

Location Inaccuracies in WSAN Placement Algorithms

By

Gareth Michael Nicholls

February 2010

Submitted in partial fulfilment of the requirements for the degree Master of
Science (Computer Science) in the Faculty of Engineering, Built Environment

and Information Technology, University of Pretoria, Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

I declare that the thesis that I hereby submit for the degree MSc Computer Science at
the University of Pretoria is my own work and has not previously been submitted by
me for degree purposes at any other university or institution.

___________________________ _________________
 DATE

 Department of Computer Science

Wisdom, Strngth and Beauty

 iii

ABSTRACT

The random deployment of Wireless Sensor and Actuator Network (WSAN)

nodes in areas often inaccessible, results in so-called coverage holes – i.e. areas in the

network that are not adequately covered by nodes to suit the requirements of the

network. Various coverage protocol algorithms have been designed to reduce or

eliminate coverage holes within WSANs by indicating how to move the nodes. The

effectiveness of such coverage protocols could be jeopardised by inaccuracy in the

initial node location data that is broadcast by the respective nodes. This study

examines the effects of location inaccuracies on five sensor deployment and

reconfiguration algorithms – They include two algorithms which assume that mobile

nodes are deployed (referred to as the VEC and VOR algorithms); two that assume

static nodes are deployed (referred to as the CNPSS and OGDC algorithms); and a

single algorithm (based on a bidding protocol) that assumes a hybrid scenario in

which both static and mobile nodes are deployed. Two variations of this latter

algorithm are studied.

A location simulation tool was built using the GE Smallworld GIS application

and the Magik programming language. The simulation results are based on three

above-mentioned deployment scenarios; mobile, hybrid and static.

The simulation results suggest the VOR algorithm is reasonably robust if the

location inaccuracies are somewhat lower than the sensing distance and also if a high

degree of inaccuracy is limited to a relatively small percentage of the nodes. The VEC

algorithm is considerably less robust, but prevents nodes from drifting beyond the

boundaries in the case of large inaccuracies. The bidding protocol used by the hybrid

algorithm appears to be robust only when the static nodes are accurate and there is a

low degree of inaccuracy within the mobile nodes. Finally the static algorithms are

shown to be the most robust; the CPNSS algorithm appears to be immune to location

inaccuracies whilst the OGDC algorithm was shown to reduce the number of active

nodes in the network to a better extent than that of the CPNSS algorithm.

Keywords: Geo-information systems, coverage hole, Voronoi polygons, Delaunay
triangle, mote, node

Degree: Magister Scientia
Supervisor: Prof D.G. Kourie
Co-Supervisor: T. Strauss

 v

ACKNOWLEDGEMENTS
My thanks to the following people who helped me directly, inspired me or

simply encouraged me during the writing of this study. Derrick Kourie and Tinus

Strauss for the countless reviews and re-reviews, help, comments and general

commitment to helping me finish. My family, my Mom and Dad, Jason Nicholls.

Christiaan Marais for his statistical help. Hardus du Toit and Herman Smith for the

Magik development assistance. To GENS Smallworld, PowerTech IST and Paresh

Joshi for the introduction to Smallworld and use of development licenses.

It goes without saying, I hope, none of these people are responsible for any errors or

