A learning facilitation strategy for mathematics in a support course for first year engineering students at the University of Pretoria

by

Tobias M Steyn

Submitted in partial fulfillment of the requirements for the degree of

Philosophiae Doctor

in the

Faculty of Education

at the

University of Pretoria

Supervisor: Professor JG Maree

January 2003
Acknowledgements

The author wishes to acknowledge the following people for their contributions, directly or indirectly, to this dissertation.

Professor Kobus Maree for encouragement, unstinting support and help, constructive recommendations as to the improvement of my ideas and for always being an approachable and most dedicated supervisor.

The **first year engineering students** enrolled for the Professional Orientation Support Course during 2000, 2001 and 2002 who were key figures in the action research activities reported in this thesis.

The **students** enrolled for the Science Orientation course during 1999, and the **first year civil engineering students** of 1999 and 2000 who contributed to insights regarding the thinking style preferences of first year science and engineering students at the University of Pretoria.

Dr Ina du Plessis for encouragement, support and informative sessions during 2000-2002.

My former colleagues in the Faculty of Natural Sciences, **Mr Alan Carr, Dr Willem Greybe, Ms Deidre Breytenbach** and **Professor Johan van Staden** and the more than 1200 **mathematics students** whose contributions during 1993-1999 in the Gold Fields Computer Centre for Education led to the development of the software **Master Grapher for Windows** and the instructional model for mathematics practicals. These paved the way for the present study.

Ms Elana Mauer of the Department of Statistics, University of Pretoria, for processing of the data.

Ms Rina Owen and **Mr Jackie Grimbeeck** of the Department of Statistics, University of Pretoria, for help with the statistical analysis and interpretation of the data.

Ms Marie Swanepoel of the Academic Information Services, University of Pretoria, and **Mr James Kitching** of the UNISA library, for help on literature surveys and their prompt and expert service.

Ms Kim Zimmerman of Telematic Education, University of Pretoria for help with converting my designs and requests into graphics.

Ms Sharon Manley and **Ms Lee Johnson** for proofreading and final editing of this manuscript.

Friends and family for supportive enquiries as to the progress of the study, in particular a sincere thank you to:

Drs Mechiel and Leona Venter for spiritual support and prayers when I needed them most.

Ms Stefnie Scott, Dr Elna Minnaar and **Dr Annamari Grudlingh** for substantial and continuing support throughout the study.

Lodewyk for encouragement out of Cambridge, Massachusetts, as to the completion of the thesis.

Frederik for tolerating an academically oriented household.

Elet for enchanting laughs and joy amidst serious writing; generous support concerning household matters and constant reminders to physically 'sit up straight' during sustained hours at the computer.

Jasper for understanding the scope and intensity of academic commitment.
Love the Lord your God with all your heart and with all your soul and with all your mind and with all your strength. ... Love your neighbour as yourself. There is no commandment greater than these.

Mark 12:30-31
Table of Contents

List of Figures.. xi
List of Tables ... xiv
List of Abbreviations .. xviii
Glossary of Terms ... xix
Key terms/Sleuteltermen .. xx
Summary ... xxii
Opsomming ... xxiv

Chapter 1 ... 1
Orientation

1. Introduction .. 1

1.1 Motivation for the study ... 3

1.2 Explanation of the title and definition of the terminology 4
 1.2.1 Learning .. 4
 1.2.2 Facilitation ... 5
 1.2.3 Learning facilitation ... 6
 1.2.4 Strategy ... 6
 1.2.5 Mathematics .. 6
 1.2.6 Support course ... 8
 1.2.7 First year engineering students ... 8
 1.2.8 Additional terminology .. 8

1.3 The main research problem .. 8

1.4 The main research questions .. 8

1.5 Research hypotheses ... 9

1.6 Research design overview ... 12
 1.6.1 Aim of the research .. 12
 1.6.2 Research approach ... 12
 1.6.3 Participants in the study ... 14
 1.6.4 Data collection and analysis .. 15
 1.6.5 Validity of action research ... 15

1.7 Research ethics ... 17

1.8 Overview and structure of the thesis ... 18
Chapter 2 ... 21
Perspectives on learning and learners: an epistemological overview

2. Introduction .. 21

2.1 Overview of traditional views on learning and learners relevant to tertiary mathematics education ... 22

2.1.1 Behaviourism: The stimulus response (S-R) formula 23
2.1.2 The neobehaviourist learning theory of Gagné 23
2.1.3 The gestalt learning theory ... 24
2.1.4 Cognitive learning theories: the learner as a constructor of knowledge 25

2.1.4.1 Constructivism and Piaget's model of learning (1970) 25
2.1.4.2 Kelly's personal construct theory (1955) ... 27
2.1.4.3 Leontiev's cognitive theory of action (1977) 27
2.1.4.4 Information processing and knowledge construction 31

2.1.5 Kolb's experiential learning theory (1984) .. 33
2.1.6 Adult learning ... 34

2.2 Further aspects of learning .. 38

2.2.1 Learning strategies .. 38
2.2.2 Metacognition ... 40
2.2.3 Cooperative learning ... 41
2.2.4 Aspects of constructivism — a summary .. 43
2.2.5 Study orientation in mathematics ... 44
2.2.6 Learning styles ... 45
2.2.7 Learning and intelligence ... 45

