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This thesis is primarily concerned with a description of four types of stochastic algorithms,
namely the genetic algorithm, the continuous parameter genetic algorithm, the particle
swarm algorithm and the differential evolution algorithm. Each of these techniques is pre-
sented in sufficient detail to allow the layman to develop her own program upon examining
the text. All four algorithms are applied to the optimization of a certain set of unconstrained
problems known as the extended Dixon-Szegö test set. An algorithm’s performance at opti-
mizing a set of problems such as these is often used as a benchmark for judging its efficacy.
Although the same thing is done here, an argument is presented that shows that no such
general benchmarking is possible.

Indeed, it is asserted that drawing general comparisons between stochastic algorithms on the
basis of any performance criterion is a meaningless pursuit unless the scope of such compar-
ative statements is limited to specific sets of optimization problems. The idea is a result of
the no free lunch theorems proposed by Wolpert and Macready. Two methods of presenting
the results of an optimization run are discussed. They are used to show that judging an
optimizer’s performance is largely a subjective undertaking, despite the apparently objective
performance measures which are commonly used when results are published. An important
theme of this thesis is the observation that a simple paradigm shift can result in a different
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decision regarding which algorithm is best suited to a certain task. Hence, an effort is made
to present the proper interpretation of the results of such tests (from the author’s point of
view).

Additionally, the four abovementioned algorithms are used in a modeling environment de-
signed to determine the structure of a Magnetic Cataclysmic Variable. This ’real world’
modeling problem contrasts starkly with the well defined test set and highlights some of the
issues that designers must face in the optimization of physical systems.

The particle swarm optimizer will be shown to be the algorithm capable of achieving the best
results for this modeling problem if an unbiased χ2 performance measure is used. However,
the solution it generates is clearly not physically acceptable. Even though this drawback is
not directly attributable to the optimizer, it is at least indicative of the fact that there are
practical considerations which complicate the issue of algorithm selection.
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Opsomming

Titel: ’n Diskoers aangaande sekere stogastiese optimisering algoritmes
en hulle aanwending vir die uitbeelding van kataklismies
veranderlike sterre

Outeur: Derren W Wood

Leier: Prof Albert A Groenwold

Medeleier: Dr Stephen B Potter

Departement: Meganiese en Lugvaartkundige Ingenieurswese

Graad: MIng (Meg Ing)

Sleutelwoorde: genetiese algoritme, deeltjie swerm, differensiële evolusie,
kataklismies veranderlike ster, bepaling van algoritmiese prestasie

Hierdie tesis is in hoofsaak gemoeid met ’n beskrywing van vier tipes stogastiese algoritmes,
naamlik die genetiese algoritme, die kontinue parameter genetiese algoritme, die partikel
swerm algoritme, en die differensiële evolusionêre algoritme. Elkeen van hierdie tegnieke word
in voldoende besonderhede beskryf om die leek toe te laat om sy of haar eie program gebaseer
op die aanbieding te ontwikkel. Die vier algoritmes word dan toegepas op die optimering
van ’n stel onbegrensde toetsprobleme, wat bekend staan as die uitgebreide Dixon-Szegö
toetsstel. ’n Algoritme se prestasie vir so ’n toetsstel word baie keer as ’n aanduiding van
die effektiwiteit van so ’n algoritme beskou. Alhoewel dieselfde in hierdie tesis gedoen word,
word ’n argument aangevoer wat aantoon dat so ’n evaluesie in die algemeen nie moontlik
is nie.

In die besonder word dit aangetoon dat algemene gevolgtrekkings gebaseer op vergelykings
tussen stogastiese algoritmes op grond van enige prestasie maatstaaf betekenisloos is, tensy
die raamwerk vir sulke vergelykings beperk is tot ’n spesifieke stel optimeringsprobleme. Hi-
erdie gedagtegang is ’n gevolg van die ‘geen gratis ete’ aksiomas van Wolpert en Macready.
Twee metodes vir die aanbied van resultate van ’n optimeringsanalise word dan bespreek.
Die metodes word gebruik om aan te toon dat die evaluasie van ’n optimeringsalgoritme se
prestasie tot ’n groot mate subjektief is, nieteenstaande die oënskynlike objektiewe prestasie
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maatstawwe wat gereeld gebruik word wanneer resultate gepubliseer word. ’n Belangrike
tema van hierdie tesis is die waarneming dat ’n eenvoudige paradigma verskuiwing tot ver-
skilende gevolgtrekkings rakende die beste algoritme vir ’n spesefieke taak kan lei. Daarom
word moeite gedoen om die korrekte interpretasie (vanuit die oogpunt van die outeur) van
sulke toetse aan te bied.

Verder word die vier genoemde algoritmes gebruik in ’n modeleringsomgewing wat ontwerp is
om die struktuur van ’n Magnetiese Kataklismiese Veranderlike te bepaal. Hierdie realistiese
modeleringsprobleem staan in skerp kontras tot goed gedefinieerde toetsstelle, en illustreer
sommige van die probleme wat ontwerpers in die gesig staar wanneer realistiese fisiese stelsels
bestudeer word.

Dit word aangetoon dat die partikel swerm algoritme in staat is om die beste resulate vir
hierdie moeilike probleem te vind, indien ’n objektiewe χ2 prestasie maatstaaf gebruik word.
Desnieteenstaande is die oplossing duidelik nie fisies toelaatbaar nie. Alhowel hierdie komp-
likasie nie direk aan die optimeringsalgoritme toegeskryf kan word nie, illustreer dit nietemin
sommige van die praktiese komplikasies verbonde aan die keuse van ’n bepaalde algoritme.
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Chapter 1

Introduction

1.1 A brief description

In this thesis, I discuss the nature of four different stochastic algorithms employed in solving
the type of optimization problems that engineers or scientists may face. Many of these opti-
mization problems are not easily approached with the calculus based routines that have been
developed over the course of the last few centuries. In fact, such gradient based algorithms
are seen to have a narrow range of applicability when real world problems are considered.

The four stochastic algorithms presented herein are:

1. the genetic algorithm (GA),

2. the continuous parameter genetic algorithm (CPGA),

3. the particle swarm optimization algorithm (PSOA) and

4. the differential evolution (DE) algorithm.

They all belong to a class of algorithms which may be called the ’evolutionary algorithms’
(EAs). Such algorithms are studied not only because of their success in attacking difficult
optimization problems, but also because some computer scientists and mathematicians see
them as a link in modeling the evolution process and as a clue to the development of artificial
intelligence.

Evolutionary algorithms have been developed and discussed since the 1960s and they are
finding increasing use in engineering. The reason is that they are robust, if expensive. They
can be applied to optimize problems which are non-linear, discrete, noisy or multi-modal
in nature, when it is difficult or impossible to apply a gradient based method. They are
characterized by the existence of a population of individuals. Each individual is a represen-
tation of a single point in a function space. The population evolves with time according to
certain rules – hence the term ’evolutionary’. Now, the rules that this evolution obeys often
incorporate some stochastic processes. This is the case with the four algorithms presented in
this thesis and I therefore refer to them as stochastic algorithms. Because of their stochastic

1
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CHAPTER 1. INTRODUCTION 2

nature, these algorithms are mathematically poorly understood. Theorems do exist that
provide statistical indications of how the populations evolve. Amongst them is the Schema
theorem for genetic algorithms. I hesitate to call these theorems convergence proofs though,
since they fail to provide definite, inviolable predictions of the algorithms’ convergence dy-
namics. They only furnish statistical descriptions of how the optimizers behave. This fact
is an inevitable aspect of the optimizer’s probabilistic nature.

If one applies the stochastic algorithms to functions whose gradient information is obtainable,
one finds that there are definite drawbacks associated with them. Usually they require greater
computational effort to solve a problem when compared with the gradient based optimizers.
Additionally, they are typically beset by a phenomenon known as premature convergence.
That is: convergence to non-optimal points due to a lack of population diversity. For the most
part, the stochastic methods also exhibit sensitivity to changes in their control parameters
and their performance is heavily problem dependent.

The argument, then, for using these methods in practice is not that they are inherently
more efficient than the gradient based methods. Rather it is that they are more universally
applicable and are less influenced by the complications (such as noise) mentioned earlier.
Indeed, there are systems for which the application of gradient based optimization routines
would be prohibitively inefficient. In such cases stochastic routines are viewed as the only
viable alternative.

This thesis presents each of the above mentioned algorithms in turn. Their mechanisms of
operation are explained and they are each rigorously tested on a set of problems. I do not
concern myself with comparing the algorithms with each other on the basis of convergence
time or success ratio. As will become clear, it is not possible to state such things categorically.
This is due to the stochastic nature of the algorithms and due a to principal known as ’no
free lunch’ [1, 2], which will also be conveyed. Instead, I simply demonstrate that each of the
algorithms is useful in optimization and I explain the paradigms on which they are based.

Finally, each of the algorithms is employed in an optimization task concerning a particular
type of star system: a cataclysmic variable. Some difficulties and pitfalls encountered in
applying the algorithms to this modeling problem are discussed. I feel that such arguments
are valid when considering the optimization of real world problems in general. Implicitly:
the goal of that section of the thesis is to find the optimization technique which is best at
performing this particular optimization task.

1.2 Thesis Overview

Chapter 2 contains a brief overview of the goals of optimization, together with a loose
description of some optimization paradigms that form the basis of many of the currently
available optimization algorithms. The goal of Chapter 2 is not to teach the reader various
optimization techniques. In fact, the information contained therein is much too superficial
for that. Rather, the aim is to present a justification for using stochastic algorithms in the
first place. Chapter 2 also serves to create a context within which I can embed arguments
concerning the judgment of an algorithm’s performance.
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CHAPTER 1. INTRODUCTION 3

Chapter 3 is devoted to the description of the four particular algorithms that form the basis
of this thesis. In it I present the mechanisms by which the routines operate. Also, in the
case of the genetic algorithm, I proffer the framework of Holland’s [3] theoretical description
of just why the GA works.

In Chapter 4 the results of applying the stochastic methods to the extended Dixon-Szegö test
set are laid bare. These test problems are a popular (if somewhat outdated) set used to test
an optimizer’s performance on global optimization problems. Note that various permutations
of the genetic algorithms are tested and comparisons are drawn between them. I refrain from
comparing the genetic algorithm to the particle swarm and differential evolution algorithms.

Chapter 5 contains a phenomenological description of cataclysmic variables and of a program,
written by Potter [4], used to model them. The results of utilizing various of the algorithms
to solve the associated optimization problem are shown. As has already been stated, a
central theme of this thesis is to highlight the vagueries of doing practical optimization as
opposed to optimizing analytical functions.

Chapter 6 reiterates the conclusions drawn throughout the thesis.

1.3 Objectives

The goals of this thesis are three-fold.

1. To present the PSOA, the GA, the CPGA and DE algorithm and to convince the
reader of their usefulness as optimizers of engineering/scientific systems.

2. To present my understanding of the goals of practical optimization and how to achieve
them.

3. To create an algorithm which can be said to be the most suitable for use in conjunction
with the cataclysmic variable modeling program.
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Chapter 2

Optimization

2.1 General Overview

2.1.1 A definition of optimization

The goal of optimization is simple. Given a system that depends on certain parameters,
find the particular set of parameter values that make the system optimal in some sense.
This system may be mathematical or physical in nature. Optimization problems can always
be phrased as minimization problems. As such, optimizing the system implies finding the
minimum of a related objective function, which is written in terms of the system parameters.
Therefore, for the purposes of this dissertation, the optimization problem is understood as
follows.

Given F (x), find x ∈ S which minimizes F (x) subject to certain constraints on x.

f∗ = F (x∗) = min {F (x)|x ∈ S} (2.1)

It is our responsibility as engineers/scientists to define F . A task that is not always straight-
forward but is always critical. F is known as the objective function or, synonymously, the
cost function. x is a vector representing the parameter set of F and as such it represents a
subset of the system’s parameters. S is the domain over which F is defined.

If there are additional relationships which some or all of the system’s parameters must
satisfy, then the optimization problem is known as a constrained optimization problem.
The equations representing these relationships are called equations of constraint. There
are many methods available for handling constrained optimization problems. Most notably,
the method of Lagrange multipliers can be used to transform a constrained problem into
an unconstrained one with additional parameters. In general though, solving constrained
optimization problems is far more difficult than tackling the unconstrained ones. Most
available algorithms have been developed for unconstrained optimization. They can be
applied to constrained problems by following a simple penalty approach. The idea governing
such an approach is that points which violate constraints are artificially penalized.

Note that the domain boundaries (i.e. the upper and lower limits of xi) need not be con-

4
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CHAPTER 2. OPTIMIZATION 5

sidered constraints in the above sense. The problems encountered in this thesis are all
unconstrained problems.

Of course, minimizing F implies finding the minima of F . Here is a definition of a minimum
taken from [5].

We say x0 is a minimum of the function F (x) if there is a region D containing x0 in its
interior such that F (x) ≥ x0 for all x ∈ D.

Refer to Figure 2.1. D is a subdomain of S. x0 is called the global minimum if it satisfies
the above definition for a minimum when the entire domain S is considered, instead of a
subdomain D. If we consider subdomains, then there may be many different points in S

that satisfy the definition of a minimum depending on how D is chosen. All such points are
known as local minima. They are local to a particular subdomain D.

x

Sub-domain (D)

Local minimum (xl)

Global minimum (xg)

Entire domain (S)

F (x)

Figure 2.1: A one dimensional minimization problem.

Ideally, the goal of optimization is to find the global minimum of F on S, of which there
may be more than one. Practically speaking though, this is both an unnecessary and an
unrealistic expectation. This last remark is explained later in the text.

Now, there is no restriction on F . That is, there is no restriction on the type of function that
F may be. However, there are a large variety of optimization techniques. For a particular
function, some techniques will search for its optimum more successfully and efficiently than
others. It is therefore necessary to try and match the algorithm with the function. This
may seem obvious but it is more easily said than done. In fact, in most cases it is impossible
since information regarding how the optimizer will handle the function does not exist prior
to implementation. A situation that is particularly true of stochastic optimizers.

Apart from the broad categorization of functions (such as linear or non-linear, differentiable
or non-differentiable, convex or non-convex), there is currently no way of characterizing the
the features of every arbitrary function. Remember that in engineering F more often than
not represents an entire modeling program which receives input parameters and outputs
design models.

We are therefore faced with two options.
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CHAPTER 2. OPTIMIZATION 6

1. We try to design an algorithm that works well at optimizing a broad range of functions
or

2. we design many different specialized algorithms and apply them all to the same function
to see which yields the best results.

2.1.2 Types of algorithms

Historically, much effort has been devoted to designing algorithms that use gradient infor-
mation to converge to an optimum. Such calculus based methods require that the gradient
vectors be calculated analytically or estimated numerically. This constitutes both the major
strength and the major limitation of these techniques. It is a strength because the methods
are able to use additional information about the structure of a function to converge quickly
on a minimum. It is a drawback, however, in that the methods are limited to use on problems
whose gradients can be efficiently estimated in practice.

Two of the main classes of optimization algorithms used in unconstrained optimization are
the direct search methods and the descent methods. Kowalik and Osborne [5] state: ”Direct
search methods are based on a sequential examination of trail solutions which, by simple
comparison, gives an indication for a further search procedure. These methods require only
the ability to evaluate the function at a given point and can be used for general continuous
functions. In general they do not give a high rate of ultimate convergence and hence are
inefficient for finding minima with high precision.” They include the method of Rosenbrock
and the popular Simplex method [6].

Probably the most widely used group of methods for unconstrained optimization are the
descent methods. They are defined as those methods in which ”the solution of a general
optimization problem is found by solving a sequence of one dimensional problems”, [5].
They include both calculus based algorithms (eg the method of steepest descent) and non
calculus based approaches (like Powell’s method). The algorithms which do not require the
calculation of gradients act on an assumption about the nature of the cost surface. Usually
it is that the function has a positive definite quadratic form in a region surrounding the
minimum.

Typically, a point is chosen in the search domain from which the search will move a certain
distance in a predefined direction. The direction is chosen so that the algorithm will converge
to a minimum as quickly as possible. Just how the direction is chosen is obviously algorithm
specific. In the calculus based methods it is normally related to the local gradient.

The ”most useful family of methods currently used in unconstrained optimization” [5] are
a subgroup of the descent methods known as the conjugate direction methods. They are
based on the assumption that the search is ultimately more efficient if the successive search
directions are linearly independent. Their convergence proofs are all based on the above-
mentioned assumption that the cost functions have quadratic form. Most of the members
of this family also require that the derivatives of the functions be known. In practice, they
are seen to have superior convergence rates compared to the other families of algorithms.
Powell’s method, which I make use of as well, is a conjugate direction method which does
not require gradient information.
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CHAPTER 2. OPTIMIZATION 7

A common difficulty associated with the use of ALL the methods described above is that
they are local in scope. That is to say: they will converge to a local minimum close to the
starting point of the search, which is chosen randomly. Then the search terminates. In order
to search for the global minimum it is necessary to restart the algorithms from many different
initial points in the domain. One keeps track of the results and defines the apparent global
minimum as the minimum of all the terminal points. One may even employ a statistical
analysis to give an indication of how likely it is that the true global minimum has been
found in this way. An example of which can be found in [7]. However, the more a function is
fraught with local minima or the greater its dimensionality, the more the efficiency of such
search procedures must decrease when applied to it.

To reiterate: the conventional optimization algorithms whose descriptions I have painted
above (albeit in broad strokes) are easily misled by local minima. Add to that the difficulty
with their handling noisy systems, discontinuities in the objective functions and discrete
parameter spaces and we find ourselves with a powerful motivation to find some class of
algorithms that is unaffected by these factors. Algorithms such as simulated annealing,
hillclimbing and those algorithms presented in this thesis, seek to overcome these deficiencies.
Of course, finding that hallowed algorithm which actually fulfills these objectives is like
discovering the pot of gold at the end of a rainbow. Stochastic algorithms must at least be
less prone to one or more of the above factors. Otherwise there would be no justification for
using them in the context of optimization.

2.2 Philosophical discussion

2.2.1 A note on structure

If we are to optimize a system then the behavior of that system must be structured. If the
information presented is completely unstructured (pure noise), then we cannot hope to devise
a method of finding the minimum of such information with greater efficiency on average than
that of a random search scheme (or an enumerative scheme, for discrete systems).

Also, a search scheme must be structured. A random search is an unstructured search. It
behaves the same way regardless of the structure of the system it is acting on. It can therefore
be used as a baseline of efficiency and efficacy with which to compare the structured search
schemes. The structure of a search scheme is implicit in the word ’algorithm’.

We ideally wish to allow a structured search scheme to exploit the structure of the system in
finding the system’s optimum. This is what the gradient based techniques excel at. Loosely,
they use the gradient at a point to judge the behavior of the system close to that point.
This is also why it is useful to assume a quadratic structure close to a minimum. Standard
methods of tackling such structures are available.

For a search scheme to have merit, it is required to be a great deal more successful at
optimizing functions than a random search is, when acting on the particular class of functions
that our interests are confined to.

This last comment leads to the question of whether it is possible to write an algorithm which
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CHAPTER 2. OPTIMIZATION 8

is always more successful than a random scheme for any class of functions.

2.2.2 No free lunch

Here (apparently) is the answer:

In 1995 Wolpert and Macready [1] established statistically that it is not possible to write
an optimizer that outperforms all others for every function. Their thesis is called: ”No
Free Lunch Theorems for Optimization”. It manages to prove that if all possible functions
are distributed uniformly, then all optimizing techniques will have the same performance
on average. In other words they will perform no better or worse than a random search
algorithm on average. Conversely then, it admits that for any particular function a routine
exists which is best suited to finding its optimum. But we cannot expect the same algorithm
to be superior to all other optimizers when applied to any other function.

It should be noted that, strictly speaking, the phrase ’optimization techniques’ is not meant
to encompass all possible forms of optimization algorithms. It does however include the
stochastic algorithms. They cannot understand a function. Meaning that they neither make
use of gradient information nor any assumptions regarding a function’s form. So we are
given to understand that the very universal applicability of the stochastic algorithm comes
at a price. This class of algorithms too, has its own inherent drawbacks. This news came as
somewhat of a shock to those who believed that natural selection – which is modeled in the
operation of the genetic algorithm – was the ultimate optimizer.

There are those who debate the veracity of the theorems and of the assumptions on which
they are based. I can neither prove nor disprove the theorems. However, even with my
limited experience in developing stochastic algorithms, I can testify that it is possible to
tinker with a particular algorithm to improve its performance when applied to a particular
function – with the likely consequence that its performance on other functions is degraded.
I have also not yet found an algorithm that out performs all others on every one of the test
functions that I used.

So, for the moment I’ll accept that the no free lunch theorems hold water and the arguments
presented from here on will reflect that concession. Naturally, the forthcoming discussion
and indeed the comments which appear throughout the remainder of the dissertation pertain
only to optimization accomplished using stochastic methods.

So why bother?

The no free lunch theorems beg the question: why even bother to develop new algorithms if
all optimizers have equal performances on average? This would be a tricky question if the
functions that we wished to optimize were actually distributed uniformly throughout the set
of all possible functions. Conceptually, at least, we can expect that this is not the case.

Engineers and scientists are confined to their areas of specialization. Within these areas,
the models which they wish to optimize bear similarities. It can be expected then, that for
any area of specialization (be it particle physics, structural engineering, . . . etc), the cost
functions that undergo minimization are loosely related to each other.
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This in turn implies that it is possible to find an optimizer that has better than average per-
formance with respect to all the problems encountered in a particular field of specialization.
Also, an algorithm exists whose performance is the best on the whole when applied to that
limited class of problems. The most important proviso here is that the systems are similar.
We cannot apply an algorithm to a randomly selected problem set and then make general
claims about its performance, comparing it with other optimizers. If we wish to do so, we
must at least be able to say that the problems are not randomly distributed, i.e. there must
be something which links them. This is necessary.

2.3 Judging optimizer performance in practice

As was mentioned in the preceding sections, the goal of optimization is to find the true global
minimum of a cost function. It was also noted that this is an unrealistic and unnecessary
expectation practically. It is unrealistic in light of the no free lunch theorems. Though an
algorithm may exist that will find the global minimum faster than any other algorithm, it is
unlikely to be the specific one that is used. If it is, simply changing the problem will destroy
that situation.

This does not matter however. Entertain for a moment the idea that we wish to optimize a
structural design so that it will have the minimum mass possible without compromising its
strength. Unless we are extremely lucky in our initial choice of system parameters, virtually
any optimizer is likely to find a more optimal set of parameters fairly quickly. Whether
this set represents the mathematically global minimum is irrelevant in practice. All that
matters is whether we, as the designers, are satisfied with the results. We cannot know what
the global minimum is anyway, so we have no basis by which to judge the success of the
optimizing scheme save our own expectations.

A typical graph of cost versus number-of-function-evaluations is presented in Figure 2.2.
Here, cost is the measure of optimality, and the number of function evaluations is indicative
of the computational effort required to solve the problem. It is assumed that the optimizer
eventually finds the true global minimum. In general, there is a relatively quick improvement
in the cost which gradually levels out. Given that the longer an optimizer runs the more
expensive the process of optimization becomes, we are interested in arriving at point B as
quickly as possible. The absolute minimum (point A) is actually uninteresting. It is too
costly to find and does not represent a significant improvement over B anyway. In judging
an algorithm’s performance then, we are solely interested in the two measures B and n. A
search scheme is preferred if it finds an adequate point B in less time n on average than any
other algorithm when applied to the same class of functions.

Note that the point B is ultimately decided on by the user. Also, this process is unfortu-
nately repetitive. The graph produced each time an optimizer is run will vary. Therefore, a
statistical measure of the algorithm’s performance is required. An optimizer may be defined
as ’good’ if it satisfies the following criteria.

1. It achieves a satisfactory point B in a satisfactory time n in a high percentage of the
occasions that it is run.
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Function evaluations

A

B

Cost

n

Figure 2.2: Typical stochastic optimizer performance.

2. For a particular function, there is a low variance in n over a large number of imple-
mentations.

3. The time n is low on average for a particular set of functions, when compared to the
same measure for other optimizers applied to the same set of functions.

Designing an optimization algorithm and assessing its efficacy and efficiency is thus a com-
parative procedure. It takes time and computing effort which may initially be seen as an
unwarranted expense. There is simply no way of circumventing this situation without loos-
ing some measure of confidence in the algorithm which one plans to use. These penalties are
necessarily incurred in developing a scheme that is well suited to particular needs. This is
in itself a consequence of the no free lunch theorems. No free lunch rests on a conservation-
of-information principal [2] and so, as with all conservation laws, to win some you have to
loose some.

So, the choices are:

1. We select an optimizer essentially at random and let it loose on our unknown class of
functions. We have no knowledge a priori of how well suited to the functions it is and
little feeling for how optimal the result will be.

