A PHYSIOLOGICAL BASIS FOR

ANIMAL-FACILITATED PSYCHOTHERAPY

DECLARATION

I, Johannes Stefanus Joubert Odendaal, declare that the thesis submitted for the degree Philosophiae Doctor in the Department of Physiology, Faculty of Veterinary Science, University of Pretoria, 6 April 1999 is not previously submitted for any other title.

Johannes Stefanus Joubert Odendaal

Submitted in partial fulfilment for the requirements for the degree Philosophiae Doctor in the Department of Physiology, Faculty of Veterinary Science, University of Pretoria

6 April 1999
DECLARATION

I herewith declare that the thesis submitted for the degree Philosophiae Doctor at the University of Pretoria has not previously been submitted for a degree at another University and that it is my own work.

J S J Odendaal
"There is no such thing as an immaculate perception; we are inevitably part of the world we are trying to measure. And everywhere we look, we come face-to-face with randomness. We build our orders, but only at expense of creating randomness elsewhere. Complexity - this delicate tension between order and surprise - is a very fragile thing. Whether something appears simple, complex, or random depends on the observer as well as on the observed" - George Johnson.

To Hanna, again
ACKNOWLEDGEMENTS

1. Prof R Meintjes, Dept of Physiology, Faculty of Veterinary Science, University of Pretoria
 My sincere appreciation to Prof Meintjes who was prepared to take on a multidisciplinary study. His keen interest in the subject and guidance served as a continuous motivation to complete the study.

2. Prof A L Coetzee, Dept of Psychiatry, Faculty of Medicine, University of Pretoria
 Again, my sincere thanks to Prof Coetzee who was also willing to cross disciplinary borders. He set an example by initiating a pet-facilitated psychotherapy programme at Weskoppies Hospital and that too served as an encouragement to do the study.

3. Technikon Pretoria, Department of Biological Sciences
 The Technikon Pretoria, initially Prof R McCrindle and Dr J Engelbrecht, but especially Dr S M C Lehmann, helped to make the difficult analyses possible. Dr Lehmann made an exceptional effort to break new ground with regard to the analyses of dog neurochemicals. I am deeply indebted by her dedication and the success she achieved in the laboratory.

4. Dr S Yeates, Dept of Medicine, Faculty of Veterinary Science, University of Pretoria
 To Dr Yeates, thanks for her support during the collection of specimens during the experiment. She was always friendly and helpful despite a painful back problem. Her contribution proved to be very valuable to the study.

5. Supportive Services of the University of Pretoria
 The Information Services, especially Mrs A Lourens and Mrs A Breytenbach; Statomet, especially Dr H Borraine; and the Computer Services, especially Mrs R Owen are thanked for their valuable support.

6. Typist
 My thanks to Mrs Combrinck, who was always willing to help, even during Christmas time. The high quality of her work is evident in the pages that will follow.
ABSTRACT

Since Boris Levinson published his pioneering studies on animal-facilitated psychotherapy in the sixties, human health professions had limited interest in this field. A particular problem in animal-facilitated psychotherapy is a lack of a theoretical foundation, which can provide a rationale for such therapy. The aims of this study were two-fold: firstly, to integrate existing theories on positive human-human and human-animal interaction; and secondly, to find common physiological support for such a theoretical foundation.

By using an elective approach, positive interaction (attention needs) was valued in 16 personality theories as an integral part of the psychological, emotional, social and cultural needs of all individuals. Attention was indicated as a basic need and that many of the therapeutic advantages claimed from human-animal interaction, are actually based on such a need. It was further indicated that positive interaction between man and animal is reciprocal and this mutual effect can contribute to the success of the therapy. The term used to describe this basic need of positive interaction is *attentionis egens*. A Latin term was chosen to avoid confusion with therm attention-seeking behaviour, which is often associated with negative or problem behaviour.

A physiological framework was used to support the theoretical foundation. This was based on known studies related to human-human and animal-animal affiliation, providing measurable parameters for positive human-animal interaction. The method was to take baseline values before and measurements after positive interaction with a dog. Parameters were an anxiety questionnaire, blood pressure, phenylethylamine, norepinephrine, dopamine, endorphins, oxytocin, prolactin and cortisol. The indication to collect blood for chemical analyses was a decrease in blood pressure over a maximum period of 30 minutes of positive interaction. Participants were divided into two groups: the experimental group interacted with their own dogs and the control group with unfamiliar dogs. The effect of interacting with dogs was also compared to the effect of quiet book-reading with the same participants.
The results supported the mutual physiological effect in human and dogs as well as the theoretical foundation for animal-facilitated psychotherapy. Such phycological parameters paved the way for an encompassing theory on positive interaction behaviour and thus provided a rationale for animals in therapy, particularly where basic attention needs are to be fulfilled. The attentionis egens theory proved to be rather accommodating than opposing other positive interaction theories.

