

Minimum cytocidal effect of different minocycline and doxycycline concentrations to human periodontal ligament fibroblasts in vitro

by

TANYA DE WET

Submitted in partial fulfilment for the degree

MChD (Periodontics and Oral Medicine)

School of Dentistry

Faculty of Health Sciences

University of Pretoria

South Africa

Leader

Prof Dr SJ Botha

Centre for Stomatological Research
School of Dentistry, University of Pretoria

March 2006

Contents

	Page
Declaration	iii
Acknowledgements	iv
Dedication	v
Index	vi
List of Tables	vii
List of Figures	ix
Summary	1

DECLARATION

I hereby declare that this dissertation, submitted by me in partial fulfilment of the requirements for the degree of MChD (Periodontics and Oral Medicine) at the University of Pretoria, is my own work and has not previously been submitted at any other university.

Tanya de Wet

29 Maar 2006

Date

ACKNOWLEDGEMENTS

Acting Head of the Centre for Stomatological Research

Prof SJ Botha Thank you for the hard work, long hours and patience with me.

Head of Department of Periodontics and Oral Medicine

Prof FD Verwayen

Prof PJ Germishuys

Dean/Director of the Oral and Dental Hospital

Prof AJ Ligthelm Thank you for providing funding to make the project possible

Mnr Johan Jooste Thank you for donating the minocycline and doxycycline

Lab Technician

Me P Maja Thank you for all the labwork

DEDICATION

To the Glory of God for giving me the ability to study.

To my darling Alfred for believing in me, your love and support helped me to continue till the very end.

To my parents, for your support, prayers and that you are always there for me.

INDEX:

	Page
SUMMARY	1
CHAPTER 1: INTRODUCTION	3
CHAPTER 2: LITERATURE REVIEW	5
2.1 The use of tetracyclines as locally applied antibiotics in periodontics	5
2.2 Cytocidal effect of locally applied antibiotics	7
CHAPTER 3: AIM:	9
CHAPTER 4: MATERIALS AND METHODS:	10
4.1 Tetracyclines tested	10
4.2 Cell cultures	11
4.3 Cytotoxicity screening	12
4.4 Statistical analysis	12
CHAPTER 5: RESULTS	13
5.1 Growth percentages of two different human periodontal ligament	
fibroblasts cell lines after exposure to test agents	13
CHAPTER 6: DISCUSSION	24
CHAPTER 7: CONCLUSION	28
CHAPTER 8: REFERENCES	29
ADDENDUM A	34

LIST OF TABLES

Table 4.1	Concentration of MC and DC in EMEMS for cultivation of	10
	HPLF with 1400 μg.ml⁻¹ taken as 100%	

- Table 4.2 Concentrations of MC and DC in EMEMS for cultivation of 11

 HPLF at 1% increments
- Table 5.1 Average growth percentages of HPLF after exposure to 13 10% incremental dilutions of Minocycline and Doxycycline starting at a concentration of 1400 µg.ml⁻¹ (100%) determined by standard MTT assay of each well after 1, 24 and 48 hours.
- Table 5.2 Results of statistical analysis of the average growth of 14

 PDL1 after exposure to 10% increments MC for 1h, 24h

 and 48h (P<0.05 statistical significant)
- Table 5.3 Results of statistical analysis of the average growth of 15 PDL2 after exposure to 10% increments MC for 1h, 24h and 48h (P<0.05 statistical significant)

Page

- Table 5.4 Results of statistical analysis of the average growth of 16 PDL1 after exposure to 10% increments of DC for 1h, 24h and 48h (P<0.05 statistical significant)
- Table 5.5 Results of statistical analysis of the average growth of 17

 PDL2 after exposure to 10% increments of DC concentrations for 1h, 24h and 48h (P<0.05 statistical significant)
- Tabel 5.6 Average growth percentages of HPLF after exposure to 18

 1% incremental dilutions of Minocycline and Doxycycline starting at different concentrations determined by standard MTT assay of each well after 1, 24 and 48 hours.
- Table 5.7 Summary of LD₅₀ values as read from growth- 23 concentration curves

LIST OF FIGURES

- Fig 5.1 The average growth percentage of PDL1 after exposure to 14 10% increments of MC concentrations. Standard MTT assays were done after incubation of the HPLF for t=1h, 24h and 48h in the different MC concentrations.
- Fig 5.2 The average growth percentage of PDL2 after exposure to 15 10% increments of minocycline. Standard MTT assays were done after incubation of the HPLF for 1h, 24h and 48h in the different MC concentrations.
- Fig 5.3 The average growth percentages of PDL1 after exposure to 16 10% increments of DC concentrations. Standard MTT assays were done after incubation of HPLF for t=1h, 24h and 48h in the different DC concentrations.
- Fig 5.4 The average growth percentages of PDL2 after exposure to 17 10% increments of DC concentrations. Standard MTT assays were done after incubation of HPLF for 1h, 24h and 48h in different DC concentrations.
- Fig 5.5 The MC concentration-growth curve of PDL1 after t=1h.
- Fig 5.6 The MC concentration-growth curve of PDL1 after 24h and 19 48h.

Fig 5.7	The MC concentration-growth curve of PDL2 after 1h.	20
Fig 5.8	The MC concentration-growth curve of PDL2 after 24h and 48h.	20
Fig 5.9	The DC concentration-growth curves PDL1 after 1h, 24h, 48h.	21
Fig 5.10	The DC concentration-growth curve of PDL2 1h.	21
Fig 5.11	The DC concentration-growth curve of PDL2 after 24h and 48h.	22

SUMMARY

Minimum cytocidal effect of different minocycline and doxycycline concentrations to human periodontal ligament fibroblasts in vitro

by

Tanya de Wet Department of Periodontics and Oral Medicine School of Dentistry Faculty Health Sciences University of Pretoria

Minocycline (MC) and Doxycycline (DC) are used worldwide as locally applied adjuncts in the treatment of periodontal diseases. As a group the tetracyclines are well known for their advantageous properties. There is however possible cytotoxicity towards cells in the area of application.

This study determined the minimum cytocidal concentration of MC and DC on the growth and proliferation of Human Periodontal Ligament Fibroblasts (HPLF) *in vitro*. This was facilitated by growing cells (PDL1 and PDL2) in the presence of MC and DC in media in 96 tissue wells starting at a concentration of 1400 µg.ml⁻¹ (100%). Serial dilutions of the MC and DC at 10% increments were investigated in order to detect significant HPLF cell growth inhibition. The significant LD₅₀ was further determined at one percent increments in order to arrive at a specific percentage value.

The results were read as LD_{50} values from growth concentration curves. The LD_{50} of MC on PDL1 and PDL2 after one hour exposure was 686 μ g.ml⁻¹ and 896 μ g.ml⁻¹

respectively while for DC it was 252 $\mu g.ml^{-1}$ and 546 $\mu g.ml^{-1}$. The LD₅₀ of MC on PDL1 and PDL2 after 24 hour exposure was 196 $\mu g.ml^{-1}$ and 266 $\mu g.ml^{-1}$ respectively while for DC it was 252 $\mu g.ml^{-1}$ for both. The LD₅₀ of MC on PDL1 and PDL2 after 48 hour exposure was 252 $\mu g.ml^{-1}$ and 182 $\mu g.ml^{-1}$ respectively while for DC it was 154 $\mu g.ml^{-1}$ and 168 $\mu g.ml^{-1}$.

Based upon the LD_{50} values this study found that DC is more cytotoxic than MC and linked to this, the two cell lines reacted slightly differently. The concentrations MC and DC tested in this study did however not influence growth of HPLF significantly.

CHAPTER 1: INTRODUCTION

Periodontitis is an infectious disease caused by periodontopathic bacteria in the gingival crevice. It is known that more than 500 species of bacteria are found in dental plaque and is present in periodontal pockets (Moore & Moore, 1994; Paster *et al.*, 2001). Periodontopathic bacteria such as *Actinobacillus actinomycetemcomitans* and *Porphyromonas gingivalis* have the ability to penetrate and survive within host cells (Meyer *et al.*, 1997). Mechanical debridement of pockets is not always effective on its own for treating certain forms of periodontitis. Tetracyclines are broadspectrum bacteriostatic antibiotics that are widely used as systemic and locally delivered antimicrobial adjuncts to periodontal therapy.

In certain forms of periodontitis antibiotics are administered as adjunctive therapy either systemically or locally. Antibacterial agents are directly administered to the site of infection as chemotherapeutic treatment - either by conditioning of the dentin, local irrigation or agent application in a periodontal pocket (Caton et al., 2000; Kim et al., 2004). The use of Tetracycline-HCI (TCH) (100mg.ml⁻¹) as irrigant for 5 minutes in conjunction with mechanical debridement resulted in significantly greater attachment gain over a six months period of healing as compared to scaling and root planing alone (Christersson et al., 1993). When used for root conditioning together with mechanical debridement, research has shown that it extracts bacterial endotoxins from affected roots resulting in reattachment of the periodontal fibroblasts (Gilman & Maxey, 1985). Tetracyclines proved to be not just antibacterial but have other properties such as anti-inflammatory activity, suppression of immunity, suppression of antibody production in lymphocytes, inhibition of lipase and collagenase activity and improvement of the attachment of gingival fibroblast cells (Roberts, 2002).

After topical application of tetracyclines, it exhibit dentine substantivity whilst maintaining antimicrobial activity in the periodontal pocket. Locally controlled release delivery systems for insertion directly into the periodontal pocket are available (Demirel *et al.*, 1991). Concentrations of Tetracycline (TC) in excess of 1300 μg.ml⁻¹ in the crevicular fluid can be obtained with local delivery systems with minimal detrimental effects. Adjacent soft tissue concentrations can reach values of approximately 65 μg.ml⁻¹ with little systemic uptake (Seymour & Heasman, 1995). Goodson *et al.*, (1983) reported a maintainable level in the periodontal sulcus of 1500 μg.ml⁻¹ for 10 days utilising tetracycline hydrochloride (TCH) containing fibers.

In the literature different concentrations of different tetracyclines and their effect on human gingival epithelium and human periodontal fibroblast attachment, growth and cytotoxicity has been studied (Inoue *et al.*, 2004; Maizumi *et al.*, 2002). The minimum inhibitory concentrations (MIC) of TC to periodontopathic bacteria are known (0,031-4,0 µg.ml⁻¹) (Miyake *et al.*, 1995). Research suggests that the advantageous effects of TC, MC and DC may be less at higher concentrations (Rompen *et al.*, 1993), as the effects become cytocidal (Tsukuda & Gabler, 1993). Although the treatment of periodontal disease with different TC concentrations was researched as indicated, the precise concentration of cytotoxicity for MC and DC to Human Periodontal Ligament Fibroblast (HPLF) is however still unknown and will be determined in this study.

