EVALUATION AND DESIGN OF OPTIMUM SUPPORT SYSTEMS IN SOUTH AFRICAN COLLIERIES USING THE PROBABILISTIC DESIGN APPROACH

İsmet Canbulat

Submitted in partial fulfilment of the requirements for the degree Philosophiae Doctor in the Faculty of Engineering, Built Environment and Information Technology, University of Pretoria,

Pretoria, 2008
Using the Probabilistic Design Approach

by

İsmet Canbulat

Supervisor : Professor J.N. van der Merwe
Co-supervisor : Professor M.F. Handley
Department : Mining Engineering
Name of degree : Philosophiae Doctor

Keywords: Coal mine, roof support design, probabilistic design, roof stability, roof failure

This thesis addresses the problem of designing roof support systems in coal mines. When designing the roof support, it is necessary to account for the uncertainties that are inherently exist within the rock mass and support elements. The performance of a support system is affected by these uncertainties, which are not taken into account in the current design methodologies used in South Africa. This study sets out to develop a method which takes all uncertainties into account and quantitatively provides a risk-based design.

Despite the fact that the roof bolting is probably one of the most researched aspects of coal mine ground control, falls of ground still remain the single major cause of fatalities and injuries in South African collieries. Mainly five different support design methodologies have been used; namely, analytical modelling, numerical modelling, physical modelling, design based on geotechnical rating systems and field testing. As part of this study, it is shown that there are many elements of a support system that can impact the support and roof behaviour in a coal mine and the characteristics of these elements as well as the interaction between them is complex and can vary significantly within a short distance. These variations account for uncertainties in coal mine roof support and they are usually not taken into account in the above design methodologies resulting in falls of ground and/or over design of support systems.

The roof and support behaviour were monitored at 29 sites at five collieries. It is found that there was no evidence of a dramatic increase in the stable elevations as experienced in some overseas collieries. A roadway widening experiment was carried out to establish the critical roof displacements. The maximum width attained was 12 m at which stage 5 mm displacement was measured. During the monitoring period no roof falls occurred at any of the 29 sites and road
widening experiment site, even where 12 mm displacements were measured. The in situ monitoring programme was continued in additional 26 monitoring stations in 13 sites with the aim of establishing the effect of unsupported cut-out distance on roof and support performances. The results showed that the lithological composition of the roof strata plays a major role in the amount of deflection that was recorded. Bedding separation was seen to occur at the contacts between different strata types. It is concluded that the roof behaved like a set of composite beams with different characteristics. It is also found that the amounts of deflection corresponded with the deflection that would be expected from gravity loaded beams. During this monitoring programme variable nature of roof and support systems are also demonstrated.

As many mines use different geotechnical rating systems, an evaluation of the currently used classification techniques were conducted to determine their effectiveness in design of roof support strategies. It is found that currently used systems cannot quantitatively determine the required support system in a given geotechnical environment. Impact splitting tests are found to be the appropriate system for South African conditions. It is however concluded that the roof lithology, stress regime and roof characteristics can change within meters in a production section. Therefore, in order to predict these changing conditions many boreholes are required for a section, which would be costly and time consuming.

An in-depth study into the roof support elements was conducted for the purpose of obtaining an understanding of the fundamental mechanisms of roof support systems and developing guidelines for their improvement. All of the currently available roof bolt support elements and related machinery were evaluated using in situ short encapsulated pull tests. The results showed that, on average, bond strengths obtained from the roof bolts supplied by different manufacturers can vary as much as 28 per cent. The test results conducted on different resins showed that the strength of resin currently being used in South Africa is adequate. Differences between commonly used bit types were established. It is concluded that the 2-prong bit outperforms the spade bit in sandstone and shale rock types. In addition, the effect of hole annulus was also investigated as part of this study. The results show that an annulus between 2.5 mm to 3.8 mm resulted in the most effective bond strengths. The effect of wet and dry drilling was noted. It is found that bond strengths and overall support stiffnesses are greater with the use of the wet drilling in all resin types. The results from the tests in different rock types highlighted the very distinct differences between bolt system performances. Quality control procedures for compliance with the design, support elements and quality of installation are presented. Recommendations for improving the quality control measures and for developing testing procedures for bolt system components, installation quality and resin performance are provided.
Finally, a roof support design methodology that takes into account all natural variations exist within the rock mass and the mining process has been developed and presented. This was achieved by adapting a probabilistic design approach using the well established stochastic modelling technique. This methodology enables rock engineers to design roof support systems with greater confidence and should result in safer and economic extraction of coal reserves.
I would like to gratefully acknowledge that the research described in this thesis was made possible by funding provided by Safety in Mines Research Advisory Committee (SIMRAC) of the Department of Minerals and Energy of South Africa.

