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ABSTRACT 

The random deployment of Wireless Sensor and Actuator Network (WSAN) 

nodes in areas often inaccessible, results in so-called coverage holes – i.e. areas in the 

network that are not adequately covered by nodes to suit the requirements of the 

network.  Various coverage protocol algorithms have been designed to reduce or 

eliminate coverage holes within WSANs by indicating how to move the nodes.  The 

effectiveness of such coverage protocols could be jeopardised by inaccuracy in the 

initial node location data that is broadcast by the respective nodes.  This study 

examines the effects of location inaccuracies on five sensor deployment and 

reconfiguration algorithms – They include two algorithms which assume that mobile 

nodes are deployed (referred to as the VEC and VOR algorithms); two that assume 

static nodes are deployed (referred to as the CNPSS and OGDC algorithms); and a 

single algorithm (based on a bidding protocol) that assumes a hybrid scenario in 

which both static and mobile nodes are deployed.  Two variations of this latter 

algorithm are studied. 

A location simulation tool was built using the GE Smallworld GIS application 

and the Magik programming language.  The simulation results are based on three 

above-mentioned deployment scenarios; mobile, hybrid and static.   

The simulation results suggest the VOR algorithm is reasonably robust if the 

location inaccuracies are somewhat lower than the sensing distance and also if a high 

degree of inaccuracy is limited to a relatively small percentage of the nodes. The VEC 

algorithm is considerably less robust, but prevents nodes from drifting beyond the 

boundaries in the case of large inaccuracies.  The bidding protocol used by the hybrid 

algorithm appears to be robust only when the static nodes are accurate and there is a 

low degree of inaccuracy within the mobile nodes.  Finally the static algorithms are 

shown to be the most robust; the CPNSS algorithm appears to be immune to location 

inaccuracies whilst the OGDC algorithm was shown to reduce the number of active 

nodes in the network to a better extent than that of the CPNSS algorithm.   
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Introduction 

What we call the beginning 
 is often the end.  

And to make an end is 
 to make a beginning.  

The end is where we start from. 
 

T.S. Eliot, Four Quartets, 1943 
 

A Lockheed C-5 cargo plane1 flies over Robben Island2 at an altitude of 1000 

feet and a speed of 600km/h.  The cargo hold opens up and thousands of small 

sensory devices, approximately 20 per cubic meter are deployed.  As the devices come 

to a standstill on an open field they broadcast a signal to all listening nodes.  The 

signal contains their current location, deployment status and signal strength.  A small 

percentage of the nodes broadcast to the rest a message that their coverage area does 

contain enough nodes to be adequately monitored.  On the other side of the field a 

hand full of self-organising devices, devices that are capable of movement, respond 

back and move into a position to assist the requesting nodes.  The purpose of these 

devices is to sense and track penguin movement on the island. 

 

1.1 Introduction 
Wireless Sensor and Actuator Networks (WSANs) have seen a growth in 

research within the past few years.  Research interests include hardware development 

to reduce the manufacturing costs, software development in the form of network 

management interfaces systems (NMIS), network configuration and routing 

algorithms.  The deployment of these networks into the real-world is prone to failure 

of nodes within the network, or unpredictable network layout.  The following study 

attempts to evaluate so-called deployment and reconfiguration algorithms, or simply 

coverage algorithms.  The purpose of these algorithms is to solve coverage holes 

within the network topology, where coverage holes are defined to be areas in the 

network that are not adequately covered by sensors. 

                                                
1 Commonly known as the Lockheed Galaxy, is a cargo plane used by the USAF to transport military 
cargo and supplies (http://www.lockheedmartin.com/products/c5/). 
2 Robben Island is a small island off the West Coast of Cape Town, South Africa.  The island, which 
directly translated is Seal Island in Dutch, was used as a prison between 1961 and 1991.  The island is 
now owned by the state and is a popular tourist attraction due to its political past and current abundance 
of wildlife (ICOMOS 1999)   
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Meguerdichian et al. (2001a) present a study focussed on the coverage 

problems presented in Wireless Sensor Networks.  The study divides networks into 

two key categories, namely deterministic coverage and stochastic coverage.  They 

also present various ways of determining coverage holes within the network.  One 

such algorithm is that of using Voronoi polygons, a key component in computational 

geometry.  The components making up the studies by Meguerdichian et al. (2001 a, b) 

form key aspects of this study and are discussed in detail further on. 

1.2 Need for Research 
As we will present in the following study, there exists many algorithms to 

manage post deployment of networks, reducing node redundancy and coverage holes.  

However almost all of the algorithms make the assumption of accurate location 

information provided to the nodes in the network.  This factor, as far as can be 

determined, is never taken into account by the original authors of the algorithms.  This 

study attempts to analyse the effects location have on the deployment and 

reconfiguration in a mock environment simulated with the aid of GIS systems. 

1.3 Approach 
For the purposes of examining the extent to which the deployment and 

reconfiguration algorithms are capable of reducing coverage holes, a simulator 

environment was set up, using a custom-designed simulation tool.  Six simulation 

experiments are performed on each of the reconfiguration algorithms.  The 

deployment setup and environment are kept constant to allow for equal comparison 

between algorithms and experiments. 

In the study presented, we are particularly interested in coverage in terms of 

overall sensing capability.  It is assumed that the extent of coverage in terms of inter-

node communication signals is sufficient for all the nodes to communicate to the base 

station via the network.  During this and further chapters the terms nodes, sensors, 

devices and actuators are used interchangeably 

1.4 Research Questions 
Chapter 2 examines the relationship between location and coverage 

algorithms.  The estimated location of the nodes in a real-world environment cannot 

hold to the assumption that the location will always be accurate.  This study evaluates 

five (with a sixth being a variation of assessment) deployment and reconfiguration 
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algorithms based on levels of location inaccuracy.  The following questions are 

proposed: 

• What are the effects of location inaccuracy on deployment and reconfiguration 

algorithms used in WSANs? 

• How do these results compare between mobile, hybrid and static networks? 

1.5 The Way Ahead 
Chapter 2 below introduces WSANs and the need for coverage reconfiguration 

and deployment algorithms.  We show the main assumption of the algorithms to be 

that of location awareness amongst the nodes and hence the need to evaluate the 

effects of location inaccuracies on the algorithms.  The chapter shows how location 

inaccuracies may typically be presented in a real-world context.  Chapter 3 proposes 

an architecture for a GIS based simulator.  By integrating a simulation tool with that 

of a GIS platform, we are able to place nodes within a real-world environment.  The 

GIS environment also provides an industry tested set of mathematical libraries that 

may assist in the assessment of the algorithms.  Chapter 4 then describes each of the 

five algorithms evaluated.  The chapter also examines the methods and procedures 

used for evaluation.  The chapter closes by examining the initial deployment of nodes 

as well as the introduction of location inaccuracies.  The results of the simulator are 

presented in Chapter 5 to indicate each of the algorithms’ effectiveness in comparison 

to the experiments.  Finally in Chapter 6 a conclusion is drawn from the results found 

in Chapter 5.  In this chapter we present further areas of research for future study as 

well as current related topics. 
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Background Information - WSAN 

“Everything is related to everything else,  
but nearby things are more  
related than distant things” 

 
W. Tobler, 1970 –  

1st law of Geography 
 

This Chapter outlines the concept of Wireless Sensor and Actuator Networks 

(WSAN); it builds a foundation for further Chapters, discussions and findings. 

Section 2.1 discusses the concepts of WSAN design and deployment; Sections 2.2 

describes how these networks are deployed with a special emphasis on the types of 

networks that can be deployed.  The chapter then introduces the concepts of coverage, 

coverage holes and Voronoi -polygons.  We then see how these concepts are tightly 

coupled to an assumption of location information being provided to the nodes within 

the network. 

2.1 Wireless Sensor and Actuator Networks 
Recent developments in micro-electronic mechanical systems (MEMS) 

including the development of wireless transfer mediums and micro-robotics have seen 

a growth in the field of WSAN research.  These networks consist of one or more base 

stations, Figure 2-1, and tiny nodes or motes (potentially thousands of them), Figure 

2-2, which are scattered in a given region of interest (ROI), to sense and monitor the 

surroundings (Alkyildiz et al. 2002).   

 

Figure 2-1 - MicroStrain Base station. 
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Figure 2-2 - Two motes, by Sun Microsystems (Sunspots) and MicroStrain. 

 

The nodes have hardware onboard capable of sensing seismic activity, 

temperature, acoustics, and visual objects.  If need be almost any other form of 

sensing can be installed. (Alkyildiz et al. 2002, Xbow, Java SunSpots, MicroStrain)  

These networks are different from the conventional mobile ad-hoc networks because 

of their ability to sense data, to filter data at the node level, and to relay the processed 

data to base stations via the network for further processing (Alkyildiz et al. 2002).  By 

passing the data along neighbouring nodes, a global view of the area is obtained by 

the network.  The base stations are components within the WSAN that are able to 

contain greater computational, energy and communication abilities.  The nodes may 

also be equipped with actuators that allow them to react and perhaps change their 

environment, based on messages received from the base station. 

Alkyildiz et al. (2002); Ahmed et al. (2005) and Santi (2005) were used to 

compile the following list of aspects that should be taken into account before the 

sensors are deployed over a ROI. 

Energy conservation – Unlike wired networks, wireless sensor networks have a 

limited energy supply.  Once the nodes are deployed, replacement or recharging of the 

energy source in the ROI is sometimes impractical or impossible.  Thus, a key goal in 

WSAN is to reduce the energy consumption of nodes within the network. 

Limited bandwidth – The most commonly used communication standard in WSAN is 

that of IEEE 802.11.  The theoretical threshold of this standard is 54Mb/sec, however 

in real-world deployment, simultaneous communications increases radio interference.  

The degree of interference depends on the density of deployment, i.e. the higher the 

concentration of nodes that are deployed over the ROI, the higher the degree of radio 

interference. 
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Unstructured and varying topologies – When the nodes are deployed from a given 

source, for example the C-5 aircraft, the final layout of the network is unpredictable.  

Node failure during deployment as well as during implementation changes the layout 

of the network dynamically. 

Fault tolerance – Fault tolerance is linked to varying topologies.  During the 

deployment phase or lifetime of the network, nodes may malfunction or run low on 

energy.  This failure of nodes, in theory, should not affect the overall purpose of the 

network. 

Low quality in communication – Radio interference as well as different environmental 

medium such as water, soil and vegetation reduce the quality of the signal strength. 

Data processing – The processing power within the network is limited.  When 

deployment of a WSAN is done, communication of data between nodes should be 

considered.  This aspect is tightly coupled with that of communication quality and low 

bandwidth.  The nodes should be able to determine what sensed data should be passed 

on to neighbouring nodes. 

Scalability – A final detail that should be considered is that of scalability.  WSANs 

can comprise of thousands of nodes.  Scalability is concerned with how the network 

will handle growth in workload or support an increase in the number of nodes. 

Meguerdichian et al. (2001a) present two forms of deployment; the first is that 

of deterministic coverage which is a network that has been deployed to a specific 

shape known by the network designers.  Deterministic networks provide an ideal 

network where the designers have prior knowledge of the position of nodes within the 

network. Secondly the study presents stochastic coverage.  In many of the potential 

working environments3 such as toxic disaster areas, remote harsh fields or even 

remote planetary exploration, sensor deployment cannot be performed manually.  In 

the example for nature observation on Robben Island, an aerial deployment source is 

used to deploy the sensors.  However, by using techniques such as this, the final 

location of the nodes cannot be predicted and deemed as optimal.  Furthermore 

malfunction of nodes’ results in further network layout changes.  Thus, it can be said 

the layout of the network is unpredictable.  Such random deployments will invariably 

                                                
3 BP is currently implementing WSN to transform business processes, from inventory control to 
monitoring pumps (CompuWorld 2005) 
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result in the occurrence of coverage holes within the ROI.  Ahmed et al. (2005) 

describe the notion of a coverage hole (or rather the absence thereof) as follows: 

 

“Given a set of sensors and a target area, no coverage hole 

exists in the target area, if every point in that area is covered by 

at least k sensors, where k is the required degree of coverage for 

a particular application.” 

 

Meguerdichian et al. (2001 a) make the claim that coverage can be considered 

as the measure of quality of service of the sensor network.  Ahmed et al. (2005) 

confirm this claim: the service provided by the sensor network is dependent on the 

ability of the sensors to monitor the area adequately, based on the degree of coverage 

required.  As with the example used before, the nodes on Robben Island reported that 

areas within the network did not meet the above criteria.   

The inverse of coverage holes also applies.  This takes the form of over-

coverage; these are areas in the network that waste nodes sensing ability by 

duplicating coverage in specific areas. 

A distinction should be made between the extent to which a node is covered 

with respect to communication signals that are sent between nodes; and the extent to 

which sensing capability that radiates from the various nodes cover the ROI.  The 

extent of coverage will typically differ from one case to the other.   

Various nodes within the network could be referred to as movement-assisted. 

By movement-assisted nodes, we refer to nodes that are able to move within the ROI 

via some agent.  We refer to research such as (Khan et al. 1999, Heo et al. 2003, 

Wang et al. 2003a, Wang et al. 2003b) for active movement-assisted networks.  The 

researchers discuss nodes that are capable of self-movement as well as nodes that use 

an external source for movement; such a source could be an unmanned aerial vehicle 

or an autonomous robot. 

The deployment of WSAN can be classified in three distinct groups based on 

the percentage of movement-assisted or self-organising nodes within the network: (i) 

Mobile networks; (ii) Static networks; and (iii) Hybrid networks.   

To solve problems of coverage holes, various self-organising or coverage 

algorithms have been developed to allow the networks to reconfigure their network 
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topologies based on the requirements of the application.  The reconfiguration 

algorithms give the network the ability to reduce coverage holes in much the same 

way as described in the penguin observation example used earlier. 

2.2 Deployment and Reconfiguration  
Several researchers (Wang et al. 2003a, Wang et al. 2003b, 2004; Cortes et al. 

2002; Generiwal et al. 2004; Huang et al. 2003; Heo et al. 2003) have presented 

solutions to obtain the required degree of coverage over the network by reconfiguring 

the nodes position.  A generalised problem statement is to minimise the coverage 

holes or over-coverage with constraints on deployment and reconfiguration time as 

well as energy used by each node (Wang et al. 2004, Ahmed et al. 2005).  This 

optimisation of placement of nodes within the ROI can be classified as a spatial 

resource allocation problem. The study of this optimal placement is the subject of a 

discipline called location optimisation (Cortes et al. 2002).  Location optimisation is a 

broad field of study ranging from the study of WSAN networks to the study of animal 

territorial behaviour (Cortes et al. 2002, Righton 2006).  In the case of stochastic 

deployment, or deployment that is random, optimal placement is done by 

reconfiguring and reorganising the network. 

2.2.1 Mobile Sensor Networks 

Mobile sensor networks are networks that are deployed with all the nodes 

being movement-assisted.  Thus, each node is able to move and reconfigure its 

location.  A typical problem statement for mobile networks is to minimise coverage 

holes with the same constraints on deployment and reconfiguration time and energy as 

well as the distance moved by each node (Ahmed et al. 2005). 
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Figure 2-3 - Reconfiguration of a mobile network. 

Figure 2-3 represents a hypothetical reconfiguration of a mobile network.  

Within a densely populated area in the network, reconfiguration takes place in the 

form of nodes moving away from each other, spreading themselves out over a greater 

area or moving into areas that are not adequately covered.  The nodes within the 

network relocate to a location that will allow the node to optimally cover the ROI. 

The current study focuses on two movement-assisted reconfiguration 

algorithms implemented by Wang et al. (2004).  The algorithms detect the presence of 

coverage holes via the aid of Voronoi polygons.  After the detection of a coverage 

hole, the purpose of the protocols is to calculate a new target location for the node, 

where the target location is defined as the position where the node can cover its local 

area optimally. 

2.2.2 Hybrid Sensor Networks 

Due to the energy requirements and manufacturing costs of movement-

assisted sensors, a proposed solution is to limit the number of mobile nodes.  The 

movement-assisted nodes are able to assist in deployment and network repair by 

moving to appropriate locations within the network topology. 
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Figure 2-4 - Reconfiguration of a hybrid network. 

Figure 2-4 shows the movement of two mobile sensors into areas within the 

ROI.  The static sensors calculate the presence of coverage holes and determine the 

locations to which the mobile nodes should move. 

Two variations of a hybrid sensor network algorithm are assessed in the 

current study.  The algorithm, presented by Wang et al. (2003a) is an extension to 

their movement-assisted algorithms presented in Wang et al. (2004).  The algorithm, 

which uses a multiple mobile sensor approach (discussed further in Chapter 4), allows 

static sensors to bid for the usage of the many mobile sensors to solve the static 

nodes’ local coverage holes. 

The first variation of the algorithm is assessed from the perspective of the 

static nodes being inaccurate.  By this we mean that the calculations of location by the 

static nodes are deemed to be vulnerable to inaccuracy.  The second approach is to 

assess the algorithm from the perspective of the mobile nodes.  In this case we deem 

the mobile nodes to be inaccurate. 

2.2.3 Static Sensor Networks 

Due to the nodes within a static network being fixed to their initial location 

during the lifetime of the network, the static nodes are limited in their ability to 

reconfigure the networks optimally i.e. to repair network configuration.  

Reconfiguration of static networks are concerned with topology /density control.  By 

topology we refer to the way the network is configured based on location i.e. the way 

the network’s physical layout.  Density control is the reference made to the 
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concentration of nodes within a given area or across the entire ROI.  Figure 2-5 shows 

how a static network is ‘reconfigured’ by switching off certain nodes within the 

network or increasing the sensing radius of other nodes to provide coverage.  The 

nodes are aware of the required coverage needed by the network.  The configuration 

algorithms determine which nodes within the network should reduce their signal 

strength or even switch off temporarily to reduce signal overlapping.  This process of 

switching nodes on and off is referred to as node scheduling (Tian et al. 2002, 

Ruzzelli et al. 2005).   

 

Figure 2-5 - Reconfiguration of a static network. 

As in the case of mobile and hybrid networks, two static reconfiguration 

algorithms were chosen.  These static algorithms are tightly coupled to one another.  

Tian (2002) presents the first.  The algorithm is an extension on the Low-energy 

adaptive clustering hierarchy (LEACH) algorithm (Alkyildiz et al. 2002).  The 

LEACH algorithm uses clustering to form groups of nodes with a single cluster head.  

All sensors within the group, excluding the head, power down and wait for the head 

node to notify the sleeping nodes.  Randomisation is used to rotate the responsibilities 

of the cluster head amongst nodes within the group.  Groups are determined based on 

the sharing of coverage areas.  The algorithm uses this approach of node scheduling; 

however nodes decide to turn on or off after discovering neighbouring nodes that can 

completely cover its sensing area.  The sensing area for the neighbouring nodes is 

determined as sectors within its coverage area (Alkyildiz et al. 2002). 

The second static algorithm is much the same as the above, implementing a 

combination of node clustering and scheduling.  The Optimal Geographical Density 
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Control Algorithm (OGDC) as presented by Zhang and Hou (2003) is an iterative 

algorithm that divides the network lifetime into timed rounds.  At each round the 

network is ‘woken up’ after which the algorithm is run to determine which nodes are 

to hibernate until the next round.  

All five of the above-mentioned algorithms are discussed in more detail within 

Chapter 4. 

2.3 Location Dependency 
Table 1 represents a comparison of the various self-organising algorithms 

mention in the previous section.  Presented by Ahmed et al. (2005), the table outlines 

the main assumptions and characteristics of each algorithm.  A reoccurring 

assumption is that nodes are location aware.  However, in practice, location 

calculation or estimates are not very accurate. Oliveira et al. (2005 a) identify this as 

the localization problem. 

 

Table 2-1 - Comparison of proposed solutions to coverage hole problem. 

Category Approach Proposed Solution Main Assumptions Characteristics 

Mobile Sensors 

Computational 

Geometry 

VEC, VOR, Minmax Location information Localised, scalable, 

distributed. 

Co-Fi Location information, 

nodes can predict their 

death 

Single coverage based. 

Residual energy 

considerations. 

Virtual Forces Potential Fields Range and bearing Scalable, distributed.  

No local communication 

required for localisation 

DSS, IDCA Location information Scalable, distributed, 

residual energy based. 

Sequential Incremental Line of sight for 

localisation 

Centralised.  

Bidirectional 

communication with 

base station. 

Hybrid Sensors 

Single Mobile Sensor UAV Predetermined topology 

information 

Flying robot for 

deployment and 

network repair.  