inconsistencies…

 vi

Table of Contents
Abstract .. i

1 Chapter 1: Introduction .. 1

1.1 Introduction .. 2

1.2 Need for Research ... 3

1.3 Approach .. 3

1.4 Research Questions ... 3

1.5 The Way Ahead .. 4

2 Chapter 2: Background Information - WSAN .. 5

2.1 Wireless Sensor and Actuator Networks .. 6

2.2 Deployment and Reconfiguration .. 10

2.2.1 Mobile Sensor Networks ... 10

2.2.2 Hybrid Sensor Networks ... 11

2.2.3 Static Sensor Networks ... 12

2.3 Location Dependency ... 14

2.4 Voronoi polygons ... 18

2.4.1 Voronoi polygons and the Relationship to Coverage Holes.................. 19

2.4.2 Construction of Voronoi polygons ... 20

2.5 Chapter Conclusion ... 22

3 Chapter 3: Background Information - GIS and Simulation 23

3.1 GIS Aided Simulation Platform .. 24

3.1.1 Geographical Information Systems .. 25

3.1.2 Data Representation .. 29

3.1.3 GENS Smallworld Core Application ... 33

3.2 Proposed Architecture ... 34

3.2.1 Simulator Interface .. 38

3.2.2 Development of Algorithms .. 40

3.3 Proposed Assesment ... 43

3.3.1 Experiments .. 43

3.4 Chapter Conclusion ... 44

4 Chapter 4: Methods and Procedures ... 45

4.1 Experiments .. 46

4.1.1 Control Experiment ... 48

4.1.2 Initial Deployment Sensitivity ... 48

4.1.3 Graduated Inaccuracies - Sensitivity to Inaccuracy I 51

4.1.4 High-Inaccuracy – Sensitivity to Inaccuracy II 52

4.1.5 Termination Criterion Sensitivity .. 52

4.1.6 Overview of Experiments .. 53

4.2 Algorithms .. 55

4.2.1 Mobile Algorithms .. 55

4.2.2 Hybrid Algorithms .. 59

4.2.3 Static Algorithms .. 63

4.3 Chapter Conclusion ... 67

5 Chapter 5: Analysis and Results ... 68

5.1 Mobile Algorithms .. 69

5.1.1 VECtor-based Algorithm (VEC) ... 69

5.1.2 VORonoi-based Algorithm (VOR) .. 74

 vii

5.1.3 Conclusion .. 79

5.2 Hybrid Algorithms .. 80

5.2.1 Bidding Protocol – Variation I ... 80

5.2.2 Bidding Protocol – Variation II ... 86

5.2.3 Conclusion .. 88

5.3 Static Algorithms .. 89

5.3.1 Coverage-Preserving Node Scheduling Scheme (CPNSS) 89

5.3.2 Optimal Geographical Density Control (OGDC) 96

5.3.3 Conclusion .. 101

5.4 Chapter Conclusion ... 102

6 Chapter 6: Conclusion ... 103

6.1 Conclusion .. 104

6.2 Related Work .. 105

6.3 Future Work.. 106

7 List of Figures ... 108

8 List of Tables ... 110

9 Glossary .. 111

10 References ... 115

A Addendum – Tables ... 118

A.1 Simulator Comparison Matrix (Becker 2007) .. 118

B Addendum - Development API .. 127

B.1 Simulator .. 127

B.2 Protocols ... 129

B.3 Database Exemplars .. 131

1 Introduction

List of Figures

 8

2 List of Figures
Figure 2-1 - MicroStrain Base station. ... 6

Figure 2-2 - Two motes, by Sun Microsystems (Sunspots) and MicroStrain. 7

Figure 2-3 - Reconfiguration of a mobile network. .. 11

Figure 2-4 - Reconfiguration of a hybrid network. ... 12

Figure 2-5 - Reconfiguration of a static network. ... 13

Figure 2-6 - Using sin to calculate the length of a, b .. 16

Figure 2-7 - Calculation of location by radiolocation / triangulation. 17

Figure 2-8 - Voronoi-diagram for a randomly placed set of points on a 2-dimensional
plane .. 19

Figure 2-9 - Determining the existence of a coverage hole within to ROI. 20

Figure 2-10 - Voronoi polygon Gp(S) of point (S) (Wang 2004). 21

Figure 3-1 - Timeline to the development of modern GIS solutions. 27

Figure 3-2 - Layers in a map topology. .. 29

Figure 3-3 - Comparison of Raster and Vector image data-types. 30

Figure 3-4 - Spherical Co-ordinate System vs. Rectangular Co-ordinate System. 31

Figure 3-5 - Representation of conic projection (GENS) .. 32

Figure 3-6 - Smallworld Application containing a topology of Robben Island. 33

Figure 3-7 - Simulator application architecture .. 35

Figure 3-8 - Simulator data-model ... 36

Figure 3-9 - Custom database objects with associated attributes............................... 36

Figure 3-10 - An example ROI in relation to the map of Robben Island as seen during
sensor reconfiguration ... 38

Figure 3-11 - Proposed Simulator Application. .. 39

Figure 3-12 - Class diagram for the development of new coverage algorithm. 40

Figure 3-13 - UML diagram containing all exemplars within the simulation
application. .. 42

Figure 4-1 - Initial starting scenarios. .. 47

Figure 4-2 - Initial deployment of nodes under fifteen different scenarios for mobile
and hybrid networks. ... 49

Figure 4-3 - Initial deployment of nodes under fifteen different scenarios for static
networks. ... 50

Figure 4-4 - (a) Virtual Forces between two sensors, (b) Virtual Force exerted by a
boundary. .. 56

Figure 4-5 - Movement of nodes using VOR (Wang 2004). 58

Figure 4-6 - Duplicate healing at P by Sc and Sd (Wang et al. 2003a) 61
Figure 4-7 - Coverage of node Si by neighbouring nodes (Tian et al. 2002). 64
Figure 4-8 - Determining the neighbouring node of Si. .. 66

Figure 5-1 - Execution of the VEC Algorithm over four iterations. 70

Figure 5-2 - Alternative randomly deployed starting scenarios for the VEC algorithm.
 .. 70

Figure 5-3 - Using outliers to compare the resulting coverage hole of each starting
scenario (VEC). ... 71

Figure 5-4 - Increasing the percentage of inaccurate nodes (VEC). 72

Figure 5-5 - Coverage hole(%) related to an increase in location inaccuracy (VEC). 73

Figure 5-6 - Coverage hole (%) by number of iterations (VEC) 74

Figure 5-7 - Execution of the VOR Algorithm over four iterations. 74

List of Figures

 9

Figure 5-8 - Alternative randomly deployed starting scenarios for the VOR algorithm.
 .. 75