2.3 Brain-based learning .. 47

2.3.1 Brain basics for education .. 48
2.3.2 The divided brain .. 53
2.3.3 The integrated brain ... 60
2.3.4 The Herrmann four quadrant whole brain model 61

2.4 Recent views on learning and learners ... 64

2.5 Learning styles ... 66

2.5.1 The Herrmann model .. 67
2.5.2 The Lumsdaine and Lumsdaine model ... 68
2.5.3 The Felder Silverman model ... 70
2.5.4 Dominance Profiles ... 71

2.6 Profile of a learner ... 72

2.7 Summary .. 76
A learning facilitation strategy for mathematics

3. Introduction ... 77
3.1 A theoretical basis for instructional design ... 77
3.2 Instructional design principles .. 81
 3.2.1 Instructional analysis ... 83
 3.2.1.1 Analysis of instructional context ... 83
 3.2.1.2 Analysis of learners .. 83
 3.2.1.3 Analysis of learning tasks .. 85
 3.2.2 Instructional strategy .. 85
 3.2.3 Instructional evaluation .. 86
 3.2.4 Instructional design principles in the present study 87
3.3 Concepts of teaching derived from learning theories ... 89
 3.3.1 Concepts of teaching resulting from cognitive learning theories 90
 3.3.2 Concepts of teaching resulting from constructivism 92
 3.3.3 Concepts of teaching derived from learning theories about adults 95
3.4 Aspects of teaching resulting from experiences in higher education 97
 3.4.1 Views of learning that reflect on teaching .. 97
 3.4.2 Examples of principles relating to 'good practice' in higher education 98
 3.4.3 Contributive learning ... 99
3.5 A whole brain approach to facilitation: an instructional design perspective 100
3.6 The relevance of thinking styles, learning styles and teaching styles for a learning facilitation strategy in mathematics ... 105
3.7 The contribution of results from research during 1993-1999 to the learning facilitation of mathematics in a support course ... 109
 3.7.1 Results regarding a computer graphing tool .. 109
 3.7.2 Results regarding the enhancement of mathematical concepts 113
 3.7.3 Results regarding an instructional strategy incorporating computer graphing technology ... 116
 3.7.4 Results regarding mind mapping as a study strategy 117
 3.7.5 Results regarding students’ thinking style preferences 119
3.8 A strategy for learning mathematics in a support course 120
 3.8.1 Components of the strategy ... 120
 3.8.1.1 The learner ... 120
 3.8.1.2 The sense modes for learning mathematics 120
 3.8.1.3 The information environment .. 121
 3.8.1.4 The structure for processing mathematics information 121
 3.8.2 Functional aspects of the strategy ... 124
 3.8.2.1 Information input ... 125
 3.8.2.2 Information processing ... 126
 3.8.2.3 Information output ... 128
Chapter 4 ..134

Research design

4. Introduction .. 134
4.1 Aims of the research .. 134
4.2 Research approach: Action research ... 135
 4.2.1 Origins of action research and teacher involvement in research 135
 4.2.2 Action research: definition .. 136
 4.2.3 Classroom research: definition .. 138
 4.2.4 Characteristics of action research .. 138
 4.2.5 Characteristics of classroom research .. 140
 4.2.6 Models of action research relevant for this study 141
 4.2.7 Research approach in the present study ... 142
 4.2.8 Particulars of the action research approach in the present study 144
 4.2.9 Steps and activities in the action research process 145
 4.2.10 Methodologies used in the present study ... 146
 4.2.11 Quality criteria for action research .. 148
4.3 Research design: ethical considerations .. 149
4.4 Research design: validity .. 151
4.5 Research design: subjects in the study .. 154
4.6 Research design: data collection ... 155
 4.6.1 Procedures ... 155
 4.6.2 Methods and instruments .. 156
 4.6.3 Validity and reliability of the instruments .. 158
 4.6.4 The Study Orientation Questionnaire in Mathematics (SOM) 159
 4.6.5 The Study Orientation Questionnaire in Mathematics Tertiary (SOMT) .. 163
 4.6.5.1 Adaptation of the Study Orientation Questionnaire in Mathematics for tertiary mathematics ... 163
 4.6.5.2 Format of the Study Orientation Questionnaire in Mathematics Tertiary ... 168
 4.6.6 The Herrmann Brain Dominance Instrument (HBDI) 169
 4.6.7 The Lumsdaine and Lumsdaine learning activity survey (LAS) 173
Chapter 5