I would like to thank my research supervisor, Prof. J.N. van der Merwe of University of Pretoria, for giving me this great opportunity to work on this thesis and for his invaluable contribution, encouragement and his friendship. Without him this thesis could never have been put together.

The Division of Natural Resources and the Environment of the CSIR is acknowledged for their support.

Dr. Güner Gürtunca and Dr. Francois Malan are thanked for their personal support and encouragement.

Mr. Phil Piper of Groundwork Consulting (Pty) Ltd is thanked for his guidance.

The project team; Dr. Bernard Madden, Gary Prohaska, Bruce Jack, Adam Wilkinson and Thandile Dlokweni are thanked for assisting me in underground investigations and in the analyses of the data and also for their friendship and great support.

Tony Jager and Dr John Ryder for reviewing this thesis, and for their invaluable suggestions and recommendations throughout the thesis.

South African coal mines and Rock Engineers, D. Minney, L. Munsamy, G Makusha, J.J. van Wijk, J. Latilla, E. Wevell, D. Neal, D. Postma, B. Vorster and many others of Anglo Coal, BHP Billiton (Ingwe), Xstrata Coal and Sasol Coal are thanked for their support and assistance.

Most of all to my wife, Şemsa, I thank you for your patience and encouragement. Without your support I would have never made it to the end. All my love and wish to my son, Ali Tolga. I would also like to express my sincere gratitude and deep respect to my father Servet, my mother Fikret, and my brothers, Necdet and Vedat.

Thank you all.
Table of Contents

Abstract

Acknowledgement

Table of Contents

List of Figures

List of Tables

Glossary

Chapter 1.0 Introduction

1.1 Background

1.2 Objectives and scope of research

1.3 Outline of the thesis

Chapter 2.0 Literature review

2.1 Introduction

2.2 Types of roof bolts

2.2.1 Mechanical coupled roof bolts

2.2.2 Resin point anchors

2.2.3 Full-column single-resin-type bolts

2.2.4 Full-column slow/fast-resin combination bolts

2.2.5 Friction rock stabilisers

2.2.6 Wooden dowels and fibreglass dowels

2.2.7 Spin-to-stall system

2.2.8 Current guidelines for the selection of roof bolt type

2.3 Theories of roof bolting support

2.3.1 Simple skin support

2.3.2 Suspension mechanism

2.3.3 Beam-building mechanism

2.3.4 Keying

2.4 Roof bolting design

2.4.1 Analytical methods

2.4.2 Field testing

2.4.3 Numerical modelling

2.4.4 Roof support design based on geotechnical classification

2.4.5 Physical modelling

2.4.6 Probabilistic methods

2.5 Geometric parameters

2.5.1 Bolt length

2.5.2 Bolt diameter

2.5.3 Bolt pattern

2.5.4 Annulus size
Chapter 2.0 Roof and support behaviour

2.6 Tensioned versus non-tensioned bolts ... 47
2.7 Stiffness of roof support .. 49
2.8 Intersection support .. 50
2.9 Discussion and conclusions .. 51

Chapter 3.0 Underground monitoring of roof and support behaviour 54

3.1 Introduction ... 54
3.2 Underground monitoring procedure ... 54
3.3 Processing of information ... 56
3.4 Colliery ‘A’ .. 60
3.5 Colliery ‘B’ .. 65
3.6 Colliery ‘C’ .. 76
3.7 Colliery ‘D’ .. 83
3.8 Colliery ‘E’ .. 105
3.9 Analysis of underground field measurements .. 112
3.10 Roadway widening .. 118
3.11 Conclusions .. 130