2. We spend time and effort developing an algorithm suited to our class of functions.
Thereafter we may apply the optimizer to any additional function of the same class
with some confidence that it is doing a good job. This confidence is based on experience.
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CHAPTER 2. OPTIMIZATION 11

In engineering, confidence in one’s design, design methods and results is paramount. Hence,
option 2 is the most appealing one in my view. Choosing the second option raises some
pertinent questions.

• All right, so how is it determined whether or not an algorithm is well suited to optimize
a certain class of functions?

• How is success defined in searching for an optimum?

• How exactly are functions classified and grouped into classes?

2.3.1 The question of success

New algorithms are most often tested by using them as analytical function optimizers. By
’analytical function’ I mean the type of thing we all implicitly understand the word ’function’
to denote. That is, a mathematical mapping operation that is algebraically expressible. I do
not mean the numerical models that the optimizer will eventually be used on. Models which
are too complicated and lengthy to be written down on a piece of paper, or which may not
even be physically expressible in close form. Furthermore, if these algebraic functions are to
be used as test beds, then those that possess global optima that are analytically determinable
may as well be used.

The issue of success is skirted in this way. An algorithm is successful if it approximates what
is known to be the global optimum to within a certain tolerance. Otherwise it is unsuccessful.
Since the situation may arise that a search will never find the global optimum, a limit is
simply set on how long it is permitted to run. If an algorithm is unsuccessful in that time,
it is unsuccessful period.

The above paragraph is facetious. We should not judge the success of a search procedure
purely on its ability to find the global minimum. Unfortunately, since these algorithms are
often tested as analytical function optimizers, it is natural and almost unavoidable to do so.
In fact, in Chapter 4 the reader will see that this is precisely what I have done. However,
in Chapter 5 the reader will notice that defining what a successful search is, is not at all
straight forward when dealing with real world problems. The paradigm shift necessary to
judge an algorithm’s performance in both of these instances constitutes one of the major
themes of this thesis.

In practical terms success can only be defined relative to the user’s expectations. It is a sub-
jective measure and the user bases her expectations on experience gained whilst using the
algorithm. Of course, this idea of using prior expectation to form an idea of the algorithm’s
performance can be generalized statistically and incorporated into the algorithm as an au-
tomatic stopping condition. Whether the process is automated or not, while an algorithm
is being designed to optimize systems significant to a particular field of specialization, it is
imperative to apply the algorithm to several test systems. All of the test systems, of course,
belong to the same class of function as the systems on which the optimizer will be used in
practice. In addition, several different variations of the algorithm should be run in order
to allow the designer to optimize the optimizer. This has been automated in the past by
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CHAPTER 2. OPTIMIZATION 12

applying a so called meta-optimizer, which accepts the base algorithm’s control parameters
as the set of variables for which it must find an optimal combination, see [3].

This repetition not only allows the designer to find the most optimal settings for an algorithm
but also, more importantly, breeds confidence in its operation. The repetitive process allows
a baseline to be set for the designer’s expectation by which the algorithm’s success in the
future is judged.

I advocate that stochastic optimization algorithms should be designed specifically for the
particular systems on which they will be run. In this case the user and the designer are the
same person, or at least share a deep understanding of the systems to be optimized as well as
experience at applying the optimizer. I disagree with the concept of designing off-the-shelf
stochastic algorithms which anyone may use should they decide to optimize an arbitrary
system.

Let me again make it clear, however, that the above argument rests on two assumptions.

• That the no free lunch theorems are true.

• That the systems to which the algorithms are applied are similar.

So, in answer to the first two questions posed on page 11, we should make a subjective
determination of whether an algorithm is well suited to a class of functions by employing
brute repetition. We should judge the optimizer’s success based on our experience at opti-
mizing similar systems. Should we wish to do so, such judgment calls may be built in as an
automatic feature of the algorithm.

OK, what of the third question? How do we know that the algorithm will perform well on
other systems that we are interested in? How do we know that these systems are sufficiently
similar to the test systems that have already been optimized? The plain answer is that we
don’t. There is no general process that I know of that enables us to decide when the second
assumption above is true or false. It would be an immeasurable help if someone were to
come up with one. Proceeding from the standpoint that the assumption is true is optimistic.
However, experience in the practical application of these stochastic methods indicates that
such optimism is justified.

As a last word:
Starkly put, an algorithm is successful if it meets with a user’s expectations – however those
expectations are formed. In practice those expectations must be met within a certain period
of time. In other words, in addition to being effective, the algorithm must also be efficient.
Referring back to Figure 2.1, some way is needed of determining when point B is reached
which is problem independent. Of course, the global minimum is not known. Nor is it known
how quickly the solutions will improve. This is particularly true with stochastic algorithms
such as GAs with which better solutions are, quite literally, found by chance. In short, a
termination criterion needs to be defined.
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CHAPTER 2. OPTIMIZATION 13

2.4 Termination criteria

A search routine must be terminated when it becomes clear that further search would be too
expensive to be offset by the expected improvement in the quality of the solutions found.
Population based algorithms exhibit a tendency to converge to a point in the search domain.
That is, while the individuals that make up the population are initially distributed randomly
or spread uniformly throughout the search domain, after a number of generations they begin
to group together at the most optimum point(s). At such a time, the population ceases to
effectively sample the function’s domain space. The fitness of the the best member of the
population is no longer likely to improve greatly, rendering further search pointless. It is
hoped that population convergence coincides with the discovery of the global minimum, or
at least a sufficiently good approximation thereof.

Since the population’s average fitness should approach the fitness of the best member during
convergence, the difference between these two measures is often used as a parameter with
which to decide on termination. The critical value of said difference is selected by the user
and when the difference value falls below the critical value, the search is terminated.

Another popular method of deciding whether or not the algorithm should be halted is to
use the rate of improvement of either the population’s average fitness or of the the best
member’s fitness. Refer back to Figure 2.2, which may illustrate either of these. The reader
will appreciate that the graph flattens out as the number of iterations increases. This hap-
pens because the improvement of the population’s fitness during a fixed interval, say five
generations, decreases as the population either converges or stagnates. An appropriate stop-
ping ’improvement rate’ is selected and compared to the rate at which the chosen measure
has improved during the most recent set interval. The routine is simply to track the pop-
ulation’s best fitness (or average fitness) as it changes from generation to generation. If it
does not improve by a certain factor during a predefined number of generations, the search
is terminated. This method is not advisable since evolutionary algorithms are sometimes
seen to exhibit stable unchanging fitness values (both population average fitness and best
member fitness) over many generations. These fitness values commonly jump to better lev-
els suddenly. In GAs this phenomenon is linked to an interaction of the input parameters
– specifically the population size and the mutation rate. It is known as epochal behavior,
a phrase coined by Mitchell et al [8]. They developed a model of GAs which incorporates
a Markov chain analysis and accurately predicts this behavior for a selection-reproduction-
mutation GA applied to their ”Royal Road” function. Anyway, one is likely to terminate
the algorithm prematurely if this rate of improvement stopping criterion is used and epochal
behavior manifests itself.

The simplest termination rule is simply to decide on a maximum number of function evalu-
ations and to stop the search once that number has been reached. It is always a good idea
to include this one together with any of the others, just in case they are defeated.

Of course, if it is possible to define exactly when the user is happy with the results of the
search, then the algorithm should obviously be stopped when this occurs. An example would
be if the global minimum is already known, such as during the design of the algorithm when
it is applied to known functions. Since it is crucial to develop a stopping criterion that is
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problem independent, this criterion should be accompanied by a more general one. This
routine activates if the algorithm has found the global minimum and the other termination
criteria have failed to recognize this fact. It exists to prevent unnecessary computation.
Another interesting example in which this criterion is useful is when a limit is placed on how
good the eventual fitness of a population member should be. It may sound strange that one
should wish to limit the optimality whilst performing minimization. Nevertheless, this is the
case in the project which is presented in Chapter 5.

Unless this last criterion is used, our judgment of the optimizer’s success and our decision of
when the algorithm should be halted are only weakly related. In general, the determination
of whether or not a search is successful is made after termination.

The choice of a termination criterion has a huge effect on the perceived performance of
an algorithm. An ill suited termination criterion will degrade the apparent performance
of an algorithm in one of two ways. Firstly, the criterion may force the algorithm to halt
even though it is still capable of finding improved solutions. The algorithm, therefore,
appears to be ineffective. Secondly, the criterion can fail to terminate the algorithm when it
consistently shows little improvement, thus making the algorithm look inefficient. The effect
of the termination criterion is controlled by setting certain control parameters. However, the
effect is different for every function that is tackled and the change is unpredictable.

It is, therefore, not possible to divorce the behavior of the termination criterion from that
of the algorithm, unless the termination criterion is absent. The two must be considered a
unit and the termination criterion plays a very important part.

2.5 Efficacy and efficiency

We should judge the effectiveness of an algorithm by testing it many times on many different
systems and tracking its success. Efficacy is thus a statistical measure of success.

Efficiency, on the other hand, is related to the computational effort required to achieve
success. It is also a statistical measure but it can only really be defined relative to the
performance of other optimizers applied to the same set of problems. In other words, if two
optimization algorithms are equally effective, the one that requires fewer function evaluations
is the most efficient. Designing an algorithm for use on functions whose global optima are
not known is largely an exercise in managing a trade off between efficiency and efficacy.

2.6 No free lunch revisited

Much of the preceding discussion is based in part on the assumption that the no free lunch
(NFL) theorems are true. The theorem of interest in this thesis is the one which makes a
statement about cost functions which do not change as a function of time. In this section
this theorem is examined more closely. The assumptions on which the theorem is based are
presented. The concepts which arise here are all taken from Wolpert, Macready and English
[1, 2].
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The proof of the theorem is not shown here. Interested parties should consult the cited
papers.

2.6.1 Preliminaries

There is more than one way to approach the proofs of the NFL theorems. However, all
of these ways require the same set of assumptions and definitions. The first prerequisite
statement is that

The problem considered by NFL is combinatorial.

A computer cannot store real numbers. It can only store a representation of a real number.
The accuracy of this representation is determined by the word length of the machine. It
also cannot store numbers larger than a certain value (again machine dependent). Nor can
it represent all the numbers which it is able to store to the same precision. Anyway, the
long and the short of it is that any computer is only capable of representing a finite set of
numbers. This set may differ in size for different computers and it is very very large for most
computers but in all cases the sets are finite (both in content and in extent).

The starting point for NFL is to consider two sets, B and C, both very large but both finite.
A function f is then defined as a mapping of all the points in B to points in C.

f : B → C

Note that each point in B is associated with a single point in C. More than one point in
B can be mapped to the same point in C and there can be points in C that are associated
with no points in B for a particular function. If |G| denotes the number of elements in a
set G then the number of possible mappings of the sort just described is |C||B|. From here
on B will be considered the domain and C will be seen as the union of all possible function
ranges.

Two functions that accomplish the same mapping for all points in the domain are obviously
considered to be the same function. There are, therefore, a finite number of functions. The
NFL theorem that is described here shows how two different optimization algorithms perform
when applied to all of these functions. In order to do this, a definition of an optimizer is
required.

2.6.2 The concept of a walk

A walk is a sequence of points (s) selected from the domain of a function f . s can be written
as s′x where s′ is a sequence consisting of all of the points in s except x and x is the last
point in s. Now, a sequence s is a walk of f if and only if s is empty or

1. s′ is a walk of f and

2. x does not occur in s′ and
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3. x is selected without reference to the values of any points other than those of the points
in s′.

’Values’ are the costs associated with the points contained in a sequence (i.e. the function
values f(s′)). A walk of length m can be written as sm which denotes a sequence of points
x1 . . . xm in B. The associated values vm form a sequence of points in C, y1 . . . ym.

In terms of the NFL theorems, an optimization routine is defined as a routine that samples
points in the domain in such a way that it generates a walk. A stochastic optimizer can, of
course, visit the same point twice. However, it does not do so by necessity. It does so at
random. It is argued that optimizers with a memory could avoid evaluating the same point
twice. Duplicate points are simply ignored and optimizers are compared using sequences
consisting of unrepeated points.

The NFL theorems apply to those optimization algorithms whose action is consistent with
the above definition of a walk generator. Gradient based algorithms use gradients at a point
(p) to decide on which point to sample next. Gradients provide an indication of the values
attached to the points surrounding p. The sequences generated by gradient based routines
depend only on the starting point of the search because the next point sampled always
follows directly from the information obtained at the previous point. NFL, therefore, does
not apply to gradient based routines.

2.6.3 The theorem

The no free lunch theorem applicable to this thesis asserts the following.

∑

f

P (vm|f, m, a) =
∑

f

P (vm|f, m, b) (2.2)

In equation 2.2, vm is a particular value sequence of length m that is achieved by feeding a
walk sm to function f . a and b are two different optimization algorithms (walk generators).
P (t|x, y, z) is read as: the probability of finding t given x, y and z.

The essence of this theorem is that all possible value sequences are uniformly distributed
provided that all possible functions are uniformly distributed. There is no single value
sequence that will be generated more frequently than any other when all possible functions
are considered. Then, the total probability of finding any particular value sequence is the
same for all walk generators, when said probability is summed over all possible functions.

As a consequence of this theorem, the term ’on average’ is understood to mean ’when summed
over all possible functions’ in this text.

Any determination of an optimizer’s performance must be made according to the value
sequences it generates. An obvious example would be to characterize performance according
to the minimum value present in a value sequence. Since the probability of forming any
particular value sequence is the same on average for any optimizer, its performance must be
the same on average as well.
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2.6.4 A small example

Let’s construct a small domain B and a small range C.

Let B = {P, Q, R} and C = {α, β, γ}

The number of all possible mappings is 33 = 27. Table 2.1 shows the twenty-seven different
ways of associating all the points in the domain with points in the range.

Function P Q R
f1 α α α
f2 α α β
f3 α α γ
f4 α β α
f5 α β β
f6 α β γ
f7 α γ α
f8 α γ β
f9 α γ γ
f10 β α α
f11 β α β
f12 β α γ
f13 β β α
f14 β β β
f15 β β γ
f16 β γ α
f17 β γ β
f18 β γ γ
f19 γ α α
f20 γ α β
f21 γ α γ
f22 γ β α
f23 γ β β
f24 γ β γ
f25 γ γ α
f26 γ γ β
f27 γ γ γ

Table 2.1: The twenty-seven mappings of the NFL example.

Now, assume that m = 2. There are only six different walks of length 2 available in this
example. They are {P, Q}, {P, R}, {Q, P}, {Q, R}, {R, P} and {R, Q}. Any two walks can
be chosen at random. I choose {P, Q} and {R, P} and name them a and b respectively. A
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value sequence of length 2 can also be chosen at random, say {γ, α}. Call this value sequence
v

eg
2 .

Assume that the order of the value sequence matters. The reader may now calculate
PROB =

∑

f P (veg
2 |f, 2, w) for w = a and w = b. If this sum is normalized the reader

will find that the PROB = 3

27
in both cases. Walk a yields the desired value sequence for

f19, f20, and f21 whilst walk b yields the same value sequence for functions f3, f6, and f9.
Both find this particular value sequence for three out of the twenty-seven possible functions.

Every one of the six walks listed above will find any particuler value sequence the same
number of times when all of the functions are considered. Hence, the probability of finding a
particular value sequence is independent of the walk generator. In other words, it is indepen-
dent of the optimization algorithm used and average performance is thus also independent
of algorithm. More clearly: all optimizers have the same performance on average.
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Chapter 3

The GA, the DE and the PSOA

3.1 The genetic algorithm (GA)

The genetic algorithm, due principally to Holland [9], is a search and optimization technique
that mimics the processes involved in natural selection in order to search through a finite
and structured set of points. The GA is suited to searching through a discrete domain, the
number of points being finite. If it is necessary to optimize a system whose parameters are
continuous in nature, a method must first be found to discretise them before the GA can be
applied. This is so because the GA’s formalism requires that each point in a search set must
be given a form of string representation through one or other coding mechanism. The coding
mechanism is decided by the designer. No set code is dictated for the genetic algorithm.
If an encoding is possible, the genetic algorithm proceeds in accordance with the following
steps [3, 10].

1. Select an initial population of different strings. The size of the population is far smaller
than the number of points in the search domain.

2. Decode the strings to positions within the search space.

3. Evaluate the objective function at each point and associate the resultant cost with the
corresponding string.

4. Apply genetic operators to the strings in the population to arrive at a new population
of strings.

5. Evaluate whether or not the search may be terminated. If not, proceed from step 2.

The above points constitute the basic framework common to all genetic algorithms. There
are a multitude of ways of creating algorithms that are consistent with this framework.
The designer is free to choose her own method of encoding strings and her own method of
discretising search spaces. She has a range of genetic operators to choose from and may
evaluate convergence as she sees fit.

19
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The crucial aspects of GAs though, is that they require some method of codifying points into
strings and that the genetic operators used in step 4 are derived from our understanding of
natural selection. For this reason, GAs are stochastic in nature.

Genetic algorithms were first properly developed by John Holland in the 1960s and 1970s
and were further popularized in the 1980s by David Goldberg, one of Holland’s students.
Holland also developed the theory of schema, a statistical description for the evolution of
GA populations. It still serves as the basis of our understanding of the effects of the main
GA operators.

3.1.1 Coding

Let us assume that we wish to find the optimum operating point of a system whose associated
objective function depends on three independent variables (say: x, y and z). These three
variables define an operating space for the system with respect to its objective function.
They constitute the domain of the objective function, which associates a unique cost with
every distinct combination of values that the variables can assume. It defines, then, a so-
called ’cost surface’, which must be searched for its minimum point. We may think of the
successive generations of points searching the cost surface as animals exploring a plain. It
can be a handy analogy.

Lets further assume that each of the three variables may be varied continuously between
predefined lower and upper bounds. However, we must be able to represent any point in
the domain by a string of finite length. A string, by definition, is composed of a number of
characters occupying the bit positions of the string.

   1  A   O    9   4  V X            $  # L

Figure 3.1: A string representation.

In addition (and also by definition) we are limited to a finite vocabulary of legal characters.
This vocabulary is dictated by the chosen coding mechanism. For example, the binary coding
mechanism limits the number of available characters to ’0’ and ’1’, so that each bit position
in a string can only be either a ’0’ or a ’1’.

In any event, for all coding mechanisms, a string can only have a certain finite number of
states. However, since our variable values range continuously, our system has an infinite
number of distinct states. So, it is necessary to limit x, y and z to a finite number of
possible values. In doing so we ’quantize’ the domain space. How this is done, and to what
refinement it is carried out, is at our discretion. However it is accomplished, this process
converts the search domain to a finite but usually very large set of points. For most systems,
the number of points is so large that it is highly inefficient or practically impossible to check
every single one. A search method which does just this is called an enumerative scheme.

As far as GAs are concerned, the only constraint guiding the discretization process is that
each and every point must be expressible as a string of identical length. The number of
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characters that the string is composed of is defined as its length. The quantization of the
space, together with the method of coding, dictate the string’s length.

It is standard practice to code each variable into a substring known as a gene. Then, the
genes are concatenated to form a string. This string is known as a chromosome. There is no
reason why the genes should be concatenated to form a chromosome as opposed to forming
the chromosome by mixing their characters in some way. But there is equally no reason for
thinking that mixing them would be fundamentally better.

Gene x

Gene y

Gene z

Figure 3.2: A chromosome.

That entity which contains all the coded information about a specific search point is called
a genotype. If all the genes are present in a single chromosome then that chromosome is also
the genotype. This is known as a haploid representation. Note that in some representations
a number of chromosomes together define the genotype. In this case individual traits are
coded into two or more genes, one of which is dominant and the others are recessive. Hence
diminance criterion must be invented in addition to the usual operators. A two-chromosome-
per-genotype representation is known as a diploid representation. It is also commonly used
but researchers remain unconvinced of the usefullness of polyploid representations for the
optimization of static systems [9, 11]. I have used the haploid representation exclusively
since polyploidity introduces special difficulties in coding the genetic operators.

The reader will notice that the jargon of genetics and heredity has been borrowed by GA
researchers and absorbed into the field of genetic algorithms.

As far as the question of which code to use is concerned, the programmer is free to use her
own imagination. Having said that however, researchers in the field (particularly Holland
and Goldberg) have supported using a binary representation. They contend that the ge-
netic crossover and mutation operators become more efficient as the character vocabulary
is limited. Furthermore, binary Gray code has been shown to be a superior option to the
standard binary encoding in some instances [11]. Nevertheless, the standard binary encoding
is probably the most widely used coding system amongst GA users. It is also the simplest
to code, so to speak. Its disadvantage is that string lengths grow as character vocabulary
is minimized. The binary coding mechanism thus results in longer string lengths than any
other coding routine.

3.1.2 Initialization and implementation

The first step in a GA is to select a starting population of chromosomes. This is normally
done randomly but the programmer may prefer to select a number of points uniformly
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distributed throughout the search space. The size of the population is small, typically
composing of between 20 and 50 members. Step two is to evaluate the fitness of each of
these chromosomes. This entails decoding the genotypes into points and passing the co-
ordinates to the cost function in order to calculate their associated fitnesses.

Fitness is the measure of optimality. It defines how well adapted the chromosome is. It is
a relative measure since, unless the system’s optimum is already known, the fitness of any
particular chromosome can only be judged relative to the fitness of the other members of
the population. Because it is normally the case that optimization problems are translated
into minimization problems, the lower a point’s associated function value (its cost) relative
to the other points, the greater its relative fitness. A numerical value may be associate
with the fitness of each genotype in the population. If so, fitness is almost always a direct
function of cost. However, defining the fitness is not strictly necessary since the cost is what
is minimized. No further information is required. Still, points with lower costs are thought
of as being fitter.

A new population of chromosomes is now bred by applying the genetic operators to the
chromosomes in the initial population. Then the whole process is repeated. The intention is
to breed new generations of genotypes whose associated fitnesses are higher on average than
the preceding generation’s. This is done through the repetitive application of these operators
to successive generations of the population. More importantly, it is hoped that the most fit
genotype in each successive generation constitutes a better approximation of the function’s
global optimum. This process continues until a termination criterion is satisfied.

There are three genetic operators that are key to the operation of a modern GA. Indeed,
although there are a number of other operators available, it is the combined use of the
following three that very nearly defines the modern GA. They are:

• Selection (reproduction)

• Crossover

• Mutation

3.1.3 Selection

Selection, which is also known as the reproduction operator, is simply a process by which
some members of the current population are selected to be parents. Parents are those popula-
tion members from which the chromosomes in the following generation are derived. Usually,
certain chromosomes are reproduced in or copied to a mating pool. Only the individuals that
end up in the mating pool stand a chance of becoming parents. Chromosomes are chosen
based on their fitness. The higher the chromosome’s fitness, the greater its chance must be
of being chosen for the mating pool. Seen another way, there should be more copies of the
higher fitness chromosomes in the mating pool than of chromosomes with lower fitness. Bear
in mind however that many of the lower fitness chromosomes should also be represented in
the mating pool. This is necessary to maintain population diversity. Otherwise the risk is
increased that premature convergence will occur.
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Now, since the operators are based on the processes deemed to exist in natural selection,
the procedure of selecting parents from the mating pool must involve an element of random
chance. As the reader will see, this is true for all GA operators. Chance is incorporated
by employing a pseudo-random number generator to decide the values of certain control
variables that form part of the operators.

So, a process must be found to ensure that chromosomes are selected at random from the
mating pool whilst preserving the fact that those with higher fitnesses will be more likely to
become parents. The three most popular routines for accomplishing this are:

• roulette wheel selection,

• the ranked selection scheme and

• tournament selection.

Roulette wheel selection

The roulette wheel selection process can be thought of in one of two ways.

1. If the programmer chooses to have only one copy of any particular chromosome in the
mating pool, then the chromosomes are allocated portions of the wheel proportional
to their fitness (Figure 3.3).

2. If, on the other hand, the programmer ensures that the number of copies of a certain
chromosome in the mating pool depends on its relative fitness, then each member of
the mating pool is assigned one slot on the roulette wheel (Figure 3.4).

Either way, higher fitness chromosomes in the mating pool occupy larger portions of the
wheel. The wheel is then spun. That is, points on the wheel are picked at random to
determine which chromosomes are mated in pairs to produce offspring in the next generation.

B: 25%

D: 10%

A: 50%

C: 15 %

Figure 3.3: Roulette method 1
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D = 1

A = 10 members

C = 4 B = 5

Figure 3.4: Roulette method 2

Ranked selection

In ranking selection procedures, the chromosomes in the mating pool are sorted according
to their fitness. Then each chromosome is assigned an offspring count based solely on its
rank (its position in the sorted list) not its fitness. Alternately, the probability that a
chromosome will be selected as a parent is based on its rank. This may be thought of as
a variation of the roulette wheel process, where the portions of the wheel that are assigned
to each chromosome depend on the chromosome’s rank only. Parents are again paired at
random.