Research studies 2000 – 2002

5. Introduction .. 186

5.1 The Five Year Study Programme .. 186

5.2 Admission requirements for engineering study at UP.................................. 188

5.3 The Professional Orientation Support Course (POSC) 189

5.4 Overview of the 2000 and 2001 research ... 195

5.5 Planning the 2000 and 2001 research .. 199

5.5.1 Participation .. 202

5.5.1.1 Participants of 2000 .. 202

5.5.1.2 Participants of 2001 .. 203

5.5.2 Planning the research activities .. 205

5.5.3 Schedule of course activities ... 205

5.5.4 Planning the learning facilitation of mathematics in the POSC 208

5.6 Implementing the learning facilitation strategy for mathematics 211

5.6.1 Tasks of the facilitator .. 211

5.6.2 Instructional media .. 213

5.6.3 Learning facilitation of mathematics ... 219

5.7 Implementing and monitoring the research instruments 220

5.7.1 The Study Orientation Questionnaire in Mathematics (SOM) 220

5.7.1.1 Implementation of the SOM .. 220

5.7.1.2 Monitoring the implementation of the SOM 222

5.7.2 The Study Orientation Questionnaire in Mathematics Tertiary (SOMT) 223

5.7.2.1 Implementing the SOMT in 2001 .. 224

5.7.2.2 Monitoring the implementation of the SOMT 224

5.7.3 The Herrmann Brain Dominance Instrument (HBDI) 225
5.7.3.1 Implementing the HBDI in 2000 .. 225
5.7.3.2 Monitoring the implementation of the HBDI in 2000 226
5.7.4 The Lumsdaine and Lumsdaine learning activity survey (LAS) 226
5.7.4.1 Implementing the LAS ... 226
5.7.4.2 Monitoring the implementation of the LAS in 2000 and 2001 228
5.7.5 The Felder Solomon Index of Learning Styles (ILS) 229
5.7.5.1 Implementing the ILS in 2001 ... 229
5.7.5.2 Monitoring the implementation of the ILS in 2001 229

5.8 Assessing the 2000 and 2001 research ... 229
5.9 The 2002 research ... 230
5.9.1 Participants of 2002 .. 231
5.9.2 The research activities of 2002 .. 232
5.9.2.1 Planning the research activities of 2002 233
5.9.2.2 Implementing and monitoring the research activities of 2002 .. 233
5.9.2.3 Assessing the research activities of 2002 234

5.10 Summary ... 234

Chapter 6 ... 236
Results and analysis

6. Introduction .. 236
6.1 Validity and reliability of the Study Orientation Questionnaire in Mathematics Tertiary (SOMT) ... 238
6.1.1 Validity of the SOMT: Item analysis .. 238
6.1.2 Reliability of the SOMT ... 248
6.2 Results: SOM and SOMT ... 254
6.2.1 Descriptive statistics: Mean and standard deviation 254
6.2.1.1 Predictive validity: Regression analysis 257
6.2.1.2 Simultaneous validity: Pearson correlation 260
6.3 Academic performance in mathematics 264
6.4 Comparing means (post minus pre) of pre- and post-intervention scores on the SOM/SOMT ... 265
6.5 Comparing groups regarding differences in means of pre- and post-intervention scores on the SOM/SOMT ... 268
6.6 Results: Herrmann Brain Dominance Instrument (HBDI) 270
6.6.1 Distribution of thinking style preferences 270
6.6.1.1 Average profiles ... 270
6.6.1.2 Dominance in the distribution of profiles 271
6.6.2 Comparing groups within quadrants of the HBDI 273
6.7 Results: Lumsdaine and Lumsdaine Learning Activity Survey (LAS) 275
Chapter 7 ...282
Discussion, conclusions and recommendations

7. Introduction .. 282

7.1 Discussion ..282
 7.1.1 Study orientation in mathematics ...284
 7.1.2 Performance in mathematics ...287
 7.1.3 Thinking style preferences of the POSC group 289
 7.1.4 A strategy for learning facilitation of mathematics in a support course 291

7.2 Limitations of the study .. 293

7.3 Conclusions ... 293

7.4 Recommendations ... 294

References .. 296

Appendix A .. 307
Letters of consent for the research

Appendix B .. 308
Examples of worksheets

Appendix C .. 309
Study Orientation Questionnaire in Mathematics Tertiary (SOMT)

Appendix D .. 310
Herrmann Brain Dominance Instrument (HBDI)

Appendix E .. 311
Lumsdaine and Lumsdaine Learning Activity Survey (LAS)

Appendix F .. 312
Felder Soloman Index of Learning Styles (ILS)

