® is refined, the objective function W (")) is increased by each iteration of the

decomposition method. The best vector a®) found in iteration ¢ is therefore used as the

vector a!t*1), which the decomposition method uses to select a working set for iteration

t + 1. The vector a!tt1) is therefore the vector that maximises W (a(*)) over the working

set B from iteration t, i.e.

W(at+)) = max W(a®) (2.27)

and

W(a®) = ()71 - l(a(t))TQa(t)
2

1 l

1
o 1 t) _(t
=> ol - 522‘12 o yiyik(xi, x;)

i=1 i=1 j=1

= Yol --za y,za k(i)

i=1

l

=Z @ _ Zaly; (2.28)

When a vector a(t) has been found that maximises W (")) over the working set B, the

starting vector for the next iteration — which is also the best solution a found thus far - is
updated with a®*1!) « a(*). Because « is updated, the value of s must also be updated.
Since only the value of acp, or the working set of variables, has changed from time ¢ to time

t+ 1, s is updated with

st = +Z D) (t))yjk(xt,xj) (2.29)
j€B

Chapter 2. Support Vector Machine Training Methods 29

Many optimisations can be implemented using definition (2.26) and simple update (2.29)
of vector s. At the start of training of a new working set, the value of qpn from (2.19) is

computed with

t
(a5)ip = v (51 = 3" ol ysk(xi,x;)) (2.30)
jEB
The derivative of W at time t (needed for selecting an optimal working set) is easily deter-

mined from s, i.e.

!
1
;3 K (&)
VW(a®); =1- 3 -2y E a; ' yik(xi, x;)

j=1

=1—ys? (2.31)

By using s, the value of the threshold b (2.16) is rewritten for each support vector as

!
b?) =y — Zyjagt)k(xi,xj)
j=1
=y — s (2.32)

The value of b(*) is taken as the average over all the bg” of all support vectors 1.
Finally, the KKT optimality conditions specified in (2.15) are also rewritten in terms of
s, and are computed in linear time. A solution a® of (2.1) is an optimal solution if the

following relations hold for each alt):

i

ol =0 = (s + 0y > 1
0<al? <C = (s +b8)) =1

agt) Y s yi(SEt) +bu0) <1 (2.33)

2.4 The training algorithm

Almost all necessary tools are now gathered to create a SVM training algorithm.

In this chapter the Karush-Kuhn-Tucker conditions have been used to specify whether an
optimal solution has been found and the training algorithm can terminate. A method was
developed to decompose the SVM problem into more workable subproblems. Optimisations
to reduce the number of computations were also introduced.

Finally, the detailed training algorithm is presented:

Algorithm 2.3 - SVM training algorithm

1. Pick an initial vector a(®

]

Chapter 2. Support Vector Machine Training Methods 30

2. Compute the initial value of s(©:
!
SEU) = Z ago)yjk(xi, Xj).
=1
3. Compute the initial value of b with
p0) — =g, Z (yi — S(.U))1
2
SVs 1eSVs
where SV's is the total number of current support vectors.

4. Let L be a list of all [Lagrange multipliers a;.
5. While the Karush-Kuhn-Tucker conditions in (2.33) are not met

(a) Let g € R be defined by
gi = VW(O!(t))i =1-= yisgﬂ.

(b) Sort L by %;g; in increasing order.

(c) Select £ samples from the front of L such that
(t

i

e (yi=-1and agi) =0) or (y; =1 and agt) - 0)

e 0<al¥ <Cor

(d) Select £ samples from the back of L such that
e 0< agt) < Cor
e (yi=1and legt) =0) or (yi =—1 and agt) =)

(e) After selection of the elements ap in the working set B, compute the Hessian

matrix Qpgg.

(f) Determine the vector qpy with

(‘?BN),(;te)B =W (55” - Z af,»”yjk(xi,xj'))-
JEB

(g) Re-optimise the working set, using
T 1 7 T
W(aB) = QB]. - §C1’-BQBBQB — QBYBN,

and constraints defined in (2.20). Replace the optimised ap into a* to get
(t+1)
a .

Chapter 2. Support Vector Machine Training Methods 31

(h) Update the vector s**1) with

t+l t+1
5\ P+ 5 (a8 — ol)y k(xi, x;).
jeEB

(i) Recompute the value of b with

1
ple+1) — m Z (yi — Sgt—H))_
© {ESVs

(j) Increase time ¢ with t:=¢+ 1.

6. Terminate and return .

There is one tool needed to complete the SVM training algorithm, and that is a routine
to optimise the working set, i.e. a routine that can solve (2.20). The following chapter
introduces Particle Swarm Optimisation (PSO) as a general optimisation method. Since
(2.20) is a problem with linear and boxed constraints, PSO is adapted to handle linear
equality and inequality constraints, and the working set can be optimised using PSO, and
the SVM trained.

	Scan0001
	Scan0002
	Scan0003
	Scan0004
	Scan0005
	Scan0006
	Scan0007
	Scan0008
	Scan0009
	Scan0010
	Scan0011
	Scan0012
	Scan0013
	Scan0014
	Scan0015
	Scan0016
	Scan0017