Chapter 4.0 Effect of cut-out distance on roof performance 132

4.1 Introduction .. 132
4.2 Research conducted .. 132
4.3 Underground monitoring ... 137
4.4 Colliery ‘A’ .. 143
4.5 Colliery ‘B’ .. 153
4.6 Conclusions .. 155
6.6 Effect of bit, annulus and rock type ... 268
 6.6.1 Performance of bits .. 268
 6.6.2 Effect of hole annulus .. 271
 6.6.3 Effect of rock types ... 272

6.7 Quality control procedures for support elements .. 273
 6.7.1 Support elements ... 275
 6.7.2 Compliance with the design .. 283
 6.7.3 Installation .. 283

6.8 Conclusions .. 284

Chapter 7.0 Roof support design methodology ... 288
 7.1 Introduction ... 288
 7.2 Support design based on a probabilistic approach .. 288
 7.2.1 Rules of probability .. 289
 7.2.2 Methodology of probabilistic approach ... 289
 7.2.3 Required number of runs in Monte Carlo simulation .. 294
 7.2.4 Acceptable probability of stability .. 295

 7.3 Roof behaviour and failure mechanism ... 298
 7.3.1 Failure and support mechanisms .. 303

 7.4 Roof bolting mechanisms ... 304
 7.4.1 Suspension mechanism ... 304
 7.4.2 Beam building mechanism ... 305

 7.5 Determination of stability of the immediate layer between the roof bolts 310

 7.6 Probability density functions of design parameters and random selection 311
 7.6.1 Goodness of fit tests .. 315
 7.6.2 Probability distributions of design parameters .. 316