The main results were:

- a significant decrease in blood pressure (5-24 minutes) is a valid indicator of biochemical changes associated with positive interaction;

- the experimental group (ie people with their own dogs), had significant higher plasma levels of oxytocin and prolactin, indicating a long term bond;

- both species had significant changes of β-phenylethylamine, β-endorphin, dopamine, oxytocin and prolactin, indicating that the physiological response during positive human-dog interaction is reciprocal;

- there were similarities between an anxiety state questionnaire (feeling) and normal mean arterial blood pressure of humans, ie no significant anxiety was present;

- positive interaction with dogs can equal, and in some instances improve on the effect of an quiet, calm intervention such as book-reading;

- a neurochemical profile for positive human-dog interaction should include at least β-phenylethylamine, dopamine and oxytocin; and

- norepinephrine decreased, probably as a reaction to the intravenous blood collection and cortisol decreased significantly in humans and the control dog group. Dogs with their owners, were more excited about the new experience.
With regard to the application of this knowledge, animals in therapy could be described in a similar format used for medicinal therapies. It is further recommended that:

- animal-facilitated psychotherapy should become a commonly accepted approach in psychiatry and become part of the formal curricula for psychiatrists;

- that animal therapy programmes should be structured in a multidisciplinary way, always including veterinarians who should be responsible for the animals’ welfare; and

- that programmes should be carefully planned, as for any other therapeutic regimen, using a suitable physiological rationale for clinical psychotherapy.

Keywords: positive human-dog interaction, physiological parameters, animal-facilitated psychotherapy, pets as prescription, human-human interaction theories, animal-animal interaction theories, human-animal interaction theories, therapeutic rationale, *attentionis egens*, psychiatric training.
'N FISIOLOGIESE BASIS VIR DIER-FASILITERENDE PSIGOTERAPIE

Johannes Stefanus Joubert Odendaal

Voorgelê vir die gedeeltelike vervulling van die vereistes vir die graad Philosophiae Doctor in die Departement Fisiologie, Fakulteit Veeartsenykunde, Universiteit van Pretoria

1999
OPSOMMING

Sedert Boris Levinson sy pionierstudie in die veld van dier-fasiliterende psigoterapie in die sestigs gepubliseer het, het die menslike gesondheidsprofes- sies beperkte belangstelling daarin getoon. ’n Spesifieke probleem in dier- fasiliterende psigoterapie is die afwesigheid van teoretiese beginsels wat ’n rationale vir so ’n teorie kan voorsien. Die doelwitte van hierdie studie was dus tweevolgig: eerstens, om bestaande teorie oor mens-tot-mens en mens-tot-dier te integreer en tweedens, om ’n gemeenskaplike fislogiese ondersteuning vir sulke teoretiese beginsels te bepaal.

Deur gebruik te maak van ’n elektiewe benadering, is positiewe interaksie (aandagsoekende behoeftes) in 16 personologie teorieë geëvalueer as ’n integrale deel van die psigologiese, emotionele, sosiale en kulturele behoeftes van alle individue. Aandag was aangedui as ’n basiese behoefte en dat baie van die terapeutiese voordele waarop aanspraak gemaak word in mens-dier-interaksies, in werkelikheid gebaseer is op so ’n behoefte. Verder is aange- toon dat positiewe interaksie tussen mens en dier wederkerig is en hierdie onderlinge effek kan bydra tot die sukses van sulke tarapieë. Die term wat gebruik is om hierdie basiese behoefte aan aandag te beskryf is *attentionis egens*. Latynse terminologie is verkies om verwarring te voorkom met die term aandagsoekende gedrag, wat dikwels geassosieer word met negatiewe- of probleemgedrag.

’n Fisologiese raamwerk is gebruik om die teoretiese beginsels te onder- steun. Dit was gebaseer op bekende studies wat verband hou met mens- mens en dier-dier affiliasie, ten einde meetbare parameters daar te stel vir positiewe mens-dier-interaksie. Die metode was om basislyn-waardes te bepaal en weer na positiewe interaksie met ’n hond. Die parameters was ’n angs-skaal, bloeddruk, fenieletielamien, norepinefrien, dopamien, endor- fiene, oksitosien, proklaktien en kortisol. ’n Aanduiding wanneer om bloed- monsters te versamel vir chemiese analises, was ’n verlaging in bloeddruk oor ’n periode van maksimum 30 minute van positiewe interaksie. Deelne- mers was verdeel in twee groepe, die eksperimentele groep wat met honde geïnterreageer het en ’n kontrole groep wat met onbekende honde geïnterre- reageer het. Die effek van die hond-interaksies was ook vergelyk met die effek van stil boekles deur dieselfde deelnemers.
Die resultate het die onderlinge fysiologiese effek in mense en honde ondersteun, sowel as die teoretiese beginsels vir dier-gefasiliteerde psigoterapie. Sulke fysiologiese parameters het die weg gebaan vir 'n insluitende teorie oor positiewe interaksie gedrag, veral waar basiese aandagbehoeftes vervul moet word. Die *attentionis agens*-teorie blyk eerder inklusief, as opponerend teenoor ander positiewe interaksie teorieë te wees.