Appendix G .. 313
Feedback

Appendix H .. 314
Colour code of the whole brain model
List of Figures

Figure 1-1	Hypothesis-generating and hypothesis-testing frameworks 10
Figure 1-2	Hypothesis-generating and hypothesis-testing frameworks in the present study ... 11
Figure 1-3	Action research activities 1993-2001 ... 13
Figure 1-4	Overview and structure of the thesis .. 20
Figure 2-1	A model of student learning after Leontiev 28
Figure 2-2	Information processing and structuring according to Gagné 32
Figure 2-3	Examples of variations in neurons of the brain 49
Figure 2-4	Functional model of a multi-polar neuron .. 49
Figure 2-5	Properties of neuron functioning .. 50
Figure 2-6	The four brain lobes and schematic top view of the cortex 55
Figure 2-7	Schematic model of the brain ... 57
Figure 2-8	The limbic system and brain structures involved in attention, emotion and motivation .. 59
Figure 2-9	PET scans of different language based activities 60
Figure 2-10	The whole brain model of Herrmann and its physiological roots 62
Figure 2-11	The Herrmann whole brain model .. 62
Figure 2-12	The Herrmann model for learning styles ... 68
Figure 2-13	Lumsdaine and Lumsdaine’s four modes of student learning 69
Figure 2-14	Facets describing learners of mathematics in a support course 74
Figure 2-15	Profile of learners of mathematics in a support course 75
Figure 3-1	Theoretical bases for instructional design ... 78
Figure 3-2	Examples of perspectives on instruction that contribute to a narrative for learning facilitation of mathematics in a support course 80
Figure 3-3	Instructional events at lesson-level ... 86
Figure 3-4	Conceptual knowledge in a whole brain problem-based approach 95
Figure 3-5	Promoting and utilising the whole brain in learning facilitation 102
Figure 3-6	Matching learning and facilitation – a matter of styles 108
Figure 3-7	The left and right visual fields ... 110
Figure 3-8	The function $f(x) = \frac{51x^2 + 7.79x}{4.2x^2 - 17.64}$ displayed by two graphing utilities 111
Figure 3-9 Manifestation of mathematical concepts through graphical analysis and
equation: a whole brain perspective .. 114
Figure 3-10 An instructional model for graphing technology aided mathematics
facilitation ... 117
Figure 3-11 Example of mind map on limits .. 118
Figure 3-12 A strategy for learning mathematics in a support course 123
Figure 3-13 Functioning of the strategy for learning mathematics 124
Figure 3-14 A whole brain perspective on information processing regarding
mathematics ... 127
Figure 3-15 A learning facilitation strategy for mathematics in a support course for
first year engineering students .. 132

Figure 4-1 The action research spiral of Kemmis and McTaggart (1981, 1990) 141
Figure 4-2 Action research cycles by Zuber-Skerritt (1992, 1997) 142
Figure 4-3 Research approach used in this study 143
Figure 4-4 Theoretical framework underpinning the research in the present study.
.. 147
Figure 4-5 Examples of a student's study orientation profiles 162
Figure 4-6 Origin of the HBDI .. 170
Figure 4-7 Example of a thinking preference profile according to the HBDI ... 171
Figure 4-8 Examples of individual profiles showing thinking preferences
according to the HBDI .. 172

Figure 5-1 Overview of the Professional Orientation Support Course (POSC) ... 190
Figure 5-2 Action research cycles 2000 and 2001 196
Figure 5-3 Action research activities 2000 and 2001 197
Figure 5-4 Structure of the discussion of action research activities in 2000-2001
.. 199
Figure 5-5 Mathematics activities in the POSC 209
Figure 5-6 Learning facilitation activities in the POSC 210
Figure 5-7 The main window of the software *Master Graphe for Windows* 215
Figure 5-8 The function editor of the software *Master Graphe for Windows* ... 216
Figure 5-9 Implementation of the proposed learning facilitation strategy 218
Figure 5-10 Learners' expectations according to the Herrmann model 228
Figure 5-11 Action research cycle 2002 ... 230
Figure 6-1 Average profiles for the 2000 POSC, civil engineering and science students according to the HBDI .. 271
Figure 6-2 Distribution of HBD profiles for the 2000 POSC, civil engineering and science students ... 272