 7.7 Support design methodology ... 317

 7.8 Application of the probabilistic design approach to a case study 320

 7.9 Conclusions ... 332

Chapter 8.0 Conclusions and recommendations .. 334
 8.1 Conclusions ... 334

 8.2 Recommendations for future research .. 347

References ... 349
<p>| Figure 1-1 | Fatality and injury rates in South African collieries for the period 1984 to 2001 | 2 |
| Figure 1-2 | Cause for fatalities in South African collieries for the period 1995 to 2001 | 2 |
| Figure 2-1 | The length-capacity relationships that have evolved for roof bolts, cable bolts, and ground anchors (after Windsor and Thompson, 1997) | 7 |
| Figure 2-2 | Mechanical anchor bolt | 9 |
| Figure 2-3 | Forces acting on the components of an expansion shell anchor (after Windsor and Thompson, 1997) | 9 |
| Figure 2-4 | Various expansion shell mechanisms (after Windsor and Thompson, 1997) | 11 |
| Figure 2-5 | Point resin anchor | 12 |
| Figure 2-6 | Full column resin bolt | 14 |
| Figure 2-7 | Full-column slow/fast-resin combination bolts (the dual resin system) | 15 |
| Figure 2-8 | Split Set | 17 |
| Figure 2-9 | Spin-to-stall installation procedure (after Minney and Munsamy, 1998) | 19 |
| Figure 2-10 | Selection of bolt type (after Maleki, 1992) | 20 |
| Figure 2-11 | Simple skin support | 25 |
| Figure 2-12 | Suspension mechanism | 25 |
| Figure 2-13 | Beam-building mechanism | 26 |
| Figure 2-14 | Keying effect of bolting | 27 |
| Figure 2-15 | Compression zone created by keying (after Luo et al., 1998) | 27 |
| Figure 2-16 | Short encapsulated pull test equipment (after DMCIDC, 1996) | 32 |
| Figure 2-17 | A typical short encapsulated pull test result | 34 |
| Figure 2-18 | Instrumented roof bolt (after Signer and Jones 1990) | 35 |
| Figure 2-19 | A tell-tales (after Altounyan et al., 1997) | 37 |
| Figure 2-20 | Numerical methods in rock engineering | 37 |
| Figure 2-21 | Bolt pattern (after Spann and Napier, 1983) | 41 |
| Figure 2-22 | Deflection compared to number of bolts (after Spann and Napier, 1983) | 42 |
| Figure 2-23 | A typical plate load versus time in South African collieries (after Canbulat et al., 2003) | 49 |
| Figure 3-1 | Graphic representation and explanation of a typical geological profile, support type and final roof strata behaviour | 59 |
| Figure 3-2 | Colliery ‘A’ site 1 (bord) | 63 |
| Figure 3-3 | Colliery ‘A’ site 2 (bord) | 64 |
| Figure 3-4 | Colliery ‘B’ area 1 site 1 (intersection) | 66 |
| Figure 3-5 | Colliery ‘B’ area 1 site 2 (roadway) | 67 |
| Figure 3-6 | Colliery ‘B’ area 1 site 3 (roadway) | 68 |
| Figure 3-7 | Colliery ‘B’ area 2 site 1 (intersection) | 69 |</p>
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-44</td>
<td>Roadway and adjacent intersections prior to widening</td>
<td>122</td>
</tr>
<tr>
<td>3-45</td>
<td>Cutting sequence and final roadway shape</td>
<td>123</td>
</tr>
<tr>
<td>3-46</td>
<td>Increase in roof deflection with widening of roadway</td>
<td>125</td>
</tr>
<tr>
<td>3-47</td>
<td>Roof behaviour of the 12 m widened roadway with time</td>
<td>125</td>
</tr>
<tr>
<td>3-48</td>
<td>Separation within the roof beam with time</td>
<td>126</td>
</tr>
<tr>
<td>3-49</td>
<td>Displacement rates as a function of time</td>
<td>126</td>
</tr>
<tr>
<td>3-50</td>
<td>Experiment site taken on day nine</td>
<td>129</td>
</tr>
<tr>
<td>4-1</td>