CHAPTER 2: LITERATURE REVIEW:

2.1 The use of tetracyclines as locally applied antibiotics in periodontics

The utilization of locally delivered antibiotics is mainly as periodontal supportive therapy together with scaling and root planing in persistent deep pockets. Local delivery of antibiotics may be most beneficial in the control of localized ongoing disease, in otherwise stable patients in order to limit systemic resistance (Mombelli, 2003). Concentrations of 500 µg.ml⁻¹ TC were established initially by local fiber application in the gingival crevice and after prolonged periods of time concentrations of at least 50 µg.ml⁻¹ TC are achievable (Goodson *et al.*, 1983). This is 10-100 times the periodontal pocket concentration normally achieved by systemic administration of TC and is capable of inhibiting 345 strains of bacteria normally isolated from periodontal pockets. The concentration of TC needed to inhibit most periodontal bacteria *in vitro* is 4-8 µg.ml⁻¹ (Walker *et al.*, 1981).

TCH, DC and MC are semi-synthetic bacteriostatic antibiotics. The latter two exhibit greater oral absorption, longer half-lives and are more extensively protein bound. TCH is a chelating agent while DC and MC have less gastrointestinal side effects. Antimicrobial activity of the TC is achieved by them being concentrated in the gingival crevicular fluid after systemic treatment (Seymour & Heasman, 1995). HPLF possess active transporters that could potentially contribute to the relatively high levels of TC in gingival crevicular fluid (Yang *et al.*, 2002). In contrast after systemic administration of TC, MC and DC the average gingival crevicular fluid concentration was however found to be 20-50% lower than the plasma concentration and in 20% of cases below levels that are considered to be antimicrobial (Sakellari *et al.*, 2000).

Researchers have suggested that inter individual variability of oral absorption may be the reason for the variability of the plasma concentrations.

The substantivity of TC to cementum and dentine is very good and provides a constant TC release into the crevicular sulcus (Baker *et al.*, 1983). *In vitro* studies have shown that pre-treatment of dentine with TC enhances HPLF attachment and colonization. Incubation of HPLF with 50 µg.ml⁻¹ of MC significantly improves cell attachment compared to untreated dentine (Rompen *et al.*, 1993). Somerman *et al.* (1988) indicated in their *in vitro* study of the effects of MC on the spreading and attachment of fibroblasts, that concentrations greater than 50 µg.ml⁻¹ MC, promoted cell attachment but concentrations higher than 100 µg.ml⁻¹ prevented cell attachment, suggesting that there should be a concentration that is optimal for cell attachment.

Rompen *et al.* (1993) studied the effect of MC on HPLF populating powdered dentine. The MC was used to condition the dentine. MC conditioning enhanced the attachment and spreading of the HPLF significantly and is dose dependant. The concentrations of MC applied were 20, 50, 100 and 200 µg.ml⁻¹ and the optimum concentration was shown to be 110 µg.ml⁻¹. Higher dosages did not prove to be more beneficial. In a follow up study the same group of researchers found significantly higher rates of HPLF proliferation and significantly higher levels of total protein and collagen synthesis on MC conditioned dentine than on untreated dentine (Rompen *et al.*, 1999).

2.2 Cytocidal effect of locally applied antibiotics

The cytocidal effect of macrolide antibiotics was determined on HPLF as alternative to tetracycline antibiotics in the treatment of periodontitis. Topical administration *in vitro* of clarithromycin or azithromycin to the gingival sulcus at the minimum inhibitory concentration (MIC₉₀) for periodontopathic bacteria had little effect on the growth and differentiation of the periodontal ligament cells (Maizumi *et al.*, 2002). The minimum inhibitory concentrations of TC to periodontopathic bacteria such as *Porphyromonas gingivalis*, *Prevotella intermedia* and *Actinobacillus actinomycetemcomitans* range from 0,031-4,0 μg.ml⁻¹ and that of MC range from 0.031-2,0 μg.ml⁻¹ (Miyake *et al.*, 1995).

The minimum cytocidal (LD₅₀) concentration of MC applied to human gingival epithelium at a cell density of 1x10⁶ cells.ml⁻¹ was 21.234 ± 3.012 μg.ml⁻¹ and for TC 28.522 ±1.106 μg.ml⁻¹ after an exposure period of 48h, while the maximum non cytocidal concentration for MC was 0.148 μg.ml⁻¹ and for TC 0.481 μg.ml⁻¹ (Inoue *et al.*, 2004). Tsukuda & Gabler (1993) investigated the influence of different DC concentrations administered to PDLF. Dosages higher than 50 μg.ml⁻¹ DC reduced the number of adherent cells significantly. Cytotoxicity was determined by lactic dehydrogenase assay and this increased significantly at dosages higher than 50 μg.ml⁻¹ DC. This suggested that DC in higher dosages may be cytotoxic to PDLF and affect the spreading and attachment of these cells.

MC has a greater cytotoxicity compared to DC and TC when applied to human epithelioid S-G cells (Babich & Tipton, 2001) and HPLF (Omori *et al.*, 1999). It is postulated that the cytotoxicity of an antimicrobial agent is determined by its

lipophilicity resulting in easier cellular penetration. As MC is the most lipophilic it is the most cytotoxic. Babich & Tipton (2001) reported irreversible damage of S-G cells when exposed for one hour to 400 μg.ml⁻¹ and higher concentrations of MC but the cells were able to recover after one hour exposures to 25-200 μg.ml⁻¹ MC.

According to Chang *et al.* (2001) it is necessary to evaluate the concentration of the drug applied, exposure time and the surface area exposed when investigating the cytotoxicity of a drug. The methods they used to evaluate cell toxicity were protein synthesis assay, mitochondrial activity and propidium iodide fluorescence cytotoxicity assay.

Although cytotoxicity of TC against human cells has been indicated the relative toxicity of tetracyclines and fluorquinolones in terms of cytocidal effects (LD50) proved to be in rank order Demeclocycline>MC>TC>TCH, where Demeclocycline, MC and TC were 6 times more cytocidal than TCH (Omori *et al.*, 1999).

CHAPTER 3: AIM:

As the relative cytotoxicity of MC and DC is not known, this study was designed to determine the minimum cytocidal concentration of MC and DC on the growth and proliferation of HPLF *in vitro* by growing cells in the presence of MC and DC in media in 96 tissue wells starting at a concentration of 1400 μg.ml⁻¹ (100%). Serial dilutions of the MC and DC at 10% increments were investigated in order to detect significant HPLF cell growth inhibition. The significant LD₅₀ will be further determined at one percent increments to arrive at a specific percentage value.

CHAPTER 4: MATERIALS AND METHODS:

4.1 Tetracyclines tested

Two different tetracyclines were used in this study namely MC and DC. The concentrations in the media are given in table 4.1 starting at a concentration of 1400 µg.ml⁻¹.

Table 4.1 Concentration of MC and DC in EMEMS for cultivation of HPLF with 1400 μg.ml⁻¹ taken as 100%

Media	Percentage	Concentration MC/DC
	%	(µg.ml⁻¹)
Α	100	1400
В	90	1260
С	80	1120
D	70	980
E	60	840
F	50	700
G	40	560
н	30	420
ı	20	280
J	10	140
Control	0	0

After the initial tests were done the range of the tetracycline concentrations was narrowed in order to determine the MIC and/or LD₅₀ of tetracycline. During this phase the concentration of the tetracycline in the media was varied with 1% increments (Table 4.2) after the MIC of the specific cell line for the specific tetracycline concentration with 10% increments was determined. In all media

preparations, care was taken to ensure that all solutions were freshly made and used immediately.

Table 4.2 Concentrations of MC and DC in EMEMS for cultivation of HPLF at 1% increments

Media	%	MC/DC PDL1	%	MC PDL2	%	MC PDL1	%	DC PDL2
		and PDL2		t=1		t=1 (μg.ml¯¹)		t=1 (µg.mГ¹)
		(µg.ml¯¹)		(µg.ml⁻¹)			:	
Α	19	266	69	966	49	686	39	546
В	18	252	68	952	48	672	38	532
С	17	238	67	938	47	658	37	578
D	16	224	66	924	46	644	36	504
E	15	210	65	910	45	630	35	490
F	14	196	64	890	44	616	34	476
G	13	182	63	882	43	602	33	462
н	12	168	62	868	42	588	34	448
1	11	154	61	854	41	574	31	434
J	10	140	60	840	40	540	30	420
Control	0	0	0		0		0	

4.2. Cell cultures

Two different lines of human periodontal ligament fibroblasts (HPLF) were grown in EMEMS (Highveld Biological, PO Box 1456, Lyndhurst, 2106, RSA). Standardized, calibrated cell suspensions at a concentration of 2-4 X 10⁴ cells.ml⁻¹ media (Wilken *et al.*, 2001) were inoculated into a series of 96 well tissue culture plates (200µl per well) (AEC-Amersham, PO Box 1596, Kelvin, 2034, RSA). After 24 hours incubation at 37°C in 5% CO₂ and 95% air in a humidified atmosphere, the media was removed, cells were washed and the prepared media with known concentrations (see Table 4.1 & 4.2) of the two different Tetracycline's were added to the cells. Three wells per cell

line were used for each concentration of tetracycline. Cytotoxicity was determined after 1, 24 and 48 hours using the MTT [3-(4,5-dimethyl-thiazolyl-2)-2,5-diphenyltetrazolium bromide] technique (Mosmann, 1983). Control wells of the different fibroblasts were incubated with EMEM only. All experiments were done in triplicate.

4.3. Cytotoxicity screening

A standard MTT assay (Mosmann, 1983) was used in this study. In this test MTT was reduced by mitochondrial dehydrogenases in living cells; this reaction produces formazan crystals, which were quantified by photometry after extraction. In this study 20 μ I MTT (98%) (Sigma-Aldrich, 17 Pomona St, Aviation Park, Unit 4, Kempton Park, 1619, RSA) was added to the wells and the cells were incubated for 4 hours at 37°C. The incubation media was carefully removed and 100μ I of Dimethyl Sulfoxide (98.6%) (Sigma-Aldrich, 17 Pomona St, Aviation Park, Unit 4, Kempton Park, 1619, RSA) was added to the wells. Well plates were carefully shaken and the absorbance read at 560nm. The results were normalised considering the control well as 100% - non-cytotoxic (Mosmann, 1983).

4.4 Statistical analysis:

After normalization of all the cytotoxicity readings and calculation of average values, results were statistically compared with ANOVA using Statistix 8 software (Analytical Software, PO Box 12183, Tallahasee, FL 32317-2185, USA).

CHAPTER 5: RESULTS:

5.1 Growth percentages of two different human periodontal ligament fibroblast (HPLF) cell lines after exposure to test agents:

The average growth percentages of two different cell lines (PDL1 and PDL2) after exposure to different concentrations MC and DC for 1h, 24h and 48h are shown in Table 5.1. In general an initial increase in growth was observed with MC but not with DC.