Figure 5-9 - Using outliers to compare the resulting coverage hole of each starting
scenario (VOR). ... 76

Figure 5-10 - Increasing the percentage of inaccurate nodes (VOR). 77

Figure 5-11 - Coverage hole (%) related to an increase in location inaccuracy (VOR).
 .. 78

Figure 5-12 - Inaccurate calculation of a Voronoi polygon. 79

Figure 5-13 - Coverage hole (%) by number of iterations (VOR) 79

Figure 5-14 - Results of the bidding algorithm after the control experiment. 81

Figure 5-15 - Coverage hole results of the control experiment. 82

Figure 5-16 - Flaws with the bidding algorithm. .. 83

Figure 5-17 - Alternative randomly deployed starting scenarios for the Bidding
algorithm. .. 84

Figure 5-18 - Increasing the percentage of inaccurate nodes (Bidding Protocol I). ... 85

Figure 5-19 - Coverage hole(%) related to an increase in location inaccuracy (Bidding
Protocol I). .. 85

Figure 5-20 - Increasing the percentage of inaccurate nodes (Bidding Protocol II). .. 87

Figure 5-21 - Coverage hole(%) related to an increase in location inaccuracy (Bidding
Protocol II). ... 87

Figure 5-22 - Execution of the CPNS Algorithm for control purposes 90

Figure 5-23 - Fifteen random starting position. .. 92

Figure 5-24 - Location inaccuracy in determining node neighbours. 93

Figure 5-25 - Increasing the percentage of inaccurate nodes (CPNSS). 94

Figure 5-26 - Coverage hole (%) related to an increase in location inaccuracy
(CPNSS). ... 94

Figure 5-27 - Network with 100 randomly placed nodes. ... 95

Figure 5-28 - Coverage hole (%) related to an increase in location inaccuracy
(CPNSS) with 100 nodes. .. 96

Figure 5-29 - Control experiment over 50 iterations. .. 97

Figure 5-30 - Alternative randomly deployed starting scenarios for the OGDC
algorithm. .. 98

Figure 5-31 - Increasing the percentage of inaccurate nodes (OGDC). 99

Figure 5-32 - Coverage hole (%) related to an increase in location inaccuracy
(OGDC). ... 100

Figure 5-33- Coverage hole (%) related to an increase in location inaccuracy (OGDC)
with 100 nodes.. 101

List of Tables

 10

3 List of Tables

Table 2-1 - Comparison of proposed solutions to coverage hole problem. 14

Table 2-2 - Pseudo code for the construction of a Voronoi-diagram. 21

Table 4-1 - Experiment Summary .. 53

Table 4-2 - VEC algorithm pseudo-code. ... 56

Table 4-3 - VEC algorithm pseudo-code. ... 59

Table 4-4 - Bidding Algorithm pseudo-code. ... 61

Table 4-5 – CPNSS pseudo-code. .. 65

Table 4-6 – OGDC pseudo-code. ... 66

1 Introduction

Chapter 1

Introduction

Introduction

What we call the beginning
 is often the end.

And to make an end is
 to make a beginning.

The end is where we start from.

T.S. Eliot, Four Quartets, 1943

A Lockheed C-5 cargo plane1 flies over Robben Island2 at an altitude of 1000

feet and a speed of 600km/h. The cargo hold opens up and thousands of small

sensory devices, approximately 20 per cubic meter are deployed. As the devices come

to a standstill on an open field they broadcast a signal to all listening nodes. The

signal contains their current location, deployment status and signal strength. A small

percentage of the nodes broadcast to the rest a message that their coverage area does

contain enough nodes to be adequately monitored. On the other side of the field a

hand full of self-organising devices, devices that are capable of movement, respond

back and move into a position to assist the requesting nodes. The purpose of these

devices is to sense and track penguin movement on the island.

1.1 Introduction
Wireless Sensor and Actuator Networks (WSANs) have seen a growth in

research within the past few years. Research interests include hardware development

to reduce the manufacturing costs, software development in the form of network

management interfaces systems (NMIS), network configuration and routing

algorithms. The deployment of these networks into the real-world is prone to failure

of nodes within the network, or unpredictable network layout. The following study

attempts to evaluate so-called deployment and reconfiguration algorithms, or simply

coverage algorithms. The purpose of these algorithms is to solve coverage holes

within the network topology, where coverage holes are defined to be areas in the

network that are not adequately covered by sensors.

1 Commonly known as the Lockheed Galaxy, is a cargo plane used by the USAF to transport military
cargo and supplies (http://www.lockheedmartin.com/products/c5/).
2 Robben Island is a small island off the West Coast of Cape Town, South Africa. The island, which
directly translated is Seal Island in Dutch, was used as a prison between 1961 and 1991. The island is
now owned by the state and is a popular tourist attraction due to its political past and current abundance
of wildlife (ICOMOS 1999)

Introduction

Meguerdichian et al. (2001a) present a study focussed on the coverage

problems presented in Wireless Sensor Networks. The study divides networks into

two key categories, namely deterministic coverage and stochastic coverage. They

also present various ways of determining coverage holes within the network. One

such algorithm is that of using Voronoi polygons, a key component in computational

geometry. The components making up the studies by Meguerdichian et al. (2001 a, b)

form key aspects of this study and are discussed in detail further on.