Die belangrikste resultate was:

- 'n beteekenisvolle vermindering in bloeddruk (5-24 minute) is 'n geldige indikator van biochemiese verandering wat geassosieer is met positiewe interaksie;

- die eksperimentele groep (di met eie honde), het beteekenisvolle hoër plasmavlakke van oksitosien en prolaktien getoon, wat op 'n langtermyn binding dui;

- beide spesies het beteekenisvolle verskille van β-fenieletielamien, β-endorfiën, dopamien, oksitosien en prolaktien getoon, wat daarop dui dat die fysiologiese reaksie gedurende positiewe mens-hond-interaksie wederkerig van aard is;

- daar was ooreenkomste tussen 'n angs-status vraëlys (gevoel) en normale gemiddelde arteriële bloeddruk van mense, di geen beteekenisvolle angs was teenwoordig nie;

- positiewe interaksie met honde kan dieselfde, en in sommige gevalle 'n beter effek hê as 'n stil, kalm intervensiie soos boeklees;

- 'n neurochemiese profiel vir positiewe mens-hond-interaksie behoort ten minste β-fenieletielamien, dopamien en oksitosien in te sluit; en

- norepinefrien het gedaal, waarskynlik as reaksie op die intraveneuse bloeddruk, en kortisol het beteekenisvol in mense en die kontrole hondegroep gedaal. Honde wat by hul eienaars was, was meer opgewonde oor die nuwe ervaring.
Ten opsighte van die toepassing van hierdie kennis, kan diere vir terapie beskryf word in 'n soortgelyke formaat as vir medisinale behandeling. Dit word verder aanbeveel dat:

- dier-fasiliterende psigoterapie algemeen aanvaar word as 'n benadering vir psigoterapie en dat dit deel word van die formele kurrikula van psigiaters;

- dat diere in terapieprogramme gestructueer word op 'n multidissiplinêre basis wat as 'n reël veeartse sal insluit om na die welsyn van die diere om te sien; en

- dat programme met oorleg beplan word op dieselfde wyse as vir enige ander terapeutiese benadering, terwyl 'n gesikte fisiologiese rationale vir kliniese psigoterapie gebruik word.

INDEX

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declaration</td>
</tr>
<tr>
<td>Acknowledgements</td>
</tr>
<tr>
<td>Abstract</td>
</tr>
<tr>
<td>Opsomming</td>
</tr>
<tr>
<td>Index</td>
</tr>
<tr>
<td>List of figures</td>
</tr>
<tr>
<td>List of tables</td>
</tr>
<tr>
<td>List of plates</td>
</tr>
</tbody>
</table>

CHAPTER 1: INTRODUCTION

1.1	Background and motivation	1
1.2	Problem statement	3
1.3	Hypothesis	3
1.4	Aim and objectives of the study	3
1.4.1	General aim	3
1.4.2	Specific objectives	3

CHAPTER 2: EXISTING INTERACTION THEORIES IN PERSONOLOGY

2.1	Introduction	5
2.2	Interaction theories	8
2.2.1	Alfred Adler	8
2.2.2	Gordon Allport	9
2.2.3	Karen Horney	10
2.2.4	Erich Fromm	11
2.2.5	Harry Stack Sullivan	13
CHAPTER 3: HUMAN-ANIMAL INTERACTION IN HUMAN-HUMAN CONTEXT

3.1 Introduction .. 40
3.2 Evolution of interaction behaviour 40
3.3 Attention needs and therapy .. 48
3.4 Discussion ... 50

CHAPTER 4: THE CURRENT STATUS OF ANIMAL-FACILITATED PSYCHOTHERAPY

4.1 Introduction .. 52
4.2 Animals in therapy before 1960 .. 53
4.3 Animal-facilitated psychotherapy: 1960-1979 54
4.5 Animal-facilitated psychotherapy: 1990-1999 63
4.6 A review on animal-facilitated psychotherapy literature 67
4.7 Animal-facilitated psychotherapy in South Africa 70
4.8 Discussion ... 71

2.2.6 Erik Erikson ... 14
2.2.7 John Dollard and Neal Miller 15
2.2.8 Albert Bandura ... 16
2.2.9 Henry Murray ... 18
2.2.10 Abraham Maslow ... 20
2.2.11 Carl Rogers ... 21
2.2.12 George Kelly ... 22
2.2.13 Victor Frankl ... 22
2.2.14 Kurt Lewin ... 24
2.2.15 Fritz Perls ... 25
2.2.16 Phenomenological psychology 26
2.3 Ideas from the natural sciences .. 27
2.3.1 Fritjof Capra ... 28
2.3.2 Danah Zohar and Ian Marshall 30
2.3.3 Paul Davis ... 32
2.3.4 Bryan Appleyard .. 34
2.4 Interpretation of interaction theories 35
2.5 Discussion ... 38
CHAPTER 5: THE PHYSIOLOGY OF POSITIVE INTERACTION

