Potentising and application of a *Combretum woodii* leaf extract with high antibacterial and antioxidant activity

By
Vincent Kudakwashe Zishiri
(S23332515)

Submitted in fulfilment of the requirements of the degree of Magister Scientiae in the Phytomedicine Programme
Department of Paraclinical Sciences
Faculty of Veterinary Science
University of Pretoria
Pretoria
2004

Promoter: Prof JN Eloff
Co-Promoter: Prof CJ Botha

© University of Pretoria
Preface

This represents a record of the work carried out in the Phytomedicine Programme, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, under the supervision of Prof J.N Eloff and Prof C.J Botha.

The results in these studies have not been submitted in any form to any other University and represent work done by Vincent Kudakwashe Zishiri, except where the work of others is acknowledged.

Vincent Kudakwashe Zishiri
Acknowledgements

Firstly I would like to thank God almighty for the abundant blessings he has bestowed upon me.

I would like to express my most sincere gratitude to my supervisors, Prof J.N Eloff and Prof C.J Botha, for their expert guidance throughout the course of this work.

To my father Onesimo Joseph, and mother Chiedza Barbara; I have seen as far as I have because I stood on the shoulders of giants. I appreciate your guidance, support and always cherish your unconditional love.

My brothers and sisters, colleagues, friends at home and at school who have supported me morally and otherwise.

My thanks to Havana Chikoto and Martin Mmethi for their assistance and guidance in the animal studies work.

Lastly, I dedicate this work to my lovely wife Elizabeth and daughter Idanai Venus, from whom I have asked so much and given so little during the course of this programme.
Table of contents

Preface ... ii
Acknowledgements .. iii
Table of contents .. iv
List of Figures .. ix
List of Tables .. xv
Abbreviations used .. xvi
Summary ... xx

Chapter 1 Literature review .. 1

1.1 Introduction ... 1
1.2 The problem of antibiotic use .. 2
1.3 Possible solutions .. 3
 1.3.1 Hygienic measures .. 4
 1.3.2 Probiotics .. 4
 1.3.3 Immunomodulators .. 4
 1.3.4 Organic acids .. 5
 1.3.5 Plant extracts ... 5
1.4 Why choose plant extracts ... 6
1.5 Biological activity of plants ... 6
1.6 Sources of antimicrobial activity in plants ... 7
 1.6.1 Tannins .. 7
 1.6.2 Flavones, flavonoids and flavonols ... 8
 1.6.3 Terpenoids ... 8
 1.6.4 Alkaloids .. 8
 1.6.5 Combretastatins ... 9
1.7 Antioxidant compounds .. 10
 1.7.1 Phytochemical antioxidants .. 10
 1.7.2 Antioxidant compounds as feed additives ... 11
1.8 The Combretaceae family ... 12
 1.8.1 Introduction .. 12
 1.8.2 Taxonomy ... 12
1.8.3 Ethnobotanical use of the Combretaceae ... 12
1.8.4 Phytochemistry of the Combretaceae ... 13
1.8.5 Antimicrobial activity of the Combretaceae 14
1.9 Work on the Combretaceae done in the Phytomedicine Programme 14
1.10 Combretum woodii .. 16
1.11 Aims and objectives ... 17

