

SUBCELLULAR EFFECTS OF PAVETAMINE ON RAT CARDIOMYOCYTES

By

CHARLOTTE ELIZABETH ELLIS

Submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in the Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria

Date submitted: April 2010

© University of Pretoria

SUBCELLULAR EFFECTS OF PAVETAMINE ON RAT CARDIOMYOCYTES

By

CHARLOTTE ELIZABETH ELLIS

Submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in the Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria

Date submitted: April 2010

SUMMARY

SUBCELLULAR EFFECTS OF PAVETAMINE ON RAT CARDIOMYOCYTES

By

CHARLOTTE ELIZABETH ELLIS

- Promoter: Professor C.J. Botha
- Department: Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria
- Co-promoter: Professor R.A. Meintjes

Department: Department of Anatomy and Physiology, Faculty of Veterinary Science, University of Pretoria

Degree: PhD

The aim of this study was to investigate the mode of action of pavetamine on rat cardiomyocytes. Pavetamine is the causative agent of gousiekte ("quick-disease"), a disease of ruminants characterized by acute heart failure following ingestion of certain rubiaceous plants. Two *in vitro* rat cardiomyocyte models were utilized in this study, namely the rat embryonic cardiac cell line, H9c2, and primary neonatal rat cardiomyocytes.

Cytotoxicity of pavetamine was evaluated in H9c2 cells using the MTT and LDH release assays. The eventual cell death of H9c2 cells was due to necrosis, with LDH release into the culture medium after exposure to pavetamine for 72 h. Pavetamine did not induce apoptosis, as the typical features of apoptosis were not observed. Electron microscopy was employed to study ultrastructural alterations caused by pavetamine in H9c2 cells. The mitochondria and sarcoplasmic reticula showed abnormalities after 48 h exposure of the cells to pavetamine. Abundant secondary lysosomes with electron dense material were present in treated cells.

Numerous vacuoles were also present in treated cells, indicative of autophagy. During this exposure time, the nuclei appeared normal, with no chromatin condensation as would be expected for apoptosis. Abnormalities in the morphology of the nuclei were only evident after 72 h exposure. The nuclei became fragmented and plasma membrane blebbing occurred. The mitochondrial membrane potential was investigated with a fluorescent probe, which demonstrated that pavetamine caused significant hyperpolarization of the mitochondrial membrane, in contrast to the depolarization caused by apoptotic inducers. Pavetamine did not cause opening of the mitochondrial permeability transition pore, because cyclosporine A, which is an inhibitor of the mitochondrial permeability transition pore, did not reduce the cytotoxicity of pavetamine significantly.

Fluorescent probes were used to investigate subcellular changes induced by pavetamine in H9c2 cells. The mitochondria and sarcoplasmic reticula showed abnormal features compared to the control cells, which is consistent with the electron microscopy studies. The lysosomes of treated cells were more abundant and enlarged. The activity of cytosolic hexosaminidase was nearly three times higher in the treated cells than in the control cells, which suggested increased lysosomal membrane permeability. The activity of acid phosphatase was also increased in comparison to the control cells. In addition, the organization of the cytoskeletal F-actin of treated cells was severely affected by pavetamine.

Rat neonatal cardiomyocytes were labelled with antibodies to detect the three major contractile proteins (titin, actin and myosin) and cytoskeletal proteins (F-actin, desmin and β -tubulin). Cells treated with pavetamine had degraded myosin and titin, with altered morphology of sarcomeric actin. Vacuoles appeared in the β -tubulin network, but the appearance of desmin was normal. F-actin was severely disrupted in cardiomyocytes treated with pavetamine and was degraded or even absent in treated cells. Ultrastructurally, the sarcomeres of rat neonatal cardiomyocytes exposed to pavetamine were disorganized and disengaged from the Z-lines, which can also be observed in the hearts of ruminants that have died of gousiekte