Figure 7-1 Group profiles representing the study orientation in mathematics of the 2000 POSC students .. 285
Figure 7-2 Group profiles representing the study orientation in mathematics of the 2001 POSC students ... 286
Figure 7-3 Group profiles representing the study orientation in mathematics of the 2002 POSC students ... 286
Figure 7-4 Performance of first year engineering students in the standard first semester calculus course during 2000-2002 ... 288
Figure 7-5 Average M-scores of first year engineering students during 2000-2001 ... 288
Figure 7-6 Performance of first year engineering students in the standard first year mathematics courses during 2000-2001 ... 288
Figure 7-7 A multifaceted and composite approach to the learning facilitation of mathematics in a support course .. 292
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1-1</td>
<td>Data categories and participants in the study</td>
<td>14</td>
</tr>
<tr>
<td>Table 2-1</td>
<td>A comparison between child learning and adult learning according to Knowles' assumptions</td>
<td>36</td>
</tr>
<tr>
<td>Table 2-2</td>
<td>Approaches to learning according to Marton and Säljö</td>
<td>39</td>
</tr>
<tr>
<td>Table 2-3</td>
<td>Course characteristics that encourage a deep or surface approach to learning</td>
<td>40</td>
</tr>
<tr>
<td>Table 2-4</td>
<td>Gardner’s multiple intelligences</td>
<td>46</td>
</tr>
<tr>
<td>Table 2-5</td>
<td>Specialised functions associated with each brain hemisphere</td>
<td>56</td>
</tr>
<tr>
<td>Table 2-6</td>
<td>Functions of the brainstem, middle brain area and cerebrum</td>
<td>58</td>
</tr>
<tr>
<td>Table 2-7</td>
<td>Key brain characteristics according to Herrmann</td>
<td>63</td>
</tr>
<tr>
<td>Table 2-8</td>
<td>Categories of the Felder Silverman model</td>
<td>70</td>
</tr>
<tr>
<td>Table 3-1</td>
<td>A summary of instructional design principles</td>
<td>81</td>
</tr>
<tr>
<td>Table 3-2</td>
<td>Instructional design considerations regarding the present study</td>
<td>87</td>
</tr>
<tr>
<td>Table 3-3</td>
<td>Learning and learning facilitation considerations in the present study</td>
<td>104</td>
</tr>
<tr>
<td>Table 3-4</td>
<td>Responses of students to end of course questionnaire 1996-1998</td>
<td>116</td>
</tr>
<tr>
<td>Table 3-5</td>
<td>Attributes of the information environment for mathematics learning</td>
<td>121</td>
</tr>
<tr>
<td>Table 4-1</td>
<td>Characteristics of action research</td>
<td>138</td>
</tr>
<tr>
<td>Table 4-2</td>
<td>Characteristics of classroom research</td>
<td>140</td>
</tr>
<tr>
<td>Table 4-3</td>
<td>Steps and activities of Zuber-Skerritt’s action research model</td>
<td>145</td>
</tr>
<tr>
<td>Table 4-4</td>
<td>Steps and activities of action research in the present study</td>
<td>146</td>
</tr>
<tr>
<td>Table 4-5</td>
<td>Principles of ethics in educational research</td>
<td>150</td>
</tr>
<tr>
<td>Table 4-6</td>
<td>Strategies to enhance design validity</td>
<td>152</td>
</tr>
<tr>
<td>Table 4-7</td>
<td>Strategies to enhance design validity in the present study</td>
<td>153</td>
</tr>
<tr>
<td>Table 4-8</td>
<td>Summary of the population sample</td>
<td>154</td>
</tr>
<tr>
<td>Table 4-9</td>
<td>Data collection methods and instruments in the present study</td>
<td>157</td>
</tr>
<tr>
<td>Table 4-10</td>
<td>Edits in the original SOM for use with tertiary students</td>
<td>161</td>
</tr>
<tr>
<td>Table 4-11</td>
<td>Changes of terms to reflect a tertiary environment</td>
<td>164</td>
</tr>
<tr>
<td>Table 4-12</td>
<td>Rewording of questions in the original SOM for the SOMT</td>
<td>165</td>
</tr>
</tbody>
</table>
Table 4-13 Changed questions of the original SOM for the SOMT-1.................. 166
Table 4-14 Rewording of questions in the SOMT-1 for the SOMT-2............... 167
Table 4-15 Rewording of questions in the SOMT-2 for the SOMT-3........... 167
Table 4-16 Implementations of the adapted SOM and SOMT during 2000-2002 .. 169
Table 4-17 Hypotheses for the empirical part of the study 178

Table 5-1 Retention of black students on the 5YSP during 1994-2001.......... 187
Table 5-2 Calculation of M-score at the University of Pretoria 188
Table 5-3 Alternative combinations of scores for admission to the Five Year Programme .. 189
Table 5-4 Engineering degree outcomes required by ECSA 194
Table 5-5 Common characteristics of action research in the current study..... 197
Table 5-6 Action plan 2000 .. 200
Table 5-7 Action plan 2001 .. 201
Table 5-8 Attributes of the POSC participants of 2000 and 2001 204
Table 5-9 Allocation of periods to the activities of the POSC during 2000 and 2001 ... 207
Table 5-10 A summary of the instructional media .. 217
Table 5-11 Attributes of the POSC participants of 2002 232
Table 5-12 Research interventions, research instruments and statistical procedures ... 235

