
The mystery of the human brain's capability to solve complex problems has

fascinated scientists for many centuries. Studies revealed that the human brain uses a

web of highly interconnected neurons or processing elements to process complex

data. Each neuron is independent and can function without any synchronization to

other events taking place. (Rao & Rao, 1995). Some scientists tried to reconstruct or

simulate the way the brain works by using binary valued information processing units,

which are abstracted versions of their biological counterparts. "Much of this surge of

attention results, not from interest in neural networks as models of the brain, but

rather from their promise to provide solutions to technical problems of "artificial

intelligence" that the traditional, logic based approach did not yield." (Muller &

Reinhardt, 1990:preface.)

Artificial neural networks are a promising new field. Not only does it yield a better

understanding of how the brain's complex information processing abilities work, but

it also solves difficult problems too complex for conventional information processing

techniques such as statistics.

 
 
 



The study of the human brain goes back a long way. Nelson and Illingworth (1991)

mention the work described in the Edward Smith Papyrus. It is a medical paper about

the sensory and motor locations in the brain, written around 3000 B.C, almost five

millennia back. It was only until this century that-researchers tried to simulate the --

actual functioning of a human brain.

The first person to use the human brain as a computing paradigm was Alan Turing in

1936 (Nelson & Illingworth, 1991). In 1943, McCulloch and Pitts (cited in Nelson &

lllingworth, 1991) wrote the first paper about the theory of how the nervous system

might work and also simulated a simple neural network with electrical circuits.

Researchers began to imitate the biological model to create intelligent machines.

Donald Hebb made the connection between psychology and physiology and pointed

out that a neural pathway is reinforced every time it is used. He formulated his

learning rule, still referred to as the Hebb rule of learning in 1949 (Nelson &

lllingworth, 1991). This rule states that changes in connections between neurons are

proportional to the activation of the neurons. This was the formal basis for the

creation of neural networks that have the ability to learn.

Research expanded and neural network terminology started to appear in the 1950s. In

1957 Rosenblatt expanded on the theory of Hebbian learning and incorporated it into

a two layer network, calling the result a "perceptron" (Blum, 1992). Rosenblatt

formulated his own learning rule "the perceptron convergence theorem". This rule

describes the weights adjusted in proportion to the error between output neurons and

 
 
 



target outputs. Many neural networks still use this method of adjusting weights until

the desired set of weights is achieved to learn and predict outcomes (Blum, 1992).

A very important turning point in the development of ANNs was at the Dartmouth

Summer Research Project of Artificial Intelligence (AI) in 1956. This project

provided the momentum for many different projects in the 1950s and 1960s such as

MADELINE (Multiple ADAptive LInear Element), the first neural network to be

applied to a real word problem. This application consists of adaptive filters to

eliminate echoes on telephone lines. MADELINE has been in commercial use for

several decades (Blum, 1992). The 1960s were also a period where the potential of

neural networks were blown out of proportion. "Some observers were disappointed as

promises were left unfulfilled. Others felt threatened by the thought of "intelligent

machines'''' (Nelson & Illingworth 1991:29).

continued in Japan and Europe. Interest in neural networks renewed in 1982 when

John Hopfield presented his neural network paper to the National Academy of

Sciences. The emphasis was on practicality. He showed how these networks worked

and what it could do (Nelson & Illingworth, 1991).

Various disciplines became interested in the use of ANNs to address complex

problems in the last two decades, ranging from cognitive psychology, physiology,

medicine, computer science, electrical engineering, economy and even philosophy.

ANNs have barely reached its late infancy stage. "Hopefully the rich blend of

 
 
 



intellects and backgrounds and divergent objectives will continue the quest" (Nelson

& Illingworth, 1991 :34).

Artificial neural networks (ANNs) are a new information processing technique that

attempts to simulate or mimic the processing characteristics of the human brain

large amounts of data (Muller & Reinhardt, 1990). ANNs were inspired by studies of

the central nervous system and the brain (Medsker et aI., 1993; Klimasauskas, 1993)

and therefore share much of the terminology and concepts with its biological

3.4 "Anatomy" and "Physiology" of Artificial Neural Networks: A Discussion

of Concepts and Terms

Neural networks were initially developed to gain a better understanding of how the

brain works. It resulted in computational units, called neural networks, that work in

ways similar to how we think the neurons in the human brain work. Several human

characteristics such as "learning, forgetting, reacting or generalizing" and also the

biological aspects of networks consisting of neurons, dendrites, axons and synapses

were ascribed to these artificial neural networks in order to promote understanding of

these abstract terms (Nelson & Illingworth, 1991). Some of the terminology of neural

networks will be reviewed briefly.

 
 
 



The human brain is composed of cells called neurons. Estimates of the number of

neurons in the human brain range up to 100 billion (Medsker, et aI., 1993). Neurons

function in groups called networks. Each network contains several thousand highly

interconnected neurons where each neuron can interact directly with up to 20 000

other neurons (Nelson & Illingworth, 1991). This architecture can be described as

parallel distributed processing, where the neurons can function simultaneously

(Muller & Reinhardt, 1990). In contrast with conventional computers which process

information serially, or one thing at a time, the human brain's parallel processing

ability enables it to outperform supercomputers in some areas regarding complexity

and speed of problem solving such as pattern recognition (Blum, 1992).

A typical biological neuron (Figure 3.1) consists of a cell body containing a nucleus,

dendrites which provides input to the cell and an axon, which carries the output

signal from the nucleus (Hawley, Johnson & Raina, 1993). Very often, the axon of

one neuron merges with the dendrites of a second neuron. Signals are transmitted

through synapses. A synapse is able to increase or decrease the strength of the

connection and causes inhibition or excitation of a subsequent neuron (Nelson &

Illingworth, 1991). Although there are many different neurons, this typical neuron

serves as a functional basis to make further analogies to artificial neural networks.
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Figure 3.1: A biological neuron (Medsker, et al., 1993:5)
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threshold level. Finally, it determines the output and sends it out just like a biological

neuron sends out an output through its axon (Muller & Reinhardt, 1990).

Several of these artificial neurons or nodes can be combined to make a layer of nodes

as illustrated in Figure 3.3.

Figure 3.3: Inputs to several nodes to form a layer (Nelson & Illingworth, 1991:

49).

 
 
 



To form an artificial neural network (Figure 3.4), several layers are connected to each

other.

Figure 3.4: Connection of several layers to form a network (Nelson &

Dlingworth, 1991:50).

The first layer that receives the incoming stimuli is referred to as the input layer. The

network's outputs are generated from the output layer and all the layers in between

are called the hidden layers or middle layers.

The "anatomy" of artificial neural networks has just been reviewed. The terminology

used in the "physiology" of an artificial neural network will be discussed next.

The first layer of neurons, called the input layer, receives the incoming stimulus. The

next step is to calculate a total for the combined incoming stimuli. In the calculation

of the total of the input signals, there are certain weighting factors: Every input is

given a relative weight (or mathematical value) which affects the impact -or

importance of that input. This can be compared to the varying synaptic strengths of

58

 
 
 



the biological neurons. Each input value is multiplied with its weight value and then

all the products are added up for a weighted sum. If the sum of all the inputs is greater

than the threshold, the neuron generates a signal (output). If the sum of the inputs is

less than the threshold, no signal (or some inhibitory signal) is generated. Both types

of signals are significant (Blum, 1992; Nelson & Illingworth, 1991). These weights

can change in response to various inputs and according to the network's own rules for

modification. This is a very important concept because it is through repeated

adjustments of weights that the network "learns" (Medsker, et al., 1993).

Medsker, Turban and Trippi (1993:10) summarized the crucial steps of the learning

process of an artificial neural network very effectively:

"An artificial neural network learns from its mistakes. The usual process of learning

or training involves three tasks:

1) Compute outputs.

2) Compare outputs with desired answers.

3) Adjust the weight and repeat the process."

The learning process usually starts by setting the weights randomly. The difference

between the actual output and the desired output is called ~. The objective is to

minimize ~, or even better, eliminate ~ to zero. The reduction of ~ is done by

comparing the actual output with the desired output and by incrementally changing

the weights every time the process is repeated until the desired output is obtained.