Tournament selection

A subset of the mating pool is chosen at random. The chromosome with the highest fitness in
this subset becomes a parent. The process is repeated for each parent. Once again, parents
are paired off at random.

Note that a selection procedure is simply a method of ensuring that genetic information
from the higher fitness members of the current population has the greatest chance of perco-
lating through to successive generations. This is nothing other than survival of the fittest.
It is assumed that such highly fit chromosomes contain instances of information (substrings)
that are better than those of which the lower fitness strings are composed. It is such in-
formation that must be allowed to advance. I will provide a clearer discussion of this tenet
during the explanation of Holland’s ’building block hypothesis’.

The reader may well ask: is it necessary to employ random behavior in the selection process?
Surely a more deterministic way of doing things would work equally well. Well, this is what
the ranked selection procedure seeks to achieve, at least in part. There is no evidence that
the process works any better or worse than the other schemes on average. In general, GA
researchers try to preserve the random nature of the processes coded in the GA. It is tacitely
assumed that it is precisely this element of chance that makes natural selection an effective
optimizer.
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3.1.4 Crossover

Crossover is the process by which genetic information is shared/contributed by a pair of
parent genotypes to produce children. In short, crossover is a mating procedure.

A A B B

C

A A B B B B

CC C D D D D D D

Crossover point

Figure 3.5: A crossover point.

A crossover point is selected at random in the parent strings, Figure 3.5. The bits before the
crossover point in one parent are combined with the bits occurring after the crossover point
in the other chromosome to produce the new offspring string, Figure 3.6. The bit positions
are not rearranged. The number of children produced by a pair of parents is arbitrarily
chosen by the programmer. Naturally it is only possible to construct two different offspring
chromosomes with a single crossover point in the haploid representation.

A AA A D D D D D D

Figure 3.6: A resultant child chromosome.

As with all other GA operators, there are variations on the theme. Various researchers have
experimented with two point crossover [12], or multiple point crossover [13]. As the names
suggest, more than one crossover point in the same chromosome is selected. The bits are
then inherited accordingly. There is no compelling evidence which indicates that multiple
point crossover represents a consistently more successful scheme than single point crossover.

Essentially, all crossover does is select which chunks of genetic information are contributed
by which parents. Note though that normally programmers prefer crossover to occur with a
probability (of about 0.9). Thus, crossover does not necessarily have to occur between every
two parents. In those cases where crossover does not take place the parent chromosomes are
advanced unchanged to the next generation.

3.1.5 Mutation

Once selection and mutation have combined to form a new population of offspring chromo-
somes, mutation is applied. A certain percentage of bits is chosen based on a predefined
mutation rate. Perhaps 4 percent of the bits inherent in the entire population. Exactly
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which bits are selected, and from which strings they are chosen, are random choices. The
characters which these chosen bits contain are overwritten with a different character chosen
at random from the remainder of the set of legal characters.

Mutation is primarily responsible for curbing early convergence to a non-optimal point dur-
ing the initial stages of the GAs implementation by protecting against the loss of genetic
diversity. The initial stage of the search should ideally be characterized by dispersed sam-
pling of the cost surface. It is termed the ’global’ phase. Genetic algorithms utilizing small
populations display a tendency to rapidly spread fit information throughout the popula-
tion. Eventually (quite quickly, actually) this can lead to a situation where the population
is composed entirely of copies of the same chromosome, or at least a situation where all
chromosomes share a high degree of similarity.

This situation is termed premature population convergence. It is undesirable since there is
then no way that selection and crossover can combine to sample new points in the domain.
A judiciously chosen mutation rate prevents this situation from occurring.

However, there is a flip side to this coin. Later in the GA implementation the population
will naturally converge on a region in the domain. Ideally this region includes the global
minimum. It is then desirable that the algorithm search this region exclusively in order to
converge to better approximations of the minimum. This phase of the search is termed the
’local’ phase. Unfortunately a high mutation rate will also prevent convergence here.

The choice of mutation rate must take both phases into account, so that the algorithm
will not be prevented from performing well in either phase. A more intelligent mutation
operator decreases the value of the mutation rate at certain times during the search. Such
a scheme is called stepped mutation. In the limit the mutation rate may be changed after
every generation. The scheme is then called a ramped mutation scheme. Ramping need not
be linear with generation count.

Optimum mutation rates are inextricably linked with the choice of population size. The
larger the population, the lower the mutation rate needs to be to offset premature conver-
gence.

3.1.6 Other operators

GAs need not incorporate all of the above three operators, nor are GAs required to use
them exclusively. Indeed, much research is done on mutation only GAs. However, for the
purposes of practical optimization, GAs usually use the above three operators or variations
thereof, together with one or more advanced operators. These extra operators include ideas
like overlapping populations, speciation, sexual differentiation, inversion or reordering, and
the use of polyploid genotypes together with dominance rules.

All of these operators are modeled after actual genetic processes. They are not discussed
here since they are not used in any of the GAs which are presented in this study. Primarily,
researchers who model natural selection and evolution take an interest in the effects of these
operators. Interested readers should refer to [3].
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3.1.7 The building block hypothesis

As has been pointed out already, the assumption is that randomly combined genetic infor-
mation from different fit parents will lead to the creation of offspring of a generally higher
fitness. What reason is there for assuming this? Why should this process work?

The reason that we should believe that this system has merit is patently obvious. We only
have to look at the world around us to realize that the mechanisms inherent in natural
selection appear to work just fine, otherwise life as we know it would not exist. As for why
these mechanisms work, well, that is the interesting question.

In 1975 Holland presented a statistical description that still forms the basis for much of
our understanding of the workings of the GA. It is known as the Schema theorem [3, 9]
and it is based on the hypothesis that fit substrings with particular characteristics – called
building blocks – stand a greater than average chance of being incorporated into successive
generations at the expense of all other substrings. The idea is briefly expounded below.

Schemata

It is first necessary to understand the idea of schemata (singular: schema) in order to develop
the building block hypothesis. Recall that each bit position in a string contains a character
and that there are only a finite number of characters that the bit may represent. We call
this set of legal characters an alphabet. Now, a schema is a similarity template for strings.

For example:
Let’s define the number of separate characters in our alphabet as k and the string length
(the number of characters per string) as l. For a string defined over a binary alphabet, a
schema would be something like [*11*0**]. The (*) symbol is a wild-card symbol. That
is, it represents all the possible characters in the alphabet. Consequently [1110010] and
[0111001] are both strings that match the above schema. The defined characters in the
schema appear unchanged in the strings and any legal characters are allowed to occupy the
wild-card positions. We say that the strings are specific instances of the schema.

It is clear that many strings can be instances of the same schema. It is equally clear that
one single string is an instance of many different schemata simultaneously. This last is the
crucial point. In fact, an empty string of length l, defined over an alphabet of k characters,
is an instance of (k + 1)l schemata. Note that the string only possesses kl different states.
The tentative idea behind the schemata theorem is that, instead of simply processing a
population of n strings, the GA actually processes all the schemata contained in a population
of n strings. The fittest ones are filtered out and used in successive generations.

It seems counter productive to search a space of (k+1)l points instead of kl points. Nonethe-
less it is thought that this implicit parallel processing of the schemata is what makes the
GA ’tick’. The processing is, of course, handled by the operators. Lets see just what effect
they have on schemata.

Before persuing the argument, the order and the defining length of a schema will be defined.
The order of a schema – o(H) – is defined as the number of positively defined bits in the
schema. The defining length of a schema – δ(H) – is defined as the difference between the
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first and last positively defined bit positions. For example, for the schema [**1***10*1*],
the order is 4 and the defining length is (10 − 3) = 7.

The effect of reproduction

Reproduction selects fit strings from the population to become parents. It is intuitive that
fit strings are also instances of fit schemata. In other words: there is a similarity between
groups of fit strings. This similarity must be embodied in an appropriate schema. The
whole point of the GA is to identify the highly fit schemata and to form strings that are
simultaneously instances of more of the highly fit schemata than their parent strings were.

Now, if m = m(H, t) is the number of schema H in the population at iteration t, then at
iteration t + 1

m(H, t + 1) = m(H, t) · (n) ·
f(H)
∑

fj

(3.1)

where f(H) is the average fitness of all the strings that are instances of schema H. If we

define f = f(H)

(n)
as the average fitness of the population then the equation can be written

in the following simple form.

m(H, t + 1) = m(H, t) ·
f(H)

f
(3.2)

OK, so what does this tell us? Well, assume that at iteration t schema H has above average
fitness. That is, the average fitness value of all the strings that are instances of schema
H is above the average fitness of the entire population. If this is the case we can write
f(H) = f +cf with c > 1. Incorporating this assumption into equation 3.2 makes it easy
to see how the distribution of schemata evolves in a population.

m(H, t + 1) = (1 + c) · m(H, t) (3.3)

In words: above average schemata grow in number and below average schemata decay in
number with each passing generation.

The effect of crossover

Intuitively, crossover is more likely to disrupt strings of high defining length than of low
defining length. This is so because it is more likely that the crossover point will fall between
positively defined bits in schemata with larger defining lengths. This means that parents and
children are more likely to be instances of the same schema if the schema is characterized
by a low defining length.

The probability that a schema will survive crossover is

psc ≥ 1 − pc ·
δ(H)

l − 1
(3.4)
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where pc is the probability that crossover will occur when two strings are mated.

The effect of mutation

Mutation will effect the chances of a schema’s survival if an instance of the schema is mu-
tated at a positively defined bit position. This occurs with a probability pm, the mutation
rate. The probability that a specific bit will survive mutation is 1 − pm. Hence, for a
schema of order o(H), the probability that it will survive mutation intact is (1 − pm)o(H).
This means that none of its positively defined bits will be mutated. If pm � 1 then an
approximation of the probability that a schema will survive mutation can be written.

psm = 1 − o(H) · pm (3.5)

Schema theorem concluded

The combined effect that all of the three fundamental operators have on schemata can now
be found by multiplying the probabilities of surviving reproduction, crossover and mutation.
The result is equation 3.6. Note that small cross-product terms are ignored.

m(H, t + 1) ≥ m(H, t) ·
f(H)

f
·

[

1 − pc ·
δ(H)

l − 1
− o(H) · pm

]

(3.6)

This conclusion is termed the ’Schema theorem’, or the fundamental theorem of genetic
algorithms. It states that high fitness, low order, short defining length schemata succeed
to later generations at the expense of other schemata. It serves as an explanation for how
genetically desirable traits are advanced. These high fitness, low order, short defining length
schemata are known as building blocks and are thought of as superior clumps of information.

The Schema theorem is used as the basis from which further research regarding GAs is con-
ducted. Mitchell et al developed so called ’Royal Road’ functions to study which general
features of a fitness landscape make it suitable for GAs [14]. Goldberg et al [15] and Mitchell
[16] have extended the research into GA deceptive functions, using functions of Walsh poly-
nomials. This research is directed at understanding how GAs work by cataloging how they
will react to functions with certain features which may actually mislead the search. It also
tests whether the Schema theorem is sufficient to describe GA behavior.

Another avenue of research has been to use Markhov chains to model simple GAs and to
determine the effect of new operators [17, 18, 19].

3.1.8 Forthcoming discussions

Chapter 4 contains the results of some variants of the standard GA applied to the extended
Dixon Szegö test set. My goals in the study of the GA were three-fold.
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1. To illustrate the effects that varying the control parameters would have on the per-
formance of the GA. The control parameters are the mutation rate, the crossover
probability and the population size.

2. To gauge the performance of GAs containing other operators, relative to the basic GA.

3. To write a GA incorporating a line minimization technique and to test its performance.

3.2 The continuous parameter genetic algorithm

(CPGA)

There is a class of algorithms which is modeled after the genetic algorithm but which does
not utilize encoded strings as chromosomes. Instead, in the continuous parameter genetic
algorithm all function parameters are stored as elements of a vector, each element of the
vector being a real number. The algorithms belonging to this class are similar to conventional
GAs in that they too are evolutionary algorithms which typically employ the reproduction,
mutation and crossover operators. However, although the selection and mutation operators
are essentially identical in both the GAs and the CPGAs, the crossover operator used in a
CPGA is fundamentally different to that incorporated in a conventional GA.

18.2365 25.1485 4.2358 72.6325 17.2221

Genes = Parameter values

Figure 3.7: A continuous parameter chromosome.

Whilst their name suggests that they are close family of the GA, I share Goldberg’s opin-
ion [3] that the CPGAs should by no means be grouped with them. CPGAs are limited
to optimizing problems whose parameters vary continuously. Genetic algorithms, to me,
must work with a finite number of possible representations of a system’s state. The search
problem is combinatorial in nature and the basic operation of a GA must be consistent with
the description encapsulated in the Schema theorem. The CPGAs work with real-valued
vectorial representations of a system’s state and there are thus no analogues to schemata.

In this section I briefly describe the basic continuous parameter genetic algorithm and in
Chapter 4 I show how it performs. CPGAs essentially employ multi-dimensional interpola-
tion along with the standard selection and mutation operators. It is interesting that such a
simple stochastic scheme remains quite effective.

3.2.1 The basic CPGA

The basic CPGA hangs from the same framework as the normal GA. Firstly, a population of
chromosomes is chosen. Each chromosome is a vector whose elements are the values adopted
by the function’s variables (Figure 3.8).
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x

V2

V1

V3

F (x)

Figure 3.8: Vectorial representation.

These variables normally have an upper and lower bound associated with them, defining
the boundaries of the vector space. The elements of the vectors may be chosen randomly
from within these bounds or the vectors may be distributed uniformly throughout the search
space.

There is no coding step!

Once again, a fitness is associated with each of the chromosomes through the evaluation of
a cost function. Then the selection operator is applied exactly as in the normal GA and
chromosomes are paired in order to mate.

Crossover

Now, instead of a conventional crossover operator being applied, genetic information is shared
differently [10]. Of course, since there are no entities analogous to building blocks here, it is
unclear just what is meant by ’genetic information’. Anyway, crossover typically proceeds
as follows.

Assume for example that we have two parent chromosomes, each with five parameters, that
are to be mated

25.1485 4.2358 72.6325 17.222118.2365

27.3654 9.3265 65.1478 14.894512.3654

Pb5

Pa3Pa1 Pa2 Pa5

Pb2 Pb4Pb1 Pb3

Pa4

Figure 3.9: CPGA parent chromosomes.
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and a child chromosome awaiting gene values.

C3 C4 C5C1 C2

Figure 3.10: A CPGA child chromosome.

The value of each of the child’s genes is derived from the equation

Cn = β · Pan + (1 − β) · Pbn (3.7)

where β is a real number chosen randomly from the set [0,1].

The equation 3.7 represents what is known as a blending scheme. It is just an interpolation
between two points. Of course, there are once again many variations on the theme. β is
frequently chosen to be a constant (say 0.5). The conventional crossover operator is adhered
to more closely if a crossover point is chosen. Then the offspring chromosome receives the
parameter values unchanged from one of its parents for all elements before (or after) the
crossover point and blended parameter values for the remainder of the elements. Refer to
Figure 3.11.

Pa1 Pa2 Pa3 Pa4 Pa5

Pb2Pb1 Pb3 Pb4 Pb5

Pa1 Pa2

Pb1 Pb2

Blend Blend Blend

Blend BlendBlend

OR

Figure 3.11: Possible offspring.

The method of combining information here is somewhat arbitrary as it is not based on
any process prevalent in natural selection. Consequently the programmer is free to try any
crossover process that he/she deems sensible. For example, if one parent string has a very
high fitness associated with it and the other does not, it would make sense to search the
space around the fit parent. This could be done by creating offspring that are only slightly
perturbed from the fit parent by choosing β appropriately.
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Mutation

Genes, instead if string bits, are chosen at random. In the CPGA the vector elements are
the genes. The value of a chosen gene is deleted and replaced with a value chosen at random
from the allowed set that is associated with the specific variable.

The number of genes mutated in this way is decided according to a predefined mutation
rate, which is again one of the algorithm’s control parameters.

Boundary violation checks

As has been stated, the blending scheme presented above is an interpolation scheme. The
value of the gene that the child chromosome inherits is interpolated between the correspond-
ing gene values of the two parents. Since these values both fall within the upper and lower
boundary restrictions placed on the variable, there is no way that the newly blended gene
can violate its boundary restrictions. However, the programmer may easily employ a blend-
ing scheme that allows extrapolation. In this case it is possible for the CPGA to produce
offspring chromosomes which fall outside the defined search domain.

This cannot be allowed because the CPGA then searched a larger-than-required domain and
may even converge on minima outside of the specified domain. Thus, boundary checks are
necessitated. If a gene exceeds its associated boundary limitations, the mating rule must be
repeated for that gene. An alternative method for ensuring that the CPGA searches only
the required domain is to artificially decrease a vector’s fitness if one or more of its genes
fall outside their allowed range. In this case it is only necessary to perform the domain
check after the new population is formed. The check is implemented in parallel with the
cost evaluations of each vector.

CPGAs have an advantage over conventional GAs in that, for systems whose variables are
continuous, they can be applied directly – without worrying about discretisation and coding
routines. This is advantageous because such routines (particularly coding) in essence modify
the the structure of the cost surface. They play a role in determining how the algorithm
’sees’ the cost surface. This is evidenced in the fact that, for some problems which the
GA is unable to solve, simply changing the coding mechanism will facilitate solution of the
problem. Here I refer to the phenomenon of GA deception. A subject that will be addressed
more fully later in the text.

On the other hand, CPGAs cannot be applied at all to problems with discrete parameter
spaces. More worryingly, there is no analogue of the Schema theorem for CPGAs, so there is
no indication a priori that they should converge at all. They do, of course, otherwise we could
not use them. This is mainly because the reproduction operator is insensitive to whether
chromosomes are represented by strings or by vectors. Having said which, in my view there
is insufficient evidence to indicate that the blending schemes constitute effective information
sorters. The reader will see both that differential evolution represents an improvement over
the conventional CPGA and that is does not incorporate blending as part of its crossover
operator.

Given the above arguments, we may expect that the basic GA should outperform the basic
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CPGA in general. Of course, it has been stressed many times over that such sweeping,
unqualified generalizations cannot be made with any degree of certainty. Therefore the above
assertion should read: I expect the basic GA to outperform the basic CPGA on average for
all problems contained in the extended Dixon Szegö test set. The truth or fallacy of this
last statement is at least determinable by experiment.

The results produced by the CPGA appear in Chapter 4.

3.3 The differential evolution algorithm (DE)

Differential evolution is another continuous parameter evolutionary optimizer. The operators
of selection, crossover and mutation are still utilized but, as the reader will discern, the way
they operate is slightly modified in the DE implementation.

Differential evolution is a relatively new cousin of the GA and has recently met with much
success in the realm of optimizing continuous parameter functions. Storn and Price [20]
introduced it, and demonstrated that DE consistently outperforms both adaptive simulated
annealing and the Nelder Mead method at optimizing a set of problems known as the De
Jong functions [13].

Some of the applications in which differential evolution has been applied since its introduction
include: system design [21], the design of erasure codes [22], optimization of airfoil geometries
[23] and function optimization [24].

Two closely linked versions of DE are typically presented in publications. Since it has not
been shown conclusively that one consistently outperforms the other, I have implemented
only one of them. Therefore, I only describe that one here.

3.3.1 The DE paradigm

DE is another population-based algorithm so, exactly as in the CPGA, an initial population
of vectors is chosen before the operators are applied. The DE algorithm seeks to search
through a vector space by appropriately perturbing the vectors in that space. The degree to
which a vector is changed is cleverly linked to the distribution of the population throughout
the space. This is accomplished by making the perturbing vector a function of the difference
vector (Xa − Xb) formed from two randomly selected population members Xa and Xb.

The selection operator, then, accomplishes the selection of three vectors. A base vector xi is
selected together with Xa and Xb. xi is the vector which is perturbed. Instead of choosing
the base vector at random from the population, it is more natural simply to step through
the population chromosomes one by one. xi is therefore the ith member of the population
and is perturbed during the ith iteration of the algorithm.

The base vector serves multiple purposes.

• It is used as a base to generate the perturbed vector vi.

• It acts as a parent (together with vi) for a single offspring chromosome wi, known as
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the trial vector.

• Vector xi then competes with vector wi in a fitness contest.

3.3.2 DE’s operators

The genetic operators are employed in creating vi and wi. Since DE’s operators are so
similar to those of the conventional GA, I identify them by the same names here. The
survival-of-the-fittest doctrine, common to evolutionary algorithms, is unsurprisingly also
the driving force behind DE’s population dynamics.

Selection

During iteration i, the ith member of the population xi is selected and two other chromo-
somes, namely Xa and Xb, are randomly selected. The perturbed vector vi is manufactured
by adding a weighted difference vector to xi, thus:

vi = xi + F · (Xa − Xb). (3.8)

F is a constant and serves as a control parameter for the algorithm. So, the scale of the
changes induced in xi is controlled in two ways.

1. It is naturally directed by the distribution of the population through the difference
vector and

2. it is directly controlled by the user, in the shape of F .

Crossover

The two parent vectors are now xi and vi. Crossover is applied to these two to breed a child
chromosome. In this case, crossover takes the following form.

A group of consecutive genes in vi is randomly selected.

That is to say, k1 and k2 are random (refer to Figure 3.12). This group of elements is
transferred to the child vector. All other elements are inherited from xi.

We may also make the the selection of k2 a more biased random selection. This is what is
advocated by Storn and Price [20].
If we let (k1 − k2) = l, then the choice of k2 can be regulated by associating l with the
following probability distribution.

Pr(l) = (CR)υ−1 (3.9)

Here υ is the number of elements in a vector. In this way l (and therefore the choice of k2)
is logarithmically biased. CR is a control variable selected on the interval [0,1]. It is termed
the crossover probability.
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Figure 3.12: The DE mating ritual.

Mutation

Mutation is applied to the child chromosome ci just as it is in the CPGA. We call the
resulting vector the trial vector wi.

Fitness contest

The fitness of both the trial vector and the base vector are compared. Whichever possesses
the lowest cost, and thus the greatest fitness, becomes the new ith member of the population.
The other is discarded.

Other considerations

Iteration i is now complete. Iteration i + 1 begins by selecting the next population member
in line xi+1. Once the program has run through the entire population in this way, it records
that a generation has passed and jumps back to the first member of the population again.
The whole process carries on until a termination criterion is met.

This type of sequential member approach is an extreme example of a ploy that is also used
in constructing conventional GAs. It is known as ’generation gap’ or, more descriptively,
’overlapping populations’. Whereas in the conventional approach the entire population is
acted on by the operators during every iteration, the hallmark of this approach is to allow
subsets of the total population to be operated on per iteration. The subsets used in suc-
cessive iterations may contain some identical members, just as long as successive subsets
do not correlate completely. Since the size of the subsets remains constant, they are iden-
tified as separate populations. Each population exists for one iteration only and successive
populations overlap in that they contain similar members.
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Here, we operate on the smallest available subset during every iteration, namely: a single
chromosome. Of course, no overlapping is possible here.

To reiterate, in the GAs that I have written, no generation gap exists. The entire popu-
lation is grist for operator’s mill during every iteration. Hence, in these GAs one iteration
corresponds to one generation.

Remember, we should not be particularly concerned with measures like ’iterations’ or ’gener-
ations’ if we set ourselves the task of judging an optimizer’s efficiency. In practice, we should
base our assessment on the computational effort required to obtain adequate results. The
number of function evaluations required provides a good indication of the computational
effort.

3.4 The particle swarm optimization algorithm

(PSOA)

The PSOA, as the name suggests, explores a search space dynamically by utilizing a set
of search agents (particles) which, as a group, mimic the swarm behavior of insects. The
position of every individual particle changes during each iteration of the algorithm.

As the particles move through the domain they sample the cost surface by evaluating the cost
at their current positions. Their future trajectories are governed by their own fitness histories
and also by the group’s cumulative ’knowledge’ of the cost surface. This is a fancifully way
of putting things and it will become clearer shortly.

The PSOA is another relatively new stochastic optimization algorithm. It was first proposed
by Kennedy and Eberhart in 1995 [25]. Since then, various researchers have proposed and
implemented methods of improving the algorithm’s efficiency [26, 27]. I have elected to use
the formulation introduced by Fourie and Groenwold [28], which implements so called ’dy-
namic inertia reduction’ to limit the extent of the swarm in a controlled manner. In doing so,
the final convergence rate of the scheme is thought to be improved over the standard PSOA
and the algorithm is made less sensitive to changes in the control parameters. The particu-
lar values that the control parameters should have in order to ensure that the algorithm is
performing optimally is normally a problem dependent consideration. Thus, insensitivity is
desirable should we wish to apply the same algorithm to a range of problems.

The PSOA is simpler than the GA, both to write and to implement. Researchers in the
field also claim that the PSOA consistently outperforms the GA when applied to global
optimization problems.