Inaccuracies using 

aerial deployment. 

Single Robot Location information Distributed, no multi-

hop communication for 

network deployment 

and repair. 

Multiple Mobile Sensors Bidding Protocol Location information Uses Voronoi-diagram 

for single coverage 

requirement. 
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Category Approach Proposed Solution Main Assumptions Characteristics 

Static Sensors 

 

Multiple Coverage 

 

CCP 

 

Location information, 

uniform sensing disk 

Configurable degree of 

coverage, calculated by 

intersection points of 

sensing circles. 

k-UC, k-NC Location information Perimeter coverage, 

non-disk sensing model 

supported. 

Differentiated Location information, 

time synchronisation 

Grid based 

differentiated degree of 

coverage. 

Single Coverage OGDC Location information, 

uniform sensing disk 

Residual energy 

consideration. 

Sponsored Area Location information Sector based coverage 

calculations, non-disk 

sensing model 

supported. 

Extended-Sponsored 

Area 

Location information, 

time synchronisation 

Uniform disk sensing 

model. 

 
As the layout of the network is not predefined, calculating the location of each 

node is required.  An optimal approach to determine accurately the location of a node 

would be to use geo-location by fitting a Global Positioning System (GPS) to each 

node in the network.  However this solution adds to the manufacturing cost, as well as 

to the energy consumption of each node, and this is generally not considered practical.  

The usage of GPS is also limited by the environmental conditions, i.e. the availability 

of a GPS signal which is dependent on the location of the nodes within a building, 

presence of vegetation, etc. all of which introduce a degree of inaccuracy (Kennedy 

1996).  Thus, normally in a real-life situation, some location algorithm is used to 

determine the location of nodes within the network.  Triangulation and radio-location 

are two basic mathematical approaches used in location calculation algorithms.  The 

algorithms will accurately calculate location in a 2-D plane.  However, in applying 

these algorithms, in a real-world placement, with Earth contours and obstacles, 

inaccuracies in the calculation of locations are likely to occur.   

For completion we discuss the principles of triangulation and radio-location 

next.  Triangulation is a well-known process of calculating the position of a third 

location (C) when two vertices (A, B) are already known.  Using the properties of 

triangles and the laws of sine, the position of a third point, a vertex, can be calculated.  

The sine law states that:  

“The sides of a triangle are to one another in the same ratio as 

the sines of their opposite angles.” 
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Equation 2-1 

 

This statement shown in Equation 2-1 means that the angle between each of 

the known vertices and the third vertex is measured, the angle of the third vertex (θ) 

can be determined as 180° less the angle at A(α) and B(β).  The distance, c, from A to 

B is known via the co-ordinates of A and B. Using the ratio sin θ/c, the length of AC 

and BC can be calculated, and from this, the co-ordinates of C are easily determined 

using a Cartesian plane to represent x and y co-ordinates.  Figure 2-6 illustrates the 

general idea. 

 

Figure 2-6 - Using sin to calculate the length of a, b 

The value x at vertex C can be calculated as x = 180° - 60° - 40°, resulting in x 

= 80°.  The laws of sine say that the ratio of each line opposite the angle is calculated 

as sinθ, where θ is the vertex degree opposite the line.  Using this claim the sides are 

now in the ratio, 643 : 866 : 985.  Using Equation 2-1, it can be said that 

a

°40sin
=

b

°60sin
=

10

80sin °
 

Therefore:  a = 10m.
985

866
 = 8.79m, 

and b = 10m.
985

643
= 6.52m 
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In the context of WSAN, the concept of mesh triangulation is used to calculate 

the co-ordinates of nodes within the network.  Mesh triangulation is the process of 

using more than two neighbours to confirm the location of a point.  This is done by 

using triangulation for pairs of neighbours to that point, each calculating the location 

of the point.  Once each pair has a value, the mean position of all the neighbours’ 

calculated values are set to be the location of that point.  Niculescu (2003) shows that 

the positions of nodes that do not have a sufficient number of neighbours to calculate 

their present location, such as those at the ROI boundary, tend to be less accurate than 

those with an abundance neighbours, i.e. at the centre of the ROI. 

 

 
Figure 2-7 - Calculation of location by radiolocation / triangulation. 

Figure 2-7 depicts a typical scenario using mesh triangulation.  The darker 

triangles represent nodes in the network with GPS capability.  Pairs of GPS enabled 

nodes calculate the location of a third neighbouring node.  Each node that is aware of 

its location then calculates the location of another neighbouring node.  As can be seen 

in the above figure, nodes with neighbours in close proximity, S1, are more likely to 

have accurate locations due to the confirmation and recalculation of locations by more 

neighbours at different locations than nodes with only two neighbouring nodes, S2. 

Based on the same principles as triangulation, radio-location is the process of 

finding the location of a node by means of radio waves.  Radio signals are sent by 

node Si to the neighbouring nodes.  The angle (AOA – Angle of Arrival) at which the 

signal returns to Si, as well as the time (TOA – Time of Arrival) it takes to return are 

used to calculate the location of the neighbouring nodes.  
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Using triangulation and radio-location, researchers have developed location 

calculation algorithms or localization algorithms, such as the ad-hoc positioning 

system (Niculescu 2003), recursive position estimation (Albowicz et al. 2001) and 

direct position estimation (Oliveira et al. 2005a) to estimate positions of objects 

within a wireless network.  Oliveira et al. (2005a) discuss three key components in 

determining the overall location of a node: distance estimation, which is responsible 

for estimating the distance between two objects, using either radio-location or 

triangulation; position computation, which is the component that calculates the 

position of an object with the aid of current information such as neighbouring objects 

or distance to neighbours, as in the case of mesh triangulation; and finally the 

localization algorithm, which is responsible for using the above two criteria and other 

information in the calculation of location. 

Oliveira et al. (2005a) present a study on the dependency of each of these 

criteria and how they affect the overall outcome of location calculation.  The study 

also presents degrees of error with the calculation, showing that the calculation of a 

node’s location within a wireless sensor network cannot be deemed to be completely 

accurate.  Other researches such as Simon et al. (2004) present inaccuracies within the 

location calculation.  However they deem the algorithm’s degree of error to be 

acceptable for the needs of their applications. 

Potential problems arising from location inaccuracies are the inaccurate 

calculation of coverage holes as well as optimal positions for nodes to adjust.  The 

accurate calculation of Voronoi polygons is dependent on the location information 

provided.  This claim forms a key component of this study, where the study aims at 

assessing the impact that inaccuracies will have on the coverage algorithms. 

2.4 Voronoi polygons 
The construction of a Voronoi-diagram4 is based on Tobler’s first law of 

Geography (Sharifzadeh 2004), which states that: 

“Everything is related to everything else, but nearby things are 

more related than distant things” 

The location information about proximity to neighbours allows for the 

construction of a Voronoi proximity polygon (or simply Voronoi polygon) around 
                                                
4 Voronoi-diagrams are often referred to as Voronoi tessellation, Voronoi decomposition or Dirichlet 
tessellation (Aurenhammer 1991). 
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each node (Aurenhammer 1991).  Figure 2-8 shows an example of a Voronoi-diagram 

for a set of randomly places points.  Before explaining how to construct such a 

diagram, an indication is given of how these polygons are used to determine the size 

of the coverage holes in a ROI. 

 

Figure 2-8 - Voronoi-diagram for a randomly placed set of points on a 2-dimensional plane 

2.4.1 Voronoi polygons and the Relationship to Coverage Holes 

The set of Voronoi polygons around all nodes in the ROI constitute a complete 

partition of the ROI.  In making this claim, it is assumed that the ROI is bounded by a 

convex polygon, and using that boundary, the Voronoi polygons are appropriately 

adapted so that their sides coincide with those of the ROI. 

Each Voronoi polygon indicates a local area of coverage for which a node 

should be made responsible.  The area of such a Voronoi polygon that falls outside the 

circle of coverage of its associated node (as shown in Figure 2-9), can be used to 

determine the overall size of the holes in the network. 

The total coverage hole can be determined as a percentage within the ROI by 

Equation 2-2.  The equation shows that the total coverage hole, H, is equal to the area 

of the ROI less the union of all the sensors (S) coverage area, where coverage area of 

sensor Si is deemed to be the coverage included within the ROI, i.e. excluding is any 

coverage that overlaps outside the ROI. 

Equation 2-2 

H = ROI2 - U
n

i

SiA
1

)(
=
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An example is given in Figure 2-9.  The figure shows a WSAN network over a 

given ROI.  In this particular case, there are not enough nodes to cover the entire ROI, 

so coverage holes are inevitable. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2-9 - Determining the existence of a coverage hole within to ROI. 

Within Figure 2-9 the coverage hole areas are represented as the darker regions.  The 

figure shows a Voronoi-diagram for a specific ROI containing 25 nodes.  The nodes 

are represented by the + symbol, with the sensor coverage represented by the area of 

the circle in white.  Using the algorithm above, the percentage of darker regions in 

relation to the ROI can be calculated.  In this particular case the total coverage hole 

percentage was calculated as 14.12%. 

2.4.2 Construction of Voronoi polygons 

A Voronoi polygon of a node has the property that each point in it is closer to 

its associated node than to any other node in its surroundings.  A Voronoi-diagram, a 

decomposition of the ROI, is the result of determining all the Voronoi polygons in the 
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ROI.  Voronoi polygons constitute important objects in computational geometry and 

GIS-based applications (Aurenhammer 1991). 

 

 
Figure 2-10 - Voronoi polygon Gp(S) of point (S) (Wang 2004). 

Figure 2-10 represents a Voronoi polygon of some node, S.  The Voronoi 

polygon of S, can be represented by (Vp(S), Ep(S)), where Vp(S) is the set of Voronoi 

vertices, Ep(S) is the set of Voronoi edges.  Thus, in the example given in Figure 2-10 

(Wang et al. 2004), Vp(S) = {v1, v2, v3, v4, v5}, Ep(S) = {v1 v2, v2 v3, v3 v4, v4 v5, 

v5 v1}.  Furthermore, the set of neighbouring nodes of S is {A,B,C,D,E}.  

Each line drawn between node S and a neighbouring node in this set will 

intersect an edge of the Voronoi polygon at right angles.  This line will also be 

bisected by this polygon edge.  Thus, line (A,S) intersects (v5,v1) at right angles, and 

is bisected by (v5,v1).  These direct neighbours are deemed as the closest points to S, 

where closest is defined as straight-line distance. 

Various algorithms (Aurenhammer 1991) have been created for accurately and 

efficiently calculating the Voronoi polygons and consequently the Voronoi-diagram.  

The following section describes in the form of pseudo code, a high level view of the 

process of creating a Voronoi-diagram given, a set of nodes. 

Table 2-2 - Pseudo code for the construction of a Voronoi-diagram. 

1. For each node, Si, in the ROI, generate a Voronoi polygon as follows: 

a. Find Sj, the closest node to the Si 

b. Draw a line bisecting the line connecting Si and Sj 

c. Select the next closest neighbour Sk to Si 

d. Draw a line bisecting the position of Sk and Si 

i. If two lines intersect, the meeting point is a vertex of the 
polygon 
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e. Repeat until a closed polygon is created around Si 

 

2.5 Chapter Conclusion 
In this Chapter we addressed the issue of sensor deployment.  Special 

emphasis was placed on the unreliability of the network layout during the lifetime of 

the network, either due to malfunction or initial location placement of nodes during 

deployment.  Reconfiguration and re-organisation algorithms have been proposed to 

address the above problem.  However it has been seen that these solutions assume 

location aware nodes.  To date, it has not been determined how much of an impact the 

location inaccuracies have on these algorithms, and it is in this regard that present 

study intends to contribute. 
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“Geography is just physics slowed down,  

with a couple of trees stuck in it.” 

 

T. Pratchett - The Last Continent 

 

In the previous chapter the properties of WSAN deployment were outlined, 

included in these properties is that of location.  The chapter introduced the possible 

dependency the reconfiguration and deployment algorithms have on location being 

accurate.  An effective approach to studying the robustness of WSAN reconfiguration 

algorithms is to place nodes in the field and observe their coverage when their 

reconfiguration is based on location inaccuracies.  This approach is costly and 

impractical.  The next best method would be to place the sensors within a virtual 

world with the same obstacles and objects seen in the real-world.   

The present chapter introduces Geographical Information Systems (GIS), key 

GIS principles, as well as a proposed GIS based simulation tool to assess the impact 

of location on various self-organising reconfiguration algorithms. 

Section 3.1 discusses GIS and its position within this study, followed by a 

discussion on the usage of GENS5 Smallworld for simulation.  Smallworld is used as 

a development platform for the simulator as well as a repository to store data related 

to the GIS environment and to the simulator.  Section 3.2 addresses the simulator and 

the architecture used to develop the tool.  Section 3.3 details a simulation model and 

assessment of the algorithms.  An explanation on the Smallworld Core program, how 

to use the application and the interface, is omitted from this work as it is deemed to be 

outside the scope of this study. 

3.1 GIS Aided Simulation Platform 
For the purpose of examining the extent to which the deployment and 

reconfiguration algorithms are capable of reducing coverage holes, this study 

proposes the development of a simulation tool based on a GIS application.  Building 

on the discussion of the previous chapter, the simulator has to take into account 

distance and location.  By integrating the environment with that of a GIS application, 
                                                
5 GENS – a division of General Electric that maintains and manages the GIS application created by a 
company called Smallworld, now acquired by GE.  The name Smallworld continues as the product 
name and not the former company (GENS 2003). 
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real-world distance and scaling can be applied.  A further benefit is that GIS systems 

come with a large library of mathematical classes, specifically in the field of 

geometry.  These libraries assist in the overall implementation of the reconfiguration 

algorithms. 

3.1.1 Geographical Information Systems 

A Geographical Information System or GIS, is an information system capable 

of capturing, storing, analysing and managing data, data that is spatially referenced to 

the Earth6.  The usage of GIS technology is widespread, including scientific research, 

environmental impact assessment, asset management, telecommunication network 

inventory management, urban planning and cartography to name a few (Huxhold 

1991). 

Figure 3-1 represents a brief history leading up to the development of current 

GIS systems.  A GIS system by definition is a solution that associates object attributes 

to that of a graphical map or picture (Huxhold 1991).  These attributes could contain 

information such as population density, commercial spending habits or even 

telecommunication infrastructure.  If we apply this definition of a GIS system to 

history, then the first traces of such a system can be seen as far back as ±20000BC in 

Lascaux, France.  Cro-Magnon hunters drew rock paintings of local animals with the 

migratory patterns linked to each artwork (Frazee 1997).  Much later John Snow7 

mapped the 1854 cholera outbreak in London, England.  Snow pinpointed all the 

reported cases of cholera, water sources and city streets on a map of London.  The 

data assisted him in locating the source of the outbreak, contaminated water pumps, 

one of which later became known as Snow’s pump, at Broad Street station (Vinten-

Johansen 2003). 

The time between 1969 and 1982 saw the birth of the modern day GIS system, 

in other words a system using computers to assist with spatial data analysis and 

storing.  This sudden growth in GIS was spurred mainly by the progression of 

computer hardware and software development.  During this time period, institutes 

such as ESRI (Environmental Systems Research Institute) and CGIS (Canada 

Geographic Information Systems) were founded.  These institutes established 

                                                
6 Expansion of this definition to include other planets and natural satellites such as the moon is 
underway.  An example of this is Google MarsTM, an extension on Google EarthTM. 
7 John Snow – 1813 – 1858, British physician and leader in medical hygiene (Vinten-Johansen 2003). 
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common standards and commercial acceptance of GIS tools (Huxhold 1991, Johnston 

1990). 

The last decade has seen an exponential growth in GIS based systems with the 

release of Earth Viewer in 2004, later acquired by Google and renamed as Google 

Earth in 2005, the founding of OpenGEO, a consortium aimed at standardising and 

approving open-source geo-information systems and application, in 2006.  Finally 

various companies releasing web based tools allowing other applications to build on 

the GIS properties offered – such companies being eSpatial’s iSmart, AutoDesk’s 

Map 3D and MapGuide, Microsoft’s Live Maps and GE MapFrame used on mobile 

devices. 
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Figure 3-1 - Timeline to the development of modern GIS solutions. 
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In 1989 Dick Newell founded the Smallworld company in Cambridge, 

England.  The company’s key role was developing a GIS application to be used by 

utilities companies, such as the gas, telecommunications and electrical industries.  The 

Smallworld Company was later acquired by General Electric in 2000.  The company 

only exists as the name of the GIS suite of products supplied by GE today.  Finally in 

2006 the Open Source Geospatial Foundation (OSGeo) is founded, a non-profit 

organisation providing financial, organisation and legal support for free and open 

source geospatial software.  OSGeo leads the way to open source GIS software such 

as OpenStreetMap, GRASS GIS and OpenLayers (FOSS4G2008 2008) 

A GIS application allows objects to be modelled in much the same way as any 

other database oriented application.  In the case of the simulation tool, these objects 

could take the form of the network sensors, regions of interest, buildings, roads and 

even vegetation.  

Common objects such as coast lines, buildings (land use) and vegetation can 

be grouped into layers.  These layers can then be grouped further within a map 

topology and finally placed on top of a picture layer, Tagged Image File (TIF), or 

photo file.   

Figure 3-2 shows various layers being placed over a map. 
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Figure 3-2 - Layers in a map topology. 

A key difference with GIS applications is the way the data is represented.  

There exists a fair amount of specially designed databases to deal with geo-spatial 

data.  Databases such as Oracle 10g spatial, Hibernate Spatial, GoeView, Siro-DBMS 

and VMDS are all equipped to store the data in such a manner as to make the data 

retrievable via geo-spatial queries (Gőting 1994, GENS 2003).  Queries that are 

created with space in mind, for example the distance two objects are from one 

another, the area covered by an object or whether or not two objects interact spatially. 

Within the context of our sensor network deployment, the map topologies imported 

into the Core application are from the ESRI suite of standards.  The map represents 

the Western Cape area of South Africa.  The topology includes layers representing 

land use, man-made infrastructure - buildings and roads, and finally the natural 

landscape, for example the coastlines.  Other objects such as the sensors are 

represented using Smallworld data types and are modelled directly within the 

Smallworld database. 

3.1.2 Data Representation 

In order for any GIS application to model the real-world environments, objects 

and data must first be modelled.  Real-world objects can be represented in two distinct 
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forms; discrete objects, such as parcels, houses, streets etc: and continuous fields, 

such as rainfall or land elevation.   

The data is stored in the database as either a raster data type or vector data 

type.  Collectively the data types are often referred to as an image (Huxhold 1991).  

With raster data, the layer is divided into rows and columns forming cells.  Each cell 

contains data or information about that specific area, such as land use, population etc 

(Huxhold 1991) - Figure 3-3 (a).  Vector data on the other hand consists of 

geometrical shapes: points, lines and closed polygons (Huxhold 1991).  Each of these 

shapes is associated to data in a database, a row in relational databases or an object in 

object-oriented database.  These shapes are specified with an instance of a co-ordinate 

– a location in other words - Figure 3-3 (b).  Each co-ordinate is represented in terms 

of a co-ordinate system (Huxhold 1991). 

 

Figure 3-3 - Comparison of Raster and Vector image data-types. 

A co-ordinate system can be defined by two different notations: a spherical 

system - Figure 3-4 (a) - using co-ordinates of latitude and longitude; or using a 

decimal point notation, covering a rectangular surface, where each rectangle is a small 

area of the Earth’s surface - Figure 3-4 (b).   
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Figure 3-4 - Spherical Co-ordinate System vs. Rectangular Co-ordinate System. 

For any GIS application to understand a valid co-ordinate system, a 

geographical world must be set up.  A geographical world, as defined by GE 

Smallworld, is an object that contains a projection that includes the scale of the image 

(Huxhold 1991, GENS 2003).  The projection scales the topology to fit within a given 

co-ordinate system (Huxhold 1991).  Huxhold discusses three of the commonly used 

projection systems used within today’s GIS applications: Lamberts conic projection, 

Transverse Mercator projection and Stereographic projection.   

A projection can be understood by considering the result of unwrapping an 

ink-stained soccer ball covered in wrapping paper.  The resulting image on the paper 

would then be the projection of the ink-stains on the ball.   It would be simplest to 

wrap the ball in one huge sheet of paper, folding the paper in places to make it fit 

snugly around the ball.  What if the wrapper wishes to wrap the ball with as minimum 

folds as possible?  If cutting the paper were an option, the wrapper could stick small 

strips of paper, one at a time on the ball, thus minimising the folds.  When the ball is 

unwrapped later, the paper can be stuck back together on a flat surface with no folds 

and creases.  The folds in the paper represent errors within the projection; when the 

paper is folded, parts of the paper are not visible anymore.  The same applies to maps 

being projected.  The Earth is a geo-sphere much like the soccer ball.  Thus when an 

aerial photo or map, known as a geographical topology, is created of a given area, the 

map is created with the contours and shape of the Earth.  Small snap shots of the Earth 
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s surface.  These sections are stretched and skewed 

according to a given mathematical algorithm (known as the projection) and laid flat.