5.1 Introduction ... 74
5.2 Interaction theories and physiological parameters 77
5.3 Neurotransmitters ... 81
5.3.1 Norepinephrine ... 84
5.3.2 Dopamine ... 84
5.3.3 Phenylethylamine ... 85
5.3.4 Endorphin ... 86
5.4 Hormones ... 86
5.4.1 Prolactin ... 86
5.4.2 Oxytocin .. 87
5.4.3 Cortisol ... 88
5.5 Absence of interaction ... 88
5.6 Discussion ... 89

CHAPTER 6: METHODOLOGY FOR ESTABLISHING PHYSIOLOGICAL SUPPORT FOR INTERACTION THEORIES

6.1 Introduction ... 91
6.2 Hypothesis ... 92
6.3 Benefits arising from the experiment 92
6.4 Materials and method ... 92
6.4.1 Type of research .. 92
6.4.2 Pilot study .. 92
6.4.3 Sample selection ... 93
6.4.3.1 Human subjects ... 93
6.4.3.2 Dog subjects .. 94
6.4.4 Experimental design ... 94
6.4.4.1 Experimental and control group 95
6.4.4.2 Pre- and post-test control test (counter balancing design) with different groups .. 95
6.4.4.3 Pre- and post-test with different interventions 95
6.4.4.4 Questionnaire .. 96
6.4.5 Experimental model .. 97
6.4.6 Experimental procedures .. 98
6.4.7 Observation .. 101
6.4.8 Variables .. 101
6.4.8.1 Independent variables .. 101
CHAPTER 7: RESULTS OF ESTABLISHING PHYSIOLOGICAL PARAMETERS DURING POSITIVE HUMAN-ANIMAL INTERACTION

7.1 Biographical details of subjects ... 108
7.1.1 Humans ... 108
7.1.2 Dogs .. 108
7.2 Questionnaire to determine the state of anxiety of human subjects ... 109
7.3 Interpretation of results .. 110
7.4 Pilot study .. 110
7.4.1 Aims and method .. 110
7.4.2 Subjects of pilot study ... 111
7.4.3 Results of pilot study ... 111
7.4.4 Conclusion of pilot study .. 112
7.5 The main experiment ... 112
7.5.1 Results ... 112
7.6 Changes in MAP and selected biochemicals in humans interacting positively with dogs ... 113
7.6.1 Changes in MAP ... 113
7.6.2 Changes in plasma neurotransmitters 115
7.6.2.1 Phenylacetic acid as metabolite of phenylethylamine 115
7.6.2.2. Dopamine ... 116
7.6.2.3 ß-endorphin ... 118
7.6.2.4 Norepinephrine ... 120
7.6.2.5 Oxytocin .. 123
7.6.2.6 Prolactin ... 126
7.6.2.7 Cortisol ... 128
7.7 Statistical differences between experimental and control human groups .. 131
7.8 Changes in MAP and selected biochemicals in dogs 131
7.8.1 Changes in MAP ... 131
7.8.2 Changes in plasma neurotransmitters 133
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.8.2.1</td>
<td>Phenylacetic acid as metabolite of phenylethylamine</td>
<td>133</td>
</tr>
<tr>
<td>7.8.2.2</td>
<td>Dopamine</td>
<td>134</td>
</tr>
<tr>
<td>7.8.2.3</td>
<td>β-endorphin</td>
<td>135</td>
</tr>
<tr>
<td>7.8.2.4</td>
<td>Norepinephrine</td>
<td>136</td>
</tr>
<tr>
<td>7.8.2.5</td>
<td>Oxytocin</td>
<td>137</td>
</tr>
<tr>
<td>7.8.2.6</td>
<td>Prolactin</td>
<td>138</td>
</tr>
<tr>
<td>7.8.2.7</td>
<td>Cortisol</td>
<td>139</td>
</tr>
<tr>
<td>7.9</td>
<td>Statistical differences between experimental and control dog groups</td>
<td>140</td>
</tr>
<tr>
<td>7.10</td>
<td>Physiological changes in humans and dogs</td>
<td>140</td>
</tr>
<tr>
<td>7.10.1</td>
<td>Changes in MAP</td>
<td>140</td>
</tr>
<tr>
<td>7.10.2</td>
<td>Changes in plasma neurotransmitters</td>
<td>141</td>
</tr>
<tr>
<td>7.10.2.1</td>
<td>Phenylacetic acid as metabolite of phenylethylamine</td>
<td>141</td>
</tr>
<tr>
<td>7.10.2.2</td>
<td>Dopamine</td>
<td>143</td>
</tr>
<tr>
<td>7.10.2.3</td>
<td>β-endorphin</td>
<td>144</td>
</tr>
<tr>
<td>7.10.2.4</td>
<td>Norepinephrine</td>
<td>145</td>
</tr>
<tr>
<td>7.10.2.5</td>
<td>Oxytocin</td>
<td>146</td>
</tr>
<tr>
<td>7.10.2.6</td>
<td>Prolactin</td>
<td>147</td>
</tr>
<tr>
<td>7.10.2.7</td>
<td>Cortisol</td>
<td>148</td>
</tr>
<tr>
<td>7.11</td>
<td>Statistical difference between humans and dogs</td>
<td>149</td>
</tr>
<tr>
<td>7.12</td>
<td>Quiet book-reading as a control to positive dog interaction</td>
<td>149</td>
</tr>
<tr>
<td>7.12.1</td>
<td>MAP changes</td>
<td>149</td>
</tr>
<tr>
<td>7.12.2</td>
<td>Changes in plasma neurotransmitters</td>
<td>150</td>
</tr>
<tr>
<td>7.12.2.1</td>
<td>Phenylacetic acid as metabolite of phenylethylamine</td>
<td>150</td>
</tr>
<tr>
<td>7.12.2.2</td>
<td>Dopamine</td>
<td>151</td>
</tr>
<tr>
<td>7.12.2.3</td>
<td>β-endorphin</td>
<td>152</td>
</tr>
<tr>
<td>7.12.2.4</td>
<td>Norepinephrine</td>
<td>153</td>
</tr>
<tr>
<td>7.12.2.5</td>
<td>Oxytocin</td>
<td>154</td>
</tr>
<tr>
<td>7.12.2.6</td>
<td>Prolactin</td>
<td>155</td>
</tr>
<tr>
<td>7.12.2.7</td>
<td>Cortisol</td>
<td>156</td>
</tr>
<tr>
<td>7.13</td>
<td>Statistical differences between quiet book-reading and positive dog interaction</td>
<td>157</td>
</tr>
<tr>
<td>7.14</td>
<td>Discussion</td>
<td>157</td>
</tr>
<tr>
<td>7.14.1</td>
<td>Results in perspective</td>
<td>158</td>
</tr>
<tr>
<td>7.14.2</td>
<td>Placebo effect</td>
<td>159</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>7.14.3</td>
<td>Neurochemical profile of human-animal interaction</td>
<td>161</td>
</tr>
<tr>
<td>7.14.4</td>
<td>Measurement of emotions</td>
<td>162</td>
</tr>
</tbody>
</table>

