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ABSTRACT 

Predicting the location and timing of rainfall events has important social and economic 

impacts.  It is also important to have the ability to predict the amount of rainfall accurately.  In 

operational centres forecasters use deterministic model output data as guidance for a 

subjective probabilistic rainfall forecast.  The aim of this research is to determine the skill in 

an objective multi-model, multi-institute probabilistic forecast system.  This was done by 

obtaining the rainfall forecast of two high-resolution regional models operational in South 

Africa.  The first model is the Unified Model (UM) which is operational at the South African 

Weather Service.  The UM contributed three members which differ in physics, data 

assimilation techniques and horisontal resolution.  The second model is the Conformal-Cubic 

Atmospheric Model (CCAM) which is operational at the Council for Scientific and Industrial 

Research which in turn contributed two members to the ensemble system differing in 

horisontal resolution.  A single-model ensemble was constructed for the UM and CCAM 

models respectively with each of the individual members having equal weights.  The UM and 

CCAM single-model ensemble prediction models have been used in turn to construct a 

multi-model ensemble prediction system, using simple un-weighted averaging.  The multi-

model system was used to predict the 24-hour rainfall totals for three austral summer half-

year seasons of 2006/07 to 2008/09.  The forecast of this system was rigorously tested 

using observed rainfall data for the same period.  From the multi-model system it has been 

found that the probabilistic forecast has skill in predicting rainfall.  The multi-model system 

proved to have skill and shows discrimination between events and non-events.  This study 

has shown that it is possible to make an objective probabilistic rainfall forecast by 

constructing a multi-model, multi-institute system with high resolution regional models 

currently operational in South Africa.  Thus, probabilistic rainfall forecasts with usable skill 

can be made with the use of a multi-model short-range ensemble prediction system over the 

South African domain.   Such a system is not currently operational in South Africa. 
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PREFACE 

 

Precipitation is of high relevance to users in South Africa, but it is also highly variable.  In 

short-range weather forecasting (from 12-hours up to 3 days ahead) predicting the location 

of a precipitation event in general has a greater error than the prediction of the pattern and 

amount of precipitation. It is therefore essential to have the ability to predict the timing and 

location of rainfall as well as the spatial extent of rain bearing synoptic events over a region, 

as skillful as possible. 

 

Weather forecasting is dependent on the accuracy of initial conditions due to the chaotic and 

non-periodic characteristics of the atmosphere.  An inherent characteristic of deterministic 

forecasts is that the future state of the atmosphere is completely conditional on the present 

state of the system and the atmospheric evolution is governed by deterministic equations.  

An alternative approach is to address the limits in deterministic forecasting by means of 

ensemble forecasting. 

 

Skillful forecasts may aid to timely issue of floods and thereby reducing the risk of property 

damage.  For these reasons it is important for the forecasts to be as skillful as possible in 

predicting the timing and location of rain-bearing systems.  Short-range ensemble prediction 

is a relatively unexplored field of numerical weather prediction and offers an opportunity to 

improve upon the skill of forecasting the probability of precipitation events.  A probabilistic 

precipitation forecast reduces the occurrence of missed events within a forecast system and 

is generally more successful in identifying the area over which precipitation occurs. 

 

In this study a short-range multi-model ensemble system is constructed using two regional 

numerical weather prediction models (contributing three and two members respectively) 

which will aim to produce an objective probability precipitation forecast for South Africa. 

 

The hypotheses that will be tested are: 

 

a. that the multi-model ensemble has skill in predicting 24-hour probabilistic precipitation 

for South Africa; 

 

b. that the multi-model ensemble can produce forecasts with greater skill levels to that of 

the target single-model numerical weather prediction regional model; 
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c.  That the multi-model outperforms a coarse-resolution model of which the output is 

freely available on the internet 

 

The necessary steps to be taken in order to test these hypotheses are to: 

 

a. calculate the 24-hour precipitation totals for each of the five members of the multi-

model ensemble; 

 

b. rescale each of the five members to a resolution consistent with the analysed rainfall 

data; 

 

c. calculate the precipitation totals for each of the two single-model ensembles as well as 

for the multi-model ensemble; 

 

d. calculate the probability forecast for four daily threshold values; 

 

e. rescale the course-resolution single-model ensemble forecast to the same resolution 

as the single- and multi-models.  

 

f. verify the four ensembles against observational data and compare the multi-model 

ensemble against the skill of the coarse-resolution ensemble as well as the two single-

model ensemble systems. 

 

This dissertation consists of six chapters. Chapter 1 describes the summer rainfall 

characteristics and dynamics over South Africa, numerical predictability of rainfall on the 

short-range timescale, NWP models’ weakness in predicting rainfall and ensemble and 

multi-model ensemble prediction methods.  The data and methodology used in this study for 

the design, as well as the methods used for the verification of the multi-model ensemble are 

detailed in Chapter 2.  The multi-model verification results are explained in Chapter 3 and 

the verification results of the low-resolution single-model ensemble system in Chapter 4.  

The comparison in skill between the multi-model and the low resolution model is also 

discussed in this chapter.  The results are summarized and conclusions are made in Chapter 

5. 
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CHAPTER 1 

1. INTRODUCTION 

 

Precipitation is perhaps the most relevant to users of meteorological data in South Africa, but 

it is also the most variable spatially and temporally.  The prediction of rainfall extremes has 

high socioeconomic impacts (Fauchereau et al, 2008; Friederichs and Hense, 2008).  It is 

therefore essential to have the ability to predict the timing and location of rainfall events, and 

heavy rainfall in particular, as accurately as possible (Theis et al., 2005).  In short-range 

weather forecasting (12- to 72-hours) predicting the location of a precipitation event in 

general has a greater error than the prediction of the pattern and amount of precipitation 

(Ebert and McBride, 2000). Theis et al (2005) noted that with the decrease in the spatial 

scale of the event being forecast, e.g. thunderstorm development, the uncertainties in 

regional modelling increases.  The large spatial and temporal variability in rainfall together 

with some internal model restrictions also contribute to the uncertainties and low skill 

associated with rainfall predictions (Ebert, 2001; Theis et al, 2005; Roy Bhowmik and Durai, 

2010). 

 

1.1 RAINFALL OVER SOUTH AFRICA 

 

South Africa is considered to be mostly a semi-arid area, with a hot and dry climate.  

The leading cause of South Africa to be a semi-arid region is due to its geographic 

location within the subtropical high pressure belt (Tyson and Preston-Whyte, 1993).  

The average annual rainfall of South Africa is less than 500 mm, with only a relatively 

small part of the country receiving more than 500 mm per annum.  In Figure 1.1 it is 

seen that the eastern parts of the country experience annual rainfall in excess of 800 

mm in some regions.  In contrast, the western parts experience desert like conditions 

with less than 200 mm per year. The maximum annual rainfall of about 1200 mm 

occurs over the eastern escarpment of the country and the minimum rain over the 

extreme north-western parts (less than 100 mm). 

 

Rainfall over South Africa is characterized by three rainfall regions, namely a summer 

rainfall region (that receives the bulk of its rainfall from October to March), the winter 

rainfall region of the southwestern Cape (that receives the bulk of its rainfall from May 

to August) and all-year rainfall along the Cape south coast (Figure 1.2). The eastern 
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parts of the country are mostly associated with summer rainfall; with most rainfall 

events caused by heat induced convective storms (Tyson and Preston-Whyte, 1993; 

Fauchereau et al, 2008). Along the eastern escarpment of South Africa, the 

orographic lift of moist air advected from the east contributes to the relatively high 

annual rainfall of the escarpment areas and the east coast.  This advection of moist 

air is caused by the ridging high pressure system over eastern South Africa (van 

Heerden and Hurry, 1987).  Todd and Washington (1998) and Fauchereau et al 

(2008) confirmed the earlier analysis of Harrison (1984) that tropical temperate 

troughs (TTT’s) are synoptic systems contributing significantly towards daily rainfall 

variability and annual rainfall totals over the areas that receive summer rainfall.  TTT’s 

result in linkages forming between the colder mid-latitude regimes and the warm, 

moist air from the tropics.  TTT’s result in the formation of synoptic-scale northwest to 

southeast orientated cloud bands over southern Africa, with 30% to 60% of the 

austral summer half-year rainfall accounted for by these systems (Fauchereau et al., 

2008).  Other rain producing systems of summer rainfall over the region are upper-air 

troughs of the westerlies, cut-off lows, tropical lows and ridging highs (Taljaard, 

1996). 

 

 

FIGURE 1.1: The mean annual rainfall over South Africa (adapted from Schulze et al, 2008) 
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FIGURE 1.2: The seasonality of rainfall over South Africa per quaternary catchment (adapted 

from Schulze et al, 2008) 

 

The Western Cape Province receives mostly winter rainfall (Schulze and Maharaj, 

2007).  The common cause of the winter rainfall is mostly due to frontal rain, caused 

by the mid-latitude low pressure systems moving over the sub-continent during the 

winter months (van Heerden and Hurry, 1987, Tyson and Preston-Whyte, 1993).  The 

all-year rainfall region is situated over the southern and south-eastern coastal areas 

(Schulze and Maharaj, 2007).   

 

Figure 1.3 illustrates this by indicating the rainfall seasonality per quaternary 

catchment for each of the months in the summer half-year (Schulze et al, 2008).  The 

north-eastern and central interior regions receive rainfall from early summer (October) 

through to late summer (March) with the maximum number of rain-days during 

January.  Taljaard (1996) indicated that the 50 mm/day isohyet gradually moves to 

the west beginning October until March/April after which the isohyets rapidly moves 

back to the east for the beginning of the winter season (May).  This transition of 

rainfall from east to west is also visible in Figure 1.3 where the number of rain-days 

increases to the west resulting in only a small region over the far western parts of the 

country having less than 1 day per month with rainfall.  
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In this research the focus is on the austral summer half-year rainfall (October to 

March) when the eastern half of the country receives most of its rainfall.   

 

 
FIGURE 1.3: Mean number of days per month with rainfall greater than 10 mm/day (adapted 

from Schulze et al, 2008) 
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1.2 PREDICTABILITY OF RAINFALL OVER THE SHORT-RANGE 

TIMESCALE 

 

Most operational centers rely on limited-area numerical weather prediction in order to 

generate reliable and accurate weather forecasts (Stensrud et al., 1999; Toth et al., 

2001).  Traditionally, these forecasts have been presented in a deterministic manner. 

An inherent characteristic of deterministic forecasts is that the future state of the 

atmosphere is completely conditional on the present state of the system, and the 

atmospheric evolution is governed by deterministic equations (Lewis, 2005). Accurate 

short-range numerical forecasting is therefore dependent on accurately describing 

the state of the atmosphere at the start of the forecast; this state is known as the 

“initial conditions” (Kalnay, 2003). The reason for this dependency on accurate initial 

conditions stems from the chaotic and non-periodic characteristics of the atmosphere 

(Lorenz, 1963).  Due to this dependency, forecasts that are initialized with only 

slightly different initial states diverge increasingly as a function of model integration 

time. However, atmospheric observations from weather stations are scarce and 

widely distributed in three-dimensional space, resulting in an incorrect representation 

of the atmospheric state and erroneous initial conditions (Du and Mullen, 1997). 

Although remotely sensed data are being used increasingly to describe the 

atmospheric initial state provided to atmospheric models, the quality and number of 

variables available from this data resource restricts its use for model initialization.  

Deterministic or best-guess forecasts are therefore not considered reliable, at least at 

model integration times of a few days or longer into the future, due to the 

uncertainties that exist in the initial conditions as well as the internal error (physics 

and dynamics) of the numerical models (Lorenz, 1963; Ebert, 2001; Stensrud et al., 

2005; Theis et al, 2005). Therefore, even though a single numerical model can 

produce skillful deterministic forecasts a number of days into the future, the 

confidence in deterministic forecasts decreases as a function of integration time (e.g. 

Santos-Muños et al, 2010).  Operational deterministic forecasts are historically 

performed at high spatial resolution over limited areas, and are usually constructed 

from nested limited-area models (Roy Bhowmik and Durai, 2010).  The advantage of 

using regional models for issuing short-range forecasts is that the forecasts are 

superior in quality and value to end-users on a higher resolution as oppose to coarser 

resolution global model forecasts (Wandishin et al., 2001).   
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The issuing of probability forecasts at the short-range time-scale may address to 

some extent the uncertainties associated with describing the initial state of the 

atmosphere, and will additionally allow for more flexibility in the usage of the forecast 

(Theis et al, 2005).   

 

Indeed, most National Meteorological Services (NMS) issue precipitation in terms of 

probabilities whereby the user can get additional information regarding the 

uncertainty pertaining to the specific forecast (Staël von Holstein, 1971).  Forecasters 

are able to issue these probability forecasts by means of a subjective “ensemble 

forecast” due to the fact that they use multiple information sources and models to 

issue forecasts (Ebert, 2001).  Forecasters have long been aware of the fact that a 

variety in models can produce a variety in the outcome of the predicted weather 

(Ebert, 2001).  These probability forecasts issued by forecasters remain subjective 

because they are still based on the forecaster’s own insights and experience (Staël 

von Holstein, 1971).  The forecaster’s judgment is applied when combining the 

objective information systems to his/her disposal.   

 

Due to the increase in computer power, more NMS’s are today able to run regional 

models in-house. These models are primarily used for predicting weather patterns on 

smaller scales than those simulated by global circulation models (de Elia et al, 2001).  

These regional models run at high horisontal resolution and over a limited domain 

and receive lateral boundary and initial conditions from coarser global circulation 

models (de Elia et al, 2001).  This increase in model resolution implies an 

improvement in the representation of model physical processes as well as dynamics, 

and therefore enhances the simulation quality.  However, the predictability of smaller 

spatial scale features is less than those of synoptic scale systems.  In order to correct 

coarse as well as fine resolution numerical forecast output to best capture small-scale 

events, Friededrichs and Hense (2008) noted that post-processing techniques are 

used.  The two most widely used techniques are the perfect prognosis method and 

model output statistic (MOS). 

 

In order for a model to forecast precipitation accurately, thorough knowledge and 

data of atmospheric moisture and vertical motion fields must exist (Ebert, 2001).  The 

forecast and simulation of rainfall is particularly challenging over those regions of the 

world where rainfall is primarily convective such as over the summer rainfall area of 

South Africa.  Roy Bhowmik and Durai (2010) as well as Friederichs and Hense 

(2008) also noted that even with the recent improvements in numerical prediction, the 
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skill in predicting rainfall on the small scale is inadequate.  Even at the largest 

international forecasting centers, operational weather prediction is limited by 

computational restrictions to spatial resolutions where convection can at best be 

partially resolved (Engelbrecht et al., 2007).  This necessitates the use of convective 

parameterization schemes within numerical models, in order to simulate the effects of 

convection on atmospheric stability and the vertical distribution of momentum, heat 

and moisture.  That is, the convective parameterization included in model 

formulations need to represent the intricate processes of cloud dynamics and 

microphysics (Engelbrecht et al, 2007).  This statistical treatment of convection is 

regarded to be one of the greatest sources of uncertainty in both weather prediction 

and climate simulation (Stensrud et al., 2005; Tadross et al., 2006; Engelbrecht et al., 

2007).  Stensrud et al.  (2005) also points out that uncertainty and assumptions made 

on the model physics and parameterization may lead to incorrect spatial and 

temporal placement of precipitation occurrence within forecasts.  This conclusion was 

also substantiated by a number of authors who found that changes in 

parameterization of convection lead to different simulations of convective rainfall 

(Wang and Seaman, 1997; Tadross et al., 2006).  Tropical- and southern Africa are 

indeed two regions that are prone to convection, and the uncertainties associated 

with cumulus parameterization within models are highly relevant to these regions 

(Tadross et al., 2006). 

 

Parameterization schemes, such as those needed to simulate convective 

precipitation, are a limiting factor in numerical weather prediction.  These schemes 

are generally simplified for computational purposes (Bowler et al, 2008a) and 

therefore do not simulate a small-scale weather phenomenon as realistically as it 

otherwise could.  Parameterization schemes are also limited by the understanding of 

the physical processes to be parameterized.  This simplification of the physical 

schemes contributes to the internal model error and hence also forecast uncertainty.  

Richardson (2001) however stated that the error in initial conditions has a greater 

impact on weather prediction on the short-range than the error in the physical 

schemes.  This impact of different input data and initial conditions were also classified 

by He et al (2009) with a multi-model ensemble system over China. 