Chapter 2 General Materials and Methods ... 18
2.1 Plant material ... 18
2.2 Extraction procedures ... 18
 2.2.1 Preliminary extraction studies .. 18
 2.2.2 Extract enrichment procedures ... 18
 2.2.3 Optimal extraction method .. 19
2.3 Phytochemical analysis ... 19
2.4 Bioautography method ... 20
 2.4.1 Preparation of TLC plates for bioautography 20
 2.4.2 Preparation of bacteria .. 21
2.5 Quantification of Antibacterial activity .. 21
 2.5.1 Dilution of extracts ... 22
 2.5.2 Addition of bacteria ... 22
2.6 Antioxidant activity ... 22
 2.6.1 Qualitative 2, 2-diphenyl-1-picrylhydrazyl (DPPH) assay on TLC 22
 2.6.2 Quantitative Trolox Equivalent Antioxidant Capacity (TEAC) assay ... 23
2.7 In vitro toxicity studies on the optimal extract 24
 2.7.1 Brine shrimp assay .. 24
 2.7.2 MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay ... 24
2.8 Isolation of compounds from C. woodii leaves 25
 2.8.1 Serial exhaustive extraction .. 25
 2.8.2 Vacuum liquid column chromatography ... 25
 2.8.3 Small column separation .. 26
 2.8.4 Structure elucidation of the active fraction 26
 2.8.5 In vitro cytotoxicity and antioxidant activity of CB5 27
2.9 In vivo toxicity studies on broiler chickens .. 27
 2.9.1 Study design .. 27
 2.9.2 Trial animals .. 27
Chapter 4

Methods

Results

Chapter 5

Optimal extraction method

Introduction

Chapter 6

In vitro antibacterial and toxicity tests on the optimal extract

Introduction

Chapter 7

Isolation of compounds
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Serial exhaustive extraction</td>
<td>84</td>
</tr>
<tr>
<td>7.2</td>
<td>TLC analysis</td>
<td>85</td>
</tr>
<tr>
<td>7.2.1</td>
<td>TLC chromatograms of the acetone fraction</td>
<td>88</td>
</tr>
<tr>
<td>7.3</td>
<td>Vacuum liquid chromatography</td>
<td>88</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Development of a TLC separation system for column chromatography</td>
<td>89</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Small column separation</td>
<td>90</td>
</tr>
<tr>
<td>7.3.3</td>
<td>TLC analysis of column fractions</td>
<td>91</td>
</tr>
<tr>
<td>7.4</td>
<td>TLC analysis of the isolated compound</td>
<td>93</td>
</tr>
<tr>
<td>7.5</td>
<td>Spectroscopic analysis of isolated compound</td>
<td>93</td>
</tr>
<tr>
<td>7.6</td>
<td>Antioxidant activity and cytotoxicity of combretastatin B5</td>
<td>97</td>
</tr>
<tr>
<td>7.6.1</td>
<td>TEAC assay of CB5</td>
<td>97</td>
</tr>
<tr>
<td>7.6.2</td>
<td>MTT assay of CB5</td>
<td>98</td>
</tr>
<tr>
<td>7.7</td>
<td>Discussion</td>
<td>99</td>
</tr>
<tr>
<td>8</td>
<td>Tolerance and productivity studies in chickens</td>
<td>101</td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>101</td>
</tr>
<tr>
<td>8.2</td>
<td>Method</td>
<td>102</td>
</tr>
<tr>
<td>8.3</td>
<td>Results and discussion</td>
<td>102</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Growth promoting effect</td>
<td>102</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Health of the broilers</td>
<td>103</td>
</tr>
<tr>
<td>8.3.3</td>
<td>Implications</td>
<td>105</td>
</tr>
<tr>
<td>9</td>
<td>General conclusion</td>
<td>106</td>
</tr>
</tbody>
</table>
List of Figures

Figure 1:1 *Combretum woodii* from which leaves were collected in Lowveld National Botanical Garden.. 17

Figure 3:1: TLC profiles of the LNBG sample (1) and UP sample (2) developed side by side in EMW (top), CEF (centre), and BEA (bottom) solvent systems and sprayed with vanillin–sulphuric acid. **Lanes from left to right:** Hexane extracts (h), acetone extracts (Ac), ethanol extracts (Et), ethylacetate extracts (Ea) and dichloromethane extracts (Dc). .. 33

Figure 3:2: TLC profiles of the LNBG sample (1) and UP sample (2) developed side by side in EMW (top), CEF (centre), and BEA (bottom) solvent systems and sprayed with 0.2% DPPH in methanol. **Lanes from left to right:** Hexane extracts (h), acetone extracts (Ac), ethanol extracts (Et), ethylacetate extracts (Ea) and dichloromethane extracts (Dc). .. 35