1.2 Need for Research
As we will present in the following study, there exists many algorithms to

manage post deployment of networks, reducing node redundancy and coverage holes.

However almost all of the algorithms make the assumption of accurate location

information provided to the nodes in the network. This factor, as far as can be

determined, is never taken into account by the original authors of the algorithms. This

study attempts to analyse the effects location have on the deployment and

reconfiguration in a mock environment simulated with the aid of GIS systems.

1.3 Approach
For the purposes of examining the extent to which the deployment and

reconfiguration algorithms are capable of reducing coverage holes, a simulator

environment was set up, using a custom-designed simulation tool. Six simulation

experiments are performed on each of the reconfiguration algorithms. The

deployment setup and environment are kept constant to allow for equal comparison

between algorithms and experiments.

In the study presented, we are particularly interested in coverage in terms of

overall sensing capability. It is assumed that the extent of coverage in terms of inter-

node communication signals is sufficient for all the nodes to communicate to the base

station via the network. During this and further chapters the terms nodes, sensors,

devices and actuators are used interchangeably

1.4 Research Questions
Chapter 2 examines the relationship between location and coverage

algorithms. The estimated location of the nodes in a real-world environment cannot

hold to the assumption that the location will always be accurate. This study evaluates

five (with a sixth being a variation of assessment) deployment and reconfiguration

Introduction

algorithms based on levels of location inaccuracy. The following questions are

proposed:

• What are the effects of location inaccuracy on deployment and reconfiguration

algorithms used in WSANs?

• How do these results compare between mobile, hybrid and static networks?

1.5 The Way Ahead
Chapter 2 below introduces WSANs and the need for coverage reconfiguration

and deployment algorithms. We show the main assumption of the algorithms to be

that of location awareness amongst the nodes and hence the need to evaluate the

effects of location inaccuracies on the algorithms. The chapter shows how location

inaccuracies may typically be presented in a real-world context. Chapter 3 proposes

an architecture for a GIS based simulator. By integrating a simulation tool with that

of a GIS platform, we are able to place nodes within a real-world environment. The

GIS environment also provides an industry tested set of mathematical libraries that

may assist in the assessment of the algorithms. Chapter 4 then describes each of the

five algorithms evaluated. The chapter also examines the methods and procedures

used for evaluation. The chapter closes by examining the initial deployment of nodes

as well as the introduction of location inaccuracies. The results of the simulator are

presented in Chapter 5 to indicate each of the algorithms’ effectiveness in comparison

to the experiments. Finally in Chapter 6 a conclusion is drawn from the results found

in Chapter 5. In this chapter we present further areas of research for future study as

well as current related topics.

2 Background Information - WSAN

Chapter 2

Background Information-

WSAN

Background Information - WSAN

“Everything is related to everything else,
but nearby things are more
related than distant things”

W. Tobler, 1970 –

1st law of Geography

This Chapter outlines the concept of Wireless Sensor and Actuator Networks

(WSAN); it builds a foundation for further Chapters, discussions and findings.

Section 2.1 discusses the concepts of WSAN design and deployment; Sections 2.2

describes how these networks are deployed with a special emphasis on the types of

networks that can be deployed. The chapter then introduces the concepts of coverage,

coverage holes and Voronoi -polygons. We then see how these concepts are tightly

coupled to an assumption of location information being provided to the nodes within

the network.

2.1 Wireless Sensor and Actuator Networks
Recent developments in micro-electronic mechanical systems (MEMS)

including the development of wireless transfer mediums and micro-robotics have seen

a growth in the field of WSAN research. These networks consist of one or more base

stations, Figure 2-1, and tiny nodes or motes (potentially thousands of them), Figure

2-2, which are scattered in a given region of interest (ROI), to sense and monitor the

surroundings (Alkyildiz et al. 2002).

Figure 2-1 - MicroStrain Base station.

Background Information - WSAN

Figure 2-2 - Two motes, by Sun Microsystems (Sunspots) and MicroStrain.

The nodes have hardware onboard capable of sensing seismic activity,

temperature, acoustics, and visual objects. If need be almost any other form of

sensing can be installed. (Alkyildiz et al. 2002, Xbow, Java SunSpots, MicroStrain)

These networks are different from the conventional mobile ad-hoc networks because

of their ability to sense data, to filter data at the node level, and to relay the processed

data to base stations via the network for further processing (Alkyildiz et al. 2002). By

passing the data along neighbouring nodes, a global view of the area is obtained by

the network. The base stations are components within the WSAN that are able to

contain greater computational, energy and communication abilities. The nodes may

also be equipped with actuators that allow them to react and perhaps change their

environment, based on messages received from the base station.

Alkyildiz et al. (2002); Ahmed et al. (2005) and Santi (2005) were used to

compile the following list of aspects that should be taken into account before the

sensors are deployed over a ROI.