<td>Cutting and instrumentation sequence in CM sections</td>
<td>139</td>
</tr>
<tr>
<td>4-2</td>
<td>Cutting and instrumentation sequence in road header sections</td>
<td>140</td>
</tr>
<tr>
<td>4-3</td>
<td>a) Probable cause of observed roof damage. b) Probable cause of observed roof bolt defects (after van der Merwe, 1998)</td>
<td>141</td>
</tr>
<tr>
<td>4-4</td>
<td>Summary of underground stress mapping techniques (after Mark and Mucho, 1994)</td>
<td>142</td>
</tr>
<tr>
<td>4-5</td>
<td>Colliery 'A' Site 1, Test 1</td>
<td>149</td>
</tr>
<tr>
<td>4-6</td>
<td>Colliery 'A' Site 1, Test 2</td>
<td>150</td>
</tr>
<tr>
<td>4-7</td>
<td>Colliery 'A' Site 2</td>
<td>151</td>
</tr>
<tr>
<td>4-8</td>
<td>Colliery 'A' Site 3</td>
<td>152</td>
</tr>
<tr>
<td>4-9</td>
<td>Colliery 'B' Site 1</td>
<td>157</td>
</tr>
<tr>
<td>4-10</td>
<td>Colliery 'B' Site 2</td>
<td>158</td>
</tr>
<tr>
<td>4-11</td>
<td>Colliery 'B' Site 3</td>
<td>159</td>
</tr>
<tr>
<td>4-12</td>
<td>Colliery 'C' Site 1</td>
<td>164</td>
</tr>
<tr>
<td>4-13</td>
<td>Colliery 'C' Site 2</td>
<td>165</td>
</tr>
<tr>
<td>4-14</td>
<td>Colliery 'C' Site 3</td>
<td>166</td>
</tr>
<tr>
<td>4-15</td>
<td>Colliery 'D' Site 1</td>
<td>169</td>
</tr>
<tr>
<td>4-16</td>
<td>Colliery 'E' Site 1</td>
<td>172</td>
</tr>
<tr>
<td>4-17</td>
<td>Colliery 'F' Site 1</td>
<td>175</td>
</tr>
<tr>
<td>4-18</td>
<td>The relationship between the support density and total displacement</td>
<td>177</td>
</tr>
<tr>
<td>4-19</td>
<td>The relationship between the thickness of the immediate layer and total displacement</td>
<td>177</td>
</tr>
<tr>
<td>4-20</td>
<td>The relationship between the bord width and total displacement</td>
<td>178</td>
</tr>
<tr>
<td>4-21</td>
<td>The relationship between the cut-out distance and total displacement</td>
<td>178</td>
</tr>
<tr>
<td>4-22</td>
<td>The relationship between the thickness of the immediate layer obtained from the borehole logs and height of the displacement obtained from underground sites where some degree of dilation was recorded</td>
<td>179</td>
</tr>
<tr>
<td>4-23</td>
<td>Relationship between measured and predicted dilation</td>
<td>181</td>
</tr>
<tr>
<td>4-24</td>
<td>MAP3D model that was used in the numerical modelling analysis</td>
<td>184</td>
</tr>
<tr>
<td>4-25</td>
<td>Effect of bord with on dilation</td>
<td>185</td>
</tr>
<tr>
<td>4-26</td>
<td>Effect of k-ratio on roof deformations</td>
<td>186</td>
</tr>
</tbody>
</table>
Figure 6-24 Torque against hole profile standard deviation in machines using dry flushing system ... 248
Figure 6-25 Resin spinning speed against hole profile standard deviation in machines using wet flushing system ... 248
Figure 6-26 Hole profile standard deviation in sandstone ... 249
Figure 6-27 Hole profile standard deviation in 'soft' materials ... 250
Figure 6-28 Effect of wet-dry drilling ... 251
Figure 6-29 Effect of wet and dry drilling on overall support stiffness ... 251
Figure 6-30 Performance of roof bolts determined from underground SEPTs 253
Figure 6-31 Effect of tensioning on bond strength ... 254
Figure 6-32 Effect of tensioning on overall stiffness ... 255
Figure 6-33 Roof bolt diameter deviations in bolts from three different manufacturers 257
Figure 6-34 Roof bolt rib-height measurements in bolts from three different manufacturers ... 258
Figure 6-35 Visual illustration of four South African roof bolts ... 259