3.4.1 How it works

The program is initialized by choosing a population of particles. Associated with each par-
ticle is a position vector and a velocity vector. The fitness of every particle is evaluated at
its current position, whereupon both the position and the velocity vectors are updated. In
the standard PSOA the vectors are recalculated as follows.
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xi
n+1 = xi

n + vi
n+1 (3.10)

vi
n+1 = vi

n + c1r1(pi
n − xi

n) + c2r2(pg
n − xi

n) (3.11)

The velocity which appears in equation 3.10 is implicitly multiplied by a unit time step. The
superscript i refers to the ith particle of the swarm. The subscripts n and n + 1 denote
iterations, n being the current iteration. r1 and r2 are both pseudo-random numbers chosen
from the interval [0,1] for each particle during every iteration. x is the position vector and v

is the velocity vector. pi represents the best ever position of particle i, whereas pg represents
the best position that any member of the swarm has found to date.

The term c1r1(pi
n − xi

n) in equation 3.11 is seen to control the particle’s ability to learn
from its own prior history. It is therefore called the cognitive term and the control parameter
c1, the cognitive scaling parameter [29].

The term c2r2(pg
n − xi

n) in equation 3.11 allows information exchange between particles
to occur. It is known as the social term. The control variable c2 is (predictably) called the
social scaling parameter.

c1 and c2 are used to control the swarm’s behavior by biasing the search of each particle either
towards its own previous search domain or towards the group’s historically best position.
Both parameters retain the same value for all particles. Typical values are c1 = c2 = 2,
proposed by Kennedy and Eberhart.

3.4.2 Dynamic inertia reduction

Dynamic inertia reduction modifies the equation whereby velocity is updated (equation 3.11)
by inserting a parameter (ω) to scale the velocity.

vi
n+1 = ωvi

n + c1r1(pi
n − xi

n) + c2r2(pg
n − xi

n) (3.12)

This is similar to attributing inertia to a particle. ω imbues the particle with a tendency to
overshoot its target.

This idea is not novel to dynamic inertia reduction. More importantly however, DIR changes
ω if there is no improvement in the swarm’s best fitness value after a specified number of
iterations h.

If f(pg
n) ≥ f(pg

n−h) then ωn+1 = αωn,

where α is a control parameter with the restriction: 0 < α < 1.

Additionally, Fourie and Groenwold simultaneously introduced a maximum velocity reduc-
tion. A particle’s velocity is artificially limited in order to prevent its position step size from
growing too large. DIR reduces the maximum allowable particle velocity as follows.

If f(pg
n) ≥ f(pg

n−h) then vc−max
n+1 = βvc−max

n
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with 0 < β < 1. vc−max in the above equation represents the individual components of
vmax.

The initial value of the maximum velocity is typically related to the domain boundaries
by:

vmax = γ(xub − xlb).

Here, xub denotes the domain’s upper boundary values whilst xlb denotes the domain’s lower
boundary values.

Typical values used for α, β, γ and h are:
α = β = 0.99, h = 10, γ = 1.0

Note that despite the inclusion of a maximum velocity limit, it is often still necessary to
employ some or other boundary violation check, as described during the discussion of CPGAs.
This is so particularly in the initial stages of the search.

Results of the PSOA applied to the extended Dixon Szegö test set appear in Chapter 4.
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Chapter 4

Numerical results

The global optimization problem is ill posed. It does not, in general, have a solution. That
is to say: finding a solution in a finite number of steps cannot be guaranteed. Given this
situation, optimizers are normally tested on particular sets of benchmark problems.

This chapter contains the results that are obtained by running the genetic algorithms, the
particle swarm optimization algorithm and the differential evolution algorithm on a set of
problems collectively known as the extended Dixon Szegö test set. This set is popular for
its use in gauging an algorithm’s performance when tackling the unconstrained global opti-
mization problem. This set and others like it are designed to contain a range of features that
may present difficulties to an optimizer. Such features are typically: discontinuities, multi-
modality, stochasticity or noise and the presence of strong local minima. Dimensionality is
also a factor. The true global minima of all the problems in the set are known.

The idea is that if an algorithm performs well on all of the problems in the set, then it is
capable of coping well with their constituent features in general, in whatever systems those
features appear. The algorithm can then be used to optimize any practical system with some
measure of confidence.

Two additional problems are solved in addition to the extended Dixon Szegö set. A list of
the problems together with their global minima is given in Appendix A.

The current chapter is divided into four sections. Each section contains the results produced
by a different stochastic optimization technique, beginning with the genetic algorithm. Con-
siderably more work is presented in the GA section since many of the arguments arising from
a dissection of the GA’s behavior are valid for stochastic algorithms in general. Six variants
of the GA are tested as opposed to two variants of the CPGA, five variants of the PSOA and
only one variant of the DE algorithm. The section containing the GA results also contains a
discussion of a phenomenon known as GA deception. In addition, the effects of varying the
GA’s control parameters are illustrated.

Now, in Chapter 3 it was stated that I would refrain from comparing the PSOA, the GA and
the DE algorithm. This is so because it is not possible to make valid sweeping comparisons.
In other words, it is wrong to make a statement to the effect that algorithm A is better than
algorithm B in general. So, I do not try to rate the four stochastic algorithms relative to
one another.

40
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However, it is possible to compare algorithm performance with reference to a finite problem
set. As algorithm performance is frequently judged using test sets, such comparisons are
often drawn. If so, the question arises as to how these comparisons should be made. More
particularly:

• how should an algorithm’s performance be quantified when run on only one problem
and

• how can this measure be extended to quantify an algorithm’s performance on a set of
problems collectively?

Answers to this question are developed by attempting to compare the performance of certain
of the GA variants.

4.1 Results of the application of the GA

4.1.1 A discussion concerning control parameter settings

The genetic algorithm contains certain parameters. The values of these parameters may be
modified in order to influence the way in which the GA behaves when optimizing a problem.
The performance of the GA when optimizing a problem depends to some extent on the values
of these parameters. An optimum set of parameter values may be found. This optimum set
yields optimal GA performance on the particular problem in question and the set is problem
dependent. This situation is not unique to the GA. It is a feature of population based
stochastic optimizers in general. Thus, a designer can tune the performance of an optimizer
by adjusting the control parameter settings.

The graphs presented in this section illustrate the effect of varying the control parameters
of the standard GA. The control parameters are

1. population size,

2. crossover probability and

3. mutation rate.

In addition, the effect of varying the mutation ramping rate is shown, for an algorithm that
utilizes ramped mutation.

In each case, when one parameter value is varied the others are kept constant.

All the results in this section have been arrived at by applying the standard GA to a function
which I term the ’ones’ function. The strings on which the GA operates are sixty-four bits
long and have a conventional unsigned binary representation. The cost associated with a
member of the population is arrived at simply by counting the number of 1s in the string.
This figure is multiplied by −1 so that the minimum of the function is −64. The string
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representing the optimal population member consists of sixty-four ones. A continuous repre-
sentation of the cost surface is depicted in Figure 4.1. Naturally, the ’ones’ function is only
defined in the set of integers.

The algorithm has two termination criteria. If the known global minimum is found, the
search is terminated. A maximum of ten-thousand function evaluations is allowed before the
search is forcibly terminated. The algorithm is run fifty times for each and every parameter
setting in order to gain averaged performance figures. Function evaluation data, therefore, is
averaged over fifty runs and the data is only presented if the algorithm has found the global
solution in all fifty runs.
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x

F(
x)

Figure 4.1: The ’ones’ function.

Population size

Figure 4.2 indicates that it is desirable in terms of efficiency to use a small population. This
should always be a consideration provided the ability to find an acceptable solution is not
sacrificed. The number of individuals required for a ’thorough’ search of the domain will
increase as the dimensionality increases. However, one must take care not to overpopulate
the search space, as this can drastically increase the computational effort expended on the
problem.

Crossover probability

Figure 4.3 shows the effect that the crossover probability has on the search duration. It
appears that the crossover probability effects the performance of the GA in a somewhat
irregular manner. In general, though, a crossover probability close to unity appears advan-
tageous.
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Figure 4.2: Function evaluations required at various population sizes.
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Figure 4.3: Function evaluations required at various crossover probabilities.
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Figure 4.4: Function evaluations required at various mutation rates.

Mutation rate

Low mutation rates are required for optimal performance. Refer to Figure 4.4. The ’ones’
problem has an optimum mutation rate of roughly 1.5 percent. Though the optimal value
of the mutation rate is problem dependent, the requirement for it to be relatively low is
generally a necessity for genetic algorithms used for optimization. High mutation rates
destroy the algorithm’s ability to converge on minima through the assembly of fit sub-
strings, as explained in Chapter 3.1.7 and depicted in Figure 4.5, which shows convergence
data. The y-axis values depict the number of times out of fifty runs that the algorithm
managed to converge on the global minimum at the indicated mutation rate. It is seen that
low mutation rates (less than five percent) facilitate a high convergence ratio. High mutation
rates entirely prevent convergence, as does a zero mutation rate.

Ramped mutation rate

An initially high mutation rate is chosen and decreased after each successive generation.
The initial mutation rate is set at twenty-five percent. It is decreased by multiplying it by
a factor called the ramp rate after the completion of every generation. It is this ramp rate
that appears on the x-axis in Figure 4.6 and Figure 4.7.

It is evident that the ramp rate also effects the convergence statistics. Only high ramp rates
(above 0.98) result in good convergence statistics for this particular problem.

Parameter interdependency

Since the algorithm’s performance changes when the control parameters are varied individ-
ually, it is expected that an optimal set of parameter values exists. It is known that the
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Figure 4.5: Convergence data for various mutation rates.
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Figure 4.6: Function evaluations required at various ramp rates.
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Figure 4.7: Convergence data for various ramping rates.

effects of the parameter settings are interlinked, so that it is difficult to find the optimal set
by fixing the parameter values sequentially.

4.1.2 GA deception and coding considerations

GA deception is a phenomenon that arises in the implementation of genetic algorithms due
to the coding employed in the GA. It refers to the ability of some functions to mislead the
GA while it searches for a global minimum. In this case, the GA is forced to converge on a
local minimum. Of course, GAs can converge on local minima for non-deceptive functions
too. However, if a function is GA deceptive, it actively prevents the GA from finding the
global minimum through the mechanism of schema processing.

The Schema theorem describes how strings of higher fitness are found by combining infor-
mation from less fit parents. GA deceptive functions are those functions for which the act
of combining fit schemata lead to offspring of lower fitness, contrary to the Schema theorem.
These functions can be thought of as using the GA’s mechanism of operation against itself.

Goldberg [3, 30] has researched the phenomenon of GA deception extensively and has found
that creating a fully deceptive function is really very difficult. The random nature of the
breeding process usually throws up some fit strings despite the function’s deceptive nature.
The term ’fully deceptive’ is defined as: ”that condition where all schema of order l − 1 or
less containing the complement of the global optimum are superior to their competitors”,
where l is the string length (recall Chapter 3.1.7). In the following discussion, deception is
illustrated using a partially deceptive function.

In particular, I wish to demonstrate that deception is not an intrinsic characteristic of a
function in and of itself. Rather, it is an unfortunate combination of coding-mechanism-
and-function that gives rise to the phenomenon. More importantly, it is demonstrated that
coding inevitably modifies the cost surface which is to be searched. This modification is not
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necessarily detrimental.

A deceptive example

Assume that the ’ones’ function is modified so that the continuous representation of its cost
surface looks as depicted in Figure 4.8.
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Figure 4.8: The modified ones function.

The equation of this function can be expressed as

F (x) = −64 · INT [(x + 62)/63] + x, {x|x ∈ I and x ∈ [0, 64]}. (4.1)

The INT function yields the nearest integer below the number in square brackets. The
function is discrete and it is only defined on the integers between zero and sixty-four.

Now, assume that the coding mechanism utilized in the previous section is retained. That is,
the number of 1s in the string translates directly into the position (x). The minimum value
is −64 once again and the string corresponding to the optimum point possesses sixty-four 1s.
However, the next best string contains only one 1 and has a cost of −63. Moreover, strings
comprised of fewer 1s generally have lower costs associated with them. They are fitter. The
only exceptions to this rule are the strings composed either completely of 1s or entirely of
0s.

Combining schemata composed of mostly zeros will yield offspring of higher fitness. This is
exactly what the GA will do – as predicted by the Schema theorem. However, this will not
allow the GA to find the global minimum. In fact it will actually drive the GA away from
the global minimum and towards the local minimum of −63 at x = 1, hence the deception.

All of this makes intuitive sense. Table 4.1 contains the averaged results of 50 separate
attempts to find the global optimum. As before, the maximum allowable amount of function
evaluations is limited to ten-thousand. Nruns is the number of optimization runs completed.
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Npop denotes the population size used and NFE stands for ’number of function evaluations’.
ConCount records the number of times that the algorithm managed to find the true global
minimum.

Nruns Npop AverageNFE ConCount Average fmin

50 10 10 000 0 -63.0

Table 4.1: Performance of the standard GA on the GA deceptive ’ones’ function.

OK, what happens if the coding is changed? Here is a new coding scheme particularly suited
to this function.

1. As before, count the number of 1s in the string. Call this number: b.

2. Apply x = −64 · INT [(b + 62)/63] + b to determine the position x.

This position is now passed to the function as before. Note that the function has not
changed. Only the method of coding for positions in the search space has changed. The
results of fifty optimization runs employing this new coding is shown on Table 4.2.

Nruns Npop AverageNFE ConCount Average fmin

50 10 787 50 -64.0

Table 4.2: Performance of the GA with modified coding on the deceptive problem.

The algorithm never fails to find the global minimum. In effect, the algorithm sees the
original ones function. This is brought about by a rearrangement of points in the function
space caused by the coding mechanism. Refer to Figure 4.9 and take note of the labeling on
the x-axis. It is important to realize that despite this rearrangement, each position is still
associated with the same function value as it was originally (equation 4.1). So it is still the
modified ones function that is searched. GA deception, therefore, has everything to do with
coding-function combinations.

The reader may well object to the fact that I’ve used the function itself in the coding step.
Granted it is a rather fortuitously tailored coding mechanism, but it neatly demonstrates
what effect coding has. Although a function is not physically modified by coding, the cost
surface that the GA ends up searching is a rearranged version of the one intended by the
user. In the case just presented, changing the coding mechanism has made the problem
easier to solve. However, if this is possible, then the reverse is also possible. Thus, some
researchers have advocated that GAs be equipped with more than one coding facility. It can
then flip between codings at random times in order to avoid situations in which deception
arises.

On a different tack, notice that the deceptive function can still be optimized rather well.
Would you be disappointed if your algorithm consistently returned an optimum of −63?
What would your answer be if you did not already know that the global optimum is −64?

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  WWoooodd,,  DD  WW    ((22000055))  



CHAPTER 4. NUMERICAL RESULTS 49

6463  62  61  60 ...................................................................................1

−60

−50

−40

−30

−20

−10

0

0
x

F(
x)

The modified deceptive ones function

Figure 4.9: The surface that the function sees using the new code.

4.1.3 Solutions of the test set and some comparison considerations

This section contains the results achieved by variants of the binary genetic algorithm ap-
plied to the extended Dixon-Szegö test set. The format of the results is typical. Comparisons
between different algorithms and judgments concerning an algorithm’s performance are fre-
quently based on information contained in tables such as those presented in the current
section. Section 4.1.4 will suggest another method of depicting performance.

Each algorithm was run a hundred times on each of the problems contained in the set.
A maximum number of function evaluations was allowed for convergence. If the program
had not terminated before reaching this number, it was terminated artificially and deemed
to have misconverged. The maximum number of misconverges by any algorithm on any
problem was 2. The total number of misconverges was 6. Given that the tables below
cumulatively portray the information gained from almost nine-thousand optimization runs,
the misconverges are considered inconsequential and specific information regarding them is
omitted. Statistics generated during the misconvergent runs was not used in the compilation
of the tables.

The tables consist of columns headed by labels which have the following meanings.

• ALOPT: Identifies the optimization algorithm used.

• NFEAV: Average number of function evaluations.

• MINAVE: Average (mean value) of all of the minimum values found.

• ERRORAVE: The difference between the actual global minimum and MINAVE.

• SIGMA: The standard deviation of all the minimum values found.

• MINIMUM: The minimum value of the minima found.

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  WWoooodd,,  DD  WW    ((22000055))  



CHAPTER 4. NUMERICAL RESULTS 50

• ERRORMIN: The difference between the actual global minimum and MINIMUM.

In addition to these performance measures, it is usual to include a measure known as the
’success ratio’. The success ratio simply notes what percentage of the time the optimizer finds
the actual global optimum to within a predefined tolerance. This measure is not included
here since I believe that it is largely irrelevant. It provides an easy way of assessing the
robustness of an algorithm, by which is meant: its ability to consistently locate a function’s
global minimum. It is my contention that judgment of an optimizers performance should
not be made with regards to any particular function’s global minimum.

Use of the global minima is already made by including ERRORAVE and ERRORMIN in the
tables. When perusing the tables, the reader will notice how difficult it is not to judge an
optimizer based on the ERRORAVE column. The closer to zero the entries in this column
are, the better the optimizer has performed on average. Also, the fewer number of function
evaluations an algorithm requires, the better it performs. The former can be regarded as a
measure of efficacy, the latter as a measure of efficiency.

Tables 4.3 to 4.17 contain the performance statistics organized according to problem number.
A brief description of the different GA variants is presented first.

ALOPT 1

This is a stock standard genetic algorithm. It fits the description of a GA given in Chapter
3. It incorporates only the selection, crossover and mutation operators. The strings have a
normal, unsigned binary representation. Each gene is a thirty bit substring which is capable
of representing all nine-digit decimal numbers. The algorithm uses roulette wheel selection
method 1 (Figure 3.3). It is equipped with the ’rate of improvement’ termination criterion
and the ’maximum function evaluations’ criterion.

The other GA variants are built from this one. They all contain exactly this GA with one
or other addition.

ALOPT 2

The standard GA is augmented with the ’elitism’ operator to produce this variant. Elitism
simply conserves the best member in the current population and places it unchanged into the
next generation. There are no other differences between ALOPT 1 and ALOPT 2. Elitism
is retained in all of the algorithms described below.

ALOPT 3

ALOPT 3 incorporates an operator known as ’child mortality’. Each pair of parents is allowed
to produce more than one offspring chromosome. The resulting population of children is
larger than the initial breeding group and is limited arbitrarily by the programmer. All of
the child chromosomes are evaluated for their fitness. The worst members are culled off until
the population regains the size of the breeding population. The remaining individuals are
used to breed the next generation.
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ALOPT 4

Optimization by a population based stochastic algorithm is seen as a two-staged process.
It is considered to be divided into a ’global phase’ and a ’local phase’. The global phase is
concluded fairly quickly whilst the local phase (the refinement stage) is relatively inefficient.
Also, if the optimizer converges on a local minimum, it will have made the error of selecting
this minimum during the global phase. In an effort to take advantage of the short duration
of the global phase and to minimize the chances of converging to non-global minima, this
algorithm was written.

This ’successive’ GA runs a number of global searches. Each search is terminated whenever
the global phase is presumed to have ended. The difficulty lies in deciding when this occurs
in a problem independent manner. Here I arbitrarily selected the number of function evalu-
ations at which to terminate the phase. This number was selected based on experience with
the test set and my criterion is thus problem dependent. Once a number of global searches
(say 5) is completed, the best chromosomes produced during each global search are combined
to form the basis of a new population. Two additional searches are now performed. The
first is intended to select the best minimum from the multiple global search results and the
the last accomplishes a local search in this region.

ALOPT 5

ALOPT 5 is a GA which I call the recursive GA. It is a copy of a genetic algorithm written
by Bolton [31]. It is a restart GA. A search is terminated when a relaxed improvement rate
criterion is satisfied. The search space is reduced in size, centered around the position at
which the minimum is found during the previous search. The algorithm is then restarted
and run on the new search space. A restart means that the old population is discarded. This
process continues until the minima found during successive restarts meets a more stringent
improvement rate termination criterion.

ALOPT 6

This algorithm is the same as the successive GA (ALOPT 4) except that the local search
phase is accomplished using Powell’s method – a conjugate direction descent method [6]. It
is a hybrid algorithm composed of the stochastic, population based GA and Powell’s method.

Descent methods are very efficient at locating global minima of convex functions. The idea is
to use the GA to locate the region in which the minimum resides. This region, seen without
reference to the rest of the function, is convex provided that it is small enough. (This last
is actually only strictly true for functions that are differentiable everywhere, but the idea is
usable none the less). The GA’s inefficient local search has been replaced by a very efficient
local search mechanism.
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The results

ALOPT NFEAV MINAVE ERRORAVE SIGMA MINIMUM ERRORMIN
1 5919 -18.5494546 0.0052667 0.0194409 -18.5547096 0.0000117
2 4545 -18.5545415 0.0001798 0.0002749 -18.5547211 0.0000002
3 4470 -18.5515659 0.0031554 0.0184906 -18.5547212 0.0000001
4 14380 -18.5546858 0.0000355 0.0000795 -18.5547213 0.0000000
5 3967 -18.5031457 0.0515756 0.2389514 -18.5547213 0.0000000
6 2185 -18.5547216 0.0000006 0.0000006 -18.5547218 0.0000005

Table 4.3: Problem one: SinCos.

ALOPT NFEAV MINAVE ERRORAVE SIGMA MINIMUM ERRORMIN
1 3009 0.0107794 0.0107794 0.0119980 0.0000156 0.0000156
2 3208 0.0021433 0.0021433 0.0037423 0.0000004 0.0000004
3 3267 0.0004644 0.0004644 0.0007821 0.0000002 0.0000002
4 13653 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
5 3725 0.0001405 0.0001405 0.0008888 0.0000000 0.0000000
6 2293 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

Table 4.4: Problem two: Griewank 1.

ALOPT NFEAV MINAVE ERRORAVE SIGMA MINIMUM ERRORMIN
1 5374 1.6935548 1.6935548 0.1698226 1.3240885 1.3240885
2 8053 0.9170450 0.9170450 0.0999200 0.6222962 0.6222962
3 6878 0.9046238 0.9046238 0.1115140 0.4036401 0.4036401
4 25534 0.0397474 0.0397474 0.0569425 0.0024186 0.0024186
5 5480 0.8118643 0.8118643 0.2297454 0.2805721 0.2805721
6 11712 0.0835317 0.0835317 0.0461863 0.0049323 0.0049323

Table 4.5: Problem three: Griewank 2.

ALOPT NFEAV MINAVE ERRORAVE SIGMA MINIMUM ERRORMIN
1 4261 3.0388197 0.0388197 0.0478916 3.0002358 0.0002358
2 5646 3.0000907 0.0000907 0.0001315 3.0000000 0.0000000
3 6418 3.0015616 0.0015616 0.0029557 3.0000042 0.0000042
4 17245 3.0000000 0.0000000 0.0000000 3.0000000 0.0000000
5 5527 3.0116276 0.0116276 0.0650115 3.0000000 0.0000000
6 2378 84.0019735 81.0019735 0.0039696 84.0000000 81.0000000

Table 4.6: Problem four: Goldstein-Price.
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ALOPT NFEAV MINAVE ERRORAVE SIGMA MINIMUM ERRORMIN
1 4420 -1.0313768 0.0002517 0.0004525 -1.0316278 0.0000007
2 3325 -1.0316064 0.0000221 0.0000309 -1.0316285 0.0000000
3 3364 -1.0309859 0.0006426 0.0044293 -1.0316285 0.0000000
4 11274 -1.0316225 0.0000060 0.0000132 -1.0316285 0.0000000
5 3186 -1.0315901 0.0000384 0.0001361 -1.0316285 0.0000000
6 901 -1.0316285 0.0000000 0.0000000 -1.0316285 0.0000000

Table 4.7: Problem five: Six-hump Camelback .

ALOPT NFEAV MINAVE ERRORAVE SIGMA MINIMUM ERRORMIN
1 4556 0.0301054 0.0301054 0.0888521 0.0000834 0.0000834
2 6181 0.0034413 0.0034413 0.0111990 0.0000004 0.0000004
3 6135 0.0444196 0.0444196 0.1955718 0.0000003 0.0000003
4 13165 0.0081332 0.0081332 0.0149540 0.0000025 0.0000025
5 4927 0.1096605 0.1096605 0.3381139 0.0000000 0.0000000
6 2889 0.0057976 0.0057976 0.0215989 0.0000000 0.0000000

Table 4.8: Problem six: Rosenbrock.

ALOPT NFEAV MINAVE ERRORAVE SIGMA MINIMUM ERRORMIN
1 4282 -185.5522564 1.1786549 1.0863141 -186.7163425 0.0145687
2 8164 -186.7239827 0.0069286 0.0233172 -186.7309069 0.0000043
3 7353 -186.7279178 0.0029934 0.0067771 -186.7309057 0.0000055
4 18716 -186.7306481 0.0002632 0.0004030 -186.7309088 0.0000024
5 5902 -186.5332629 0.1976484 0.5011327 -186.7309088 0.0000024
6 1009 -186.7309113 0.0000000 0.0000000 -186.7309113 0.0000000

Table 4.9: Problem seven: Shubert function.