Table 5.1 Average growth percentages of HPLF after exposure to 10% incremental dilutions of MC and DC starting at a concentration of 1400 μg.ml⁻¹ (100%) determined by standard MTT assay of each well after 1, 24 and 48 hours.

Concentration (µg/ml)	0	140	280	420	560	700	840	980	1120	1260	1400
MC PDL1 t=1	100	104.94	108.95	109.40	109.59	93.96	82.20	68.38	69.00	68.82	71.28
MC PDL2 t=1	100	130.15	129.69	131.12	137.50	117.09	105.21	82.81	92.62	88.00	82.98
MC PDL1 t=24	100	107.4	85.24	55.45	52.18	50.46	53.48	50.38	58.94	51.90	47.12
MC PDL2 t=24	100	108.53	96.70	60.96	58.00	54.06	56.15	56.33	61.24	62.42	57.32
MC PDL1 t=48	100	131.32	60.70	62.48	57.17	65.99	65.32	65.64	77.91	73.65	95.26
MC PDL2 t=48	100	138.06	66.38	65.04	63.68	69.56	68.16	71.00	89.67	91.45	113.26
DC PDL1 t=1	100	97.35	84.11	94.23	89.49	84.11	79.11	80.05	74.57	68.06	69.03
DC PDL2 t=1	100	100.33	95.36	105.42	99.45	87.67	91.56	84.17	75.46	78.92	77.91
DC PDL1 t=24	100	119.63	56.91	60.03	61.43	58.15	61.26	62.84	67.29	75.48	80.27
DC PDL2 t=24	100	84.75	48.64	58.22	54.69	55.32	54.56	57.15	60.90	59.20	59.58
DC PDL1 t=48	100	74.13	55.57	67.52	67.29	64.06	70.74	71.60	85.07	88.09	93.62
DC PDL2 t=48	100	61.09	52.24	59.87	61.52	55.24	59.90	60.31	68.75	72.82	62.70

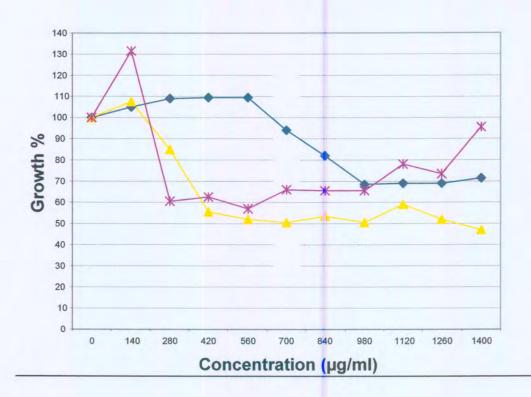


Fig 5.1: The average growth percentage of PDL1 after exposure to 10% increments of MC concentrations. Standard MTT assays were done after incubation of the HPLF for t=1h (blue), 24h (yellow) and 48h(purple) in the different MC concentrations.

Table 5.2: Results of statistical analysis of the average growth of PDL1 after exposure to 10% increments of MC for 1h, 24h and 48h (P<0.05 is statistically significant).

Concentration (µg/ml)	0	140	280	420	560	700	840	980	1120	1260	1400
MC PDL1 t=1	100	104.94	108.95	109.40	109.59	93.96	82.20	68.38	69.00	68.82	71.28
P value		0.17	<0.05	<0.05	<0.05	0.12	<0.05	<0.05	<0.05	<0.05	<0.05
MC PDL1 t=24	100	107.40	85.24	55.45	52.18	50.46	53.48	50.39	58.94	51.90	47.13
P value		0.127	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
MC PDL1 t=48	100	131.32	60.70	62.48	57.17	66.00	65.32	65.64	77.91	73.66	95.26
P value		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05

This study determined the cytocidal effect of MC and DC and it indicated that MC significantly decreased the (P≤0.05) growth of PDL1 after one hour exposure at a concentration of 840 µg.ml⁻¹. After 24 and 48 hours of exposure MC a significant decrease of growth of PDL1 started from a concentration of 280 µg.ml⁻¹.

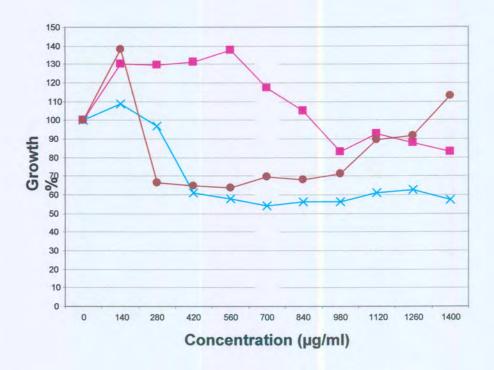


Fig 5.2: Average growth percentages of PDL2 after exposure to 10% increments of MC. Standard MTT assays were done after incubation of the HPLF for 1h (pink), 24h (blue) and 48h (plum) in the different MC concentrations.

Table 5.3: Results of statistical analysis of the average growth of PDL2 after exposure to 10% increments of MC for 1h, 24h and 48h (P<0.05 is statistically significant).

Concentratio n (µg/ml)	0	140	280	420	560	700	840	980	1120	1260	1400
MC PDL2 t=1	100	130.15	129.69	131.12	137.50	117.09	105.21	82.81	92.62	88.00	82.98
P value		<0.05	<0.05	<0.05	<0.05	0.19	0.42	<0.05	0.27	<0.05	<0.05
MC PDL2 t=24	100	108.53	96.71	60.96	58.00	54.06	56.15	56.33	61.24	62.41	57.32
P value		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
MC PDL2 t=48	100	138.05	66.38	65.05	63.68	69.56	68.16	71,00	89.67	91.45	113.26
P value		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05

After one hour exposure to MC the growth of PDL2 showed an initial increase but was significantly decreased from a concentration of 980 µg.ml⁻¹. After 24 and 48 hours of exposure a significant decrease of growth started from a concentration of 280µg.ml⁻¹ MC.

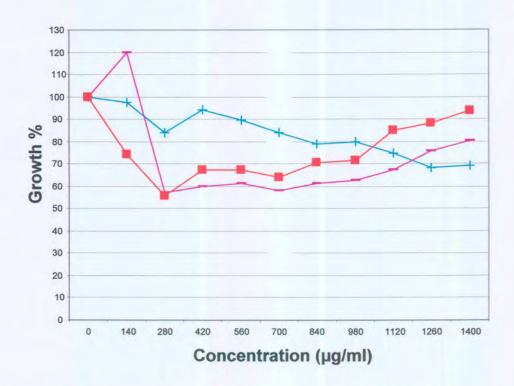


Fig 5.3 Average growth percentages of PDL1 after exposure to 10% increments of DC concentrations. Standard MTT assays were done after incubation of HPLF for t=1h (blue), 24h (pink) and 48h (red) in the different DC concentrations.

Table 5.4 Results of statistical analysis of the average growth of PDL1 after exposure to 10% increments of DC for 1h, 24h and 48h (P<0.05 is statistically significant).

Concentration (µg/ml)	0	140	280	420	560	700	840	980	1120	1260	1400
DC PDL1 t=1	100	97.35	84.11	94.23	89.49	84.11	79.11	80.05	74.57	68.06	69.03
P value		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
DC PDL1 t=24	100	119.63	56.91	60.03	61.43	58.15	61.26	62.84	67.29	75.48	80.28
P value		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
DC PDL1 t=48	100	74.13	55.57	67.52	67.29	64.06	70.74	71.60	85.07	88.10	93.62
P value		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.28

After one hour exposure to DC the growth of PDL1 showed a decrease from a concentration of 140 µg.ml⁻¹. After exposure times of 24 and 48 hours the growth decreased significantly at concentrations of 280 and 140 µg.ml⁻¹ respectively.

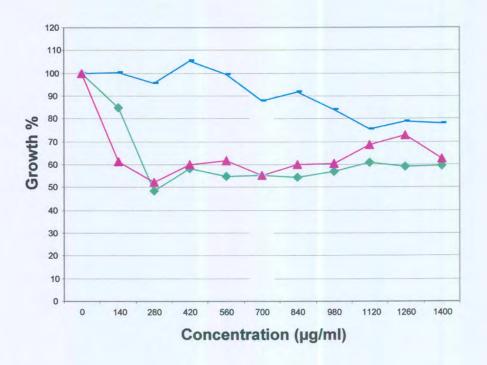


Fig 5.4: Average growth percentages of PDL2 after exposure to 10% increments of DC concentrations. Standard MTT assays were done after incubation of HPLF for 1h (blue), 24h (green) and 48h (purple) in the different DC concentrations.

Table 5.5 Results of statistical analysis of the average growth of PDL2 after exposure to 10% increments of DC concentrations for 1h, 24h and 48h (P<0.05 is statistically significant).

Concentration (µg/ml)	0	140	280	420	560	700	840	980	1120	1260	1400
DC PDL2 t=1	100	100.33	95.36	105.42	99.45	87.67	91.56	84.17	75.46	78.92	77.91
P value		0.93	<0.05	<0.05	0.83	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
DC PDL2 t=24	100	84.75	48.64	58.22	54.69	55.32	54.56	57.15	60.90	59.20	59.58
P value		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
DC PDL2 t=48	100	61.09	52.24	59.87	61.52	55.24	59.90	60.31	68.75	72.82	62.70
P value	0	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05

The PDL2 cell line demonstrates significant suppression of growth from 700 µg.ml⁻¹ DC after exposure time of one hour. After 24 and 48 hours cell survival significantly started decreasing from the 140 µg.ml⁻¹ concentration.

Tabel 5.6 Average growth percentages of HPLF after exposure to 1% incremental dilutions of Minocycline and Doxycycline starting at different concentrations determined by standard MTT assay of each well after 1, 24 and 48 hours.