Without a valid projection, a view of the Earth would display Greenland 

double in visual size and a continent such as Africa would shrink.  Thus the 

importance of an accurate projection system within the context of this study can be 

seen.  The projection allows us to determine valid locations and distances, key aspects 

The locations in conjunction with the GIS mathematical libraries 

assist in the implementation of the reconfiguration algorithms.  By using industry 

tested libraries, inaccuracies in the analysis are omitted. 

In keeping with the Robben Island example for the ROI, a map of the Wester

Cape region of South Africa is projected onto our geographical world.  The co

ordinate system used within this study is that of a rectangular surface area.  The 

benefits of using a rectangular system are that the system is read as if it were

plane with X and Y float values representing a position of an object 

.  This system makes the co-ordinates easy to manage 

being visually comprehensible for the user. 

The projection applied to this area is that of the Lambert conical projection.  

Conical projection is the process of creating a cone like shape around the Earth.  The 

cone is then unwrapped and laid flat to represent the area in a 2-dimensional state 

 

- Representation of conic projection (GENS) 

The chosen GIS application on which to implement the simulator 

The reasons for choosing this application is the ease with 

GIS and Simulation 
 

s surface.  These sections are stretched and skewed 

according to a given mathematical algorithm (known as the projection) and laid flat. 

Greenland 

shrink.  Thus the 

importance of an accurate projection system within the context of this study can be 

seen.  The projection allows us to determine valid locations and distances, key aspects 

on with the GIS mathematical libraries 

assist in the implementation of the reconfiguration algorithms.  By using industry 

In keeping with the Robben Island example for the ROI, a map of the Western 

Cape region of South Africa is projected onto our geographical world.  The co-

ordinate system used within this study is that of a rectangular surface area.  The 

were placed 

float values representing a position of an object 

ordinates easy to manage 

s area is that of the Lambert conical projection.  

Conical projection is the process of creating a cone like shape around the Earth.  The 

dimensional state - 

on which to implement the simulator is that of 

this application is the ease with 
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which a system can be extended using the object oriented programming language, 

Magik. 

3.1.3 GENS Smallworld Core Application 

Smallworld is a GIS suite of products written for General Electric Network 

Solutions, GENS.  The GIS platform is based on two GENS technologies.   

The first, the object oriented programming language, Magik.  The language is 

loosely based on that of Smalltalk, supporting multiple inheritance, polymorphism 

and a dynamically typed variable set (Yearsley et al. 1994, Wachowicz 1999).   

The second is a proprietary database called Version Managed Data Store, 

VMDS (Wachowicz 1999, GENS 2003).  The database has been developed with 

spatial technologies in mind.  Optimisation is done for storing and analysing complex 

spatial queries.  A spatial query is a query that selects data based on geometric 

principles.  For example, does a geometric polygon intersect another polygon or is 

one polygon contained within another.  These properties allow for a simple 

management of objects within a 2-dimensional world.  The objects are then extended 

to include their spatial properties, location, direction and distance.   

 

Figure 3-6 - Smallworld Application containing a topology of Robben Island. 

The above figure shows the Smallworld Core application’s GUI.  Contained 

within the map area is a scaled map topology of Robben Island.  The topology 

contains information regarding the land use, shown in dark, as well as the natural 

landscape such as the coastal lines. 
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Each object is represented as a polygon where each polygon has a type 

property, for example the objects runway, road and building are all polygons with a 

type runway, road and building associated to them respectively.  Each polygon is also 

made aware of other polygons within the topology, this awareness is brought forward 

as a database relationship to other records in the table.  Objects can be modelled with 

the same attributes as that of its real-world equivalent, thus modelling a virtual region 

for deployment. 

By using a valid co-ordinate and projection system, Smallworld is able to 

place the objects to an accuracy of 1mm within this virtual world. 

The following section introduces the development side to the simulator.  In 

other words it discusses how the Smallworld Architectural Framework (SWAF) was 

used to develop the tool, as well as how the simulator may be extended to support 

further development. 

3.2 Proposed Architecture 
Appendix A.1 includes a table derived from Becker 2007 that compares all 

known WSAN simulators currently within the realm of research.  Although some of 

the tools take into account the effects of radio interference – a further assumption of 

these algorithms - none of them deal with location. 

Previously it was suggested that a GIS system such as Smallworld could be 

used to replicate the behaviour of real-world objects and their properties.  We propose 

the development of a simulation tool that uses the properties and libraries of the GIS 

environment to accurately place nodes within a given target area. 

The simulator, developed using object-oriented principles in Magik, is built as 

an application extending the GENS Smallworld Core application.  Communication 

with the Core application is done via the databus - Figure 3-7.  By communicating 

with the Core application, the simulator is able to retrieve all the GIS properties of the 

map and objects contained within the map.  The databus uses a structure of publish 

and subscribe.  This implies that the simulator sends requests via the databus to the 

Core application to perform tasks such as updating of the map, or retrieval of object 

locations, status and other properties.   These requests are pushed onto the databus by 

the simulator; the Core application in turn has registered as a subscriber with the 

databus – when messages are sent across the database all subscribers registered with 
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the databus listen for those specific messages.  When the data is passed to the Core 

application, the data is picked up off the bus and handled accordingly. 

 

 

Figure 3-7 - Simulator application architecture 

The modelling of objects within the Smallworld database is done via a 

Computer-aided Software Engineering (CASE) tool.  The tool assists in creating 

objects, associating attributes, and associating exemplar class files to objects.  The 

exemplar class files are Magik files that contain code to extend the functionality and 

logic of each object.  In other words objects are implemented via the exemplar, much 

the same as a Java class file (Wachowicz 1999).  Exemplars can be mapped directly to 

a table within VMDS, extending behaviour of the object that the table represents 

(Wachowicz 1999). 

Figure 3-8 outlines the CASE tool data model for the set of objects used by the 

simulator.   
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Figure 3-8 - Simulator data-model 

Each sensor has a one-many relationship with that of a ROI.  Thus, a single 

sensor can be contained by many ROIs.  The ROI is modelled as a geometric polygon 

containing nodes and having a configuration.  A ROI contains a single configuration 

of nodes.  The configuration object includes the attributes for setting up the ROI and 

the placement of nodes within the network.  Default values for sensing range and 

communication range are also specified by the configuration. Each of the database 

objects is mapped to a Magik exemplar.   

 

 

Figure 3-9 - Custom database objects with associated attributes. 
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Figure 3-9 shows a UML diagram for each database object.  Shown in the 

diagram are the attributes and the data type of each object as well as the exemplar file 

associated to the object. 

The sensor object has the properties of location, movement, sensing and 

communication distance as well as its local Voronoi polygon.  Movement is stored as 

a Boolean data type, by storing movement as boolean, the property of movement can 

be turned on or off.  Location is defined as a geometric point.  The Voronoi polygon, 

sensing and communication attributes are represented as geometric polygons.  

Geometric polygons and points are objects containing geographical properties such as 

location, distance and area.  The sensor object is extended by the sensor.magik 

exemplar, which provides additional logic to the database object. 

The configuration object is responsible for storing different deployment 

scenarios within a given ROI.  The configuration object contains a join field to the 

sensor object, as well as to the ROI object.  A configuration object has default 

communication and sensing ranges, both are represented by an integer value.  These 

values are used during the deployment of sensors where the communication and 

sensing range is uniform across all the sensors.  Lastly a configuration has a unique 

name used for identification.   

The ROI object is a simple geometric area.  The object is aware of size and 

area as well as the sensors that have been deployed within its self.  As with all other 

objects that are modelled, the ROI has a unique name for identification within the 

database.  The geometric properties of the ROI object assist the simulator in 

calculating the presence of coverage holes by using spatial queries.  The ROI object is 

extended by the roi.magik exemplar, providing methods to calculate coverage, 

coverage holes, node activity and algorithm results. 

As GIS applications use images and shapes to represent data, it was deemed 

appropriate to develop a user interface to allow for the real time visualisation of the 

sensor objects moving within the ROI – Figure 3-10 shows the map of Robben Island 

as seen in Smallworld.  The ROI area is enlarged to show how the sensors location 

changes over three iterations as a reconfiguration algorithm is run. 
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Figure 3-10 - An example ROI in relation to the map of Robben Island as seen during sensor 
reconfiguration 

3.2.1 Simulator Interface 

The simulator interface is developed using SWAF.  SWAF has a software 

development architecture used by Smallworld for the development of applications.  

The framework uses the concepts of reusable plug-ins and modules.     

SWAF consists of a 2-tier architecture.  The first tier, the presentation layer, 

contains the plug-ins, the second is a combination of the logical and persistent layers 

containing the database as well as the module engines (GENS 2003).   The SWAF 

architecture defines an application as a standalone graphical interface that consists of 

its own set of functionality, toolbars and plug-ins (GENS 2003).  A plug-in is defined 

as a lightweight object that provides top-level access to the application, for example 

an action button to trigger an event in the database (GENS 2003).  Each plug-in 

makes a call to an engine for the processing of the GUI request.  The engine contains 

all the business logic – this can be compared to Java Beans used by the J2EE 

development environment.  Figure 3-11 shows the simulator, consisting of five plug-

ins within the application. 
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Figure 3-11 - Proposed Simulator Application. 

The simulator GUI gives the user the option to create, modify or delete a 

configuration object.  This is done via the Configuration editor.  New nodes can be 

added to the ROI via the Deployment plug-in.  The deployment plug-in allows the 

user to specify the naming convention used in the creation of new nodes as well as the 

degree of randomness that should be implemented during the deployment process.  By 

changing the deployment seed values of either the X or Y axis the user has the ability 

to deploy nodes sparsely or densely clustered within the ROI.  A second benefit of 

specifying the seed values is that the deployment setup (randomness) of the nodes can 

be replicated.   All the newly deployed nodes are deployed within the selected 

configuration.  The default deployment of nodes is in the mobile state.   

Running of algorithms is done via the Properties plug-in.  A drop down list is 

provided for the selection of the algorithm to be run on the specified configuration.  

The user is given the option to run the algorithm a given number of times or 

iterations.  Thus acting as a terminating criterion for the algorithm.  Terminating 

conditions are discussed in further detail in Chapter 4. 

Depending on the type of algorithm to be run, an option is given to set a given 

sub-set of the nodes to be mobile or static.   
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Finally the user has the ability to invoke inaccuracy upon the node locations.  

All the nodes contain an attribute for ‘inaccurate location’.  By setting the inaccurate 

checkbox the inaccurate location value is used throughout the process.   

Results of the algorithm are displayed to the user in the Result plug-in.  Within 

this plug-in the user is able to see the properties setup for the algorithm as well as the 

total coverage hole percentage, total movement and mean movement of the sensor 

nodes. The application has the option to export the data to Microsoft Excel.  The 

exported data contains the configuration setup, node names and data associated with 

the configuration for all iterations including the coverage hole, distance travelled and 

mobility status for all nodes. 

3.2.2 Development of Algorithms 

All of the coverage algorithms are implemented within a single module within 

Smallworld.  A module in terms of Smallworld can be compared to a package in Java.  

The coverage_protocol exemplar is an abstract class that contains the methods 

required by the simulator to run, reset, stop and pause the algorithm.  These methods 

are used for all coverage algorithms.  Further abstract methods are added by children 

classes depending on the type of algorithm developed - Figure 3-12.  Searching for 

classes inheriting from coverage_protocol allows the simulator to detect a new 

algorithm. 

 
Figure 3-12 - Class diagram for the development of new coverage algorithm. 

An outlined API for each component to the simulator is covered in Addendum 

A - Development API.  
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Further modules used in the development of the simulator include: 

voronoi_diagram, a module used in the computation of Voronoi polygons and 

coverage holes.  This module contains exemplars and methods for calculating the 

Voronoi polygons and diagrams for a given set of nodes as well as the existence of 

coverage holes;  sw_core, a module used for enhancements to the Smallworld Core 

application, such as modifications to the database and map classes;  finally the 

geometry module, a module for common mathematical methods used by the protocols 

or simulator engine exemplars. 

Figure 3-13 shows all the exemplar files developed for the simulator.  This 

excludes the exemplars supplied by the Smallworld Core library.  For a detailed 

description on the methods refer to the Development API Addendum. 
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Figure 3-13 - UML diagram containing all exemplars within the simulation application. 
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3.3 Proposed Assessment 
It has been established that location plays an important role in the 

reconfiguration or self-organising WSAN algorithms.  In the introduction we brought 

forth two research questions.  Both of the questions are centred on the assessment of 

location accuracy in the deployment and reconfiguration of the networks.  We have 

also seen the benefits of using the properties of GIS to aid in replicating WSAN 

deployment.  We propose to use these properties of the GIS environment and the 

simulator to assess the sensitivity of the various coverage algorithms to the quality of 

the node location data.  The simulator allows for repetitive experiments to assess each 

algorithm.  

3.3.1 Experiments 

The simulation exercises first address the algorithms within a perfect world.  

By this is meant that no inaccuracies, interference or malfunction of nodes is 

introduced.  Further experimentation is performed where inaccuracy is introduced into 

the world.  The network is subjected to gradual increase in the number of inaccurate 

nodes, followed by a worse-case scenario, high-inaccuracy, of all the nodes being 

inaccurate.  Each of the algorithms contains a termination criterion.  The termination 

criterion prevents the algorithms from running indefinitely.  This criterion can take 

the form of a given number of runs or even an acceptable degree of coverage.  The 

current simulation models take into account two degrees of termination.  In the first 

case, the termination criterion is set at an acceptable real-world level.  In the second 

case, simulations are performed with an unrealistic termination criterion, forcing a 

much larger number of runs then needed within the real-world.   

Various algorithm authors have assessed algorithms in terms of different 

properties.  For example Jiang and Dou (2004) assess the static algorithms based on 

energy saving, whilst Wang et al. (2003a, 2004) assess their algorithms based on the 

degree of movement by each node and final coverage.  For the sake of commonality, 

the algorithms tested here were assessed on the percentage of total coverage within 

the ROI after the algorithms have been executed.  The following chapter, titled 

Methods and Procedures, addresses the experiments in greater detail.   

Radio interference and node malfunction are two factors that may influence 

the network layout.  However these are deemed to be areas of future research. 
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3.4 Chapter Conclusion 
In this chapter we discussed briefly the history of GIS and how it may benefit 

WSAN simulation.  We outlined a simulator tool to be built using GENS Smallworld 

Core as the underlying GIS application.  The benefits expected of such a simulator are 

to aid in the study of how inaccuracies affect the overall outcome of the self-

organising coverage protocols introduced in Chapter 2.  Further studies can also be 

implemented using the simulator.  Such studies are discussed in the concluding 

chapters. 

The next chapter introduces and explains each of the five algorithms, followed 

by a discussion on the assessment experiments, used to re-evaluate each algorithm 

based on location inaccuracy and final coverage. 
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“Space is big. You just won't believe how vastly, 
 hugely, mind- bogglingly big it is.  

I mean, you may think it's a long way 
 down the road to the chemist's,  

but that's just peanuts to space.” 
 

D. Adams – The Hitchhikers  
Guide to the Galaxy 

 

We have seen the benefits of a GIS integrated simulation tool to model 

WSANs as if they were placed in the real-world.  The present chapter discusses how 

the study assesses five deployment and reconfiguration algorithms used in WSANs.  

Section 4.1 discusses each of the experiments that are performed on the algorithms.  

The experiments take into account accurate and inaccurate location within the 

algorithm as well as terminating criterion.  The next section, 4.2, discusses, in detail, 

each of the algorithms.  The section includes basic pseudo-code for the running of the 

algorithms. 

As the deployment of large networks is costly, the GIS environment allows for 

the set up of a virtual world containing real-world objects and network behaviour.  By 

applying the network within this context the experiments can be performed on the 

algorithms as if they were being done in the real-world at a much less cost and time. 

4.1 Experiments 
For the purpose of assessing the five algorithms, five experiments were set up 

using the simulator.  The first experiment, control, is used to assess algorithm 

performance in an ideal world with no inaccuracies.  The second experiment confirms 

the results of the control experiments by testing the algorithms with different starting 

scenarios.  The third, fourth and fifth experiments introduce location inaccuracy to the 

algorithm.  

 
 
 



Methods and Procedures 

 

Figure 4-1 - Initial starting scenarios. 

An environment is simulated in which 25 - 50 nodes are deployed randomly 

within an ROI that has an area 1615m2.  Each node was assigned a sensing range of 5 

meters and twice that in communication range – i.e. 10 meters.  The value of the 

communication range is derived from the study by Zhang and Hou (2003) where they 

prove that by setting the radio communication range to at least double the sensing 

range, a complete coverage of a convex area implies connectivity among the set of 

nodes within the ROI.   

Depending on the deployment state of the network being static, hybrid or 

mobile, a percentage of the nodes were deemed to be capable of self-movement, and 

all to be unaware of power consumption.  It was also assumed that all the nodes were 

deployed without failure, and that sensing and communication took place within the 

respective radii without interference. 

All the algorithms run iteratively until a given terminating condition is 

satisfied.  The terminating condition for the algorithms may be defined in various 

ways.  For example: a given degree of coverage is reached; or no movement by nodes 

for more than one iteration.  For the purpose of consistency, the terminating condition 

and experiment configuration is kept the same for all the algorithms.  By 

configuration we mean the ROI, node count, layout of the network, sensing distance 

and communication range. 

The environment setup depicts that of a potential real-world setup and 

represents the environments consistent with that described by the original authors of 

the algorithms. 
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4.1.1 Control Experiment 

The control experiment is used as a benchmark environment, in other words 

an environment that contains no flaws, or errors, which is used as a basis for 

comparison.  The results obtained from this experiment are compared to the results 

obtained by the algorithms’ authors.  All nodes are deployed into the given ROI and 

the algorithm run.  During the control experiment, a real-world terminating condition 

is set.  By real-world conditions, we mean termination such as limited energy or 

limited mobility (in the case of movement-assisted nodes).   

4.1.2 Initial Deployment Sensitivity 

The initial deployment of nodes within a ROI could potentially affect the final 

outcome of the algorithms’ performance.  For example, in the case of movement-

assisted algorithms, when nodes are extremely clustered in one area, the algorithm 

needs more iterations to disperse the nodes.  The following experiment aims at 

assessing the outcome of different random starting scenarios, in each case the random 

deployment limiting the nodes to the ROI.  In contrast to the control experiment a 

high, unrealistic, terminating condition is set.  Thus we are able to assess the 

algorithm performance long after real-world conditions would have caused 

termination.  This allows for extended assessment to verify that the normal 

termination condition does not lead to premature termination. 
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Figure 4-2 - Initial deployment of nodes under fifteen different scenarios for mobile and hybrid 
networks. 
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Figure 4-3 - Initial deployment of nodes under fifteen different scenarios for static networks. 

Each algorithm’s behaviour is tested from each of fifteen randomly 

determined initial deployment locations.  The starting locations are kept constant for 

mobile and hybrid networks - Figure 4-2.  However with static networks, a further 25 

nodes are deployed into the ROI to allow for some redundancy within the network - 

Figure 4-3.  The minimum, maximum and average coverage hole size is recorded for 

each iteration. 

Using the statistical observation method of outliers the study will compare the 

results of each of the starting scenarios to one another at different intervals.  The 

method used for identifying the outliers chosen is that of the Interquartile range 

(IQR).  An outlier is defined as an observation that appears to be inconsistent with the 

other observations in the data set (Barnett and Lewis 1994).  By observing these 
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starting scenarios the study will be able to determine if there are any scenarios that 

deviate from the rest.  

IQR is a measure of variability or statistical dispersion.  It is the difference 

between the top 75%, (Q3), and the lower 25% (Q1).  If the observed value aObv is 

within Llmt and Ulmt then it can be said that the value observed for that starting 

scenario is within a reasonable limit of being similar to the other starting scenarios - 

Equation 4-1.  If the observed value is outside Llmt and Ulmt, then it can be said the 

value differs from the rest.  K is the outlier coefficient, used to determine the degree 

of certainty in an unskewed distribution.  In this case the value is left as the minimum 

of 1.5 (Barnett and Lewis 1994).  