Table 6-1 Final item analysis of the SOMT for the POSC 2000 and 2001 groups combined (N=61) ... 239
Table 6-2 Item analysis of the SOMT-2 for the 2002 POSC group (N=50) 242
Table 6-3 Item analysis of the SOMT-3 for the 2002 POSC group (N=48) 245
Table 6-4 Cronbach alpha coefficients for the fields of the SOMT............ 248
Table 6-5 Section references where the main research hypotheses are treated 249
Table 6-6 Research questions and relevant research hypotheses 250
Table 6-7 The arithmetic mean, standard deviation and coefficient of variation regarding the SOM/SOMT for the 2000 POSC group 255
Table 6-8 The arithmetic mean, standard deviation and coefficient of variation regarding the SOM/SOMT for the 2001 POSC group 255
Table 6-9 The arithmetic mean, standard deviation and coefficient of variation regarding the SOMT for the 2002 POSC group 256
Table 6-10 Step-wise regression model of the SOM and mathematics performance for the POSC 2000 and POSC 2001 groups 258
Table 6-11	Step-wise regression model of the SOMT-2 and mathematics performance for the 2002 POSC group (N=50)	259
Table 6-12	Regression equations regarding the SOM and SOMT	260
Table 6-13	Pearson correlations between the fields of the SOMT-1 (post-intervention) and mathematics performance for the 2000 POSC group (N=26)	262
Table 6-14	Pearson correlations between the fields of the SOMT-1 (post-intervention) and mathematics performance for the 2001 POSC group (N=35)	262
Table 6-15	Pearson correlations between the fields of the SOMT-3 (post-intervention) and mathematics performance for the 2002 POSC group (N=46)	262
Table 6-16	Arithmetic means and standard deviations for marks in the standard first semester course in calculus 2000 for the POSC, other 5YSP and 4YSP groups	263
Table 6-17	Arithmetic means and standard deviations for marks in the standard first semester course in calculus 2001 for the POSC, other 5YSP and 4YSP groups	263
Table 6-18	Arithmetic means and standard deviations for marks in the standard first semester course in calculus 2002 for the POSC, other 5YSP and 4YSP groups	263
Table 6-19	Means, standard deviations, test statistics and p-values of the	267
Table 6-20	Results of ANOVA comparing the difference between the arithmetic means of the fields of the Study Orientation Questionnaire as pre- and post-intervention instruments for the 2000, 2001 and 2002 POSC groups	269
Table 6-21	Average scores per quadrant according to the HBDI for the POSC, civil engineering and science students	271
Table 6-22	Number of POSC, civil engineering and science students with highest score for thinking preferences per quadrant	272
Table 6-23	Means of the POSC, civil engineering and science groups for each of the quadrants of the HBDI	274
Table 6-24	Pearson correlations and P-values between the quadrants of the HBDI and corresponding sections of the LAS	275
Table 6-25	Number of choices per category of the ILS according to mild, moderate or strong preferences for the 2001 POSC group (N=35)	276
Table 6-26	Number of choices per category of the ILS according to mild, moderate or strong preferences for the 2002 POSC group (N=51)	277
Table 6-27	Distribution of choices for the categories of the ILS for the 2001 and 2002 POSC groups	278
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4YSP</td>
<td>Four Year Study Programme</td>
</tr>
<tr>
<td>5YSP</td>
<td>Five Year Study Programme</td>
</tr>
<tr>
<td>HBD</td>
<td>Herrmann Brain Dominance</td>
</tr>
<tr>
<td>HBDI</td>
<td>Herrmann Brain Dominance Instrument</td>
</tr>
<tr>
<td>ILS</td>
<td>Felder Solomon Index of Learning Styles</td>
</tr>
<tr>
<td>IP</td>
<td>Information processing</td>
</tr>
<tr>
<td>JPO110</td>
<td>First semester module code of the Professional Orientation Support Course</td>
</tr>
<tr>
<td>LAS</td>
<td>Lumsdaine and Lumsdaine Learning Activity Survey</td>
</tr>
<tr>
<td>MC</td>
<td>Mathematics confidence</td>
</tr>
<tr>
<td>POSC</td>
<td>Professional Orientation Support Course</td>
</tr>
<tr>
<td>PSB</td>
<td>Problem solving behaviour</td>
</tr>
<tr>
<td>SA</td>
<td>Study attitude</td>
</tr>
<tr>
<td>SE</td>
<td>Study environment</td>
</tr>
<tr>
<td>SH</td>
<td>Study habits</td>
</tr>
<tr>
<td>SOM</td>
<td>Study Orientation Questionnaire in Mathematics</td>
</tr>
<tr>
<td>SOMT</td>
<td>Study Orientation Questionnaire in Mathematics Tertiary</td>
</tr>
<tr>
<td>UP</td>
<td>University of Pretoria</td>
</tr>
<tr>
<td>WTW114</td>
<td>Module code of the standard first semester calculus module in 2000 and 2001</td>
</tr>
<tr>
<td>WTW158</td>
<td>Module code of the standard first semester calculus module in 2002</td>
</tr>
</tbody>
</table>
Glossary of Terms