CHAPTER 8: HUMAN-ANIMAL INTERACTION THEORIES - A CRITICAL ANALYSIS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>164</td>
</tr>
<tr>
<td>8.2</td>
<td>Terminology</td>
<td>164</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Attentionis egens</td>
<td>167</td>
</tr>
<tr>
<td>8.3</td>
<td>Existing theories on human-animal interaction</td>
<td>168</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Brickel: 1982</td>
<td>169</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Kidd and Kidd: 1987</td>
<td>169</td>
</tr>
<tr>
<td>8.3.3</td>
<td>Case: 1987</td>
<td>171</td>
</tr>
<tr>
<td>8.3.4</td>
<td>Bergler: 1988</td>
<td>171</td>
</tr>
<tr>
<td>8.3.5</td>
<td>Odendaal: 1988</td>
<td>173</td>
</tr>
<tr>
<td>8.3.6</td>
<td>Doi: 1991</td>
<td>174</td>
</tr>
<tr>
<td>8.3.7</td>
<td>Hills: 1993</td>
<td>175</td>
</tr>
<tr>
<td>8.3.8</td>
<td>Wilson: 1994</td>
<td>175</td>
</tr>
<tr>
<td>8.3.9</td>
<td>Human-Animal Interaction Conference, Geneva: 1995</td>
<td>177</td>
</tr>
<tr>
<td>8.3.10</td>
<td>Costall: 1996</td>
<td>179</td>
</tr>
<tr>
<td>8.3.11</td>
<td>Cameron: 1997</td>
<td>180</td>
</tr>
<tr>
<td>8.3.12</td>
<td>Wilson: 1998</td>
<td>181</td>
</tr>
<tr>
<td>8.4</td>
<td>Discussion</td>
<td>181</td>
</tr>
</tbody>
</table>