Figure 6-36 Visual comparison of UK and South African bolts ... 260
Figure 6-37 Performance of 15-second and 30-second resin types in sandstone from both resin manufacturers ... 261
Figure 6-38 Performance of 15-second and 30-second resin types in shale from both resin manufacturers ... 262
Figure 6-39 Performance of 15-second and 30-second resin types in coal from both resin manufacturers ... 262
Figure 6-40 System stiffness of 15-second and 30-second resin types from both resin manufacturers ... 263
Figure 6-41 Simplified drawing of roof bolt profile components ... 265
Figure 6-42 Simplified drawing of failure between the rock and the resin ... 266
Figure 6-43 Effect of rib angle on pull-out loads (simplified) ... 268
Figure 6-44 Spade and 2-prong bits (25 mm) ... 268
Figure 6-45 Performance of spade bit and 2-prong bit ... 269
Figure 6-46 Hole annuli obtained from the 2-prong and spade bits ... 270
Figure 6-47 Overall stiffnesses obtained from the 2-prong and spade bits ... 270
Figure 6-48 Effect of hole annulus on bond strength ... 272
Figure 6-49 Effect of rock type on support performance ... 273
Figure 7-1 Hypothetical distribution of the strength and the load ... 290
Figure 7-2 Hypothetical distribution of the safety margin, SM ... 291
Figure 7-3 Measured height of roof-softening in intersections and roadways in South African collieries ... 298
Figure 7-4 An example of roof-softening in a coal mine in the USA (courtesy of Dr. C. Mark) ... 299
Figure 7-5 The vertical dimension (thickness) of FOG causing fatalities for the period 1970 – 1995 ... 300
Figure 7-6 Cumulative distribution of FOG thicknesses and the height of roof softening measured underground... 300
Figure 7-7 Measured deformations in intersections and roadways 301
Figure 7-8 Zone of roof softening .. 302
Figure 7-9 Beam with transverse shear force showing the transverse shear stress developed by it... 306
Figure 7-10 Computation and distribution of shear stress in a beam 307
Figure 7-11 Bed separation within the bolted horizon .. 309
Figure 7-12 Recommended support design methodology.................................. 319
Figure 7-13 Colliery “A” height of softening data obtained from the sonic probe extensometer results, feeler-gauge results and FOG data 321
Figure 7-14 Bord width distributions in the experiment site............................ 321
Figure 7-15 Thickness of immediate and upper roof obtained from borehole logs 322
Figure 7-16 Bond strength results obtained from SEPT in the experiment site........ 323
Figure 7-17 Distribution of roof bolting tensioning results 324
Figure 7-18 Distance between the roof bolts measured in the experiment site 324
Figure 7-19 Roof bolt ultimate strength .. 325
Figure 7-20 Distribution of tensile strength of coal used in the analysis 326
Figure 7-21 Unit weights of the immediate and upper coal layers 326
Figure 7-22 Distribution of coefficient of friction between the layers 327
Figure 7-23 Distribution of safety factors of upper coal layer in suspension mechanism... 329
Figure 7-24 Distribution of safety factors in suspension mechanism using 1.2 m long roof bolts ... 329
Figure 7-25 PoS and Reliability Index for suspension mechanisms for different roof bolt lengths ... 330
Figure 7-26 Probability of stability and reliability index of different length roof bolts, 3 roof bolts in a row ... 331
List of Tables