 

In the 1960’s, Edward Lorenz showed that the chaotic nature of the atmosphere pose 

a limit on the predictability of the weather (Kalnay, 2003; Bishop et al, 2009).  This 

limit was said to be about fourteen days, and stems from the uncertainty in describing 

the initial state of the atmosphere.  But Bishop et al (2009) also stated that even if we 
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could accurately solve primitive equations and perfectly observe the atmosphere, the 

limit of predictability of flows still remains.  Errors in the initial conditions amplify with 

increase lead time, leading to differences in forecast as well as decreasing user’s 

confidence (Santos-Muñoz et al, 2010). 

 

Owing to the dependency of numerical weather prediction models on initial conditions 

and the non-linear evolution of the atmosphere, ensemble forecasting, where a 

probabilistic forecast of the future state of the atmosphere is issued rather than a 

single deterministic forecast, was proposed by Leith in 1974.  The ensemble of 

forecast outputs from single or multiple numerical weather prediction models provide 

detail of the forecast regarding the confidence, possible errors and probability 

outcomes (Bakhshaii and Stull, 2009). Moreover, an ensemble to some extent 

describes the uncertainties pertained in single-model forecasts (Zongjian, 2008; 

Kalnay, 2003).  However, Clark et al (2008) noted that with all the advances in rainfall 

prediction skill-improvement techniques, the best way to configure a numerical 

forecast system is still being investigated.  Therefore, running models with different 

configurations provide an additional way of constructing ensembles of forecasts, in 

addition to running a model with one physical configuration but initializing from 

slightly different initial states. 

 

1.3 ENSEMBLE AND MULTI-MODEL ENSEMBLE PREDICTION 

 

Ensemble prediction systems (EPS) represent a stochastic approach which couples 

probability with determinism (Lewis, 2005), and which has the specific aim of 

predicting the probability of future weather events to occur; in turn addressing the 

uncertainty of a deterministic forecast (Stensrud et al., 1999).  Theis et al (2005) 

concluded that precipitation forecasts should be addressed in a probabilistic manner 

in order to account for the chaotic atmosphere as well as the afore-mentioned 

uncertainties in the models and observations.  An important goal of ensemble 

prediction is to provide an estimation in the reliability of the forecast being made 

(Kalnay, 2003; Grimit and Mass, 2005).  Hoffman and Kalnay (1982) did however 

also mention that the advantages to be gained from constructing an ensemble may 

not be that great when comparing to an already optimally designed deterministic 

forecast.  Atger (2001) also found that a high resolution single-model forecast can 

under certain conditions perform better than a lower resolution ensemble. 
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Ensemble forecasts may be constructed in various ways (e.g.  Kalnay, 2003).  The 

traditional approach is to perform multiple model runs using the same model by 

initializing each run from differently constructed initial conditions.  This can be 

achieved for example by introducing small perturbations to the control analysis 

(Monte Carlo) or by using different analysis times to initialize the forecasts (Lagged 

Average Forecasting (Hoffman and Kalnay, 1982)).  On average the forecasts 

obtained from these perturbed initial conditions will be less skillful than the control 

forecast (Kalnay, 2003; Grimit and Mass, 2002).  Single-model ensemble systems 

effectively prevent the description of the forecast uncertainty associated with model 

error, and this might lead to underestimation of the forecast error (Clark et al, 2008).  

Hence an alternative ensemble construction is to create forecasts initialized in a 

similar way as mentioned before but obtained with different physical settings (such as 

convection and cloud scheme settings).  In this manner, credible assimilations of 

model errors can be addressed by changing any known model shortcomings such as 

sub-grid parameterization schemes (Clark et al, 2008).  The resulting collection of 

forecasts may be used to make probability forecasts.  Ebert (2001) and Eckel and 

Mass (2005) noted that with single-model EPS the main uncertainty is with the initial 

conditions and any systematic bias within the model itself will inherently be present 

within the EPS itself.  Hamill and Coucci (1997) wrote that in such a case further 

calibration may be required. 

 

Another way of constructing ensemble forecasts is to combine forecasts of different 

atmospheric models that are valid for the same period.  This is referred to as multi-

model ensemble prediction (Kalnay, 2003).  A multi-model ensemble forecast has the 

advantage above single-model ensembles in that the different models take into 

account the uncertainties in initial conditions and model configurations (physics and 

dynamics) and is therefore also less likely influenced by systematic errors (Ebert, 

2001; Zongjian et al, 2008; Bowler et al, 2008b).  Bright and Mullen (2002) also 

indicated that an ensemble forecast on the short-range timescale might be able to 

signal the possible occurrence of high-impact events.  Du et al (1997) and Atger 

(2001) found an improved quality in the ensemble mean rainfall forecast in terms of 

both amount and distribution. 

 

Multi-model ensemble forecasting succeeds in addressing the uncertainties that 

exists in the systematic errors of each numerical model as well as the uncertainties 

within the initial conditions (Ebert, 2001).  Clark et al (2008) noted that in addition to 

addressing uncertainties in initial conditions, ensemble forecasting, more specifically 
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multi-model systems, will also inadvertently address errors related to lateral boundary 

conditions.  In the short-range time scale, synoptic and mesoscale features, such as 

surface temperature and precipitation, are less predictable due to their more chaotic 

features than those features on the planetary scale (Hamill and Colucci, 1997; 

Friederichs and Hense, 2008; Roy Bhowmik and Durai, 2010).  For this reason, 

ensemble methodologies will improve on the uncertainty and model error that exists 

on this time-scale.  The model uncertainty can be accounted for by running the same 

model with different physical parameterizations or analysis times or by using model 

runs from different numerical models (Bowler et al, 2008b, Wandishin et al., 2001).  

The uncertainty in initial conditions can be addressed by running the same model a 

number of times by adding and/or subtracting perturbations from the original 

atmospheric state.  This will result in equally likely forecast solutions (Wandishin et 

al., 2001; Kalnay, 2003).  The errors and uncertainties in each individual member of 

the ensemble are averaged out, making the ensemble mean smoother (Bowler et al., 

2008b; Kalnay, 2003).  However, Clark et al (2008) noted that rainfall forecasts from 

ensemble members are more often than not under-dispersive; with the observed field 

falling outside the forecast distribution, resulting in an insufficient ensemble (Kalnay, 

2003).   

 

1.3.1 ENSEMBLE PREDICTION ON THE SHORT-RANGE 

TIMESCALE 

Even though the operational use of short-range ensemble systems has lagged 

behind that of long-range forecasting or even medium-range (Eckel and Mass, 2005), 

there are a number of NMSs that uses short-range ensemble prediction systems 

operationally or quasi-operationally.  For short-range ensemble forecasting the errors 

in predicting small-scale features grow quickly, model error has a large impact and 

the limited area models can inhibit ensemble dispersion (Eckel and Mass, 2005).  

The authors have also shown that the influence of initial conditions and model 

uncertainty relies greatly in the parameter and its scale to be forecast. 

 

Most of the short-range ensemble prediction systems run by NMS’s are situated in 

Europe or North-America.  These NMSs include NCEP (USA), INM (Spain), NMI 

(Norway) and Met Office (UK).  Of these systems, the NCEP-SREF, Spain’s SREPS 

and the Deutscher Wetterdienst’s ensemble make use of multi-model ensembles.  

The Bureau of Meteorology (BoM, AUS) also has an operational multi-model 

ensemble prediction system. 
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The multi-model short-range ensemble system at NCEP (since 2008) comprises of 21 

members obtained from two regional models.  The regional models use the output 

from the NCEP medium-range ensemble as boundary conditions (Stensrud et al, 

1999) and the breeding vectors technique is applied for the creation of initial 

conditions (Toth and Kalnay, 1993).  Different horisontal resolutions and 

parameterization schemes are used in the different model runs in order to address for 

model uncertainties (Tracton et al, 1998).   

 

The ensemble mean on the short-range timescale showed similar characteristics as 

the ensemble mean on the medium range (Hamill and Colucci, 1997).  This result 

proved to be true for various weather elements such as cloud cover, temperature and 

precipitation amount.  In fact, research has shown that the ensemble mean forecast 

out performs the single deterministic forecast (Ebert, 2001).  Ensembles produce 

probability forecasts with skill better than a single deterministic model run for 

forecasts of precipitation, and are easily calibrated to make them very reliable 

(Wandishin et al., 2005 and Toth et al., 2005).  The most notable attributes of EPS 

are their reliability and resolution; their ability to predict events from non-events (Toth 

et al., 2005).   

 

Studies have shown that bias correction has to be performed on short-range EPS 

because only then can model diversity add good spread (Eckel and Mass, 2005).  It 

has been proven that mesocsale models have a considerable bias and with model 

diversity the negative impact of the bias increases.  It was also found that statistical 

post-processing of different model fields outperformed the technique of averaging 

from different models (i.e. ensemble mean) (Krishnamurti et al., 2000). 

 

The applicability of multi-model EPS on the short-range was proven by previous 

studies (Ebert, 2001, Arribas et al., 2005).  These studies showed that an ensemble 

outperforms each of the individual members on this timescale. 

 

1.3.2 ENSEMBLE PREDICTION ON THE MEDIUM-RANGE 

TIMESCALE 

The medium-range forecast timescale is defined by the World Meteorological 

Organization as time scale from 3 to 10 days.  Ensemble prediction systems for 

medium-range forecasting are generally designed to focus on uncertainties due to 

synoptic-scale baroclinic instabilities (Bowler et al, 2008a).  Medium-range ensemble 

forecasts are produced operationally at institutions such as the European Centre for 
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Medium-range Weather Forecasts (ECMWF), the National Centre for Environmental 

Prediction (NCEP) and the Canadian Meteorological Centre (NMC) who produces 

medium-range forecasts (Arribas et al., 2005).  These ensemble systems are 

considered to be mature since they have been in operations for more than a decade 

(Bowler et al, 2008a).  The ECMWF uses the singular vector (SV) technique to grow 

perturbations over the early part of the forecast period whereas the NCEP 

implements the ensemble transform bred vector technique (Wei et al, 2008). 

 

1.3.3 ENSEMBLE PREDICTION ON THE LONG-RANGE 

TIMESCALE 

Ensemble forecasting has been operational in the long-range timescale for a number 

of years.  Two well-known projects done in Europe, the PROVOST (Prediction of 

Climate Variations on Seasonal to Interannual Timescales) project and the 

DEMETER (Development of a European Multi-Model Ensemble system for season to 

inTERannual prediction) project showed that the multi-model ensemble had more skill 

over that of the single-model ensembles (Palmer et al, 2004).  The same result was 

found over southern Africa for mid-summer seasonal rainfall (Landman and Beraki, 

2010). 

 

1.4 AIMS AND APPROACH OF RESEARCH 

 

The main aim of this dissertation is to investigate the skill of a high-resolution short-

range multi-model ensemble prediction system for South Africa.  To achieve this aim 

the following objectives are relevant:  

• To test the daily rainfall forecast performance of a number of individual short-

range forecast systems 

• To test the skill when the forecasts of the individual systems are combined 

into a multi-model system 

• To compare the skill levels of the multi-model system with that of a course-

resolution global model  

  

These objectives will be addressed by: 

• Constructing daily rainfall single-model ensemble systems by combining the 

respective ensemble members produced by models being run operationally in 

South Africa. Two ensembles are developed by taking into considerations the 
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models' different physics and horisontal resolutions. The models are also 

initialized differently. 

• Constructing a multi-model daily rainfall ensemble system by combining the 

two single-model ensemble systems into a multi-model system with each 

single-model ensemble being weighted equally. 

• Testing the skill of the forecast systems through elaborate verification 

procedures. 

• Comparing the skill levels of the South African based multi-model system with 

the skill levels of course-resolution model output obtained from an 

international centre.  

 

1.5 SUMMARY 

 

South Africa is a region that displays a great deal of natural variability, with a wide 

variety of different weather systems that bring rainfall to the summer rainfall region. 

This dissertation is to investigate the accuracy and skill of a high-resolution, multi-

model ensemble forecasting system in forecasting rainfall over South Africa at the 

short-range time scale.  The investigation takes place against the background of 

internal model and initial conditions errors on numerical weather prediction bringing 

uncertainty to deterministic weather prediction, thereby necessitating the issue of 

probabilistic forecasts.   

 

This chapter concluded with the aim and approach of the research of this dissertation.  

In the next chapter, the observational data, numerical models and methodology used 

in this study are described in detail 
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CHAPTER 2 

2 DATA AND METHODOLOGY 

 

In this chapter the methodology applied and the data used are described.  The chapter is 

divided into seven sections in order to explain how the ensemble was obtained and the 

results verified.  The first two sections outline the period and area of interest, followed by the 

description of the observational data and the construction of the gridded data set (sections 

three and four).  Sections five and six describe the numerical weather prediction model data 

used, as well as the design of the different ensemble forecasts.  The final section will provide 

detail on the statistical scores used to verify the ensemble prediction system. 

 

2.1 PERIOD AND AREA OF INTEREST 

 

2.1.1 PERIOD OF INTEREST 

In this study, three austral summer half-years were selected for the purpose of 

performing hindcasts; but only days where all of the ensemble members were 

available were used.  These are the months of October through to March of the years 

2006/07, 2007/08 and 2008/09.  For these periods, 24-hour rainfall totals were 

calculated from the numerical weather prediction data, as well as from observations 

stemming from automatic weather stations.  These totals were accumulated over the 

24-hour periods from 06:00 UTC on a given day, to 06:00 UTC on the next day, in 

correspondence to the time of observation of the numerous manual weather stations 

from the South African Weather Service (SAWS).  Therefore, the corresponding 

forecast hours of the numerical weather prediction data for this accumulation were 

hours 6 to 30.  Details of the observational data used are provided in section 2.3. 

 

2.1.2 AREA OF INTEREST 

The area of interest is the South African domain, located at the southern tip of Africa 

between 22° to 35°S and 16° to 33°E (Figure 2.1).  South Africa is primarily a 

summer rainfall region, with only the southwestern Cape of South Africa being a 

winter rainfall region (Tyson, 1986).  The accuracy and skill of the multi-model 

forecasts and the various ensemble members are evaluated over the full South 

African domain for the summer half-years under consideration. 

  

 
 
 



 

15 
 

2.2 RAINFALL DATA 

 

Daily rainfall data for the summer half-years (October to March) for the 2006/07, 

2007/08 and 2008/09 seasons were obtained from weather stations managed by 

SAWS and the Agricultural Research Council (ARC).  SAWS has a dense network of 

manual and automatic weather stations distributed across the country.  Figure 2.2 

indicates the distribution of the SAWS and ARC observational stations.  The manual 

stations report 24-hour accumulated rainfall in the morning (06:00 UTC) and the 

automatic stations report hourly accumulated rainfall totals.  For the automatic 

stations, hourly observations were accumulated to the same 24-hour period as the 

manual stations.  Hourly data from the ARC automatic stations were accumulated in 

a similar way, but with some additional quality control measures as detailed in the 

section below. 

 

2.2.1 QUALITY CONTROL OF RAINFALL DATA 

2.2.1.1 South African Weather Service data 

The SAWS performs qualify control on their daily rainfall data, which results in every 

rainfall value to be accompanied by a quality flag, e.g. “Accumulated' or “Normal”.  

Only daily rainfall values accompanied by the flag ‘Normal’ (indication that rainfall 

amount is representative of previous 24-hour period) were considered in the 

development of the daily rainfall grids.  The “Accumulated” flag is used when rainfall 

was observed at a station for a period greater than 24-hours. 

 

2.2.1.2 Agricultural Research Council – Institute for Soil, 

Climate and Water data 

In order to correspond to the period of availability of SAWS daily rainfall data, hourly 

rainfall from the ARC stations were accumulated to the 24-hour period ending at 

06:00 UTC, on condition that each of the hourly values for a particular station were 

present.  A 24-hour accumulation was not performed for the last day of each March, 

as data for the last 6-hour period of the day (ending at 06:00 UTC on 1 April) was not 

available.  Prior to the accumulation of the hourly values to daily values, a station 

location test were performed to ensure that all the stations utilized had unique 

locations.  Stations with shared geographical positions were not included in the 

derived daily rainfall dataset. 
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FIGURE 2.1: Location and topographical map of South Africa
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2.2.1.3 Combined rainfall data set 

All the daily rainfall values in this combined data set were subjected to three basic 

quality control measures, prior to the construction of the rainfall grid.  These quality 

control measures are the following:  

i. Extreme value test 

Daily values that exceeded 597 mm were set to missing values.  The threshold of 

597 mm was chosen as it is the current validated 24-hour rainfall record (Lynch, 

2003) over South Africa.  On 31 January 1984, 597 mm was recorded at St Lucia 

when cyclone Demoina invaded the northeastern part of South Africa. 