Figure 3:3 Bioautography profiles of the LNBG sample (1) and UP sample (2) developed side by side in EMW (top), CEF (centre), and BEA (bottom) solvent systems and sprayed with *S. aureus*. **Lanes from left to right:** Hexane extracts (h), acetone extracts (Ac), ethanol extracts (Et), ethylacetate extracts (Ea) and dichloromethane extracts (Dc). .. 37

Figure 3:4: Reciprocal of the MIC values of the extracts against *E. coli* (ec), *S. aureus* (sa), *E. faecalis* (ef), and *P. aeruginosa* (pa) for hexane (H), dichloromethane, (Dc), ethylacetate (Ea), acetone (Ac) and ethanol (Et) extracts from the LNBG at Nelspruit (n) and UP main campus (m) samples. .. 40

Figure 3:5 Total activity of the four test pathogens *E. coli* (E.c), *S. aureus* (S.a), *E. faecalis* (E.f), and *P. aeruginosa* (P.a) for extracts of hexane (H), dichloromethane, (Dc), ethylacetate (Ea), acetone (Ac) and ethanol (Et) extracts from the LNBG at Nelspruit (n) and UP main campus (m) samples. .. 41
Figure 3:6 Total activity of *C. woodii* extracts of hexane (H), dichloromethane, (Dc), ethylacetate (EA), acetone (Ac) and ethanol (Et) for the LNBG (N) and UP (M) garden samples against four test pathogens. ... 42

Figure 4:1 TLC profiles of the hexane “wash” extracts developed in EMW (top), CEF (centre), and BEA (bottom) solvent systems and sprayed with vanillin–sulphuric acid reagent. **Lanes from left to right:** Hexane “wash” extracts (h), hexane-pretreated ethanol extract (h-et) and its acetone equivalent (h-ac), crude ethanol extract (et) and crude acetone extract. ... 47

Figure 4:2 TLC profiles of the hexane wash extracts developed in EMW (top), CEF (centre), and BEA (bottom) solvent systems and sprayed with 0.2% DPPH in methanol. **Lanes from left to right:** Hexane “wash” extracts (h), hexane-pretreated ethanol extract (h-et) and its acetone equivalent (h-ac), crude ethanol extract (et) and crude acetone extract. ... 48

Figure 4:3 TLC profiles for acetone in water and ethanol in water extracts developed side by side in EMW (top), CEF (centre) and BEA (bottom) and sprayed with vanillin–sulphuric acid. **Lanes from left to right:** 100% acetone (a), 100% ethanol (e), 80% acetone in water (a1), 80% ethanol equivalent (e1) 60% acetone in water (a2) 60% ethanol (e2), 40% acetone in water (a3) 40% ethanol equivalent (e3), 20% acetone in water (a4) 20% ethanol equivalent (e4) and water (W) extracts. 52

Figure 4:4 TLC profiles for acetone in water and ethanol in water extracts developed side by side in EMW (top), CEF (centre) and BEA (bottom) and sprayed with 0.2% DPPH in methanol. **Lanes from left to right:** 100% acetone (a), 100% ethanol (e), 80% acetone in water (a1), 80% ethanol equivalent (e1) 60% acetone in water (a2) 60% ethanol (e2), 40% acetone in water (a3) 40% ethanol equivalent (e3), 20% acetone in water (a4) 20% ethanol equivalent (e4) and water (W) extracts. 53

Figure 4:5 Total activity of *C. woodii* extracts of 100% acetone (Ac), 80% acetone in water (80% Ac), 60% acetone in water (60% Ac), 40% acetone in water (40% Ac), 20%
acetone in water (20% Ac) and water (W) against S. aureus (S.a), E. faecalis (E.f), E. coli (E.c), and P. aeruginosa (P.a) ...55