Table 2-1 Support system characteristics summary (after van der Merwe and Madden, 2002) ... 21
Table 2-2 Support system suitability (after van der Merwe and Madden, 2002) 22
Table 2-3 Bolt types commonly used in the U.S.A mines (after Peng, 1984) 24
Table 3-1 Sonic probe, levelling and stable roof elevation results 58
Table 3-2 Total relaxation and stable roof elevation averages................................. 113
Table 4-1 Distribution of test sites .. 137
Table 4-2 Site performance Colliery ‘A’ Site 1, Test 1.. 144
Table 4-3 Site performance Colliery ‘A’ Site 1, Test 2.. 145
Table 4-4 Site performance Colliery ‘A’ Site 2.. 146
Table 4-5 Site performance Colliery ‘A’ Site 3.. 148
Table 4-6 Site performance Colliery ‘B’ Site 1.. 153
Table 4-7 Site performance Colliery ‘B’ Site 2.. 155
Table 4-8 Site performance Colliery ‘B’ Site 3.. 156
Table 4-9 Site performance Colliery ‘C’ Site 1.. 160
Table 4-10 Site performance Colliery ‘C’ Site 2.. 162
Table 4-11 Site performance Colliery ‘C’ Site 3.. 163
Table 4-12 Site performance Colliery ‘D’ Site 1.. 168
Table 4-13 Site performance Colliery ‘E’ Site 1.. 170
Table 4-14 Site performance Colliery ‘F’ Site 1 .. 173
Table 4-15 Summary results obtained from No 1 sonic probe monitoring holes......... 182
Table 4-16 Summary results obtained from No 2 sonic probe monitoring holes......... 183
Table 4-17 Input parameters used in numerical modelling .. 184
Table 5-1 CMRR classes in the U.S. (after Mark and Molinda, 1994) 197
Table 5-2 A summary of some classification systems used in South African coal mining and their main applications ... 202
Table 5-3 Description of sedimentary facies and summary of their underground properties ... 203
Table 5-4 Unit and coal roof classification system (after Latilla et al, 2002) 206
Table 5-5 Estimated support requirements for different roof classifications (after van Wijk, 2004) .. 207
Table 5-6 Roof grit hazard classification used at Colliery ‘A’ .. 211
Table 5-7 Impact splitting results at Colliery ‘A’, No 2 Seam, borehole ARN 4968 213
Table 5-8 Impact splitting results at Colliery ‘A’, No 2 Seam, borehole ARN 4974 213
Table 5-9 Impact splitting results at Colliery ‘A’, No 2 Seam, borehole ARN 4975 214
Table 5-10 Roof hazard classification at Colliery ‘B’ .. 215
Table 5-11 Impact splitting results at Colliery ‘B’, No 5 Seam, borehole H45S5.............. 216
Table 5-12 Impact splitting results at Colliery ‘B’, No 5 Seam, borehole H49S5.............. 217
Table 5-13 Impact splitting results at Colliery ‘B’, No 5 Seam, borehole H50S5.............. 218
Table 5-14 Impact splitting results at Colliery ‘B’, No 2 Seam, borehole P4S2............... 218
Table 5-15 Impact splitting results at Colliery ‘B’, No 2 Seam, borehole P3S2............... 219
Table 5-16 Guidelines used in hazard plan at Colliery ‘T’... 219
Table 5-17 Impact splitting results at Colliery ‘T’, No 4 Seam, borehole G293584 220
Table 5-18 Impact splitting results at Colliery ‘T’, No 4 Seam, borehole G293585 220
Table 5-19 Impact splitting results at Colliery ‘T’, No 4 Seam, borehole G293587 221
Table 5-20 Impact splitting results at Colliery ‘T’, No 4 Seam, borehole G293588 221
Table 5-21 Composite roof hazard plan classification at Colliery ‘K’............................. 222
Table 5-22 Impact splitting results at Colliery ‘K’, No 4 Seam, borehole KRL3811.......... 223
Table 5-23 Impact splitting results at Colliery ‘K’, No 4 Seam, borehole 321 224
Table 5-24 Impact splitting results at Colliery ‘S’, No 4 Seam, Borehole V118043 224
Table 5-25 Impact splitting results, borehole V118043 after coal adjustment factor 225
Table 6-1 Effect of wet and dry drilling (averages)... 252
Table 6-2 Performance of roof bolts determined from underground SEPTs (averages). 253
Table 6-3 Effect of tensioning on support performance (averages)............................... 255
Table 6-4 Rib thickness, spacing and angle measured on South African roof bolts 259
Table 6-5 Overall stiffnesses of resin determined from underground SEPTs (averages)264
Table 6-6 Performance of bit using SEPT (averages).. 271
Table 6-7 A list of direct controllables ... 274
Table 7-1 Acceptance probability of failures for different safety class (after Vrijling and van Gelder, 1998) ... 296
Table 7-2 Acceptance criteria for rock slopes (after Priest and Brown, 1983; Pine, 1992)296
Table 7-3 Examples of design criteria for open pit walls (after DME, 1999) 297
Table 7-4 Suggested design criteria for the roof bolting systems 297
Table 7-5 Results of shear box tests on various contacts typically found in coal mines . 308
Table 7-6 Summary of probability distributions (after EasyFit user manual, 2006)....... 313
Table 7-7 Summary results of Anderson-Darling goodness of fit tests 317
Table 7-8 Summary of information used in the analysis ... 327
Table 7-9 Stability analyses of different support patterns ... 332
Glossary