Concentration (µg/ml)	0	560	574	588	602	616	630	644	658	672	686
MC PDL1 t=1	100	118.35	139.77	113.85	131.04	112.86	84.64	93.77	57.13	56.26	49.22

Concentration (µg/ml)	0	840	854	868	882	896	910	924	938	952	966
MC PDL2 t=1	100	80.37	77.18	61.57	51.50	40.23	52.77	41.05	38.45	29.54	28.02

Concentration (µg/ml)	0	140	154	168	182	196	210	224	238	252	266
MC PDL1 t=1	100										
MC PDL2 t=1	100										
MC PDL1 t=24	100	70.38	65.60	59.00	59.02	38.13	47.91	42.57	56.98	47.70	28.05
MC PDL2 t=24	100	74.75	70.71	70.95	64.56	69.24	59.71	71.99	47.90	55.57	35.58
MC PDL1 t=48	100	81.64	59.77	61.36	62.85	67.10	59.28	53.84	51.95	50.05	28.23
MC PDL2 t=48	100	79.67	55.63	24.70	20.92	19.93	16.98	16.33	19.77	22.05	17.38
DC PDL1 t=1	100	98.91	76.98	67.86	65.27	64.38	75.30	53.75	59.01	37.72	29.93
DC PDL2 t=1	100										
DC PDL1 t=24	100	67.32	49.43	62.15	61.09	60.18	57.69	58.64	51.67	30.70	22.26
DC PDL2 t=24	100	90.82	88.46	82.19	66.13	54.23	48.63	56.01	56.327	39.21	24.49
DC PDL1 t=48	100	55.06	42.67	46.12	45.88	35.77	29.32	31.07	32.28	25.87	30.36
DC PDL2 t=48	100	72.02	67.38	41.04	44.38	43.31	36.75	39.33	42.89	33.73	32.93

Concentration (µg/ml)	0	420	434	448	462	476	490	504	518	532	546
DC PDL2 t=1	100	118.61	94.73	76.42	76.84	71.69	70.70	89.63	71.67	75.56	43.59

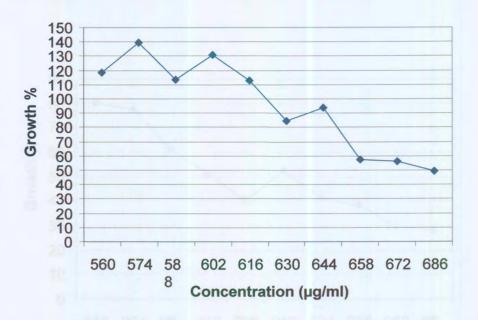


Fig 5.5 The MC concentration-growth curve of PDL1 after t=1h.

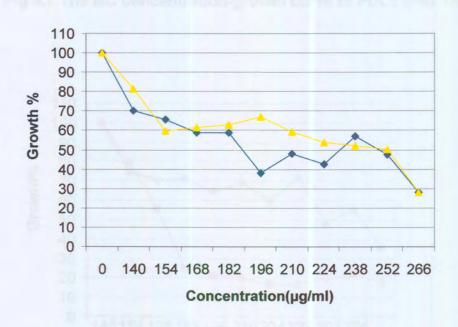


Fig 5.6 The MC concentration-growth curve of PDL1 after 24h (blue) and 48h (yellow).

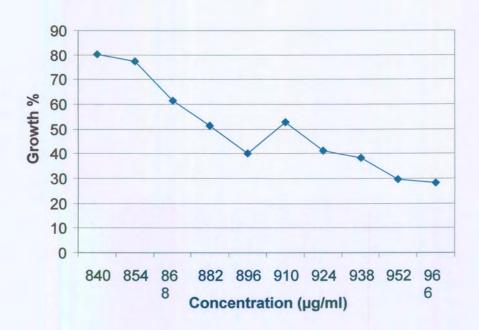


Fig 5.7 The MC concentration-growth curve of PDL2 after 1h.

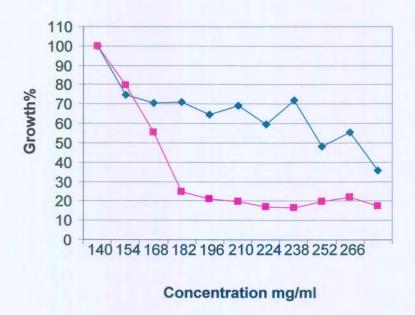


Fig 5.8 The MC concentration-growth curve of PDL2 after 24h (blue) and 48h (pink).

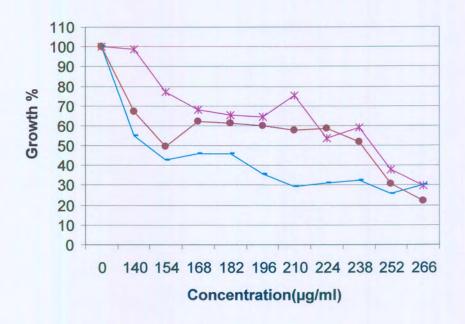


Fig 5.9 The DC concentration-growth curves PDL1 after 1h (purple), 24h (plum), 48h (blue).

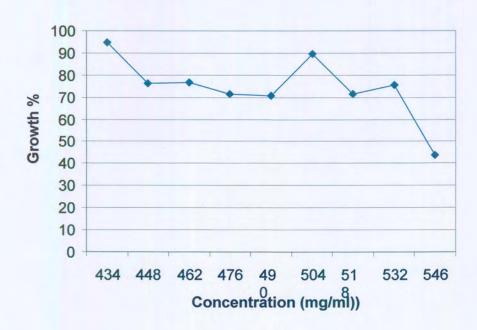


Fig 5.10 The DC concentration-growth curve of PDL2 1h.

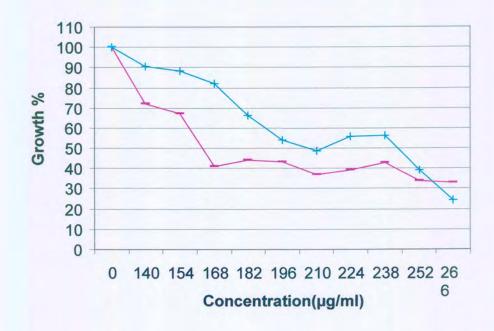


Fig 5.11 The DC concentration-growth curve of PDL2 after 24h (blue) and 48h (purple).

In order to determine the LD₅₀ values of MC and DC the growth-concentration curves (Fig 5.5 to Fig 5.11) were studied to extrapolate percentage values of cytotoxicity. After 1h exposure of both cell lines to MC and DC high concentrations suppressed 50% of the cell growth (LD₅₀) in comparison to the control. After exposures of 24 and 48 hour periods, concentrations of 196 μ g.ml⁻¹ and 252 μ g.ml⁻¹ MC resulted in 50% reduction of cell growth for PDL1 while 266 μ g.ml⁻¹ and 168 μ g.ml⁻¹ for PDL2. DC is lethal for 50 % (LD₅₀) of cells at a concentration of 252 μ g.ml⁻¹ for PDL1 and PDL2 after exposure periods of 24h while a concentration of 154 μ g.ml⁻¹ for PDL1 and 168 μ g.ml⁻¹ for PDL2 after 48 hour exposure.

Table 5.7 Summary of LD_{50} values as read from growth-concentration curves

	LD ₅₀ (µg.ml ⁻¹)		LD ₅₀ (µg.ml ⁻¹)
MC PDL1 t=1h	686	MC PDL2 t=1h	896
MC PDL1 t=24h	196	MC PDL2 t=24h	266
MC PDL1 t=48h	252	MC PDL2 t=48h	168
DC PDL1 t=1h	252	DC PDL2 t=1h	546
DC PDL1 t=24h	252	DC PDL2 t=24h	252
DC PDL1 t=48h	154	DC PDL2 t=48h	168

CHAPTER 6: DISCUSSION

The advantages of tetracyclines are multiple, for example immune suppression, anti-collagenase activity and improvement of fibroblast spreading and attachment (Roberts, 2002). Disadvantages of applying antibiotics locally or systemically include development of resistance and cytotoxicity towards the cells in the application area. Results of this study were based on standard MTT assay, determining the cytotoxicity quantified as the MIC or LD₅₀ of MC and DC towards HPLF. Results showed that DC is more cytotoxic than MC. There is a difference in cytotoxicity between the two cell lines PDL1 and PDL2, as PDL2 is more resistant than PDL1. This difference in cell survival can possibly be explained by genetic differences between individual cell lines. The cell survival was affected in a concentration dependant manner, decreasing as the concentration of the test agent increased.

In this study HPLF appear to have a high level of resilience towards the direct application of DC and MC. Previous studies described that the effect of MC, DC and TC application appears to be specific to the cell type (Guerin *et al.*, 1992). It was indicated that human gingival epitheloid SG cells have a midpoint cytotoxicity of MC at a concentration of 204 μg.ml⁻¹ on day one, 84 μg.ml⁻¹ on day 2 and 59 μg.ml⁻¹ on day 3. The same group of researchers found that after a 24 hour exposure period the normalized ratio (NR₅₀) for MC was 226 μg.ml⁻¹ and DC 364 μg.ml⁻¹. Therefore it is clear that much higher concentrations of MC and DC can be applied to HPLF in comparison to human gingival epitheloid cells as the LD₅₀ values after 24h for MC was 196-266 μg.ml⁻¹ and DC 252 μg.ml⁻¹. The epitheliod cell cytotoxicity to MC was measured by neutral red assay and it was shown that MC is

more cytotoxic than DC (Babich & Tipton, 2002) while this research found the opposite towards HPLF. In the same study epitheliodS-G cells had the ability to recover after one hour exposure to 200 μ g.ml⁻¹ but after exposure to 400 μ g.ml⁻¹ irreversible cell damage was caused. These results are higher than what Inoue *et al.* (2004) found when applying different concentrations of MC to a human gingival epithelial cell density of 1x 10⁶ resulted in a LD₅₀ value of 21.234 \pm 3.012 μ g.ml⁻¹ after 48 hour time period but much lower than the results of this study.

The LD₅₀ values in this study are much higher than the optimal concentration MC, 110 μg.ml⁻¹ for dentine conditioning which resulted in optimal human periodontal ligament cell attachment and spreading (Rompen *et al.*, 1999). This study determined that MC has a LD₅₀ of 686 – 896 μg.ml⁻¹ after one hour while after longer exposures the LD₅₀ started at concentrations of 196-266 μg.ml⁻¹. MC has a greater substantivity than TC (Baker *et al.*, 1983) and that is possibly the reason for the lower optimal value for the conditioning of dentine than the LD₅₀ in this study. The intracellular concentration and duration of exposure to the specific concentration of MC and TC determine their cytocidal effects. MC and TC resulted in the highest percentage of apoptotic cells (LD₅₀) after 48h exposure to the respective agents (Inoue *et al.*, 2004) while in this study DC suppresses the growth of HPLF more than MC after 48h exposure.

The LD₅₀ of DC in this study was affected by both concentration and by the exposure period to the HPLF. The cytotoxicity is much lower in the study by Tsukuda & Gabler (1993) who reported a significant cytotoxicity of DC at 50 µg.ml⁻¹ to periodontally derived fibroblasts after a 3h exposure time in comparison to 252-546 µg.ml⁻¹ as found in this study. The method of this study was however different as it determined the specific cytotoxicity by means of MTT assays in determining the

 LD_{50} whilst the aforementioned study stopped at the first significant value of growth suppression.