It is concluded that the pathological alteration to the major contractile and cytoskeleton proteins caused by pavetamine could explain the cardiac dysfunction that characterizes gousiekte. F-actin is involved in protein synthesis and therefore can play a role in the inhibition of protein synthesis in the myocardium of ruminants suffering from gousiekte. Apart from inhibition of protein synthesis in the heart, there is also increased degradation of cardiac proteins in an animal with gousiekte. The mitochondrial damage will lead to an energy deficiency and possibly to generation of reactive oxygen species. The sarcoplasmic reticula are involved in protein synthesis and any damage to them will affect protein synthesis, folding and post-translational modifications. This will activate the unfolded protein response (UPR) and sarcoplasmic reticula associated protein degradation (ERAD). If the oxidizing environment of the sarcoplasmic reticula is disturbed, it will activate the ubiquitin-proteasome pathway (UPP) to clear aggregated and misfolded proteins. Lastly, the mitochondria, sarcoplasmic reticula and F-actin are involved in calcium homeostasis. Any damage to these organelles will have a profound influence on calcium flux in the heart and will further contribute to the contractile dysfunction that characterizes gousiekte.

Keywords

Actin, cardiotoxicity, cytoskeleton, F-actin, gousiekte, H9c2 cell line, lysosome, mitochondria, myosin, necrosis, pavetamine, polyamine, protein synthesis, rat neonatal cardiomyocytes, sarcoplasmic reticula, titin.

ACKNOWLEDGEMENTS

I wish to thank the following people and institutions that helped me to peep into the fascinating world of God's cell:

- Ms Anitra Schultz and Dr Dharmarai Naicker, project team members of the Division of Toxicology (ARC-OVI).
- Prof Christo Botha (Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria) as promoter and Prof Roy Meintjes (Department of Anatomy and Physiology, Faculty of Veterinary Science, University of Pretoria) as co-promoter of this study.
- Mr Alan Hall (Laboratory for Microscopy and Microanalysis, University of Pretoria) for the laser scanning confocal microscopy analyses.
- The South African National Biodiversity Institute (SANBI) for the distribution maps of gousiekte plants in South Africa.
- Ms Erna van Wilpe and Ms Lizette du Plessis for the electron microscopy analyses (Electron Microscopy Unit, Faculty of Veterinary Science, University of Pretoria).
- The computer centre at ARC-OVI.
- Funding provided by the Gauteng Province (Department of Agriculture, Conservation and Environment) and the North-West Province (Department of Agriculture, Conservation, Environment and Tourism).
- Family, friends and colleagues.
- Ms Nettie Engelbrecht for proof-reading this thesis.
- Lastly, a special friend, adv. David le Roux.

DECLARATION

I hereby declare that this study was my own work, except that pavetamine was purified by Ms Karen Basson.

Candidate: C Ellis

TABLE OF CONTENTS

Sumn	hary	ii
Keyw	ords	iv
Ackn	owledgements	v
Decla	ration	v
List o	f figures	xi
List o	f tables	xiv
List o	fabbreviations	XV
CHA	PTER 1	
PATI	IOGENESIS OF GOUSIEKTE	1
1.1	Introduction	1
CHA	PTER 2	
LITE	RATURE REVIEW	10
2.1	Components of the cardiomyocytes	10
2.1.1	Myofibrillar contractile proteins	
	2.1.1.1Titin	10
	2.1.1.2 Myosin	12
	2.1.1.3 Thin filament (actin) and thin filament regulatory proteins (troponin,	13
	tropomyosin)	
2.1.2	Z-disc complex	14
2.1.3	M-band proteins	17
2.1.4	Costameres	18
2.1.5	Intercalated discs	19
2.1.6	Cardiac extramyofibrillar cytoskeleton proteins: F-actin,	23
	microtubules and intermediate filaments	
	2.1.6.1 F-actin	23
	2.1.6.2 Microtubules	25
	2.1.6.3 Intermediate filaments (IF)	26

2.2	The ro	le of mitochondria in the heart	26	
2.2.1	Generation of energy in the mitochondria			
2.2.2	Mitochondrial membrane potential ($\Delta \Psi_m$)			
2.2.3	The m	itochondrial permeability transition pore (MPTP)	30	
2.3	Calciu	m homeostasis	30	
2.4	The ro	le of polyamines in mammalian cells	33	
2.5	5 Death of cardiomyocytes: apoptosis, autophagy and necrosis			
	2.5.1	Apoptosis	38	
	2.5.2	Autophagy	39	
	2.5.3	Necrosis	40	
2.6	Cardia	c hypertrophy	42	
2.7	Import	ant signalling pathways in the heart	42	
	2.7.1	Mammalian target of rapamycin (mTOR)/phosphoinositide 3-kinase/	42	
		Akt signalling		
	2.7.2	Nuclear factor kappa beta (NF-κB)	43	
	2.7.3	MAPK signaling	43	
	2.7.4	G protein-coupled receptors (GPCRs)	46	
2.8	Protein	n quality control (PQC)	46	
2.9	The ur	folded protein response (UPR)	47	
2.10	The ub	viquitin-proteasome system (UPS)	48	
2.11	Other	proteases in cardiomyocytes: calpains, cathepsins and caspases	50	
2.12	Lysoso	omotropism	51	
2.13	Justifie	cation of this study and hypothesis	51	
2.14	Object	ives	53	