 

ii. Internal consistency test 

This quality control measure tests for non-logical values.  All negative rainfall values 

(not equal to the negative value used to indicate missing data) are set to missing 

values. 

 

iii. Continuous no-change test 

This quality control measure identifies all cases where data in the station time series 

display the same value for a chosen number of consecutive days (with the exception 

of missing values and 0 mm of rainfall).  For such cases, rainfall values that are 

identical for at least three consecutive days are excluded from the data set.   

 

After all the quality control measures had been preformed, data from approximately 

2050 rainfall stations were available for analysis in the combined data set.  Figure 2.2 

shows the spatial distribution of the rainfall stations.  It can be seen from the figure 

that the stations are concentrated over the urban areas of the country and that in 

some areas; especially the Northern Cape Province the station density is very low.  It 

should be noted that not all of the rainfall stations were operational every day during 

the study period, and consequently the number of rainfall stations for which data 

were available for analysis varied between approximately 2000 in the 2008/09 

season and 2060 in the 2006/07 season (Figure 2.3). 

 

In Figure 2.3 it can be seen that there was a steady decline in the number of stations 

from February 2007, with a minimum total number of stations recorded on the 14th of 

February and 2nd of March (2007).  Minimum AWS numbers (during the study period) 

were recorded twice during December 2007.  Figure 2.3 shows that the availability of 

rainfall stations was more constant during the last summer half-year of the study 

 
 
 



 

 

period.  However, the average total number of stations available is lower than that 

during the 2006/07 summer season.

 

FIGURE 2.2: Location of rainfal
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period.  However, the average total number of stations available is lower than that 

during the 2006/07 summer season. 

Location of rainfall stations in the combined SAWS-ARC data set.  

For the 2006/07 summer half-year, a total of 2074 stations are available for the 

construction of the daily rainfall grids (i.e. Figure 2.4) while there are 2065 and 2057 

stations available for the 2007/08 and 2008/09 summer half-years, respectively.  

period.  However, the average total number of stations available is lower than that 

 

ARC data set.   

year, a total of 2074 stations are available for the 

here are 2065 and 2057 

years, respectively.   

 
 
 



 

 

FIGURE 2..3: Number of daily rainfall stations in the combined data set per season
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2.3 CONSTRUCTION OF A HIGH-RESOLUTION GRID 

 

In order for the numerical precipitation forecasts to be compared to the observed 

rainfall, the rainfall totals recorded at the weather station locations were grouped in to 

a grid field with horisontal resolution of 0.25º.  An average rainfall value was then 

calculated for each grid box using the box-average technique (Peel and Wilson, 

2008).  This procedure has been shown to successfully represent station data on the 

same grid field as that of the numerical weather prediction output (Peel and Wilson, 

2008).  A different number of rainfall stations were used in the calculation of the 

average grid box value, depending on the availability of rainfall stations in the 

geographical position demarcated by the grid box.  Figure 2.4 shows the average 

number of rainfall stations used in the calculation of the average rainfall values for the 

different grid boxes.  There are areas within the 0.25° grid where no rainfall stations 

are available (white grids), and several grid boxes which only had one station.  The 

highest number of rainfall stations per grid box is present over the south-west coast 

and surrounding areas, where as many as 25 stations were used in the calculation of 

the average grid box rainfall. 

 

If no stations were present within a specific grid box, the grid box was excluded from 

the subsequent analysis of forecast statistics.  The results of the verification will be 

sensitive to the number of stations per grid box.  However, for this study the minimum 

number of stations per grid box was chosen to be one.  If the minimum number with 

at least two stations per grid were chosen, then the observation grid would have 

fewer samples, particularly in sparsely covered regions, and the results would be 

skewed toward more populous regions of South Africa. Even with a grid box with only 

one station which has the characteristics of a point measurement, making 

comparison with a model grid box average a bit more problematic, the greater 

number of observational grid boxes was chosen to be the better option for the 

purpose of this study. 

 

Two regions are prominent with regards to station density, namely the extreme 

southwestern part of the country as well as the central parts of Gauteng and the 

northeastern Free State.  The Northern Cape Province has the lowest number of 

rainfall stations.  These regions are highly correlated to the population size of the 

region. 

 
 
 



 

 

FIGURE 2.4: The average number of stations per grid box for 0.25° 
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2.4.1 UNIFIED MODEL

The Unified Model (UM) is a non

Its vertical coordinate is based on geometric height.  The UM can in principle be 

applied at time-scales ranging from weather 

resolutions ranging from relatively low to  very high resolutions beyond the validity of 

the hydrostatic assumption (Davies 

global scale with horisontal resolution of

conditions for a regional version of the UM.  Since May 2006, the UM version 6.1 has 

been running operationally at the SAWS with different configurations, including 

various horisontal resolutions, parameterizations sc

processes (Tennant, 2007).  The three configurations used in this study are a 12km 

resolution run without data assimilation, a 12km resolution with continuous 3D

(three-dimensional variational assimilation; Kalnay, 2003) dat

15km resolution run (also without data assimilation).  Data assimilation is a statistical 

method of combining the latest observational data and the first guess field from the 

previous short-range forecast for the same period (Kalnay, 2

configurations run in-house at the SAWS on a NEC SX
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MERICAL WEATHER PREDICTION DATA 

UNIFIED MODEL 

The Unified Model (UM) is a non-hydrostatic model developed at the 

Its vertical coordinate is based on geometric height.  The UM can in principle be 

scales ranging from weather forecasting to climate projection, and at 

resolutions ranging from relatively low to  very high resolutions beyond the validity of 

the hydrostatic assumption (Davies et al, 2005).  The UK Met Off

global scale with horisontal resolution of 40 km, providing initial and boundary 

conditions for a regional version of the UM.  Since May 2006, the UM version 6.1 has 

been running operationally at the SAWS with different configurations, including 

various horisontal resolutions, parameterizations schemes and data assimilation 

processes (Tennant, 2007).  The three configurations used in this study are a 12km 

resolution run without data assimilation, a 12km resolution with continuous 3D

dimensional variational assimilation; Kalnay, 2003) data assimilation and a 

15km resolution run (also without data assimilation).  Data assimilation is a statistical 

method of combining the latest observational data and the first guess field from the 

range forecast for the same period (Kalnay, 2003).  All three of the 

house at the SAWS on a NEC SX-8 supercomputer.

 

horisontal resolution 

hydrostatic model developed at the UK Met Office.  

Its vertical coordinate is based on geometric height.  The UM can in principle be 

forecasting to climate projection, and at 

resolutions ranging from relatively low to  very high resolutions beyond the validity of 

Met Office runs the UM at 

km, providing initial and boundary 

conditions for a regional version of the UM.  Since May 2006, the UM version 6.1 has 

been running operationally at the SAWS with different configurations, including 

hemes and data assimilation 

processes (Tennant, 2007).  The three configurations used in this study are a 12km 

resolution run without data assimilation, a 12km resolution with continuous 3D-Var 

a assimilation and a 

15km resolution run (also without data assimilation).  Data assimilation is a statistical 

method of combining the latest observational data and the first guess field from the 

003).  All three of the 

8 supercomputer. 
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The cloud scheme used by the UM at the SAWS is the 2A scheme, the Standard 

Smith Scheme, which diagnoses the liquid cloud fraction and liquid cloud water.  The 

frozen cloud fraction is diagnosed from input frozen cloud condensate, assuming an 

inverted Smith scheme relationship between the two.  Liquid and frozen cloud 

fractions are combined to produce a total bulk cloud fraction (Wilson and Bushell, 

2007). 

 

The SAWS UM applies the Prognostic Cloud 2 (PC2) scheme for convective 

systems, which in turns solves the 4A mass-flux convection scheme for CAPE 

scaling.  Environmental compensation for initial parcel excesses ensures the 

environment is cooled and dried to account for the excess heat and moisture 

attributed to the parcel as convection is initiated (Wilson and Bushell, 2007). 

 

2.4.1.1 12 km no Data Assimilation 

The 12 km no-DA UM run covers the sub-continent of southern Africa as well as large 

areas of the surrounding oceans (Figure 2.5).  This configuration runs once a day 

with 38 levels in the vertical, and produces forecasts 48 hours ahead from the 

initialized field at 00:00 UTC (Tennant, 2007).The forecast output fields are written 

every hour.  This run uses the 18:00 UTC forecast from the UM Global Model to 

provide initial conditions to the 12 km run at 00:00 UTC, as well as lateral boundary 

condition fields.   

 

2.4.1.2 12 km Data Assimilation 

This configuration field has the same domain and resolution as the 12 km no data 

assimilation run, but incorporates continuous 3DVAR data assimilation.  The 

assimilation process is repeated every six hours, forecasting six hours ahead, i.e. four 

times a day, but at the 00:00 UTC assimilation update, the model continues to 

forecast 48 hours ahead. 

 

2.4.1.3 15 km no Data Assimilation 

The 15 km horisontal resolution run has a much smaller domain (Figure 2.6), than the 

two before-mentioned UM runs.  It is set up to cover only the South African domain, 

covering 22ºS to 35ºS and 15ºE to 34ºE, making it less computer intensive.  This 

configuration has no data assimilation, and also uses the 18:00 UTC forecast from 

the UM Global Model to provide 00:00 UTC initial conditions. 
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The three UM model runs were nearly 100% available for all three half-years (Table 

2.1).  Exceptions are the 2006/07 season, due to missing days in October 2006 as a 

result of computational errors within the archiving system of the two 12 km 

configuration runs. 

 

TABLE 2.1: Data availability of the UM per season 

Model run 2006/2007 2007/2008 2008/2009 

12km no-DA 97% 100% 100% 

12km DA 86% 100% 100% 

15km no-DA 100% 100% 100% 

 

 

FIGURE 2.5: The 12km horisontal resolution domain of the UM operational at the SAWS.  The 

shaded values are the model topography (m).   
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FIGURE 2.6: The domain size of the 15 km UM member 

 

2.4.2 CCAM MODEL 

The Cubic-Conformal Atmospheric Model (CCAM) was developed at the 

Commonwealth Scientific and Industrial Research Organisation (CSIRO) in Australia 

(McGregor, 2005).  CCAM is a variable-resolution global model, that may be applied 

either in quasi-uniform mode to function as a global circulation model, or alternatively 

in stretched-grid mode to provide high resolution over an area of interest.  The model 

solves the hydrostatic primitive equations using a semi-implicit semi-Lagrangian 

method.  It includes a comprehensive set physical parameterizations (see McGregor, 

2005), including a cumulus convection scheme that uses a mass-flux closure and 

which includes downdrafts, entrainment and detrainment (McGregor, 2003).  

Interactive cloud distributions are determined by the liquid and ice-water scheme of 

Rotstayn (1997).  It has been illustrated by Engelbrecht et al.  (2009) and 

Engelbrecht et al.  (2011) that the CCAM is capable of satisfactorily simulating many 

attributes of the present-day climatological conditions over southern and tropical 

Africa.  The model has also been shown to produce skillful short-range and seasonal 

forecasts over the southern African region (Potgieter, 2007; Ghile and Schulze, 2010; 

Landman et al., 2010). 

The CCAM became operational at the Council for Scientific and Industrial Research 

(CSIR) in 2010, so that hindcast data were created in order to perform verification 

studies for the three summer half-years relevant to this study.  In operational mode, 

 
 
 



 

 

the CCAM is initialized at 00:00 UTC, using initial condition fields obtained from the 

Global Forecast Syste

using the 00:00 UTC initial state.  A forecast that has a resolution of about 60 km 

over southern and tropical Africa is performed first.  In order to obtain this forecast 

the model is applied in s

2.7), with the resolution decreasing to about

forecast is subsequently performed using a strongly

resolution of 15 km over

forecast.  Hindcasts for the three half

using a set-up that mirrors the operational forecasting system.  For both the 60 km 

and 15 km hindcasts, model output i

domain that covers southern and tropical Africa.

 

FIGURE 2.7: Output domain of the CCAM forecasts
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the CCAM is initialized at 00:00 UTC, using initial condition fields obtained from the 

Global Forecast System (GFS).  Two different 7-day forecasts are produced daily 

using the 00:00 UTC initial state.  A forecast that has a resolution of about 60 km 

over southern and tropical Africa is performed first.  In order to obtain this forecast 

the model is applied in stretched-grid mode over southern and tropical Africa

, with the resolution decreasing to about 400 km in the far-field.  A high

forecast is subsequently performed using a strongly-stretched grid that provides 

resolution of 15 km over southern Africa, with this run nudged within the 60 km 

forecast.  Hindcasts for the three half-years under consideration were performed 

up that mirrors the operational forecasting system.  For both the 60 km 

and 15 km hindcasts, model output is available at six-hourly time

domain that covers southern and tropical Africa. 

Output domain of the CCAM forecasts 

 

the CCAM is initialized at 00:00 UTC, using initial condition fields obtained from the 

day forecasts are produced daily 

using the 00:00 UTC initial state.  A forecast that has a resolution of about 60 km 

over southern and tropical Africa is performed first.  In order to obtain this forecast 

grid mode over southern and tropical Africa (Figure 

field.  A high-resolution 

stretched grid that provides 

southern Africa, with this run nudged within the 60 km 

years under consideration were performed 

up that mirrors the operational forecasting system.  For both the 60 km 

hourly time-steps over a 
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2.4.3 NCEP GLOBAL ENSEMBLE FORECAST SYSTEM 

The National Centres for Environmental Prediction (NCEP) runs the Global Ensemble 

Forecast System (GEFS) operationally.  The output is downloaded at the SAWS and 

primarily used for medium-range forecasting (4 to 14 days ahead) by the forecasters 

at SAWS’s National Forecast Centre (Tennant, 2007).  The GEFS consists of runs 

configured at 00:00 UTC, 06:00 UTC, 12:00 UTC and 18:00 UTC.  For each of these 

time intervals, there is one control run plus 14 additional members, forecasting 16 

days ahead.  The horisontal resolution is 1º (~100 km) with 28 levels in the vertical.  

The ensemble members are created using the ensemble transform perturbation 

method (Kalnay, 2003).  The model used to generate the ensemble is the Global 

Spectral Model. 

 

Due to data connectivity limitations, the time that it takes for these files to be 

downloaded to SAWS effectively implies that the full suite of forecasts issued by the 

GEFS on a given day, is only available to the SAWS forecasters on the next day.  

The SAWS therefore always use the GEFS forecast with a one day lead time.  Note 

that each forecast also consists of 60 ensemble members (14 members + control run 

x 4 initialization times). 

 

2.5 DESIGN OF THE SHORT-RANGE MULTI-MODEL ENSEMBLE 

SYSTEM 

 

The high-resolution multi-model ensemble (MMENS) is only compiled for the South 

African domain (Figure 2.1).  The system is formulated with the purpose of predicting 

the probability of precipitation exceeding a certain rainfall threshold, over a 24-hour 

period from 06:00 UTC to 06:00 UTC.  Although each of the five ensemble members 

(UM 12 km, UM 12 km data assimilation, UM 15 km, CCAM 15 km and CCAM 60 

km) described in the above-mentioned sections covers a bigger domain than the 

South African domain (22º to 35ºS and 16ºE to 33ºE) the spatial extent of the 

observational network limits the verification analysis to this smaller domain.  Model 

output is regridded to a horisontal resolution of 0.25° over the SA domain, by using 

the same box averaging technique applied to the observational station data.  In this 

study threshold values of daily rainfall totals are considered in order to calculate the 

probability of these threshold being exceeding within a 24-hour period.  These values 

are 1 mm, 10 mm, 25 mm and 50 mm, with the latter representing extreme, and rare 

rainfall events.  For the extreme rainfall threshold of 50 mm, the number of events is 

 
 
 



 

 

significantly less than those of the other thresholds.  Figure 2.8 shows the number of 

times the threshold of 50 mm/day was exceeded per month over the three seasons.  