ALOPT NFEAV MINAVE ERRORAVE SIGMA MINIMUM ERRORMIN
1 4488 -1.9929357 0.0070643 0.0102836 -1.9999573 0.0000427
2 4054 -1.9999811 0.0000189 0.0000309 -2.0000000 0.0000000
3 3872 -1.9999907 0.0000093 0.0000204 -2.0000000 0.0000000
4 11490 -2.0000000 0.0000000 0.0000000 -2.0000000 0.0000000
5 3789 -1.9695422 0.0304578 0.0491675 -2.0000000 0.0000000
6 1878 -2.0000000 0.0000000 0.0000000 -2.0000000 0.0000000

Table 4.10: Problem eight: Rastrigin.
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ALOPT NFEAV MINAVE ERRORAVE SIGMA MINIMUM ERRORMIN
1 4546 0.3990510 0.0011636 0.0029779 0.3978908 0.0000034
2 3963 0.3981396 0.0002522 0.0007524 0.3978874 0.0000000
3 3654 0.3980712 0.0001838 0.0005666 0.3978874 0.0000000
4 12390 0.3979387 0.0000514 0.0001153 0.3978874 0.0000000
5 4156 0.3986668 0.0007795 0.0020424 0.3978874 0.0000000
6 1460 0.3978874 0.0000001 0.0000001 0.3978873 0.0000000

Table 4.11: Problem nine: Branin.

ALOPT NFEAV MINAVE ERRORAVE SIGMA MINIMUM ERRORMIN
1 4764 -3.8616439 0.0011382 0.0011281 -3.8627696 0.0000125
2 4441 -3.8627321 0.0000500 0.0000624 -3.8627820 0.0000001
3 4213 -3.8627059 0.0000762 0.0001911 -3.8627808 0.0000013
4 11524 -3.8627561 0.0000260 0.0000437 -3.8627821 0.0000000
5 3367 -3.8626377 0.0001444 0.0003778 -3.8627821 0.0000000
6 2646 -3.8627821 0.0000001 0.0000001 -3.8627822 0.0000001

Table 4.12: Problem ten: Hartman 3.

ALOPT NFEAV MINAVE ERRORAVE SIGMA MINIMUM ERRORMIN
1 11152 -3.2124404 0.1099276 0.0414526 -3.2854563 0.0369117
2 15278 -3.2710189 0.0513491 0.0538424 -3.3205400 0.0018280
3 13853 -3.2699529 0.0524151 0.0550648 -3.3218667 0.0005013
4 18062 -3.3209327 0.0014353 0.0040794 -3.3223677 0.0000003
5 4665 -3.2814631 0.0409049 0.0622399 -3.3223680 0.0000000
6 1204 -3.2905794 0.0317886 0.0527148 -3.3223679 0.0000001

Table 4.13: Problem eleven: Hartman 6.

ALOPT NFEAV MINAVE ERRORAVE SIGMA MINIMUM ERRORMIN
1 3294 -2.9915769 7.1616231 1.5701645 -9.0171269 1.1360731
2 5940 -5.7602613 4.3929387 3.0679971 -10.1471573 0.0060427
3 5627 -4.8932697 5.2599303 2.8670344 -10.1377551 0.0154449
4 18238 -9.5346451 0.6185549 1.3210580 -10.1531967 0.0000033
5 5182 -6.2094243 3.9437757 3.3557726 -10.1531997 0.0000003
6 3613 -8.8203257 1.3328743 2.7140458 -10.1532001 0.0000001

Table 4.14: Problem twelve: Shekel 5.
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ALOPT NFEAV MINAVE ERRORAVE SIGMA MINIMUM ERRORMIN
1 3102 -4.1511860 6.2517550 2.0911049 -8.8223160 1.5806250
2 5853 -6.4711259 3.9318151 3.3078994 -10.3086099 0.0943311
3 5550 -6.3168226 4.0861184 3.4685458 -10.3752374 0.0277036
4 18521 -9.8278090 0.5751320 1.2614281 -10.4028336 0.0001074
5 5189 -7.2202015 3.1827395 3.5510321 -10.4029406 0.0000004
6 3599 -8.6219699 1.7809711 2.9534060 -10.4029408 0.0000002

Table 4.15: Problem thirteen: Shekel 7.

ALOPT NFEAV MINAVE ERRORAVE SIGMA MINIMUM ERRORMIN
1 2680 -3.3360214 7.2003886 1.7249590 -8.6221452 1.9142648
2 5631 -5.8727950 4.6636150 3.4928246 -10.5190684 0.0173416
3 5707 -6.0209936 4.5154164 3.4543161 -10.5005430 0.0358670
4 18168 -9.6431434 0.8932666 1.6129040 -10.5364068 0.0000032
5 5010 -5.8945601 4.6418499 3.7028831 -10.5364098 0.0000002
6 3603 -8.6552344 1.8811756 3.1355507 -10.5364094 0.0000006

Table 4.16: Problem fourteen: Shekel 10.

ALOPT NFEAV MINAVE ERRORAVE SIGMA MINIMUM ERRORMIN
1 6276 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
2 6229 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
3 6231 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
4 14135 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
5 3258 0.0000007 0.0000007 0.0000035 0.0000000 0.0000000
6 181 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

Table 4.17: Problem fifteen: X-squared.

A discussion of the results

For problems eight, ten, twelve and thirteen the sixth optimizer finds a MINIMUM which is
less than (better than) the stated value of the global minimum. Error values are therefore
also produced in these cases. They should just be taken as zero.

The six algorithms can now be compared on a problem-by-problem basis. If one wants to
decide which algorithm is better in general, it is easiest simply to count how many problems
any particular algorithm is best at solving. The one that outperforms the others on the most
problems can be called the best algorithm of the six for the test set as a whole. Since an
algorithm’s performance on one problem provides no indication of how it will perform on
any other problem, this is probably the fairest way of selecting a ’best for the set’.
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Deciding on how well an algorithm has optimized a function often depends on how the judge
views the relative importance of efficiency and efficacy.

Perhaps it is a little unfair to include ALOPT 6 in the tables. It has a decided advantage
over the other algorithms since is utilizes a descent method to expedite the local search. The
point of including it is to provide some indication of the relative duration of the global and
local search regimes. Remember that ALOPT 6 employs multiple global searches.

Of the other algorithms, ALOPT 5 is generally superior when both efficiency and efficacy
are considered, in my opinion. ALOPT 4 often has the best MINAVE figure associated with
it but is always disappointingly expensive relative to the other algorithms.

Employing elitism (ALOPT 2) improves the performance of the standard GA (ALOPT 1)
when considering a balance between NFEAVE and MINAVE. There is little to be gained by
incorporating child mortality (ALOPT 3).

4.1.4 An alternative method of comparison

A commonly used method of stating the results of an optimization run was the subject of
the previous section. It uses known global optima as a basis relative to which an algorithm’s
performance is defined. This is done by highlighting the optimizer’s capacity for finding and
closely approximating those minima. Notice that the judgment of how well an algorithm
optimizes necessarily entails the comparison of that algorithm with another. Nothing what-
soever can be said that is not comparative. Algorithm performance is a relative thing and
there are no absolutes.

Now, it is not wrong to present the type of results that appear in Tables 4.3 through 4.17.
Indeed, the information is true and the tabular presentation allows comparisons to be drawn
easily. However, the question could be posed as to what degree the information is actually
useful. Moreover, it is worthwhile to investigate whether or not it is misleading. There is a
lot that is left out of such a summary.

This section constitutes an attempt to fill in the gaps. In it, another means of presenting
statistical, comparative information is explored. It is hoped that this method will be seen
as a more holistic way of looking at an optimizer’s performance. At the very least, some
aspects of how a search progresses during an optimization run will be illuminated.

Three of the GAs that appear in the previous section are used. They are

• ALOPT 2 (elitism),

• ALOPT 3 (child mortality) and

• ALOPT 5 (recursive GA).

They are each run on three of the Dixon-Szegö problems, namely

• Goldstein-Price (Table 4.6),

• Rosenbrock (Table 4.8) and
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• Shekel 5 (Table 4.14).

One way of presenting an algorithm’s performance data is to depict it in graphical form –
similar to Figure 2.2 in Chapter 2. In such a format, emphasis is not placed on the eventual
minimum found. The entire convergence history is presented. Unfortunately, a stochastic
algorithm is inconsistent in the way that it solves a problem. Two consecutive searches will
not produce the same graph.

The idea underpinning the current section is simply to produce a graph which is a statistical
representation of the behavior of an algorithm over a large number of implementations on
the same problem. Such a graph would allow one to view the entire behavior of the optimizer
at a glance, and to compare two algorithms on this basis.

A short digression

Venkataraman and Haftka [32] have noted that the amount of time required to run an
”adequate” engineering analysis has not changed over the course of the past thirty years.
This is despite the one million fold increase in computer speed and storage capacity during
that time period.

To quote: ”It appears that the computer time required for an ’adequate’ structural analysis
has been fixed at several hours. Essentially, if a single analysis cannot be completed overnight
on the available computer, progress in terms of debugging models and improving structures
can become intolerably slow. So a requirement that a working model can be analyzed in a
few hours appears to be the main constraint to the desire of the structural analyst to have
an high-fidelity structural analysis.”

When it becomes possible to run such an high-fidelity analysis in a shorter period of time,
someone moves the goal posts by changing the definition of what an adequate analysis is.
The complexity of a problem increases. Venkataraman and Haftka illustrate that there
are three axes along which the complexity of a problem can increases as far as structural
optimization problems are concerned. These are: analysis complexity, model complexity and
optimization complexity. Improvements in computer technology have allowed engineers to
tackle more and more difficult problems or to model old problems more accurately. However,
the engineer has seen fit to keep the duration of such analyses fixed at the same comfortable
duration.

The observations made by Venkataraman and Haftka are used as an excuse to drop the ter-
mination criteria from the algorithms used to compile the results presented in this section.
Instead an allowable analysis duration is defined and all the algorithms are run for this du-
ration. This approach makes it easier to compile performance statistics without introducing
inconsistencies arising from the termination criteria.

Back to business

Each GA uses a population of thirty chromosomes. The child mortality GA has a breeding
population of fifteen members but they breed a population of thirty chromosomes whose
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costs are evaluated. Thus, every generation entails thirty cost function evaluations for each
of the GAs. An optimization run is allowed to run for 330 generations, regardless of whether
the population has converged on a point in the solution space or not.

Every generation contains a number of chromosomes with different fitnesses. The best fitness
is recorded, resulting in a vector consisting of 330 chronologically ordered cost values when
the optimization run terminates. Each of the three algorithms is run one-thousand times on
each of the three problems.
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Figure 4.10: An example of a sorted value distribution.

Confining our attention to one algorithm applied to one problem, the recorded information
consists of one-thousand values corresponding to each of the 330 generations. The gener-
ations are regarded as bins containing values which are distributed in some fashion. For
instance, Figure 4.10 contains the one-thousand values belonging to the fiftieth generation
created by solving the Shekel 5 problem using the recursive GA. The values are sorted from
smallest (most fit) to largest.

Note that the distribution shows three distinct groupings. By the eightieth generation, those
groupings have progressed to the extent shown in Figure 4.11. Figure 4.11 shows that Shekel
5 has at least three strong minima. From our position we are not able to say whether the
lowest one is the global minimum or not (although we know that it is from the preceding
section). The recursive GA only ever converges on these minima. The probability that
any one run will find a specific minimum is given by the proportion of the graph that the
minimum covers. For example, roughly 250 out of 1000 implementations produce a fitness
value of approximately -10. Therefore there is a 25 percent likelihood that any single run
will find that minimum region in less than eighty generations.

Now, it appears that by the eightieth generation, the recursive GA has succeeded in con-

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  WWoooodd,,  DD  WW    ((22000055))  



CHAPTER 4. NUMERICAL RESULTS 59

−12

−10

−8

−6

−4

−2

0

0 200 400 600 800 1000

Fi
tn

es
s

Run designation

Sorted value distribution

Figure 4.11: The value distribution thirty generations later.

verging on something. The GA can improve over the remaining generations if it either

• increases the proportion of values around the -10 minimum, or

• finds a new and fitter minimum.

Figure 4.12 shows what the value distribution is after three-hundred generations. It has not
changed appreciably from the eightieth generation. It can be concluded that the algorithm
converges on a sub-area of the cost surface relatively quickly. From then on, much work
is expended in searching this area and finding better and better approximations of the
minimum contained therein. However, little is gained by this. Although random chance
may result in a solution jumping from one minimum to a better one, it appears that this
happens so infrequently after the eightieth generation that it has no appreciable effect on
the distributions.

If the algorithms are to be compared after g number of generations, some suitable and
consistent basis for comparison must be found. I would like to make this basis dependent
on the distribution. Ideally, the basis for comparison would take into account the shape of
the distribution. That is why value averages and standard deviations are quoted in Tables
4.3 through 4.17. It is automatic to imagine normal distributions with these properties.
We assume that the algorithm with the lowest average and the least standard deviation
is the best algorithm. We do so because we implicitly assume that such measures are
useful in categorizing the value distributions that arise after a large number of program
implementations have run their course.

The problem is that stochastic algorithms can result in tiered distributions like those that
appear in Figures 4.10 to 4.12. Although averages and deviations are still calculable, how

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  WWoooodd,,  DD  WW    ((22000055))  



CHAPTER 4. NUMERICAL RESULTS 60

−12

−10

−8

−6

−4

−2

0

0 200 400 600 800 1000

Fi
tn

es
s

Run designation

Sorted value distribution

Figure 4.12: The value distribution after 300 generations.

much can they tell you? Assume that we wish to know the value of the ninetieth percentile.
That is, the value at which the probability of finding values which are lower, is ninety per-
cent. Armed with the distribution average, the standard deviation and some reasonable
assumption about the shape of the distribution, we could calculate this value. If the as-
sumed distribution is continuous and models the actual distribution sufficiently well, then
the value obtained for the ninetieth percentile is valid and useful regardless of whether or
not the algorithm actually sampled it. However, when the actual distribution is inevitably
tiered and, moreover, obviously function dependent, it becomes impossible to select a generic
distribution which always serves as a reasonable approximation of the actual one. What this
mouthful intimates is that it is not meaningful to do normal statistics on the discontinuous
distributions that arise from a number of applications of the optimizer. Hence, for the pur-
poses of the forthcoming discussion, the ’xth percent’ value associated with a particular bin
is simply the value below which x percent of all the values in the bin fall. This ’xth percent’
value is actually contained in the bin; the algorithm has generated it at some stage.

Essentially what this argument boils down to is the following. If a continuous distribution
is used to model the actual distribution then the statement: ’x percent of all the values in
the real distribution fall below the xth percentile value (n) of the continuous distribution’
cannot be true for all x. However, if n is contained in the bin and ’xth percent’ is defined
as it is in the previous paragraph, then the above statement is always true, regardless of x.
Furthermore (and more importantly) the veracity of the statement is not problem dependent.
What is more, the statement: ’the probability of finding values which are lower than or equal
to n, is at least x percent’ is always true. Figure 4.13 will help to clarify this idea a little
better.
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Figure 4.13: Percentile values obtained using an assumed distribution.

Having defined the intended meaning of the word ’percent’, algorithms are compared by
plotting their ninetieth percent graphs. The ninetieth percent value for each generation bin
is determined and those values are plotted yielding a curve similar to the one depicted in
Figure 2.2. However, the ninetieth percent curve (see Figure 4.14) contains somewhat more
information. It tells us what values we can be ninety percent certain of bettering when
the optimizer is run on the problem. And it provides us with this information for each
generation. This is useful if optimizers are to be compared.

Why the ninetieth percent value particularly? Why not the fiftieth percent? Because engi-
neers are happier being ninety percent certain than being fifty percent uncertain.

Notice that the graph in Figure 4.14 becomes horizontal after approximately seventy-five
generations (2250 function evaluations). The generations’ value distributions do not change
after this point, at least not enough to effect the ninetieth percent value. From this we
can draw the conclusion that the algorithm had converged by the seventy-fifth generation
in a high proportion of the times it was run. Compare this value of 2250 with 5627, which
appears in Table 4.14. Both of these figures denote the number of function evaluations
that the recursive GA required for convergence when applied to Shekel 5. Apparently the
stopping criterion which I used in all my GAs is woeful, resulting in a gross overestimation
of NFEAV. Unfortunately a termination criterion does not have the luxury of looking at
the averaged performance of an algorithm over a large number of uses. It has to decide on
termination based on the information it gains during only one implementation and it has
to do so in a problem independent manner. It is oblivious to the tiered structure of the
distributions that develop when information from many runs is combined.

If it is possible to run an optimizer more than once on the same problem then a method
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Figure 4.14: An example of a ninetieth percent plot.

exists for determining how likely it is that the global minimum has been found. Perhaps it is
better to state that this method determines the likelihood that the solution can be improved
further if another run is done. This method, due to Snyman and Fatti [33], is known as the
Bayesian stopping criterion. It implicitly makes use of the tiered distributions which arise
during parallel or multi-start optimization implementations. It has not been used, and so
will not be described further.

Figures 4.15 and 4.16 are two examples of the type of output generated on a single optimiza-
tion run. They are equivalent to Figure 2.2. Notice that for the recursive GA, the fitness of
the best solution sometimes worsens. This happens when the GA is restarted and the fitness
history is forgotten.
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Figure 4.15: A single implementation of the recursive GA on Shekel 5.
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Figure 4.16: A single implementation of the elitism GA on Goldstein-Price.
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If multiple optimizations of a system are too expensive to accomplish, then the user is forced
to accept the output resulting from just one run. In such a case one may as well assess
how many function evaluations are economically viable. The optimizer can then be run
for this predetermined duration. This approach at least removes any problem dependency
that the stopping criteria might exhibit. It would also be beneficial if the optimizer was
designed using similar systems as test beds so that it is tailored to suit the type of system at
hand. In the absence of statistics gathered from many applications of the algorithm to the
single system in question, this is really the only way of gaining confidence in an algorithm’s
performance.

Shekel 5 was used in the above argument because it produces easily differentiable steps
in its value distributions. Typical distributions produced by the remaining two problems
appear in Figures 4.17 and 4.18. Figure 4.17 was generated using ALOPT 3. Goldstein-
Price exhibits no tiers. Figure 4.18 was generated using ALOPT 2. Rosenbrock exhibits one
step. These distributions are not typical. That is, different algorithms do not necessarily
produce distributions with the same features (number of steps). If tiered distributions are
produced, then these tiers provide us with an indication of the algorithm’s propensity for
finding multiple sub-optimal minima. The proportion of values contained in the steps can
be used to quantify this tendency and yields another factor according to which algorithms
can be compared. As Figures 4.10 to 4.12 were used to demonstrate, said proportions also
change with time over the course of an optimization run.
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Figure 4.17: A typical distribution for Goldstein-Price.
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Figure 4.18: A typical distribution for Rosenbrock.

The new comparative results

The comparison of the three algorithms on the Goldstein-Price problem shows that there is
no reason to favour ALOPT 2 over ALOPT 3 or vice versa. ALOPT 5 performs slightly worse
than the other two and on average the search may be terminated after only one-thousand
function evaluations, whichever algorithm is used. Figure 4.20 shows that the recursive GA
converges earlier than the other two algorithms. However, look at the scale on the y-axis
of Figure 4.20 compared to that of Figure 4.19. There are few applications where such
refinement is absolutely necessary, so choosing between algorithms based on information in
Figure 4.20 is too strict a comparison in my view. It is exactly this type of comparison which
one is force to make if the usual tabulated information of Section 4.1.3 is considered.

The same arguments can be made concerning a comparison of the GAs on the Rosenbrock
problem, Figures 4.21 and 4.22.

Figure 4.23 indicates that the recursive GA is clearly superior for the Shekel 5 problem.
Interestingly, the recursive GA has the ability to converge earlier than ALOPT 2 and ALOPT
3 without seriously compromising its performance relative to these other two GAs on all three
problems.

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  WWoooodd,,  DD  WW    ((22000055))  



CHAPTER 4. NUMERICAL RESULTS 66

0

20

40

60

80

100

120

140

160

0 500 1000 1500 2000 2500 3000

Fi
tn

es
s

Number of function evaluations

Goldstein−Price ninetieth percent curves

ALOPT 2

ALOPT 3

ALOPT 5

Figure 4.19: A comparison of algorithm performance on Goldstein-Price.
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Figure 4.20: A further comparison of algorithm performance on Goldstein-Price.
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Figure 4.21: A comparison of algorithm performance on Rosenbrock.
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Figure 4.22: A further comparison of algorithm performance on Rosenbrock.
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Figure 4.23: A comparison of algorithm performance on Shekel 5.
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Figure 4.24: A further comparison of algorithm performance on Shekel 5.
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Remarks

Drawing up graphs or tables is not the time consuming part of comparing the performance
of various algorithms. Running the algorithms exhaustively on a set of problems is. If
comparisons are to be drawn, this latter part is necessary, regardless of the method of
comparison that is used. The raw data needs to be generated first.

The purpose of Section 4.1.4 is to illustrate the idea that there is more than one way of
comparing algorithm performance. Each way tells you something different, each way provides
another angle of looking at the situation. In particular, different methods of comparing
algorithms do not necessarily have to concur on which is the best. Exactly how you choose
to compare algorithms depends entirely on what you view as important. The tables in Section
4.1.3 highlight robustness and the refinement of the local search. The comparison graphs in
Section 4.1.4 emphasize a more holistic performance measure. Personally, I think the most
interesting and useful information is contained in the generational value distribution graphs.

The point, though, is that all ways of representing the performance information rely on the
same raw data. There is no need to limit oneself to only one narrow viewpoint. In this case,
said raw date corresponding to a single problem solved by a single algorithm is contained
in one 1000x330 matrix. Representing the information is a post-processing issue and many
ways can and should be found for doing so.

4.2 Results of the application of the CPGA

Two versions of the CPGA are presented. The first is the standard algorithm with elitism.
The second is a restart algorithm in the same vein as the recursive GA. In contrast to
the case which emerged with the normal GAs, the restart CPGA has a generally degraded
performance relative to the standard CPGA for much of the test set. Once again, two
methods of representing the results of the optimization runs are used. This time the graphical
representation is used to show a comparison of algorithm performance on Shubert’s function,
the SinCos function and the Hartman 3 function.

You will notice that for both the SinCos and the Shubert functions, the restart CPGA
performs significantly worse than the standard algorithm when they are compared on the
basis of their ninetieth percent curves. The reason that there is such a gap between the
two curves can be understood better by examining the evolution of the value distributions
that the algorithms generate. For instance, Figure 4.28 shows the evolution of the value
distributions that the standard CPGA generates whilst tackling the Shubert function. Figure
4.29 depicts the corresponding distributions created by the restart algorithm.

Evidently the restart algorithm is more prone to getting stuck in sub-optimal minima. The
stepped nature of the graph illustrates the fact that the restart algorithm tends to search
subdomains in the search space without retaining the required population diversity neces-
sary to consistently locate the global minimum of this particular function. In other words:
population convergence is too quick in this case; the algorithm suffers from premature con-
vergence.
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4.2.1 Tabular results

PROB NFEAV MINAVE ERRORAVE SIGMA MINIMUM ERRORMIN
1 6486 -18.0476846 0.5070367 0.6613860 -18.5547141 0.0000072
2 1978 0.0042120 0.0042120 0.0119123 0.0000000 0.0000000
3 7160 0.2582300 0.2582300 0.1002431 0.0435176 0.0435176
4 4288 4.0416605 1.0416605 4.9690269 3.0000000 0.0000000
5 3788 -1.0306559 0.0009726 0.0023248 -1.0316285 0.0000000
6 3486 0.1882631 0.1882631 0.2112983 0.0000316 0.0000316
7 4668 -186.2187352 0.5121760 1.2120291 -186.7309088 0.0000024
8 3699 -1.9971874 0.0028126 0.0125022 -2.0000000 0.0000000
9 4557 0.4102907 0.0124033 0.0350476 0.3978874 0.0000000
10 4388 -3.8623606 0.0004215 0.0009008 -3.8627820 0.0000001
11 8366 -3.3020362 0.0203318 0.0448002 -3.3223677 0.0000003
12 4332 -5.7099926 4.4432074 3.6123903 -10.1502689 0.0029311
13 4571 -7.7855629 2.6173781 3.4358669 -10.4018134 0.0011276
14 4315 -7.8444561 2.6919539 3.6088265 -10.5364052 0.0000048
15 6146 0.0000004 0.0000004 0.0000031 0.0000000 0.0000000

Table 4.18: Performance of the standard CPGA.