CHAPTER 9: APPLICATIONS OF HUMAN-ANIMAL THEORY IN ANIMAL-FACILITATED PSYCHOTHERAPY

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>183</td>
</tr>
<tr>
<td>9.2</td>
<td>Conditions for animal-facilitated psychotherapy</td>
<td>183</td>
</tr>
<tr>
<td>9.2.1</td>
<td>Therapist</td>
<td>184</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Patient</td>
<td>184</td>
</tr>
<tr>
<td>9.2.3</td>
<td>Animal</td>
<td>184</td>
</tr>
<tr>
<td>9.3</td>
<td>Preconditions for animal-facilitated psychotherapy</td>
<td>184</td>
</tr>
<tr>
<td>9.3.1</td>
<td>Preconditions pertaining medical factors</td>
<td>185</td>
</tr>
<tr>
<td>9.3.1.1</td>
<td>Hygiene</td>
<td>185</td>
</tr>
<tr>
<td>9.3.1.2</td>
<td>Zoonoses</td>
<td>186</td>
</tr>
<tr>
<td>9.3.1.3</td>
<td>Injuries</td>
<td>188</td>
</tr>
<tr>
<td>9.3.1.4</td>
<td>Allergies</td>
<td>189</td>
</tr>
<tr>
<td>9.3.2</td>
<td>Preconditions pertaining to patient needs</td>
<td>190</td>
</tr>
</tbody>
</table>
9.3.2.1 Matching patient and animal .. 190
9.3.2.2 When animals, that patient became attached to, die 190
9.3.3 Preconditions pertaining the needs of animals used in
therapy ... 192
9.3.3.1 People can abuse animals ... 192
9.3.3.2 Sources and selection of animals 192
9.3.3.3 Patients not able to care for animals anymore 193
9.3.4 Staff and management involved in animal-facilitated
psychotherapy .. 193
9.3.4.1 Success of an animal-facilitated programmes 194
9.3.4.2 Staff ... 194
9.3.5 Financial aspects ... 196
9.3.5.1 Spectrum of financial liabilities in animal therapy 196
9.3.5.2 Sources of finances ... 196
9.4 Applied animal-facilitated psychotherapy 197
9.5 Animals on prescription ... 199
9.6 Discussion .. 201

CHAPTER 10: SUMMARY AND EVALUATION OF STUDY 206
10.1 Introduction .. 206
10.2 Summary of objectives .. 206
10.2.1 Existing interaction theories in personology 206
10.2.2 Human-animal interaction in human-human context 206
10.2.3 Current status of animal-facilitated psychotherapy 207
10.2.4 Determining a physiological basis for positive
interaction .. 207
10.2.5 Methodology to investigate a physiological basis for
human-animal interaction ... 208
10.2.6 Results of experimental procedures 208
10.2.7 Evaluating existing human-animal interaction theories ... 208
10.2.8 Application of human-animal theory in animal-
facilitated psychotherapy .. 209
10.3 Evaluation of study in terms of its contributions 209
10.3.1 Converging a wide spectrum of interaction literature 209
10.3.2 Interspecies physiological indicators of positive
interaction .. 210
10.3.3 Rationale for animal-facilitated psychotherapy 210
10.4 Self-criticism of the study ... 210
10.4.1 Elective approach ... 210
10.4.2 The comprehensive role of animals 210
10.4.3 Sample size ... 211
10.4.4 Questionnaire .. 211
10.4.5 Clinical studies ... 211
10.5 Further research ... 211
10.5.1 Biochemistry of interspecies interaction 212
10.5.2 Drug development ... 212
10.5.3 Theory in therapy .. 212
10.6 Recommendations ... 212
10.6.1 Education .. 212
10.6.2 Multidisciplinary approach 213
10.6.3 Planned programmes 213
10.6.4 Clinical application of the rationale 213
10.7 Conclusion .. 213

REFERENCES ... 215

ADDENDUM A: RAW DATA .. 244
ADDENDUM B: LETTERS OF CONSENT 245
ADDENDUM C: BILINGUAL QUESTIONNAIRE 246
LIST OF FIGURES

3.1 Human-animal interaction in human-human context 51

5.1 A model based on physiological parameters to link
human-human, animal-animal and human-animal interaction
theories .. 90

6.1 Basic pre- and post-test design with different groups 95

6.2 Pre- and post-test with different interventions 96

7.1 Mean arterial blood pressure (MAP) of humans before and
after interacting positively with own (n = 9) and
unfamiliar (n = 9) dogs .. 113

7.2 Plasma phenylacetic acid (PAA) of humans before and after
interacting positively with own (n = 9) and unfamiliar
(n = 9) dogs .. 115

7.3 Plasma dopamine (DOP) of humans before and after
interacting positively with own (n = 9) and unfamiliar
(n = 9) dogs .. 116

7.4 Plasma beta-endorphin (END) of humans before and after
interacting positively with own (n = 9) and unfamiliar
(n = 9) dogs .. 118

7.5 Plasma norepinephrine (NEP) of humans before and after
interacting positively with own (n = 9) and unfamiliar
(n = 9) dogs .. 120

7.6 Plasma oxytocin (OXT) of humans before and after
interacting positively with own (n = 9) and unfamiliar
(n = 9) dogs .. 123

7.7 Plasma prolactin (PRO) of humans before and after
interacting positively with own (n = 9) and unfamiliar
(n = 9) dogs .. 126