The maximum number of times the extreme event did occur was 7 times during 

December over the Eastern Cape Province.  

threshold is useful in the construction of gridded rainfall field, in order to eliminate 

dew and insignificant rain.  Th

above each of the various thresholds was subsequently investigated.

 

FIGURE 2.8: The total number of extreme rainfall events exceeding 50 mm/day for t

months under investigation
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Apart from the MMENS, an ensemble for the individual models (the UM and CCAM) 

was also created, in order to establish the skill of each of the single-model ensemble 

forecasts, and to determine the influence that each of the single-model ensemble 

systems has on the multi-model system. 

 

The four different 24-hour rainfall total thresholds are considered in order to formulate 

five different dichotomous forecasts for each threshold value.  That is, for a given 

threshold a value of zero is assigned to the forecast if the threshold is not exceeded 

and a value of one if the threshold is exceeded.   

 

The individual members of each of the ensemble members contribute equal weights 

to the respective single-model ensemble systems.  The UM ensemble (UMENS) 

probability of precipitation (above a certain threshold) is created by adding the 

dichotomous forecast (1 or 0) obtained from the deterministic rainfall forecast of each 

forecast at a specific grid point for each of the members, and to then divide by three 

(the number of model configurations).  Symbolically,  

 

����� � ��1 � ��2 � ��3
3 � 1 � 0 � 1

3 � 0.66% 

 

The same process is repeated for the CCAM ensemble (CCAMENS), by adding the 

two dichotomous forecasts and to then divide by two in order to obtain the probability 

forecast from the CCAMENS: 

 

������� � ����1 � ����3
2 � 1 � 0

2 � 0.50% 

 

The MMENS is also created by applying equal weights to the two single-model 

ensemble systems described above.   

 

����� � ����� � �������
2 �  0.66 � 0.5

2 � 0.58% 

 

The probability of precipitation from the UMENS is added to that of the CCAMENS 

and the total is then averaged.  It was decided that with this method, the UM with the 

most members will not carry more weight in the MMENS system. 
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For the deterministic forecasts of each of the ensemble systems, the average rainfall 

amount was calculated in the same manner as described above for the dichotomous 

forecasts, but by adding the deterministic rainfall amount and averaging the value. 

 

2.6 THE NCEP ENSEMBLE DESIGN 

 

An ensemble forecast based on the 00:00 UTC initialized members of the NCEP 

GEFS data was created for each day of the study period.  The 00:00 forecasts were 

selected for this purpose in order to keep the forecast similar to the set-up of the 

multi-model system.  This single-model ensemble system is useful to establish a 

reference value of skill for the MMENS to beat – that is, the MMENS should at least 

provide forecasts more skillful than that of this single-model, low resolution 15-

members ensemble (constructed from 1 control member and 14 perturbed members).  

The 1° resolution NCEP forecasts were regridded to the 0.25° resolution grid for 

comparison purposes by using a bi-linear interpolation method.  The probability 

forecast is created in a similar manner as the single-model high resolution ensembles 

where the individual forecasts is converted to a dichotomous forecast and then 

averaged in order to obtain a probability of precipitation.  Similarly, for the 

deterministic forecasts, the average rainfall amount from the 15 member ensemble 

was calculated for each grid point.   

 

2.7 VERIFICATION METHODS 

 

For each of the three summer half-years, verification is performed separately for the 

six months that make up the summer half-year.  That is, for each of the months the 

daily forecasts issued for that month over the three half-years are considered when 

calculating the statistical verification scores.  In example: for October (assuming you 

have 100% data availability) the daily forecasts of October 2006, October 2007 and 

October 2008 will equal to a large sample of 93 days, which in turn is then verified as 

one forecast sample.  Each forecast of daily rainfall totals was converted into four 

sets of dichotomous forecasts, based on the four different threshold values under 

consideration (section 2.5).  The verification statistics were calculated for the 

forecasts regridded to the 0.25° resolution grid. 
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2.7.1 VERIFICATION OF FORECAST ACCURACY 

The forecast bias (as defined by Eq. 2.1) explores whether a variable under 

consideration is systematically over-forecast or under-forecast, and is a measure of 

forecast accuracy.  The perfect forecast would have a bias of 0.  In this study, the 

average bias of the deterministic forecast of all the ensembles and individual 

members are calculated on a monthly basis (for each grid box on the 0.25 degree 

resolution grid).   

 

���� � �
� ∑ ��� � �� ��!�                                                                     2.1 

 

Here � represents the total number of forecasts issued for a specific month for each 

grid box over the three summer half-years under consideration, �� is the forecast and 

�� is the corresponding observed value. 

 

Together with the bias, the forecast frequency is calculated to show how many times 

during the period of interest a certain threshold was exceeded.  For a perfect 

forecast, the forecast frequency of events occurring in a given threshold category will 

exactly match the observed frequency of occurrence of events above the threshold 

under consideration. 

 

2.7.2 VERIFICATION OF FORECAST SKILL 

To determine the skill and quantify the quality of a forecast, the forecast has to be 

compared to that of a reference forecast (Joliffe and Stephenson, 2003).  A skill score 

compares the value of the forecast issued to that of another forecast, for example a 

forecast obtained from the climatology of the variable.  In this study, persistence was 

used as a reference forecast due to the short-range period forecast (Wilks, 2006).  

Persistence is the observation of the event during the previous time period, therefore 

for this study it is the previous days’ 24-hour total rainfall observation.   

 

2.7.2.1 Brier Skill Score Calculations 

The Brier skill score (BSS; Stanski et al. 1990) is derived from the Brier score (BS; 

Wilks, 2006; Fawcett, 2008).  The BS consists of the mean squared error in the 

probability forecast (Eq. 2.2).  Here �� assumes a value of 1 if the event was forecast 

and 0 if the event was forecast not to occur.  Similarly, a value of 1 is assigned to �� if 
the event did occur and 0 if the event did not occur.  The same method applies in 

calculating the BS for the reference forecast where �"#� will be equal to 1 or 0 if the 
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event on the previous day exceeded the threshold value (Eq. 2.3).  The BSS (Eq. 2.4) 

answers the question of the relative skill the forecast (predicting whether the event 

occurred or not) has over that of the persistence (reference) forecast (Mason, 2004).  

The BSS is generally known as a verification tool for probability forecasts, but can 

also be applied to deterministic forecasts when a threshold value is applied.  The 

deterministic forecast is then transformed into a categorical forecast of a dichotomous 

predictand (Theis et al, 2005; Wilks, 2006).  The general range of the skill score is 

from minus infinity to 1, where the perfect score will be equal to 1 and no skill 

improvement over that of the reference forecast equals to 0, and no forecast skill for 

all negative values. 

 

�� � �
�∑ ��� � �� $��!�                                                2.2 

 

��%&' � �
� ∑ ��"#� � �� $��!�                                             2.3 
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                                                                         2.4 

 

For comparing the MMENS and the NCEP ensemble systems, the three independent 

terms of the Brier score is calculated.  In order to calculate the three terms, the 

following equations needs to be solved where - is equal to the total number of 

forecasts issued over the evaluation period and grid points and � is the number of 

forecasts for each forecast probability bin. 

 

�.� � 1
��

/ �001�2
 

This equations determines the number of times the events was observed �0 for each 

of the forecasts made for each probability, ��.  The equation below determines the 

relative frequency ( �. )of observations. 

 

�. � 1
-/���.�

3

�!�
 

 

The reliability term needs to be as small as possible, which will indicate a well 

calibrated forecast because it summarizes the conditional bias of the forecast.  Here 

4� is the probability forecast value. 
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The resolution term needs to be as large as possible, which will indicate that the 

forecast resolves the event strongly because it summarizes the ability of the forecasts 

to discern between events and non-events. 

 

56��7:9��- � 1
-/��

3

�!�
��.� � �. $ 

 

The uncertainty term is only dependent on the climatological frequency of an event 

occurring and therefore is not influenced by the forecast. 

 

�-;6<9��-94 � �.�1 � �.  
 

2.7.2.2 Mean Squared Error Skill Score Calculations 

The mean squared error skill score (MSESS) is another measure of the accuracy of a 

forecast.  It is sensitive to the presence of large individual forecast errors.  The 

MSESS is formulated in a way similar to the BSS, but with �� and �� now representing 

the actual forecast and observed values.  That is, the difference with determining the 

skill of the forecast using the MSESS is that the skill is determined based on the 

deterministic forecast and not a probability forecast (Wilks, 2006).   

 

2.7.3 ADDITIONAL VERIFICATION OF DICHOTOMOUS 

FORECASTS 

A number of additional statistical scores exist to further explore the accuracy of the 

dichotomous forecasts based on different thresholds.  For each forecast or 

observation where the threshold is exceeded, the non-probabilistic forecast becomes 

“yes (or 1)” and “no (or 0)” if the threshold is not exceeded.  This  forecast is then 

analysed using  a contingency table which shows the frequency of “yes” and “no” 

forecasts  relative to the observed occurrences (Joliffe and Stephenson, 2003; Wilks, 

2006, Fawcett, 2008; Table 2.2).  The series of verification statistics obtained in this 

way, for various threshold values, give an indication of the forecast to correctly predict 

the occurrence as well as the amount of rainfall (Ebert, 2001).  This process is 

applied separately to all the individual members, and to the different ensembles that 

were formulated.  Usually, the contingency table are set-up to explore the average 
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forecast performance over a model domain.  This has the disadvantage that the 

verification scores represents an area average (Ebert, 2001) and cannot distinguish 

between different geographical locations of the domain or different weather regimes.  

For this reason, a contingency table is calculated for each grid box in the domain, and 

the scores calculated to present forecast performance at each grid box.  In this 

manner the spatial patterns of the forecast performance can be evaluated.   

 

Table 2.2 outlines a number of forecast attribute measures that can be obtained from 

a contingency table based on dichotomous forecasts.   

 

TABLE 2.2: The contingency table for the analysis of dichotomous forecasts 

 

 

a : HITS – the event was forecast and observed 

b : FALSE ALARMS – the event was forecast but not observed 

c : MISSES – the event was not forecast but observed 

d : CORRECT NEGATIVES – the event was neither forecast not observed 

 

Based on the forecast attribute measures obtained from the contingency table, a 

number of statistical scores measuring forecast performance can be formulated. 

 

2.7.3.1 Frequency Bias Index (Bias Score) 

The frequency bias index (FBI) measures the ratio of the forecast frequency of “yes” 

events to the observed frequency of “yes” events (Eq 2.5).  For the FBI the score is 

perfect when equal to 1.  The FBI indicates whether or not the system has a tendency 

to over- or under-forecast rainfall frequencies (Joliffe and Stephenson, 2003).  

Because the FBI does not distinguish between the timing of the forecast and the 

observations, it is not a measure of accuracy. 

 

=�> �  ?@A
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    OBSERVED   

    YES NO   

FORECAST 
YES a b forecast yes 

NO c d forecast no 

    observed yes observed no TOTAL 
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2.7.3.2 Probability of Detection (Hit Rate) 

The probability of detection (POD) or the hit rate is defined by Joliffe and Stephenson 

(2003) as the proportion of occurrences of the forecast of the “yes” event being 

correct, relative to the total number of actual occurrences of the event (Eq. 2.6).  A 

perfect score for POD is 1.  In equation 2.6 it is shown that the POD is dependent on 

the “hits” and “misses” of the forecast. 

 

CDE � ?
�?@B               2.6 

 

2.7.3.3 False Alarm Rate 

In contrast to the POD, the false alarm rate (F) is defined as the proportion of events 

not occurring being forecast incorrectly to occur (Joliffe and Stephenson, 2003).  The 

F is used in conjunction with the POD. 

 

= �  A
A@F             2.7 

 

2.7.3.4 Critical Success Index 

The threat score or critical success index (CSI) addresses how well the “yes” forecast 

events agrees to the “yes” observed events, and only measures the events that 

occurred or were predicted and therefore does not take into account correct 

negatives (Eq. 2.8).  The CSI is especially useful during the occurrences when “no” 

events are forecast more often than “yes” events; i.e.  extreme rainfall totals (50 

mm/day).  The value of the CSI ranges between 0 and 1, where 1 is the best CSI 

score.   

 

��> �  ?
?@A@B         2.8 

 

2.7.3.5 Equitable Threat Score 

The equitable threat score (ETS) is a modification on the CSI that takes into account 

the correct negatives (Eq. 2.9 and 2.10), included in the total number of events (n .  
Therefore its equitability is less sensitive to different atmospheric regimes (Joliffe and 

Stephenson, 2003).  The ETS calculates the forecast events that were correctly 

predicted, while correcting for hits due to random chance.  The ETS ranges from -1/3 

to 1; negative scores have no skill and 1 is a perfect forecast (Clark et al, 2008). 
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2.7.4 VERIFICATION OF PROBABILITY FORECASTS 

2.7.4.1 ROC Curve 

The Relative Operating Characteristics (ROC) curve is constructed by calculating the 

hit rate and the false alarm rate for each of the probability intervals, and is then 

plotted on an x-y graph (Clark et al, 2008).  The ROC curve is a visual method of 

determining the discrimination of a forecast between events and non-events (Wilks, 

2006; Fawcett, 2008).  Forecasts with good discrimination show ROC curves 

approaching the upper-left corner of the ROC diagram (the bold curved line in Figure 

2.9).  A diagonal line (dotted in Figure 2.9) represents a forecast with no 

discrimination (Joliffe and Stephenson, 2003).  The ROC is conditioned on the 

observations, determining the performance of the forecast if a given event occurred.  

For each of the ROC curves, the area under the ROC curve is calculated with the 

trapezoid method.  This method is applied by adding the areas of the trapezoids 

formed by connecting the points on the curve (Wilks, 2006; Clark et al, 2008). 

 

FIGURE 2.9: ROC graph (adapted from Wilks, 2006) 
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2.7.4.2 Reliability Diagram 

The reliability diagram represents the relationship between the observed frequency 

and the forecast probability of an event (Joliffe and Stephenson, 2003, Wilks, 2006).  

The diagonal line on the graph in Figure 2.10 represents a forecast with good 

resolution whereas a horisontal line will indicate a forecast with minimum resolution 

(Wilks, 2006).  The reliability diagram is a good companion to the ROC curve, where 

the reliability diagram is conditioned on the forecast.  The reliability diagram shows 

what the observed frequency is given the forecast probability for that event to occur.   

 

Together with the reliability diagram a sharpness or frequency diagram is constructed 

where the forecast probability bins are plotted against the frequency of the event 

forecast within each probability bin (over the verification period and at all the 

gridpoints).  The sharpness diagram is an indication of the confidence of the forecast 

system under investigation. 

 

 

FIGURE 2.10: A reliability Diagram (adapted from Joliffe and Stephenson, 2003) 

2.8 SUMMARY 

 

The data, models and methods used to construct the different ensemble systems and 

multi-model ensemble system have been described.  The properties of the high-
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resolution regional models and course resolution global ensemble system have been 

detailed.  Finally the data and methods used to verify the members and the ensemble 

forecast system have been discussed.  In the next chapter the verification of the 

precipitation forecasts of the various systems are discussed. 
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CHAPTER 3 

3 VERIFICATION OF THE SHORT-RANGE MULTI-MODEL 
ENSEMBLE PREDICTION SYSTEM 

 

This chapter describes the verification results obtained using the short-range MMENS 

prediction system based on the Unified and CCAM models applied over the South African 

domain (Figure 2.1).  The skill and accuracy of each of the individual ensemble members, as 

well as the three respective ensembles are verified. The three ensembles are the UMENS 

(average of the three UM members) the CCAMENS (average of the two CCAM members) 

and the MMENS (average of the UMENS and CCAMENS).  Verification is performed by 

comparing the forecast output from each of the ensemble members to observed rainfall data.  

Firstly, each of the forecasts is verified deterministically over the entire domain for each of 

the four rainfall thresholds (1, 10, 25 and 50 mm/day), followed by the verification of the 

probabilistic forecasts as obtained from each of the ensembles.  The verification is done on 

the 0.25° horisontal resolution as described in Chapter 2. 