Figure 4:6 Total activity of C. woodii extracts of 100% ethanol (Et), 80% ethanol in water (80% Et), 60% ethanol in water (60% Et), 40% Ethanol in water (40% Et), 20% Ethanol in water (20% Et) and water (W) against S. aureus (S.a), E. faecalis (E.f), E. coli (E.c) and P. aeruginosa (P.a) ...56

Figure 5:1 Quantities present in the three serial extractions employed in each pretreatment procedure. ..61

Figure 5:2 TLC profiles of 100 µg of pretreatment extracts developed in EMW (top), CEF (centre) and BEA (bottom) and sprayed with vanillin sulphuric acid. Lanes from left to right: 1st, 2nd and 3rd hexane extracts (h1, h2 and h3 respectively); 1st, 2nd and 3rd 20% acetone in water extracts (a1, a2, a3 respectively) and 1st, 2nd and 3rd 20% ethanol in water extracts (e1, e2, e3 respectively) ..62

Figure 5:3 TLC profiles of 100 µg of pretreatment extracts developed in EMW (top), CEF (centre) and BEA (bottom) and sprayed with 0.2% DPPH in methanol. Lanes from left to right: 1st, 2nd and 3rd hexane extracts (h1, h2 and h3 respectively); 1st, 2nd and 3rd 20% acetone in water extracts (a1, a2, a3 respectively) and 1st, 2nd and 3rd 20% ethanol in water extracts (e1, e2, e3 respectively) ..63

Figure 5:4 Total activity in 1st, 2nd and 3rd serial extracts from the pre-treatment procedures against S. aureus (S.a), E. faecalis (E.f), E. coli (E.c), and P. aeruginosa (P.a) ...64

Figure 5:5 TLC profiles of tentative optimal extracts developed in EMW (top), CEF (centre), and BEA (bottom) and sprayed with vanillin-sulphuric acid. Lanes from left to right: hexane-pretreated acetone extract (1a), hexane-pretreated ethanol extract (1e), 80% acetone extract pretreated with 20% acetone in water (2a), 80% ethanol extract pretreated with 20% ethanol in water (2e), acetone extract pretreated with hexane first then 20% acetone (3a), ethanol extract pretreated with hexane first then 20% ethanol in water (3e), acetone extract (4a) and ethanol extract (4e)66
Figure 5:6 TLC profiles of tentative optimal extracts developed in EMW (top), CEF (centre), and BEA (bottom) and sprayed with 0.2% DPPH in methanol. **Lanes from left to right:** hexane-pretreated acetone extract (1a), hexane-pretreated ethanol extract (1e), 80% acetone extract pretreated with 20% acetone in water (2a), 80% ethanol extract pretreated with 20% ethanol in water (2e), acetone extract pretreated with hexane first then 20% acetone (3a), ethanol extract pretreated with hexane first then 20% ethanol in water (3e), acetone extract (4a) and ethanol extract (4e).67

Figure 5:7: Bioautography of the tentative optimal extracts developed in EMW (top), CEF (centre), and BEA (bottom) solvent systems and sprayed with *S. aureus*. **Lanes from left to right:** hexane-pretreated acetone extract (1a), hexane-pretreated ethanol extract (1e), 80% acetone extract pretreated with 20% acetone in water (2a), 80% ethanol extract pretreated with 20% ethanol in water (2e), acetone extract pretreated with hexane first then 20% acetone (3a), ethanol extract pretreated with hexane first then 20% ethanol in water (3e), acetone extract (4a) and ethanol extract (4e).68

Figure 5:8 Standard curve of % inhibition of ABTS * against concentration of Trolox after 6 minutes of reaction time. ..72

Figure 5:9 Comparison of TEAC values of the hexane-pretreated acetone extract (1a), hexane-pretreated ethanol extract (1e), 80% acetone extract pretreated with 20% acetone in water (2a), 80% ethanol extract pretreated with 20% ethanol in water (2e), acetone extract pretreated with hexane first then 20% acetone (3a), ethanol extract pretreated with hexane first then 20% ethanol in water (3e), acetone extract (4a) and ethanol extract (4e). ..72