By applying commercially available DC gel to the periodontal pocket a concentration of 46,73 μg.ml⁻¹ can be maintained in the periodontal pocket for at least 10 days (Kim *et al.*, 2004). Therefore the use of this product will not be toxic to the human periodontal ligament fibroblast as the LD₅₀ value in this study after a 48 hour application was found to be 154-168 μg.ml⁻¹. Periodontal pathogens co-aggregate in a biofilm, resulting in a susceptibility to antibiotics 50 times lower than when the pathogens are in a sessile state (Brown & Gilbet, 1993). It should therefore be possible to apply 50 times the MIC of MC and DC to periodontopathic bacteria without influencing the growth of HPLF significantly.

The entry of DC into periodontal ligament-derived fibroblasts is influenced by the composition of the growth media. It is well known that tetracyclines are chelating agents. By removing any Ca²⁺ or Mg²⁺ from the media the intracellular concentration of DC can be doubled. Thus the uptake of DC can be influenced by adding serum to the incubation media (Tsukuda & Gabler, 1993). The results of this study could have been influenced by the chelation of DC. Variables, such as type of growth media and *in vitro* cell density may influence results, making comparison of different research designs difficult. In this study, however LD₅₀ values were determined.

In vivo use of locally applied antibiotics is challenged by gingival crevicular fluid flow. After application of fluoresceine gel in the gingival sulcus Oosterwaal reported that 50% of the gel was washed out after 12.5 minutes (Oosterwaal et al., 1990).

The concentration of tetracycline (100 mg.ml $^{-1}$) decreased logarithmically after local application, by means of a impregnated fiber from 1500 \pm 270 μ g.ml $^{-1}$ to 19 \pm 5 μ g.ml $^{-1}$ in one week (Goodson *et al.*, 1983). The clinically maintainable concentration of locally applied TC is lower than the LD₅₀ values of this study; therefore implying that it may be used without fear of being cytotoxic towards HPLF.

CHAPTER 7: CONCLUSION

In this study the results indicated that the cytotoxicity of MC and DC is concentration dependant as well as dependant on the exposure time to HPLF. The determination of the specific cytotoxicity of MC and DC to HPLF may maximize the clinical application of the adjunctive benefits of these antimicrobial agents and reduce the detrimental effects. The two cell lines showed a difference in LD₅₀ values possibly because of the genetic difference of the cell lines.

It is important to study the cytotoxicity of drugs utilised clinically on a regular basis. The toxicity of the MC and DC has been speculated upon in the literature. In this study it was determined that the local application of commercially available MC and DC products will not be cytocidal towards HPLF but only suppressed growth in such a way that this was eventually interpreted as LD₅₀. DC is more cytotoxic than MC after local application to HLPF *in vitro*. MC and DC at concentrations tested in this study will not influence the growth of HPLF significantly.

CHAPTER 8: REFERENCES

Babich H, Tipton DA. In vitro response of human gingival epitheloid S-G cells to minocycline. *Toxicology in Vitro* 2001; 16: 11-21

Baker PJ, Evans RT, Coburn RA, Genco RJ. Tetracycline and its derivates trongly bind to and are released from the tooth surface in active form. *J Periodontol* 1983; (54)10: 580-585

Brown M, Gilbet P. Sensitivity of biofilms to antimicrobial agents. *Journal of Applied Bacteriology* 1993; 74: 87-91

Caton JG, Ciancio SG, Blieden TM, Bradshaw M, Crout RJ, Hefti AF, Massaro JM, Polson AM, Thomas J, Walker C. Treatment with subantimicrobial dose doxycycline improved the efficacy of scaling and root planing in patients with adult periodontitis. *J Periodontol* 2000; 71:521-532

Chang YC, Huang FM, Tai KW, Chou MY. The effect of Sodium hypochlorite and chlorhexidine on cultured human periodontal ligament cells. *Oral Surg Oral Med Pathol Oral Radiol Endod* 2001; 92(4):446-50

Christersson LA, Norderyd OM, Puchalsky CS: Topical application of tetracycline-HCl in human periodontitis. *J Clin Periodontol* 1993; 20: 88-95

Demirel K, Baer PN, McNamara TF. Topical application of doxycycline on periodontally involved root surfaces in vitro: Comparative analysis of substantivity on cementum and dentin. *J Periodontol* 1991; 62:312-316

Gilman RS, Maxey BR. The Effect of Root Detoxification on Human Gingival Fibroblasts. *J Periodont* 1985; 57(7): 436-440

Goodson JM, Holborow D, Dunn RL, Hogan P, Dunham S. Monolthic Tetracycline-containing fibers for controlled delivery to periodontal pockets. *J Periodontol* 1983; 54: 575-579

Guerin C, Laterra J, Masnyk T, Golub LM, Brem B. Selective endothelial growth inhibition by tetracyclines that inhibit collagenase. *Biochemical and Biophysical research communications* 1992; 188(2): 740-45

Inoue K, Kumakura S, Uchida M, Tsutsui T. Effects of eight antibacterial agents on cell survival and expression of epithelial-cell- or cell-adhesion-related genes in human gingival epithelial cells. *J Periodont Res* 2004; 39: 50-58

Kim TS, Klimpel H, Fiehn W, Eickholz P. Comparison of the pharmocokinetic profiles of two locally administered doxycycline gels in crevicular fluid and saliva. *J Clin Periodontol* 2004; 31: 286-292

Maizumi N, Tamura Y, Kanai H, Tsutsui T. Qauntative comparison of the cytocydal effect of seven macrolide antibiotics on human periodontal ligament fibroblasts. *J Periodont Res* 2002; 37:250-254

Meyer DH, Mintz KP, Fives-Taylor PM. Models of invasion of enteric and periodontal pathogens into epithelial cells: a comparative analysis. *Crit Rev Oral Biol Med* 1997; 8: 389-409

Miyake Y, Tsuruda K, Okuda K, Widowati, Iwamoto Y, Sugunaka H. *In vitro* activity of tetracyclines, macrolides, quinolones, clindamycin and metronidazole against periodontopathic bacteria. *J Periodont Res* 1995; 30: 290-293

Mombelli A. Antimicrobial agents in periodontal prevention, therapy and maintanance: conclusions from the GABA Forum, 6 December 2002, Lyon, France.

Oral Disease 2003;(9)suppl I: 71-72

Moore WE, Moore LV. The bacteria of periodontal diseases. *Periodontol 2000* 1994; 5:66-77

Mosmann T. Rapidcolorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. *J Immunological Methods* 1983; 65: 55-63

Omori N, Kobayashi H, Tsutsui T. Quantative comparison of cytocydal effects of tetracyclines and fluorquinolones on human periodontal ligament fibroblasts. *J Periodontal Res*, 1999; 34(6):290-5

Oosterwaal PJM, Mikx FHM, Renggli HH. Clearance of a topically applied fluorescein gel from periodontal pockets. *J Clin Periodontol* 1990; 17: 613-615

Paster BJ, Boches SK, Galvin JL, Ericson RE, Lau CN, Levanos VA, Sahasrabudhe, Dewhirst FE. Bacterial diversity in Human Subgingivasl Plaque. *Journal of Bacteriology* 2001; 183(12): 3770-3783

Roberts MC, Antibiotic toxicity, interactions and resistance development.

Periodontol 2000 2002; 28: 280-297

Rompen EH, Kohl J, Nusgens B, Lapiere CM, Kinetic Aspects of Gingival and Periodontal Fibroblast Attachment to Surface-conditioned Dentin. *J Dent Res* 1993; 72(3): 607-612

Rompen EH, Goffinet GH, Nusgens B. Human periodontal ligament fibroblast behavior on chemically conditioned dentine: an in vitro study. *J Periodontol* 1999; 70(10): 1144-52

Sakellari D, Goodson JM, Socransky SS, Kolokotronis A, Konstantinidis A. concentration of 3 tetracyclines in plasma, gingival crevice fluid and saliva. *J Clin Periodontol* 2000; 27: 53-60

Seymour RA, Heasman PA. Tetracyclines in the management of periodontal diseases: A review. *J Clin Periodontol* 1995; 22: 22-35

Somerman MJ, Foster RA, Vorsteg G, Progebin K, Wynn RL. Effects of minocycline on fibroblast attachment and spreading. *J Periodont Res* 1988; 23: 154-159

Tsukuda N,Gabler WL, The Influence of Doxycycline on the Attachment of fibroblasts to Gelatin-Coated Surfaces and its Cytotoxicity. *J Periodontol* 1993; 64:1219-1224

Walker CB, Gordon JM, McQuilkin SJ, Niebloom TA, Socransky SS. Tetracycline: levels achievable in gingival crevice fluid and in vitro effect on subgingival organisms. Part II. Susceptibilities of periodontal bacteria. *J Periodontol* 1981; 52: 613-616

Wilken R, Botha SJ, Grobler A, Germishuys PJ. *In vitro* cytotoxicity of chlohexidine gluconate, benzydamine-HCI and povidone iodine mouthrinses on the human gingival fibroblasts. *S Afr Dent J* 2001; 56: 455-460

Yang Q, Nakkula RJ, Walters JD. Accumulation of ciprofloxacin and minocycline by cultured human gingival fibroblasts. *J Dent Res* 2002; 81(12): 836-40

ADDENDUM A: DATA

				4 1	5	6	7	8	9	10	11	.12
Mono cyclin	1	2	3	4	3	O	,					
A	100% PDL1	90% PDL 1	80% PDL 1	70% PDL 1	60% PDL 1	50% PDL 1	40% PDL 1	30% PDL 1	20% PDL 1	10% PDL 1	Control PDL1	
В	100% PDL1	90% PDL 1	80% PDL 1	70% PDL 1	60% PDL 1	50% PDL 1	40% PDL 1	30% PDL 1	20% PDL 1	10% PDL 1	Control PDL1	
С	100% PDL1	90% PDL 1	80% PDL 1	70% PDL 1	60% PDL 1	50% PDL 1	40% PDL 1	30% PDL 1	20% PDL 1	10% PDL 1	Control PDL1	
D												
Е												
F	100% PDL2	90% PDL 2	80% PDL 2	70% PDL 2	60% PDL 2	50% PDL 2	40% PDL 2	30% PDL 2	20% PDL 2	10% PDL 2	Control PDL2	
G	100% PDL2	90% PDL 2	80% PDL 2	70% PDL 2	60% . PDL 2	50% PDL 2	40% PDL 2	30% PDL 2	20% PDL 2	10% PDL 2	Control PDL2	
Н	100% PDL2	90% PDL 2	80% PDL 2	70% PDL 2	60% PDL 2	50% PDL 2	40% PDL 2	30% PDL 2	20% PDL 2	10% PDL 2	Control PDL2	

Plate no > 1. Immediately
2. 24 hours
3. 48 hours

Bio-Tek EL×800

Mino

Assay: Quick Read

Wavelength:490

Date:24/05/05 Time:12:58:16PM

Temp:

Lot: Plate

Operator: Flate ID:

COMMENTS

	i	2	3	4	5	6	7	8	9	10	11	12	
CALL CalcOD Well RSLT	0.070 SMP1	0.078 SMP9	0.059 SMP17	0.074 SMP25	0.082 SMP33	0.088 SMP41	0.094 SMP49	0.080 SMP57	0.098 SMF65	0.109 SMP73	0.111 SMF81	0.041 SMP89	
CALL CalcOD Well RSLT	0.096 SMP2	0.078 SMP10	0.097 SMP18	0.091 SMP26	0.082 SMP34	0.089 SMP42	0.096 SMP50	0.094 SMP58	0.093 SMP66	0.110 SMP74	0.103 SMP82	0.041 SMP90	
CALL CalcOD Well RSLT	0.071 SMP3	0.074 SHP11	0.085 SMP19	0.077 SMP27	0.099 SMP35	0.105 SMP43	0.086 SHP51	0.083 SMP59	0.090 SMF67	0.093 EMP75	0.108 SMP83	0.042 SMP91	
CALL CalcOD Well RSLT	0.043 SMP4	0.042 SMP12	0.043 SMP20	0.042 SMP28	0.042 SMP36	0.042 SMP44	0.041 SMP52	0.047 SMP60	0.042 SMP68	0.042 SMP76	0.042 SMP84	0.041 SMP92	- 4
CALL CalcOD Well RSLT	SMP5	0.042 SMP13	0.044 SMP21	0.043 SMP29	0.043 SMP37	0.042 SMF45	0.043 SMP53	0.043 SMP61	0.042 SMP69	0.042 SMP77	0.044 SMP85	0.042 SHP93	
CALL CalcOD Well RSLT	0.073 SMP6	0.080 SMP14	0.079 SMP22	0.073 SMP30	0.088 SMP38	0.079 SMP46	0.081 SMP54	0.087 SMP62	0.087 SMP70	0.091 5MP78	0.100 SMP86	0.04 5AP9	
CALL CalcOD Well RSLT	0.080 SMP7	0.071 SMP15	0.090 SMP23	0.070 SMP31	0.080 SMP39	0.076 SMP47	0.085 SMP55	0.090 SMP43	0.088 SMP71	0.098 SMP79	0.096 SMP87	0 04 SKP9	
CALL CalcOD Well RSLT		0.094 SMP16	0.071 SHP24	0.078 SMP32	0.086 SMP40	0.058 SMP48	0.068 SMP56	0.087 SMP64	0.083 SMP72	0.075 SMP80	0.101 SMP88	0.04 SMP9	

Bio-Tek EL×800

ssay:_Quick Read

Date:25/05/05

Lot: 2 : 24h. Operator:

welength: 490

Time:10:38:15AM

Flate ID:

Temp:

JMMENTS

. A,	1	2	3	4	5	6	7	8	9	10	11	12
- cOD 1 r B		0.123 SMP9	0.122 SMP17	0.098 SMP25	0.111 SMP33	0.103 SMP41	0.123 SMP49	0.105 SMP57	0.102 SMP&5	0.104 SMP73	0.109 SMP81	0.046 SMF89
- - 1 1 7	0.099 SMP2	0.095 SMP10	0.087 SMP18	0.146 SMP26	0.102 SMP34	0.096 SMP42	0.102 SMP50	0.123 SMP58	0.116 SMP66	0.108 SMP74	0.101 SMP82	0.038 SMF90
- - - - - - - - - - - - - - - - - - -	0.101 SMP3	0.100 SMF11	0.087 SHP19	0.091 SMP27	0.090 SMP35	0.111 SMP43	0.101 SMP51	0.089 SMP59	0.103 SMP&7	0.136 SMP75	0.137 SMP83	0.042 SMP91
-	0,049	0,041	0.044	0.043	0.042	0.042	0.045	0.042	0.048	0.043	0.041	0.043
-OD	SMP4	SMP12	SMP20	SMP28	SMP36	SMP44	SMP52	SMP60	SMP68	SMP76	SMP84	SMP92
:0D	0.044	0.042	0.040	0.045	0.042	0.042	0.035	0.041	0.040	0.040	0.044	0.042
	SMP5	SMP13	SMP21	SMP29	SMP37	SMF45	SMP53	SMP61	SMP69	SMP77	SMP85	SMR93
:00:	0.109	0.111	0.097	0.109	0.077	0.092	0.102	0.115	0.188	0.131	0.112	0.058
	SMP6	SMF14	SMP22	SMP30	SMP38	SMP46	SMP54	SMP62	SMP70	SMP78	SMP86	SMF94
.00	0.122	0.100	0.095	0.105	0.098	0.092	0.106	0.121	0.106	0.107	0.166	0.943
H	SMP7	SMP15	SMP23	SMP31	SMP39	SKP47	SMP55	SMP63	SMP71	SMP79	SMP87	SHP95
CD	0.087	0.112	0.085	0.094	0.104	0.086	0.121	0.057	0.102	0.119	0.123	0.041
	SMF8	SMP16	SMP24	SMP32	SMP40	SMP48	SMP56	SMP&4	SHP72	SMP80	SMP88	SMP76

Bio-Tek ELx800

say:_Quick Read

velength: 490

Date:26/05/05 Time:10:37:38AM

Temp:

Lot: 3:48h

Operator: Flate ID:

MMENTS

1000

A	1	2	3	4	5	6	7	8	9	10	11	12
D	0.09B	0.069	0.125	0.062	0.114	0.124	0.087	0.107	0.107	0.099 .	0.134	0.041
B	SMP1	SMF9	SMP17	SMP25	SMP33	SMP41	SMP49	SMP57	SMP45	SMP73	SMP81	Sh=89
D	0.125	0.091	0.121	0.127	0.099	0.093	0.088	0.121	0.131	0.116	0.188	0.042
	ShP2	SMP10	SMP18	SMP26	SMP34	SMP42	SMP50	SMP58	SMP66	SMP74	SMF82	SMF90
ם	0.108	0.094	0.104	0,079	0.090	0.074	0.078	0.086	0.109	0.128	0.190	0.042
ם	SMP3	- SMP11	SMP19	SMP27	SMP35	SMP43	SMP51	SMP59	SMP67	SMP75	SMP83	SMP91
Đ	0.040	0.040	0.041	0.041	0.041	0.041	0.041	0.041	9:941	0.041	0.042	0.044
	SMP4	SMP12	SMP20	SMP28	SMP36	SMP44	SMP52	SMP60	\$ 1 P68	SMP76	SMP84	SNP92
D F	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.041	0.041	0.042
	SMP5	SMP13	SMP21	SHP29	SMP37	SMP45	SMP53	SMP61	SMP69	SMP77	SMP85	SMP93
	0.095	0.103	0.091	0.119	0.094	0.115	0.078	0.109	0.105	0.123	0.113	0 042
	SMP6	SMP14	SMP22	SMP30	SMP38	SMP46	SHP54	SMP62	SMP70	SMP78	SMP84	S#P94
	0.087 SMP7	0.081 .SMP15	0.045 SMP23	0.117 SMP31	0.048 SMP39	0.102 SMP47	0.099 SMP55	0.099	0.112 SMP71	0.095 SMP79	0.167 SMP87	0.042 SMP95
	0.090	0.116	0.070	0.096	0.061	0.104	0.106	0.092	0.087	0.081	0.118	0.042
	SMP8	SMP16	SMP24	SMP32	SMP40	SMP48	SMP56	SMP64	SMP72	SMP80	SMP88	SMP76

Doxy	1	2	3	4	5	6	7	8	9	10	11	12
cyclin												<u></u>
A	100%	90%	80%	70%	60%	50%	40%	30%	20%	10%	Control	
	PDL1	PDL	PDL	PDL	PDL	PDL	PDL	PDL	PDL	PDL 1	PDL1	
		1	1	1	1	1 700/	1007	200/	20%	10%	Control	
В	100%	90%	80%	70%	60%	50%	40%	30%	i .	PDL	PDL1	
	PDL1	PDL	PDL	PDL	PDL	PDL	PDL	PDL	PDL	1	IDLI	
	<u> </u>	1	1	1	1	1	1	2004	1		Control	
C	100%	90%	80%	70%	60%	50%	40%	30%	20%	10%	PDL1	
	PDL1	PDL	PDL	PDL	PDL	PDL	PDL	PDL	PDL	PDL	PDLI	İ
		1	1	1	1	1	1	1 1	1	1		
D												
E												
						<u> </u>		2001	000/	100/	Control	
F	100%	90%	80%	70%	60%	50%	40%	30%	20%	10%	Control	
	PDL2	PDL	PDL	PDL	PDL	PDL	PDL	PDL	PDL	PDL	PDL2	
		2	2	2	2	2	2	2	2	2	Control	
G	100%	90%	80%	70%	60%	50%	40%	30%	20%	10%	Control	
	PDL2	PDL	PDL	PDL	PDL	PDL	PDL	PDL	PDL	PDL	PDL2	
		2	2	2	2	2	2	2	2	2	0 4 1	-
H	100%	90%	80%	70%	60%	50%	40%	30%	20%	10%	Control	
	PDL2	PDL	PDL	PDL	PDL	PDL	PDL	PDL	PDL	PDL	PDL2	
		2	,2	2 /	2	2	2	2	2	2	<u> </u>	

Plate no-14. Immediately
5. 24 hours
6. 48 hours

Bio-Tek ELx800

Date:24/05/05

Lot: Plate 4: I

Time:01:00:02PM

Operator:

Temp:

Flate ID:

IMMENTS

ssay: _Quick Read

.velength:490

	1	2	3	4	5	6	7	8	9	10	11	12
0	.073	0.083	0.089	0.093	0.086	0.089	0.092	0.090	0.119	0.078	0.08 5	0.041
	MP1	SMP9	SMP17	SMP25	SMP33	SMP41	SMP49	SMP57	SMP45	SMP73	SMF81	SMP89
	.084	0.080	0.074	0.099	0.083	0.081	0.088	0.076	0.089	0.077	0.097	0.041
	MP2	SMP10	SMP18	SMP26	· SMP34	SMP42	SMP50	SMP58	SMP&6	SMP74	SMP82	SMF90
	.086	0.093	0.055	0.092	0.085	0.080	0.087	0.077	0.083	0.082	0.048	0.042
	MP3	SMP11	SMP19	SMP27	SMP35	SMP43	SMP51	SMP59	SMP67	SMP75	SMP83	SMP91
-	.043	0.041	0.042	0.043	0.041	0.041	0.042	0.041	0.041	0.041	0,042	0.041
	MP4	SMP12	SMP20	SMP28	SMP36	SMP44	SMP52	SMP60	SMP68	SMP76	SMP84	SMF92
	.042	0.042 \	\0.042	0.042	0.042	0.042	0.042	0.041	0.043	0.043	0.042	0.042
	MP5	SMP13	.\SMP21	SMP29	SMP37	SMP45	SMP53	SMP61	SMP69	SMP77	SMF85	SMP93
	.109	0.078	0.078	0.053	0.072	0.086	0.081	0.104	0.084	0.026	0.084	0.043
	MP6	SMP14	SMP22	SMP30	SMP38	SHP46	SMP54	SMP62	SMP70	SMP78	SMP86	SMP94
	.073	0.072	0.070	0.090	0.085	0.076	0.084	0.097	0.078	0.077	0.085	0.044
	1P7	SMP15	SMP23	SMP31	SMP3 9	SMP47	SMP55	SMP63	SMP71	SMP79	SMP87	SM 95
	.082	0.081	0.078	0.090	0.100	0.088	0.074	0.077	0.079	0.075	0.095	0.444
	1P8	SMP16	SMP24	SMP32	SMP40	SMP48	SMP54	SMP64	SMP72	SMP80	SMP88	SMP96