 

3.1 VERIFICATION OF FORECAST ACCURACY 

 

3.1.1 BIAS CALCULATIONS 

In order to better interpret the bias fields of the forecasts, Figure 3.1 shows the 

monthly observed daily mean rainfall.  The average monthly bias in the forecast of 

24-hour rainfall totals, for each of the months in the summer half-year, is shown for 

each of the three ensembles in Figure 3.2 a to c.  These spatial maps represent the 

monthly bias for each grid box obtained from averaging each month in the summer 

half-year over the three seasons of 2006/07, 2007/08 and 2008/09.  The spatial map 

of the bias provides insight into the distribution of areas with relatively high and low as 

well as positive and negative biases.  For each of the fields of monthly biases, the 

spatial average bias calculated for the domain is also given on each map in Figure 

3.2 (a) to (c).  From these values it can be deduced which month displays the lowest 

area average bias for a given ensemble, as well as which ensemble provides the 

smallest bias for a given month. A summary of these values are given in Figure 3.3.  

This figure also contains the area average bias of the five individual members of the 

MMENS; UM 12 km (UM12), UM 12 km data assimilation (UM12DA), UM 15 km 

(UM15), CCAM 15 km (CCAM15) and CCAM 60 km (CCAM60). 
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In Figure 3.2a it is seen that the bias of the UMENS has a general wet bias, 

especially over the eastern parts of the country.  Regions with a negative bias include 

the southwestern Cape and western interior, during the months of October to 

December. The Limpopo Province also displays a predominately dry bias during 

October.  The month of March has the lowest overall bias for the domain (about 1.3 

mm/day).  December displays the highest bias of more than 2 mm per day 

 

The CCAMENS (Figure 3.2b) shows a very similar wet bias pattern over the central 

interior as that of the UMENS.  The CCAMENS under-forecast the rainfall amounts 

over the east-coast and the south-coast, especially during November.  The months of 

February to March, the CCAMENS tend to over-forecast the rainfall amounts over the 

east-coast, with the lowest overall bias for November.  The CCAMENS has the 

highest bias in February when the system in general has a wet bias.   

 

The MMENS (Figure 3.2c) has a similar spatial pattern as the UMENS system, with a 

wet bias over the east-coast; contrary to the dry bias of the CCAMENS.  The MMENS 

as with the UMENS tend to over-forecast the rainfall amounts over the Northern Cape 

Province for all of the six months considered.   

 

In Figure 3.3 the area average bias for each of the individual members of the MMENS 

and the UM- and CCAM ensembles is given.  Figure 3.3 reveals that the UM12DA 

member has significantly smaller biases compared to the MMENS forecasts for all of 

the six months.  The remaining members of the UM model has a significant high bias, 

contributing to the high bias of the UMENS, hence the CCAMENS has the lowest 

area average bias of the three ensembles, except for March when the UMENS has 

the lowest bias. 

 

Figure 3.4 shows the frequency of the forecast for each of the ensemble members as 

well as the frequency of observed rainfall amounts (black line).  In Figure 3.4 graphs 

a to f, the monthly frequency of occurrence of observed and forecast rainfall events 

for each of the ensemble members and the different ensemble systems, for different 

rainfall categories are shown for October to March.  The categories are calculated 

from zero rainfall per day observed and forecast, increasing incrementally to greater 

than 100 mm/day events in order to capture the rainfall frequency distribution of daily 

rainfall totals.  This figure gives a more detailed perspective of the over- and under-

forecast of each of the ensemble members.   
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When looking at graphs (a) to (f) in Figure 3.4, it is seen that for all the months 

considered, the members and ensemble systems over-forecast the lower threshold 

frequencies (< 10 mm/day).   

 

The variability of forecast frequencies is the greatest during December, but the 

MMENS follows the frequency observed line from 10 mm/day to 30 mm/day 

threshold.  The UM12 member over-forecast the frequency for all thresholds up to 50 

mm/day after which the occurrence is zero.  When only considering thresholds 

greater than 10 mm/day, November is considered to be the month when all of the 

members and ensemble systems have the best forecast.  

 

The MMENS tends to under-forecast the frequency of occurrence for thresholds 

greater than 10 mm/day for four of the six months.  During November through to 

March, the UM12DA member follows the observed frequency the best for thresholds 

greater than 10 mm/day.  The UM12 member is the best for October, but for the 

months remaining the UM12 member over-forecast the frequency of threshold 

events.  In January the UM12 member under-forecast the frequency of events greater 

than 10 mm/day amounts.   

 

 
 
 



 

FIGURE 3.1: The average daily rainfall observed for each of the six months under investigation during 

the three summer half
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rainfall observed for each of the six months under investigation during 

the three summer half-years. 

 

rainfall observed for each of the six months under investigation during 

 
 
 



 

FIGURE 3.2: The spatial maps for the bias for the three ensembles for the six month

investigation. (a) UMENS, (b) CCAMENS and (c) MMENS
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The spatial maps for the bias for the three ensembles for the six month

investigation. (a) UMENS, (b) CCAMENS and (c) MMENS 

The spatial maps for the bias for the three ensembles for the six months under 
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FIGURE 3.3: A summary of the bias for the members and the three ensemble systems for the six 

months under investigation 
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FIGURE 3.4: The frequency of occurrence for the six months considered. (a) October, (b) November, 

(c) December, (d) January, (e) February and (f) March. 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 >0 1 2.5 5 10 15 20 25 30 40 50 75 100

F
re

q
u

e
n

c
y

 (
N

r 
o

f 
fc

s
ts

/t
o

ta
l 

fc
s
ts

) 
%

Threshold (mm/day)

d). January

UM12

UM12DA

UM15

UMENS

CCAM15

CCAM60

CCAMENS

MMENS

OBS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 >0 1 2.5 5 10 15 20 25 30 40 50 75 100

F
re

q
u

e
n

c
y

 (
N

r 
o

f 
fc

s
ts

/t
o

ta
l 

fc
s
ts

) 
%

Threshold (mm/day)

e). February

UM12

UM12DA

UM15

UMENS

CCAM15

CCAM60

CCAMENS

MMENS

OBS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 >0 1 2.5 5 10 15 20 25 30 40 50 75 100

F
re

q
u

e
n

c
y
 (
N

r 
o

f 
fc

s
ts

/t
o

ta
l 

fc
s

ts
) 

%

Threshold (mm/day)

f). March

UM12

UM12DA

UM15

UMENS

CCAM15

CCAM60

CCAMENS

MMENS

OBS

 
 
 



 

46 

3.2 VERIFICATION OF FORECAST SKILL 

 

3.2.1 BRIER SKILL SCORE 

The Brier skill score for the four threshold values are represented spatially by maps in 

Figure 3.5 to Figure 3.7 for the UMENS, CCAMENS and MMENS, respectively.  The 

1 mm/day threshold value is represented by (a) in the figures, (b) represents 10 

mm/day, (c) and (d) shows the 25 mm/day and 50 mm/day thresholds.  The results 

are shown on a monthly basis for the summer half-year, similar to the maps of the 

bias.  On each of the maps, there is an indication of the percentage of positive grid 

points of the total number of grid box forecasts for the whole domain.  This number 

gives an indication of the percentage of the forecast grid points over the domain that 

has skill over that of the persistence (reference) forecast.  Therefore, the greater this 

number, the greater the skill of the forecast is for the period over the domain.  In 

Figure 3.8 these numbers are visualized on a histogram for all the members of the 

ensemble.  This graph is indicative of the relative performance of the various 

ensembles and ensemble members. 

 

3.2.1.1 1 mm/day Threshold 

In Figure 3.5a it can be seen that in general there is no skill for this threshold for the 

UMENS.  This result may be interpreted as the UMENS not being skillful in predicting 

the occurrence, or non-occurrence of rainfall – at least over the summer rainfall 

region during summer.  Skill is limited to the south-west coast and parts of the south 

coast, extending into the Eastern Cape Province.  This result may indicate that the 

UMENS is skillful in predicting rainfall occurring in association with mid-latitude 

weather systems that move along the southern coastal areas during summer – but 

that is not skillful in predicting the occurrence of convective rainfall over the summer 

rainfall area. The reason for the forecasts not being skillful over the summer rainfall 

area may be linked to the general tendency of numerical models predicting too many 

rain days.  

 

The CCAMENS Brier skill score verification is shown in Figure 3.6, where (a) again 

shows the 1 mm/day threshold.  The same pattern as with the UMENS is evident in 

the CCAMENS.  Areas of skill are visible over the south-west coast, Cape south 

coast and coastal areas to the north during certain months.  With regard to the 

number of grid points with skill, the CCAMENS generally has lower skill than that of 

the UMENS. 
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Figure 3.7 displays the MMENS.  For rainfall events of 1 mm/day and greater (map 

a), it is seen that the MMENS has no skill over most of the domain for all six months 

under consideration.  This spatial distribution of areas with and without skill is similar 

to the skill distribution of the individual members of the ensemble.  The south-west 

coast is again, as with the CCAMENS and UMENS a region with skill, whereas the 

Limpopo Province and the west coast have less skill during November and February 

respectively than with the two individual model ensembles.  This is also the case over 

Mpumalanga during March.  Considering Figure 3.8 it is seen that the MMENS has 

the least amount of positive (skillful) grid boxes for all six months considered, 

concluding that individual members outperforms the MMENS with this evaluation, 

because averaging in MMENS increases the likelihood of at least some rain.  The UM 

12 km data assimilation (UM12DA) member has the highest number of skillful grid 

boxes for the threshold value.  

 

3.2.1.2 10 mm/day Threshold 

The 10 mm/day threshold result is displayed in Figure 3.5b and it is seen that for this 

threshold the ensemble systems has overall greater skill than for 1 mm/day events.  

The months with the lowest skill are December through to February.  During February 

however, the Free State Province is dominated by areas of skill for the 10 mm/day 

threshold.  The same is true for the south and south-west coast during March.  The 

skill is generally lower for the Limpopo Province as well as for parts of the central 

interior for several of the six months under investigation. 

 

The spatial distribution of skill for the CCAMENS is similar to that of the UMENS, but 

considering Figure 3.8b it is seen that the CCAMENS generally has greater skill in 

predicting 10 mm/day rainfall events over that of the UMENS.  The CCAMENS has 

skill over the Northern Cape Province, especially during December, as well as the 

Free State Province when the CCAMENS has skill over the region during January, as 

well as the north eastern parts of the country. 

 

The influence of the combination of the UM and the CCAM ensembles into the 

MMENS is most evident over the south and south-west coast during March (Figure 

3.7b).  The region of skill over the south coast for the UMENS, in combination with 

the region with skill over the south-west coast of the CCAMENS produced a greater 

region with skill with the MMENS.  The overall skill during all six months is improved 

with the MMENS for the 10 mm/day threshold over that of the two single-model 
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ensemble systems (Figure 3.8).  However, during March and December the UM12DA 

member has greater skill than the MMENS.  It is also evident that the members 

generally forecast with more skill the 10 mm/day threshold than any other of the 

thresholds.   

 

3.2.1.3 25 mm/day Threshold 

The Brier skill score for the 25 mm/day threshold is displayed in Figure 3.5c to 3.7c.  

The UMENS in Figure 3.5c in general has skill in predicting daily rainfall totals 

exceeding and equal to 25 mm, with the important exception that the forecasts are 

not skillful for the larger part of the domain during December and January. During 

these months, the absence of skill is particularly notable over the eastern Free State 

and western Kwa-Zulu Natal (KZN) area.  The months with the best overall skill are 

October and March. 

 

Figure 3.6c shows that the CCAMENS is outperforming the UMENS at the 25 

mm/day threshold value.  The greater part of the domain has skill for all the six 

months, with only the eastern parts of the country having regions with no skill during 

December, February and March.  

 

The influence of the UMENS is evident in the MMENS.  The MMENS skill is 

decreased especially over the Eastern Cape and KZN provinces during December.  

During January, the skill over the Free Sate is also decreased from that of the 

CCAMENS.  This is evidence that an ensemble will not have skill over a region or for 

a period if one or more of the members is unskillful, especially with a small ensemble 

size. 

 

For the 25 mm/day the MMENS is less skillful than the CCAM model members 

(Figure 3.8).  Both the CCAM15 and CCAM60 forecasts have more positive grid 

points than the MMENS.  Considering only the UM members, it is seen that the data 

assimilation model outperforms the other two UM members. 

 

3.2.1.4 50 mm/day Threshold 

This threshold represents the extreme rainfall events.  It is clear from map (d) in 

Figure 3.5 to 3.7 that this threshold was not exceeded that often during the study 

period (in both observations and forecasts – Figure 2.8).  However, it is also clear that 

when this threshold was exceeded, it mostly occurred over the northern and eastern 

parts of the country, with some events occurring over the south-coast.  The Brier skill 
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score has the highest values during the months of October, February and March for 

the UMENS.  The forecasts are not skillful over Mpumalanga during November. 

 

The CCAMENS, as with the 25 mm/day threshold is more skillful than the UMENS 

(Figure 3.6d).  The CCAMENS forecasts are skillful over Mpumalanga during 

November, with only the Free State Province having some areas in January where 

the forecasts are not skillful.   

 

The extreme Brier skill score values are reduced in the MMENS from that of the 

UMENS.  This is evident in Figure 3.7d over the eastern parts of the country.  It is 

noted however that when looking at the area averages of the values, the values do 

not change much from one ensemble to the other. This might be ascribed that there 

are not as many extreme values in the individual model ensembles and therefore the 

influence of one model ensemble over the other is not great in the MMENS. 

 

In Figure 3.8 it is noted that for the 50 mm/day threshold the MMENS and CCAMENS 

skill is comparable.  It is also noted however that the UM 15 km member had the 

lowest percentage of positive grid boxes for all six months. 

 
 
 



 

FIGURE 3.5: Spatial maps for the BSS for the UMENS system for the four thresholds for all six 

months. (a) 1 mm/day threshold, (b) 10 mm/day threshold, (c) 25 mm/day threshold and 

(d) 50 mm/day threshold. 
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the BSS for the UMENS system for the four thresholds for all six 

months. (a) 1 mm/day threshold, (b) 10 mm/day threshold, (c) 25 mm/day threshold and 

(d) 50 mm/day threshold.  

 

the BSS for the UMENS system for the four thresholds for all six 

months. (a) 1 mm/day threshold, (b) 10 mm/day threshold, (c) 25 mm/day threshold and 

 
 
 



 

FIGURE 3.6: Spatial maps for the BSS for the CCAMENS for the four thresholds for all six months (a) 

1 mm/day threshold, (b) 10 mm/day threshold, (c) 25 mm/day threshold and (d) 50 

mm/day threshold. 
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or the BSS for the CCAMENS for the four thresholds for all six months (a) 

1 mm/day threshold, (b) 10 mm/day threshold, (c) 25 mm/day threshold and (d) 50 

 

 

or the BSS for the CCAMENS for the four thresholds for all six months (a) 

1 mm/day threshold, (b) 10 mm/day threshold, (c) 25 mm/day threshold and (d) 50 

 
 
 



 

FIGURE 3.7: Spatial maps for th

mm/day threshold, (b) 10 mm/day threshold, (c) 25 mm/day threshold and (d) 50 mm/day 

threshold 
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Spatial maps for the BSS for the MMENS for the four thresholds for all six months (a) 1 

mm/day threshold, (b) 10 mm/day threshold, (c) 25 mm/day threshold and (d) 50 mm/day 

 

e BSS for the MMENS for the four thresholds for all six months (a) 1 

mm/day threshold, (b) 10 mm/day threshold, (c) 25 mm/day threshold and (d) 50 mm/day 
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FIGURE 3.8 A summary of the percentage of positive BSS grid boxes for the four threshold values per member for the six months under investigation 
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3.2.2 MEAN SQUARED ERROR SKILL SCORE 

In Figure 3.9 the mean squared skill score is represented in the same spatial format 

as discussed above for the Brier skill score, and was calculated after rescaling all 

forecasts to a common grid of resolution 0.25°.  A positive skill score is a sign that the 

forecast is outperforming the reference skill.  In each of these figures, map (a) 

represents the UMENS, map (b) the CCAMENS and map (c) the MMENS. 

 

Figure 3.9a reveals that the UMENS in general produces skillful forecasts of rainfall 

totals, with the exception being an area over central South Africa (including Gauteng).  

The south-west coast has skill over persistence over the entire period.  The south-

coast has no skill during the months of January and February but is skillful the rest of 

the period.  For the north-eastern parts of the country the skill varies from one month 

to the other, no pattern is distinguishable over this region.   