7.8 Plasma cortisol (COR) of humans before and after
interacting positively with own (n = 9) and unfamiliar
(n = 9) dogs .. 128
7.9 Mean arterial blood pressure (MAP) of dogs before and after interacting positively with owners
(n = 9) and unfamiliar dog lovers (n = 9) 131
7.10 Plasma phenylacetic acid (PAA) of dogs before and after interacting positively with owners
(n = 9) and unfamiliar dog lovers (n = 9) 133
7.11 Plasma dopamine (DOP) of dogs before and after interacting positively with owners
(n = 9) and unfamiliar dog lovers (n = 9) 134
7.12 Plasma beta-endorphin (END) of dogs before and after interacting positively with owners
(n = 9) and unfamiliar dog lovers (n = 9) 135
7.13 Plasma norepinephrine (NEP) of dogs before and after interacting positively with owners
(n = 9) and unfamiliar dog lovers (n = 9) 136
7.14 Plasma oxytocin (OXT) of dogs before and after interacting positively with owners
(n = 9) and unfamiliar dog lovers (n = 9) 137
7.15 Plasma prolactin (PRO) of dogs before and after interacting positively with owners
(n = 9) and unfamiliar dog lovers (n = 9) 138
7.16 Plasma cortisol (COR) of dogs before and after interacting positively with owners
(n = 9) and unfamiliar dog lovers (n = 9) 139
7.17 Mean arterial blood pressure (MAP) of humans (n = 18) and dogs (n = 18) before and after interacting positively with each other 140
7.18 Plasma phenylacetic acid (PAA) of humans
(n = 18) and dogs (n = 18) before and after interacting positively with each other 141
7.19 Plasma dopamine (DOP) of humans (n = 18) and dogs (n = 18) before and after interacting positively with each other 142
7.20 Plasma beta-endorphin (END) of humans
(n = 18) and dogs (n = 18) before and after interacting positively with each other 143
7.21 Plasma norepinephrine (NEP) of humans
(n = 18) and dogs (n = 18) before and after
interacting positively with each other 144

7.22 Plasma oxytocin (OXT) of humans (n = 18) and dogs
(n = 18) before and after interacting positively
with each other .. 145

7.23 Plasma prolactin (PRO) of humans (n = 18) and dogs
(n = 18) before and after interacting positively
with each other .. 146

7.24 Plasma cortisol (COR) of humans (n = 18) and dogs
(n = 18) before and after interacting positively
with each other .. 147

7.25 Mean arterial blood pressure (MAP) of humans before
and after interacting positively with dogs and
quiet book-reading (n = 18) 148

7.26 Plasma phenylacetic acid (PAA) of humans before
and after interacting positively with dogs and
quiet book-reading (n = 18) 149

7.27 Plasma dopamine (DOP) of humans before and
after interacting positively with dogs and
quiet book-reading (n = 18) 150

7.28 Plasma beta-endorphin (END) of humans before
and after interacting positively with dogs and
quiet book-reading (n = 18) 151

7.29 Plasma norepinephrine (NEP) of humans before
and after interacting positively with dogs and
quiet book-reading (n = 18) 152

7.30 Plasma oxytocin (OXT) of humans before and
after interacting positively with dogs and
quiet book-reading (n = 18) 153

7.31 Plasma prolactin (PRO) of humans before and
after interacting positively with dogs and quiet
book-reading (n = 18) 154

7.32 Plasma cortisol (COR) of humans before and
after interacting positively with dogs and
quiet book-reading (n = 18) 156
8.1 Proposed theoretical model according to Bergler, 1998 ... 172
8.2 Clients' needs to keep companion animals according to Odendaal, 1988 174
9.1 Needs Assessment Model according to Barnett, Quigley, 1984 .. 195
LIST OF TABLES

6.1 Roster for experimental design .. 97

7.1 Characteristics of human and dog subjects participating in human-dog interaction ... 109

7.2 State of anxiety scores on a 5-point scale questionnaire before and after positive dog interaction ... 109

7.3 Phenylethylamine (PEA) values in human and dog subjects before and after positive interaction (n = 6) .. 112

7.4 Mean arterial blood pressure of humans (mmHg) before and after interacting positively with own dogs (n = 9) and unfamiliar dogs (n = 9) .. 114

7.5 Concentrations of phenylacetic acid (pg/ℓ) in the plasma of humans before and after interacting positively with own dogs (n = 9) and unfamiliar dogs (n = 9) .. 115

7.6 Concentrations of dopamine (pg/ℓ) in the plasma of humans before and after interacting positively with own dogs (n = 9) and unfamiliar dogs (n = 9) .. 117

7.7 Concentrations of β-endorphin (pmol/ℓ) in the plasma of humans before and after interacting positively with own dogs (n = 9) and unfamiliar dogs (n = 9) .. 118

7.8 Concentrations of norepinephrine (pg/ℓ) in the plasma of humans before and after interacting positively with own dogs (n = 9) and unfamiliar dogs (n = 9) .. 121