Bio-Tek EL×800

Temp:

say: _Quick Read

zelength:490

Date:25/05/05 Time:10:36:27AM Lot: 5 24h Operator:

Flate ID:

MENTS

Α	1	2	3	4	5	4	7	8	9	10	11	12
D O.1	158	0.115	0.161	0.200	0.201	0.144	0.135	0.140	0.108	0.118	0.109	0.042
	P1	SMP9	SMP17	SMP25	SMP33	SMP41	SMP49	SMP57	SMP45	SMP73	SMP81	5MP89
0.1		0.127	0.147	0.168	0.169	0.128	0.123	0.119	0.139	0.086	0.080	0.042
SMF		SMP10	SMP18	SMP26	SMP34	SMP42	SMP50	SMP58	SMP66	SMP74	SMP82	SMP90
0.1		0.178	0.140	0.134	0.146	0.096	0.157	0.136	0.102	0.128	0.099	0.442
SMP		SMP11	SMP19	SMP27	SMP35	SMP43	SMP51	SMP59	SMP67	SMP75	SMP83	SMP91
0.0		0.042	0.041	0.043	0.042	0.042	0.042	0.042	0.035	0.042	0.042	0.03A
SMP		SMP12	SMP20	SMP28	SMP36	SMP44	SMP52	SMP60	SMP68	SMP76	SMP84	SMF92
0,0		0.042	0.042	0.042	0.043	0.041	0.043	0.041	0.042	0.041	0.042	0.041
SMP:		SMP13	6MP21	SMP29	SMP37	SMP45	SMP53	SMF61	SMP69	SMP77	SMF85	SMP73
0.19	,	0.113	0.127	0.153	0:127	0.157	0.142	0.141	0.123	0.092	0.114	0.041
SMP <i>8</i>		SMP14	SMP22	SMP30	SMP38	SMP46	SMP54	SMP62	SMP70	SMP78	SMP86	SMF94
0.18		0.159	0.152	0.185	0.157	0.124	0.119	0.146	0.099	0.122	0.029	0.Q42
SMP7		SMP15	SMP23	SMP31	SMP39	SMP47	SMP55	SMP63	SMP71	SMP79	SMP87	SMF95
0.20		0.215	0.164	0.126	0.144	0.155	0.141	0.121	0.101	0.089	0.106	0.043
SMP8		SMP16	SMP24	SMP32	SMP40	SMP48	SMP56	SMP64	SMP72	SMP80	SMP88	SHP96

Bio-Tek EL×800

say: _Quick Read

Date:26/05/05

Lot: 6 : 48h

Time:10:39:49AM

Operators Plate ID:

Temp:

MMENTS

A,	1	2	3	4	5	6	7	8	9	10	11	12
OD	0.135	0.154	0.093	0.132	0.119	0.098	0.092	0.107	0.103	0.096	0.155	0.041
B	SMP1	SMP9	SMP17	SMP25	SMP33	SMP41	SMP49	SMP57	SMP45	SMP73	SMP81	SM-89
OD	0.122	0.140	0.104	0.102	0.109	0.138	0.124	0.112	0.085	0.096	0.180	0. 4 42
C	SMP2	SMP10	SMP18	SMP26	SMP34	SMP42	SMP50	SMP58	SMP&&	SMP74	SMP82	SMP90
00	0.100	0.096	0.097	0.138	0.085	0.094	0.107	0.090	0.094	0.103	0.182	0.041
	SMP3	SMP11	SMP19	SMP27	SMP35	SMP43	SMP51	SMP59	SMP67	SMP75	SMP83	SMP91
D	0.042	0.042	0.042	0.042	0.041	0.041	0.041	0.041	0.042	0.041	0.041	0.042
DD	SMP4	SMP12	SMP20	SMP28	SMP36	SMP44	SMP52	SMP60	SMP68	SMP76	SHP84	SHR92
E 30	0.042	0.043	0.041	0.041	0.041	0.041	0.042	0.041	0.041	0.042	0.041	0.041
	SMP5	SHP13	SMP21	SMP29	SMP37	SMP45	SMP53	SMP41	SMP69	SMP77	SMP85	SMP93
) F	0.124	0.137 \	0.139	0.080	0.121	0.125	0.114	0.096	0.095	0.098	0.082	0.041
	SMP6	SMP14	SMP22	SMP30	SMP38	SMP46	SMP54	SMP62	SMP70	SMP78	SMP84	SMP94
6 30 H	0.135 SMP7	0.105 SMP15	0.129 SMP23	0.128 SMP31	0.100 SMP39	0.131 SMP47	0.116 SMP55	0.112 SMP63	0.128 SMP71	0.103 SMP79	0.101 SMP87	0.045 SMP95
90	0.141	0.117	0.116	0.118	0.118	0.124	0.109	0.096	0.08 <i>6</i>	0.125	0.082	0.042
	SMP8	SMP16	SMP24	SMP32	SMP40	SMP48	SMP56	SMP64	SMP72	SMP80	SMP88	SMP96

MC	PDL 1	1h	40 – 50
MC	PDL 2	1h	60 – 70
MC	PDL 1	24h	10 – 20
MC	PDL 2	24h	10 – 20
MC	PDL 1	48h	10 – 20
MC	PDL 2	48h	10 – 20

DC	PDL 1	1h	0 – 10
DC	PDL 2	1h	30 – 40
DC	PDL 1	24h	10 – 20
DC	PDL 2	24h	10 – 20
DC	PDL 1	48h	0 – 10
DC	PDL 2	48h	0 – 10

MC

ay:_Quick Read : elength:490

Date:13/09/05 Time:02:49:16PM Temp: Lot: Operator: Plate ID:

h

MENTS

1	1	2	3	4	5	6	7	8	9	10	11	12
)	0.222	0.261	0.314	0.464	0.425	0.575	0.471	0.567	0.689	0.584	0.579	0.041
	SMP1	SMP9	SMP17	SMP25	SMP33	SMF41	SMP49	SMP57	SMP65	SMP73	SMP81	SHP89
)	0.283	0.272	0.258	0.491	0.491	0.630	0.764	0.587	0.665	0.579	0.517	0.039
	SMP2	SMP10	SMP18	SMP26	SMP34	SMP42	SMP50	SMP58	SMP66	SMP74	SMP82	SMP90
<u> </u>	0.185	0.241	0.228	0.360	0.290	0.398	0.556	0.441	0.582	0.482	0.339	0.040
	SMP3	SMP11	SMP19	SMP27	SMP35	SMP43	SMP51	SMP59	SMP67	SMP75	SMP83	SMP91
	<u>~ 0.044</u>	0.043	0.045	0.046	0.047	0.043	0.043	0.045	0.045	0.048	0.044	0.046
	SMP4	SMP12	SMP20	SMP28	SMP36	SMP44	SMP52	SMP60	SMP40	SMP76	SMP94	SMP92
	0.045	0.047	0.048	0.046	0.048	0.046	0.047	0.049	0.044	0.048	0.048	0.045
	SMP5	SMP13	SMP21	SMP29	SMP37	SMP45	SMP53	SMP61	SMP69	SMP77	SMF85	5H-73
	0.111	0.118	0.134	0.150	0.178	0.150	0.173	0.167	0,340	0.289	0.351	0.043
	SMP6	SMP14	SMP22	SMP30	SMP38	SMP46	SMP54	SMP62	\$MP70	SMP78	SMP86	SMP94
	0.108	0.128	0.175	0.187	0.228	0.145	0.206	0.281	0.191	0.247	0.393	0.038
	SMP7	SMP15	SMP23	SMP31	SMF39	SMP47	SMP55	SMP63	SMP71	SMP79	SMP87	SMP95
	0.115	0.104	0.150	0.139	0.227	0.188	0.241	0.298	0.395	0.437	0.445	0.046
	SMP8	SMP16	SMP24	SMP32	SMP40	SMP48	SMP56	SMP64	SMP72	SMP80	SMP88	SM-96

ssay: Quick Read

ivelength: 490

Date:14/09/05 Time:12:21:37FM Temp: Lot: _____ Operator: Plate ID:

24h

JMMENTS

Α,	100%	2	3	4	5	6	7	8	9	10%	Control	12
: :00 : : B	0.210 SMP1	0.378 SMP9	0.466 SMP17	0.343 SMP25	0.445 SMP33	0.294 SMP41	0.452 SMP49	0.498 SMP57	0.481 SMP65	0.579 SMP73	0.741 SMP81	0.041 SMP89
:	0.203	0.307	0.403	0.310	0.335	0.256	0.406	0.415	0.462	0.501	0.743	0.037
:OD	SMP2	SMP10	SMP1B	SMP26	SMP34	SMP42	SMP50	SMP58	SMP66	SMP74	SMP82	SHP90
	0.206 SMP3	0.367 SMP11	0.389 SMP19	0.287 SMP27	0.279 SMP35	0.291 SMP43	0.444 SMP51	0.390 SMP59	0.504 SMP67	0.474 SMP75	0.723 SMP83	0.041 SMF91
:OD	0.045	0.046	0.045	0.046	0.048	0.045	0.046	0.054	0.045	0.046	0.044	0.045
	SMP4	SMP12	SMP20	SMP28	SMP36	SMP44	SMP52	SMP60	SMP68	SMP76	SMP84	51 2 72
:00	0.045	0.050	0,046	0.046	0.049	0.046	0.04B	0.050	0.048	0.046	0.046	0.045
	SMP5	SMP13	SMP21	.SMP29	SMP37	SMP45	SMP53	SMP61	SMP69	SMP77	5MP85	SMP93
:OD	0.205	0.375 \	\ 0.305	0.486	0.377	0.443	0.433	0.487	0.535	0.632	0.661	0.047
	SMP6	SMP14	SMP22	SMP30	SMP38	SMP46	SMP54	SMP62	SMP70	SMP78	SMP86	SMP94
	0.245	0.366	0.340	0.489	0.370	0.421	0.363	0.399	0.484	0.471	0.640	0.046
(00:	SMP7	SMP15	SMP23	SMP31	SMP39	SHP47	SMP55	SMP63	SMP71	SMP79	SMP87	SMP95
H (10:	0.214	0.303	0.255	0.379	0.369	0.430	0.410	0.441	0.319	0.316	0.574	0.046
	SMPB	SMP16	SMP24	SMP32	SMP40	SMP48	SMP56	SMP64	SMP72	SMP80	SMP88	SMP96