 

Considering Figure 3.9b it can be seen that the CCAMENS provides generally skillful 

forecasts, with areas along the west-coast and the Limpopo Province being the 

exceptions.  The CCAMENS outscores the UMENS for all months (considering the 

total number of positive grid boxes).  

 

The overall skill of the domain is improved over that of the UMENS and also some 

regions of the CCAMENS, such as the Limpopo Province during November and the 

Western Cape in December and Gauteng during March.  In Figure 3.10, a summary 

of the percentage of positive grid boxes per month per ensemble is given.  In this 

graph it can be seen that MMENS only outperforms the single-model ensemble 

system during October and March.  During October all of the members are the most 

skillful and January (the month with the highest rainfall in the summer rainfall season) 

the least.  For all six months under investigation it is seen that the UM 15 km (UM15) 

member is the least skillful member.  The UM12DA member is continuously the best 

member of the UMENS and the CCAM 60 km (CCAM60) member the best for the 

CCAMENS system. 

 

 
 
 



 

 

FIGURE 3.9: Spatial maps for the MSESS. (a) UMENS, (b) CCAMENS and (c) MMENS.
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Spatial maps for the MSESS. (a) UMENS, (b) CCAMENS and (c) MMENS.Spatial maps for the MSESS. (a) UMENS, (b) CCAMENS and (c) MMENS. 

 
 
 



 

56 
 

 

FIGURE 3.10: A summary of the MSESS for each of the members for the six months under 
investigation. 

 

3.3 ADDITIONAL VERIFICATION OF DICHOTOMOUS FORECASTS 

 

In this section, only the MMENS maps will be shown.  The single-model ensembles 

will be referred to and discussed and summarised in the accompanying histograms.  

In all the figures map (a) shows verification results for the threshold of 1 mm/day, 

map (b) for 10 mm/day, (c) for 25 mm/day and map (d) for 50 mm/day.  

 

3.3.1 FREQUENCY BIAS INDEX 

3.3.1.1 1 mm/day Threshold 

The FBI spatial distribution maps for the MMENS are shown in Figure 3.11.  As 

discussed in Chapter 2, the perfect forecast will have a FBI of one.  It is seen in 

Figure 3.11 that the MMENS system over-forecast the frequency of occurrence of 

events greater than 1 mm/day threshold.  There are however, small regions to the 

south-west that have under-forecast characteristics.  The same spatial pattern and 

over-forecasting is present for the UMENS and CCAMENS (not shown). 
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3.3.1.2 10 mm/day Threshold 

Considering Figure 3.11b, it is seen that MMENS system has a tendency of over-

forecast the frequency of events above the 10 mm/day threshold over the eastern 

part of the domain. This is true in particular for the eastern coastal areas, eastern 

escarpment and central interior. It is interesting to note that over the Limpopo 

Province in northeastern South Africa, there is a pattern of the frequency of these 

events to be over-forecast for all months, except for  October (the start of the rainy 

season), when the frequency is under-forecast. Over the western interior, the 

frequency of occurrence of events of 10 mm/day and higher is under-forecast.   

 

3.3.1.3 25 mm/day Threshold 

Contrary to the 1 mm/day threshold events, the MMENS in general under-forecasts 

the frequency of events occurring above the 25 mm/day threshold.  The over-forecast 

of such events is confined to the eastern escarpment and parts.   

 

3.3.1.4 50 mm/day Threshold 

These events do not occur often, and the MMENS under-forecasts across the 

domain. The only exception to this statement is the over-forecast of events above the 

50 mm/day threshold along the Cape south-coast in March.  This pattern of over-

forecast stems from the UMENS, with the CCAMENS in fact under-forecast the 

frequency of 50 mm/day events over the region. 

 

Figure 3.12 indicates the misses for the 50 mm/day threshold events for October for 

the MMENS.  The MMENS never over this period predicted rainfall amounts greater 

than 50 mm/day. 

 

Considering Figure 3.13 which shows the area average FBI value on the y-axis and 

the six months under investigations and the four threshold values on the x-axis.  This 

figure summarizes a result that is evident from the spatial maps of the FBI shown 

earlier: there is a general tendency for the ensemble members and different 

ensemble systems to over-forecast the frequency of occurrence of rainfall (events 

above the 1 mm/day threshold), but extreme rainfall events (25 mm/day threshold 

and higher) are in generally under-forecast.  This is an important result for operational 

weather forecasts to take note of – the MMENS and individual models too often 

forecast the occurrence of rain, and may not provide sufficient guidance on the 

possible occurrence of extreme rainfall events. 

 

 
 
 



 

 

FIGURE 3.11: The FBI for the MMENS system. (a) 1 mm/day threshold, (b) 10 mm/day threshold, (c) 

25 mm/day threshold and (d) 50 mm/day threshold
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for the MMENS system. (a) 1 mm/day threshold, (b) 10 mm/day threshold, (c) 

25 mm/day threshold and (d) 50 mm/day threshold 

 

for the MMENS system. (a) 1 mm/day threshold, (b) 10 mm/day threshold, (c) 

 
 
 



 

 

FIGURE 3.12: Misses for 50 mm/day events for October for th
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Misses for 50 mm/day events for October for the MMENS 

 

 
 
 



 

60 
 

 

 

FIGURE 3.13: The FBI summary for the ensemble systems and members for the four threshold values and six months under investigation. 
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3.3.2 PROBABILITY OF DETECTION 

The POD spatial distribution maps for the MMENS are shown in Figure 3.14.  

 

3.3.2.1 1 mm/day Threshold 

In Figure 3.14a it can be seen that the POD of exceedance of the 1 mm/day threshold 

is high over the eastern parts of the country as well as over the southwestern Cape.  

The lowest values occur over the western interior.  The generally high POD values 

should be seen within the context of the MMENS over-forecasting the frequency of 

occurrence of events above the 1 mm/day threshold, so that the high POD values are 

accompanied with high false alarm rates (see the next section). 

 

When comparing the area average of POD values of the UMENS to that of the 

CCAMENS for October (see Figure 3.15), the UMENS has a higher value.  This is 

true for all the months except for February and March, when the CCAMENS has a 

greater probability of detecting the occurrence of events above the 1 mm/day 

threshold.  It is also seen in Figure 3.15 that the MMENS has the highest POD value 

for all members and ensemble systems considered for all six months. 

 

3.3.2.2 10 mm/day Threshold 

There is a noticeable decrease in POD values for the case of threshold events of 1 

mm/day, compared to threshold events of 10 mm/day (Figure 3.14b).  This decrease 

is due to the fact that there are fewer occurrences of rainfall events exceeding 10 

mm/day, and when such events do occur, the models have a greater tendency to 

miss them than for the case of the 1 mm/day threshold.  POD values for the threshold 

values of 10 mm/day are relatively high for the month of March over the southwestern 

Cape and the Cape south-coast (Figure 3.14b).  This may be due to the models 

sufficiently simulation the rainfall events occurring over this region in March in 

association with cut-off lows (e.g. Singleton and Reason, 2007). 

 

3.3.2.3 25 mm/day Threshold 

Rainfall events of 25 mm/day or higher are confined to the east-coast and eastern 

escarpment, and central and Eastern Cape interior and Cape south-coast during the 

summer half-year (see Figure 3.1).  For the MMENS, the POD is highest for these 

events over the central interior during October and south-coast and Eastern Cape 

during March.  For the rest of the period and domain only fractions of 0.5 or less of 

the 25 mm/day were detected. 
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Considering Figure 3.15 it is seen that the CCAMENS POD values are lower than 

that of the MMENS for all months, with the MMENS values lower than those of the 

UMENS for all months.  The relatively high values of the UMENS in turn result from 

the high POD obtained by the UM15 and UM12DA ensemble members.  Note that 

high POD values may be obtained through the persistent over-forecasting of the 

event, and is not an indication of the ensemble member or ensemble to distinguish 

between events and non-events. 

 

3.3.2.4 50 mm/day Threshold 

Rainfall events of 50 mm/day occurring within 24-hours (on the average over a grid 

box of 0.25º by 0.25º) are rare and largely limited to areas along the Cape south coast 

during the summer half-year (Figure 2.8). The POD of such events is generally low 

for the MMENS, with values being relatively high for the UMENS and relatively low for 

the CCAMENS.  One implication of this result, is that the numerical forecasts cannot 

be used to provide explicit warning of the possible occurrence of extreme rainfall 

events 

 

During both October and February, the CCAMENS POD is zero (see Figure 3.15).  

The same can be said for the MMENS during October (Figure 3.14c).  However, 

during the rest of the months there are small areas of fractions greater than 0.8 for 

the occurrence to have happened and been forecast.  

 

 
 
 



 

 

FIGURE 3.14: POD for the MMENS system. (a) 1 mm/day threshold, (b) 10 mm/day threshold, (c) 25 

mm/day threshold and (d) 50 mm/day threshold
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POD for the MMENS system. (a) 1 mm/day threshold, (b) 10 mm/day threshold, (c) 25 

mm/day threshold and (d) 50 mm/day threshold 

 

POD for the MMENS system. (a) 1 mm/day threshold, (b) 10 mm/day threshold, (c) 25 
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FIGURE 3.15: POD for the ensemble systems and members for the four threshold values and six months under investigation. 
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3.3.3 FALSE ALARM RATE 

The F spatial distribution maps for the MMENS are shown in Figure 3.16.  The F 

spatial distribution maps for the UMENS and CCAMENS are not shown.   

 

3.3.3.1 1 mm/day Threshold 

The F of the MMENS in forecasting the mere occurrence of rainfall (events of 1 

mm/day) and larger is high (about 0.5 or higher over large portions of eastern South 

Africa – see Figure 3.16a).  F values in excess of 0.8 are recorded for parts of 

Lesotho and the KZN Province during January and February.  High F values are also 

seen over the Mpumalanga Province during November.  These results confirm earlier 

deductions that the UMENS forecast too many rain days, and cannot be used as a 

reliable indicator of the possibility of occurrence of rainfall.  All three models have the 

lowest false alarm rate during October (onset of the rainy season).  The F is higher 

than for the UMENS and CCAMES, as well as for the individual ensemble members, 

for all months (Figure 3.17).  This stems from the threshold of 1 mm/day being 

exceeded in the MMENS when only one or some of the constituting forecasts indicate 

exceedance of this limit. 

 

3.3.3.2 10 mm/day Threshold 

There is a noticeable decrease in the F for the 10 mm/day threshold compared to the 

1 mm/day threshold, for all three ensembles (Figure 3.16b).  For most months, the F 

is lower for the CCAMENS than for the UMENS, consistent with the generally higher 

POD values of the UMENS recorded for this threshold. 

 

3.3.3.3 25 mm/day Threshold 

The F is small for the 25 mm/day threshold for all six months for all three ensembles 

(Figure 3.16c). It may be noted that all the ensembles systematically under-forecasts 

the occurrence of 25 mm/day events, leading to both the F and POD values being 

low. 

 

3.3.3.4 50 mm/day Threshold 

The F is small for the 50 mm/day threshold for all six months for all three ensembles 

(Figure 3.16d).  

 
 
 



 

 

FIGURE 3.16: F for the MMENS system. (a) 1 mm/day threshold, (b) 10 mm/day threshold, (c)

mm/day threshold and (d) 50 mm/day threshold
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for the MMENS system. (a) 1 mm/day threshold, (b) 10 mm/day threshold, (c) 25 
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FIGURE 3.17: F for the members of the MMENS System for all six months under investigation. 
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3.3.4 CRITICAL SUCCESS INDEX 

The CSI spatial distribution maps are shown in Figure 3.18.  

 

3.3.4.1 1 mm/day Threshold 

The CSI for all three ensembles rarely exceeds 0.7. This result is consistent with the 

generally high F (incorrect “yes” forecasts). The UMENS consistently obtains the 

highest CSI values for this threshold, compared to the other two ensembles (Figure 

3.19). 

 

3.3.4.2 10 mm/day Threshold 

CSI values are similar but in general somewhat lower for the 10 mm/day threshold 

than for the 1 mm/day threshold.  It is noteworthy that for most months, the MMENS 

obtains higher CSI values than the constituting UMENS and CCAMENS ensembles. 

 

3.3.4.3 25 mm/day Threshold 

CSI values are relatively low for the 25 mm/day threshold, compared to the smaller 

thresholds.  This results from the MMENS in general under-forecasting the frequency 

of occurrence of extreme rainfall events.  Noteworthy is the UMENS persistently 

outscoring the CCAMENS in this respect, with the MMENS values of a similar 

magnitude than those of the UMENS (Figure 3.19). 

 

3.3.4.4 50 mm/day Threshold 

Almost all of the occurrences over the study period where the 50 mm/day event was 

forecast had a CSI value greater than 0.7, except for the south-coast during 

November.  It is however again noted that for most of the grid box where 50 mm/day 

was observed, the MMENS missed the event. 

 
 
 



 

 

FIGURE 3.18: CSI for the MMENS system. (a) 1 mm/day threshold, (b) 10 mm/day threshold, (c) 25 

mm/day threshold and (d) 50 mm/day threshold.
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mm/day threshold and (d) 50 mm/day threshold. 

 

CSI for the MMENS system. (a) 1 mm/day threshold, (b) 10 mm/day threshold, (c) 25 
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FIGURE 3.19: CSI for the members of the MMENS System for all six months under investigation. 
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3.3.5 EQUITABLE THREAT SCORE 

The ETS spatial distribution maps are shown in Figure 3.20. 

 

3.3.5.1 1 mm/day Threshold 

The ETS in general display positive values, for all six months across the study period, 

implying that the forecast is skillful in predicting rainfall events above this threshold 

and corresponded well with the observed occurrences.  There are only isolated 

regions where the ETS values are negative, especially over the Northern Cape the 

first half of the season and the northern parts of the country the second half. 

 

3.3.5.2 10 mm/day Threshold 

For this threshold, it is seen that the system is not skillful over the Northern Cape 

Province, which is generally dry during this period.  The ETS is corrected for hits due 

to random chance and therefore the lower skill over the drier climate regions with very 

few rainfall stations.  The system however performs well over the northern and central 

regions of the country, especially over the Free State and Gauteng Provinces.  The 

MMENS also has skill over the Mpumalanga and KZN Provinces. 

 

3.3.5.3 25 mm/day Threshold 

The skill of the MMENS system is drastically less for this threshold.  Regions of skill 

are limited to areas in the east that do receive a relatively large number of extreme 

rainfall events.  The UMENS did considerably better than the other two systems when 

looking at Figure 3.21. 

 

3.3.5.4 50 mm/day Threshold 

Not one of the three systems had great skill for this threshold.  The CCAMENS had 

no positive skill across the domain for February.  The UMENS offers some 

improvement over the CCAMENS.  In Figure 3.21 it is seen that the percentage of 

positive number of ETS grid boxes (number of boxes having skill) for all the members 

are very similar.  It is however noted that the MMENS only had a higher percentage 

of skillful grid boxes with the 1 mm/day threshold 

 

 
 
 



 

 

FIGURE 3.20: ETS for the MMENS System. (a) 1 mm/day threshold, (b) 10 mm/day threshold, (c) 25 

mm/day threshold and (d) 50 m
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ETS for the MMENS System. (a) 1 mm/day threshold, (b) 10 mm/day threshold, (c) 25 

mm/day threshold and (d) 50 mm/day threshold.  

 

 

ETS for the MMENS System. (a) 1 mm/day threshold, (b) 10 mm/day threshold, (c) 25 
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FIGURE 3.21: ETS for the members of the MMENS system for all six months under investigation.
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3.4 VERIFICATION OF PROBABILITY FORECASTS 

 

3.4.1 ROC CURVE AND AREA VALUES 

The ROC curve for all three ensembles and all four thresholds are shown per monthly 

graph in Figure 3.22.  The UMENS is represented by blue lines, the CCAMENS by 

green lines and the MMENS by red lines.   

 

For most months (Figure 3.22) the MMENS shows the best discrimination for events 

exceeding the 1 mm/day threshold (compared to the other thresholds) indicating that 

the ensemble can distinguish between rainfall and no-rainfall events (ROC areas > 

0.7).  The scores obtained by the MMENS for the 1 mm/day and 10 mm/day 

thresholds are in general very similar, with the scores being lower for the 25 mm/day 

threshold, and decreasing further for the 50 mm/day threshold.  However, the 

MMENS can skillfully distinguish between events and non-events for all the different 

thresholds. 