PROB NFEAV MINAVE ERRORAVE SIGMA MINIMUM ERRORMIN
1 3039 -16.3995340 2.1551873 1.3904786 -18.5547213 0.0000000
2 2407 0.0000000 0.0000000 0.0000001 0.0000000 0.0000000
3 5288 0.1438999 0.1438999 0.1394294 0.0101112 0.0101112
4 2082 3.3000631 0.3000631 2.6912948 3.0000000 0.0000000
5 1563 -1.0316281 0.0000004 0.0000030 -1.0316285 0.0000000
6 3233 0.1164805 0.1164805 0.1471524 0.0000000 0.0000000
7 2587 -184.2536182 2.4772930 13.6881696 -186.7309088 0.0000024
8 1717 -1.9834529 0.0165471 0.0413361 -2.0000000 0.0000000
9 2065 0.4023536 0.0044662 0.0173018 0.3978874 0.0000000
10 2187 -3.8582181 0.0045641 0.0359308 -3.8627821 0.0000000
11 3972 -3.2952445 0.0271235 0.0507401 -3.3223680 0.0000000
12 3645 -5.5200985 4.6331015 3.5765984 -10.1531997 0.0000003
13 3937 -6.5937588 3.8091822 3.7428972 -10.4029406 0.0000004
14 3907 -7.8927011 2.6437089 3.6040535 -10.5364098 0.0000002
15 776 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

Table 4.19: Performance of the restart CPGA.
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4.2.2 Graphical results

−18

−16

−14

−12

−10

−8

0 2000 4000 6000 8000 10000

Fi
tn

es
s

Number of function evaluations

SinCos ninetieth percent curves

STANDARD

RESTART

Figure 4.25: A comparison of the CPGA algorithms on the SinCos function.
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Figure 4.26: A comparison of the CPGA algorithms on the Hartman 3 function.
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Figure 4.27: A comparison of the CPGA algorithms on Shubert’s function.
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Figure 4.28: Standard CPGA value distributions for Shubert’s function.
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Figure 4.29: Restart CPGA value distributions for Shubert’s function.

4.3 Results of the application of the PSOA

4.3.1 Description of the variants used

There are a plethora of ideas which have been incorporated into the PSOA at one time or
another. Each idea is aimed at improving the performance of the standard PSOA on the
global optimization problem. Sometimes quite small changes result in surprising changes in
performance, at least with regards to small test sets. Five variants of the particle swarm op-
timization algorithm are presented here. The algorithms were tested on the SinCos function
and the Dixon Szegö functions. The x-squared function was omitted.

PSOVAR 1

This is the standard version of the PSOA. Its operation is consistent with equations 3.10 and
3.11. A boundary violation check is carried out after every generation to ascertain whether
or not the particles are still within the allowed function domain. Those that fall outside
the domain are artificially penalized. That is: they are given high cost values, regardless of
the actual cost values calculated for them. This ensures that they will not play a part in
dictating the swarm’s motion.
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PSOVAR 2

PSOVAR 2 is the dynamic inertia reduction variant (equation 3.12). for clarity, the update
equations are repeated here. It includes a maximum velocity limitation and the same bound-
ary violation check that is part of PSOVAR 1. The rest of the algorithms described below
are all DIR algorithms.

xi
n+1 = xi

n + vi
n+1 (4.2)

vi
n+1 = ωvi

n + c1r1(pi
n − xi

n) + c2r2(pg
n − xi

n) (4.3)

PSOVAR 3

A dynamic inertia reduction PSOA with a modified boundary check. In the event that a
particle falls outside the allowed domain, it is given a new position randomly chosen inside
the domain. PSOVAR 4 and PSOVAR 5 also have this feature.

PSOVAR 4

This is an algorithm, due to Groenwold, that borrows an idea from the GA’s selection
operator. Each particle’s best ever position is recorded in a vector which is updated after
every iteration. The global-best-position (pg

n) that appears in the social term of equation
4.3 is chosen from this vector using the ranked selection scheme described in Chapter 3.1.3.
A new choice is made for each particle. This implementation exists as an attempt to make
the algorithm more robust.

PSOVAR 5

This derivative, due to Wilke, works as follows. Instead of fiddling with the global-best-
positions, it modifies the way in which the cognitive and social terms are scaled. Normally
they are scaled using two random numbers (r1 and r2 in equation 4.3). PSOVAR 5 uses
only one random number (r1), the other is determined by: r2 = 1 − r1.
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4.3.2 Tabular results

PROB NFEAV MINAVE ERRORAVE SIGMA MINIMUM ERRORMIN
1 7217 -17.6196388 0.9343611 1.3580905 -18.5524497 0.0015503
2 2292 0.0015781 0.0015781 0.0021207 0.0000034 0.0000034
3 11867 0.8142335 0.8142336 0.1164112 0.2309904 0.2309904
4 3342 3.0074240 0.0074240 0.0074340 3.0002327 0.0002327
5 2966 -1.0312199 0.0004086 0.0004111 -1.0316251 0.0000034
6 3455 0.0065690 0.0065690 0.0081971 0.0000087 0.0000087
7 3382 -184.3791537 2.3517573 2.4763359 -186.7271260 0.0037853
8 2224 -1.6571646 0.3428354 0.1589403 -1.9602080 0.0397920
9 3516 0.4865382 0.0886608 0.3858798 0.3978880 0.0000072
10 3999 -3.7874294 0.0753527 0.2603507 -3.8627692 0.0000129
11 15128 -3.2677448 0.0546232 0.0576976 -3.3153992 0.0069688
12 15753 -7.3617469 2.7914534 2.3553954 -10.0034558 0.1497442
13 15466 -7.6937166 2.7092245 2.3834739 -10.2800550 0.1228860
14 15164 -7.6148579 2.9215524 2.5184742 -10.3193367 0.2170733

Table 4.20: Performance of PSOVAR 1.

PROB NFEAV MINAVE ERRORAVE SIGMA MINIMUM ERRORMIN
1 9097 -17.7702385 0.7848583 1.5270384 -18.5547213 0.0003689
2 2460 0.0010462 0.0010462 0.0016174 0.0000002 0.0000002
3 16113 0.5571236 0.5571237 0.2248521 0.0000075 0.0000075
4 3777 3.0046861 0.0046861 0.0072569 3.0000000 0.0000000
5 3158 -1.0314548 0.0001737 0.0002522 -1.0316285 0.0000000
6 3810 0.0041881 0.0041881 0.0046782 0.0000069 0.0000069
7 3764 -184.9999164 1.7309947 2.5486547 -186.7309087 0.0000025
8 2174 -1.6632413 0.3367588 0.1781485 -1.9998357 0.0001643
9 3323 0.6022510 0.2044045 0.6660675 0.3978874 0.0000177
10 4890 -3.8222091 0.0405730 0.1735943 -3.8627820 0.0000001
11 19818 -3.3091526 0.0132154 0.0372686 -3.3223680 0.0000000
12 24490 -7.7118417 2.4413590 2.7028292 -10.1531997 0.0000003
13 24606 -8.5122643 1.8906757 2.7659939 -10.4029406 0.0000004
14 24456 -9.0861360 1.4502738 2.5467902 -10.5364098 0.0000002

Table 4.21: Performance of PSOVAR 2.
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PROB NFEAV MINAVE ERRORAVE SIGMA MINIMUM ERRORMIN
1 8066 -18.5547008 0.0007234 0.0001846 -18.5547213 0.0006159
2 2573 0.0010520 0.0010520 0.0019997 0.0000000 0.0000000
3 29168 0.2637400 0.2637400 0.3553115 0.0000000 0.0000000
4 4498 3.0030226 0.0030226 0.0070951 3.0000000 0.0000000
5 3408 -1.0314930 0.0001355 0.0002271 -1.0316284 0.0000001
6 4028 0.0021230 0.0021230 0.0036336 0.0000005 0.0000005
7 4448 -185.1437020 1.5872085 2.4714077 -186.7309088 0.0000024
8 4181 -1.9598983 0.0401017 0.0594494 -2.0000000 0.0000000
9 3062 0.3982438 0.0004338 0.0032418 0.3978874 0.0000016
10 5125 -3.8546347 0.0081474 0.0768885 -3.8627821 0.0000000
11 18901 -3.2791701 0.0431979 0.0576616 -3.3223680 0.0000000
12 23162 -7.8880426 2.2651572 3.1045926 -10.1531997 0.0000003
13 23888 -9.3752510 1.0276898 2.4842268 -10.4029406 0.0000004
14 24396 -9.9206217 0.6157882 1.8860175 -10.5364098 0.0000002

Table 4.22: Performance of PSOVAR 3.

PROB NFEAV MINAVE ERRORAVE SIGMA MINIMUM ERRORMIN
1 8532 -18.5547207 0.0007207 0.0000027 -18.5547213 0.0007021
2 2532 0.0018642 0.0018642 0.0031707 0.0000002 0.0000002
3 25339 0.4091962 0.4091960 0.4142511 0.0000000 0.0000000
4 4392 3.0026036 0.0026036 0.0046506 3.0000000 0.0000000
5 3441 -1.0313988 0.0002297 0.0004077 -1.0316283 0.0000002
6 3878 0.0034354 0.0034354 0.0047501 0.0000001 0.0000001
7 3283 -182.6440381 4.0868740 4.0674540 -186.7309088 0.0000024
8 4562 -1.9560306 0.0439694 0.0578369 -2.0000000 0.0000000
9 2544 0.4468713 0.0489067 0.0653508 0.3978874 0.0000680
10 5219 -3.8620833 0.0006988 0.0008504 -3.8627821 0.0000000
11 17826 -3.3199829 0.0023851 0.0166889 -3.3223680 0.0000000
12 23322 -10.1531989 0.0000011 0.0000053 -10.1531997 0.0000003
13 23908 -10.4029405 0.0000005 0.0000003 -10.4029406 0.0000004
14 23909 -10.5364098 0.0000002 0.0000001 -10.5364098 0.0000002

Table 4.23: Performance of PSOVAR 4.
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PROB NFEAV MINAVE ERRORAVE SIGMA MINIMUM ERRORMIN
1 6340 -18.5547212 0.0007212 0.0000002 -18.5547213 0.0007201
2 1881 0.0000217 0.0000217 0.0000465 0.0000000 0.0000000
3 26656 0.0231186 0.0231186 0.1207723 0.0000000 0.0000000
4 3240 3.0000503 0.0000503 0.0001705 3.0000000 0.0000000
5 2452 -1.0316223 0.0000062 0.0000109 -1.0316285 0.0000000
6 4447 0.0001594 0.0001594 0.0004440 0.0000000 0.0000000
7 5471 -186.6302402 0.1006711 0.4895392 -186.7309088 0.0000024
8 3003 -1.9636580 0.0363420 0.0554941 -2.0000000 0.0000000
9 2819 0.3978892 0.0001108 0.0000054 0.3978874 0.0000614
10 4172 -3.8550242 0.0077579 0.0769116 -3.8627821 0.0000000
11 13830 -3.2758745 0.0464935 0.0581454 -3.3223680 0.0000000
12 15093 -7.4389203 2.7142801 3.2833582 -10.1531997 0.0000003
13 15835 -9.2858573 1.1170835 2.4332464 -10.4029406 0.0000004
14 15674 -9.3728865 1.1635234 2.7027835 -10.5364098 0.0000002

Table 4.24: Performance of PSOVAR 5.

4.3.3 Graphical results

The performance of PSOVAR 1, is compared with that of PSOVAR 2 and PSOVAR 3
on the Rastrigin and Sheckel 5 functions. The ninety percent curves generated by these
algorithms for Rastrigin are shown in Figures 4.30 and 4.31. A large difference is noticeable
in the performance of PSOVAR 3, which prompts a comparison of the value distributions.
Figures 4.32 and 4.33 show the Rastrigin value distributions of PSOVAR 2 and PSOVAR 3
respectively. PSOVAR 3 appears to be better at distinguishing minima.

Coincidentally, a similar phenomenon occurs when the three functions are applied to Sheckel
5. This time, however, PSOVAR 3 fairs the worst of the three. Appropriate value distribution
plots are again presented to provide a better understanding of the shapes of the ninety percent
curves.

PSOVAR 3, PSOVAR 4 and PSOVAR 5 are compared on the Griewank 10, Hartman 6 and
Sheckel 10 problems. Once again, certain value distributions are presented in the hopes that
the reader will find them interesting.

Of particular interest is the stepped structure of PSOVAR 5’s ninety percent curve for
Sheckel 10 (see Figure 4.42). Figure 4.45 clearly shows how this curve comes about. The
ninety percent curves are constructed by plotting the nine hundredth value of the sorted
value distributions corresponding to each and every generation. Figure 4.45 conveys the fact
that PSOVAR 5 produces a very steeply stepped distribution. Crucially, the edges of those
steps migrate across the nine-hundredth run-designation mark as the distribution evolves.
This causes the peculiar form of the associated ninety percent curve.

The phenomenon is purely an artifact of this particular method of algorithm comparison. It
should be viewed as a drawback of the method and it should be kept in mind.
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Figure 4.30: Comparison of PSOVARs 1, 2 and 3 on the Rastrigin function.
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Figure 4.31: A closer look at the Rastrigin comparison.
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Figure 4.32: The evolution of PSOVAR 2 value distributions for Rastrigin.
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Figure 4.33: The evolution of PSOVAR 3 value distributions for Rastrigin.
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Figure 4.34: Comparison of PSOVARs 1, 2 and 3 on the Sheckel 5 function.
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Figure 4.35: A closer look at the Sheckel 5 comparison.
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Figure 4.36: The evolution of PSOVAR 2 value distributions for Sheckel 5.
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Figure 4.37: The evolution of PSOVAR 3 value distributions for Sheckel 5.
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Figure 4.38: Comparison of PSOVARs 3, 4 and 5 on the Griewank 10 function.

−3.4

−3.2

−3

−2.8

−2.6

−2.4

−2.2

−2

−1.8

−1.6

−1.4

0 5000 10000 15000 20000 25000 30000 35000

Fi
tn

es
s

Number of function evaluations

Hartman 6 ninetieth percent curve

PSOVAR 3

PSOVAR 4

PSOVAR 5

Figure 4.39: Comparison of PSOVARs 3, 4 and 5 on the Hartman 6 function.
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Figure 4.40: The evolution of PSOVAR 4 value distributions for Hartman 6.
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Figure 4.41: The evolution of PSOVAR 5 value distributions for Hartman 6.

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  WWoooodd,,  DD  WW    ((22000055))  



CHAPTER 4. NUMERICAL RESULTS 84

−11

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

0 5000 10000 15000 20000 25000 30000 35000 40000

Fi
tn

es
s

Number of function evaluations

Shekel 10 ninetieth percent curve

PSOVAR 5

PSOVAR 4

PSOVAR 3

Figure 4.42: Comparison of PSOVARs 3, 4 and 5 on the Sheckel 10 function.
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Figure 4.43: The evolution of PSOVAR 3 value distributions for Sheckel 10.
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Figure 4.44: The evolution of PSOVAR 4 value distributions for Sheckel 10.
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Figure 4.45: The evolution of PSOVAR 5 value distributions for Sheckel 10.
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4.4 Results of the application of the DE algorithm

4.4.1 Tabular results

PROB NFEAV MINAVE ERRORAVE SIGMA MINIMUM ERRORMIN
1 1408 -18.5547213 0.0000000 0.0000000 -18.5547213 0.0000000
2 1739 0.0009772 0.0009772 0.0097229 0.0000000 0.0000000
3 63197 0.0005641 0.0005641 0.0014723 0.0000009 0.0000009
4 1306 3.0000000 0.0000000 0.0000001 3.0000000 0.0000000
5 1078 -1.0316284 0.0000001 0.0000001 -1.0316285 0.0000000
6 1725 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
7 10303 -186.7309077 0.0000035 0.0000031 -186.7309088 0.0000024
8 1435 -2.0000000 0.0000000 0.0000000 -2.0000000 0.0000000
9 1328 0.3978874 0.0000000 0.0000000 0.3978874 0.0000000
10 2166 -3.8627821 0.0000000 0.0000000 -3.8627821 0.0000000
11 6873 -3.3211757 0.0011923 0.0118608 -3.3223680 0.0000000
12 6645 -10.1531996 0.0000004 0.0000001 -10.1531997 0.0000003
13 5267 -10.4029401 0.0000009 0.0000008 -10.4029406 0.0000004
14 5441 -10.5364093 0.0000007 0.0000007 -10.5364098 0.0000002
15 835 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

Table 4.25: Performance of the differential evolution algorithm.

4.4.2 Graphical results

There is only one version of the differential evolution algorithm being tested. I have taken
this opportunity to compare the ninety percent curves with the output generated by the
algorithm during a single implementation. All of the ninety percent plots shown below,
therefore, also contain a single run performance graph, which is chosen randomly from the
thousand optimization runs performed.

The reader will note that the single run plot is characteristically step-like. It is due to
epochal behavior alluded to in Chapter 2.4. This behavior is common to all population
based stochastic algorithms when they are run with relatively small population sizes.

The fact that the ninety percent curves meet the single run curves for all of the graphs
presented below means one of two things. Either I have chosen (by chance) curves which
happen to level out at the ninety percent value or there is very little variance in the values
to which the algorithm converges. A glance at table 4.25 should convince the reader that
the latter is the case and that DE thus has very good convergence characteristics.

In terms of the value distributions, the above paragraph implies that the longer the algorithm
is run, the more the distribution tends towards a flat (horizontal) and featureless (step-less)
curve. This hypothesis is verified at least for Griewank 10 (Figure 4.47) and Sheckel 7 (Figure
4.52).
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Figure 4.46: DE’s ninety percent curve for Griewank 10.
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Figure 4.47: Evolution of DE’s value distributions for Griewank 10.
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Figure 4.48: DE’s ninety percent curve for the Shubert function.
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Figure 4.49: DE’s ninety percent curve for Hartman 6.
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Figure 4.50: DE’s ninety percent curve for Sheckel 5.
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Figure 4.51: DE’s ninety percent curve for Sheckel 7.
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Figure 4.52: Evolution of DE’s value distributions for Sheckel 7.

4.5 Concluding remarks

With any luck, by now you are convinced that the GA, CPGA, PSOA and DEA are all useful
function optimizers, in which case the main goal of this chapter has been achieved. They
are suited particularly to performing a global search of the cost surface, whilst their local
refinement characteristics are more time consuming by comparison. I have attempted to
demonstrate that the stochastic optimizers are both flexible and robust. A given algorithm
can be applied without modification to many different problems, although the scope for
modification is large. Many variations of the same algorithm can be written, all of which
still perform their optimization tasks albeit that their performances inevitably differ. The
performance of any one program variant cannot be quantified generally. It is intrinsically
problem dependent and the best that can be done is to state performance measured based on
some well defined, limited and accepted problem set. Any such statement is still meaningless
in absolute terms. The success of an optimizer can only be judged relative to the results
produced by another.

These characteristics introduce the idea of tuning an algorithm to suit a specific problem.
Given that these optimization methods are so easy to write and implement, that they are
so forgiving and so diverse, there is really no need to consider buying and using off-the-shelf
programs. Indeed, to do so would be tantamount to ignoring the inherent malleability of
these techniques, which is one of their most useful characteristics. In my experience, the
ability to modify particularly the GA and the PSOA has been indispensable for the work
presented in Chapter 5.
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Of secondary importance in the current chapter, but more in tune with the argumentative
tone of the thesis in general, I have shown that the presentation of optimization results
and therefore, by extension, the judgment of an algorithm’s performance, is not as starkly
deterministic as one might think. Over and above the fact that algorithm performance is
relative, the method of comparison introduces a bias. The tabular method of comparison
highlights the local refinement characteristics of an optimizer, whilst my graphical method
does the opposite. It hides this information in favour of depicting more of the global search
regime. Hence the discussion in Chapter 2.3.

There is an approach to optimization which takes cognizance of these observations and
difficulties. It advocates the use of different competing optimization programs run in parallel
[7, 34]. It has the added advantage that the resulting optimizer is about the closest anyone
is likely to get to a reliable, objective off-the-shelf algorithm. This approach requires that
the same optimization task be carried out by multiple programs simultaneously on different,
linked processors. The current best solutions found by all the algorithms are compared after
set intervals. A Bayesian stopping criterion, which makes use of the search histories of all
of the algorithms is used to decide on when to terminate the search (see Appendix B). The
approach has a number of advantages and one disadvantage. The advantages are:

• The search is conducted by multiple routines – both gradient based and evolution-
ary. The probability of out performing any single algorithm is maximized since the
likelihood of all the algorithms getting stuck in the same local minimum is minimized.

• The question of algorithm success, as compared to the performance of other algorithms,
is automatically dealt with because several algorithms compete. The performance
of the procedure as a whole reflects mainly the performance of its most successful
constituent.

• The Bayesian stopping criterion is objective. Many search algorithms are employed to
define the prior value distribution used by the criterion to make a termination decision,
making the process statistically more sound simply because more points in the search
space are sampled.

• Since the procedure would employ various gradient based as well as stochastic optimiz-
ers, it would be better suited (a priori) to tackling any arbitrary optimization problem
than any single algorithm.

• If there is communication between the stochastic and gradient based constituents, the
procedure would naturally represent an effective hybrid algorithm. Conceptually, it
could easily take advantage of the good global search characteristics of the EAs and
the excellent local search capabilities of the gradient based optimizers.

The disadvantage of this approach is that it is hugely computer intensive. Unfortunately
there are many applications (for example in finite element analysis and computational fluid
dynamics analysis) where simply performing one function evaluation requires a number of
hours. Serial optimization runs require days. Parallel runs would likely require less time, but
the process needs to be run on many more processors. Here again, what one stands to gain
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in terms of optimization performance must be offset. In this case by hardware costs. The
parallel competing algorithm lies outside the scope of this thesis though, and no detailed
presentation is given.

As far as serial optimization is concerned, harping on the ability of a stochastic optimizer to
find the true global minima of certain test functions is irrelevant. Any stochastic optimizer’s
performance is problem specific and it is unpredictable a priori. Since the most optimal
state of a modeled system is not known in practice, the success of an optimizer must be
decided by the user. In light of the fact that there is more than one way to generate (biased)
results, and that the user’s expectations – and expertise – must play a role in deciding on
the quality of the results, estimation of an algorithm’s success is inevitably subjective.
Which makes it difficult to write an effective termination criterion . . .
which can have the greatest effect on an algorithm’s apparent performance . . .
which makes it problematic for the user to decide on the performance of the algorithm . . .
which makes it difficult to write an effective termination criterion . . .

The goal of Chapter 5 is to crystallize these last ideas concerning optimization of problems
other than analytical functions.

As far as the test functions presented in the current chapter are concerned, I think you
are likely to agree that the Differential Evolution algorithm was the most successful of the
techniques, if the entire test set is considered. In the next chapter, we shall see if it remains
the best.
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Chapter 5

Modeling magnetic cataclysmic
variable polars

The main theme of this thesis concerns the difference between the design and evaluation
of evolutionary algorithms using standard test sets versus the use of such algorithms in
modeling applications. The term ’real world’ application has been used rather superciliously
throughout this document to stress my contention that the results derived from the standard
test sets are of little use when problems of a more relevant nature are considered in practice.

This is so because there is rarely any a priori indication that the algorithm’s performance
on the modeling problem will correlate at all with its performance on the test sets. These
performance measures are relative anyway. This argument derives from the no free lunch
theories together with the observation that no method exists for classifying problems.

What is more: other considerations often arise in practice that subordinate the question of
efficacious EA selection or optimal EA design. Discussions relevant to the application of
stochastic algorithms can be found in [35].

In this chapter, a modeling problem is discussed in which EAs are used. Ironically it is an ’off
world’ problem that is considered. More importantly though, it is the experience that I have
gained whilst working on this application that has directed the formation of the viewpoints
expressed in the previous chapters.

The application entails the modeling of a subgroup of magnetic cataclysmic variables (MCVs),
known as polars.

5.1 Magnetic what?

A description follows of the type of systems that are modeled. All the information presented
hereafter is taken (with permission) from [4, 36].

Cataclysmic variables (CVs) are astronomical objects. They are star systems which fall under
the broader classification of binaries. A binary star system, not surprisingly, is a system
comprised of two stars orbiting a common center of mass. What makes CVs interesting is
that they exhibit variations in their observable emissions. At least, it is this aspect that

93
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initially attracted the attention of astronomers.

The range of phenomenon that different CVs exhibit, both in the visible and x-ray regimes, is
varied and complicated. Astronomers have derived a structure for these systems to account
for their varied characteristics. The most salient feature of these systems is that there is
mass transfer between the two stars.

5.1.1 Geometry of a CV

Cataclysmic variable stars are semi-detached binary star systems in which the more massive
star, known as the primary, is a white dwarf. The meaning of ’semi-detached’ will become
clear presently. The secondary star is much larger than the primary and more diffuse. The
system is characterized by a flow of stellar material from the secondary to the primary, the
reason for which is described shortly.