Figure 6:1 Brine shrimp assay curve..79

Figure 6:2 MTT cytotoxicity assay curve for Berberine chloride...80

Figure 6:3 MTT cytotoxicity assay curve for the best extract..81
Figure 7:1 TLC profiles for extracts from serial exhaustive extraction (SEE) developed in EMW (top), CEF (centre), and BEA (bottom) solvent system and sprayed with vanillin-sulphuric acid. **Lanes from left to right:** hexane (h), dichloromethane (dc), acetone (ac) and methanol (me) extract from extraction series 1; the hexane (h), ethylacetate (ea), acetone (ac) and methanol (me) extract from extraction series 2 and the hexane (h), acetone (ac) and methanol (me) extracts from extraction series 3.

Figure 7:2 TLC profiles for extracts from serial exhaustive extraction (SEE) developed in EMW (top), CEF (centre), and BEA (bottom) solvent system and sprayed with 0.2% DPPH in methanol. **Lanes from left to right:** hexane (h), dichloromethane (dc), acetone (ac) and methanol (me) extract from extraction series 1; the hexane (h), ethylacetate (ea), acetone (ac) and methanol (me) extract from extraction series 2 and the hexane (h), acetone (ac) and methanol (me) extracts from extraction series 3.

Figure 7:3: TLC profiles of the acetone fraction from SEE developed in EMW solvent system and sprayed with vanillin-sulphuric acid (left) and 0.2% DPPH in methanol (right).

Figure 7:4 TLC profiles of the 11 fractions obtained from VLC and developed in ethylacetate/ hexane (2:1). Plates sprayed with vanillin-sulphuric acid (top) and 0.2% DPPH in methanol (bottom).

Figure 7:5 TLC profiles of the fractions obtained from column separation of TF2. Group A (top), Group B (centre) and Group C (bottom) developed in EMW solvent system and plates sprayed with vanillin-sulphuric acid.

Figure 7:6 TLC profiles of the isolated compound developed in EMW solvent system and sprayed with vanillin-sulphuric acid reagent (right) and 0.2% DPPH in methanol (left).

Figure 7:7 Structure of isolated active compound.

Figure 7:8 The isolated active compound and its fragmentation into two tropylium ions.
Figure 7:9 Isolated active compound with its two aromatic rings labelled as 'A' and 'B'.

Figure 7:10: CB5 TEAC curve.

Figure 7:11 MTT assay curve for CB5.

Figure 8:1 Weight gain after different periods of birds dosed with bacitracin (Pos), no feed additive (Neg), 2 mg/kg optimal extract (CW1), 5 mg/kg (CW2) and 10 mg/kg (CW5) optimal extract in feed.
List of Tables

Table 2:1: Table showing pretreatment procedures employed in best extraction method .19

Table 2:2: Solvent mixtures used in column chromatography ..26

Table 3:1: Amount in milligrams extracted in a single direct extraction of one gram of sample in 10 ml solvents, for the Nelspruit Lowveld National Botanical Garden (LNBG) and University of Pretoria main campus garden (UP) samples31

Table 3:2: Rf values of the 2 major antioxidant compounds present in the acetone, ethanol, ethylacetate and dichloromethane extracts of C. woodii leaves when developed in EMW, CEF and BEA, for the UP and the LNBG samples ...36

Table 3:3: Amount in mg extracted from one gram samples and MIG values in mg/ml for C. woodii leaf extracts of hexane (H), dichloromethane, (Dc), ethylacetate (Ea), acetone (Ac) and ethanol (Et) for the LNBG (N) and UP (M) samples against ATCC strains of the four test bacteria ...39

Table 4:1: Amount extracted in mg from one gram, MIC values in mg/ml and total activity values (ml) of hexane “wash” (H), acetone (ac) and ethanol (et), and hexane-pretreated acetone (h-ac) and ethanol (h-et) extracts ...49