The final coverage hole value for each of the 15 starting scenarios is used as 

the sample rate to assess.  By performing the assessment on the final states of the 

network, the experiment attempts to show that the final results do not differ 

significantly. 

Equation 4-1 

Q1 = Percentile(aObvn, 0.25) 

Q3 =  Percentile(aObvn, 0.75) 

IQR = Q3 – Q1 

Outlier lower limit Llmt  = [Q1 – k.IQR] 

Outlier upper limit Ulmt = [Q3 + k.IQR] 

 

4.1.3 Graduated Inaccuracies - Sensitivity to Inaccuracy I 

Real-world inaccuracy is unlikely to occur in all nodes within the network.  

Thus, this experiment, Sensitivity to Inaccuracy I, simulates nodes whose actual 

positions are inaccurately reported to the respective 5 placement algorithms.  In each 

case, the percentage of inaccurate nodes is progressively reduced within the network, 

thus assessing how the algorithms behave when the percentage or ratio of inaccurate 

nodes to accurate nodes decrease.  This experiment assists in evaluating algorithm 

dependency on various degrees of the node inaccuracy. 
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The experiment is run on the same criteria as that of the next Sensitivity to 

Inaccuracy II. In this case however the percentage of inaccurate nodes is decreased 

gradually. 

4.1.4 High-Inaccuracy – Sensitivity to Inaccuracy II 

The following experiment, Sensitivity to Inaccuracy II, is used to test the 

algorithms effectiveness against worst-case inaccuracy, i.e. all the nodes in the 

network are inaccurate to the same degree.  The same initial deployment setup as with 

the control experiment is used to run each algorithm with various levels of inaccuracy.  

Twenty simulations are run per algorithm.  In each simulation, all the nodes are set at 

an inaccuracy level of n, where the inaccuracy ranged from 1 meter to 10 meters, in 

intervals of 0.5 meters.  A realistic termination criterion is used to reduce the number 

of iterations.  The Initial  Deployment Sensitivity experiments are used to determine 

what the termination factor should be.  Each algorithm is run 50 times per inaccuracy 

level, recording the minimum, maximum and average coverage holes.  Each run 

allows for a different inaccurate location point for the sensor. 

4.1.5 Termination Criterion Sensitivity 

A final experiment is performed on each algorithm.  The same criterion is used 

as that of high-inaccuracy and graduated inaccuracies experiments. However during 

this experiment, an iterative termination count of 100 is put in place.  By this is meant 

that the algorithm terminates after 100 iterations.  By performing this experiment we 

are able to assess the impact of location inaccuracies over an extended period of time. 

 

 
 
 



Methods and Procedures 

4.1.6 Overview of Experiments 

The following table provides an overview of the above mentioned experiments.  For completeness the values related to the experiments 

such as initial number of nodes deployed, number of times the experiment is run, the number if iterations within each experiment and 

termination criterion are included – these are to be discussed in further detail in the following Chapter. 

Table 4-1 - Experiment Summary 

Algorithm 
Network 

Layout 

Initial number 

of nodes 

deployed 

Number of 

experiments 

run 

Iterations per 

experiment run 

Accurate : 

Inaccurate 

nodes 

Termination 

Criterion 
Placement Error 

Control 

Mobile 25 1 

4 (as a result of 

the termination 

criterion) 

25 : 0 
Mean distance 

10m 
None 

Hybrid 
48 (25 static : 23 

mobile) 
1 4 48 : 0 

When no mobile 

movement is 

made 

None 

Static 50 1 
1 (CPNSS)/ 50 

(OGDC) 
50: 0 None † None 

Initial Deployment 

Sensitivity 

Mobile 25 15 100 25 : 0 None † None 

Hybrid 
48 (25 static : 23 

mobile) 
15 

Varied – based on 

the algorithm, 

average ±5 

48 : 0 

When no mobile 

movement is 

made 

None 

Static 50 15 
1 (CPNSS)/ 50 

(OGDC) 
50 : 0 None † None 
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Algorithm 
Network 

Layout 

Initial number 

of nodes 

deployed 

Number of 

experiments 

run 

Iterations per 

experiment run 

Accurate : 

Inaccurate 

nodes 

Termination 

Criterion 
Placement Error 

Inaccuracy 

Sensitivity I 

Mobile 25 25 

4 (as a result of 

the termination 

criterion) 

Varied * 
Mean distance 

10m 
Varied ** 

Hybrid 
48 (25 static : 23 

mobile) 
20 

Varied – averaged 

± 6 
Varied * 

When no mobile 

movement is 

made 

Varied ** 

Static 50 50 
1 (CPNSS)/ 50 

(OGDC) 
Varied * None † Varied ** 

Inaccuracy 

Sensitivity II 

Mobile 25 20 50 0 : 25 50 Iterations Varied ** 

Hybrid 
48 (25 static : 23 

mobile) 
20 

Varied – averaged 

± 6 
Varied * 

When no mobile 

movement is 

made 

Varied ** 

Static 50 20 50 Varied * 50 Iterations Varied ** 

Termination 

Criterion Sensitivity 

Mobile 25 1 100 25 : 0 100 Iterations None 

Hybrid 
48 (25 static : 23 

mobile) 
n/a n/a 48 : 0 

When no mobile 

movement is 

made 

None 

Static 50 n/a n/a 50 : 0 n/a None 

† Due to the nature of the network topology the experiment shall terminate or converge at a given point without the need for a termination criterion. 
* The ratio of accurate to inaccurate nodes is adjusted, after which the experiment is run again. 
** The placement error is changed according to the level of inaccuracy needed to assess the experiment.  
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4.2 Algorithms 
Two prominent algorithms from each of the three deployment scenarios were 

chosen for assessment, namely mobile, hybrid and static.  The decisions to use the 

algorithms are based on the results presented by the authors of the respective 

algorithms.  The presented results suggested that the chosen algorithms were the most 

efficient in terms of solving the coverage hole problem. 

4.2.1 Mobile Algorithms 

Here the so-called VEC and VOR algorithms are described as representative 

of a class of mobile node placement algorithms, i.e. a class that assumes that the 

nodes can be moved. Both algorithms are due to Wang et al. 2004.  In the case of 

mobile algorithms, 25 nodes are deployed to the ROI – Figure 4-1 (a).  By deploying 

a number of nodes that would result in large coverage holes within the ROI, 

movement is guaranteed. 

4.2.1.1 VECtor-based Algorithm (VEC) 

The VEC algorithm is a push-based algorithm in that it pushes the 

neighbouring nodes away from each other.  The algorithm is inspired by the 

behaviour of electromagnetic particles: two particles exert a force on each, inversely 

related to the distance between them that pushes them apart (Wang et al. 2004). 

Nodes are assumed to be optimally placed when they are evenly distributed 

within the ROI, each one being at some constant distance, davg, from its neighbours.  

Since the number of nodes and ROI size is known, this value may be pre-computed. 

Suppose that d(Si,Sj) is the distance between sensor Si and Sj.  If d(Si,Sj) > davg 

and if Sj is within communication distance of Si, then VEC assumes that Si and Sj 

mutually exert a “virtual force” on one another that is proportional to (davg – d(Si, Sj)) 

/ 2.  In general, this virtual force, cumulatively determined for node Si, determines the 

distance and direction that Si moves in each iteration of the algorithm. 

However, there are a number of special considerations.  In the first place, if Si 

already covers its local area as defined by the Voronoi polygon, then it will not be 

moved.  Instead, the force (davg – d(Si, Sj)) will be exerted on the node Sj only.  

Secondly, to prevent the nodes from moving too close to the boundary, an additional 

force is generated by the boundary of the ROI.  The boundary force will push the 
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node to move (davg/2 – db(Si)), where db(Si) is the distance of Si to the ROI boundary.  

Refer to Figure 4-4. 

 

Figure 4-4 - (a) Virtual Forces between two sensors, (b) Virtual Force exerted by a boundary. 

To prevent greater coverage holes from forming due to the movement of a 

node, Wang et al. (2004) introduce movement-adjustment.  After the final virtual 

force on a node has been determined, the local coverage is recalculated based on the 

potential movement.  If the coverage is not improved, a midway point between the 

node’s current location and calculated location is examined.  If the local coverage is 

increased at this new target location then the node is moved accordingly; otherwise 

the node remains in the current position for one iteration. 

A further check is put in place to prevent the node from moving outside the 

ROI.  If the node location is placed outside the ROI, then the node remains in the 

current position for one iteration. 

The VEC algorithm thus runs iteratively until a given threshold is reached.  

Each iteration consists of two phases: 

• a discovery phase, done locally by each node, in which the broadcasting of 

locations to neighbouring nodes as well as the calculation of the local 

polygons for each node takes place; and 

• a movement phase, during which the movement of each node is determined.  

During this phase a new location for the node is determined.  This location is 

deemed as a new optimal position for the node to be placed.  By optimal it is 

meant a new position that best covers the Voronoi Polygon 

Table 4-2 - VEC algorithm pseudo-code. 

Notation: 

S = Sensor 
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N = set of neighbours 

Ci = complete coverage of Voronoi polygon 

Vi = moving vector for sensor 
d = distance 

davg = Average distance between sensors when the sensors are evenly distributed 
within the network 

fV = Force exerted, i.e. the distance to move away from the current position 

 

Algorithm: 

1. Enter discovery phase 

a. Broadcast current location to all nodes within the reachable network 

b. Calculate Voronoi-diagram 
2. Enter movement phase 

a. Calculate the presence of a coverage hole 
b. If Ci = false then 

i. Vi = 0, i.e. set the movement of the node to 0 

ii.  Loop over all the neighbour nodes (Ni) of the current node (Si) 
1. Check if both the neighbour Sj and Si should move 

a. If true then fV  = ((davg – d(Sj ,Si ) ) / 2 ) 

b. Else fV  = (davg - d(Sj ,Si )) 

2. Check if the boundary exerts a force on Si 

a. If true apply fV  = (davg - d(Sj ,Si )) on Si 

3. Sum forces with Vi 

iii.  Perform movement according to Vi 

c. else 
i. Skip current node 

 

 

4.2.1.2 VORonoi-based Algorithm (VOR) 

The VOR algorithm is a pulled-based algorithm in that it pulls the sensors to 

their local maximum coverage hole.  The maximum coverage hole can be described as 

the largest area within a node’s local area, as specified by the Vornonoi-polygon, 

which is not covered by the sensor.  Once the node detects the existence of a coverage 

hole, the node then moves towards the farthest vertex of the relevant Voronoi 

polygon.  The distance that the node moves, denoted as Vfar, is calculated as the 

distance to the farthest vertex, less the sensing radius of the node, i.e. Vfar = d(Si, A) – 

Ri.  In Figure 4-5, it is assumed that Vfar corresponds to the distance from Si to B, so 

that the node Si should be moved to point B.  However the distance moved is limited 
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to be at most half the communication distance (as opposed to the sensing distance).  

This avoids situations where the node’s local view of the Voronoi polygon does not 

account for the existence of a neighbour.  Wang et al. (2004) argue that without such 

a limitation, the node might be moved too close to the neighbour’s sensing area, thus 

distorting the result. 

 

 

Figure 4-5 - Movement of nodes using VOR (Wang 2004). 

VOR can be classified as a greedy algorithm in that it attempts to reduce the 

largest holes.  However, the movement of a node to solve a hole in one direction 

could potentially cause another hole in the opposite direction, resulting in movement 

oscillations, so that the sensor moves back and forth continuously between two points.  

To prevent this, the VOR algorithm introduces oscillation control.  The previous 

direction of movement of each node is stored.  Each time that a node needs to move, a 

check is first made to verify that the next move is not in the opposite direction to the 

last move made.  If this holds true, then the node remains in the current position for 

one iteration. 

Due to the greedy nature of the algorithm, a second problem may occur: much 

the same as in VEC, the reduction of the size of one coverage hole may result in an 

even greater coverage hole appearing elsewhere.  For this reason, a second movement 

adjustment rule is put in place.  Before committing a node to a certain movement, the 

potential Voronoi polygon that would result if the move were to be made is 

calculated.  If the resulting coverage hole is equal or greater than the current coverage 

hole, then the node remains in the current position for one iteration. 

The VOR algorithm shares the same attributes as VEC in the sense that it runs 

iteratively until a given threshold is reached.  Each iteration consists of the same two 

phases as VEC, a discovery phase and a movement phase. 
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Table 4-3 - VEC algorithm pseudo-code. 

Notation: 

Ci = complete coverage of Voronoi polygon 

iV  = moving vector for sensor 

fiV ,  = vector from Si to Vfar 

dmax = maximum moving distance i.e. the communication range 

 

Algorithm: 

1. Enter discovery phase 

a. Broadcast current location to all nodes within the reachable network 
b. Calculate Voronoi-diagram 

2. Enter movement phase 

a. Calculate the presence of a coverage hole 
b. If Ci = false then 

i. Calculate Vfar as the furthest vertex of Si 

ii.  Calculate iV  as fiV , -sensing range of Si 

iii.  If iV  > dmax then reduce Vi = dmax 

iv. perform oscillation control 
a. Check if movement direction is opposite to that of the 

previous round 
v. perform movement-adjustment 

a. Check if local coverage will be increased if the movement 
occurs 

c. else 

i. Skip current node 

d. Move sensors according to Vi 

 

4.2.2 Hybrid Algorithms 

The hybrid algorithm chosen for this study is that presented by Wang et al. 

2003a and is the bidding algorithm. It is implemented in much the same way as the 

previous two algorithms, but with a slight variation introduced to optimise energy 

consumption. It was deemed appropriate to analyse the algorithm’s error-sensitivity 

from two directions, designated as Variation I and Variation II below.  Details will 

follow in the next two subsections. 
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4.2.2.1 Bidding Algorithm - Variation I 

The bidding protocol is an extension to the movement-assisted algorithms of 

VEC and VOR.  The algorithm uses the mobile nodes to solve the coverage problems 

of the static nodes within the network.  The static nodes use Voronoi polygons to 

determine the existence of local coverage holes.  On discovery of a hole, the hole is 

weighted by some function on the size of the hole.  The nature of the weight is pre-

determined, but may simply be the area of the hole.  The value of the weight is used 

by the mobile nodes to determine whether or not to fulfil the request by the static 

node.  The higher the weight the higher the priority to cover the coverage hole – the 

process of determining the priority is known as bidding. 

The algorithm executed by each mobile node consists an initialisation phase, 

followed by iterations through three phases: service advertisement; bidding; and 

serving.  During the initialisation phase of the algorithm, the mobile nodes set the 

base threshold value to zero.  Each mobile node broadcasts the threshold value to the 

static nodes, during the service advertisement phase.  During the bidding phase, the 

static nodes calculate the size of local coverage holes.  The area of the hole is 

measured and assigned as the node’s bidding value.  Static nodes send these bids as 

requests to the mobile nodes to move and solve the local holes.  In the case of two or 

more mobile nodes responding to the static nodes call, the mobile node closest to the 

requesting node is used.  The bidding value of the static node is assigned to the 

threshold value of the mobile node that partially or completely covers its local hole.  

The new position of the mobile node is determined as the furthest vertex in relation to 

the static node.  This is known as the serving phase.  The algorithm runs iteratively 

until no static node exceeds the mobile nodes threshold, i.e. until no weight of a static 

node is higher than the ones already healed by the mobile nodes 

A potential problem to the algorithm is that of duplicate healing - Figure 4-6.  

Duplicate healing occurs when two static sensors, S1 and S2 detect a coverage hole 

and broadcast two independent requests for mobile sensors, M1 and M2, to solve the 

same hole at point P.  Wang et al. (2003a) solve the problem by allowing one of the 

mobile sensors to reset its base threshold to zero.  Thus, after the move is made, the 

next iteration will see the mobile node solve another coverage hole. 
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Figure 4-6 - Duplicate healing at P by Sc and Sd (Wang et al. 2003a) 

Table 4-4 - Bidding Algorithm pseudo-code. 

Notation: 

bid(loc, size) : target location of a mobile sensor, and the estimated additional 
coverage needed to heal a coverage hole 

listb : list of bid(loc, size) 

mobile(id, loc, base_price) : the id, location and base_price of a mobile sensor 
listm : list of mobile(id, loc, base_price) 

static(id, loc) : the id and location of a static sensor 
lists : list of static(id, loc)  

 

Algorithm: 

At static node Ni 

1. Initialization 
a. Broadcast static locations 

2. Enter bidding phase 

a. Construct Voronoi polygons with lists and listm whose base price > 0 
b. Calculate the existence of a coverage hole 

i. If true then calculate the bid price of the hole 
ii.  Find the closest mobile node Nj from listm such that base_price 

< h_size 
iii.  Send bid to Nj if Nj is found 

3. Upon receiving mobile(j, locj, base_pricej)  from Nj 
a. Add mobile(j, locj, base_pricej) to listb 

4. Upon receiving static(j, locj) from Nj 

a. Add static(j, locj)  to lists 
 

At mobile node Ni 

1. Initialization 

a. Set base_pricei to 0 

2. Upon entering service-advertisement phase 
a. Broadcast mobile(i, loci, base_pricei) 

3. Upon entering bidding phase 
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a. If base_price ≠ 0 

i. Construct Voronoi polygons with lists and listm whose base 
price > 0 

ii.  Calculate the existence of a coverage hole 

1. If true then calculate the bid price of the hole 
2. Find the closest mobile node Nj from listm such that 

base_price < h_size 
3. Send bid to Nj if Nj is found 

4. Upon entering serving phase 
a. Check if listb contains nodes 

i. If true 

1. search listb for the node with the greatest coverage hole 
2. move Ni to h_loc, where h_loc is the destination for the 

node to heal the coverage hole 

3. set the base price of the Ni to the size of the hole it heals 
ii.  else 

1. do duplicate healing detection, setting Ni base_price = 0 
if duplicate healing happens 

2. do local adjustment if no duplicate healing happens 
5. Upon receiving mobile(j, locj, base_pricej) from Nj 

a. Add mobile(j, locj, base_pricej) to listm 

6. Upon receiving static(j, locj) from Nj 
a. Add static(j, locj) to lists 

 

 

For the first variation of the algorithm, inaccuracy was introduced to the static 

sensors only.  The mobile devices are deemed to be accurate in their location 

placement.  In other words the mobile nodes are accurately placed at the 

recommended position given by the static nodes. 

4.2.2.2 Bidding Algorithm - Variation II . 
The second variation of the bidding algorithm implements the algorithm in the 

same manner as before.  However this time the location inaccuracy is placed on the 

mobile nodes.  The static nodes will calculate the healing position accurately with the 

mobile nodes fulfilling this request, but with their resulting positions having some 

built in inaccuracy. 
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4.2.3 Static Algorithms 

For the static algorithms we introduced more nodes into the ROI.  By doubling 

the number of nodes within the network we introduce redundant nodes and 

overlapping of sensing areas – Figure 4-1 (b).  The sensing radius, coverage radius 

and size of the ROI remain the same. 

The Coverage-Preserving Node Scheduling Scheme and Optimal 

Geographical Density control algorithms, developed by Tian et al. 2002 and Zhang 

and Hou (2003) respectively, was chosen as the algorithms representing static 

networks. 

4.2.3.1 Coverage-Preserving Node Scheduling Scheme (CPNSS) 

The behaviour of static networks is different to that of mobile and hybrid 

networks in that nodes are unable to move.  Instead of movement the networks use 

signal strength to reconfigure.  On the detection of a coverage hole, the nodes increase 

their signal strength to provide sensor coverage.  Tian et al. 2002 use node scheduling 

to reduce the energy consumption of sensors within large networks.  Node scheduling 

is the process of switching nodes on and off, increasing the sensing radius of the 

active nodes to cover the entire network whilst turning off redundant nodes.  By 

reducing the energy consumption of the nodes in the network, the entire lifetime of 

the network can be extended.   

This algorithm is not a direct solution to solving coverage holes but instead is 

used to minimise energy consumption of the network.  However the algorithm does 

use coverage-hole detection during the process of node scheduling.  By detecting and 

solving coverage holes the authors guarantee that during the scheduling process 

coverage is addressed as well as possible. 

The node-scheduling problem can be described by two problem statements.  

The first asks under what rule should the nodes in the network power down.  In other 

words what makes a node redundant?  This rule is known in this algorithm as the 

coverage-based off-duty eligibility rule.  The second problem addresses the question 

of when and how often the nodes should reassess the network for redundant nodes. 