 
 
 



Hawley, et a!' (1993) compared the learning process of an artificial neural system

(ANS) with the training of a pet: "An animal can be trained by rewarding desired

responses and punishing undesired responses. The ANS training process can also be

thought of as involving rewards and punishments. When the system responds

correctly to an input, the "reward" consists of a strengthening of the current matrix of

nodal weights. This makes it more likely that a similar response will be produced by

similar inputs in the future. When the system responds incorrectly, the "punishment"

calls for the adjustment of the nodal weights based on the particular learning

algorithm employed, so that the system will respond differently when it encounters

similar inputs again. Desirable actions are thus progressively reinforced, while

undesirable actions are progressively inhibited." (Hawley, et a!. (1993:33)

The learning of a neural network takes place in its training process. Every neural net

has two sets of data, a training set and a test set. The training phase of a neural

network consists of presenting the training data set to the neural network. It is in this

training process, that the network adjusts the weights to produce the desired output for

every input. The process is repeated until a consistent set of weights is established,

that work for all the training data. The weights are then "frozen" and no further

learning will occur. After the training is complete, the data in the test set is presented

to the neural network. The set of weights as calculated by the training set is then

applied to the test set. The presentation of the test set is the final stage in the neural

network where the answer is given whether it is to predict an outcome, find a

correlation, or recognize a pattern (Blum, 1992; Medsker, et a!., 1993; Nelson &

Illingworth, 1991). This type of learning, where a training set of actual data is used to

train the neural net, is also referred to as supervised learning (Nelson & Illingworth,

 
 
 



1991). Some neural nets learn through unsupervised learning where there are no

data available to train on. Such a network looks for regularities or trends in the input

signals and makes adaptations according to the function of the network. "At the

present state of the art, unsupervised learning is not well understood and is still the

subject of much research." (Nelson & Illingworth, 1991:133).

Another term that justifies some explaining is the programming of a neural

network. "Artificial neural networks are basically software applications that need to

be programmed" (Medsker, et al., 1993:22). A great deal of the programming is about

the training algorithms, transfer functions and summation functions. According to

Medsker, et al. (1993) it makes sense to use standard neural network software where

computations are preprogrammed. Several of these preprogrammed neural networks

are available on the market. Every person using an artificial neural network however,

has certain additional programming that needs to be done. It might be necessary to

program the layout of the database, to separate the data into two sets, namely, a

training set and a test set, and lastly to transfer the data to files suitable for input into

the standard artificial neural network.

The basic components of a general neural network have been discussed. The next

section will review different types of neural networks.

There are different types of neural networks, categorized by their topology (the

number of layers in the network). To provide just a limited overview of the basic

 
 
 



types of neural networks, the single layer network, the two layer network and multi

layer networks will be discussed briefly (Rao & Rao, 1995).

The single layer network has only one layer of neurons and can be used for pattern

recognition. The specific type of pattern recognition in this case is called

autoassociation, where a pattern is associated with itself. When there is some slight

deformation of the pattern, the network is able to relate it to the correct pattern.

Some models have only two layers of neurons, directly mapping the input patterns to

the outputs. Two layer models can be used when there is good similarity of input to

output patterns. When the two patterns are too different, hidden layers are necessary

to create further internal representation of the input signals. Two layer networks are

capable of heteroassociation where the network can make associations between two

slightly different patterns (Blum, 1992; Nelson & Illingworth, 1991).

Several types of multi layer networks exist. The most common multi layer network is

the back propagation network. According to Rao & Rao (1995), over 80% of all

neural network projects in development use back propagation. "Back propagation is
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the hidden layer, to the input layer). The error signals of the output are propagated

back into the network for each cycle. At each back propagation, the hidden layer

neurons adjust the weights of connections and reduce the error in each cycle until it is

finally minimized (Blum, 1992). This process was summarized by Nelson and

Illingworth, (1991: 122): "The whole sequence involves two passes: a forward pass to

estimate the error, then a backward pass to modify weights so that the error is

decreased." Back propagation networks require supervised learning where the

network is trained with a set of data (training set) similar to the test set.

Current applications of artificial neural networks include forecasting, image

recognition, text processing and optimization (Blum, 1992).

Intelligent forecasting is predicting future events based on historical data. A set of

"historical" data can be chosen for a neural net to form a set of pattern associations.

Once a neural network is trained with the pattern associations of input and output

factors of the historical data, the net will "recall" output patterns when presented with

input patterns. When a new set of data is presented to the trained neural net, the

network can predict future events by applying the trained pattern associations to the

new set of inputs (Blum, 1992).

 
 
 



An example of the prediction ability of neural networks is the "Airline Marketing

Tactician" (AMT) from a company called BehavHeuristicts, Inc. in Silversprings,

Maryland. This system is trained to monitor patterns on seat bookings on airplanes,

pricing, no-show rates of passengers, etcetera, to maximize profit and minimize

overbooking. The system predicts demand and no-show rates and advises a user to

raise or lower the number of seats for each fare (Nelson & Illingworth, 1991). The

prediction ability of neural networks is also very commonly used in the financial

markets. "Financial applications that require pattern matching, classification, and

prediction such as corporate bond rating, credit evaluation, and underwriting have

been proven to be excellent candidates for this new technology "(Salchenberger,

Cinar & Lash, 1993:230).

Blum (1992) specifically referred to the excellent forecasting and prediction abilities

of back propagation neural networks. Several other investigators also proved back

propagation neural networks to be highly applicable in the prediction of bankruptcy

(Odom & Shara, 1993; Raghupathi, Schkade & Raju, 1993; Rahimian, Singh,

Thammachote & Virmani, 1993). Odom and Shara (1993) specifically compared the

predictive ability of a neural network and multivariate discriminant analysis model in

bankruptcy prediction. The authors concluded that the neural network performed

better on both the original set of data and the holdout sample (training set and test

set). Salchenberger et al. (1993) confirmed the findings that back propagation neural

networks predicted more accurately than any other method originally used. These

research findings show promise in using back propagation neural networks for

prediction purposes.

 
 
 



An example of the image recognition ability of neural networks is the project of Paul

Gorman of Bendix Aerospace (cited in Nelson & Illingworth, 1991). He trained a

neural network to recognize underwater targets by sonar and to tell the difference

between a mine and a rock shaped like a mine. The neural network performed better

than trained human listeners or the traditional technique called nearest neighbor

classifier and could recognize 90% of the mines correctly.

The area of image recognition also include recognition of handwriting, recognition of

human speech (Blum, 1992) and even to estimate 'speech intelligibility of hearing

impaired speakers (Metz, Schiavetti & Knight, 1992). In this last study, a back

propagation neural network was used to predict the intelligibility of hearing-impaired

speakers from acoustic speech parameters. The study attempted to classify hearing

impaired persons into 4 groups of varying speech intelligibility. The network very

successfully classified hearing impaired persons into the first and last group (most and

least intelligible) but the neural network experienced difficulty classifying middle

categories probably due to the variable chosen to separate the different classes. This

experiment is currently being expanded to improve network performance.

An example of a neural network's text processing abilities is a simple spell checker,

designed by Jagota and Jung of SUNY, Buffalo (cited in Blum, 1992). Text

processors can also be combined with speech recognition systems. Some types of

 
 
 



neural networks are bi-directional and can perform both functions where inputs and

outputs can be reversed to achieve the desired function. If such a bi-directional system

is given a word, it can return the pronunciation or the corrected spelling or both,

Neural networks can also be used to solve difficult optimization problems such as cost

minimization where numerous factors can influence a manufacturing process (Blum,

1992). An example of such an application is used in the GTE Laboratories fluorescent

bulb manufacturing plant (cited in Nelson & Illingworth, 1991). A neural network

was trained to monitor the production line and keep track of all the variables that

influence production such as heat, pressure and the chemicals used to make the bulbs.

The neural network determines and monitors optimum manufacturing conditions and

can shut down the plant in emergency situations.

3.7 Advantages of Artificial Neural Networks over Conventional Statistical

Methods

"One could argue that in many cases it would be possible to formulate a statistical

approach to the same problem. For example in the image recognition applications, the

program could make probabilistic guesses about what character is being viewed based

on the results of a statistical model. There are several problems in this approach,

however, which is why progress in the fields of pattern recognition and handwriting

recognition was so slow prior to the advent of applied neural networks" (Blum,

 
 
 



1992:7). Some of the advantages of artificial neural networks as described by Blum,

(1992) will be reviewed briefly.

To formulate a statistical model, one should know what factors one wish to correlate.

With neural networks, irrelevant data has such low connection strength that it has no

effect on the outcome. Neural networks excel at determining what data is relevant.

When hundreds of factors are at play, even if some only have a very small effect,

neural network models are much more likely to be more accurate for difficult

problems than any statistical model.