CHA	PTER 3	3		
MOD	E OF C	CELL I	DEATH AND ULTRASTRUCTURAL	54
CHA	NGES I	IN H90	C2 CELLS TREATED WITH PAVETAMINE,	
A NO	VEL P	OLYA	MINE	
3.1	Introd	uction		54
3.2	Mater	ials and	d Methods	56
3.2.1	H9c2	cell lin	ie	56
3.2.2	Purifi	cation	of pavetamine	56
3.2.3	Cytote	oxicity	of pavetamine	56
	3.2.3.	1 MTT	assay	57
	3.2.3.2	2 LDH	assay	57
3.2.3	Trans	missio	n electron microscopy (TEM)	57
3.2.5	Mitoc	hondri	al analyses	58
	3.2.5.	1 Meas	surement of the electrochemical proton gradient ($\Delta \Psi m$)	58
		of the	e inner mitochondrial membrane with JC-1 and TMRM	
	3.2.5.2	2 Inhib	ition of mitochondrial permeability transition pore (MPTP)	58
3.2.6	Evalu	ation o	of apoptosis	59
	3.2.6.	1 Activ	vation of caspase 3	59
	3.2.6.2	2 DNA	fragmentation	59
	3.2.6.3	3 DAP	I staining of nuclei	60
	3.2.6.4	4 Relea	ase of cytochrome c from the mitochondria	61
		into t	he cytoplasm	
		I)	Isolation of mitochondria	61
		II)	Western blot analysis of mitochondria to stain	61
			cytochrome c	
Statis	tical ana	lysis		62
3.3 R	esults			62
	3.3.1	Cytor	toxicity of pavetamine in H9c2 cell culture	62
	3.3.2	Ultra	structural changes of H9c2 cells induced by pavetamine	64
	3.3.3	Mite	ochondrial analyses	66
		3.3.3	.1 Measurement of the mitochondrial membrane potential	66

		$(\Delta \Psi m)$ of the inner mitochondrial membrane	
		with JC-1 and TMRM	
		3.3.3.2 Cytotoxicity of pavetamine in the presence of	68
		cyclosporine A, an inhibitor of the mitochondrial permeability	
		transition pore (MPTP)	
	3.3.4	Evaluation of apoptosis	68
3.4	Discus	ssion	73

CHAPTER 4

A FL	LUORES	SCENT INVESTIGATION OF SUBCELLULAR	76		
DAM	IAGE II	N H9C2 CELLS CAUSED BY PAVETAMINE,			
A NO	OVEL P	OLYAMINE			
4.1	4.1 Introduction				
4.2	Mater	ials and Methods	77		
	4.2.1	Chemicals	77		
	4.2.2	H9c2 cell line	78		
	4.2.3	Purification of pavetamine	78		
	4.2.4	Treatment of H9c2 cells	78		
	4.2.5	Fluorescent staining	79		
		4.2.5.1 Staining of the sarcoplasmic reticulum	79		
		4.2.5.2 Staining of mitochondria	79		
		4.2.5.3 Staining of lysosomes	79		
		4.2.5.4 Staining of F-actin cytoskeleton	79		
		4.2.5.5 Fluorescence microscopy	80		
	4.2.6	Determination of lysosomal hexosaminidase activity	80		
	4.2.7	Determination of acid phosphatase activity	81		
4.3	Resul	ts	81		
4.4	Discu	ssion	87		

CHAPTER 5DAMAGE TO SOME CONTRACTILE AND CYTOSKELETON91PROTEINS OF THE SARCOMERE IN RAT NEONATAL CARDIOMYOCYTESAFTER EXPOSURE TO PAVETAMINE