Tian et al. 2002 address the first problem by calculating each nodes sensing 

area and then comparing it with its neighbours.  This process is referred to as 

sponsored coverage calculation. 
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In this algorithm the set of neighbours, N(i),  of a currently considered node, i, 

is defined as the set of nodes whose distance from the current node i is equal to or less 

than the sensing range, Sri, of the current node.  This is represented in Equation 4-2, 

where n denotes all the nodes deployed within the region of interest  and d(i,j) is the 

distance between the current node i and the neighbour j. 

Equation 4-2 

N(i) = {n | d(i j) ≤  Sr n ≠ i} 

 

Thus for current node i, the off-duty eligibility rule, Equation 4-3, can be 

represented as the union of the neighbours’ sensing areas as a complete superset of i’s 

sensing area. 

Equation 4-3 

�
�    є ����

	�
�  � 	��� 

 

Figure 4-7 shows the rule applied to Si.  Si is redundant in the sensing area of 

its three neighbouring nodes.  As the GIS system is able to compute the union and 

intersection of polygons as well as the distance between special object, this case 

nodes, makes it easy to apply the eligibility rule.  Thus Equation 4-3 is easily 

calculated using pre-existing GIS functionality. 

 
Figure 4-7 - Coverage of node Si by neighbouring nodes (Tian et al. 2002). 

Tian et al. 2002 proposes a two step iterative algorithm called the coverage-

preserving node scheduling scheme. 

The first step gathers “neighbourhood” information.  Each node broadcasts its 

location to a distance equal to its sensing radius.  Nodes that receive a message from 

this signal are set as the broadcasting nodes neighbours. 

 
 
 



Methods and Procedures 

Post collection of neighbour information, each node evaluates its eligibility to 

power off based on Equation 4-3.  If all nodes decide simultaneously to turn off, 

coverage holes may occur.  Thus the authors introduce the back-off scheme where 

each sensor determines its power down eligibility after a random time, Td.  When a 

node decides to power down it sends a message to its neighbouring nodes.  The 

neighbouring nodes then remove the eligible node from their list of nodes.  Nodes that 

have a long Td will not consider the nodes that have already powered down. 

The sensor remains in a hibernation state until a ‘power on’ broadcast has 

been received or a so-called hibernation timeout, Tw elapses after a fixed period. 

The complete process is described in Table 4-5. 

Table 4-5 – CPNSS pseudo-code. 

Notation: 

Si Current node 

Ni Neighbouring nodes 
Td Time delay for nodes to calculate their power down eligibility 

Tw Time that the sensors remain in hibernation 

 

Algorithm: 

At static node Si 

1. Neighbour Information Obtaining Step 

a. Broadcast location a distance equal to Si sensing range 

b. Receive neighbours broadcasted signal, compiling a list of neighbours 
Ni 

2. Wait for random eligibility time Td 

3. Assess for power down eligibility, insuring that the nodes have sufficient 
power to stay active during Tw 

a. If true  
i. Broadcast a power down message to all neighbours 

ii.  Go into hibernate state 
4. Hibernate until a power up message has been received or hibernation timeout 

has occurred, Tw. 
 

 

4.2.3.2 Optimal Geographical Density Control (OGDC)  

The OGDC presented by Zhang and Hou (2003) shares similarities with the 

CPNSS algorithm presented above, in that they both run iteratively implementing a 

form of node scheduling.  OGDC however makes three key assumptions: 

 
 
 



Methods and Procedures 

• The radio coverage of each sensor is at least twice the distance provided by 

sensor coverage.  As discussed in Zhang and Hou (2003), this assumption 

implies complete connectivity to a completely covered ROI. 

• Nodes are aware of their own location.   

• Nodes are controlled via some form of time synchronicity. 

As opposed to CPNSS, OGDC allows nodes to be in any one of three states 

namely UNDECIDED, ON or OFF.  The algorithm runs iteratively, dividing the 

lifetime of the network into rounds.  At the beginning of each round all nodes within 

the network are set to UNDECIDED.  A random node Si is chosen to be a starting 

point for determining the working nodes, where working nodes are defined to be 

nodes in the ON state.  A neighbour, Sj of Si is chosen.  The neighbour is a random 

node selected from a group of nodes within a distance of √3� to Si,, where r is the 

sensing radius.  Sj is set to ON and all other nodes in Si’s sensing radius are set to 

OFF.  The next optimal position for a node is computed, denoted as O in Figure 4-8.  

This optimal position is on the line that bisects the line connecting Si and Sj. It is at a 

distance of r from the line connecting Si and Sj. (There are, of course, two optimal 

positions - one on either side of the bisected line.) The next node to set ON, Sk, is the 

one closest to an optimal position.  The cycle is repeated with the neighbour node of 

Sk being selected. 

 

 

Figure 4-8 - Determining the neighbouring node of Si. 

 

Table 4-6 – OGDC pseudo-code. 

Notation: 

Sx Current sensor 
Td Time to wait before repeating the algorithm 
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Algorithm: 

1. Set all nodes to UNDECIDED 

2. Select node Si  randomly from set of nodes 
a. Set Si to ON 

3. Determine the neighbouring node of Si  as Sj 

a. Select all nodes within a radius of √3� 
b. Randomly select node Sj from this set 

c. Set to Sj ON 
d. Set all other nodes in the set of neighbours as OFF 

4. Determine the next optimal position of a third node 
a. Calculate the ideal position of the third node by constructing a line 

from Si  as Sj.  A second line perpendicular to the first a length equal to 
the sensing radius.  

b. Repeat in the opposite direction to calculate the north bound sensor 

5. Select Sk  
a. Find the closest UNDECIDED node to the optimal position 

b. Set the closest node as Sk  

6. Repeat the algorithm from step 3 by determining the neighbour of Sk 
7. Terminate the selection of Working nodes once all nodes are set to ON or OFF 

8. Allow the algorithm to execute for time Td where Td is determined as a time 
greater than that needed to select the working nodes, but less than that of the 
lifetime of the sensor with the least lifespan from the list of working nodes 

 

4.3 Chapter Conclusion 
In this chapter we discussed each of the five algorithms as described by their 

original authors.  Two were mobile algorithms, one was a hybrid, and another two 

where static algorithms.  Algorithm selection for this study was based on the results 

obtained by the original developers, i.e. algorithms that performed reconfiguration 

with the least effort were chosen.  A discussion on each of the experiments to be 

performed was also given, outlining the methods used to assess the impact that 

location inaccuracies might have.  The following chapter discusses the results of the 

experiments that were carried out to assess the impact location inaccuracy might have 

on the five algorithms. 
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"The time with which we have to deal  
is of the order of two billion years.…  

Given so much time the 'impossible' becomes possible,  
the possible probable, and the probable virtually certain. 

 One has only to wait: time itself performs miracles.” 
 

G. Wald, "The Origin of Life," - 1955 

 

Based on the experiments outlined in the previous chapter, the present chapter 

addresses the results and findings of the experiments.  The two algorithms from each 

deployment type are compared to each other followed by a comparative conclusion. 

5.1 Mobile Algorithms 
The following section examines the results obtained for the two movement-

assisted algorithms.  During the control experiments, a limit on the mean total 

distance travelled by the nodes served as a termination condition for the iterations: 

after each iteration, the distance travelled by each node from its initial  to its present 

position, was summed over all nodes and divided by the number of nodes.  If this 

mean distance travelled is greater than the limit, then the algorithm is terminated; 

otherwise another iteration is executed. 

A mean total distance of 10 meters was chosen as a terminating condition for 

both algorithms.  This corresponds to the communication range that had been 

assigned to the nodes.  

5.1.1 VECtor-based Algorithm (VEC) 

The VEC algorithm was assessed using the experiments outlined in the 

previous chapter.  The control experiment enforced a terminating criterion of 10 

meters mean total distance.  The criterion resulted in four iterations of the algorithm.  

Figure 5-1 represents each of the iterations.  The original coverage hole was 

calculated as 31.57% (68.43% of the ROI is covered).  After the fourth iteration the 

coverage hole had been reduced to 16.21% of the ROI, and 83.79% of the ROI was 

now covered.  This means that the coverage hole was reduced by approximately 49% 

 
 
 



Analysis and Results 

 

Figure 5-1 - Execution of the VEC Algorithm over four iterations. 

The above experiment correlates with that of the original authors, Wang et al. 

(2004).  The results provide a level of confidence that the algorithm was implemented 

accurately. 

As a single starting scenario is used in the control experiment, it could be said 

that the placement of the nodes assist in the results obtained.  To determine if the 

starting scenarios of the nodes play a role in the overall outcome of the algorithm the 

following experiment was setup.  Fifteen scenarios were configured. In each case, the 

starting position of each node was randomly determined.  The coverage holes ranged 

between 32.5% to 44.7%.  As oppose to using the 10-meter terminating condition, the 

algorithm was run for 100 iterations for each of the 15 starting scenarios.  This means 

that nodes were allowed to drift as far from their original position as was dictated by 

100 iterations of the algorithm. 

 
Figure 5-2 - Alternative randomly deployed starting scenarios for the VEC algorithm. 
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The results of variable starting positions for the VEC algorithm are shown in 

Figure 5-2.  The graph displays – for the 15 starting scenarios – the average, 

maximum and minimum coverage hole size at each iteration.  All initial scenarios 

generally improve over the 100 iterations, the final average, maximum and minimum 

coverage hole percentages being 17.53%, 21.68% and 14.4% respectively.  Although 

improvement is not guaranteed from one iteration to the next, no starting scenario 

causes the VEC algorithm to diverge as the number of iterations increased.  After 

approximately 20 iterations the average improvement is approximately 20% and its 

rate of decline slows down considerably.  At about 90 iterations, the minimum 

coverage hole of about 10% is attained. 

Using the statistical observation we see that the values of coverage hole 

percentage observed (Observed Value percentage axis on the graph) at the end of each 

scenario falls within the upper and lower outlier limits.  This result affirms that the 

outcomes of the various scenarios are not significantly different - Figure 5-3.  Because 

of this it was assumed that the starting scenario used in the control experiment could 

be used to adequately represent results that were obtained by other scenarios if they 

were to be run.  As a result, the starting scenario in the control experiment was used in 

subsequent experiments described below. 

 

Figure 5-3 - Using outliers to compare the resulting coverage hole of each starting scenario 
(VEC). 

The simulations of the control experiment assumed a best-case scenario – one 

in which all the nodes in the network accurately reported their position to the same 

extent.  The initial deployment setup of the control experiment was used to run each 
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algorithm with various levels of inaccuracy.  Twenty five simulations were run per 

algorithm.  In each case, gradual increases in the number of inaccurate nodes were set 

to determine the VEC algorithm’s degree of recovery as the number of accurate nodes 

increases.  When there are no accurate nodes, the coverage hole varies between about 

23% and 37%, depending on the level of inaccuracy.  When 20 out of the 25 nodes 

report accurately, at 2 meters inaccuracy the coverage hole drops to around 20%, 

while at 4, 6 and 8 meters inaccuracy the final recovery is the same at about 26%.  

The slope of graph indicates a gradual increase in coverage hole per new inaccurate 

node introduced in a somewhat linear fashion.  Very broadly, one could say that each 

inaccurate node decreases the VEC algorithm’s effectiveness. 

 
Figure 5-4 - Increasing the percentage of inaccurate nodes (VEC). 

The previous experiment shows a gradual increase in inaccuracy as the 

number of inaccurate nodes increased, the following experiment assesses the 

algorithm from a worst-case scenario i.e. all the nodes are assumed to be inaccurate. 

Twenty simulations were run per scenario.  In each case, all the nodes were set 

at an inaccuracy level of n meters, where the inaccuracy, n,  ranged from 1 to 10 

meters, increasing in 0.5 meter intervals. The termination criterion used in the control 

experiment was retained. For each inaccuracy level, say of n, the algorithm was run 

50 times. Each such run located each node in each iteration at a displacement of n 

meters away (in a randomly determined direction) from the node’s previous position 

as determined by the VEC algorithm. The minimum, maximum and average coverage 

holes were computed over these 50 runs. 
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Figure 5-5 - Coverage hole(%) related to an increase in location inaccuracy (VEC). 

Figure 5-5 shows the results obtained for the VEC algorithm.  The coverage 

hole rapidly increases as the inaccuracy level is increased – i.e. inaccuracy has a 

pronounced effect on coverage.  For example, at an inaccuracy of 2.5m the initial 

accurately-determined coverage hole of 16.20% almost doubles to 30.68% on 

average.  As inaccuracies increase to 5 meters per node, the coverage hole grows to 

about 35%. 

Interestingly, the coverage hole remains at around 37% for higher 

inaccuracies.  This is evidently due to the way in which the VEC algorithm deals with 

the ROI boundary.  If the node determines its new location to be outside the 

boundary, then the VEC algorithm does not allow the node to move. 

The foregoing described experiments that were based on a termination 

criterion applied to the VEC algorithm, whereby the total average node movement 

relative to original node position was limited to 10 meters.  It seemed important to 

verify that this did not represent some artificial termination point, and that significant 

coverage improvement could not perhaps be gained, even in the face of inaccuracies, 

by increasing the number of iterations.  In Figure 5-6, the coverage is shown under the 

various worst-case inaccuracy scenarios as the number of iterations was increased to 

100. 
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Figure 5-6 - Coverage hole (%) by number of iterations (VEC) 

In Figure 5-6 it is evident that in all cases, no significant gains are to be had by 

increasing the number of iterations.  For example, the simulation cases for the 

accurate locations shows a 16.21% coverage hole after four iterations and 13.22% 

after 100.  In the presence of any form of inaccuracy, the algorithm diverges, and all 

nodes eventually drift to the boundary. 

5.1.2 VORonoi-based Algorithm (VOR) 

The same terminating criterion for the control experiment was implemented 

during the execution of VOR.  As with VEC, this resulted in four iterations.  Figure 

5-7 shows the results of VOR after each iteration.  After the fourth iteration the 

coverage hole had been reduced to 14.12% of the ROI, and 85.88% of the ROI was 

now covered.  In comparison to the VEC algorithm, the coverage hole reduction was 

slightly larger – approximately 55%. 

 

Figure 5-7 - Execution of the VOR Algorithm over four iterations. 
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The final result shows a network with significant improvement in coverage 

over the ROI. 

Figure 5-8 shows the results for the VOR algorithm for various random node 

deployment as starting scenarios for the VOR algorithm.  The overall picture is 

similar to that provided by the VEC algorithm, although convergence (below 10% 

coverage after 15 iterations) and overall performance is somewhat better.  The final 

average, maximum and minimum coverage hole percentage is 8.6, 12.4 and 5.5 

respectively, and a minimum coverage of less than 5% is attained several times after 

80 iterations. 

 
Figure 5-8 - Alternative randomly deployed starting scenarios for the VOR algorithm. 

As can be seen in Figure 5-9 the upper and lower outlier limits are less than 

those of the VEC algorithm.  This is due to the lower levels of coverage holes 

resulting in lower first and third quartiles.  The observed coverage hole (Observed 

Value percentage axis on the graph) values still lie between the upper and lower limits 

suggesting that they are not significantly different from one another.  As with VEC, it 

can be said the control starting scenario is a fair comparison for the behaviour of the 

algorithm for the forthcoming experiments. 
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Figure 5-9 - Using outliers to compare the resulting coverage hole of each starting scenario 
(VOR). 
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As can be seen in Figure 5-10, the VOR algorithm generally performs better in 

the presence of inaccuracies than the previous VEC algorithm.  The VOR algorithm 

seems reasonably tolerant of inaccuracies, even fairly large ones, provided that the 

number of inaccurate nodes is limited.  By “fairly large” it is meant, inaccuracies (6 to 

8 meters) that are of the same order of magnitude as the sensing radius (5 meters).  

When 5 nodes were inaccurate at a level of 8 meters (i.e. 20% of the 25 nodes were 

inaccurate), the coverage hole was about 20% of the ROI – a mere 6% degeneration 

from the control coverage hole of 14.12%.  On the other hand, at 2 and 4 meters 

inaccuracy, the algorithm’s performance appears to be reasonably indifferent to the 

number of accurate nodes, suggesting that VOR is quite robust in the presence of 

relatively small inaccuracies.  In these cases, the coverage hole remains close to the 

control of 14.12%, and indeed, in certain instances drops below it. 

 

Figure 5-10 - Increasing the percentage of inaccurate nodes (VOR). 

 

Figure 5-11 shows the results obtained for the VOR algorithm as location 

inaccuracy is increased.  In this case, the coverage hole percentage recovery is 

relatively robust for inaccuracies up to about 6 meters.  Thereafter, the inaccuracy has 

a relatively pronounced effect on coverage.  As the location inaccuracy increases, so 

does the coverage hole.  A coverage hole of approximately 15%, for an inaccuracy 

level of 6 meters, increases by more than 10% when the inaccuracy doubles to 8 

meters.  This is clearly due to the VOR algorithm’s dependency on location both 
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during the discovery phase when creating polygons, as well as during the movement 

phase in determining the position to which the node should move. 

 

 
Figure 5-11 - Coverage hole (%) related to an increase in location inaccuracy (VOR). 

 

To highlight how such a decline in effectiveness could occur, consider the 

scenario in Figure 5-12.  During the discovery phase of the VOR algorithm, it 

constructs a local Voronoi polygon to determine the existence of a coverage hole.  If 

the locations broadcast by the neighbouring nodes are inaccurate, then the local 

Voronoi polygon of Si is erroneous.  Figure 5-12 indicates that the accurate Voronoi 

polygon, Si would result in a shift towards vertex v3.  However, due to the inaccurate 

location details broadcast to Si by neighbouring nodes, Si could instead be moved in a 

totally different direction, presented in the figure by v5.  As a result, in each iteration 

the nodes may move away from their optimal locations.  Unlike the VEC algorithm, 

this also applies to the nodes on the boundaries of the ROI:  if locations are 

inaccurate, then these nodes become unaware that the calculated movement could 

place them outside the ROI.  The nodes knowledge of the boundary is limited to the 

edge of the Voronoi polygon. 
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Figure 5-12 - Inaccurate calculation of a Voronoi polygon. 

 

In Figure 5-13 it is evident that no significant gains are to be had by increasing 

the number of iterations.  For example, in the case of the simulations based on 

accurate location data, the percentage of ROI that had coverage holes dropped from 

14.12% after four iterations to 11.86% after 100 iterations.  Indeed, the data shows 

that in the presence of high inaccuracy (8 meters) the algorithm diverges, and 

eventually all nodes drift out of the ROI. 

 
Figure 5-13 - Coverage hole (%) by number of iterations (VOR) 

5.1.3 Conclusion 

The above assessment of the two movement-assisted coverage algorithms 

suggests that the VOR algorithm is reasonably robust if the inaccuracies are 
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somewhat lower than the sensing distance.  It remains reasonably robust when the 

inaccuracies are somewhat higher, provided that they do not affect a very high 

proportion of nodes. 

On the other hand, the VEC algorithm shows a high dependency on the 

accurate calculation of node locations.  However the algorithm acquires a certain type 

of robustness in relation to node behaviour at the ROI boundary. 

By keeping all the nodes within the ROI, in the high-inaccuracy experiment, 

nodes may cluster along the boundary, but a coverage hole of 100% can never occur. 

5.2 Hybrid Algorithms 
This section examines the behaviour of two hybrid algorithms.  For the 

purpose of the control experiment, the terminating condition is when no movement of 

mobile nodes occurs in a complete iteration.  It can be assumed that when no 

movement occurs, this is because the mobile sensors are unable to further heal the 

coverage hole of any static nodes. 

The same network layout used in the mobile network topology is reused as the 

static network.  This network layout results in 25 static nodes randomly placed within 

the ROI.  A balance of 23 mobile nodes was used by the algorithm during execution.  

The balance of mobile nodes was determined as the number of nodes required to 

completely cover the coverage holes left by the static network.  A more efficient 

method for calculating the ratio between mobile and static nodes is deemed outside 

the scope of this study and is to be considered for future research. 

As hybrid networks are dependent on two forms of node deployment, namely 

static and mobile, this study deemed it to be appropriate to assess the effects on a 

popular algorithm of node location inaccuracy from the two corresponding view 

points. 