3.7.3 Directness of the Model

A statistical method is a more indirect way of learning correlations, where artificial

neural networks model a pr9blem directly. The example the Blum (1992) describes is

to map pixelated images to alphabet letters. A neural network would simply connect

the objects (all pixels of the image are neurons and are connected through a hidden

layer to the output neurons that guess the letter). If a statistical method were used, the

first step would have been to determine factors that are likely to influence the guess of

the character. The next step to formulate a statistical model, run the model, analyze

 
 
 



the results and then to build a system that incorporates the results. If the character can

still not be identified correctly, the whole process should be repeated with other

factors that are likely to influence the guess. Although it is possible to solve a problem

like this with a statistical model, it requires much more time, planning and trial and

Neural networks are extremely fault tolerant and can learn from and make decisions

based on incomplete data (Nelson & Illingworth, 1991). Even if some of the hardware

fails, the neural network system will not be considerably changed. Blum (1992) even

suggests to train on noisy data to possibly enhance post training performance.

ANNs simulate the human brain's parallelism where neurons are highly

interconnected and function independently and in parallel. There are no time

dependencies among synapses of the same layer all of them can work in parallel and

simultaneously. Although digital computers have to simulate this parallelism, true

neural network hardware really perform operations in parallel. This feature makes

very fast decisions possible and the solving of very complex problems (Blum, 1992,

Nelson & Illingworth, 1991).

 
 
 



"There is still a tendency to portray neural networks as magical, a sort of black box

that does magical things" (Nelson & Illingworth, 1991:263). ANNs however, have a

number of limitations that should be reviewed (Nelson & Illingworth, 1991).

Neural networks do not excel in precise exact answers. It can for example, not be used

to do finances. Neural networks have the tendency to generalize.

Neural networks can not count. Counting has to take place in a sequential mode and

neural networks function in parallel.

Designing a neural network is somewhat of a mysterious process. The learning

process of a neural network is a tedious and painstaking trial-and-error effort. There

are no standards for learning algorithms for ANNs. Another factor of importance

influencing the learning process is the quality of the material that is used to train on.

Scaling is another problem. The networks may perform very well on the training and

test set in the laboratory but less well as soon as it is implemented as a commercial

model.

Another limitation is that ANNs can sometimes generalize or guess incorrectly. These

mistakes are hard to undo since it spreads out through the network. Back propagation

algorithms address this issue by extensive training on a set of data before any

generalizations or guesses are made.

 
 
 



"In general, a neural network can not justify its answers. There is no facility to match

the "how" or "why" found in expert systems. There is no way to stop it and say,

"What are you doing now?" It is as if the network were instead saying, "Trust me,

trust me." (Nelson & Illingworth, 1991:75). There are current efforts to build

"knowledge extraction tools" for neural networks also called "justification systems"

to verify the learned relationships directly (Blum, 1992).

DPOAE measurements are potentially a fantastic new objective, rapid, non-invasive,

inexpensive and accurate test of auditory sensitivity. Conventional statistical methods

however, could not yet provide a general rule to predict pure tone thresholds given

DPOAE results.

Artificial neural networks are a new information processing technique proved to be

highly applicable in the areas of prediction and correlation finding. The application of

neural networks to the field of audiology, specifically, DPOAEs to predict pure tone

thresholds, could result in an ideal objective testing procedure for special populations.

It would have a profound positive effect on current screening procedures, as well as

the differential diagnosis of sensorineural hearing losses, in the assessment of the

peripheral ear.

 
 
 



Leedy (1993) gave one very interesting viewpoint on the essence of research

methodology. "The process of research, then, is largely circular in configuration: It

begins with a problem; it ends with that problem solved. Between crude prehistoric

attempts to resolve problems and the refinements of modem research methodology

the road has not always been smooth, nor has the researcher's zeal remained

unimpeded." (Leedy, 1993:9).

The problem inspiring this research project has already been elaborately stated in

Chapter 1. In short, the need for an objective, non-invasive and rapid test of auditory

functioning has led to numerous previous studies attempting to develop such a

procedure. Shortcomings in conventional statistical methods prevented accurate

predictions of hearing ability with distortion product otoacoustic emissions. A new

form of information processing called artificial neural networks might prove useful in

the solving of this problem.

 
 
 



The main aim is to predict hearing ability at 500 Hz, 1000 Hz, 2000 Hz, and 4000 Hz

with distortion product otoacoustic emission (DPOAE) responses in normal and

hearing-impaired ears with the use of artificial neural networks.

The first sub aim is to determine optimal neural network topology to ensure accurate

predictions of hearing ability at 500 Hz, 1000 Hz, 2000 Hz and 4000 Hz. The number

of input nodes and number of output neurons are determined by the number of input-

and output data. The number of middle layer neurons however, should be determined

by trial and error until the required accuracy of prediction in the training stage is

reached.

The second sub aim is to train a neural network with sufficient data to predict pure

tone thresholds with DPOAE results. Sufficient data implies enough data from

different categories of hearing loss to ensure accurate training and prediction of

various hearing abilities.

The third sub aim is to determine the possible effects of age and gender on the

distortion product.

 
 
 



For this research project, the chosen research design was a multivariable correlational

study (Leedy, 1993). The correlation between selected variables of DPOAE and

selected variables of pure tone thresholds was studied by the use of artificial neural

networks.

1. The frequency of fl.

2. The frequency off2.

3. The loudness level offl (L1).

4. The loudness level oftf (L2).

5. The pattern of present and absent DPOAE responses of 8 DP Grams.

6. The age and gender variables.

1. The frequency of the pure tone.

2. The lowest dB level where a response can be measured 50% of the time.

For this study, data obtained from 70 subjects (120 ears, in some cases only one ear

fell within subject selection specification) were used to train a neural network to

 
 
 



predict pure tone thresholds given only the distortion product responses. Subjects

were recruited from a private audiology practice as well as a school for hard of

hearing children. The subjects included 28 males and 42 females, ranging from 8 to

82 years old.

In order to train a neural network with sufficient data to make an accurate prediction

of hearing ability, data across all groups of hearing impairment were needed. For this

study, subjects were chosen that had varying hearing ability, ranging from normal to

moderate severely sensorineural hearing impaired. To obtain an equal amount of data

in different areas of hearing impairment, data in three different categories of hearing

impairment were included, namely normal hearing ability, mild hearing losses and

moderately severe hearing losses.

There are two general classification systems to classify hearing level as being normal

or impaired (Yantis, 1994). The first method converts hearing levels into a rating

scale based on percentage. A Pure tone threshold average (PTA) for the frequencies

500 Hz, 1000 Hz, 2000 Hz and 3000 Hz is calculated, 25dB is subtracted (which is

assumed to be the normal range) and the answer is multiplied by 1.5 to find

percentage of impairment for each ear.

 
 
 



The second approach to describe normal ranges and hearing impairment also uses

monaural PTA in the speech frequencies but adds additional descriptors to the

different levels. Clark 1981 (cited in Yantis, 1994) modified Goodman's

recommendations from 1965 into the following categories:

-10 to 15dB

16 to 25dB

26 to 40dB

41 to 55dB

56 to 70dB

91dB plus

Normal hearing

Slight hearing loss

Mild hearing loss

Moderately severe hearing loss

Severe hearing loss

Profound hearing loss

For this study, the second approach to classification of hearing impairment (as used

by Clark, 1981 in Yantis, 1994) was used. Subjects with normal hearing, slight

hearing loss, mild hearing loss and moderately severe sensorineural hearing loss were

included in the study. To divide the subjects into three groups of 40 ears each, the

group with normal hearing ranged from 0 dB to 15 dB. The group with slight and

mild hearing loss ranged from 16 to 35dB and the moderately severe hearing-impaired

group had PTAs in the range of 36 - 65dB. It should be noted that according to

Clark's (1981) (cited in Yantis, 1994) specification the moderate hearing loss group

only includes hearing losses of up to 55 dB, whereas the severely hearing impaired

group extends to 70 dB. DPOAEs has been reported in ears that have a hearing

threshold as high as 65dB HL (Moulin, et aI., 1994) at the frequencies close to the

primaries. It was therefore decided to combine the category of moderate and severe

 
 
 



hearing impairment to form the category moderately severe hearing impairment

ranging from 36 to 65 4B HL. The data was divided into three groups merely to

ensure that an equal amount of data was obtained in each category. Another

modification to Clark's classification system has been made. In addition to the

frequencies used by Clark (1981) (cited in Yantis, 1994) to determine the PTA,

namely 500 Hz, 1000 Hz, 2000 Hz and 3000 Hz, for this study 4000 Hz was also

taken in consideration in the classification of hearing impairment. The reason for this

modification is that DPOAE measurements are required at 4 kHz to predict the pure

tone threshold at 4 kHz.