Tidal effects, which arise from the interaction of the primary’s gravitational field with the
secondary, cause the secondary to be distorted. That is: it ends up looking somewhat like
a tear-drop, the apex of which points towards the primary. In addition, the tear-drop is
flattened towards the plain of rotation of the system due to centrifugal effects. The white
dwarf, by virtue of its small size and great density, suffers only imperceptible distortion.

One consequence of the tidal distortion experienced by the secondary is that its rotation
becomes phase locked with the rotation of the system as a whole. In other words, its
rotation on its own axis is synchronous with its orbital rotation about the system’s center
of mass. It thus presents the same face towards the primary at all times.

The best way to understand the geometry of a CV is to study its Roche lobe geometry.

As you know, the force acting on a particle can be described as being proportional to the
gradient of a scalar potential field (Φ) with which the particle interacts. The force governing
the dynamics of binary star systems in general is gravitation, the effect of which is balanced
by the inertial forces which exist due to the system’s rotation. Φ then, includes the field
description of both the gravitational force and the inertial centrifugal force.

If it is assumed that the gravitational fields of the stars are those consistent with undistorted
stars, then the plot of the equipotentials of ΦR looks like Figure 5.1. This is known as the
Roche approximation. ΦR has the form

ΦR =
GM1

a
F

(

x

a
,
y

a
,
z

a
, q

)

(5.1)

with the origin of the co-ordinate system at the center of the primary. The shapes of the
Roche equipotentials (ΦR = const) are solely a function of the masses of the two stars, since
q is the mass ratio M1

M2

and a is the separation distance between the stars, which is also purely
a function of their masses.

It can be shown that the surface of a synchronously rotating star is defined by an equipo-
tential surface. Referring to Figure 5.1, the two equipotentials that meet at L1 are known
as the Roche lobes. L1 is known as the inner Lagrangian point. It is a point at which the
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gradient of ΦR is zero. If a star fills its Roche lobe, material is able to leak across into its
companion star’s Roche lobe at L1. From there on, it will be pulled towards the companion
star under the influence of its gravitational field. The stream’s trajectory will depend to
some extent on its velocity at L1.

Figure 5.1: The Roche lobe geometry of a CV.

A binary system in which both stars fill their Roche lobes is called a contact binary. De-
tached binaries are those in which neither star fills its Roche lobe. No mass transfer takes
place. Cataclysmic variables are semi-detached. The secondary fills its Roche lobe and the
primary does not. The primary’s volume is much smaller than the volume within its Roche
equipotential surface. At L1 stellar material from the secondary seeps into the primary’s
Roche lobe, driven by its thermal energy (Figure 5.2). The secondary it thus constantly los-
ing mass. In order that the mass transfer continues on evolutionary timescales, a mechanism
must exists which shrinks the Roche lobes by slowing the system’s rotation and decreasing
the stellar separation distance.

Two mechanisms have been proposed which do just this. They are

• the emission of gravitational radiation (dominant for fast rotating systems) and
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• magnetic stellar wind braking (dominant for systems with slower rotations).

What happens to the accretion stream after it enters the primary’s Roche lobe depends
crucially on the magnetic field of the white dwarf because the stream is ionized by the
radiation emitted by the primary.

Figure 5.2: Mass transfer at the inner Lagrangean point.

Non magnetic systems

In non magnetic CVs, the primary has a magnetic field (≤ 105G), which is too weak to
have a significant effect on the trajectory of the accretion stream. The stream is accelerated
towards the primary due to the primary’s gravitational field, gaining kinetic energy and
loosing potential energy. The stream does not impact the primary because of the system’s
rotation. Instead it slingshots around the white dwarf and heads back out into space in an
elliptical orbit. Since the stream particles have approximately zero kinetic energy at L1,
the orbit is bounded in radial extent by the Roche equipotential, where the particles again
find themselves with no kinetic energy and heaps of potential energy. The stream, therefore,
cannot escape from the primary and must continue to orbit.

However, the orbit is planar, which implies that at some stage the stream must impact
itself. This impact heats the gas and kinetic energy is radiated away. Angular momentum
is conserved though, so the stream will tend to form a ring around the primary, because
a circular orbit has the least kinetic energy for a given angular momentum. Particles in
the ring closer in radial distance to the primary will move faster relative to those further
out. There is therefore a tangential velocity gradient (varying radially) present in the ring.
Viscous processes generate heat and dissipate further kinetic energy. Thus, the inner radius
of the ring will shrink as the particles which loose energy drift to smaller orbits. Conservation
of angular momentum must still be satisfied however, so some particles will drift to orbits
of greater radii.

The net result is that a disc of material forms around the white dwarf. The inner edge of
the disc contacts the white dwarf at a ring around the equator. The outer edge of the disc
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is limited in radial extent and the accretion stream impacts the outer edge of the disc. This
configuration is the stable equilibrium configuration of non magnetic CVs. The mass flow
rate through the disc is stable and the structure is constant.

The rotation of these systems relative to us here on earth is the cause of some of the variability
observed in the emissions from CVs. The more interesting behavior is caused by a temporary
departure from the stable configuration and is associated with changes in the mass transfer
rates throughout parts of the system. These nova episodes are very energetic, dissipating
colossal amounts of energy relative to the stable state.

Figure 5.3: The formation of an accretion disc.

Magnetic systems

Magnetic CVs are divided into two groups. The first group, known as the intermediate field
polars, contain white dwarfs which possess magnetic fields that are sufficiently intense to
partially disrupt the formation of a full accretion disc. Briefly, the discs in these systems do
not contact the primary. The primaries rotate asynchronously with the orbital rotation, as
they do in non magnetic CVs.

The magnetic field rotates in space with the primary. There is an interaction between the
field and the ions in the accretion disc. The magnitude if this force varies radially, becoming
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stronger at smaller radii, since both the field strength and the disc rotation velocity increase
towards smaller radii. The net result is a torque which exists between disc and star, effecting
the rotation of both and heating the inner portion of the disc. At the inner edge of the disc,
the magnetic forces acting on the ions dominate over the dynamic and hydrodynamic forces
present. The ions thread onto the magnetic field lines. Their trajectory from here on is
defined by the structure of the magnetic field until the gas is funneled onto the surface of
the primary in concentrated arcs near its magnetic pole(s).

The other class of MCVs is the polars. The modeling problem presented in this chapter
specifically concerns the modeling of polars, the description of which is delayed until later.

5.1.2 CV classification

Surveys of CVs have revealed a wealth of diverse characteristic and behavior, which allows
for the differentiation of CVs into several subclasses.

• Classical nova (CN): By definition, classical nova have undergone one eruption since
people started observing them. Said eruption is attributed to a thermonuclear runaway
of the hydrogen rich material that had accreted onto the white dwarf. The change in
brightness of the stars during outburst is more than 6 mag (magnitudes) and has been
measured as great as 20 mag. A shell of material is characteristically ejected into space
during the nova outburst.

• Recurrent nova (RN): These stars have the same characteristics as classical nova except
that the nova episodes occur more than once. CN and RN are the two types of systems
which eject shells of stellar material during eruption, an observation that is made
spectroscopically.

• Dwarf nova (DN): The outburst amplitudes of these systems are typically between 2
and 5 mag. The nova eruptions are thought to occur due to a temporary increase in
the mass transfer rate through the accretion disc.

• Nova like variables (NL): This class subsumes all the CVs that have never been ob-
served in outburst. They are classified as CVs because they have similar spectral
characteristics to other (known) CVs.

• Magnetic CVs: They possess strong magnetic fields which affect the formation of the
accretion disc. Polars have the strongest fields. So strong that the formation of a disc
is prevented. Intermediate polars have weaker fields. A disc still forms but its inner
edge does not contact the white dwarf primary.

5.2 Polars

Polars are a class of CVs characterized by very high magnetic field intensities (11 ≤ B ≤ 75
MG). This high field strength causes the primary to become phase locked with the rotation
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of the system as a whole. The second important consequence of the severe magnetic field is
that it completely inhibits the formation of an accretion disc. In these systems, the trajectory
of the accretion stream is directed by the magnetic field at such an early stage that no part
of it is ever able to orbit the primary. Instead, the entire stream is threaded onto the field
lines and channeled onto the surface of the primary.

The stream initially follows a ballistic trajectory for a time after it leaves the inner Lagrangian
point. The magnetic pressure in the gas increases steadily as it falls towards the white
dwarf. Eventually, however, the magnetic pressure increases faster than the stream can
adjust subsonicly and the stream shatters into fragments.

Certain plasma-physical instabilities ensure that the stream is broken into blobs. The sur-
faces of these blobs are eroded as the surface particles attach to the magnetic field lines,
whilst the interiors of the blobs are insulated to some extent from the effects of the field.
Thus, the whole stream gradually attaches to the field lines in an extended region of space
called the threading region. The stream is channeled onto the surface of the primary near
its magnetic poles. The areas in which the stream strikes the primary are known as the
accretion regions and are thought to have the form of arcs offset from the magnetic poles.
Their shapes are determined both by the structure of the magnetic field and of the threading
region.

The exact trajectory of the accretion stream on its journey to the white dwarf is dependent
on the geometry of the system. The orientation of the primary’s magnetic field relative to the
plane of rotation is crucial. Another crucial factor is the type of field present. The assumption
that the field of the primary is a dipole field appears to be sufficient for modeling purposes.
Many polars are known to possess fields which are approximately offset dipole fields, in which
one magnetic pole can be considerably stronger than the other. A further complication is
that our observations of such a system depend additionally on the orientation of the system
relative to our line of sight.

Figure 5.4: Magnetically governed accretion.

Polars are the easiest type of CV to model since all the complications arising from the
existence of an accretion disc are absent. Also, all the elements of a polar rotate at the same
period. More importantly, they emit polarized cyclotron radiation, the presence of which
suggests a method of modeling the accretion region on the primary. Said method is used to
produce the results presented hereafter.
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5.2.1 Cyclotron radiation

Cyclotron radiation is emitted by semi-relativistic electrons accelerating in a magnetic field.
As the gas in the accretion stream falls supersonicly towards the stellar surface, it encounters
a shock. Refer to Figure 5.5. The flow decelerates by approximately a factor of 4 across the
shock front, becoming subsonic. There is also a corresponding increase in the temperature
of the stream and it is the thermal energy of the electrons which gives rise to the cyclotron
radiation. Recall that the temperature of a gas is nothing other than the average kinetic
energy of its constituents.

The shock stands sufficiently far above the stellar surface to give the post shock flow enough
time to cool and decelerate to match the conditions of the stellar photosphere. Typically,
the temperature of the accretion stream immediately behind the shock is of the order of 108

K. Now, the surface temperature of a white dwarf in polars is between 8× 103 and 20× 103

K. Hence, the post shock flow will cool considerably. There are three processes responsible
for cooling the flow.

1. Bremsstrahlung: emission by free electrons, principally in the x-ray regime.

2. Compton cooling: the scattering of relatively low energy photons by the post-shock
electrons.

3. Cyclotron emission: defined above.

Figure 5.5: A schematic of the accretion shock.

Cyclotron emission is useful for modeling the accretion region because it is highly direction
dependent and because the character of the radiation depends strongly on the geometry of
the post-shock accretion column.

Charged particles accelerating in a magnetic field emit radiation. Just so, electrons spiral-
ing in the post-shock accretion column radiate energy. The electrons spiral at an angular
frequency of
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ω0 =
eB

γmec
(5.2)

and energy is radiated at this frequency and all of its harmonics. B is the magnetic field
strength, e is the charge of an electron, me is the rest mass of an electron and γ is the rela-
tivistic correction factor. Just how the emitted energy is split over the harmonic frequencies
depends on the energy of the electron. Electrons with higher energies emit the bulk of their
power at the higher harmonics.

Now, the traveling electron prescribes a spiral around a magnetic field line. If one were to
look down the field (the line of sight parallel to the field lines), one would perceive the motion
of the electron as a circle in a plane. The radiation it emits is circularly polarized from this
vantage point. From the side (90 degrees to the field lines) the radiation is linearly polarized
since the acceleration is linear from this perspective. The electron’s velocity parallel to the
field lines is constant. In general, the light emitted is elliptically polarized, from any angle
other than 0 degrees and 90 degrees and the ratio of linear to circular polarization in the
observed light changes with the viewing angle.

The viewing angle is here defined as the angle between our line of sight and the direction
of the magnetic field at a point on the surface of the primary. This angle can be calculated
at all points on the primary for all phases of the system’s rotation if the geometry of the
system is known and if a structure for the magnetic field is assumed. As was pointed out
earlier, the assumption of an offset dipole magnetic field is believed to be fairly accurate for
most polars.

5.2.2 The model

Naturally, the physics of the situation is not quite as straight-forward as the previous sections
imply. There are a number of additional phenomenon which modify the character of the
emitted cyclotron radiation.

Firstly, there are a seriously large number of electrons doing the radiating. They do not
all have the same energy. This collection of electrons, treated as a whole, is known as an
ensemble. The ensemble carries an energy distribution and this broadens the harmonics
at which the energy is radiated. Hence, cyclotron radiation from the ensemble occurs in
frequency bands. Also, the relativistic mass increase has a greater effect on the more energetic
electrons, broadening the higher harmonics still further. Relativistic Doppler shift also plays
a role in modifying the harmonic frequency bands and this phenomenon is additionally
dependent on the viewing angle.

What we have then, are measurable emissions that occur at a number of frequencies. These
emissions are crucially dependent on the structure of the white dwarf’s magnetic field. What
we observe is heavily dependent on the shape of the emission region and on the orientation of
the system with respect to our line of sight. Such position/direction dependent information
can be used to model the primary’s emission region in polars.

The model, developed by Dr. Potter and based in part on work done by Wickramasinge and
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Meggitt [37], takes into account the abovementioned phenomenon and develops a simulation
of the shape of the emission region. Dr. Potter has written a number of versions of the
modeling program, only one of which has been used for this thesis.

Figure 5.6: A grid of pixels with random emission values.

Figure 5.6 depicts a grid of pixels. Each pixel has a set of co-ordinates associated with it
that places it at a point on the surface of the white dwarf. The pixels extend between 6
degrees and 174 degrees magnetic latitude and cover the entire longitudinal circumference
of the star. Every pixel can be given an emission intensity value between 0.0 and 100.0,
which models the total amount of cyclotron radiation emitted from the associated point on
the surface of the primary.

After defining a structure and strength for the magnetic field, the direction and intensity
of the field can be calculated at each point. The model assumes an offset dipole field and
the polar field strength is required to be entered as an input parameter. By further defining
values for the magnetic dipole offset angle and the system inclination angle, the angle between
our line of sight and the magnetic field line at each point can be calculated. The inclination
angle and magnetic dipole offset angle are also required as input parameters into the model.
Furnished with this information, the system’s rotation angle and each pixel’s total emission
value, the program can now calculates four values.

1. The total intensity of cyclotron radiation seen from our perspective.

2. The percentage of linearly polarized light contained therein.

3. The percentage of circularly polarized light contained therein.

4. The position angle of the linear polarization.

Item 4 is an indication of the direction of the magnetic field. It will not be discussed further.

The model which I used calculates all of this for fifty equally spaced system rotation angles
between 0 and 360 degrees, yielding fifty data points for each item listed above. This
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information can now be compared to the same type of date measured whilst observing an
actual CV. Figure 5.7 is an example.

Figure 5.7: Example comparison curves.

Note that system rotation angle is conventionally expressed as a phase between 0 and 1.
The model considers the 0 rotation phase as the phase at which the magnetic pole in the
hemisphere closest to the observer is in line with the pole of rotation and on the opposite
side of it, along the line connecting the observer and the pole of rotation (phew!). A phase
offset angle must be read into the modeling program in order to try and make sure that the
model data and the observational data have the same rotation datum (0 phase).

The data is scaled against the observational data and can be plotted as curves (Figure 5.7).
The idea is to find the set of pixel intensity values that produce curves that match the obser-
vational data. This set of values must(?) then constitute a good first order approximation
of the structure of the accretion region on the white dwarf.
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The introduction of a stochastic optimizer

Modeling programs such as this one have relied on a time consuming manual approach to
define the emission region(s). The geometry and intensity of the emission region was plotted
by hand and used as an input to the program. The output would indicate whether or not
the geometry produced reasonable fits to the observed data and the astronomer would have
to decide how to modify the geometry to get a better fit. It was a trial-and-error process
requiring a lot of educated guesswork. This type of approach tends to bias the search for
a believable structure of the emission region towards theoretically expected results. Most
of the time is spent setting up new trial solutions as computers only require fractions of a
second to produce the output curves.

The current modeling program resulted from an effort to automate the search and make it
more objective. Pixels discretise the stellar surface and their intensity values are randomly
determined by a stochastic algorithm. These values are fed to the simulation subroutines
as a vector and they produces the associated output data. This data is compared to the
observational data and a chi-squared fit (given by 5.3) is determined. The chi-squared
value is passed back to the optimization algorithm and serves as the fitness value. This
simulation part of the program, then, is the objective function. Since a chi-squared fit is
being performed, the theoretical minimum for the fitness (cost) is zero - implying that the
set of output curves perfectly match the observed data.

χ2 =
∑

datapoints

(model − actual)2 (5.3)

It should be noted that this application produces a cost surface which is almost certainly
non-convex, possessing multiple local minima. Furthermore, in terms of dimensionality, it is
huge. Stochastic algorithms are rarely tested on problems with more than 15 independent
variables. The grid used by the this model contains 1740 pixels, each of which represents an
independent variable. In addition to which, noise raises its problematic head.

Some specifics

The CV being modeled here is designated V834 Cen. It is known to have one pole which
completely dominates the other(s), so that all of the observed cyclotron emission can be
accounted for by modeling only one hemisphere of the primary. Since the emission region is
expected to be close to the magnetic pole, only the topmost 600 pixels are considered in the
model.

Initially the program utilized an integer based genetic algorithm. That is: each gene directly
represented a pixel emission intensity value. Each gene is comprised of only one bit and can
assume any integer value between 0 and 100. The GA’s alphabet therefore consists of 101
characters and no coding step is required. Crossover is accomplished with a blending scheme
as in the CPGA, except that the blended genes are limited to integer values.

One goal that the remainder of this thesis seeks to achieve is to determine which stochastic
algorithm (if any) is best suited for use in this modeling application.
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5.3 Preliminary considerations

Since the problem is large, non-convex and noisy, it is likely to be very time consuming
to optimize. It would be intelligent firstly to determine whether or not a gradient based
optimizer can solve the problem. If the problem can be solved using such an algorithm, it is
very likely to be far more efficient than using any stochastic algorithm.

Whether a gradient based algorithm is better suited to solving the modeling problem or
not, it is informative to ascertain how the stochastic algorithms react to systems with many
variables. Nothing in this thesis to date has hinted at the effects of large dimensionality.

Before attempting to generate meaningful arguments about modeling CVs, the above two
issues will be addressed in this section. The issue of dimensionality is tackled first.

5.3.1 Large dimensionality

I intended to assess the performance of the stochastic algorithms on a problem with a large
number of independent variables without introducing the additional complications of noise
and multi-modality. To this end, a simple convex x-squared function was chosen (equation
5.4) for which the minimum was sought.

F =
n
∑

i

(xi − i)2 n = 1 . . . 600 − 1000 ≤ xi ≤ 2000 (5.4)

Table 5.1 contains the results generated by four optimization algorithms. The acronyms that
are listed in the table read as follows.

• CGA: Continuous parameter genetic algorithm.

• IGA: Integer genetic algorithm.

• BGA: Binary genetic algorithm.

• DEA: Differential evolution algorithm.

• PSOA: Particle swarm optimization algorithm.

The integer genetic algorithm is similar to the continuous parameter GA except that all
vector elements are limited to the space of integer numbers. This algorithm also requires
no coding step. It is introduced here because it was the original optimization algorithm
incorporated into the CV modeling program.

Table 5.1 shows the average best fitness value found by an algorithm after the indicated
number of function evaluations had elapsed. A dash indicates that the optimization run had
already been terminated. Column two records how many successive optimization runs were
averaged to compile the tabulated values.
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Optimizing Number Fitness
algorithm of runs 200 000 1 000 000 2 500 000 5 000 000

CGA 15 1 855 528.6 47 205.30 139.203 1.1404
IGA 25 3 356 829.6 20 619.28 373.240 -
DEA 25 17 531 480.7 19 177.62 0.167 -
PSOA 25 0.0014 - - -

Table 5.1: Relative performance of four optimizers for high dimensionality.

The binary GA does not appear in the table because it was run only once on the problem.
The binary GA is terribly inefficient for this problem relative to the other optimizers. The
reason is that the function is defined over the space of real numbers. Each co-ordinate is
given a gene representation. The co-ordinate value can range between −1000 and 2000. To
ensure an acceptable accuracy, the gene representation chosen required fifteen bits. That
makes each string nine-thousand bits long. The algorithm did not progress too far with
a population of less than two-hundred members. At the end of the day, the computer
spends more time doing string and matrix manipulations than it does actually evaluating
the function. The BGA was a factor of ten to twenty times slower than the other algorithms.
This serves as a neat illustration of the primary disadvantage of the use of a coding step.
The BGA converged to a value of 9119036 after 1500000 function evaluations.
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Figure 5.8: High dimensionality problem ninetieth percentile curves.

For comparison, the results obtained by two gradient based algorithms, Dynamic-Q [38] and
BFGS [6], are also presented in Table 5.2. Each algorithm was required to determine the
gradients numerically. The additional computational expense required to do this is included
in the tabulated number of function evaluations.
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Optimizing algorithm Number of runs Average NFE Average fitness
Dynamic-Q 10 11 419 0.00073

BFGS 10 3 005 < 1.0E-20

Table 5.2: Gradient based optimizers on high dimensionality problem.

The reader should remember that the results presented above cannot serve as a proof that
one optimizer is in general superior to any other. The results will change if another problem
is considered. Still, it is interesting to note that the PSOA performs vastly better than the
other stochastic algorithms on this problem. Why?

The difference in algorithm efficiencies can be accounted for by considering the population
sizes for each of the algorithms. All of the algorithms besides the PSOA were run with a
population size of 200 members. A population of 100 individuals resulted in poorer conver-
gence. That is to say, the optimum population sizes for the DEA, CPGA and IGA is in the
vicinity of 200 (for this problem). Recall the discussion of optimal population size given in
Section 4.1.1. The PSOA, however, can get away with using only 10 particles in its popula-
tion. The strictly convex nature of this function suites the PSOA. Its dynamic behavior and
local convergence characteristics are highlighted as a result. It is unlikely that the difference
between optimizers would be so marked if a function with multiple local minima would be
considered. We shall have the opportunity to test this hypothesis later.

One other observation should be made. The gradient methods are far superior to the evolu-
tionary algorithms at optimizing this problem. This is despite having to evaluate gradients
using a sensitivity scheme. Naturally, this problem is just about the easiest 600 variable
problem that can be thought up for gradient based optimizers to solve. Never the less,
these results prompt us to determine whether or not the gradient algorithms can be utilized
successfully in the modeling program.

5.3.2 Using gradient based optimizers in the CV model

They cannot. Trust me, I’ve tried. Neither Dynamic-Q nor BFGS come close to converging
on anything like an acceptable solution.

Tentatively, it is because the gradient information obtained from the model is rendered
useless due to a scaling factor which changes unpredictably at each point in the space. I
have tried to remove this scaling factor or make it constant. My attempts have not improved
the performance of the algorithms, so maybe my reasoning is flawed here.

At any rate, whatever the reason, this modeling problem as it stands now is a prime example
of one of those problems for which we are forced to use stochastic optimizers. Nothing else
seems to work.
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5.4 Results

5.4.1 Benchmarking the model

The program uses the difference between the two sets of light curves, like those in Figure 5.7,
as an estimate of the quality of the solution which it generates. However, since the desired
output is a emission region structure which is physically acceptable, the solution must (more
importantly) bear up to visual scrutiny by an knowledgeable eye. I have assumed until
now that a solution whose associated cost is close to the theoretical minimum - zero - also
automatically represents a physically acceptable solution, which may then be assumed to
be a fair approximation of the actual structure responsible for generating the experimental
curves.

I have attempted to test the foregoing hypothesis, and in so doing have generated the forth-
coming of results.

Three test emission structures were generated by hand. They are plotted in Figures 5.9
through 5.11. Each of the algorithms was then used to model the structures. The results
can once again be compared on a χ2 basis (Table 5.3) but the visual comparison of the test
structures with Figures 5.9 through 5.11 is more important here.

Figure 5.9: Triangular test emission region.

Figure 5.10: Elliptical test emission region.

Figure 5.11: Vertical bar shaped test emission region.
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Benchmark results

Algorithm Triangle Ellipse Bar
IGA 44039.42 5667822.50 1585961.62
BGA 2098.51 1464.46 5163.79
CGA 1380.36 837.32 1602.77
PSOA 17.95 11.70 52.16
DEA 2534.37 1550.78 4177.43

Table 5.3: χ2 results for the benchmark tests.

Figure 5.12: Binary GA triangular solution.