Table 4:2: Amount in mg extracted from one g samples and MIC values in mg/ml of 100% acetone (Ace), 80% acetone in water (80% Ace), 60% acetone in water (60% Ace), 40% acetone in water (40% Ace), 20% acetone in water (20% Ace) and water extracts of C. woodii leaves ..54

Table 4:3: Amount in mg extracted from one gram and MIC values in mg/ml of 100% ethanol, 80% ethanol in water (80% Ethanol), 60% ethanol in water (60% Ethanol), 40% Ethanol in water (40% Ethanol), 20% Ethanol in water (20% Ethanol) and water extracts of C. woodii leaves ..55
Table 5:1: Table showing the tentative best extraction methods

Table 5:2: Amount in mg extracted from one gram of leaf material during 3 serial extraction procedures on leaf sample using hexane, 20% acetone (20% Acm), and 20% ethanol (20% EtOH).

Table 5:3: Amount in mg extracted from one g sample in three serial extractions of each pretreatment procedure, MIC values in mg/ml and total activity values (ml) of Hexane “wash”, 20% acetone “wash” and 20% ethanol “wash” on C. woodii leaves.

Table 5:4: Amount in mg extracted from one gram of leaf sample, the MIC values in mg/ml and total activity values in ml of the hexane-pretreated acetone extract (1a), hexane-pretreated ethanol extract (1e), 80% acetone extract pretreated with 20% acetone in water (2a), 80% ethanol extract pretreated with 20% ethanol in water (2e), acetone extract pretreated with hexane first then 20% acetone (3a), ethanol extract pretreated with hexane first then 20% ethanol in water (3e), acetone extract (4a) and ethanol extract (4e).

Table 5:5: Changes in average MIC values of the tentative optimal extracts compared to their crude extracts.

Table 5:6: Magnitude of change in TEAC values of the tentative optimal extracts compared to their respective crude extracts.

Table 6:1: MIC values in mg/ml, total activity in ml and the mean and standard deviation (SD) of the MIC values.

Table 6:2: Results showing absorbance values at 540 nm for the various optimal extract concentrations.

Table 6:3 Relative safety margin (using LC₅₀ value from the brine shrimp assay) of the optimal extract.
Table 7:1: Amount in milligrams extracted from 10 g samples in the three serial exhaustive extraction series. ... 85

Table 7:2 Amount in mg of grouped fractions obtained from column separations of TF2. 91

Table 7:3: 1H-NMR (300MHz) and 13C-NMR (75MHz) spectra data for isolated compound. Data obtained in CDCl$_3$... 94

Table 7:4 Absorbance values at 540 nm for CB5 in the MTT assay 98

Table 8:1 Herbal remedies of potential use as antimicrobial agents in animal production (Cowan, 1999; Tedesco, 2001), .. 101

Table 8:2 Average weight of birds, standard deviation and variability over the 21 days dosing period .. 103

Table 8:3 Average feed intake, weight gain and Feed Conversion Ratio (FCR) of birds in the different treatment groups over 21 days .. 104

Table 8:4 Growth performance of broiler chickens in response to the optimal extract fed for 3 weeks, positive and negative controls. Values in brackets denote standard deviations. ... 104
Abbreviations used