 

Looking at Table 3.1, it is shown that the single-model ensemble systems also display 

the best discrimination abilities for the 1 mm/day and 10 mm/day thresholds, and both 

systems are skillful for all thresholds.  It is interesting to note that although the 

CCAMENS scores systematically lower than the UMENS for all months and 

thresholds, the MMENS forecasts are more skillful than those of both the constituting 

single-model ensembles – for all months and thresholds.   

 

TABLE 3.1: ROC Area values for the UMENS, CCAMENS and MMENS systems 

 

Threshold 1 mm 10 mm 25 mm 50 mm 1 mm 10 mm 25 mm 50 mm

UMENS 0.7509 0.7152 0.7011 0.5936 0.711 0.7331 0.6903 0.5662

CCAMENS 0.7027 0.6662 0.5609 0.5034 0.6265 0.6779 0.581 0.5298

MMENS 0.7961 0.7493 0.7177 0.597 0.7555 0.7735 0.7145 0.5761

Threshold 1 mm 10 mm 25 mm 50 mm 1 mm 10 mm 25 mm 50 mm

UMENS 0.7272 0.7386 0.6899 0.6422 0.7165 0.7054 0.5964 0.5741

CCAMENS 0.6764 0.6893 0.5754 0.5257 0.6345 0.6711 0.5419 0.5035

MMENS 0.7732 0.771 0.6974 0.6442 0.7665 0.7504 0.6092 0.5741

Threshold 1 mm 10 mm 25 mm 50 mm 1 mm 10 mm 25 mm 50 mm

UMENS 0.7149 0.7271 0.6338 0.5877 0.6975 0.7129 0.7205 0.6777

CCAMENS 0.6492 0.6695 0.5277 0.504 0.5989 0.6832 0.6148 0.5288

MMENS 0.7637 0.7652 0.6435 0.5876 0.7387 0.7582 0.7295 0.6815

MARCHDECEMBER

OCTOBER

NOVEMBER

JANUARY

FEBRUARY
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This might be due to the use of the trapezoid rule and the lower number of forecast 

probabilities in the CCAMENS forecasts.  This is a significant result, which indicates 

the value of a multi-model ensemble system constructed from single-model members 

that have independent skill. 

 

All the ensembles obtain the highest scores in October and the lowest values in 

March.  

 

The 25 mm/day threshold for all three systems shows that there is an insufficient 

number of forecast categories, resulting in the straight lines for high-probability 

values. 

 

3.4.2 RELIABILITY DIAGRAM 

The ROC analysis has shown that the MMENS system is best able to discriminate 

between rainfall events exceeding predetermined thresholds, from non-events.  

Hence, reliability diagrams are only constructed for this system (Figure 3.23).  These 

diagrams however show that the MMENS system exhibit over-confidence for all 

thresholds and all months considered. 

 

Considering the 1 mm/day threshold for all six months, the system is under-

forecasting the events with low probabilities and over-forecasting for higher 

probabilities (< 70%).   

 

Looking at October, November, January and March, the systems have similar slopes 

for both the 10 and 25 mm/day threshold, with the 10 mm/day threshold having 

slightly better reliability.   

 

For December and February, the 10 mm/day threshold has similar reliability as for the 

afore-mentioned months, but the 25 mm/day curves fluctuate more and have a lower 

reliability.  Considering the same two months, the 50 mm/day threshold has no 

meaningful resolution for these events.  The 50 mm/day threshold events for the 

remaining four months have some reliability with November having the most. 

 

Looking at the sharpness diagrams in Figure 3.23 (a)-(f), it is seen that for all of the 

thresholds the MMENS has high confidence.  In all four of the threshold events, the 

most number of forecasts are made in the lower probabilities, with some increase 

with the 10 mm/day threshold events in the higher probabilities. 
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FIGURE 3.22: ROC curves for all three ensembles. (a) October, (b) November, (c) December, (d) 

January, (e) February and (f) March. Each of the threshold are also represented with 

the 1 mm/day threshold shown by solid lines, the 10 mm/day threshold represented 

by the dashed lines, 25 mm/day given by the dashed-dot lines and the 50 mm/day 

lines represented by dots. 
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FIGURE 3.23: Reliability and sharpness diagrams for the MMENS system. (a) October, (b) 

November, (c) December, (d) January, (e) February and (f) March 

3.5 SUMMARY 

 

The precipitation forecasts of the individual members, single-model ensemble and 

multi-model ensemble systems have been presented.  The ensemble systems are 

tested over three seasons from 2006/07 to 2008/09.  The ensemble systems are 

constructed for each of the individual members to have equal weight in the respective 

single-model ensemble and in turn the equal combination of the single-model 

ensemble systems forms the multi-model ensemble system.   

 

In terms of the skill for each of the members, the five different members are skillful in 

predicting rainfall for the South African domain.  All of the members are however less 

skillful in predicting the extreme rainfall occurrences (>= 50 mm/day).  It is determined 

that during the months where one or two of the members had low skill, this affected 

the skill of the multi-model system.  The accuracy (bias) of the members seems to 

increase to the end of the rainfall season and their ability to detect the predefined 

threshold events decrease.   

 

Again considering the skill of the members, it is seen that for the UM, the data 

assimilation member has the best skill whereas the 15 km horisontal resolution 
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member has the lowest overall skill.  The CCAM 15 km member has the best skill 

with threshold values greater than 25 mm/day.  This is an indication that a multi-

model system has an advantage over that of a single-model ensemble system.  The 

multi-model ensemble system has the advantage of the skillful UM data assimilation 

member with lower thresholds after which the CCAM 15 km members contributes 

greater skill at the higher threshold. 

 

Looking at the multi-models’ ability to distinguish between events and non-events, the 

multi-model has a better discrimination than the two single-model ensemble systems. 

 

The multi-model ensemble system can possibly be improved by removing the model 

errors within ensemble members as well as through the use of a different combination 

method. 
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CHAPTER 4 

4 VERIFICATION OF THE LOW RESOLUTION SINGLE-

MODEL ENSEMBLE PREDICTION SYSTEM 

 

This chapter describes the verification results of a low resolution single-model ensemble 

forecast system.  The system in question is the NCEP GEFS, of which the details and set-up 

are provided in Chapter 2.  The purpose of this investigation is to determine a reference level 

of forecast skill that the high-resolution multi-model system constructed earlier should be 

able to exceed.  This follows from the fact that the NCEP GEFS forecasts are available via 

the internet, implying that the computational effort required to locally run high-resolution 

regional models, and their eventual uptake into a multi-model ensemble, can only be justified 

if the multi-model system is more skillful than the low-resolution ensemble.  

 

Both the accuracy and skill of the single-model ensemble system is quantified.  Verification 

is performed by comparing the forecast output from the ensemble to observed rainfall data.  

Firstly, the forecast output is verified deterministically over the entire domain for each of the 

four rainfall thresholds, and secondly the forecasts are verified probabilistically.  The 

verification results are subsequently used to compare the skill of the single-model low 

resolution system to that of the high resolution multi-model system verified in chapter 3. 

 

4.1 VERIFICATION OF FORECAST ACCURACY 

 

4.1.1 BIAS CALCULATIONS 

In Figure 4.1 the spatial bias for the domain of the NCEP forecast is shown.  As in 

Chapter 3, the monthly maps are shown chronologically from top-left to bottom-right.  

Looking at October, it is seen that the NCEP under-forecast for the majority of the 

western and northern parts of South Africa.  This is the trend for most of the period 

except during January and February when the system tends to over-forecast the 

south western parts.  The central and eastern parts are mostly over-forecast during 

December.  During January and February the rainfall forecasts for the Gauteng 

Province are mostly less than the rainfall observed, where during the rest of the 

period it was mostly over-forecast.  Over the Free State Province region, the system 
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tends to severely over-forecast rainfall during December, as well as the eastern parts 

of the KZN Province during January and February.   

 

When looking at the area average bias values, it is seen that the month of October 

had the lowest overall bias.  In Figure 4.2 it is seen that the NCEP forecast has a 

lower overall bias during each of the six months of the study than MMENS.  Both 

systems did however have the lowest bias during October and the greatest during 

December.  This graph however should be interpreted together with the spatial maps.  

Looking again at Figure 3.2c, it is seen that the MMENS has a wet bias but does not 

experience the extreme bias values as that of the NCEP system, (like those 

calculated for November).   

 

Figure 4.3 is similar to Figure 3.4 (explanation in section 3.1.1).  The MMENS tends 

to over-forecast the occurrence of events for the lower thresholds, and under-forecast 

the occurrences for the higher thresholds (Figure 4.3).  The NCEP forecast displays 

very different characteristics.  For October and March, the NCEP forecast under-

forecasts the frequency of rainfall events across the different threshold categories, 

whilst for the remaining months the over-forecast of the frequency of events is less 

than for the multi-model system. In January and February months the NCEP the 

frequency of NCEP forecasts is very similar to the observation except for slightly 

higher values in 2-3 mm/day range. 

 

 
 
 



 

 

FIGURE 4.1: The spatial maps for the bias for the single
considered.  
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The spatial maps for the bias for the single-model ensemble for the six months 

 

model ensemble for the six months 
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FIGURE 4.2: A summary of the bias for the individual members for the six months under 

investigation 
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FIGURE 4.3: The observed and frequency of occurrence for the six months under investigation. (a) 

October, (b) November, (c) December, (d) January, (e) February and (f) March. 
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4.2 VERIFICATION OF FORECAST SKILL 

 

4.2.1 BRIER SKILL SCORE 

As with the MMENS system (Figure 3.7a), the NCEP system has no skill in predicting 

the occurrence of events above the 1 mm/day threshold, over the largest part of the 

domain (Figure 4.4a).   The NCEP system is more skillful in predicting the occurrence 

of events above the 10 mm/day threshold (compared to the 1 mm/day threshold 

forecasts, but still lacks skill over significantly large parts of eastern South Africa. 

 

The NCEP system's skill in predicting events above the 25 mm/day threshold display 

a similar pattern as for the 10 mm/day forecasts. There is no skill over the eastern 

Highveld in October and November and over the central interior in December. From 

January to March NCEP does show skill over these areas. The MMENS system does 

not show these large discrepancies in skill between early and late summer (Figure 

3.7).  For the 50mm/day events the NCEP system is generally skillful, with the 

forecast for 50 mm/day events being generally skillful over eastern South Africa.   

 

Considering Figure 4.5 it is seen that the percentage grid boxes for which the NCEP 

forecasts are skillful are the highest for the 10 mm/day threshold, and relatively low 

for the 1 mm/day threshold.   The NCEP system is outscored by the MMENS systems 

for all six months for the 10 mm/day, 25 mm/day and 50 mm/day thresholds.  This is 

a significant result, showing that the locally constructed multi-model system offers 

level of skill exceeding that of the low resolution NCEP ensemble. 

 
 
 



 

 

FIGURE 4.4: Spatial maps for the BSS for the NCEP system for the four thresholds for all six months. 

(a) 1 mm/day threshold, (b) 10 mm/day threshold, (c) 25 mm/day threshold and (d) 50 

mm/day threshold.

 

87 

Spatial maps for the BSS for the NCEP system for the four thresholds for all six months. 

1 mm/day threshold, (b) 10 mm/day threshold, (c) 25 mm/day threshold and (d) 50 

mm/day threshold. 

 

Spatial maps for the BSS for the NCEP system for the four thresholds for all six months. 

1 mm/day threshold, (b) 10 mm/day threshold, (c) 25 mm/day threshold and (d) 50 
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FIGURE 4.5: A summary of the Brier skill score for the four threshold values per system for 

each of the six months under investigation. 

 

4.2.2 MEAN SQUARED ERROR SKILL SCORE 

Figure 4.6 reveals that the largest skill of the NCEP system in predicting daily rainfall 

totals is for the months of January and February, with large areas where the forecasts 

are not skillful present for October and December.  Looking at Figure 4.7, it is seen 

that the MMENS system is more skillful in predicting rainfall totals than the NCEP 

system, for all months except for January. 
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FIGURE 4.6: Spatial maps for the MSESS for all six months under investigation. 
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Spatial maps for the MSESS for all six months under investigation.  
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FIGURE 4.7: A summary of the MSESS for each system for the six months under 

investigation. 

4.3 ADDITIONAL VERIFICATION OF DICHOTOMOUS FORECASTS  

 

4.3.1 FREQUENCY BIAS INDEX 

The FBI for 1 mm/day thresholds for the NCEP system is shown in Figure 4.8a.  Over 

most of the domain the system has a score greater than 1, indicating an over-forecast 

for this threshold.  The 10mm/day rainfall events are mostly under-forecast over the 

western half of the domain and over-forecast over the eastern part of the domain 

(Figure 4.8b). For the 25mm/day threshold, the frequency of events is over-forecast 

over areas in the eastern Provinces (Mpumalanga and KZN; Figure 4.8 c), with 50 

mm/day events being generally under-forecasted.   

 

An analysis for the FBI for both the NCEP and MMENS systems (performance across 

the domain) are shown in Figure 4.9.   Both systems overcast the occurrence of 

rainfall events (1 mm/day threshold), with the overestimation of the frequency of such 

events being larger for the MMENS. The MMENS provided a more realistic estimate 

of the frequency of occurrence of 10 mm/day events than the NCEP forecasts, but is 

less realistic in the case of the 25 mm/day threshold. 
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FIGURE 4.8: The FBI for the NCEP system. (a) 1 mm/day threshold, (b) 10 mm/day threshold, (c) 25 

mm/day threshold and (d) 50 mm/day threshold
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for the NCEP system. (a) 1 mm/day threshold, (b) 10 mm/day threshold, (c) 25 

mm/day threshold and (d) 50 mm/day threshold

 

for the NCEP system. (a) 1 mm/day threshold, (b) 10 mm/day threshold, (c) 25 
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FIGURE 4.9: The FBI summary for the systems for the four threshold values and the six 

months under investigation. 

 

4.3.2 PROBABILITY OF DETECTION 

The POD spatial distribution maps for the NCEP system are shown in Figure 4.10.  

The NCEP system has a high probability of detection for the 1 mm/day events (Figure 

4.10a), especially over the eastern half of the country.  This high probability 

decreases for the 10 mm/day events (Figure 4.10b) and decreases further for the 

higher threshold events. 

 

Looking at the summary of the POD in Figure 4.11, it is shown that MMENS attains 

higher POD values than the NCEP system for the 1, 10 and 50 mm/day thresholds.  

For the 25 mm/day events, the NCEP system has a higher area average POD value 

for the months of October and December. The higher POD of the 1 mm/day events 

by the MMENS is likely to be the result of the excessive (compared to the NCEP 

ensemble) over-forecast of such events by the MMENS.  

0

0.5

1

1.5

2

2.5

3

3.5

4

OCT NOV DEC JAN FEB MAR OCT NOV DEC JAN FEB MAR OCT NOV DEC JAN FEB MAR OCT NOV DEC JAN FEB MAR

1 10 25 50

A
v

e
ra

g
e

 S
c

o
re

Months

FREQUENCY BIAS INDEX

MMENS

NCEP

 
 
 



 

 

 

FIGURE 4.10: POD for the NCEP system. (a) 1 mm/day threshold, (b) 10 mm/day threshold, (c) 25 

mm/day threshold and (d) 50 mm/day threshold
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FIGURE 4.11 POD for the NCEP system for the four threshold values and six months under 

investigation. 

 

4.3.3 FALSE ALARM RATE 

In Figure 4.12, the F for the NCEP system is high for the far eastern parts of the 

domain for the 1 mm/day events (Figure 4.12a), especially over the western parts of 

the KZN Province during January.  For the 25 and 50 mm/day events respectively the 

NCEP system has negligibly small F values due to the NCEP system not predicting 

these events that often. 

 

Considering Figure 4.13, the graph shows that the area average F values are the 

highest for 1 mm/day threshold for the MMENS compared to the NCEP forecasts, but 

for the other thresholds the MMEMS produces fewer false alarms than the NCEP 

system  
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FIGURE 4.12: F for the NCEP system. (a) 1 mm/day threshold, (b) 10 mm/day thresh

mm/day threshold and (d) 50 mm/day threshold
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FIGURE 4.13: F for the MMENS and NCEP systems for all six months under investigation. 