Figure 5.13: Binary GA ellipse solution.

Figure 5.14: Binary GA vertical bar solution.
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Figure 5.15: Integer GA triangular solution.

Figure 5.16: Integer GA ellipse solution.

Figure 5.17: Integer GA vertical bar solution.

Figure 5.18: Continuous parameter GA triangular solution.

Figure 5.19: Continuous parameter GA ellipse solution.
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Figure 5.20: Continuous parameter GA vertical bar solution.

Figure 5.21: Differential Evolution triangular solution.

Figure 5.22: Differential Evolution ellipse solution.

Figure 5.23: Differential Evolution vertical bar solution.

Figure 5.24: Particle swarm triangular solution.
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Figure 5.25: Particle swarm ellipse solution.

Figure 5.26: Particle swarm vertical bar solution.

Comments

The preceding solutions pretty much speak for themselves. The continuous parameter GA
and the PSOA generate the best solutions, whilst the integer GA appears unable to model
the test regions. Should we expect similar behavior from the algorithms when they are
applied to model a real star? We shall see shortly.

A few general observations should be made. Firstly, notice how none of the images are
clear. The areas that should be white are marred by low intensity emission regions that
the algorithms appear unable to get rid of. Secondly, none of the algorithms model the
emission regions perfectly. Both points illustrate the inability of stochastic algorithms to
perform an efficient, refined local search. Observations like these prompted the creation of
the GA-line-search hybrid algorithm (ALOPT 6) presented in Chapter 4.1.3. I have used
the same approach in an attempt to clean up the above images, but there is precious little
improvement. The most likely reason is that the cost surface is covered in small scale local
minima, and this makes the selection of appropriate line search step sizes very important if
the large scale behavior of the surface is to be captured.

5.4.2 Model results

Table 5.4 contains the results obtained by the model when the different algorithms are
incorporated to image the star V834 Cen. The results are compared on a chi2 basis. The
theoretical minimum for the error is obviously zero. The second last column in the table
(labeled NFE) indicates after how many function evaluations the run was terminated.

The genetic algorithms and the differential evolution algorithms require larger population
sizes than does the particle swarm algorithm. As a consequence, all else being equal, the
former generally converge to solutions slower than the latter. Hence, as is evidenced in
Table 5.4, they have been allowed a greater number of function evaluations before being
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Algorithm χ2 value NFE Population size
Binary GA 0.143 1 000 000 200
Integer GA 0.279 174 000 200

Continuous GA 1.105 2 500 000 200
Diff. Evolution 0.110 1 500 000 150
Particle Swarm 0.023 250 000 25

Table 5.4: Comparison of Algorithms.

terminated. The IGA converges quickly despite the large population size because its search
space is smaller. On this basis, the BGA should converge even quicker since each gene can
only take on one of sixty-four states. It converges slowly because the chromosome strings
are so long (3600 bits). The PSOA outperforms its competitors on this particular problem.
The information contained in Table 5.4 is not a statistical average. It is accrued over only
one optimization run for each algorithm. It is representative of the algorithms’ performance,
arrested to by experience, but it does not yield any information about algorithm robustness.
Table 5.5 lists the output of eight consecutive runs for the PSOA.

1 2 3 4 5 6 7 8
NFE 183150 250000 250000 119000 250000 250000 91350 250000
χ2 0.048 0.044 0.028 0.060 0.030 0.032 0.059 0.025

Table 5.5: Eight consecutive PSOA runs.

Figure 5.27 depicts a comparison of a set of light curves generated by the model with the
experimentally observed light curves. The tick marks with error bars represent the experi-
mental data whilst the solid lines define the model data. The data is plotted over two system
rotations. The PSOA was used in this instance and the associated χ2 value is 0.023. The
reader will note that the fit is astoundingly good. In fact it is too good. Inherent in the
experimental data is information that does not originate from the emission region of the
CV. This noise comes from a number of sources (such as atmospheric fluctuations) and it is
currently inseparable from the actual emission data because its character is not well known.
The PSOA is effectively devising emission structures to fit the noise as well.

Figures 5.29 to 5.33 depict the emission regions consistent with the information in Table
5.4. None of the algorithms predict a single emission region as expected, and this cannot be
attributed solely to noise. This problem is an inverse problem. That is, the input parameters
are sought from which known results can be generated. This class of problems is notoriously
difficult because there are very often multiple sets of input parameters which yield the desired
output, as is the case here. Evidently, local minima abound.

Here we are faced with a situation in which the fitness of a solution is not defined well
enough by the cost function. Also, the occurrence of noise prevents us from saying that the
numerically best solution corresponds to the physically best solution. This would be true
even if the problem could be perfectly formulated.
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Figure 5.27: Comparison of curves.

In order to pursue the problem further, a method must be found to alter the cost surface
to deflect the search away from physically unacceptable solutions. What is required is to
change the cost function or apply constraints in such a way as to decrease the number of
local minima. Efforts have been made in this regard. In this study, a penalty approach has
been followed in which images with multiple emission regions are penalized. Another avenue
that has been explored is to confine the generation of solution strings to strings encoding
only one randomly oriented emission region, or multiple regions confined to one part of the
star’s surface. Figure 5.28 is an example of such a trial solution where Powell’s line search
method has been used in combination with a penalization scheme to smooth the image.

It would be ideal, however if constraint methods could be found which don’t automatically
force the solution towards structures consisting of a single emission region. It would carry
more weight if the optimizer could predict single emission region solutions despite the exis-
tence of alternatives. One such approach is to pass the images through graphics filters before
evaluating their fitness. The aim of these filters is to broaden the individual emission regions
so that the image is less likely to be composed of dislocated pixels. As yet, this approach
has met with little success.

Figure 5.28: Subsurface constraint with penalty.
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Figure 5.29: Emission region predicted by the Binary GA.

Figure 5.30: Emission region predicted by the Integer GA.

Figure 5.31: Emission region predicted by the Continuous Parameter GA.

Figure 5.32: Emission region predicted by the Differential Evolution algorithm.

Figure 5.33: Emission region predicted by the Particle Swarm algorithm.

5.5 Concluding remarks

In this chapter, the results generated by five stochastic algorithms applied to a modeling
optimization problem were presented. Differential evolution does not fare the best this time,
even though it arguably did when applied to the analytical functions in Chapter 4. I think
it is pretty clear that the particle swarm algorithm has superior performance for both the
benchmarking tests and the actual modeling problem, the way the cost function is currently
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defined.

Figure 5.27 in particular shows how well the PSOA is able to generate a model whose light
curve approximates the real data. The curve fits are excellent. Therefore, we deem the
application of the stochastic algorithms to the CV imaging project to be a highly successful
endeavour.

However, and it is a very important however: Strictly speaking, none of the algorithms
produced believable stellar emission structures. To be sure, this is not the fault of any of the
algorithms, but the ability of an algorithm to assist in a reformulation of the problem is now
an important criterion. I stated in the introduction to this chapter that other considerations
could subordinate performance criteria. Here’s why:

The PSOA has demonstrated the ability to produce the most accurate curve fits. Unfortu-
nately there is noise inherent in the experimental data which cannot be eradicated, so we
have to work around it. This problem is a strange one in that the solution we are seeking
(i.e. the physically believable one) is not numerically the best one and it is unlikely that any
constraint will have the effect of filtering out the noise. As I have stated already, additional
constraints are necessary to make the inverse problem more tractable. Even though the
PSOA has proven its ability to efficiently solve this high dimensionality problem, it is the
genetic algorithm which offers the greatest opportunity for tailoring and tuning.

The GA, because of its coding system, can be easily altered and in so doing, the search
space is modified as well (recall the discussion in Chapter 4.1.2 which surfaced along with
GA deception). For instance, the GA can easily be modified to search for which particular
pixel has the greatest effect on producing the general morphology of the graphs. The GA can
also be used with various alphabets containing successively more and more characters in order
to produce gradually more sophisticated images. These traits are not particularly useful for
identifying the actual emission structure, but they are good for identifying the most likely
position of the emission region. Once this position is found, sub-domains surrounding it can
be searched more thoroughly. Naturally, if the problem has a large number of variables, this
freedom is useful. Figure 5.28 was produced by first identifying the most likely placement
of an emission region using a GA with a binary alphabet to pick out a single-pixel solution.
Then a region around the pixel was searched by the GA – now with an alphabet of 101
characters (the integer GA). After all this, Powell’s method was applied to refine the solution.

The GA also offers the ability to seed solutions into the starting population so that the
search can be biased towards solutions of a certain character. Schemata processing results in
the advantageous seeded information being retained if the problem is not highly deceptive.
Although seeding can be used in the other algorithms, it is much more difficult to ensure the
preservation of such initial fit information when these algorithms update their populations.

In this case, we have randomly seeded the solutions with zero values for the pixels since most
of the stellar surface is expected to be non-emissive in reality. In doing so, the domain space
is again reduced and the analysis time decreases. The ability to incorporate such changes
into the genetic algorithm and the ease with which these modifications can be made are
more advantageous than the PSOAs ability to produce refined solutions very quickly. Once
a method is found of constraining the problem adequately, we could adapt the PSOA to solve
the problem and take advantage of its efficiency. Searching for methods of constraint and
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getting acquainted with the models behavior by modifying the search space is more easily
accomplished with the GA, though.
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Conclusions

We have applied a number of stochastic algorithms to image the accretion region of a mag-
netic cataclysmic variable. This involves an optimization procedure that has thwarted gra-
dient based algorithms. In particular, we have demonstrated that of the five algorithms
tested, the particle swarm optimizer is the most efficient at tackling this specific problem. It
is noted that successful minimization of the cost function does not imply that the physically
correct solution will be obtained. The existence of noise in the experimental data is just one
phenomenon which may preclude this. In such cases, either the objective function must be
rephrased or constraints must be imposed which lead the algorithm towards physically ac-
ceptable solutions. These types of constraints can be incorporated into stochastic algorithms
with the minimum of effort. In my experience, the genetic algorithm is the most amenable
to modification.

The main aim of the thesis is simply to convince the reader that stochastic optimization
algorithms are useful. To this end, various algorithms have been applied to find the global
minima of the extended Dixon-Szegö analytical test functions and the results depicted in
Chapter 4 show that the algorithms are capable of finding close approximations of those
minima. To what extent they were successful depends on how the reader wishes to define
success and how the reader wishes to view the goals of optimization. The arguments pre-
sented in this thesis hold that the ability of an algorithm to find the exact global minimum
of any particular function is only of academic importance.

The goal of optimization must be to determine the global optimum of a system. In practice,
however, the degree to which actual optima are approximated is not generally known. It is
therefore impossible to define the effectiveness of an algorithm in this way – relative to an
unknown quantity. Furthermore, it is inappropriate to use the algorithm’s performance on
other test functions as a benchmark unless it is going to be applied to optimize systems that
are provably related to these test functions. Unfortunately, an algorithm’s performance when
applied to optimize a specific system can only really be quantified relative to the performance
of other algorithms applied to the same system. How often and how quickly a given program
finds adequate solutions compared with other techniques are the only objective performance
criteria available to us. In addition, performance judgment should not be assumed to be
completely objective. What an adequate/acceptable/satisfactory solution is, must be defined

118
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by the user.

Much of this thesis is devoted to explicating the ideas contained in the previous paragraph.
In Chapter 2 the groundwork is laid by introducing the concepts of success and efficiency.
The viewpoints expressed are heavily influenced by the experience gained whilst working on
the CV modeling project detailed in Chapter 5. This experience, and the tenets embodied
in the ”no free lunch” theorems dove-tail nicely. In combination they serve to temper the
usual starkly outcomes-based view of optimization automatically prevalent in academia with
a more realistic paradigm. I have tried to demonstrate both standpoints in Chapter 4, in
which two ways of interpreting the results obtained by evolutionary algorithms are presented.
One focuses on the end result – the final values that the processes converge to. The other
views optimization as a process; how this process unfolds over time is as important as the final
result. Indeed, the final result is often chiefly dependent on the particular choice of stopping
criterion employed, and a holistic consideration of the optimization process attempts to
separate the specific effect of such criteria from the innate behavior of the optimization tool
itself.

A trend which has emerged in recent literature is the the drive to provide industry with
off-the-shelf algorithms. Algorithms that can be applied as-is to any problem that might be
encountered. It is argued that these algorithms will perform well regardless of the tasks in
which they are employed. Such arguments exist because the designers of the optimizer have
tested it on a variety of test systems. It seems intuitive to suspect that the performance
that the program exhibits on the test systems will provide a good indication of its likely
performance when applied to an arbitrary practical system. This assumption violates the no
free lunch theorems. Whether or not the no free lunch theorems are actually true, Chapters
3, 4 and 5 should have convinced the reader of two things. The first is that evolutionary
algorithms are very easy to program. The second is that their performance is definitely
problem dependent. Why not simply write an algorithm suited to your specific problem
or class of problems? You are likely to learn a lot more about the system you’re dealing
with in this way. People who seek off-the-shelf techniques shy away from algorithms whose
performance is dependent on control parameter settings. But EAs are always dependent
on certain parameters. The only way to avoid this is to make the parameters inaccessible to
the user; in effect, hiding the dependency. Such dependence also means that the algorithm
can be tuned. This trait should be seen as an advantage. It should be embraced.

The parallel competing algorithm infrastructure recognizes, and attempts to cope with, the
observations and difficulties summarized above. It was discussed briefly in Chapter 4.5. Its
chief drawback is that it is expensive because it requires multiple communicating processors.
In my view the parallel competing algorithm represents the best approach to optimization
if it can be afforded. It covers as many bases as possible. If takes into account the range
of possible function characteristics. It objectively addresses the issue of termination. It
implicitly incorporates relative performance measures and it represents a reliable off-the-
shelf algorithm for those who prefer such algorithms.

If serial optimization is performed, utilizing a single algorithm, the selection of that algorithm
should be based on the particular characteristics of the problem. If possible, a gradient
based optimizer should be used. If not, a range of evolutionary algorithms are available.
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The PSOA appears to handle real-valued problems very well, particularly if the problem
has many variables. The dynamic nature of the algorithm seems to give it an advantage.
On the other hand, the GA is adept at tackling combinatorial problems, particularly of low
dimensionality. There is also a lot of freedom in how it is coded and one can take advantage
of tricks such as seeding, variable refinement and deception. Different algorithms have their
different advantages.

There is no single stochastic algorithm, however, that is always better than the rest.
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A.1 The extended Dixon-Szegö test set

Problems UC-1 and UC-2 (Griewank G1 and G2 functions, respectively)

Objective Function:

f(x) =
n
∑

i=1

x2

i /d −
n
∏

i=1

cos
(

xi/
√

i
)

+ 1.

For UC-1, n = 2 and d = 200; for UC-2, n = 10 and d = 4000.

Search Domain for UC-1:

D = {(x1, x2) ∈ R2 : −100.0 ≤ xi ≤ 100.0, i = 1, 2}.

Search Domain for UC-2:

D = {(x1, x2, · · · , x10) ∈ R10 : −600.0 ≤ xi ≤ 600.0, i = 1, 2, · · · , 10}.

Solution:
x∗ = (0.0, · · · , 0.0) f∗ = 0.0

Problem UC-6 (Goldstein-Price)

Objective Function:

f(x) = [1 + (x1 + x2 + 1)2 · (19 − 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2)]×
[30 + (2x1 − 3x2)

2(18 − 32x1 + 12x2

1
+ 48x2 − 36x1x2 + 27x2

2
)].

Search Domain:
D = {(x1, x2) ∈ R2 : −2.0 ≤ xi ≤ 2.0, i = 1, 2}.

Solution:
x∗ = (0.0,−1.0) f∗ = 3.0.

Problem UC-4 (Six-hump Camelback)

Objective Function:

f(x) = (4 − 2.1x2

1
+

1

3
x4

1
)x2

1
+ x1x2 + (−4 + 4x2

2
)x2

2

Search Domain:
D = {x1 ∈ R1 : −3.0 ≤ x1 ≤ 3.0}
D = {x2 ∈ R1 : −2.0 ≤ x2 ≤ 2.0}

Solution:
x∗

1
= (0.0898,−0.7126) x∗

2
= (−0.0898, 0.7126) f∗ = −1.0316285
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Problem UC-12 (Rosenbrock function, Schwefel no. 2-24, More no. 1)

Objective Function:
f(x) = 100

(

x2 − x2

1

)2

+ (x1 − 1)
2

Search Domain:
D = {(x1, x2) ∈ R2 : −5.0 ≤ xi ≤ 5.0, i = 1, 2}.

Solution:
x∗ = (1.0, 1.0) f∗ = 0.0

Problem UC-5 (Shubert function, Levi no. 4)

Objective Function:

f(x) = {
5
∑

i=1

i cos[(i + 1)x1 + i]}{
5
∑

i=1

i cos[(i + 1)x2 + i]}

Search Domain:
D = {(x1, x2) ∈ R2 : −10.0 ≤ xi ≤ 10.0, i = 1, 2}

Solution:
x∗

1 = (5.48289,−1.426531) f ∗ = −186.73091

Problem UC-13 (Rastrigin)

Objective Function:
f(x) = x2

1
+ x2

2
− cos(18x1) − cos(18x2)

Search Domain:
D = {(x1, x2) ∈ R2 : −1.0 ≤ xi ≤ 1.0, i = 1, 2}.

Solution:
x∗ = (0.0, 0.0) f∗ = −2.0

Problem UC-14 (Branin)

Objective Function:

f(x) =

(

x2 −
5.1

4π2
x2

1 +
5

π
x1 − 6

)2

+ 10

(

1 − 1

8π

)

cos(x1) + 10

Search Domain:
D = {x1 ∈ R1 : −5.0 ≤ x1 ≤ 10.0}
D = {x2 ∈ R1 : 0.0 ≤ x2 ≤ 15.0}

Solution:
x∗

1 ≈ (3.142, 2.275) f∗ ≈ 0.398

Problem UC-15 (Hartman 3, 6)

Objective Function:

f(x) = −
m
∑

i=1

ci exp



−
n
∑

j=1

aij(xj − pij)
2



 ,

where x = (x1, . . . , xn), and
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H3 : m = 4, n = 3

i aij ci pij

1 3.0 10.0 30.0 1.0 0.3689 0.1170 0.2673
2 0.1 10.0 35.0 1.2 0.4699 0.4387 0.7470
3 3.0 10.0 30.0 3.0 0.1091 0.8732 0.5547
4 0.1 10.0 35.0 3.2 0.03815 0.5743 0.8828

H6 : m = 4, n = 6

i aij ci

1 10.0 3.0 17.0 3.5 1.7 8.0 1.0
2 0.05 10.0 17.0 0.1 8.0 14.0 1.2
3 3.0 3.5 1.7 10.0 17.0 8.0 3.0
4 17.0 8.0 0.05 10.0 0.1 14.0 3.2

i pij

1 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
3 0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
4 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

Search Domain:
D = {(x1, . . . , xn) ∈ Rn : 0.0 ≤ xi ≤ 1.0, i = 1, . . . , n}

Solutions:

H3:
x∗ = (0.11461478, 0.55564892, 0.85254688), f ∗ = −3.8627821.

H6:
x∗ = (0.20168955, 0.15000963, 0.47687211, 0.27533377, 0.31165102, 0.65730111),

f∗ = −3.322368.

Problem UC-16 (Shekel 5, 7, 10) (SQRIN)

Objective Function:

f(x) = −
m
∑

i=1

1

(x − ai)T (x − ai) + ci

,

where:

i ai ci

1 4.0 4.0 4.0 4.0 0.1
2 1.0 1.0 1.0 1.0 0.2
3 8.0 8.0 8.0 8.0 0.2
4 6.0 6.0 6.0 6.0 0.4
5 3.0 7.0 3.0 7.0 0.4
6 2.0 9.0 2.0 9.0 0.6
7 5.0 5.0 3.0 3.0 0.3
8 8.0 1.0 8.0 1.0 0.7
9 6.0 2.0 6.0 2.0 0.5
10 7.0 3.6 7.0 3.6 0.5
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Search Domain:
D = {(x1, . . . , x4) ∈ R4 : 0.0 ≤ xi ≤ 10.0, i = 1, . . . , 4}.

Solutions:

S5:
x∗ = (4.00003727, 4.00013375, 4.00003730, 4.00013346) f ∗ = −10.153200.

S7:
x∗ = (4.00057280, 4.00069020, 3.99948997, 3.99960620) f ∗ = −10.402941.

S10:
x∗ = (4.00074671, 4.00059326, 3.99966290, 3.99950981) f ∗ = −10.536410.

A.2 Two additional problems

Problem SC (The SinCos function) [10].

Objective Function:
f(x) = x1 sin(4x1) + 1.1x2 sin(2x2)

Search Domain:
D = {(x1, x2) ∈ R2 : 0.0 ≤ xi ≤ 10.0, i = 1, 2}.

Solution:
x∗ ≈ (9.039, 8.668) f∗ ≈ −18.55

Problem XQ (The x-squared function).

Objective Function:
f(x) = x2

Search Domain:
D = {x ∈ R : −10.0 ≤ x ≤ 20.0, }.

Solution:
x∗ = 0.0 f∗ = 0.0
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B.1 Its derivation

Here follows an outline of the stopping criterion taken directly from Snayman and Fatti [33].
The proof can be shown to be a generalization of the procedure proposed by Zielinski [39].

Let r be the number of sample points falling within the region of convergence of the current
overall minimum f̃ after n points have been sampled. Then, the probability that f̃ be equal
to f ∗ satisfies

Pr[f̃ = f ∗] ≥ q(ñ, r) = 1 − (ñ + 1)! (2ñ − r)!

(2ñ + 1)! (ñ − r)!

Proof:

Given ñ∗ and α∗, the probability that at least one point, ñ∗ ≥ 1, has converged to f ∗ is

Pr[ñ∗ ≥ 1|ñ, r] = 1 − (1 − α∗)ñ . (B.1)

In the Bayesian approach, we characterize our uncertainty about the value of α∗ by speci-
fying a prior probability distribution for it. This distribution is modified using the sample
information (namely, ñ and r) to form a posterior probability distribution. Let p∗(α

∗|ñ, r)
be the posterior probability distribution of α∗. Then,

Pr[ñ∗ ≥ 1|ñ, r] =
∫

1

0

1 − (1 − α∗)ñp∗(α
∗|ñ, r)dα∗

= 1 −
∫

1

0

(1 − α∗)ñp∗(α
∗|ñ, r)dα∗. (B.2)

Now, although the r sample points converge to the current overall minimum, we do not know
whether this minimum corresponds to the global minimum of f ∗. We proceed as follows:

Let Rk denote the region of convergence of local minimum x̂k and let αk be the associated
probability that a sample point be selected in Rk. The region of convergence and the
associated probability for the global minimum x∗ are denoted by R∗ and α∗ respectively.
The following basic assumption, which is probably true for many functions of practical
interest, is now made.

Basic assumption:
α∗ ≥ αk for all local minima x̂k. (B.3)

Noting that (1−α)ñ is a decreasing function of α, the replacement of α∗ in (B.2) by α yields

Pr[ñ∗ ≥ 1|ñ, r] ≥
∫

1

0

1 − (1 − α)ñp(α|ñ, r)dα . (B.4)

Now, using Bayes theorem we obtain

p(α|ñ, r) =
p(r|α, ñ)p(α)

∫

1

0
p(r|α, ñ)p(α)dα

. (B.5)

Since the ñ points are sampled at random and each point has a probability α of converging
to the current overall minimum, r has a binomial distribution with parameters α and ñ.
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Therefore

p(r|α, ñ) =

(

ñ

r

)

αr(1 − α)ñ−r . (B.6)

Substituting (B.6) and (B.5) into (B.4) gives:

Pr[ñ∗ ≥ 1|ñ, r] ≥ 1 −
∫

1

0
αr(1 − α)2ñ−rp(α)dα

∫

1

0
αr(1 − α)ñ−rp(α)dα

. (B.7)

A suitable flexible prior distribution p(α) for α is the beta distribution with parameters a
and b. Hence,

p(α) = 1/β(a, b)αa−1(1 − α)b−1, 0 ≤ α ≤ 1 (B.8)

Using this prior distribution gives:

Pr[ñ∗ ≥ 1|ñ, r] ≥ 1 − Γ(ñ + a + b) Γ(2ñ − r + b)

Γ(2ñ + a + b) Γ(ñ − r + b)

= 1 − (ñ + a + b − 1)! (2ñ − r + b − 1)!

(2ñ + a + b − 1)! (ñ − r + b − 1)!
,

Assuming a prior expectation of 1, (viz. a = b = 1), we obtain

Pr[ñ∗ ≥ 1|ñ, r] ≥ q(ñ, r) = 1 − (ñ + 1)! (2ñ − r)!

(2ñ + 1)! (ñ − r)!
,

which is the required result.

In practice the Stopping Rule becomes: given a prescribed target probability q∗, stop when
q(ñ, r) ≥ q∗.
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