ABTS* 2,2’-azinobis-(3-ethylbenzothiazoline-6-sulphonic acid)
AFA Antibiotic Feed Additive
ATCC American type culture collection
BEA Benzene/Ethanol/Ammonium hydroxide (90/10/1 v/v/v)
C₁₈ column 18-Carbon reverse phase column
CB5 Combretastatin B5
CEF Chloroform/Ethylacetate/Formic acid (5/4/1 v/v/v)
COX-1 Cyclooxygenase enzyme 1
COX-2 Cyclooxygenase enzyme 2
dH₂O Distilled water
DMSO Dimethylsulphoxide
DNA Deoxyribose nucleic acid
DPPH 2, 2’-diphenyl-1-picrylhydrazyl
ELISA Enzyme linked immunosorbent assay
EMW Ethylacetate/Methanol/Water (40/5.4/4 v/v/v)
FCR Feed Conversion Ratio
HKI Hans Knoll Institute
INT Iodonitro-tetrazolium salts
LC₅₀ Lethal concentration for 50% of the cells
LDL Low density lipids
LNBG Lowveld National Botanical Garden
MDA Malondialdehyde
MIC Minimum inhibitory concentration
MS Mass spectrometry
MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide dye
NaCl Sodium chloride
NADH Nicotinamide Adenine Dinucleotide
NADPH Nicotinamide Adenine Dinucleotide Phosphate
NCCLS National Committee for Clinical Laboratory Standards
NMR (¹³C and ¹H) Nuclear magnetic resonance (carbon 13 and proton)
PBS Phosphate buffer saline
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rf</td>
<td>Retardation factor</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species</td>
</tr>
<tr>
<td>rpm</td>
<td>revolutions per minute</td>
</tr>
<tr>
<td>SEE</td>
<td>Serial exhaustive extraction</td>
</tr>
<tr>
<td>TEAC</td>
<td>Trolox equivalent antioxidant capacity</td>
</tr>
<tr>
<td>TF2</td>
<td>Target fraction 2</td>
</tr>
<tr>
<td>TLC</td>
<td>Thin layer chromatography</td>
</tr>
<tr>
<td>UP</td>
<td>University of Pretoria</td>
</tr>
<tr>
<td>UV</td>
<td>Ultra violet radiation</td>
</tr>
<tr>
<td>v/v</td>
<td>volume per volume</td>
</tr>
<tr>
<td>VLC</td>
<td>Vacuum liquid chromatography</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organisation</td>
</tr>
</tbody>
</table>
Summary

Given the drawbacks associated with the use of antibiotics as feed additives and the imminent banning of its use in the European Union, the aim of this project was to develop an extract that could be used as an alternative feed additive in poultry production. The desired extract preferably had to be rich in antibacterial activity to control proliferation of undesired microorganisms, and antioxidant activity to boost the immune system of the poultry.

A number of trial extraction procedures were employed on dried leaf material samples to identify the best extraction method. In preliminary extraction studies, direct extraction was performed on leaf samples from the Lowveld National Botanical Gardens (LNBG) and from University of Pretoria Botanical Garden (UP). The principle aim of preliminary studies was to identify the solvents that extracted high antibacterial and antioxidant activity while also extracting large quantities of material. The secondary objective was to test for differences in activities between samples collected from LNBG and UP. Five extractants of varying polarities; acetone, ethanol, ethylacetate, dichloromethane and hexane were used.

Antibacterial activity of all extracts was quantified by a serial dilution microplate technique while bioautography was used in qualitative analysis of the antibacterial active compounds. ATCC strains of *Staphylococcus aureus*, *Pseudomonas aeruginosa*, *Escherichia coli* and *Enterococcus faecalis* were used as test organisms. Qualitative antioxidant activity was determined by using a DPPH assay on TLC plates.

Results from preliminary extraction studies showed larger quantities of material were present in extracts from the LNBG sample than in the UP sample. Two major antioxidant compounds (R_f values of 0.85 and 0.35 in EMW solvent system) were seen on DPPH sprayed TLC plates, while bioautography showed the presence of a number antibacterial active compounds in the acetone, ethanol and ethylacetate extracts with R_f values ranging between 0.85 and 0.56 on TLC plates developed in the EMW solvent system. MIC values of the extracts tallied with the results from bioautography. The acetone, ethanol and ethylacetate extracts had the highest antibacterial activity while the hexane extracts had the lowest activity with average MIC value of 0.55 mg/ml for both the LNBG and UP.
samples. MIC values as low as 0.04 mg/ml were measured in the acetone and ethylacetate extracts of the LNBG sample against *S. aureus* and *E. faecalis*. Based on results from preliminary extraction studies, hexane was identified as a possible pretreatment solvent for application in enrichment procedures, acetone and ethanol were chosen as the main extractants and only the LNBG sample was used for future work.