5.1	Introdu	action	91
5.2	Materials and Methods		
	5.2.1	Purification of pavetamine	93
	5.2.2	Preparation of rat neonatal cardiomyocytes (RNCM)	93
	5.2.3	Treatment of RNCM	94
	5.2.4	Immunofluorescent staining of RNCM	94
	5.2.5	Staining of F-actin cytoskeleton	95
	5.2.6	Fluorescence microscopy	95
	5.2.7	Transmission electron microscopy	96
5.3	Result	5	96
5.4	Discus	sion	104

CHAPTER 6

GENERAL DISCUSSION AND CONCLUSION	106
Proposed Future Research Activities	109

CHAPTER 7

REFERENCES	112

APPENDICES

APPENDIX I.	ELLIS,	С.Е.,	NAICK	ER, D.	, BAS	SSON,	K.M.,	ВОТНА,	C.J.,
	MEINTJ	ES, R	.A. AN	D SCHU	JLTZ,	R.A.	2010.	Cytotoxicity	and

ultrastructural changes in H9c2(2-1) cells treated with pavetamine, a novel polyamine. *Toxicon*, 22: 12-19.

- APPENDIX II. ELLIS, C.E., NAICKER, D., BASSON, K.M., BOTHA, C.J., MEINTJES, R.A. AND SCHULTZ, R.A. 2010. A fluorescent investigation of subcellular damage in H9c2 cell caused by pavetamine, a novel polyamine. *Toxicology in Vitro*, 24: 1258-1265.
- APPENDIX III. ELLIS, C.E., NAICKER, D., BASSON, K.M., BOTHA, C.J., MEINTJES, R.A. AND SCHULTZ, R.A. 2010. Damage to some contractile and cytoskeleton proteins of the sarcomere in rat neonatal cardiomyocytes after exposure to pavetamine. *Toxicon*, 55: 1071-1079.

LIST OF FIGURES

Figure	Title	Page
1.1	Pachystigma pygmaeum.	1
1.2	Pavetta schumanniana.	2
1.3	Pavetta harborii.	2
1.4	Fadogia homblei.	2
1.5	Distribution of Pachystigma pygmaeum.	3
1.6	Distribution of Pavetta schumanniana.	3
1.7	Distribution of Pavetta harborii.	4
1.8	Distribution of <i>Fadogia homblei</i> .	4
1.9	Structure of pavetamine.	5
1.10	Transmission electron micrographs of gousiekte	6
	sheep hearts, demonstrating damaged Z-lines and the presence	
	of numerous vacuoles	
1.11	Transmission electron micrographs of gousiekte	7
	sheep hearts, demonstrating disordered myofibres.	
1.12	Transmission electron micrographs of affected mitochondria	8
	in gousiekte sheep hearts.	
1.13	Transmission electron micrographs of gousiekte sheep hearts with	8
	swollen mitochondrial cristae.	
2.1	Composition of the contractile machinery in the heart.	12
2.2	The troponin complex.	14

2.3	Cardiac Z-disc complex.	16
2.4a	Structure of costamere and Z-disc.	19
2.4b	Components of the costameres.	20
2.5a	The intercalated discs consist of the adherens junctions, desmosomes	21
	and the gap junctions.	
2.5b	Adherens junctions connect adjoining cells to each other through	22
	N-cadherin.	
2.5c	Desmosomes connect neighboring cells to each other.	22
2.5d	Gap junctions consist of two connexons, one of each delivered by	22
	each cell.	
2.6	Monomeric G-actin is polymerized to form F-actin with a barbed	24
	end (plus end) and pointed end (minus end).	
2.7	Diagrammatic scheme for oxidative phosphorylation in the	29
	mitochondria and its link to the citric acid cycle.	
2.8	Components of Ca ²⁺ signaling and organelles involved in Ca ²⁺	31
	homeostasis.	
2.9	Synthesis and catabolism of the polyamines.	35
2.10	Structure of the natural polyamines and pavetamine.	37
2.11	Schematic diagramme of PI3K/Akt/mTOR signalling pathway.	44
3.1a	The cytotoxicity of pavetamine was measured in H9c2 cells over a	63
	period of 3 days, and the percentage cell death, compared to the	
	untreated cells, was measured with the MTT assay.	
3.1b	Comparison of the percentage cell death and LDH release into the	63
	medium in H9c2 cells exposed for 72 h to pavetamine at a	
	concentration of ten-fold serial dilutions.	
3.2a -3.2b	Transmission electron micrograph of control H9c2 cells.	64
3.2c-3.2d	Transmission electron micrograph of H9c2 cells treated for 24 h with	65
	20 μM pavetamine.	
3.2e-3.2f	Transmission electron micrograph of H9c2 cells treated for 48 h	65
	with 20 μ M pavetamine.	
3.2g	Transmission electron micrograph of H9c2 cells treated for 72 h	66