Energy conservation – Unlike wired networks, wireless sensor networks have a

limited energy supply. Once the nodes are deployed, replacement or recharging of the

energy source in the ROI is sometimes impractical or impossible. Thus, a key goal in

WSAN is to reduce the energy consumption of nodes within the network.

Limited bandwidth – The most commonly used communication standard in WSAN is

that of IEEE 802.11. The theoretical threshold of this standard is 54Mb/sec, however

in real-world deployment, simultaneous communications increases radio interference.

The degree of interference depends on the density of deployment, i.e. the higher the

concentration of nodes that are deployed over the ROI, the higher the degree of radio

interference.

Background Information - WSAN

Unstructured and varying topologies – When the nodes are deployed from a given

source, for example the C-5 aircraft, the final layout of the network is unpredictable.

Node failure during deployment as well as during implementation changes the layout

of the network dynamically.

Fault tolerance – Fault tolerance is linked to varying topologies. During the

deployment phase or lifetime of the network, nodes may malfunction or run low on

energy. This failure of nodes, in theory, should not affect the overall purpose of the

network.

Low quality in communication – Radio interference as well as different environmental

medium such as water, soil and vegetation reduce the quality of the signal strength.

Data processing – The processing power within the network is limited. When

deployment of a WSAN is done, communication of data between nodes should be

considered. This aspect is tightly coupled with that of communication quality and low

bandwidth. The nodes should be able to determine what sensed data should be passed

on to neighbouring nodes.

Scalability – A final detail that should be considered is that of scalability. WSANs

can comprise of thousands of nodes. Scalability is concerned with how the network

will handle growth in workload or support an increase in the number of nodes.

Meguerdichian et al. (2001a) present two forms of deployment; the first is that

of deterministic coverage which is a network that has been deployed to a specific

shape known by the network designers. Deterministic networks provide an ideal

network where the designers have prior knowledge of the position of nodes within the

network. Secondly the study presents stochastic coverage. In many of the potential

working environments3 such as toxic disaster areas, remote harsh fields or even

remote planetary exploration, sensor deployment cannot be performed manually. In

the example for nature observation on Robben Island, an aerial deployment source is

used to deploy the sensors. However, by using techniques such as this, the final

location of the nodes cannot be predicted and deemed as optimal. Furthermore

malfunction of nodes’ results in further network layout changes. Thus, it can be said

the layout of the network is unpredictable. Such random deployments will invariably

3 BP is currently implementing WSN to transform business processes, from inventory control to
monitoring pumps (CompuWorld 2005)

Background Information - WSAN

result in the occurrence of coverage holes within the ROI. Ahmed et al. (2005)

describe the notion of a coverage hole (or rather the absence thereof) as follows:

“Given a set of sensors and a target area, no coverage hole

exists in the target area, if every point in that area is covered by

at least k sensors, where k is the required degree of coverage for

a particular application.”

Meguerdichian et al. (2001 a) make the claim that coverage can be considered

as the measure of quality of service of the sensor network. Ahmed et al. (2005)

confirm this claim: the service provided by the sensor network is dependent on the

ability of the sensors to monitor the area adequately, based on the degree of coverage

required. As with the example used before, the nodes on Robben Island reported that

areas within the network did not meet the above criteria.

The inverse of coverage holes also applies. This takes the form of over-

coverage; these are areas in the network that waste nodes sensing ability by

duplicating coverage in specific areas.

A distinction should be made between the extent to which a node is covered

with respect to communication signals that are sent between nodes; and the extent to

which sensing capability that radiates from the various nodes cover the ROI. The

extent of coverage will typically differ from one case to the other.

Various nodes within the network could be referred to as movement-assisted.

By movement-assisted nodes, we refer to nodes that are able to move within the ROI

via some agent. We refer to research such as (Khan et al. 1999, Heo et al. 2003,

Wang et al. 2003a, Wang et al. 2003b) for active movement-assisted networks. The

researchers discuss nodes that are capable of self-movement as well as nodes that use

an external source for movement; such a source could be an unmanned aerial vehicle

or an autonomous robot.

The deployment of WSAN can be classified in three distinct groups based on

the percentage of movement-assisted or self-organising nodes within the network: (i)

Mobile networks; (ii) Static networks; and (iii) Hybrid networks.

To solve problems of coverage holes, various self-organising or coverage

algorithms have been developed to allow the networks to reconfigure their network

Background Information - WSAN

topologies based on the requirements of the application. The reconfiguration

algorithms give the network the ability to reduce coverage holes in much the same

way as described in the penguin observation example used earlier.