The second selection criterion was normal middle ear functioning. Otoacoustic

emissions can only be recorded in subjects with normal middle ear function. Only a

very small amount of energy is released by the cochlea and is transmitted back

through the oval window and ossicular chain to vibrate the tympanic membrane.

Normal middle ear function is crucial to this transmission process (Norton, 1993;

Osterhammel, Nielsen & Rasmussen, 1993;Zhang & Abbas, 1997).

Normal middle ear functioning was determined by otoscopic examination and

tympanometry.

 
 
 



Otoscopic examination was performed to determine the amount of wax in the ear

canal, for excessive wax may block the otoacoustic emission microphone and prevent

the reading of a response. The second aspect that was investigated was the light

reflection on the tympanic membrane, indicative of a healthy tympanic membrane

(Hall III & Chandler, 1994).

A subject's tympanometry results must have been within the following specifications

to be included in the study:

A normal type A tympanogram was one of the criteria for normal middle ear

functioning. A type A tympanogram has a peak (or point of maximum admittance) of

o to -100 daPa. The peak may even be slightly positive, for example +25daPa (Block

& Wiley, 1994). A type A tympanogram's static immittance when measured at 226

Hz ranges from about 0.3 cm3 to 1.6 cm3 (Block & Wiley, 1994). Subjects

demonstrating type A tympanograms within these specifications were accepted for the

study.

 
 
 



Only persons that were able to cooperate for approximately an hour were included in

the study. Subjects had to be able to follow instructions and sit quietly and still in one

position for about forty minutes for DPOAE testing. Subjects demonstrating

inadequate ability to follow instructions or cooperate during pure tone audiometry,

tympanometry or DPOAE testing were not included in the study. Some of the reasons

subjects were excluded from the study in this regard include very young age, ill health

and hyperactivity.

There is some debate regarding the effect of age on distortion product otoacoustic

emissions. In a study by Lonsbury-Martinet al. (1991), a negative correlation between

DPOAE measurements and age for subjects 20-60 years was reported. In their report

however, it is suggested that this negative correlation is due to changes in hearing

threshold associated with aging. A study by Stover and Norton (1993) (cited in He &

Schmiedt, 1996) also indicated that the difference in DPOAEs between younger and

older subjects can be attributed to the sensitivity changes, rather than the aging itself

According to He and Schmiedt (1996) a 60-year-old person with normal hearing

(PTA < 15dB) will therefore have the same DPOAEs as a 12-year-old with the same

pure tone threshold levels.

There was therefore no selection criteria regarding age. The only population that was

excluded in this study is the pediatric population, due to differences in middle ear

 
 
 



properties such as canal length, canal volume and middle ear reverse transmission

efficiency that may cause differences in DPOAE amplitudes (Lasky, 1998a; Lasky,

1998b; Lee, Kimberley & Brown, 1993).

There was also no selection criteria regarding gender. Gaskill and Brown (1990) and

Cacace et al. (1996) reported that DPOAEs were significantly larger in female than

male subjects tested in the frequency range of 1000- 5000Hz. Both studies however,

indicated that the female subjects in their studies had more sensitive auditory

thresholds than the males (an average of 2.4 dB better). The differences found

between the two groups could therefore not be explained by gender only.

Lonsbury-Martin et al. (1990) conducted a study to investigate basic properties of the

distortion product including the effect of gender on the prevalence of DPOAEs. A

comparison of DPOAE amplitudes and thresholds failed to reveal any significant

differences except a minor difference at 4 kHz.

Gender effects on DPOAEs are apparently limited to minor differences in DPOAE

amplitudes and thresholds and therefore gender was not one of the selection criteria

for this study.

The procedure in which subjects were selected started with a brief interview,

following an otoscopic examination of the external meatus, tympanometry and pure

tone audiometry.

 
 
 



4.4.2.1 Case History an4 Personal Information
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The next step in the subject selection procedure was to obtain a tympanogram to

determine middle ear functioning. The subject was instructed to sit in front of the

tympanometer and not to speak or swallow. Tympanometry was performed in both

ears and the duration of the procedure was about 5 minutes.

If the subject had normal middle ear functioning, the subject selection procedure

continued. A traditional audiogram was obtained from the subject. The frequencies

that were tested during pure tone air conduction was 125 Hz, 500 Hz, 1000 Hz, 2000

Hz, 4000 Hz and 8000 Hz. If a hearing loss was present, or if any of the frequencies

except 8000 Hz had a threshold >15 dB, then pure tone bone conduction was also

performed. If sensorineural hearing losses varied with more than 15 dB between

adjacent frequencies, in between frequencies such as 3000 Hz or 750 Hz were also

tested. Only subjects with sensorineural hearing losses (no gap between air

conduction and bone conduction) were accepted for the study. Threshold

determination was in 5dB steps and a threshold was defined as 50% accurate

responses at a specific dB level (Yantis, 1994).

Audiograms from subjects were then analyzed. All audiograms indicating normal

hearing (500 Hz, 1000 Hz, 2000 Hz, 3000 Hz and 4000 Hz below 15 dB) were

included in the first group. Audiograms indicating hearing loss were analyzed in

terms of the degree and configuration of the hearing loss. Mild hearing loss,

 
 
 



indicating a hearing loss between 16-35 dB in the frequency region 500-4000 Hz were

categorized in the second group, namely mild hearing loss. Audiograms indicating

hearing loss of 36-65 dB in the frequency region of 500-4000 Hz were categorized in

the third group, namely moderately severe hearing loss. In each category, 40

audiograms were included.

If a subject demonstrated normal middle ear functioning and a pure tone audiogram

that could be categorized into one of the three groups, DPOAE measurements were

performed within the next hour. This procedure will be discussed in data collection

procedures.

• For otoscopic examination of the external meatus and tympanic membrane an

otoscope was used, specifically the Welch Allyn pocketscope model 211.

• For tympanometric measurements the GSI 28 A middle ear analyzer, calibrated

April 1997 was used (Testing was performed in January 1998).

 
 
 



• For determination of auditory pure tone thresholds, the GSI 60 Audiometer,

calibrated April 1997 was used. The model of the earphones on the audiometer

was 296 D 200-2. Pure tone thresholds were measured in a sound proof booth.

• The measurement of Distortion Product Otoacoustic Emissions were conducted

with a Welch Allyn GSI 60 DPOAE system and the probe was calibrated for a

quiet room in January, 1998. All measurements were made in a quiet room.

• For the preparation of data files, a Pentium 200 MMX computer was used. The

software included Excel for Windows 1998.

• For the training of the neural network, the back propagation neural network from

the software by Rao and Rao, 1995 (in addition to the book) was be used. The

neural network was trained on a Pentium 200 MMX.

• Further analysis of data was performed in Excel for Windows 1998 and with

custom software.

 
 
 



The reason for the preliminary study was twofold: First, to determine which persons

may participate as subjects and second, which stimulus parameters to use in the

measurements ofDPOAEs.

A very large part of the determination of subject selection criteria was based on an

extensive overview of related literature. The researcher did however conduct a series

of DPOAE measurements on subjects with various categories of hearing ability to

confirm current subject selection criteria. Just a few of the interesting finds during

DPOAE measurement of the preliminary study will be discussed briefly.

To confirm the studies of the importance of normal middle ear functioning by

researchers such as Zhang and Abbas, (1997); Osterhammel et al., (1993); Hall IIIet

aI., (1993) and Kemp et al., (1990), a few DPOAE measurements were performed on

subjects that displayed acceptable hearing ability for this study but small variations in

tympanometric results. One subject had perfect hearing (pure tone hearing thresholds

of 0 dB HL at all frequencies) but no airtight seal could be obtained as a result of

grommets in the tympanic membrane. This subject displayed very high levels of low

frequency background noise during DPOAE testing and it was difficult to distinguish

the DPOAE responses from the noise floor at most of the low and mid frequencies.

Another subject had a mild sensorineural hearing loss but the tympanogram's

compliance was just below O.3cc.This subject also demonstrated very high levels of

 
 
 



low and mid frequency noise with indistinguishable DPOAE responses above the

noise floor. A normal type A tympanogram with static compliance ofO.3-1.75cc was

therefore set as one of the subject selection criteria.