 

4.3.4 CRITICAL SUCCESS INDEX 

The CSI spatial distribution maps are shown in Figure 4.14.  The CSI distribution 

spatially is greater for the 1 mm/day threshold than any of the remaining three values.   

 

Figure 4.15 reveals that the CSI area average values are higher for MMENS system 

than for the NCEP system for almost all months and all thresholds, the only exception 

being October and January for the 25 mm/day threshold. 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

OCT NOV DEC JAN FEB MAR OCT NOV DEC JAN FEB MAR OCT NOV DEC JAN FEB MAR OCT NOV DEC JAN FEB MAR

1 10 25 50

A
v
e

ra
g

e
 S

c
o

re

Months

FALSE ALARMS RATE

MMENS

NCEP

 
 
 



 

 

FIGURE 4.14: CSI for the NCEP system. (a) 1 mm/day threshold, (b) 10 mm/day threshold, (c) 25 

mm/day threshold and (d) 50 mm/day threshold.
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CSI for the NCEP system. (a) 1 mm/day threshold, (b) 10 mm/day threshold, (c) 25 

hreshold and (d) 50 mm/day threshold. 

 

CSI for the NCEP system. (a) 1 mm/day threshold, (b) 10 mm/day threshold, (c) 25 
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FIGURE 4.15: CSI for the MMENS and NCEP systems for all six months under investigation. 

 

4.3.5 EQUITABLE THREAT SCORE 

The ETS spatial distribution maps are shown in Figure 4.16. The NCEP system has 

no skill over that of random chance in predicting 50 mm/day events, whereas the 

system is skillfull in the case of 1 mm/day events (Figure 4.16a).  For the 10 mm/day 

events (Figure 4.16c) the NCEP forecast is skillful over the eastern part of the 

domain, except for the Limpopo Province during October and February. Skill 

decreases significantly from the 10 mm/day threshold to the 25 mm/day threshold.   

 

Figure 4.17 shows that the number of positive grid boxes (indication of skill) is higher 

for the MMENS for the 1, 10 and 50 mm/day rainfall events.  The MMENS system 

only performs better than the NCEP system for the 25 mm/day threshold during the 

months of November and March. 
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FIGURE 4.16: ETS for the NCEP system. (a) 1 mm/day threshold, (b) 10 mm/day threshold, (c) 25 

mm/day threshold and (d) 50 mm/day threshold.
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ETS for the NCEP system. (a) 1 mm/day threshold, (b) 10 mm/day threshold, (c) 25 

mm/day threshold and (d) 50 mm/day threshold. 

 

ETS for the NCEP system. (a) 1 mm/day threshold, (b) 10 mm/day threshold, (c) 25 
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FIGURE 4.17: ETS for the MMENS and NCEP systems for all six months under investigation 

 

4.4 VERIFICATION OF PROBABILITY FORECASTS 

 

4.4.1 ROC CURVE AND AREA VALUES 

The ROC curves in Figure 4.18 reveal that the MMENS system is superior over the 

NCEP forecast in distinguishing between 1 mm/day rainfall events and non-events for 

all six months under investigation.  Indeed, the corresponding ROC areas shown in 

Table 4.1 for the MMENS, for all six months, are greater than the NCEP forecast 

areas.  This attribute of the MMENS to outperform the NCEP system is also seen true 

in general for the larger thresholds.  

 

The reliability diagrams (Figure 4.19) display an over-confident performance for both 

ensemble systems at higher thresholds.  Considering the 1 mm/day threshold (solid 

lines), the blue line (NCEP) indicates a slightly better reliability and resolution than 

that of the MMENS system (red line).  Also, both these systems have a tendency to 

under-forecast the 1 mm/day events.   

 

The contrary is true for the 10 mm/day events when the MMENS system (red dashed 

lines) seems slightly better than that of the NCEP system.  The same is true for the 

25 mm/day events (dash-dot-dash lines), especially for the higher probability bins. 
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Looking at the sharpness diagrams for the MMENS and NCEP systems in Figure 

4.19 a –f, it is seen that the two systems are similar in confidence and sharpness, 

with both systems having in increase in forecast occurrences at the higher probability 

values with the 10 mm/day threshold events. 

 

For the 50 mm/day events (dotted lines), both the systems have little reliability, but 

the MMENS is slightly more reliable in predicting these events. 

 

TABLE 4.1: ROC Area values for the MMENS and NCEP ensemble systems 

  OCTOBER JANUARY 

Threshold 1 mm 10 mm 25 mm 50 mm 1 mm 10 mm 25 mm 50 mm 

NCEP 0.7275 0.7164 0.6692 0.0009 0.7023 0.7668 0.6803 0.5681 

MMENS 0.7961 0.7493 0.7177 0.597 0.7555 0.7735 0.7145 0.5761 

  NOVEMBER FEBRUARY 

Threshold 1 mm 10 mm 25 mm 50 mm 1 mm 10 mm 25 mm 50 mm 

NCEP 0.725 0.761 0.679 0.5538 0.6599 0.7201 0.6506 0.5035 

MMENS 0.7732 0.771 0.6974 0.6442 0.7665 0.7504 0.6092 0.5741 

  DECEMBER MARCH 

Threshold 1 mm 10 mm 25 mm 50 mm 1 mm 10 mm 25 mm 50 mm 

NCEP 0.7074 0.7246 0.6375 0.5634 0.7019 0.7184 0.6397 0.5757 

MMENS 0.7637 0.7652 0.6435 0.5876 0.7387 0.7582 0.7295 0.6815 

 

In order to accurately determine the difference between the two systems, the 

reliability, resolution and uncertainty of both the forecast systems were calculated for 

all four threshold values and represented in Table 4.2.   

 

For most of the events, the MMENS has a better resolution than that of the NCEP 

system, but the MMENS is more reliable than the NCEP for all threshold values for all 

six months. 

 

The uncertainty was similar for all the threshold values and months for both forecast 

systems. 
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TABLE 4.2: Reliability, Resolution and Uncertainty for the MMENS and NCEP ensemble 

systems 

 

SYSTEM Threshold 1 mm 10 mm 25 mm 50 mm 1 mm 10 mm 25 mm 50 mm

RESOLUTION 0.1476 0.0198 0.0023 - 0.123 0.032 0.005 -

RELIABILITY 0.0592 0.0225 0.0025 - 0.044 0.032 0.006 -

UNCERTAINTY 0.1878 0.1633 0.0418 - 0.172 0.203 0.081 -

RESOLUTION 0.1266 0.0136 0.0018 - 0.1079 0.0259 0.0068 -

RELIABILITY 0.1273 0.0387 0.0085 - 0.0841 0.0524 0.0147 -

UNCERTAINTY 0.1892 0.161 0.0405 - 0.1721 0.2085 0.0823 -

SYSTEM Threshold 1 mm 10 mm 25 mm 50 mm 1 mm 10 mm 25 mm 50 mm

RESOLUTION 0.133 0.029 0.005 0.0003 0.21 0.027 0.003 0.0001

RELIABILITY 0.051 0.028 0.005 0.0015 0.04 0.031 0.006 0.0011

UNCERTAINTY 0.172 0.204 0.077 0.0156 0.182 0.194 0.065 0.0111

RESOLUTION 0.1159 0.0302 0.0088 0.0011 0.1139 0.0215 0.0046 -

RELIABILITY 0.1107 0.0543 0.0214 0.004 0.1061 0.0513 0.0119 -

UNCERTAINTY 0.1734 0.202 0.0745 0.0158 0.1823 0.1933 0.0643 -

SYSTEM Threshold 1 mm 10 mm 25 mm 50 mm 1 mm 10 mm 25 mm 50 mm

RESOLUTION 0.141 0.034 0.004 - 0.121 0.02 0.003 -

RELIABILITY 0.043 0.038 0.007 - 0.046 0.026 0.004 -

UNCERTAINTY 0.162 0.207 0.07 - 0.199 0.176 0.06 -

RESOLUTION 0.1152 0.0283 0.0109 - 0.1092 0.0171 0.0041 -

RELIABILITY 0.1043 0.0761 0.0305 - 0.1848 0.0408 0.0096 -

UNCERTAINTY 0.1605 0.2085 0.0706 - 0.1983 0.1763 0.0588 -

NCEP

MMENS

NCEP

MMENS

NCEP

MMENS

OCTOBER JANUARY

NOVEMBER FEBRUARY

DECEMBER MARCH
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FIGURE 4.18: ROC curves for the MMENS and NCEP systems. (a) October, (b) November, (c) 

December, (d) January, (e) February and (f) March. 
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FIGURE 4.19: Reliability and sharpness diagrams for the MMENS and NCEP systems. (a) October, 

(b) November, (c) December, (d) January, (e) February and (f) March 
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4.5 SUMMARY 

 

The MMENS outscores and is more skillful than the coarse resolution global model 

for threshold 10 mm/day and higher.  The high resolution MMENS does however 

have higher area average biases but has a higher probability of detecting events.  

Similarly, the MMENS has better reliability for events with thresholds greater than 1 

mm/day.  The MMENS has a tendency to over-forecast the amount and the 

frequency of 1 mm/day rainfall events whereas the NCEP system is closer to the 

observed. 

 

This chapter shows that the MMENS is able to perform as well as the NCEP system 

but has greater reliability and discrimination.  This result is significant in that it shows 

that there is an advantage in the skill of the higher resolution regional member to the 

MMENS to that of the greater ensemble size of the NCEP system. 
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CHAPTER 5 

5 SUMMARY AND CONCLUSIONS 

 

A single-model deterministic forecast does not provide guidance on the uncertainty range 

associated with forecasting the future state of the atmosphere.  At the short-range time-

scale, these uncertainties stem mainly from the imperfect description of the initial state of the 

atmosphere, and from the imperfect description of atmospheric dynamics and physics within 

the numerical model.  Until recently, the probabilistic rainfall forecasts issued at the short-

range timescale in South Africa have been mainly subjective.  These subjective forecasts 

are interpreted in many different ways by the public, as well as by forecasters themselves.   

Subjective forecasts are produced by forecasters interpreting the output from numerous 

numerical forecasts from different national and international centers, as well as real-time 

observational data available at the time of the forecast being issued.   With the advent of 

ever faster computers in recent years, it has become possible for NMS’s to run multiple 

forecast simulations in parallel for the same forecast period.  An investigation of the skill of a 

short-range ensemble prediction system for South Africa using an objective method of 

issuing probabilistic rainfall forecasts is therefore not only essential, but has also become 

feasible. 

 

In this manuscript an objective probabilistic rainfall prediction system for South Africa was 

developed.  This was achieved by obtaining the rainfall forecast of two high-resolution 

regional models operational in South Africa.  The first model is the UM, which is operational 

at the SAWS.  The UM contributed three ensemble members that differ in physics, data 

assimilation techniques and horisontal resolution.  The second model is the CCAM 

operational at the CSIR, which in turn contributed two members (differing in horisontal 

resolution) to the ensemble system.  A single-model ensemble was constructed for each of 

the individual models, with each contributing member (three in the case of the UM and two in 

the case of the CCAM) having equal weights. Finally, the two single-model ensemble 

systems were combined to form the multi-model ensemble system, to establish whether the 

skill of this multi-model system outscores that of the single-model ensemble systems.  The 

multi-model ensemble was constructed by assigning equal weights to each of the two 

contributing single-model ensembles.  A single-model ensemble from a coarse horisontal 

resolution global forecast system was additionally evaluated, to determine a baseline level of 
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skill the multi-model system should exceed, in order to be considered a value-added 

product.   

 

The developed multi-model short-range forecast system was rigorously tested over three 

austral summer half-years (October to March).  The main findings are summerised as 

follows: 

 

A. Quantifying the skill of the individual short-range forecast systems 

 

1. Both the UM and CCAM single-model ensembles have a wet bias over eastern 

South Africa (with regards to predicting daily rainfall totals).  This bias is smaller in 

spring than in the summer and late-summer months. 

 

2. The CCAM ensemble in general has a smaller bias than the UM ensemble. 

 

3. The individual single-model short-range forecast systems are skillful in predicting 

daily rainfall over the summer rainfall region of South Africa (using persistence as 

the reference forecast).   

 

4. Relative to persistence as the reference forecast, the forecast systems have the 

lowest skill in predicting rainfall for the lowest threshold (that is, the occurrence or 

non-occurrence of rainfall) and in predicting the occurrence of extreme rainfall 

events (threshold 50 mm/day).  Both the single-model systems have a tendency to 

over-forecast the lower threshold rainfall events and under-forecast the extreme 

rainfall events. 

 

5. Using persistence forecasting as reference, the CCAM ensemble is more skillful 

than the UM ensemble in predicting daily rainfall for thresholds of 10 mm/day and 

higher, whilst the UM ensemble is more skillful in predicting the occurrence or non-

occurrence of rainfall (1 mm/day threshold). 

 

6. The UM ensemble has a greater probability of detecting predefined rainfall events 

but it also has a higher false alarm rate for the same events (compared to the 

CCAM ensemble).   

 

7. For the UM, the data assimilation member has the best skill, whereas the 15 km 

horisontal resolution member has the lowest overall skill (relative to persistence 
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forecasting).  The influence of the low skill of the 15 km member is evident in the 

skill of the UM ensemble.  

 

8. The CCAM 15 km member is more skillful than the 60 km member in predicting the 

occurrence or non-occurrence of rain, but for the 10 mm/day and 25 mm/day 

thresholds, the 60 km forecast is more skillful. 

 

B. Quantifying the skill of the multi-model short-range forecast system 

 

1. The multi-model system has comparable skill to that of the single-model ensemble 

systems, outscoring the systems for the important threshold of 10 mm/day events.  

 

2. The multi-model system has greater discrimination in rainfall events than any of the 

single-model ensemble systems. 

 

3. The multi-model system has the highest critical success index average score for 

rainfall events of 10 mm/day threshold, as well for the 25 mm/day threshold for the 

months of January and March. 

 

C. Comparing the skill of the multi-model short-range forecast system to a coarse 

resolution global model 

 

1. The multi-model ensemble system outperforms and is more skillful than the coarse 

resolution global model for thresholds 10 mm/day and higher. 

 

2. The multi-model ensemble does however have a higher area average bias.   

 

3. The multi-model system has a tendency to over-forecast the amount and the 

frequency of 1 mm/day rainfall events, especially when compared to the coarse 

resolution ensemble. 

 

The UM and CCAM short-range numerical weather prediction models have been used to 

construct a multi-model ensemble prediction system for South Africa, using simple un-

weighted averaging.  The multi-model system was used to predict the 24-hour rainfall totals 

for three austral summer half-year seasons of 2006/07 to 2008/09.  The forecasts obtained 

from this system were subsequently compared to observed rainfall data for the same period.  

From the multi-model system it has been found that the probabilistic forecast has significant 
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skill in predicting rainfall.  The coarse resolution NCEP system has shown to have 

comparable skill to the multi-model system, but the multi-model system has a better 

discrimination between events and non-events.  Therefore, this multi-model system can be 

used in an operational environment. 

 

The most significant contribution of this dissertation is that a multi-model short-range 

ensemble prediction system can be used for South Africa with useful skill.  However, for this 

system to be optimized fully, it will be necessary for the model errors identified in this study 

to be corrected within each of the ensemble members, before constructing an improved 

multi-model system.  Other possible construction techniques should also be investigated in 

order to establish the best possible combination of the members for the ensemble system.   

Other possible methods include: 

1. bias correction of the individual members which would help decrease the 

quantitative precipitation forecast systematic errors and also improve reliability of 

probabilistic forecasts; 

2. lagged ensemble (include older forecasts) which would increase the precision of 

the probabilities; 

3. combine NCEP members and the MMENS; 

4. weight the more accurate ensemble members more.  In this way, some of the less 

skillful members will have a smaller influence on the skill of the multi-model system, 

and 

5. calibrate the probability forecasts to be a function of the forecast rain; i.e. logistic 

regression. 

 

Another way forward will be to investigate the effect of ensemble size on probabilistic short-

range weather prediction versus the increase in horisontal resolution of the individual 

members.   

 

This study has shown that it is possible to make an objective probabilistic rainfall forecast by 

constructing a multi-model system with high resolution regional models currently operational 

in South Africa. The multi-model short-range ensemble prediction system developed can 

provide forecasters with an objective, probabilistic and skillful rainfall forecast for the 

following 24-hours over South Africa.  Such a system is not currently operational in the 

country. 
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