7.9 Concentrations of oxytocin (mg/ℓ) in the plasma of humans before and after interacting positively with own dogs (n = 9) and unfamiliar dogs (n = 9) .. 123

7.10 Concentrations of prolactin (ng/ℓ) in the plasma of humans before and after interacting positively with own dogs (n = 9) and unfamiliar dogs (n = 9) .. 126
7.11 Concentrations of cortisol (nmol/l) in the plasma of humans before and after interacting positively with own dogs (n = 9) and unfamiliar dogs (n = 9) 128

7.12 Mean arterial blood pressure (mmHg) of dogs before and after interacting positively with owners (n = 9) and unfamiliar dog lovers (n = 9) 132

7.13 Concentrations of phenylacetic acid (pg/l) in the plasma of dogs before and after interacting positively with owners (n = 9) and unfamiliar dog lovers (n = 9) 133

7.14 Concentrations of dopamine (pg/l) in the plasma of dogs before and after interacting positively with owners (n = 9) and unfamiliar dog lovers (n = 9) .. 134

7.15 Concentrations of ß-endorphin (pmol/l) in the plasma of dogs before and after interacting positively with owners (n = 9) and unfamiliar dog lovers (n = 9) 135

7.16 Concentrations of norepinephrine (pg/l) in the plasma of dogs before and after interacting positively with owners (n = 9) and unfamiliar dog lovers (n = 9) 136

7.17 Concentrations of oxytocin (ng/l) in the plasma of dogs before and after interacting positively with owners (n = 9) and unfamiliar dog lovers (n = 9) .. 137

7.18 Concentrations of prolactin (ng/l) in the plasma of dogs before and after interacting positively with owners (n = 9) and unfamiliar dog lovers (n = 9) .. 138

7.19 Concentrations of cortisol (nmol/l) in the plasma of dogs before and after interacting positively with owners (n = 9) and unfamiliar dog lovers (n = 9) 139

7.20 Mean arterial blood pressure (mmHg/l) of humans (n = 18) and dogs (n = 18) interacting positively with each other 141

7.21 Concentrations of phenylacetic acid (pg/l) in the plasma of humans (n = 18) and dogs (n = 18) interacting positively with each other 142
7.22 Concentrations of dopamine (pg/ℓ) in the plasma of human (n = 18) and dogs (n = 18) interacting positively with each other .. 143
7.23 Concentrations of β-endorphin (pmol/ℓ) in the plasma of humans (n = 18) and dogs (n = 18) interacting positively with each other .. 144
7.24 Concentrations of norepinephrine (pg/ℓ) in the plasma of humans (n = 18) and dogs (n = 18) interacting positively with each other .. 145
7.25 Concentrations of oxytocin (ng/ℓ) in the plasma of humans (n = 18) and dogs (n = 18) interacting positively with each other .. 146
7.26 Concentrations of prolactin (ng/ℓ) in the plasma of humans (n = 18) and dogs (n = 18) interacting positively with each other .. 147
7.27 Concentrations of cortisol (nmol/ℓ) in the plasma of humans (n = 18) and dogs (n = 18) interacting positively with each other .. 148
7.28 Mean arterial blood pressure (mmHg/ℓ) of humans reading a book quietly (n = 18) .. 150
7.29 Concentrations of phenylacetic acid (pg/ℓ) in the plasma of humans reading a book quietly (n = 18) .. 151
7.30 Concentrations of dopamine (pg/ℓ) in the plasma for humans reading a book quietly (n = 18) .. 152
7.31 Concentrations of β-endorphin (pmol/ℓ) in the plasma for humans reading a book quietly (n = 18) .. 153
7.32 Concentrations of norepinephrine (pg/ℓ) in the plasma for humans reading a book quietly (n = 18) .. 154
7.33 Concentrations of oxytocin (ng/ℓ) in the plasma for of humans reading a book quietly (n = 18) .. 155
7.34 Concentrations of prolactin (ng/ℓ) in the plasma for humans reading a book quietly (n = 18) .. 156
7.35 Concentrations of cortisol (nmol/ℓ) in the plasma for humans reading a book quietly (n = 18) .. 157

8.1 Theories on human-animal interaction by author, key idea and link to attentionis egens .. 182
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>Conditions and preconditions for animal-facilitated psychotherapy</td>
<td>197</td>
</tr>
<tr>
<td>9.2</td>
<td>An example of an information leaflet on the use of animals in animal-facilitated psychotherapy in the format of a leaflet for the use of prescribed drugs</td>
<td>200</td>
</tr>
</tbody>
</table>
LIST OF PLATES

6.1 A posed example of the experimental conditions 97

LIST OF ADDENDA

ADDENDUM A: RAW DATA ... 244

ADDENDUM B: LETTERS OF CONSENT 245

ADDENDUM C: BILINGUAL QUESTIONNAIRE 246