A few measurements were also made in the ears of severely hearing impaired subjects

and varying levels of stimuli was used. Another aspect that became apparent after a

few tests were conducted was the absence of DPOAEs in persons with hearing losses

greater than 65dB HL. This confirmed studies by Moulin et aI., (1994) and Spektor et

aI., (1991) which found that when stimuli lower than 65dB SPL are used, DPOAEs

can not be measured in ears with a hearing loss exceeding 65dB HL. Therefore, for

this study, only subjects were included with sensorineural hearing losses of up to 65

dBHL.

These same tests also revealed that when very high intensity primaries were used

(such as 70- 80dB SPL), in some instances one could observe "passive" emissions

from the ears of these severely hearing impaired subjects. The reason for passive

emissions, according to Mills, (1997) is that very high level stimuli can stimulate

broad areas of the basilar membrane and phase relations between travelling waves can

cause these "passive" emissions that do not correspond well to hearing sensitivity or

frequency specificity. In this preliminary study, passive emissions were only observed

when stimuli levels were higher than 70dB. It was therefore decided not to use stimuli

levels higher than 70dB.

 
 
 



Most of the stimulus parameters for this study were derived from an in depth literature

study. Parameters such as the frequency ratios between the primaries, the loudness

levels of L1 and L2 and whether to measure DP Grams or I/O functions were selected

on recommendation of otlter previous studies. There are however a few stimulus

parameters that requires some experimenting in order to determine applicability and

practicality for a certain research project. One such example is the configuration

setup, or specifically, the number of frames of data that will be collected in each

measurement. The GSI-60 DPOAE system offers two possibilities, a screening option

and a diagnostic option.

The screening option collects a maximum of 400 frames before stopping each primary

tone presentation. Not every test runs up to 400 frames, if a very clear response is

measured, the measurement can be made in as little as 10 frames. Test acceptance

conditions for the screening configuration are a cumulative noise level of at least -

6dB SPL and either a DPOAE response amplitude that is 10 dB above the noise floor

or a cumulative noise level of at least -18 dB SPL (GSI-60 manual, p2-44). A

maximum of 400 frames are measured, and if no clear response was present, the

results are labeled "timed out."

The diagnostic option runs up to 2000 frames for each primary tone presentation. The

minimum number of accepted frames is 128. Test acceptance conditions are that the

distortion product minus the average noise floor should be at least 17 dB.

 
 
 



~er a few measurements in both configurations it became clear that the diagnostic

option requires much more testing time. Testing time of one single DP Gram

measured at low level stimuli in the diagnostic configuration could increase testing

time up to 12 minutes. Even though the general noise floor was slightly lower during

the diagnostic option, it was not practical to conduct 8 DP Grams in each ear with

tests lasting 6-12 minutes each. It would take between an hour and one and three

quarters of an hour to measure one ear alone with DPOAEs. It was therefore not

practical to evaluate 120 ears with the diagnostic option. The screening option with a

testing time of up to 2 minutes per DP Gram was selected for this study. One ear

could be evaluated in about 15 minutes with DPOAEs and the screening procedure

yielded very much the same information.

Lastly, the stimulus parameter that required some experimenting was the selection of

the frequencies of the primary tone pairs. The GSI-60 DPOAE system has a "Custom

DP" function where the examiner can choose any primary frequencies for DPOAE

measurement. After a few tests it became clear that care should be taken when

selecting primary tones. Not only should the frequency ratio of the primaries

preferably be 1.2, but the frequency values from one tone pair to the next should be at

least one octave apart to avoid interaction between stimuli (GSI-60 manual, p2-39).

The GSI-60 measures the noise floor from the first primary tone pair per group, and if

frequency pairs are selected too close to each other, very high levels of noise are

being measured. So after a lot of changes in primary tone pairs were made to avoid

interaction between stimuli, the researcher ended up with stimuli very similar to the

default stimuli of the GSI-60. It was therefore decided to use the default primary

 
 
 



frequencies of the GSI-60 for this study by activating all four octaves. (It seems that

those stimuli are set as default for a very obvious reason.)

Just for practicality, a few test runs that incorporated the whole data collection

procedure were conducted to determine the amount of time required testing each

subject. This was determined in order to schedule appointments. As seen in Table I,

the whole data collection procedure lasted about an hour. In some cases, especially in

the case of subjects with ~ hearing loss, more time was required for bone conduction

but on the average, one hour was sufficient to test one subject.

Subject history 5 minutes

Audiometry 15 minutes

Otoscopic examination 5 minutes

Tympanometry 5 minutes

DPOAE measurements left ear 15 minutes

DPOAE measurements right ear 15 minutes

Total testing time 60 minutes

 
 
 



In the selection of subjects, the procedure included a short interview, an otoscopic

examination, tympanometry and pure tone audiometry. Data that was collected during

the interview, the otoscopic examination and tympanometry was used for subject

selection only. Data that was collected during pure tone audiometry was not only used

in the selection of subjects, but also in the main purpose of the study, namely to train

a neural network to predict pure tone thresholds given the distortion product

responses. These procedures were discussed in 4.4.2 Subject Selection Procedures.

In order to train a neural network to predict pure tone thresholds given only the

distortion product responses, two sets of data should be collected namely each

subject's pure tone thresholds and each subject's DPOAEs.

The necessary pure tone audiometry data has already been obtained during subject

selection and the collection procedure for this set of data has been described in the

section 4.4.2.4. Traditional Audiogram.

 
 
 



The second set of data that was collected was each subject's DPOAE responses. The

procedure for the collection of this set of data is quite complex, due to the number of

stimulus parameters that should be specified. There is a four dimensional space in

which the stimulus parameters for DPOAE measurement should be specified (Mills,

1997). The frequencies of the two primary stimulus tones fl and f2 (fl>f2), the

frequency ratio of f2/fl (how many octaves apart the two frequencies are), the

loudness level of fl (which is Ll) and the loudness level of f2 (which is L2).

Furthermore, the difference in loudness level between L1 and L2 should also be

specified.

In the case of the GSI-60 Distortion Product otoacoustic emissions system, the

number of octaves that should be tested can be specified as well as the amount of data

points to plot between octaves. The octaves available are 0.5 - 1 kHz; 1-2 kHz; 2-4

kHz and 4 -8 kHz. All of these octaves was selected for DPOAE testing because

information regarding all these frequencies was required to make comparisons with

the audiogram in the frequency range 500 - 4000 Hz. The amount of data points

between frequencies could be any number between 1 and 20. The more data points

91

 
 
 



per octave, the longer the required test time since more frequency pairs are tested

between frequencies. The GSI -60 manual suggests three data points per octave to be

adequate, not increasing the test time too much but yielding enough information

regarding DPOAE preval~nce between frequencies. In the case of the pure tone

audiogram, in-between frequencies were only tested when hearing losses between

frequencies varied more than 15 dB (to measure the slope of the hearing loss) and

only one or in extreme ~ases two in-between frequencies were evaluated. The

selection of three data poims between octaves in the case of DPOAE measurement

should therefore be adequate.

The frequencies tested by the GSI -60 when all four octaves are activated and three

data points per octave is specified amount to 11 frequency pairs. The 11 frequency

pairs are presented in Table II.

Table ll: The 11 frequency pairs tested by the GSI-60 DPOAE system when all

four octaves are activated.

PAIR 1 2 3 4 5 6 7 8 9 10 11

flHz 500 625 781 1000 1250 1593 2000 2531 3187 4000 5031

flHz 593 750 937 1187 1500 1906 2406 3031 3812 4812 6031

 
 
 



4.6.2.2.1.2 The Selection of the Frequency Ratio of the Primary Frequencies

(121ft)

Several studies investigated the effect of the frequency ratio on the occurrence of

DPOAEs (Cacace et ai., 1996; Popelka, Karzon & Arjmand, 1995; Avan & Bonfils,

1993; He & Schmiedt, 1997).

It appears that the frequency ratio of 1.2 - 1.22 is most applicable to a wide range of

clinical test frequencies (0.5-8kHz) and a wide range of stimulus loudness levels. A

stimulus ratio of f2/fl = 1.2 was therefore selected for this study.

As mentioned in the introduction, there are two ways of eliciting a DPOAE response.

Either the frequencies are changed and the loudness level kept constant, this is

sometimes referred to as a "distortion product audiogram" (DP Gram), or the

frequencies are being kept constant while the loudness level is changed (an

input/output function (I/O) is obtained). In this case, several DP audiograms were

obtained. All the frequencies selected for all four octaves were presented to the

subjects at different loudness levels, starting with maximum loudness levels at L1= 70

dB; L2 =60 dB. Loudness levels were decreased in 5 dB steps until DP "thresholds"

(lowest intensities where DP responses can be distinguished from the noise floor) for

all the frequencies were obtained. The lowest loudness level for the primaries that was

tested was Ll = 35 dB; L2= 25dB. Eight loudness levels were therefore evaluated

resulting in eight DP "audiograms" for each ear.