🚋 ssay: _Quick Read

avelength: 490

Date:15/09/05 Time:12:42:45PM Temp:

Lot: Operator: Plate ID: MC 48h

DMMENTS

A,	100 %	2	3	4	5	6	7	8	9	10%	Contro	1 12
L cOD 1 T	0.235 SMP1	0.464 SMP9	0.354 SMP17	0.347 SMP25	0.501 SMP33	0.421 SMP41	0.529 SMP49	0.569 SMP57	0.509 SMP45	0.588 SMP73	0.735 SMP81	0.042 S#F89
L COD 1 .T C	0.231 SMP2	0.338 SMP10	0.430 SMP18	0.522 SMP26	0.361 SMP34	0.549 SMP42	0.423 SMP50	0.376 SMP58	0.471 SMP66	0.571 SMP74	0.654 SMP82	0.044 SMP90
cOD .1 .T	0.122 SMP3	0.248 SMP11	0.294 SMP19	0.242 SMP27	0.382 SMP35	0.421 SMP43	0.364 SMP51	0.345 SMP59	0.267 SMP67	0.544 SMP75	0.700 SMP83	0.051 SHP91
L cop	0.045 SMP4	0.045 SMP12	-0.045 SMP20	0.045 SMP28	0.047 SMP36	0.045 SMP44	0.047 SMP52	0.047 SMP60	0.046 SMP68	0.045 SMP76	0.047 SMP84	0.048 5h-72
L codd	0.047 SMP5	0.053 SMP13	0.045 SMP21	0.047 'SMP29	0.050 SMP37	0.047 SMP45	0.047 SMP53	0.057 SMP61	0.045 SMP69	0.048 SMP77	0.049 SMP85	0.047 SMP93
COD 1	0.111 SMP6	0.128 SMP14	0.124 SMP22	0.099 SMP30	0.097 SMP38	0.149 SMP46	0.13 <i>6</i> SMP54		7.0.318 SMP70	0.469 SMP78	0.507 SMP86	0.045 SMP94
.L .cop .1 .T	0.102 SMP7	0.181 SMP15	0.135 SMP23	0.102 SMP31	0.121 SMP39	0.102 SMP47	0.114 SMP55	0.182 SMP63	0.373 SMP71	0. 4 00 SMP79	0.672 SMP87	0.045 SMP95
L cOD 1	0.096 SMP8	0.089 SMP16	0.094 SMP24	0.091 SMP32	0.088 SMP40	0.097 SMP48	0.119 SMP56	0.111 SMP64	0.310 SMP72	0.554 SMP80	0.637 SMP88	0.046 SMP96

jsay: Quick Read

welength: 490

Date:13/09/05 Time:02:50:53PM Temp: Lot: Operator: Flate ID:

DC 1h

)MMENTS

Α,	100 %	2	3	4	5	6	7	8	ġ	control	io b	12
:0D L [0.234 SMP1	0.280 SMP9	0.442 SMP17	0.444 SMP25	0.643 SMP33	0.484 SMP41	0.496 SMP49	0.499 SMP57	0.600 SMP65	0.763 SMP73	0.759 SMP81	0.050 SMP89
-00 1 1	0.234 SMP2	0.285 SMP10	0.476 SMP18	0.466 SMP26	0.643 SMP34	0.503 SMP42	0.514 SMP50	0.612 SMP58	0.625 SMP66	0.803 SMP74	0.823 SMP82	0.050 SMP90
top 1 T	0.223 SMP3	0.304 SMP11	0. 4 45 SMP19	0.335 SMP27	0.458 SMP35	0.499 SMP43	0.497 SMP51	0.461 SMP59	0.554 SMP67	0.744 SMP75	0.705 SMP83	0.068 SM ³ 91
- cOD 1 I	0.055 SMP4	0.081 SMP12	0.091 SMP20	0.089 SMP28	0.059 SMP36	0.079 SMP44	0.065 SMP52	0.080 SMP60	0.049 SMP68	0.066 SMP76	0.074 SMP84	0.085 58 72
	0.041 SMP5	0.053 SMP13	0.067 SMP21	0.105 ,, ŞMP29	0_059 SMP37	0.078 SMP45	0,080 SMP53	0.063 SMP61	0.068 SMP69	0.062 SMP77	0.052 SMP85	0.¢57 SMF93
COD 1 T	0.198 SMP6	0.341 SMP14	0.369 SMP22	0.450 SMP30	0.376 SMP38	0.352 SMP46	0.372 SMP54	0.395 SMP62	0.353 /SMP70	0.449 SMP78	0.415 SMP86	0. 0 46 SMP94
L cod 1 T	0.220 SMP7	0.360 SMP15	0.247 SMP23	0.331 SMP31	0.283 SMP39	0.372 SMP47	0.384 SMP55	0.384 5MP63	0.478 SMP71	0.627 SMP79	0.459 SMP87	0.071 SM895
L COD	0.176 SMP8	0.334 SMP16	0.360 SMP24	0.440 SMP32	0.298 SMP40	0.245 SMP48	0.285 SMP56	0.251 SMP&4	0.473 SMP72	0.553 SMP80	0.498 SMP88	0.050 SMF96
. i	100%		L	1						10%	control	

ssay: Quick Read

welength:490

Date:14/09/05 Time:12:19:52FM Temp: Lot: Operator: 24h Plate ID:

1 C 24h

MMENTS

A	1	2	3	4	5	£	7	8	9	10	11	12
L cod 1	0.169 SMP1	0.267 SMP9	0.440 SMP17	0.545 SMP25	0.464 SMP33	0.602 SMP41	0.455 SMP49	0.470 SMP57	0.390 SMP65	0.543 SMP73	0.951 SMP81	0 041 S#P89
.T	0.191 SMP2	0.318 SMP10	0.399 SMP18	0.468 SMP26	0.456 SMP34	0.489 SMP42	0.500 SMP50	0.584 SMP58	0.468 SMP66	0.577 SMP74	0.827 SMP82	0 044 S#P90
C L 1cOD 11	0.206 SMP3	0.300 SMF11	0.481 SMF19	0.493 SMP27	0.540 SMP35	0.462 SMP43	0.596 SMP51	0.704 SMP59	0.403 SMP67	0.597 SMP75	0.795 SMP83	0 056 S#P91
D _L 1cod 11 LT	0.047 - SMP4	0.049 SMP12	0.054 SMP20	0.057 SMP28	0.064 SMP36	0.053 SMP44	0.049 SMP52	0.057 SMP&0	0.062 SMP68	0.051 SMP76	0.058 SHP84	0 045 S1P92
E LL 1c0D 11 LT F	0.046 SMP5	0.053 SMP13	-0.050 SMP21	0.050 SMP29	0.055 SMP37	0.047 SMP45	0,056 SMP53	0.053 SMP61	0.046 SMP69	0.050 SMP77	0.045 SMP85	0 054 SNP93
LL lcOD 11 c LT	0.13 <i>6</i> SMP6	0.277 SMP14	\0.263 SMP22	0.368 SMP30	0.235 SMP38	0.332 SMP46	0.360 SMP54	0.521 SMP62	0.553 / SMP70	0.560 SMP78	0.670 SMP86	0 039 SNP94
1LL 11cOD 111 3LT	0.147 SMP7	0.228 SMP15	0,356 SMP23	0.330 SMP31	0.329 SMP39	0.294 SMP47	0.446 SMP55	0.443 SMP63	0.485 SMP71	0.553 SMP79	0.485 SMP87	0.039 SNP95
H ALL alcod all alt	0.132 SMP8	0.169 SMP16	0.325 SMP24	0.260 SMP32	0.248 SMP40	0.303 SMP48	0.304 SMP56	0.447 SMP64	0.478 SMP72	0.432 SMP80	0.577 SMP88	0.042 SHP96
			1		1			<u> </u>	<u> </u>	<u> </u>	<u> </u>	
(설립 기준) 기준(설립												
	•		•									

ssay: Quick Read

avelength:490

Cate:15/09/05 Time:12:44:56PM Temp: Lot: Operator: Plate ID:

48h

 \mathfrak{D}

OMMENTS

:	100%	2	3	4	5	5	7	9	9	10%	Contro	L 12	_
L COD	0.205 SMP1	0.211 SMP9	0.250 SMP17	0.296 SMP25	0.183 SMP33	0.231 SMP41	0.312 SMP49	0.365 SMP57	0.379 SMP45	0.493 SMP73	0.815 SMP81	0.047 SMP89	
L cop l	0.265 SMP2	0.210 SMP10	0.263 SMP18	0.240 SMP26	0.288 SMP34	0.266 SMP42	0.423 SMP50	0.429 SMP58	0.391 SMP <i>6</i> 6	0.459 SMP74	0.880 SMP82	0.052 SMP90	
C L COD 1 .T	0.283 SMP3	0.220 SMP11	0.287 SMP19	0.234 SMP27	0.259 SMP35	0.385 SMP43	0.405 SMP51	0.354 SMP59	0.293 SMP67	0.415 SMP75	0.790 SMP83	0.052 SMP91	
D .L .c0D- .1 .T	0.046 SMP4	0.047 SMP12	0.045 SMP20	0.045 SMP28	0.045 SMP36	0.045 SMP44	0.045 SMP52	0.047 SMP60	0.047 SMP68	0.045 SMP76	0.045 SMP84	0.045 5n-72	- 1
L .L .coD .1 .T	0.045 SMP5	0.044 SMP13	0.046 SMP21	0.046 , SMP29	0.047 SMP37	0.044 SMP45	0.045 SMP53	0.048 SMP61	0.044 SMF69	0.045 SMP77	0.051 SHP85	0.046 SM 73	
L .cOD :1		0.191 \ SMP14	0.202 SMP22	0.256 SMP30	0.236 SMP38	0.270 SMP46	0.294 SMP54	0.268 SMP62	0.421 / SHP70	0.443 SMP78	0.594 SMP86	0.044 SMP94	
L 1c01 -11 -T		0.204 SMP15	0.272 SMP23	0.235 SMP31	0.235 SMP39	0.278 SMP47	0.264 SMP55	0.239 SMP63	0.372 SMP71	0.367 SMP79	0.506 SMP87	0.04 SMP9	
L LcO LcO Ll Ll		0.210 SMP16	0.226 SMP24	0.208 SMP32	0.176 SMP40	0.216 SMP48	0,230 SMP56	0.225 SMP64	0.422 SMP72	0.504 SMP80	0.731 SMP88	0.44 SM#7	