5.2.1 Bidding Protocol – Variation I 

For this variation of the algorithm, location inaccuracy is in reference to the 

positions of the static nodes contained in the network.  Thus, the positions of the 

mobile nodes are computed by the static nodes based on inaccurate information of 

static node positioning. Thereafter, mobile nodes are accurately placed at the 

positions determined for them. 
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Figure 5-14 shows visually the results of algorithm.  As can be seen not all the 

coverage holes were healed.  The algorithm ran a total of 20 iterations (however no 

change to the network is seen after 7 iterations) with the final result of 4.1% coverage 

hole being achieved after the sixth iteration, and no subsequent improvement — see 

Figure 5-15.  As the algorithm runs until no movement from a mobile node can 

resolve coverage holes greater than the ones currently being resolved, the termination 

criterion is as a result of the execution of the algorithm.  For this reason the algorithm 

determines the maximum number of iterations that may be executed and at best the 

simulator may be set to reduce that number.  For the assessment of this and the next 

variation the simulator allowed the algorithm to execute the maximum number of 

times.  The algorithm did not behave as efficiently as expected.  There is a significant 

improvement to the network coverage but the overall network coverage after the 

algorithm is completed could still be improved. 

 

Figure 5-14 - Results of the bidding algorithm after the control experiment. 
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Figure 5-15 - Coverage hole results of the control experiment. 
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The sum of redundant nodes placed in the network as mobile nodes to solve 

the coverage holes should have allowed the network to completely cover the ROI. 

A reference to the next figure shows two scenarios that illustrate why the 

algorithm cannot guarantee full coverage, even if the total mobile node coverage 

should, in theory, be sufficient to cover all holes.   

Figure 5-16(a) shows a mobile node, P1, placed at the furthest vertex to solve a 

coverage hole.  Since this new position lies at the edge of the network, three quarters 

of the node’s sensing ability is wasted on an area outside the ROI.   

Figure 5-16(b) illustrates the notion of what this study refers to as close 

proximity healing.  This is where the vertices to which the mobile nodes P2 and P3 are 

moved, are very close to each other.  When close proximity occurs the nodes waste 

large sums of sensing ability due to overlapping with other nodes.  Close proximity 

healing is similar to duplicate healing—i.e. a scenario in which two mobile nodes are 

move to the same vertex. However, the algorithm explicitly avoids duplicate healing, 

but does not disallow close proximity healing. 

 

 

Figure 5-16 - Flaws with the bidding algorithm. 

A further problem that may occur is that after all the mobile nodes are placed, 

small coverage holes – shown in Figure 5-16(b) – may still exist.  These holes are 

never solved as the bidding value assigned to the mobile nodes for the previous holes 

solved are greater than the smaller coverage hole.  As shown in the Section 4.2.2 the 

mobile nodes will only move if the coverage hole to solve is greater than the current 

hole it is covering.   

No doubt, the algorithm could be optimized by, for example, shifting nodes 

slightly away from the vertices when close proximity healing occurs.  Optimisation of 

the algorithm is to be considered as a future research opportunity. 
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To check for consistency, the same mobile and static nodes were deployed 

from fifteen randomly selected starting scenarios. 

 

Figure 5-17 - Alternative randomly deployed starting scenarios for the Bidding algorithm. 

As with the control experiment above, Figure 5-17 shows that there was a 

significant improvement to the network coverage for each of the 15 starting scenario.  

The algorithm could still be improved, since a 0% coverage hole is never achieved, 

even though there are sufficient nodes in the network to accomplish this.  The figure 

shows the initial coverage hole percentage in the ROI excluding the mobile nodes.  

The average coverage hole percentage taken over the 15 starting scenarios is 37.8%.  

The figure also shows the final coverage hole percentage after the algorithm has been 

executed.  Execution of the algorithm improved the starting scenarios by an average 

of 60%, where A, E and F improved slightly more than the rest.  The algorithm 

converged after an average of 5 iterations over the 15 starting scenarios—much the 

same as that of the control experiment’s 6 iterations. 

The results of the gradual increase in inaccurate static nodes within the 

network are shown in Figure 5-18.  As can be seen, there is no obvious connection 

between the number of inaccurate nodes and coverage.  In previous algorithms the 

corresponding graph shows a tendency for coverage performance to degrade as more 

nodes become inaccurate.  In other words as the number of inaccurate nodes increase 

so does the overall coverage hole. 
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Figure 5-18 - Increasing the percentage of inaccurate nodes (Bidding Protocol I). 

In contrast the above graph shows a very random result.  This can also be seen 

in the next experiment where all static nodes are set be inaccurate. 

 

Figure 5-19 - Coverage hole(%) related to an increase in location inaccuracy (Bidding Protocol 
I). 

Figure 5-19 shows the effects of complete inaccuracy injected into all the 

static nodes.  The experiment is run using inaccurate location details between 0.5 and 

10 meters.  The inaccuracy is injected when the static nodes broadcast the location to 

the mobile nodes.  The mobile nodes in this variation are placed without inaccuracy at 

the position suggested by the static node.  The results obtained also show a random 

outcome. 
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As the static nodes are fixed in their position, it can be said the network would 

maintain at least the degree of coverage provided by the static nodes.  The initial 

coverage hole within the ROI without the mobile sensors is 32%.  The worst case 

coverage hole size in this experiment was 11.73%—more than double that of the 

control experiment.  As the static nodes determine the placement of the mobile nodes, 

in a worst case scenario boundary static nodes may place some or all of the mobile 

nodes outside the ROI, resulting in the spikes seen in Figure 5-19.  As not all the 

static nodes are on the boundary, a large percentage of the mobile nodes would still be 

kept within the ROI.  

As the termination of the algorithm is determined by the mobile nodes in a 

reasonable time, the termination criterion experiment is omitted from this variation.  

5.2.2 Bidding Protocol – Variation II  

This second variation of the algorithm was executed in the same way as that of 

the first variation discussed in Section 5.2.1.  The difference was that location 

inaccuracy is now placed within the mobile nodes.  The static nodes determined the 

position at which for the mobile nodes should be placed.  Once the mobile nodes are 

made aware of the new position, this position is injected with a degree of inaccuracy. 

The control and initial deployment sensitivity experiments were omitted, as 

they would yield the same results as that of the first variation. 

The results of the gradual increase in inaccurate mobile nodes within the 

network are shown in Figure 5-20.  The coverage is only negatively affected by the 

inaccuracies when a large number of the mobile nodes are inaccurate.  This is 

understandable as the static nodes make up a substantial degree of the ROI network 

coverage.  The mobile nodes simply act as assistants to the static nodes.  In a worst 

case scenario all of the mobile nodes could be placed outside the ROI resulting in no 

change in network coverage.  Thus the network can always assume a worst case 

coverage of the same degree that the static nodes are providing in the initial network 

deployment. 
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Figure 5-20 - Increasing the percentage of inaccurate nodes (Bidding Protocol II). 

Different from the previous variation, the above graph shows an increase in 

coverage hole as the number of inaccurate nodes increases.  A definite threshold at 

around 9 inaccurate nodes can be seen.  At this point the algorithm begins to behave 

in much the same way as that of the previous variation in that the coverage hole is 

random with the same effect seen irrespective of the degree of inaccuracy.  This 

randomness in the coverage hole is seen again in the next experiment. 

 

Figure 5-21 - Coverage hole(%) related to an increase in location inaccuracy (Bidding Protocol 
II). 

Figure 5-21 shows the effects of complete inaccuracy injected into all the 

mobile nodes.  The experiment is run with all the mobile nodes placed at degrees of 
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inaccuracy varying between 0.5 and 10 meters.  As the static nodes cannot be moved 

it would suggest that the worst case result of the algorithm would be to have the 

coverage hole remain at the initial value of 32%.  The worst case shown in this 

experiment was a mere 10%, twice the value obtained in the control experiment, yet a 

third less than the worst possible case.  For the result of 32% to be achieved all nodes 

would either need to be placed outside the ROI or completed overlapped by redundant 

nodes.  This did not occur in the experiment, and would presumably only occur if 

random errors of much more than 10 meters were injected.  

By design the algorithm results in a valid termination of the algorithm and a 

possible benefit in the case of location inaccuracy.  When a mobile node is moved 

into position, to heal the coverage hole left by the static node, the mobile node is 

given the healed coverage hole as its new weight or bidding value.  In implementing 

the algorithm in the presence of injected inaccuracies in the positioning of mobile 

nodes, it was necessary to make a design decision about the following matter. When a 

mobile node is moved into position to heal the coverage hole left by the static node, it 

is given the healed coverage hole as its new weight or bidding value. It was decided to 

set this value as if the mobile node had been accurately positioned.  If this were not to 

be the case the algorithm could run infinitely, as coverage holes may never be 

resolved thereby always leaving the termination criterion unsatisfied.  This infinite 

running could potentially see nodes move outside the ROI in much the same way as 

that of the VEC algorithm previously. 

As with the previous variation, the termination criterion experiment is omitted 

from this algorithm. 

5.2.3 Conclusion 

A hybrid network attempts to reduce costs and complexity of the network by 

introducing a combination of mobile and static nodes.  In this section the study 

compared the effects of location inaccuracies with respect to both the static nodes and 

the mobile nodes.  When inaccuracies are introduced to the mobile nodes the 

algorithm appears to behave in an acceptable manner, meaning that the number of 

inaccurate mobile nodes directly relates to the effectiveness the nodes have on the 

network.  Thus one can say that the network planner may have confidence in the 

network if majority of the mobile nodes are fairly accurate with all the static nodes 

being accurate.  On the other hand if minor inaccuracies are placed within the static 
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nodes, whether this is in the degree of inaccuracy or the number of inaccurate nodes, 

the algorithm appears to behave in a random fashion.  The results of both experiments 

suggest that for the network to perform optimally, the static nodes need their position 

accurately reported within the ROI, while limited inaccuracies in the mobile nodes are 

tolerable. 

5.3 Static Algorithms 

The following section examines the results obtained for the two static 

algorithms.  As the static algorithms do not move nodes but simply reduce the number 

of nodes sensing the network at a given time, the algorithm’s assessment included the 

number of nodes active at that time in combination with the actual coverage of the 

ROI.   

The control and initial deployment sensitivity experiments assessed the 

algorithm based on the number of deactivated nodes.  The reason for not assessing the 

overall coverage hole in these experiments is that if the coverage hole were to 

fluctuate then this would suggest that the algorithm is not implemented correctly.  The 

coverage hole is still checked in these experiments as way of ensuring the correct 

implementation of the algorithm.  One would expect the coverage hole to remain the 

same as the algorithms goal is to maintain coverage with minimum node activation.   

Subsequent experiments assessed the algorithms based on changes in the 

overall coverage hole.  By examining the coverage holes the study assessed the 

sensitivity of the algorithms to node location inaccuracy. 

As discussed in Chapter 4, the number of nodes is doubled to 50 in the static 

algorithms.  The reason for increasing the number of nodes is to cause overlapping of 

node’s sensing areas.  By introducing overlapping in the sensor area of nodes, 

redundancy is introduced into the network. 

5.3.1 Coverage-Preserving Node Scheduling Scheme (CPNSS) 

The CPNSS algorithm presented by Tian et al. 2002, is one of the simplest 

algorithms in terms of processing and calculation.  The algorithm determines a set of 

neighbouring nodes that are within a given nodes sensing area.  If the given node is 

completely covered by its neighbours then that node is deactivated.  Interestingly 

enough the simplest algorithm has resulted in the most robust of all the algorithms 
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implemented in this study - so much so that it appears that the algorithm is completely 

immune to location inaccuracies within the ranges that were examined. 

Figure 5-22 shows a visual result of the algorithm’s single iteration.  The 

execution of the algorithm over a single iteration is a result of the following:  since the 

locations are constant, the outcome of calculating the neighbours is always the same.  

As the simulator does not take into account energy consumption and remaining 

energy of nodes, nodes are deemed to be fit to support their neighbouring nodes 100% 

of the time. (Refer Section 4.2.3.1 to for details on the algorithm.)   

The figure shows the algorithm powering down two nodes within the network 

(Sensors 7 and 26) whilst maintaining coverage of 91.36%.  Since a two-node 

redundancy did not seem like a significant number of nodes to power down, a 

subsequent experiment containing a larger dataset was run later in this study. 

However, the present configuration was retained for experiments to test the 

algorithm’s sensitivity to the initial positioning of nodes, and to node location 

inaccuracy. 

 

Figure 5-22 - Execution of the CPNS Algorithm for control purposes 

Figure 5-23 shows the impact the algorithm had on a further fifteen network 

layouts.  In each case, initial placement of nodes was randomly determined.  The 

layouts range in degree of coverage hole percentages as well as in the extent of 

network clustering.  (Network clustering is a reference to groups of nodes forming in 

the network with greater degrees of sensing area redundancy within the groups.) 

The algorithm powers down an average of 2 nodes, or 4% of the network 

across the various scenarios. 
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Figure 5-23 - Fifteen random starting position.
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As with the previous algorithms, Figure 5-25 and Figure 5-26 introduce 

location as a factor.  As with the previous algorithms, location inaccuracies in node 

positions at distances ranging from 0.5 metres to 10 metres (in increments of 0.5 

metres) were systematically introduced.  Again, the number of inaccurate nodes were 

varied from 0 to 25 nodes.  The results of the experiment showed that the algorithm 

was entirely immune to location inaccuracies—i.e. within the range of the given 

inaccuracies, inaccurate locations did not impact the algorithm whatsoever.   

This would appear to be due to one key factor:  the algorithm uses the union of 

the areas of the neighbouring nodes to calculate whether a node should be powered 

down.  If it is perceived that the node is not covered by its neighbours then it remains 

active.  Figure 5-24 illustrates this in practice.  Figure 5-24 (a) shows the sensors 

when the neighbours are accurately chosen.  As can be seen sensor Si is completely 

covered by its neighbouring nodes (shown as the grey area around the sensing area) 

and for this reason sensor Si would be deactivated.  Figure 5-24 (b) shows the same 

scenario with a single sensor, S3, broadcasting its node inaccurately.  The union of the 

neighbouring nodes is calculated as two separate geometric polygons with Si not 

falling within the neighbour’s bounds.  The result is that Si remains active.  The same 

applies to nodes that falsely find themselves in Si sensor area.  For sensor Si to 

deactivate it would take at least three nodes to be inaccurately placed within Si
’s 

sensing area in such away that their sensing areas would cover Si.  This did not seem 

to occur in any of the experiments performed.  

 

Figure 5-24 - Location inaccuracy in determining node neighbours. 

Even if the algorithm were to fail at deactivation of nodes, with no nodes 

powering down whatsoever, coverage of the original network would remain the same. 
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Figure 5-25 - Increasing the percentage of inaccurate nodes (CPNSS). 

 

Figure 5-26 - Coverage hole (%) related to an increase in location inaccuracy (CPNSS). 

Since the algorithm only involves one iteration as opposed to multiple 

iterations in the case of the hybrid and mobile algorithms, an analysis of the algorithm 

in terms of number of iterations does not apply.  As this study does not take into 

account energy consumption as the basis for choosing the starting nodes, each 

iteration will choose the same nodes to power down.   

As the algorithm would only be implemented as a single iteration, no 

termination criterion is put in place.  For this reason a test for Termination Criterion 

Sensitivity did not apply. 
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As a final experiment, it was decided to run the algorithm with a larger 

network set of 100 nodes.  The aim of the experiment was to assess whether or not a 

higher redundancy of nodes impacts the algorithm at all. 

 

Figure 5-27 - Network with 100 randomly placed nodes. 

Figure 5-27 shows the network with 100 randomly placed nodes.  The initial 

coverage hole in this network layout was 4.6% of the ROI.  The experiment was run a 

total of 100 times, each time allowing a different node to initiate the algorithm.  The 

experiment was run a further 20 times, each time with a different degree of inaccuracy 

in the same way outlined in Section 4.1.4.  The algorithm was then assessed on 

average coverage hole obtained by the 100 iterations at each run. 

 
 
 



Analysis and Results 

 

Figure 5-28 - Coverage hole (%) related to an increase in location inaccuracy (CPNSS) with 100 
nodes. 

As can be seen in Figure 5-28 there is no change in the experiments result 

when more nodes are introduced.  Location inaccuracy appears to have no impact on 

the algorithm with the coverage hole remaining at 4.6% suggesting that no nodes are 

deactivated erroneously. 

5.3.2 Optimal Geographical Density Control (OGDC)  

The OGDC algorithm is slightly more complex to implement when compared 

to the CPNSS algorithm discussed above.  CPNSS was limited, per definition of the 

algorithm, to a single iteration.  The OGDC algorithm, in contrast, is started from a 

random position each time it is executed.  For this reason more than one iteration can 

be executed.  As opposed to starting the algorithm from a random node each time, as 

was done by the algorithm’s authors, in this study, it was decided to run the algorithm 

a total of 50 iterations, each time starting from a new node.  By running the 

experiment in the following way, each node is allowed to start the algorithm, yielding 

an overall comparison of how the network would be represented if each node had an 

opportunity to start the algorithm.  After each iteration the algorithm resets the 

network (nodes status of being ON or OFF).  The control experiment’s starting 

scenario the same as that used in the CPNSS algorithm above.   

Figure 5-29 shows the control experiment over the 50 iterations, with each 

iteration allowing a different node to be the starting node for the algorithm.  (Note 

that, as expected, the coverage hole remained constant at 8.64%.) The information in 
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the figure can be summarised by noting that the algorithm deactivated an average 0.62 

nodes, that the minimum number of deactivated nodes was 0, and that the maximum 

number was 5.  The OGDC’s average number of deactivated nodes is thus slightly 

lower than that of CPNSS and the maximum number of deactivated nodes is 

somewhat higher than that of the CPNSS algorithm. The OGDC algorithm might 

therefore sometimes be more efficient in that it might deactivate more nodes than that 

of the CPNSS algorithm.  However, optimal node deactivation takes place if and only 

if the correct node is chosen as the starting node, and this cannot be guaranteed.   

 

Figure 5-29 - Control experiment over 50 iterations. 

As in the CPNSS algorithm, the OGDC was also executed over 15 other 

starting scenarios.  As with the control experiment, 50 runs were executed, allowing 

all sensors to be used as the starting node.  Figure 5-30 shows the minimum, 

maximum and average number of inactive nodes for each starting scenario.  
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Figure 5-30 - Alternative randomly deployed starting scenarios for the OGDC algorithm. 

The minimum value always stays at 0 as some starting scenarios may not yield 

any inactive nodes.  The maximum value of inactive nodes averages around the 7 

node mark.  The maximum values obtained occurred on a very minimal basis, 

sometimes only once throughout the 50 iterations.  The number of nodes to be 

deactivated in a scenario therefore appears to be rather sensitive to the starting node. 

In some scenarios, the maximum number of deactivated nodes could only be 

determined from one unique starting position—all other starting positions resulted in 

fewer deactivated nodes.   

Interestingly though is that the average number of inactive nodes, 

approximately 2 is similar to that of the control experiment.  The average maximum 

number of inactivate nodes is also similar to that of the control experiment at 

approximately 7 nodes.  It can then be said that the various starting scenarios behave 

in a similar way to that of the scenario used in the control experiment. 
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Figure 5-31 - Increasing the percentage of inaccurate nodes (OGDC). 

Figure 5-31 shows the overall coverage hole within the control experiment’s 

network when the nodes are exposed to various degrees of inaccuracy.  Inaccuracy is 

introduced to a percentage of nodes starting with no nodes being inaccurate and 

ending with all 25 nodes inheriting a degree of location inaccuracy.  It can be seen 

that as the number of inaccurate nodes increase so does the coverage hole percentage 

– as with the other algorithms implemented for mobile and hybrid network topologies. 

Interesting is the fact that with only 1 inaccurate node in the network, the network 

shows vulnerability to inaccuracy.   

The final experiment attempts to assess the algorithm’s performance when all 

nodes in the network are rendered increasingly inaccurate.  Again, in each case the 

algorithm was run a total of 50 times, each time commencing with a different starting 

node.  The graph shows the minimum, maximum and average coverage hole within 

the ROI.  As the static algorithms do not increase the degree of coverage, it is not 

unexpected to see that the minimum coverage hole remains at 8.64%.  Consistent with 

the previous experiment, the average coverage hole increases slightly with the 

increase of location inaccuracy.  The maximum values are interesting to note.  As the 

inaccuracy increases to 10m, the algorithm inappropriately deactivates nodes causing 

larger coverage holes, with a peak at 72.3%.   

To explain these high peaks, note that each node’s coverage represents 

approximately 4.5% of network coverage.  This statement is based on a node with no 

overlapping coverage of a neighbouring node and complete coverage falling within 
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the ROI.  Thus, for each incorrect deactivate of a node, there is a potential loss of 

4.5% coverage in the network. 

 

Figure 5-32 - Coverage hole (%) related to an increase in location inaccuracy (OGDC). 

 

Since the notion of a termination criterion does not apply to this algorithm, the 

previous experiments relating to termination criteria are not relevant for this 

algorithm. 