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000 POSC group</td>
<td>Students enrolled for the Professional Orientation Support Course during 2000</td>
</tr>
<tr>
<td>2001 POSC group</td>
<td>Students enrolled for the Professional Orientation Support Course during 2001</td>
</tr>
<tr>
<td>2002 POSC group</td>
<td>Students enrolled for the Professional Orientation Support Course during 2002</td>
</tr>
<tr>
<td>Five Year Study Programme</td>
<td>Extended study programme in engineering at the University of Pretoria.</td>
</tr>
<tr>
<td>Four Year Study Programme</td>
<td>Regular study programme in engineering at the University of Pretoria.</td>
</tr>
<tr>
<td>learning style</td>
<td>Refers to an individual’s preferred way of learning that has developed from genetics (nature) and fostered through education (nurture). It is also closely related to an individual’s thinking style.</td>
</tr>
<tr>
<td>mainstream module/course</td>
<td>Refers to a module/course presented to all students enrolled for the specific module/course; is used alternately with the term standard module/course.</td>
</tr>
<tr>
<td>M-score</td>
<td>Used at the University to Pretoria for admission requirements and is based on performance in the final school examination.</td>
</tr>
<tr>
<td>potential</td>
<td>Potential regarding a specific aspect is genetically given; is dependant on biological development as well as education; development of potential leads to competency in the specific aspect.</td>
</tr>
<tr>
<td>Professional Orientation Support Course</td>
<td>Course presented as part of the curriculum in the Five Year Study Programme, School of Engineering, University of Pretoria.</td>
</tr>
<tr>
<td>SOM</td>
<td>Study Orientation Questionnaire in Mathematics developed by Maree (1996) and statistically processed by Maree, Claassen and Prinsloo (1997).</td>
</tr>
<tr>
<td></td>
<td>The SOM was used as a pre-intervention instrument during the 2000 and 2001 research.</td>
</tr>
<tr>
<td>Term</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>SOMT</td>
<td>Study Orientation Questionnaire in Mathematics Tertiary.</td>
</tr>
<tr>
<td></td>
<td>This term is used as a general term when referring to the study orientation questionnaire in a tertiary setting.</td>
</tr>
<tr>
<td></td>
<td>This term is also used for the final version of the questionnaire presented in this thesis.</td>
</tr>
<tr>
<td>SOMT-1</td>
<td>Study Orientation Questionnaire in Mathematics Tertiary Version 1 which is the first edited version of the original SOM to portray a tertiary focus.</td>
</tr>
<tr>
<td></td>
<td>Used in the 2001 research reported in this thesis.</td>
</tr>
<tr>
<td>SOMT-2</td>
<td>Study Orientation Questionnaire in Mathematics Tertiary Version 2 which is an edited version of the SOMT-1.</td>
</tr>
<tr>
<td></td>
<td>Used in the 2002 research reported in this thesis.</td>
</tr>
<tr>
<td>SOMT-3</td>
<td>Study Orientation Questionnaire in Mathematics Tertiary Version 3 which is an edited version of the SOMT-2 and represents the final edit as per this study.</td>
</tr>
<tr>
<td></td>
<td>Used in the 2002 research reported in this thesis.</td>
</tr>
<tr>
<td>standard module/course</td>
<td>Refers to a module/course presented to all students enrolled for the specific module/course; is used alternately with the term mainstream module/course.</td>
</tr>
<tr>
<td>study orientation</td>
<td>Includes approaches to learning, motives for learning, styles of learning, elements of study methods and attitudes.</td>
</tr>
<tr>
<td>thinking style</td>
<td>Refers to an individual’s preferred way of thinking that has developed from genetics (nature) and fostered through education (nurture). It is also closely related to an individual’s learning style.</td>
</tr>
<tr>
<td>whole brain learning</td>
<td>Refers to the inclusion of different modes of learning (implying different thinking and learning preferences). On a physiological level different modes of learning are associated with cognitive activities in different parts of the brain.</td>
</tr>
<tr>
<td>Key terms</td>
<td>Sleuteltermen</td>
</tr>
<tr>
<td>---</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Action research</td>
<td>Aksienavorsing</td>
</tr>
<tr>
<td>Composite approach</td>
<td>Saamgestelde benadering</td>
</tr>
<tr>
<td>Graphical exploration in mathematics</td>
<td>Grafiiese eksplorasie in wiskunde</td>
</tr>
<tr>
<td>Learning styles for mathematics</td>
<td>Leerstyle vir wiskunde</td>
</tr>
<tr>
<td>Learning facilitation strategy for mathematics</td>
<td>Leerfasiliteringstrategie vir wiskunde</td>
</tr>
<tr>
<td>Multifaceted approach</td>
<td>Veelfasettige benadering</td>
</tr>
<tr>
<td>Study orientation in mathematics</td>
<td>Studie-oriëntering in wiskunde</td>
</tr>
<tr>
<td>Tertiary mathematics education</td>
<td>Tersière wiskunde-onderrig</td>
</tr>
<tr>
<td>Thinking styles for mathematics</td>
<td>Denkstyle vir wiskunde</td>
</tr>
<tr>
<td>Whole brain learning</td>
<td>Heelbreinleer</td>
</tr>
</tbody>
</table>
Summary

A learning facilitation strategy for mathematics in a support course for first year engineering students at the University of Pretoria

by

Tobias M Steyn

Supervisor: Professor JG Maree
Department: Teaching and Training Studies
Degree: Philosophiae Doctor

This thesis presents a conceptual framework for a learning facilitation strategy which is aimed at developing the mathematics potential of learners on an academic support programme. The study involved first year engineering students on an extended Five Year Study Programme in the School of Engineering at the University of Pretoria who were enrolled for the Professional Orientation Support Course during 2000-2002.

The learning facilitation strategy proposed and defined in this thesis originated in research conducted from 1993 to 1999 in the Faculty of Natural Sciences at the University of Pretoria. Insights gained through this research indicated that a combination of graphical exploration and analysis of graphical images could enhance students' understanding of fundamental mathematical concepts encountered in a first course in calculus. In the current study factors that appeared to contribute to this enhanced understanding were researched.
The strategy for learning facilitation of mathematics encompasses a multifaceted and composite approach. This includes a whole brain approach towards structuring the learning facilitation activities to accommodate and develop different modes of thinking and learning; to create in learners an awareness of the existence of thinking style and learning style preferences as well as an awareness of study orientation in mathematics, and to give learners insight into their own thinking and learning preferences and study orientation. Development of mathematics potential of learners is an important focus of this approach. Therefore, in addition to the above mentioned activities the mathematics potential of learners is also developed by facilitating their acquisition of appropriate learning and thinking skills and by structuring the learning environment to promote effective learning.