with 20 μ M pavetamine.

3.2h	Transmission electron micrograph of H9c2 cell exposed to 0.6 μ M staurosporine for 6 h.	66
3.3a	Mitochondrial membrane potential of H9c2 cells exposed to $20 \mu M$ pavetamine for 24 h.	67
3.3b	Measurement of mitochondrial membrane potential with	67
	tetramethylrhodamine methyl ester perchlorate (TMRM).	
3.4	Cytotoxicity of 20 μ M pavetamine in the presence or absence	68
	of 1 µM CsA.	
3.5a	Caspase 3 activity studied after 6 h exposure.	69
3.5b	Caspase activation after 1 to 3 days exposure to pavetamine	69
	and staurosporine.	
3.6	DNA fragmentation of H9c2 cells treated with pavetamine, doxorubicin and staurosporine for 24 h.	70
3.7	Fluorescent staining of nuclei with DAPI of cells exposed to $20 \mu M$	71
	pavetamine (Pav) for 48 h.	
3.8	Nuclei of H9c2 cells visualised with DAPI, after exposure to $20 \mu M$	72
	pavetamine (Pav) or 1 µM rotenone (Rot) for 72 h.	
3.9	Western blot analysis of cytochrome c release from mitochondria.	73
4.1	H9c2 cells stained with ER Tracker for labeling of sarcoplasmic	82
	reticula (SR).	
4.2	H9c2 cells stained with MitoTracker Green for labeling of mitochondria.	83
4.3	H9c2 cells stained with Lysosensor probe, which stains both	84
	lysosomes and late endosomes.	
4.4	Lysosomal hexosaminidase enzyme activity of untreated control	85
	and pavetamine-treated H9c2 cells after 48 h exposure.	
4.5	Acid phosphatase enzyme activity of untreated control and	86
	pavetamine-treated H9c2 cells.	
4.6	H9c2 cells stained with phalloidin-FITC which binds to the	87
	F-actin cytoskeleton.	
5.1	Immunofluorescent staining of myosin heavy chain in RNCM cells.	97

5.2	Immunofluorescent staining of titin in RNCM cells.	98
5.3	Immunostaining of sarcomeric alpha actin (red) in RNCM. The	99
	nuclei were stained with DAPI (blue).	
5.4	Double-immunolabeling of RNCM cells with myosin heavy chain	101
	(red) and titin antibodies (green).	
5.5	Double-immunofluorescent staining of RNCM cells for F-actin (green)	102
	and β-tubulin (red).	
5.6	Transmission electron micrographs of rat neonatal cardiomyocytes.	103

LIST OF TABLES

Table 2.1	Comparison of typical features of cell death by the three	41
	programmed cell death pathways.	

LIST OF ABBREVIATIONS

ACTN	Actinin
AIF	Apoptosis-inducing factor
AJ	Adhering junction
AMP	Adenosine monophosphate
ANT	Adenine nucleotide transporter
ARs	Adrenergic receptors
ATF	Activating transcription factors
ATG	Autophagy-related protein
ATP	Adenosine triphosphate
ATPase	ATP hydrolysing enzyme
β-ΜΗC	β -Myosin heavy chain
BECN1	Beclin-1
BCl-1/2	B-cell leukemia/lymphoma 1/2
BSA	Bovine serum albumin
Ca ²⁺	Calcium