2.2 Deployment and Reconfiguration
Several researchers (Wang et al. 2003a, Wang et al. 2003b, 2004; Cortes et al.

2002; Generiwal et al. 2004; Huang et al. 2003; Heo et al. 2003) have presented

solutions to obtain the required degree of coverage over the network by reconfiguring

the nodes position. A generalised problem statement is to minimise the coverage

holes or over-coverage with constraints on deployment and reconfiguration time as

well as energy used by each node (Wang et al. 2004, Ahmed et al. 2005). This

optimisation of placement of nodes within the ROI can be classified as a spatial

resource allocation problem. The study of this optimal placement is the subject of a

discipline called location optimisation (Cortes et al. 2002). Location optimisation is a

broad field of study ranging from the study of WSAN networks to the study of animal

territorial behaviour (Cortes et al. 2002, Righton 2006). In the case of stochastic

deployment, or deployment that is random, optimal placement is done by

reconfiguring and reorganising the network.

2.2.1 Mobile Sensor Networks

Mobile sensor networks are networks that are deployed with all the nodes

being movement-assisted. Thus, each node is able to move and reconfigure its

location. A typical problem statement for mobile networks is to minimise coverage

holes with the same constraints on deployment and reconfiguration time and energy as

well as the distance moved by each node (Ahmed et al. 2005).

Background Information - WSAN

Figure 2-3 - Reconfiguration of a mobile network.

Figure 2-3 represents a hypothetical reconfiguration of a mobile network.

Within a densely populated area in the network, reconfiguration takes place in the

form of nodes moving away from each other, spreading themselves out over a greater

area or moving into areas that are not adequately covered. The nodes within the

network relocate to a location that will allow the node to optimally cover the ROI.

The current study focuses on two movement-assisted reconfiguration

algorithms implemented by Wang et al. (2004). The algorithms detect the presence of

coverage holes via the aid of Voronoi polygons. After the detection of a coverage

hole, the purpose of the protocols is to calculate a new target location for the node,

where the target location is defined as the position where the node can cover its local

area optimally.

2.2.2 Hybrid Sensor Networks

Due to the energy requirements and manufacturing costs of movement-

assisted sensors, a proposed solution is to limit the number of mobile nodes. The

movement-assisted nodes are able to assist in deployment and network repair by

moving to appropriate locations within the network topology.

Background Information - WSAN

Figure 2-4 - Reconfiguration of a hybrid network.

Figure 2-4 shows the movement of two mobile sensors into areas within the

ROI. The static sensors calculate the presence of coverage holes and determine the

locations to which the mobile nodes should move.

Two variations of a hybrid sensor network algorithm are assessed in the

current study. The algorithm, presented by Wang et al. (2003a) is an extension to

their movement-assisted algorithms presented in Wang et al. (2004). The algorithm,

which uses a multiple mobile sensor approach (discussed further in Chapter 4), allows

static sensors to bid for the usage of the many mobile sensors to solve the static

nodes’ local coverage holes.

The first variation of the algorithm is assessed from the perspective of the

static nodes being inaccurate. By this we mean that the calculations of location by the

static nodes are deemed to be vulnerable to inaccuracy. The second approach is to

assess the algorithm from the perspective of the mobile nodes. In this case we deem

the mobile nodes to be inaccurate.

2.2.3 Static Sensor Networks

Due to the nodes within a static network being fixed to their initial location

during the lifetime of the network, the static nodes are limited in their ability to

reconfigure the networks optimally i.e. to repair network configuration.

Reconfiguration of static networks are concerned with topology /density control. By

topology we refer to the way the network is configured based on location i.e. the way

the network’s physical layout. Density control is the reference made to the

Background Information - WSAN

concentration of nodes within a given area or across the entire ROI. Figure 2-5 shows

how a static network is ‘reconfigured’ by switching off certain nodes within the

network or increasing the sensing radius of other nodes to provide coverage. The

nodes are aware of the required coverage needed by the network. The configuration

algorithms determine which nodes within the network should reduce their signal

strength or even switch off temporarily to reduce signal overlapping. This process of

switching nodes on and off is referred to as node scheduling (Tian et al. 2002,

Ruzzelli et al. 2005).

Figure 2-5 - Reconfiguration of a static network.

As in the case of mobile and hybrid networks, two static reconfiguration

algorithms were chosen. These static algorithms are tightly coupled to one another.

Tian (2002) presents the first. The algorithm is an extension on the Low-energy

adaptive clustering hierarchy (LEACH) algorithm (Alkyildiz et al. 2002). The

LEACH algorithm uses clustering to form groups of nodes with a single cluster head.

All sensors within the group, excluding the head, power down and wait for the head

node to notify the sleeping nodes. Randomisation is used to rotate the responsibilities

of the cluster head amongst nodes within the group. Groups are determined based on

the sharing of coverage areas. The algorithm uses this approach of node scheduling;

however nodes decide to turn on or off after discovering neighbouring nodes that can

completely cover its sensing area. The sensing area for the neighbouring nodes is

determined as sectors within its coverage area (Alkyildiz et al. 2002).

The second static algorithm is much the same as the above, implementing a

combination of node clustering and scheduling. The Optimal Geographical Density

Background Information - WSAN

Control Algorithm (OGDC) as presented by Zhang and Hou (2003) is an iterative

algorithm that divides the network lifetime into timed rounds. At each round the

network is ‘woken up’ after which the algorithm is run to determine which nodes are

to hibernate until the next round.