 
 
 



An overview of several studies indicated the following loudness level ratios to be

most suitable for the detection of DPOAEs: L1>L2 by lOdB (Stover et aI., 1996a),

L1>L2 by 15 dB (Gorga et aI., 1993) and L1>L2 by 10-15 dB (Norton & Stover,

1994). A study by Mills (1997) indicated that more DPOAEs were recorded when

L1>L2 than L1 = L2.

The detection threshold for a distortion product otoacoustic emission depends almost

entirely on the noise floor and the sensitivity of the measuring equipment (Martin et

aI., 1990b). A distortion product with an amplitude less than the noise floor can not be

detected (Kimberley & Nelson, 1989; Lonsbury-Martin et aI., 1990). Most

researchers specify a DP response to be present if the DP response is 3-5 dB above the

noise floor. Harris and Probst (1991:402) specified a DP response as "the first

response curve where the amplitude of 2f1-f2 is ~ 5 dB above the level of the noise

floor." Lonsbury-Martin ~t aI., (1990) reported detection thresholds for DPOAE

measurements 3 dB above the noise floor. Lonsbury-Martin (1994) set the criterion

level for a DPOAE threshold at ~ 3 dB.

For this study, a detection threshold for a DPOAE response will be defined as the first

response where the distortion product (2f1-f2) is 3 dB above the noise floor.

 
 
 



DPOAE measurements were performed directly after the subject selection procedure.

Subjects were instructed to sit next to the GSI 60 DPOAE system, not to talk and to

remain as still as possible. Subjects were allowed to read as long as they kept their

heads as still as possible. First, a new file was opened for the subject. Then the

DPOAE probe tip was inserted into the external meatus in such a manner that an

airtight seal was obtained.

Eight tests or DP Grams were performed in each ear. Every DP Gram consisted of

eleven frequency pairs. Every frequency pair consisted of two pure tones, fl and f2

presented to the ear simultaneously (see Table II for the 11 frequency pairs). The

eleven frequency pairs were presented to the ear in a sweep, one at a time starting

with the low frequencies, ending with the high frequencies.

The first DP Gram was conducted on the loudness levels Fl = 70dB SPL, F2 = 60dB

SPL. The second DP Gram was conducted 5 dB lower at Fl = 65 dB SPL, F2 = 55 dB

SPL. The third DP Gram was conducted 5 dB lower than the second, namely F1 = 60

dB SPL, F2 = 50 dB SPL. A total of eight DP Grams were conducted, each one 5 dB

lower than the previous one. The lowest intensity DP Gram that was performed was

Fl = 35 dB SPL, F2 = 25 dB SPL.

The procedure was repeated for both ears if both ears fell within selection criteria.

The duration of DPOAE testing of eight DP Grams for one ear was between 15-20

 
 
 



minutes. If a subject was tested binaurally, the duration of DPOAE testing was

approximately 30-40 minutes.

Each ear has its own fIle. A file is merely a row of numbers, depicting the test results

in a certain order. The first column represents the subject or file number, the second

number the DP Gram number, then the ear that has been tested (left or right) and so

the numbers continue until all data relating to the DPOAE testing procedure and pure

tone testing results have been depicted. Table III represents a data fIle for one DP

Gram. 8 DP Grams for each ear were conducted. The complete data file for one ear

would therefore have 88 rows of data under each column number. The column

numbers in the top row is explained to indicate which measurement that column

represents in the section following the Table III.

 
 
 



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 1 R 500 70 593 60 406 8 0 N 0 0 5 0 0 0 24 F

1 1 R 625 70 750 60 500 9 -1 T/O 0 0 5 0 0 0 24 F

1 1 R 781 70 937 60 625 14 -6 A 0 0 5 0 0 0 24 F

1 1 R 1000 70 1187 60 812 3 -2 N 0 0 5 0 0 0 24 F

1 1 R 1250 70 1500 60 1000 12 -6 A 0 0 5 0 0 0 24 F

1 1 R 1593 70 1906 60 1281 -1 -9 A 0 0 5 0 0 0 24 F

1 1 R 2000 70 2406 60 1593 13 -7 A 0 0 5 0 0 0 24 F

1 1 R 2531 70 3031 60 2031 5 -8 A 0 0 5 0 0 0 24 F

1 1 R 3187 70 3812 60 2562 7 -9 A 0 0 5 0 0 0 24 F

1 1 R 4000 70 4812 60 3187 8 -6 A 0 0 5 0 0 0 24 F

1 1 R 5031 70 6031 60 4031 5 -6 A 0 0 5 0 0 0 24 F

Explanation of column numbers for Table ill:

1 Subject number.

2 Number of DP Gram.

3 Ear that is being tested (right or left).

4 Frequency of fl in Hz.

5 Loudness level of L 1 in dB SPL.

6 Frequency of f2 in Hz.

7 Loudness level of L2 in dB SPL.

8 Distortion product frequency in Hz.

9 Distortion product amplitude in dB SPL.

10 Loudness level of noise floor in dB SPL.

11 Test status (A= accepted, N= noisy, T/O= timed out response).

12 Pure tone threshold of 250 Hz in dB HL.

13 Pure tone threshold of 500 Hz in dB HL.

14 Pure tone threshold of 1000 Hz in dB HL.

15 Pure tone threshold of 2000 Hz in dB HL.

16 Pure tone threshold of 4000 Hz in dB HL.

17 Pure tone threshold of 8000 Hz in dB HL.

18 Subject age.

19 Subject gender.

 
 
 



The next step in the preparation of data was to select the type of neural network

needed for this study and also the topology of the neural network.

A back propagation network was chosen for this study for two reasons: 1) A possible

nonlinear correlation is suspected between DPOAE thresholds and traditional pure

tone thresholds. Metz, et aI., 1992 reported the back propagation neural network to be

very successful in dealing with nonlinearities that potentially occur in complex data

sets. According to Blum, 1992, the back propagation neural network is capable of

nonlinear mappings and able to generalize well. 2) The purpose of this study is to

predict pure tone thresholds with distortion product thresholds with the use of neural

networks. According to Blum, (1992), the back propagation neural network is highly

applicable in the areas offorecasting and prediction. Tam and Kiang, (1993) indicated

a back propagation neural network to be very effective in the prediction of bank

failure. Salchenberger, et ai. (1993) also chose a back propagation neural network for

their prediction study where thrift institution failures were predicted and obtained

predictions better than any other method originally used.

To summarize, back propagation networks are applicable in the areas of prediction

and can be used where a possible nonlinear correlation is sought between two sets of

data.

 
 
 



"A neural network has its neurons divided into subgroups, or fields, and elements in

each subgroup are placed in a row, or column, in the diagram depicting the network."

(Rao & Rao, 1995:81).

For this back propagation neural network a three-layer structure was chosen: The first

layer is an input layer only. The third layer is the output layer and the second layer,

also referred to as the hidden layer, categorizes the input pattern and serves as a

connection between the first and third layer.

The number of input data sets that the neural network is trained with determines the

number of nodes in the input layer. For example, if one threshold value at each of the

11 distortion product frequencies is used to train the neural network, the input layer

will consist of 11 nodes. If two values at each of the 11 distortion product frequencies

are used, such as the threshold value and the amplitude value, then the number of

nodes in the input layer will be 22.

 
 
 



Several experiments were conducted to find the optimal number of input nodes for

this study. These "trial runs" to determine the optimal topology of the neural network

are described in 4.7.2.1.5: Trial Runs to Determine Neural Network Topology.

In the case of the output and hidden layers, the components are being referred to as

neurons because of the two layers of connectivity (an input and an output) which

gives it the similar structure as a neuron with a synapse on each side.

The number of aspects that is being predicted determines the number of neurons in the

output layer. For example, if the neural network has to predict hearing thresholds at

500 Hz, 1000 Hz, 2000 Hz and 4000 Hz, then the number of output neurons will be

four. If the neural network has to predict only one frequency, then only one output

neuron in needed. Even though the aim of this study was to predict hearing ability at

all four these frequencies, one network does not necessarily have to do it

simultaneously, the same results can be achieved by four different networks, trained

to predict only one of the frequencies. The trial runs that were conducted to determine

the optimal number of output neurons for this study are also discussed in 4.7.2.1.5:

Trial Runs to Determine Neural Network Topology.