As with the CPNSS algorithm is was deemed appropriate to assess the 

algorithm with a larger network size.  The same network layout used in Figure 5-27 

was used to assess the OGDC algorithm. 
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Figure 5-33- Coverage hole (%) related to an increase in location inaccuracy (OGDC) with 100 
nodes. 

As seen in Figure 5-33, the maximum coverage holes obtained at the various 

inaccuracy levels around 10%, in contrast with the spikes seen in the previous 

experiment.  In this sense, the algorithm appears to be more stable with a larger 

network size.  This is as a result of the higher degree of redundancy and overlapping 

of nodes within this network layout.  In a scenario where a node is inappropriately 

deactivated, there exists a larger group of nodes that are still sensing that given area.  

If the study were then to assume that the worst degree of coverage hole obtained by 

the algorithm is an average of 10%, then one can see that the algorithm is still 

vulnerable at low degrees of inaccuracy.  A maximum coverage hole of 6% is reached 

when the nodes are a mere 0.5m inaccurate.  This same behaviour was seen in the 

previous experiment when a maximum coverage hole of 35% was reached at the same 

degree of inaccuracy.  With the larger network set the algorithms average coverage 

hole percentage is very close to the starting coverage hole percentage of 4.6%. 

5.3.3 Conclusion 

The above assessment compared two static algorithms.  Under accurate 

location information, static algorithms do not increase the network coverage within 

the ROI but simply attempt to reduce the number of active nodes.  The OGDC 

algorithm was shown have the potential of reducing the number of active nodes in the 

network whilst maintaining the same degree of coverage to a better extent than that of 
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the CPNSS algorithm.  However, this advantage depended on the starting node for the 

algorithm and could not be guaranteed if an arbitrary starting node was selected. 

OGDC was also found to depend more critically on the accuracy of location 

data.  A single node deactivating in the network unintentionally results in a loss of 

coverage and an increase in the overall coverage hole percentage.  The CPNSS 

algorithm was found to be immune to location inaccuracies within the limits of the 

various configurations tested: the algorithm’s overall objective of deactivating nodes 

is accomplished without any loss of network coverage, irrespective of location 

inaccuracies.  From this perspective the CPNSS algorithm is superior to the OGDC. 

5.4 Chapter Conclusion 
In this Chapter the study analysed the results obtained by the experiments 

outlined in Chapter 4.  The chapter collected empirical information about algorithms 

classified into the three network deployment types: mobile, hybrid and static. It 

showed the key differences between algorithms within these network deployment 

types.  The following chapter presents the concluded results obtained by these 

experiments.  The chapter provides the answers to the questions proposed in Chapter 

1. 
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Conclusion 

“No matter how many instances of  
white swans we may have observed, 
 this does not justify the conclusion 

 that all swans are white.” 
. 

Sir K. R Popper –  
The Logic of Scientific Discovery 1934 

6.1 Conclusion 
Wireless Sensor and Actuator Networks (WSANs) are a key topic of interest 

in present day computing.  In Chapter 1 it was noted that accurate location of nodes 

was a key assumption made in all WSAN node deployment algorithms. The study 

posed two questions:  Firstly, what are the effects of location inaccuracies on the 

networks?  Secondly, how do the various network deployment types compare? Before 

seeking answers to these questions, technical background was provided in Chapter 2 

of this study, while Chapter 3 looked at the role that GIS simulation could play in the 

ongoing WSAN research. 

The consequences of the accurate node location assumption became evident in 

the assessment of the algorithms, specifically node placement algorithms relating to 

mobile networks.  Both the VOR and the VEC algorithms were affected by location 

inaccuracies to some degree, the VOR algorithm more so than the VEC algorithm.    

The study showed that at a low degree of inaccuracy the VOR algorithm behaved in 

an acceptable, somewhat robust manner.  The VEC algorithm appeared to have a 

greater dependency on location accuracy.  An advantage of the VEC algorithm over 

the VOR algorithm is that the VEC algorithm takes into account the boundary.  By 

including the boundary the nodes are contained within the ROI at all times.  In the 

case of VOR the nodes could potentially drift outside the ROI. 

The study implemented a single algorithm to solve coverage within hybrid 

networks.  This algorithm, bidding protocol, was then run under two forms of node 

location inaccuracy: from the viewpoint of the mobile node location inaccuracy and 

then the static node location inaccuracy.  The algorithm appeared to be stable only 

when the static nodes were deemed to be accurately placed and the mobile nodes did 

not exhibit large degrees of inaccuracy.  Both these requirements are fairly 

demanding, in the sense that in practice, static nodes may be inaccurately placed and 
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likewise the mobile nodes may contain larger degrees of inaccurate placement.  It 

could be said that the hybrid algorithms appeared to be more dependent on accurate 

node locations than the other algorithms that were investigated. 

Finally the static network topology was assessed using two algorithms, namely 

the CPNSS and OGDC algorithms.  Interestingly enough, the static algorithms 

appeared to be the most stable.  Within the experimental limits of the study, the 

CPNSS algorithm was completely unaffected by the inaccuracies.  The second 

algorithm, OGDC, performed well in deactivating nodes compared to CPNSS.  

Although this latter algorithm also exhibited a dependency on the node location 

accuracy, but this dependency did not seem to increase as the location inaccuracy did. 

In general it is difficult to assess or compare the three network topologies.  

Due to the cost difference in networks as well as the landscape within which the 

topologies can be deployed, the use of the three kinds of topologies will differ in the 

real-world.  Other factors aside, in terms of location dependencies, the static 

algorithms behaved in such a way that they would be recommended when deciding 

between network topologies. 

The results of this study are useful in two ways.  Firstly, they indicate the 

degree of confidence that the network planners may have in the deployment 

algorithms in the context of their dependency on accurate location information.  

Secondly, the results suggest an approach to node placement in the first place: 

simulate the optimal positioning of nodes as has been done in this exercise.  Then 

attempt to place the nodes in locations suggested by the simulation, but with a degree 

of confidence that moderately erroneous placement, to the extent indicated by the 

study, is unlikely to have a great impact on the extent of coverage. 

6.2 Related Work 
As this study has shown, location data plays an important role in network 

deployment and reconfiguration.  Work done by de Silva and Ghrist (2007) 

concentrates on Homological Sensor Networks (HSN).  These are networks whose 

nodes, though in communication with their neighbours, are unaware of precise 

neighbour locations. Invariant theorems about homology groups (homology is 

characterised as measuring “certain types of chains, or objects built from simple 

oriented pieces”) indicate the presence of coverage holes within the ROI, without the 
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need for location data.    A current shortcoming in their solution is that nodes on the 

boundary have to be aware of their status as boundary nodes.  Potential failure of 

nodes on the boundary would require a recalculation of the boundary nodes.  The 

calculation of the boundary nodes is seen as an example of the convex hull problem as 

described in Harel (1996).  This problem is considered to be polynomial, the 

complexity of the algorithm is then estimated to be n, where n is the number of nodes 

in the network. 

6.3 Future Work 
WSAN research is a new and emerging field.  There currently exist many 

branches of research, varying from energy management and control to cost-effective 

construction.   An area of unexplored research relates to extending the simulator to 

deal with the effects of real-world objects on a WSAN layout.  A key direction would 

be to introduce radio attenuation and interference and to examine the effects that these 

have on optimal placement.  Current research omits these real-world objects and 

assumes a uniform sensing area.  This will not be the case in a ROI where buildings 

cause radio frequencies to be scattered or shadowed.  Areas in the network may not be 

covered due to shadows, resulting in areas in the network that radio signals cannot 

reach.  Another area of interest is to consider the effects that different mediums, for 

example soil and water, have on radio frequencies.  For example, if sensors are used 

underground, or for deep-sea research, these different mediums may cause the radio 

signals to behave differently.   

This study only assessed the major or more popular relocation algorithms.  

Further studies may include some of the other algorithms mentioned within this work. 

With regards to hybrid networks, an algorithm is needed to determine the 

optimal ratio of static to mobile nodes during the deployment phase of a hybrid sensor 

network. 

Furthermore, future studies should consider other mobile networks that use 

virtual forces or sequential approaches to calculate the placement of nodes.  Virtual 

force algorithms compute forces to push the nodes away from each other, where each 

node acts as a virtual magnetic particle.  All nodes, as well as the boundary, push 

neighbours away from each other in much the same way as the VEC algorithm 

presented earlier.  The key difference is the force is not calculated as a result of the 

 
 
 



Conclusion 

location of the neighbour but more of a force such as that exhibited by magnets.  

Nodes use the radio signals of their neighbouring nodes and strength thereof to 

determine the distance to each other.  The idea behind this approach is that the nodes 

would self organise in a uniform position within the network.   

The sequential approach, on the other hand, calculates the new locations of 

nodes based on the previous deployment of nodes within the networks.  Each node is 

placed one-by-one in the network.  Working in much the same way as the mobile 

nodes used in the bidding protocol, this approach incrementally deploys nodes, with 

each node’s place based on information gathered from the current nodes within the 

network (Yang et al. 2006). 
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7 Glossary 

Actuator A node that is able to act / change the region of interest 

Attribute 
A descriptive character mapped to a component of the topology, 
either a cell as in the case of Raster images or a geometric shape 
as in the case of Vector images. 

AOA 
Angle of Arrival, the angle at which a radio signal arrives at the 
destination.  Used in radiolocation. 

Bandwidth Rate of data transfer measured in bit/sec 

CASE Tool 
Computer Aided Software Engineering tool, assists in the 
creation of Smallworld objects for use in the VMDS and 
Smallworld environment 

CARIS 
Computer Aided Resource Information Systems is a company 
that produces GIS and hydrographical software 

CCP 
Coverage Configuration Protocol, solution to coverage 
problems, specifically energy conservation in static sensor 
networks 

CGIS 
Canada Geographic Information Systems, created in the 1950 to 
assist in regulatory procedures for land-use management and 
resource monitoring 

Co-Fi 

Coverage Fidelity algorithm, using computational geometry the 
solution takes into account energy consumption to provide a 
possible solution to the coverage hole problem for mobile 
networks 

Convergence 
The process of the coverage algorithm approaching a limited 
value on coverage hole percentage 

Coverage hole 
Area within the network that is not covered by at most k sensors 
where k is amount of nodes required by the application 

Databus Provides data communication between application 

Delaunay 
Triangulation 

Given a set of points P, Delaunay triangulation is the process of 
triangulating all the points within the set such that no point in P 
is inside the circum circle of any other triangle 

Deployment The process of scattering nodes within the region of interest 

DSS 

Distributed Self-spreading algorithm, inspired by the 
equilibrium of molecules, is a solution to the coverage hole 
problem in mobile sensor networks.  The algorithm works at 
reconfiguring the location of sensors within the network 
topology 

ESRI 
Environmental Systems Research Institute. Consulting firm that 
specialises in land use analysis projects 
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GENS General Electric Network Solutions 

GEO-Location 
Determining the location of an object via the aid of GPS satellite 
transmission 

GIS 
A Geographical Information Systems is a systems capable of 
managing geo-referenced data 

GPS 
Global Positioning System.  An electronic device used to 
determine location, direction, speed and time via satellite 
communication 

GRASS 
Geographic Resources Analysis Support System, open source 
GIS tool supporting both vector and raster data 

Hybrid network 
A WSA network that contains a mix of movement-assisted 
nodes and static nodes 

IDCA 
Intelligent Deployment and Clustering Algorithm, much the 
same as DSS, this algorithm uses clustering to further reduce the 
energy consumption within the network 

IQR Interquartile range, is a measurement of statistical dispersion 

Iteration 
A single completed phase of a simulation, including detection of 
coverage holes and the solving of the hole 

LCGSA 
Laboratory for Computer Graphics and Spatial Analysis, a 
research and development school associated with  Harvard 
Graduate School of Design 

Magik 
Object Oriented programming language developed by 
SmallWorld to use with the SmallWorld application  

Mobile Network 
A WSA network that contains only nodes that are able to move 
within the region of interest 

Mobile Sensor 
A node that is capable of movement, either via a third party or 
self movement 

Movement-
adjustment 

The process of calculating potential coverage before a move is 
made to solve a given coverage hole.  If the new coverage is 
“worse” than the current coverage the movement is reconfigured 

Movement 
oscillations 

The back and forth movement of a node between two points 

Mote See node 

Node An element within a WSAN, either a sensor or an actuator 

OGDC 
Optimal Graphical Density Control, provides a potential 
solution to the energy consumption of nodes in a densely 
populated region of the network (inverse of coverage holes) 
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Outlier 
An outlier is defined as an observation that appears to be 
inconsistent with the other observations in the data set 

Oscillation control 
The prevention of movement oscillations by recording the angle 
of the previous move.  If the new angle to move is opposite that 
of the previous move, movement is halted 

Parcel 
A piece of land that is commercial viable, i.e. can be sold or has 
market value 

Projection 
This is the transformation of a map from a sphere to a 2-
dimensional plane surface. 

Radiolocation 
Process of finding the location of a point with the aid of radio 
waves 

Raster data 
A GIS data type.  The object is divided into cells each cell 
contains data about the area 

Reconfiguration 
The process of reorganising nodes within a WSAN for optimal 
distribution 

Run A collection of iterations making up a single simulation 

Scale 

The mathematical relationship between distances on a map and 
the actual distance between objects on the Earth.  This also 
applies the size of an object as represented on a map as well as 
the actual size on the Earth 

Scalability 
Property of a network or system to handle growth in work load 
or expansion in size 

Sensor A node that is able to sense the local environment 

Simulation 
Multiple iterations of the algorithm terminated by a preset 
condition, run over multiple times or runs 

Smallworld A GIS application suite developed by General Electric 

Static Network 
A WSA Network that contains only nodes that are not capable 
of movement i.e. nodes that are fixed to their current locations 

Static Sensor A sensor that is fixed to its current location 

TIN Triangulated Irregular Network 

TOA 
Time of Arrival.  The time taken for a radio signal to reach the 
destination.  Used in radiolocation. 

Topology The arrangement of nodes within the sensor network 
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Triangulation 
The process of calculating the location of a point using the 
properties of triangles and the laws of sine 

UAV Unmanned aerial vehicle.  

USA-CERL 
U.S. Army Corp of Engineering Research Laboratory, 
developers of the open source application GRASS 

Vector data 
A GIS data type.  Data is mapped to a geometric polygon, line 
or point 

VMDS Version Managed Data Store, SmallWorld developed database 

Voronoi-diagram 

Given a set of points P.  This is the process of decomposing a 
given area or plain into sections based.  The sections or 
polygons are determined via the proximity to neighbouring 
points within the set P. 

Voronoi polygon 
The sections that make up a Voronoi-diagram.  Each section or 
polygon displays the property that the area within the polygon 
are closest to the point making the polygon within the diagram 

WSAN 
Wireless Sensor and Actuator Networks are much the same as 
mobile ad-hoc networks, however it is able to sense and act 
within its environment. 
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A Addendum – Tables 

A.1 Simulator Comparison Matrix (Becker 2007) 

 TOSSIM TOSSIM ns-2 ns-2 GloMoSim 
(Qualnet) 

OMNeT++ 
(Omnest) 

OMNeT++ OMNeT++ OMNeT++ OMNeT++ 

Version 
1.1.15cvs 1.1.15cvs 2.30  2.0 (3.9.5) 3.4b2     

+Tool Extension 
(Tool Version) 

 tython (1.1.15cvs) (BonnMotion, 
BonnTraffic) 

SensorSim (BonnMotion)  Sensim 3.0 Mobility 
Framework 
2.0pre3 

NesCT 30-09-06 EWSNSIM 171105 

Simulator/Emulator 
Simulator, 
Emulator(AVR, 
MSP) 

same Simulator Simulator Simulator Simulator Simulator Simulator Emulator (TinyOS) Simulator 

Transferability of 
Code 

Yes same No No No No No No Yes Yes 

License, Cost 

GPL same GPL GloMoSim: 
Academic,  
QualNet: 
Commercial 

Academic 
Public License, 
Omnest: 
Commercial 

Academic 
Public License 

Academic 
Public License 

Academic 
Public License 

Academic Public License Commercial, 
University Program 

Architecture 
Component-based same Object-oriented   Component-

based 
Component-
based 

Component-
based 

Component-based Component-based 

Platform 

Windows, Linux same Windows, 
Linux, Sun, Mac 

 Windows, 
Linux, Sun, Mac 

Windows, 
Linux, 
FreeBSD, Mac 
OS X 

Windows, 
Linux, 
FreeBSD, Mac 
OS X 

Windows, 
Linux, 
FreeBSD, Mac 
OS X 

Windows, Linux, FreeBSD, 
Mac OS X 

Windows, Linux, 
FreeBSD, Mac OS X 

WSN Platforms 
supported 

MSP, AVR same         

Status 

Supported same  Supported Not supported GlomoSim: Not 
supported, 
Qualnet: 
Supported  

Supported Not supported Supported, 
Free 
Community 
Support, 
Commercial 
Support 
(OmNest) 

Supported  
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 TOSSIM TOSSIM ns-2 ns-2 GloMoSim 
(Qualnet) 

OMNeT++ 
(Omnest) OMNeT++ OMNeT++ OMNeT++ OMNeT++ 

Programming 
language of the tool 

Java same C++, OTcl  Parsec (C, C++) C++, NED C++, NED C++   

Programming 
language of the 

models 

nesC same C++, OTcl   C++, NED C++, NED C++, NED nesC nesC, C++, NED 

GUI, API etc. 
GUI: 
TinyVIZ/SimDriver 

same GUI: nam  Yes GUI: TkEnv GUI: TkEnv gned, GUI: 
TkEnv 

GUI: TkEnv GUI: TkEnv 

Scenario 
description 

format 

 Python script OTcl   NED  NED NED  NED 

Parallel execution 
  Pdns Pdns Parsec Yes: Parsim Yes: Parsim Yes: Parsim Yes: Parsim Yes: Parsim 

Radio propagation 
models 

Empirical, Fixed 
Radius 

 Included: Free 
space model, 
Two-ray ground 
model, 
Shadowing 
model 
External: 
realistic channel 
propagation by 
Wu Xiuchao,    
ricean 
propagation 
model by Ratish 
J. Punnoose 

 Two Ray, 
FreeSpace  

 Plain pathloss 
model 

Plain pathloss 
model, 
: Free Space, 
NoLoss, 
Gilbert-Elliot 

  

Physical layer and 
antenna models 

Empirical, Fixed 
Radius 

+PacketLossRatios   SNR bounded, 
BER based with 
BPSK/QPSK 
modulation 

    Ideal unit gain 
antennas, PSK, 16-
QAM, 256-QAM 
 antenna models 
ANSim Tool Traces 
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 TOSSIM TOSSIM ns-2 ns-2 GloMoSim 
(Qualnet) 

OMNeT++ 
(Omnest) OMNeT++ OMNeT++ OMNeT++ OMNeT++ 

Mobility models 

No Mobility Scriptable Pathes (BonnMotion: 
Random 
Waypoint, 
Gauss-Markov, 
Manhattan Grid, 
Reference Point 
Group) 

 RWP, Random 
Drunken, Trace 
based  

No   Yes (CircleMobility, 
ConstSpeedMobility, 
LinearMobility,  
LineSegmentsMobilityBase, 
MassMobility, 
RectangleMobility) 

Bonn Motion data, 
LOGO scripts 
(TurtleMobility), 
CircularMobility, 
LinearMobility, 
MassMobility, 
RectangleMobility, 
ConstSpeedMobility 

Standards 
supported 

802.15.4  AODV, OLSR, 
DYMO, 802.11, 
Bluetooth, 
Mobile IP 

802.15.4, 
802.11 
(BonnTraffic: 
several Traffic 
models) 

CSMA, IEEE 
802.11, MACA, 
IP with AODV, 
Bellman-Ford, 
DSR, Fisheye, 
LAR scheme 1, 
ODMRP, WRP, 
TCP, UDP, 
CBR, FTP, 
HTTP, Telnet +  
more 

802.11  802.11, 
Directed 
Diffusion with 
GEAR 

  

Supports Energy 
Consumption 

Research 

with extension 
PowerTOSSIM 

with extension 
PowerTOSSIM 

        

Statistical support 
(RNG, Batch 

Means, Confidence 
interval, LRE etc.) 

 same (ns2measure)   Akaroa RNG, 
seedtool 

  exhaustive exhaustive 
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 OPNET Avrora ATEMU EmStar/EmTOS 
 SENS J-

Sim(JavaSim) ModelNet/NISTNet NESLSim WiSeNet JiST / 
SWANS SwarmNet/Shawn AlgoSenSim Netwiser 

Version 
11.0 Beta 1.6.0 0.4 2.5 jan31-

2005b 
1.3 + patch4 0.99/2.0.12 N/A 0.51 1.0.6 Daily builds 0.9.2.2 0.2.5 

+Tool Extension 
(Tool Version) 

Wireless 
Module 

            

Simulator/Emulator 
Simulator Simulator/ 

Emulator(AVR) 
        Simulator   

Transferability of 
Code 

No Yes         No   

License, Cost 
GPL      GPL N/A  Academic BSD  Commercial 

license or 
GPL 

Architecture 
Object-
oriented 

Emulate 
hardware 
directly 

        Object-oriented   

Platform 
 JVM         Windows, Linux, 

Any with Standard 
C++ 

  

WSN Platforms 
supported 

 AVR            

Status 

Supported Supported but 
not being 
actively 
developed 

 Inactive 
(Last update 
2005) 

      Supported Pre-alpha Supported 

Programming 
language of the tool 

C, C++  Java    Java    Java C++   

Programming 
language of the 

models 

C, C++          C++   

GUI, API etc. 
GUI No GUI         No GUI  Eclipse 

Plugin 

Scenario 
description format 

GUI Plain Text            
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 OPNET Avrora ATEMU EmStar/EmTOS 
 SENS J-

Sim(JavaSim) ModelNet/NISTNet NESLSim WiSeNet JiST / 
SWANS SwarmNet/Shawn AlgoSenSim Netwiser 

Parallel execution 
Yes          No   

Radio propagation 
models 

Yes Perfect, Fixed 
Radius 

        Fixed Radius, 
Radio Irregularity 
Model (RIM), 
Permalink 

  

Physical layer and 
antenna models 

 Ideal            

Mobility models 
Yes  No         ns-2 mobility files   

Standards 
supported 

802.11 802.11, 802.16,  
MANET, 
MobileIP 

TinyOS 
MAC, any 
application 

          

Supports Energy 
Consumption 

Research 

Three 
states 
Radio 
Model 
(Sleep, Rx, 
Tx) 

            

Statistical support 
(RNG, Batch 

Means, Confidence 
interval, LRE etc.) 

exhaustive BSD RNG, 
Batch Means 

No           
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 DiSenS SENSE ModelNet/NISTNet NESLSim WiSeNet JiST / 
SWANS SwarmNet/Shawn AlgoSenSim Netwiser DiSenS SENSE COOJA JProwler 

Version 
 2.0 0.99/2.0.12 N/A 0.51 1.0.6 Daily builds 0.9.2.2 0.2.5  2.0 No release 

yet. 
 