3',5'-Cyclic adenosine monophosphate
Protein that caps the barbed end of actin to the Z-band
Cardiac ankyrin-repeat protein
Crk-associated substrate
Cytosolic aspartate residue-specific cysteine protease
Calcium-sensing receptor
Cardiac hypertrophy
3[(3-Cholamidopropyl)dimethylammonio]-propanesulphonic acid
Chinese hamster ovary
Ca ²⁺ -induced Ca ²⁺ release
Confocal laser scanning microscopy
Chaperone-mediated autophagy
Creatine phosphate
Cyclosporin A
Cytochalasin D
Diacylglycerol
4',6-Diamidino-2-phenylindole
Dulbecco's modified Eagle's medium
Dimethyl sulfoxide
Dithiothreitol
Half maximum effective concentration
Endoplasmic reticulum
ER-associated degradation
Filamentous actin
Focal adhesion kinase
Foetal calf serum
Four and a half LIM domain
Fluorescein isothiocyanate
Globular actin
Guanosine diphosphate
Gap junctions
G protein-coupled receptors

GTP	Guanosine triphosphate
HBSS	Hank's balanced salt solution
H9c2	A clonal cell line derived from embryonic rat ventricle
H_2O_2	Hydrogen peroxide
HEPES	4-(2-hydroxyethyl)-1-piperazineethanesulphonic acid
HSP	Heat shock protein
I _{Ca-L}	L-type calcium channel
ID	Intercalated disk
IF	Intermediate filament
ІқВ	NF-κB inhibitor
IP ₃	Inositol 1,4,5-triphosphate
I/R	Ischaemia/reperfusion
IRE	Inositol-requiring enzyme-1
JC-1	5,5',6,6'-Tetrachloro-1,1',3,3'-tetraethyl-imidacarbocyanine iodide
JNK	c-Jun NH ₂ -terminal protein kinase
\mathbf{K}^+	Potassium
kDa	Kilo dalton
LC3	Light chain 3
LDH	Lactate dehydrogenase
LSCM	Laser scanning confocal microscopy
LVEDP	Left ventricular end diastolic pressure
MADS	Consists of genes with a conserved region of approximately 182 bp that codes
	for a DNA binding domain-the MADS-box
МАРК	Mitogen-activated protein kinase
MAPKKKs	MAP kinase kinases
MARP	Muscle ankyrin-repeat protein
mDa	Mega dalton
$\Delta \Psi_{\rm m}$	Mitochondrial membrane potential
MHC	Myosin heavy chain
MLC1	Myosin light chain 1
MLP	Muscle LIM protein
3MA	3-Methyladenine

MPTP	Mitochondrial permeability transition pore
mTOR	Mammalian target of rapamycin
MTT	3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide
MURF	Muscle-specific ring finger protein
MyBP-C	Myosin-binding protein C
\mathbf{NAD}^+	Nicotinamide adenine dinucleotide
NEC-1	Necrostatin 1
NCX	Na ⁺ /Ca ²⁺ exchanger
NF-қB	Nuclear factor kappa beta
NO	Nitric oxide
OXPHOS	Oxidative phosphorylation
PAK1	p21-Activated kinase
PARP	Poly(ADP-ribose) polymerase
PBS	Phosphate-buffered saline
PERK	Protein kinase R-like ER kinase
PEVK	Proline (P), glutamate (E), valine (V) and lysine (K) region
Pi	Inorganic phosphate
PIK3	Phosphatidylinositol 3-kinase
РКА	Protein kinase A
PKB/Akt	Serine/threonine protein kinase
РКС	Protein kinase C
PLC	Phospholipase C
PP2A	Protein phosphatase 2A
PQC	Protein quality control
PSV	Polyamine-sequestering vesicles
RIP1	Receptor-interacting protein 1
RNCM	Rat neonatal cardiomyocytes
ROCK	Rho-dependent kinase
ROS	Reactive oxygen species
RYR	Ryanodine receptor
S100A1	S100 calcium binding protein A1
SER	Serine

SERCA	Sarcoplasmic reticulum Ca ²⁺ -ATPase
siRNA	Silencing RNA
SR	Sarcoplasmic reticulum
SRF	Serum response factor
T-cap	Telethonin
TEM	Transmission electron microscopy
THR	Threonine
TMRM	Tetramethylrhodamine methyl ester perchlorate
TN	Troponin
TNF	Tumor necrosis factor
TNT	Troponin T
TPM	Tropomyosin
UPR	Unfolded protein response
UPS	Ubiquitin-proteasome system