The number of neurons in the hidden or middle layer cannot be determined merely by

the amount of input or output data but is a function of the diversity of the data (Blum,

 
 
 



1992). The number of middle layer neurons determines the accuracy of prediction

during the training period. With an insufficient number of middle neurons, the

network is unable to form adequate midway representations or to extract significant

features of the input data (Nelson & Illingworth, 1991). With too many middle

neurons the network has difficulty to make generalizations (Rao & Rao, 1995; Nelson

& Illingworth, 1991). The number of middle layer neurons was determined by trial

and error, based on the accuracy of the prediction during the training period. All these

trial runs are discussed in the following section.

The first scenario encompassed all the data from all 120 ears. DPOAE thresholds

were determined for all 120 ears at all 11 DPOAE frequencies (in other words, the

lowest Ll value that still yielded a DPOAE response). The criteria for a DPOAE

threshold was that the lowest Ll DPOAE response had to be 3 dB above the noise

floor and that the test status had to be "accepted".

All the lowest Ll values where a DPOAE response was measured were used as input

data for the neural network. There were however some of the hearing impaired

subjects that did not have any DPOAE responses at certain frequencies, and no

DPOAE threshold values were available to use as input data. All these absent DPOAE

thresholds were depicted with a "zero".

The input level of this neural network therefore had 11 nodes and each represented the

L 1 dB SPL value where the DPOAE threshold was measured. The neural network had

 
 
 



to predict hearing ability at 500 Hz, 1000 Hz, 2000 Hz and 4000 Hz in dB SPL. There

were therefore 4 output neurons in this network. The number of middle level neurons

were set at 20 and the acceptable prediction error during the training period at 5 dB

for this test run. After a few hours it became clear that the neural network was unable

to converge during the training period and that no accurate predictions could be made.

For the next few trial runs, middle level neurons were increased up to 100 or the

acceptable prediction error during the training period were decreased to 1 dB. All

these changes did not improve convergence or prediction ability. It became clear that

the absence of DPOAE thresholds in the hearing impaired population (about 66% of

the subjects) called for a different data preparation method.

In the second scenario, an attempt was made to determine necessary neural network

topology and acceptable prediction error with only those subjects that had DPOAE

responses at all 11 frequencies. There were 20 ears with DPOAE thresholds at all 11

DPOAE frequencies, and naturally, almost all (19) had normal hearing (pure tone

thresholds < 15 dB HL). Many different trial runs were conducted to determine the

effects of the number of middle level neurons and acceptable error during training on

the prediction abilities of the neural network. The general tendency revealed that more

accurate predictions were made with higher numbers of middle level neurons (around

100) but that the acceptable error during training did not have a great influence on the

accuracy of the prediction. An acceptable error of 5 dB in the training stage did not

worsen prediction abilities compared to a training error of IdB. It was actually found

in some instances that the network had a better ability to generalize with the larger

training error of 5dB. Just for general interest, one example of the second scenario

trail runs will be discussed briefly.

 
 
 



All ears with DPOAE responses at all 11 frequencies were selected. (There were 20

ears, 19 had normal hearing (0-15 dB HL) and one had a mild hearing loss ( 25dB

HL). For input data, only the eight highest DPOAE frequencies were used. The 3 low

DPOAE frequencies were omitted because of high levels of low frequency noise. This

time DPOAE amplitudes were used instead of DPOAE thresholds. The DPOAE

amplitudes at Ll = 65, L2 = 55 were used as input values for the eight high

frequencies. The neural network was programmed to predict only one high frequency,

namely 2000 Hz. The number of middle neurons was set at 20 and the acceptable

error during training at 0.5dB. The network converged fairly quickly and predictions

turned out to be extremely accurate. 2000 Hz could be accurately predicted within 10

dB 100% of the time and within 5 dB 83% of the time. Although this seems like a

cause for celebration, one should ask oneself what the relevance of such a prediction

is. If all the ears in the training set are normal ears, and the network predicts all the

ears as normal, would it necessarily know an ear with a hearing loss if it encountered

one? All that could be derived from this trial run was that it was time to try a new data

preparation method to incorporate all data from hearing impaired subjects as well.

Accurate predictions of hearing ability across different categories of hearing

impairment can only be made if a neural network is trained with sufficient data to

recognize all the different categories.

Scenario three required drastic changes in the way the data is presented to the neural

network. Up to now, input data consisted of decibel sound pressure level (SPL)

quantities, depicting either a DPOAE threshold at a certain Ll value or DPOAE

amplitude. Output data also predicted hearing thresholds in decibel sound pressure

 
 
 



level (dB SPL) values. For scenario three, a whole new approach was used. All data

was rewritten in a binary format. The presence of a DPOAE response was depicted

with a "1" whereas the absence of a DPOAE response was depicted with a "0".

The criteria for the presence of a DPOAE response was that the DPOAE response had

to be 3 dB above the noise floor and that the test status had to be "accepted". All

responses less than 3 dB above the noise floor or with a test status that was "noisy" or

"timed out" were regarded as absent responses. (It should be noted that Kemp (1990)

warned that in order to determine if a response is 3 dB above the noise floor, one

could not merely subtract the noise floor from the DPOAE amplitude in its decibel

form. The two values should be converted back to their pressure value (Watt/m2), then

subtracted. )

Responses from each of the eight DP Grams in each of the 120 ears were rewritten in

this binary format. In the end, each ear had a row of 88 numbers ("ones" and "zeros")

and every number depicted the presence or absence of a DPOAE response at one of

the 11 DPOAE frequencies and one of the 8 loudness levels. These 88 numbers

served at input information in the neural network (the network therefore had 88 input

nodes). The only information available to the neural network in this trail run was

therefore the pattern of absent and present responses at all eight loudness levels.

Another drastic change was made in the way the pure tone audiogram was depicted.

As a first level approach every audiogram was graded into seven categories of

average hearing ability. Each category spanned 10 dB, category one ranged from 0-

IOdB, category two from 11-20 dB, three from 21-30 dB and so forth. The seven

 
 
 



categories can be seen in Table IV. Each category of hearing ability was determined

by taking the average of 500 Hz, 1000 Hz, 2000 Hz and 4000 Hz. Each ear had one

number in the end, depicting its average hearing ability according to one of the seven

categories. The network had only binary input information, not dB SPL values, and

only had to guess a category, not a decibel value. The decibel hearing level categories

of the audiogram were therefore used in its hearing level (HL) form.

To present average hearing ability according to one of the seven categories in a binary

fashion, each ear had seven number places (or columns). Column one represented

hearing ability in category one, column two represented hearing ability in category

two and so forth. To indicate average hearing ability, the column that represented that

specific hearing ability was given a "one" and the rest "zeros". For example, an ear

with an average hearing ability of 29 dB HL would fall in category 3. This ear would

be written: [0 0 1 0 0 0 0]. An ear with an average hearing ability of 5 dB HL would

be written as [1 0 0 0 0 0 0], therefore depicting category one.

Category 1 0-10 dB

Category 2 11-20 dB

Category 3 21-30 dB

Category 4 31-40 dB

Category 5 41-50 dB

Category 6 51-60 dB

Category 7 61-70 dB

 
 
 



The neural network was trained with the 88 input nodes depicting the pattern of

present and absent DPOAE responses at all 11 DPOAE frequencies and all 8 loudness

levels as well as the average hearing ability in one of the seven categories. The

number of middle level neurons was set at 140 and the prediction error at 5%.

This binary approach offered the first solution to the problem of absent DPOAE

results. For the first time all the data could be used and the neural network could be

trained with data across all categories of hearing impairment. Scenario three however,

predicted only average hearing abilities across the whole audiogram. The main aim of

this study is to predict hearing ability at the frequencies 500 Hz, 1000 Hz, 2000 Hz

and 4000 Hz. It was decided to take the binary approach one step further, by

predicting hearing ability at a specific frequency, one at a time.

Scenario four used the same DPOAE input information as scenario three, which was

the 88 columns of binary information, depicting present and absent DPOAE responses

at all the DP Grams and DPOAE frequencies. Scenario four also used the seven

categories of hearing ability to write output information in a binary format. Instead of

using the average hearing ability of a subject as output information, only the pure tone

frequency to be predicted was used. Four different neural networks were used to

 
 
 



predict 500 Hz, 1000 Hz, 2000 Hz and 4000 Hz, one at a time. For each neural

network, the number of middle neurons was set at 140 and the acceptable error during

training at 5%. The neural network took about 4 days non-stop to predict one

frequency of all 120 subjects.