The proposed learning facilitation strategy for mathematics was implemented, monitored and assessed by way of action research studies during 2000-2002.

Results of the study indicate that the learners' thinking style and learning style preferences are diverse and represent a range of different preferences. Results also indicate that learners have a latent favourable study orientation towards mathematics. The effects of the proposed strategy's implementation on the learners' study orientation towards mathematics and on their performance in mathematics were investigated. The results indicate a significant improvement in the learners' study orientation towards mathematics. Their performance in the mainstream first semester calculus course confirmed their enhanced ability in mathematics. These results point towards efficacy that can be attributed to the implementation of the proposed learning facilitation strategy.

Results of this study also indicate that active involvement by both learners and facilitator in a multifaceted and composite approach to learning facilitation provides a suitable principle basis for structuring an academic support course. It provides for the development of learners and for the refining of course content to address the needs of the learners. It is envisaged that freshman students, other than those on an academic support programme, may benefit from a learning facilitation strategy for mathematics structured according to this multifaceted and composite approach.
Opsomming

'n Fasiliteringstrategie vir die leer van wiskunde in 'n ondersteuningskursus vir eerstejaarstudente in ingenieurswese aan die Universiteit van Pretoria
deur

Tobias M Steyn

Promotor: Professor JG Maree
Departement: Onderwys- en Opleidingskunde
Graad: Philosophiae Doctor

In hierdie proefskrif word 'n konseptuele raamwerk vir 'n leerfasiliteringstrategie voorgestel wat gerig is daarop om die wiskundepotensiaal van leerders in 'n akademiese ondersteuningsprogram te ontwikkel. Eerstejaar ingenieurstudente op die Vyfjaar Studieprogram in die Skool vir Ingenieurswese aan die Universiteit van Pretoria wat gedurende 2000-2002 vir die Professionele Oriënteringkursus ingeskryf was, het deelgeneem aan die navorsingaktiwiteite wat gerapporteer word.

Die leerfasiliteringstrategie wat in hierdie proefskrif voorgestel en gedefinieer word, het sy oorsprong gehad in navorsing vanaf 1993 tot 1999 in die Fakulteit Natuurwetenskappe aan die Universiteit van Pretoria. Insigte verkry deur hierdie navorsing het daarop gedui dat 'n kombinasie van grafiese eksplorasie en die analisering van grafiese beeldse leerders se begrip bevorder van fundamentele wiskundebegrippe wat nodig is in 'n eerste kursus in calculus. In die studie van hierdie proefskrif word faktore ondersoek wat waarskynlik tot hierdie verbeterde begrip kan bydra.
Die strategie vir leerfasilitering van wiskunde behels 'n veelfasettige en saamgestelde benadering. Dit sluit in 'n heelbrein benadering tot die strukturering van leerfasiliteringakwiviteite om verskillende denk- en leerstyle te akkommodeer en te ontwikkkel; om leerders bewus te maak van hulle eie denk- en leerstylvoorkeure en om hulle bewus te maak van hulle studie-oriëntering in wiskunde, en ook om leerders insig te gee in hulle eie voorkeure en studie-oriëntering. Die ontwikkeling van die wiskundepotensiaal van leerders is 'n belangrike fokus in hierdie benadering. Bykomend tot die genoemde aktiwiteite, word die wiskundepotensiaal van leerders ook ontwikkeld deur fasilitering van hulle verwerwing van toepaslike leer- en denkvaardighede en deurdat die leeromgewing gestruktueer word om effektiewe leer te bevorder.

Die voorgestelde leerfasiliteringstrategie vir wiskunde is by wyse van aksienavorsing gedurende 2000-2002 geïmplementeer, gemonitor en geassesseer.

Resultate van die studie dui aan dat die leerders se denk- en leerstylvoorkeure uiteenlpend is en 'n verskeidenheid van verskillende voorkeure insluit. Resultate dui ook daarop dat leerders 'n latente gunstige studie-oriëntering teenoor wiskunde het. Die moontlike effek van die voorgestelde leerfasiliteringstrategie op leerders se studie-oriëntering in wiskunde en op hulle prestatie in wiskunde is ook bepaal. Die resultate dui op 'n betekenisvolle verbetering in die leerders se studieoriëntering in wiskunde. Hulle prestatie in die hoofstroom eerstesemester kursus in calculus het hulle verbeterde vermoe in wiskunde bevestig. Hierdie resultate dui op gunstige uitkomste wat toegeskryf kan word aan die implementering van die voorgestelde leerfasiliteringstrategie.

Resultate van die studie dui ook daarop dat die aktiewe betrokkenheid van beide leerders en fasiliteerder in 'n veelfasettige en saamgestelde benadering tot leerfasilitering, 'n sinvolle beginselbasis bied vir die strukturering van 'n akademiese ondersteuningskursus. Dit bevorder die ontwikkeling van leerders en rig verfyning van kursusinhoud om in die behoeftes van die leerders te voorsien. Dit word voorsien dat nuweling eerstejaarstudente, benewens dié in 'n akademiese ondersteuningsprogram, sal kan baat by 'n leerfasiliteringstrategie vir wiskunde volgens hierdie veelfasettige en saamgestelde benadering.