+Tool Extension 
(Tool Version) 

             

Simulator/Emulator 
      Simulator     Simulator, 

Emulator 
(MSP) 

 

Transferability of 
Code 

      No     Yes  

License, Cost 
  GPL N/A  Academic BSD  Commercial 

license or 
GPL 

  Apache  

Architecture 

      Object-oriented     Cross-Level 
simulation. 
(Nodes may 
either be 
simulated 
or emulated) 

 

Platform 
      Windows, Linux, 

Any with Standard 
C++ 

    Linux, 
Windows 

 

WSN Platforms 
supported 

             

Status 
      Supported Pre-alpha Supported   Actively 

developed 
 

Programming 
language of the tool 

     Java C++     Java  

Programming 
language of the 

models 

      C++     C (or Java)  

GUI, API etc. 
      No GUI  Eclipse Plugin   GUI  
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 DiSenS SENSE ModelNet/NISTNet NESLSim WiSeNet JiST / 
SWANS SwarmNet/Shawn AlgoSenSim Netwiser DiSenS SENSE COOJA JProwler 

Scenario 
description format 

             

Parallel execution 
      No     No  

Radio propagation 
models 

      Fixed Radius, Radio 
Irregularity Model 
(RIM), 
Permalink 

    Fixed Radius, 
Ray-tracing 
multipath 
model 

 

Physical layer and 
antenna models 

           Ideal  

Mobility models 
      ns-2 mobility files     Supported, 

no models 
 

Standards 
supported 

           Glue driver 
abstraction 

 

Supports Energy 
Consumption 

Research 

             

Statistical support 
(RNG, Batch 

Means, Confidence 
interval, LRE etc.) 
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 Viptos/VisualSense/PtolemyII Sunflower WISENSE SenSor GTSNetS SensorSim SimulAVR Sidh SWAN TOSSF 

Version 
1.0   CVS 1.0    1.0.1 alpha  

+Tool Extension 
(Tool Version) 

          

Simulator/Emulator 
   Simulator Simulator      

Transferability of 
Code 

   No No      

License, Cost 
    GPL      

Architecture 
    Object -oriented      

Platform 
   Python VM Linux, Windows      

WSN Platforms 
supported 

      AVR    

Status 
Inactive (Last update 2005)    Supported Withdrawn Inactive 

(Last update 
2004) 

Inactive. 
(Paper in 
2005.) 

  

Programming 
language of the tool 

  SDL Python C++      

Programming 
language of the 

models 

  SDL Python C++      

GUI, API etc. 
   GUI Qt based 

animation tool 
     

Scenario 
description format 

    C++      
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 Viptos/VisualSense/PtolemyII Sunflower WISENSE SenSor GTSNetS SensorSim SimulAVR Sidh SWAN TOSSF 

Parallel execution 
    Yes, libsync 

library 
     

Radio propagation 
models 

    Unit Disk Graph, 
Two-ray ground 
model, 
Free space 

     

Physical layer and 
antenna models 

    ideal      

Mobility models 
    Random-

waypoint and 
variants 

     

Standards 
supported 

    IEEE 802.3, 
IEEE 802.11, 
DSR, TCP, UDP, 
CBR, FTP, 
HTTP +more 

     

Supports Energy 
Consumption 

Research 

          

Statistical support 
(RNG, Batch 

Means, Confidence 
interval, LRE etc.) 

    Contains models 
for a variety of 
random number 
generators, 
including 
exponential, 
pareto, uniform, 
normal, 
empirical, 
constant, and 
sequential. 
Supports data 
collection using 
histograms and 
cumulative 
distribution 
functions. 
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B Addendum - Development API 

B.1 Simulator 
_pragma(classify_level=basic, topic={simulator,app,engine}) 
_method simulator_engine.init() 
 
_pragma(classify_level=basic, topic={simulator,app,engine}) 
_method simulator_engine.commit() 
 
_pragma(classify_level=basic, topic={simulator,app,engine}) 
_method simulator_engine.reset_roi( p_config ) 
 
_pragma(classify_level=basic, topic={simulator,app,engine}) 
_method simulator_engine.clean_roi( p_config ) 
 
_pragma(classify_level=basic, topic={simulator,app,engine}) 
_method simulator_engine.random_deploy( p_config, _optional p_sensor_amount, 
p_name, p_rx_seed, p_ry_seed ) 
 
_pragma(classify_level=basic, topic={simulator,app,engine}) 
_method simulator_engine.deploy_sensors_for( p_config ) 
 
_pragma(classify_level=basic, topic={simulator,app,engine}) 
_method simulator_engine.create_voronoi_diagram( p_config ) 
 
_pragma(classify_level=basic, topic={simulator,app,engine}) 
_method simulator_engine.clean_sensors( p_config ) 
 
_pragma(classify_level=basic, topic={simulator,app,engine}) 
_method simulator_engine.get_optimal_sensor_count( p_config ) 
 
_pragma(classify_level=basic, topic={simulator,app,engine}) 
_method simulator_engine.get_stats_for( p_config ) 
 
_pragma(classify_level=basic, topic={simulator,app,engine}) 
_method simulator_engine.set_mobility( p_config, p_mobile ) 
 
_pragma(classify_level=basic, topic={simulator,app,engine}) 
_method simulator_engine.get_total_dist( p_config ) 
 
_pragma(classify_level=basic, topic={simulator,app,engine}) 
_method simulator_engine.get_mean_dist( p_config ) 
 
_pragma(classify_level=basic, topic={simulator,app,engine}) 
_method simulator_engine.get_protocols_from( p_filename ) 
 
_pragma(classify_level=basic, topic={simulator,app,engine}) 
_method simulator_engine.store_data( p_config ) 
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_pragma(classify_level=basic, topic={simulator,app,engine}) 
_method simulator_engine.export_data( p_config, p_name ) 
 
_pragma(classify_level=basic, topic={simulator,app,plugins}) 
simulator_manager.def_property ( :engine_name, :default, :simulator_engine ) 
 
_pragma(classify_level=basic, topic={simulator,app,plugins}) 
_method simulator_manager.init ( _optional p_plugin, _gather p_args ) 
 
_pragma(classify_level=basic, topic={simulator,app,plugins}) 
_method simulator_manager.build_gui ( p_container ) 
 
_pragma(classify_level=basic, topic={simulator,app,plugins}) 
_method simulator_manager.init_actions() 
 
_pragma(classify_level=basic, topic={simulator,app,plugins}) 
_method simulator_manager.manage_actions() 
 
_pragma(classify_level=basic, topic={simulator,app,plugins}) 
_method simulator_manager.handle_actions( p_method, _gather p_args) 
 
_pragma(classify_level=basic, topic={simulator,app,plugins}) 
_method simulator_manager.refresh_stats( p_config ) 
 
_pragma(classify_level=basic, topic={simulator,app,plugins}) 
_method simulator_manager.set_mobility( p_config ) 
 
_pragma(classify_level=basic, topic={simulator,app,plugins}) 
_method simulator_manager.random_deploy( p_config ) 
 
_pragma(classify_level=basic, topic={simulator,app,plugins}) 
_method simulator_manager.run_protocol( p_config ) 
 
_pragma(classify_level=basic, topic={simulator,app,plugins}) 
_method simulator_manager.export_data( p_config ) 
 
_pragma(classify_level=basic, topic={simulator,app,plugins}) 
_method simulator_manager.toggle_run_inaccurate( p_config ) 
 
_pragma(classify_level=basic, topic={simulator,app,plugins}) 
_method simulator_manager.help_wanted( _optional p_id ) 
 
_pragma(classify_level=basic, topic={simulator,geometry}) 
_method common_math_mixin.get_xy_for_triangle( p_distance, p_angle ) 
 
_pragma(classify_level=basic, topic={simulator,geometry}) 
_method common_math_mixin.get_xy_for_boundary( p_distance, p_angle ) 
 
_pragma(classify_level=basic, topic={simulator,geometry}) 
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_method common_math_mixin.get_xy_from_trail( p_distance, p_coord_a, 
p_coord_b ) 
 
_pragma(classify_level=basic, topic={simulator,geometry}) 
_method voronoi_diagram.new() 
 
_pragma(classify_level=basic, topic={simulator,geometry}) 
_method voronoi_diagram.construct_empty_circles( p_config ) 
 
_pragma(classify_level=basic, topic={simulator,geometry}) 
_method voronoi_diagram.find_neighbour_for( p_sensor, p_set ) 
 
_pragma(classify_level=basic, topic={simulator,geometry}) 
_method voronoi_diagram.find_vp_neighbours_for( p_tin, p_sensor ) 
 
_pragma(classify_level=basic, topic={simulator,geometry}) 
_method voronoi_diagram.find_direct_neighbours_for( p_sensor, p_set ) 
 
_pragma(classify_level=basic, topic={simulator,geometry}) 
_method voronoi_diagram.find_circumcenter_for( p_set ) 
 
_pragma(classify_level=basic, topic={simulator,geometry}) 
_method voronoi_diagram.construct_diagram( p_config ) 
 
_pragma(classify_level=basic, topic={simulator,geometry}) 
_method voronoi_diagram.get_diagram_coverage_hole( p_config ) 
 
_pragma(classify_level=basic, topic={simulator,geometry}) 
_method voronoi_diagram.calculate_uniformity( p_config ) 
 
_pragma(classify_level=basic, topic={simulator,geometry}) 
_method voronoi_diagram.calculate_local_uniformity( p_config, p_si ) 

B.2 Protocols 
_pragma(classify_level=basic, topic={simulator,protocol}) 
coverage_protocol.define_shared_variable(:name, "", :public) 
 
_pragma(classify_level=basic, topic={simulator,protocol}) 
_abstract _method coverage_protocol.init( p_config ) 
 
_pragma(classify_level=basic, topic={simulator,protocol}) 
_abstract _method coverage_protocol.run() 
 
_pragma(classify_level=basic, topic={simulator,protocol}) 
_abstract _method coverage_protocol.reset() 
 
_pragma(classify_level=basic, topic={simulator,protocol}) 
_abstract _method coverage_protocol.stop() 
 
_pragma(classify_level=basic, topic={simulator,vec,protocol}) 
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_method coverage_protocol.move_sensor( p_config, p_sensor, p_coord ) 
 
_pragma(classify_level=basic, topic={simulator,vec,protocol}) 
_method coverage_protocol.get_coverage_for?( p_sensor ) 
 
_pragma(classify_level=basic, topic={simulator,vec,protocol}) 
_method vec_protocol.init( p_config ) 
 
_pragma(classify_level=basic, topic={simulator,vec,protocol}) 
_method vec_protocol.run() 
 
_pragma(classify_level=basic, topic={simulator,vec,protocol}) 
_method vec_protocol.discovery( p_config ) 
 
_pragma(classify_level=basic, topic={simulator,vec,protocol}) 
_method vec_protocol.get_neighbours_for( p_config, p_sensor, p_tin, p_ht ) 
 
_pragma(classify_level=basic, topic={simulator,vec,protocol}) 
_method vec_protocol.calculate_boundary_force_for( p_roi ) 
 
_pragma(classify_level=basic, topic={simulator,vec,protocol}) 
_method vec_protocol.moving( p_nsi, p_si, p_davg ) 
 
_pragma(classify_level=basic, topic={simulator,vec,protocol}) 
_method vec_protocol.calculate_average_for( p_config ) 
 
_pragma(classify_level=basic, topic={simulator,vec,protocol}) 
_method vec_protocol.reset() 
 
_pragma(classify_level=basic, topic={simulator,vec,protocol}) 
_method vec_protocol.stop() 
 
_pragma(classify_level=basic, topic={simulator,vor,protocol}) 
_method vor_protocol.init( p_config ) 
 
_pragma(classify_level=basic, topic={simulator,vor,protocol}) 
_method vor_protocol.run() 
 
_pragma(classify_level=basic, topic={simulator,vec,protocol}) 
_method vor_protocol.get_farthest_vertex( p_si ) 
 
_pragma(classify_level=basic, topic={simulator,vec,protocol}) 
_method vor_protocol.move_sensor( p_si, p_d_asi, p_sl, p_v_coord ) 
 
_pragma(classify_level=basic, topic={simulator,vec,protocol}) 
_method vor_protocol.moving() 
 
_pragma(classify_level=basic, topic={simulator,vec,protocol}) 
_method vor_protocol.discovery( p_config ) 
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_pragma(classify_level=basic, topic={simulator,vor,protocol}) 
_method vor_protocol.reset() 
 
_pragma(classify_level=basic, topic={simulator,vor,protocol}) 
_method vor_protocol.stop() 
 
_pragma(classify_level=basic, topic={simulator,ogdc,protocol}) 
_method ogdc_protocol.init( p_config ) 
 
_pragma(classify_level=basic, topic={simulator,ogdc,protocol}) 
_method ogdc_protocol.run() 
 
_pragma(classify_level=basic, topic={simulator,ogdc,protocol}) 
_method ogdc_protocol.reset() 
 
_pragma(classify_level=basic, topic={ simulator,ogdc,protocol}) 
_method ogdc_protocol.stop() 
 
_pragma(classify_level=basic, topic={ simulator,ogdc,protocol}) 
_method ogdc_protocol.find_nodes(p_sensor) 
 
_pragma(classify_level=basic, topic={ simulator,ogdc,protoco }) 
_method ogdc_protocol.find_next_nodes(p_j_sensor, p_k_sensor) 
 
_pragma(classify_level=basic, topic={ simulator,ogdc,protocol}) 
_method ogdc_protocol.get_random_node() 
 
_pragma(classify_level=basic, topic={simulator,bidding,protocol}) 
_method ogdc_protocol.get_node_closest_to(p_coord) 
 
_pragma (classify_level=basic, topic={simulator,ccp,protocol}) 
_method ccp_protocol.init( p_config ) 
 
_pragma (classify_level=basic, topic={simulator,ccp,protocol}) 
_method ccp_protocol.run() 
 
_pragma (classify_level=basic, topic={simulator,ccp,protocol}) 
_method ccp_protocol.reset() 
 
_pragma (classify_level=basic, topic={simulator,ccp,protocol}) 
_method ccp_protocol.stop() 
 
_pragma (classify_level=basic, topic={simulator,ccp,protocol}) 
_method ccp_protocol.calculate_eligibility(p_sensor) 
 
_pragma (classify_level=basic, topic={simulator,ccp,protocol}) 
_method ccp_protocol.get_union(p_neighbours) 

B.3 Database Exemplars 
_pragma(classify_level=basic, topic={simulator,map_objects}) 
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sensor.define_shared_variable( :area_rad, 1, :public ) 
 
_pragma(classify_level=basic, topic={simulator,map_objects}) 
sensor.define_shared_variable( :comm_rad, 1, :public ) 
 
_pragma(classify_level=basic, topic={simulator,map_objects}) 
sensor.define_shared_variable( :inaccurate_offset, 0, :public ) 
 
_pragma(classify_level=basic, topic={simulator,map_objects}) 
sensor.define_shared_variable( :neighbours, {}, :public ) 
 
_pragma(classify_level=basic, topic={simulator,map_objects}) 
sensor.define_shared_variable( :movement_table, hash_table.new(), :public ) 
 
_pragma(classify_level=basic, topic={simulator,map_objects}) 
_method sensor.movement_vector 
 
_pragma(classify_level=basic, topic={simulator,map_objects}) 
_method sensor.movement_vector << p_value 
 
_pragma(classify_level=basic, topic={simulator,map_objects}) 
_method sensor.deploy( _optional p_area_rad, p_comm_rad ) 
 
_pragma(classify_level=basic, topic={simulator,map_objects}) 
_method sensor.clean() 
 
_pragma(classify_level=basic, topic={simulator,map_objects}) 
_method sensor.activate() 
 
_pragma(classify_level=basic, topic={simulator,map_objects}) 
_method sensor.deActivate() 
 
_pragma(classify_level=basic, topic={simulator,map_objects}) 
_method sensor.set_sensor_range( _optional p_new_area ) 
 
_pragma(classify_level=basic, topic={simulator,map_objects}) 
_method sensor.set_communication_range( _optional p_new_comm ) 
 
_pragma(classify_level=basic, topic={simulator,map_objects}) 
_method sensor.set_location( p_new_coord ) 
 
_pragma(classify_level=basic, topic={simulator,map_objects}) 
_method sensor.move_to( p_new_coord, p_plot_trail? ) 
 
_pragma(classify_level=basic, topic={simulator,map_objects}) 
_method sensor.reset() 
 
_pragma(classify_level=basic, topic={simulator,map_objects}) 
_method sensor.get_distance_traveled() 
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_pragma(classify_level=basic, topic={simulator,geometry}) 
_method sensor.get_coverage_hole_for( ) 
 
_pragma(classify_level=basic, topic={simulator,map_objects}) 
_method sensor.insert_trigger() 
 
_pragma(classify_level=basic, topic={simulator,map_objects}) 
_method sensor.commit() 
 
_pragma(classify_level=basic, topic={simulator,map_objects}) 
_method sensor.calc_location 
 
_pragma(classify_level=basic, topic={simulator,map_objects}) 
_method sensor.move_from_vector( _optional p_clear_rope? ) 
 
_pragma(classify_level=basic, topic={simulator,map_objects}) 
export_data.define_shared_variable( :s_distance_moved, rope.new(), :public ) 
 
_pragma(classify_level=basic, topic={simulator,map_objects}) 
export_data.define_shared_variable( :s_coverage_hole, rope.new(), :public ) 
 
_pragma(classify_level=basic, topic={simulator,map_objects}) 
export_data.define_shared_variable( :c_coverage_hole, rope.new(), :public ) 
 
_pragma(classify_level=basic, topic={simulator,map_objects}) 
export_data.define_shared_variable( :c_active, rope.new(), :public ) 
 
_pragma(classify_level=basic, topic={simulator,map_objects}) 
export_data.define_shared_variable( :c_mobile, rope.new(), :public ) 
 
_pragma(classify_level=basic, topic={simulator,map_objects}) 
_method export_data.init() 
 
_pragma(classify_level=basic, topic={simulator,map_objects}) 
_method export_data.reset_data() 
 
 

 
 
 