Abbreviations

2D two dimensional
3D three dimensional
BTS Brazilian Tensile Strength
CM continuous miner
CMRR coal mine roof rating
D&B drill and blast
DME Department of Minerals and Energy
FOG fall of ground
GP grip factor
IST impact split test
ISR impact splitting unit rating
PoF probability of failure
PoF probability of stability
RMR rock mass rating
RQD rock quality designation, usually determined by accumulating all pieces of core greater than 100 mm in a borehole and expressing the value as a percentage of the length of hole or portion of the hole
SM safety margin
UCS uniaxial compressive strength
UTS ultimate tensile strength

Symbols and technical terms

\(\rho \) the density of rock
\(\mu \) coefficient of friction between the layers
\(\tau_{\text{max}} \) maximum shear stress
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_1</td>
<td>in rock testing, commonly the axial stress</td>
</tr>
<tr>
<td>σ_1, σ_2 and σ_3</td>
<td>major, intermediate and minor principal stress</td>
</tr>
<tr>
<td>σ_{xx}</td>
<td>maximum tensile stress</td>
</tr>
<tr>
<td>σ_3</td>
<td>in rock testing, commonly the confining stress</td>
</tr>
<tr>
<td>β</td>
<td>reliability index</td>
</tr>
<tr>
<td>η_{max}</td>
<td>maximum deflection</td>
</tr>
<tr>
<td>τ</td>
<td>contact shear strength</td>
</tr>
<tr>
<td>abutment</td>
<td>the solid area at the edge of a mined out area</td>
</tr>
<tr>
<td>bord</td>
<td>roadway driven in orebody or seam and specially defined as that area between two pillars, which is not included in the definition of an intersection</td>
</tr>
<tr>
<td>B</td>
<td>bord width</td>
</tr>
<tr>
<td>B_s</td>
<td>bond strength</td>
</tr>
<tr>
<td>core</td>
<td>cylindrical shaped rock retrieved from a borehole</td>
</tr>
<tr>
<td>D</td>
<td>nominal diameter of the anchor or borehole</td>
</tr>
<tr>
<td>d</td>
<td>distance between the rows of roof bolts</td>
</tr>
<tr>
<td>density</td>
<td>mass per unit volume</td>
</tr>
<tr>
<td>discontinuity</td>
<td>geological or mining induced breaks in the rock mass</td>
</tr>
<tr>
<td>E</td>
<td>elastic modulus</td>
</tr>
<tr>
<td>extensometer</td>
<td>measures deformation within the rock mass by means of anchors placed within a borehole</td>
</tr>
<tr>
<td>extraction ratio</td>
<td>the ratio of mined to unmined ground</td>
</tr>
<tr>
<td>face</td>
<td>the end of a panel which is advanced during mining</td>
</tr>
<tr>
<td>floor</td>
<td>the rock mass below the excavation</td>
</tr>
<tr>
<td>fracturing</td>
<td>discontinuities forming as a result of mining</td>
</tr>
<tr>
<td>g</td>
<td>gravitational acceleration (9.81 m/s^2)</td>
</tr>
<tr>
<td>geomechanical testing</td>
<td>test to determine the physical properties of a geological material</td>
</tr>
<tr>
<td>geotechnical condition</td>
<td>an evaluation of the nature and condition of the geological discontinuities and rock material contained in a rock mass</td>
</tr>
<tr>
<td>$G(X)$</td>
<td>performance function</td>
</tr>
</tbody>
</table>
h
mining height

h_1
height of roof softening

intersection
The area where two roadways meet or cross one another

ISRM standards
international standards for rock mechanics tests set by the International Society of Rock Mechanics

joint
geological discontinuity

k-ratio
the ratio between the horizontal and vertical stress

L
span

L_b
distance between the bolts

l_b
bond length

n
number of bolts per square meter

N_{mc}
number of Monte Carlo trials

panel
span between the barrier pillars

panel span
the mined out span between two adjacent lines of barrier pillars or abutments

phi (ϕ)
friction angle

point anchor
a roof bolt anchoring system where the anchor is in contact with the strata for a relatively short distance.

Poisson’s ratio
lateral strain divided by axial strain, lateral strain being the result of an axial stress

roadway
an excavation developed in a coal seam, which encompasses both a bord and an intersection

roof
the rock mass above the excavation

roof bolt
a steel tendon anchored chemically (resin) or mechanically complete with a nut washer and meeting performance specifications

SF_{sus}
safety factor in suspension mechanism

SF_{beam}
safety factor in beam building mechanism

SF_{slide}
roof bolt sliding safety factor

S_B
ultimate tensile strength of a bolt
spalling slabs that develop as a result of stress or time

span the shortest distance between in-panel pillars or faces

tensile stress normal stress tending to lengthen a body along the direction in which it acts

\(t_{com} \) competent layer thickness

\(t_{lam} \) laminated lower strata thickness

\(T_R \) frictional shear resistance of tensioned roof bolts

\(T_B \) shear resistance generated by the bolts

tensile zone a tensile stress field that develops above a panel as a result of mining

unit weight the weight per unit volume.

\(V \) shear force

\(V_{\text{max}} \) maximum shear force

Young’s modulus (E) stress divided by the strain resulting from the stress