All five of the above-mentioned algorithms are discussed in more detail within

Chapter 4.

2.3 Location Dependency
Table 1 represents a comparison of the various self-organising algorithms

mention in the previous section. Presented by Ahmed et al. (2005), the table outlines

the main assumptions and characteristics of each algorithm. A reoccurring

assumption is that nodes are location aware. However, in practice, location

calculation or estimates are not very accurate. Oliveira et al. (2005 a) identify this as

the localization problem.

Table 2-1 - Comparison of proposed solutions to coverage hole problem.

Category Approach Proposed Solution Main Assumptions Characteristics

Mobile Sensors

Computational

Geometry

VEC, VOR, Minmax Location information Localised, scalable,

distributed.

Co-Fi Location information,

nodes can predict their

death

Single coverage based.

Residual energy

considerations.

Virtual Forces Potential Fields Range and bearing Scalable, distributed.

No local communication

required for localisation

DSS, IDCA Location information Scalable, distributed,

residual energy based.

Sequential Incremental Line of sight for

localisation

Centralised.

Bidirectional

communication with

base station.

Hybrid Sensors

Single Mobile Sensor UAV Predetermined topology

information

Flying robot for

deployment and

network repair.

Inaccuracies using

aerial deployment.

Single Robot Location information Distributed, no multi-

hop communication for

network deployment

and repair.

Multiple Mobile Sensors Bidding Protocol Location information Uses Voronoi-diagram

for single coverage

requirement.

Background Information - WSAN

Category Approach Proposed Solution Main Assumptions Characteristics

Static Sensors

Multiple Coverage

CCP

Location information,

uniform sensing disk

Configurable degree of

coverage, calculated by

intersection points of

sensing circles.

k-UC, k-NC Location information Perimeter coverage,

non-disk sensing model

supported.

Differentiated Location information,

time synchronisation

Grid based

differentiated degree of

coverage.

Single Coverage OGDC Location information,

uniform sensing disk

Residual energy

consideration.

Sponsored Area Location information Sector based coverage

calculations, non-disk

sensing model

supported.

Extended-Sponsored

Area

Location information,

time synchronisation

Uniform disk sensing

model.

As the layout of the network is not predefined, calculating the location of each

node is required. An optimal approach to determine accurately the location of a node

would be to use geo-location by fitting a Global Positioning System (GPS) to each

node in the network. However this solution adds to the manufacturing cost, as well as

to the energy consumption of each node, and this is generally not considered practical.

The usage of GPS is also limited by the environmental conditions, i.e. the availability

of a GPS signal which is dependent on the location of the nodes within a building,

presence of vegetation, etc. all of which introduce a degree of inaccuracy (Kennedy

1996). Thus, normally in a real-life situation, some location algorithm is used to

determine the location of nodes within the network. Triangulation and radio-location

are two basic mathematical approaches used in location calculation algorithms. The

algorithms will accurately calculate location in a 2-D plane. However, in applying

these algorithms, in a real-world placement, with Earth contours and obstacles,

inaccuracies in the calculation of locations are likely to occur.

For completion we discuss the principles of triangulation and radio-location

next. Triangulation is a well-known process of calculating the position of a third

location (C) when two vertices (A, B) are already known. Using the properties of

triangles and the laws of sine, the position of a third point, a vertex, can be calculated.

The sine law states that:

“The sides of a triangle are to one another in the same ratio as

the sines of their opposite angles.”

Background Information - WSAN

Equation 2-1

This statement shown in Equation 2-1 means that the angle between each of

the known vertices and the third vertex is measured, the angle of the third vertex (θ)

can be determined as 180° less the angle at A(α) and B(β). The distance, c, from A to

B is known via the co-ordinates of A and B. Using the ratio sin θ/c, the length of AC

and BC can be calculated, and from this, the co-ordinates of C are easily determined

using a Cartesian plane to represent x and y co-ordinates. Figure 2-6 illustrates the

general idea.

Figure 2-6 - Using sin to calculate the length of a, b

The value x at vertex C can be calculated as x = 180° - 60° - 40°, resulting in x

= 80°. The laws of sine say that the ratio of each line opposite the angle is calculated

as sinθ, where θ is the vertex degree opposite the line. Using this claim the sides are

now in the ratio, 643 : 866 : 985. Using Equation 2-1, it can be said that

a

°40sin
=

b

°60sin
=

10

80sin °

Therefore: a = 10m.
985

866
 = 8.79m,

and b = 10m.
985

643
= 6.52m

Background Information - WSAN

In the context of WSAN, the concept of mesh triangulation is used to calculate

the co-ordinates of nodes within the network. Mesh triangulation is the process of

using more than two neighbours to confirm the location of a point. This is done by

using triangulation for pairs of neighbours to that point, each calculating the location

of the point. Once each pair has a value, the mean position of all the neighbours’

calculated values are set to be the location of that point. Niculescu (2003) shows that

the positions of nodes that do not have a sufficient number of neighbours to calculate

their present location, such as those at the ROI boundary, tend to be less accurate than

those with an abundance neighbours, i.e. at the centre of the ROI.