After completion of neural network prediction it became clear that in some instances,

certain categories had very little hearing-impaired data. In the case of 500 Hz for

example, many of the subjects with hearing losses had normal hearing at 500 Hz

(such as subjects demonstrating ski slopes). Category 7 in the case of the 500 Hz

prediction had only data for one ear. Category 6 had only data for six ears and

category 5 only data for five ears. It could be possible that the neural network did not

have sufficient data in every category to train on and this aspect might influence the

accuracy of the prediction. It was decided to enlarge the categories depicting hearing

impairment to 15 dB, in order to attempt to include more hearing-impaired data in

every category. In scenario five, hearing ability was divided in five categories.

Categories that depicted normal hearing spanned 10 dB whereas categories that

depicted hearing impairment spanned 15 dB. The five categories are presented in

Table V.

Category 1 0-lOdBHL

Category 2 11-20 dB HL

Category 3 21-35dBHL

Category 4 36-50 dBHL

Category 5 51-65dBHL

 
 
 



The network was trained with the binary written DPOAE responses and hearing

abilities in the five categories. The number of middle level neurons was set at 140 and

the acceptable training error at 5%. The network was trained with the data of 119 ears

and predicted one ear. This process was repeated 120 times to predict every ear once.

The prediction of hearing ability at 500 Hz, 1000 Hz, 2000 Hz and 4000 Hz as well as

the prediction of average hearing ability were performed in both seven categories (as

in scenario 4) and in five categories (as in scenario 5). The differences in results

between these two scenarios will be discussed in Chapter 5 and Chapter 6.

To determine the effects of age and gender on the distortion product, it was decided to

include these variables into the neural network as input information. The variables age

and gender were included in the network run where the network had to predict

average hearing ability.

The variables age and gender also had to be presented to the neural network in a

binary format. For the network run that included the gender variable, it was very easy

to depict the new variable in a binary mode. The one gender was given a zero and the

other gender a one. The one extra input did not influence the complexity of the neural

network topology to such an extent that it was necessary to include more middle

neurons in the hidden layer. This neural network therefore had 89 input nodes, 140

middle layer neurons and seven output neurons, one for every 10dB category. The

prediction error during training was set at 5%. The neural network was exactly the
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same as for the prediction of average hearing ability, except for the extra input

variable, gender. The neural network had to predict average hearing as being in one of

the seven 10dB categories of scenario four.

The age variable was also incorporated in a neural network run to predict average

hearing ability in the seven 10dB categories of scenario four to determine its effect on

the distortion product. To represent the age variable to the neural network in a binary

format required much more input neurons. Subject age ranges from 8 to 82 years old.

To present this to the neural network in a binary mode, nine categories of different

ages were created, every category spanning 10 years. It was written in a binary format

in the same way that hearing ability categories were. For example, a subject with an

age of 12 would fall in the second lO-year category and would be written binary as

[0 1 0 0 0 0 0 0]. A subject with an age of 82 would fall in the ninth lO-year category

and would be binary written as [0 0 0 0 0 0 0 0 1]. The network that was presented

with subject age had therefore nine more input neurons, amounting to a total of 97

input neurons. (The network had 88 regular input nodes to represent all absent and

present DPOAE responses at the 8 DP Grams of all 11 DPOAE frequencies plus 9

input nodes to represent the age category). The middle level neurons were kept at 140

and the network had seven output neurons, one for every lOdB category.

To determine the combined effects of gender and age, one neural network was run to

include both variables at the same time. The network therefore had 98 input nodes,

140 middle level neurons and seven output neurons for the seven 10dB categories of

scenario four. Prediction accuracy during training was set at 5%.

 
 
 



After the completion of a neural network run, the results were given in a table format,

with 120 rows (each ear had one row) and 15 columns of numbers (as in the case of

scenario four). The first column number depicted the ear number, the other 14 the

actual hearing category and predicted hearing category, written in a binary format. To

illustrate this concept, an example of a neural network's output for the data of 10 ears

is presented in Table VI. The predicted frequency was 1000 Hz.

Ear 1 had an actual hearing threshold of 5 dB at 1000 Hz, therefore a category one.

The category was depicted binary by the "1" in the "actual" (A) column of Category

1. All the other "actual" (A) columns of the other categories for ear one is therefore

"0". The neural network investigated the pattern of the input information and made

more than one prediction for possible categories of hearing ability for this ear.

The category where the most energy is concentrated, is taken as the prediction of the

neural network, and in the case of ear 1, it is in category 1. This ear's hearing ability

was therefore correctly predicted as a category 1.

 
 
 



Table VI: Example of the results of the neural network's prediction of 1000 Hz

for 10 ears, (scenario four). A= Actual hearing category, P= Predicted hearing

category.
E
A CATEGORY CATEGORY 2 CATEGORY 3 CATEGORY 4 CATEGORY 5 CATEGORY 6 CATEGORY 7
R 1
#

A P A P A P A P A P A P A P
1 1 1 0 0.4 0 0 0 0 0 0.03 0 0.1 0 0

2 0 0.3 1 0.9 0 0.3 0 0.01 0 0.01 0 0.1 0 0.01

3 0 0.2 0 0 0 0.01 0 0.3 0 0.01 1 0.4 0 0.9

4 0 0 0 0 1 1 0 0 0 0 0 0 0 0

5 1 1 0 0 0 0.3 0 0.02 0 0.03 0 0.4 0 0.02

6 0 0.05 1 1 0 0.44 0 0.14 0 0.05 0 0.01 0 0

7 0 0.01 0 0.03 0 1 0 0.8 1 0.6 0 0.4 0 0.02

8 0 0.01 1 1 0 0.3 0 0.21 0 0.12 0 0.02 0 0.01

9 1 1 0 0.2 0 0.15 0 0.11 0 0.02 0 0.01 0 0
10 0 0 0 0 0 0 0 0 0 0.02 0 0.3 1 0.7

 
 
 



Another aspect that was determined for every frequency was the percentage accurate

prediction of normal hearing for every frequency. This was determined in terms of

false positive responses (how many subjects with normal hearing were predicted as

hearing impaired) and false negative responses (how many subjects with hearing

impairment were predicted as having normal hearing ability) at every frequency.

The need for an objective non-invasive and accurate test of auditory functioning

inspired this research project. The aim of this research project was to predict hearing

ability at 500 Hz, 1000 Hz, 2000 Hz and 4000 Hz, with DPOAEs and artificial neural

networks. Data obtained from DPOAE results and pure tone thresholds of 120 ears

were used to train the neural network. Subject selection criteria included varying

degrees of sensorineural hearing loss and normal middle ear functioning. Subjects

ranged from 8 to 82 years old and included 28 males and 42 females.

The distortion product otoacoustic emission has numerous variables that influence the

effectivity in which measurements can be made. For this research project, eight DP

Grams at 5dB intervals ranging from L1=70dB SPL to L 1=35dB SPL were measured.

A frequency ratio of 1.2 was selected for the two primaries and the loudness level

ratio of the two primaries was L1>L2 by lOdB. The frequency range of F1= 500 to

F1= 5031 was tested.

The neural network that was chosen for the prediction of 500 Hz, 1000 Hz, 2000 Hz

and 4000 Hz was a back propagation neural network. The network had 140 middle

 
 
 



neurons, 88 input nodes and seven output neurons in scenario four, five output

neurons in scenario five. The network's acceptable prediction error during training

was set at 5%. All data that was used for neural network training was rewritten in a

binary format.

Hearing ability was predicted in two scenarios. In scenario four, hearing ability was

predicted into one of seven 10dB categories (Table V). In scenario five, the network

had to predict hearing ability into one of five categories, the first two spanned 10dB

and the rest 15dB. The neural network was not trained with the precise decibel values

of a hearing threshold but with the categorical value. Four different networks were

trained for the four prediction frequencies 500 Hz, 1000 Hz, 2000 Hz and 4000 Hz.

Data analysis consisted of analyzing the actual and predicted values of all 120 ears

and to determine how many were predicted accurately, how many within one class

and how many were predicted incorrectly.

There are numerous variables that influenced the outcome of this research project. It

is quite possible that different DPOAE settings such as other frequency ratios or

different loudness levels could yield different results (Cacace et aI., 1996). It is also

possible that a different type of neural network or a network with a different topology

could affect the results significantly (Nelson & Illingworth, 1991). It was attempted to

specify all the stimulus variables that could have an effect on the outcome of this

research proj ect in great detail in the preceding Chapters.

 
 
 


	Front
	Chapters 1-2
	CHAPTER 3
	CHAPTER 4
	Chapter 5
	Chapters 6-7
	References