Enrichment procedures were employed along two pathways; the first pathway involved the use of hexane “wash” as a pretreatment procedure prior to extraction with acetone or ethanol. The second pathway involved the use of various mixtures of acetone in water and ethanol in water as extractants. The rationale of using these various ratios was an attempt to identify solvent mixtures that would selectively extract the bioactive components or otherwise selectively remove inactive material.

A serial dilution microplate method was used to determine Minimum Inhibitory Concentrations (MICs) and the Trolox Equivalent Antioxidant Capacity (TEAC) assay was used to quantify antioxidant activity of all extracts. The optimal extract was the one developed by pretreatment with a single direct extraction with hexane prior to extraction with acetone. It had a TEAC value of 2.3, an increase in TEAC value of 283% compared to that of the crude acetone extract. The average MIC of the crude acetone extract against ATCC stains of *S. aureus*, *Ps. aeruginosa*, *E. coli* and *E. faecalis* had dropped from 0.15 mg/ml to 0.08 mg/ml in the optimal extract (an improvement in antibacterial activity of 87.5%).

Since the optimal extract is intended for commercial application in poultry production, its antibacterial activity was tested against *Campylobacter jejuni*, *Clostridium perfringens*, *Salmonella enteritidis*, *E. coli* and multi drug resistant *E. coli* isolated from chickens. Its *in vitro* toxicity was ascertained using the brine shrimp assay and the MTT cytotoxicity assay on monkey kidney cells. The optimal extract was effective against *Campylobacter jejuni* and *Clostridium perfringens* with MIC values ranging from 40 µg/ml to 80 µg/ml. It was also active against multi-resistant strains of *E. coli* and *Salmonella enteritidis* (MIC values of 125 µg/ml for both strains).

LC$_{50}$ results from the brine shrimp assay and the MTT cytotoxicity assay on monkey kidney cells gave values of 863 µg/ml and 226 µg/ml respectively indicating low toxicity.
These results meant that though in some cases the MICs of the optimal extract were higher than befitting of typical antibiotics, due to its relatively low toxicity, large quantities of the extract may possibly be feed to achieve the desired activity without causing any toxicity in the poultry.

The major antioxidant compound was isolated by silica gel column chromatography. The isolated compound was identified by nuclear magnetic resonance and mass spectroscopy as combretastatin B5 (2', 3', 4-trihydroxy, 3, 5, 4'-trimethoxybibenzyl), previously isolated from the seeds of C. kraussii and also from C. woodii leaves. Famakin (2002) showed this compound to be the major antibacterial compound in C. woodii leaves. Combretastatin B5 (CBS) demonstrated in vitro cytotoxicity in the MTT assay on monkey kidney cells with an LC_{50} value of 10 µg/ml. In vitro cytotoxicity of CB5 could be due to its antimitotic activity. The TEAC value of 7.9 found in this study means that combretastatin B5 has about 8 times the antioxidant capacity of vitamin E. This is the first report of the antioxidant activity of any of the combretastatins.

Tolerance of broiler chickens to the optimal extract was assessed at clinically inferred doses of 2 mg/kg, 5mg/kg and 10 mg/kg. After 21 days of infeed-dosing with the optimal extract, none of the chickens died or showed any behavioral signs of toxicity. There were no statistically significant differences in weight gain between broilers fed the optimal extract and the positive and negative control. There was also no positive correlation between weight gain and amount of the optimal extract incorporated in feed.

Although the optimal extract did not result in significant growth promotion relative to the positive and negative control, 2 mg/kg dose regimens showed the best Feed Conversion Ratio (FCR), with a 6.2% improvement compared to the negative control. The positive control was the only other feed regimen to provide a positive FCR with an improvement of 1.73% compared to the negative control. Because purchase of feed could represent up to 80% of costs of broiler production, this is an important finding. If these results can be confirmed, the product may therefore have commercial value. Repetition of the experiment with lower doses of the optimal extract on poultry challenged with bacterial infections is required to confirm the commercial applicability of this product.