Figure 2-7 - Calculation of location by radiolocation / triangulation.

Figure 2-7 depicts a typical scenario using mesh triangulation. The darker

triangles represent nodes in the network with GPS capability. Pairs of GPS enabled

nodes calculate the location of a third neighbouring node. Each node that is aware of

its location then calculates the location of another neighbouring node. As can be seen

in the above figure, nodes with neighbours in close proximity, S1, are more likely to

have accurate locations due to the confirmation and recalculation of locations by more

neighbours at different locations than nodes with only two neighbouring nodes, S2.

Based on the same principles as triangulation, radio-location is the process of

finding the location of a node by means of radio waves. Radio signals are sent by

node Si to the neighbouring nodes. The angle (AOA – Angle of Arrival) at which the

signal returns to Si, as well as the time (TOA – Time of Arrival) it takes to return are

used to calculate the location of the neighbouring nodes.

Background Information - WSAN

Using triangulation and radio-location, researchers have developed location

calculation algorithms or localization algorithms, such as the ad-hoc positioning

system (Niculescu 2003), recursive position estimation (Albowicz et al. 2001) and

direct position estimation (Oliveira et al. 2005a) to estimate positions of objects

within a wireless network. Oliveira et al. (2005a) discuss three key components in

determining the overall location of a node: distance estimation, which is responsible

for estimating the distance between two objects, using either radio-location or

triangulation; position computation, which is the component that calculates the

position of an object with the aid of current information such as neighbouring objects

or distance to neighbours, as in the case of mesh triangulation; and finally the

localization algorithm, which is responsible for using the above two criteria and other

information in the calculation of location.

Oliveira et al. (2005a) present a study on the dependency of each of these

criteria and how they affect the overall outcome of location calculation. The study

also presents degrees of error with the calculation, showing that the calculation of a

node’s location within a wireless sensor network cannot be deemed to be completely

accurate. Other researches such as Simon et al. (2004) present inaccuracies within the

location calculation. However they deem the algorithm’s degree of error to be

acceptable for the needs of their applications.

Potential problems arising from location inaccuracies are the inaccurate

calculation of coverage holes as well as optimal positions for nodes to adjust. The

accurate calculation of Voronoi polygons is dependent on the location information

provided. This claim forms a key component of this study, where the study aims at

assessing the impact that inaccuracies will have on the coverage algorithms.

2.4 Voronoi polygons
The construction of a Voronoi-diagram4 is based on Tobler’s first law of

Geography (Sharifzadeh 2004), which states that:

“Everything is related to everything else, but nearby things are

more related than distant things”

The location information about proximity to neighbours allows for the

construction of a Voronoi proximity polygon (or simply Voronoi polygon) around

4 Voronoi-diagrams are often referred to as Voronoi tessellation, Voronoi decomposition or Dirichlet
tessellation (Aurenhammer 1991).

Background Information - WSAN

each node (Aurenhammer 1991). Figure 2-8 shows an example of a Voronoi-diagram

for a set of randomly places points. Before explaining how to construct such a

diagram, an indication is given of how these polygons are used to determine the size

of the coverage holes in a ROI.

Figure 2-8 - Voronoi-diagram for a randomly placed set of points on a 2-dimensional plane

2.4.1 Voronoi polygons and the Relationship to Coverage Holes

The set of Voronoi polygons around all nodes in the ROI constitute a complete

partition of the ROI. In making this claim, it is assumed that the ROI is bounded by a

convex polygon, and using that boundary, the Voronoi polygons are appropriately

adapted so that their sides coincide with those of the ROI.

Each Voronoi polygon indicates a local area of coverage for which a node

should be made responsible. The area of such a Voronoi polygon that falls outside the

circle of coverage of its associated node (as shown in Figure 2-9), can be used to

determine the overall size of the holes in the network.

The total coverage hole can be determined as a percentage within the ROI by

Equation 2-2. The equation shows that the total coverage hole, H, is equal to the area

of the ROI less the union of all the sensors (S) coverage area, where coverage area of

sensor Si is deemed to be the coverage included within the ROI, i.e. excluding is any

coverage that overlaps outside the ROI.

Equation 2-2

H = ROI2 - U
n

i

SiA
1

)(
=

Background Information - WSAN

An example is given in Figure 2-9. The figure shows a WSAN network over a

given ROI. In this particular case, there are not enough nodes to cover the entire ROI,

so coverage holes are inevitable.

Figure 2-9 - Determining the existence of a coverage hole within to ROI.

Within Figure 2-9 the coverage hole areas are represented as the darker regions. The

figure shows a Voronoi-diagram for a specific ROI containing 25 nodes. The nodes

are represented by the + symbol, with the sensor coverage represented by the area of

the circle in white. Using the algorithm above, the percentage of darker regions in

relation to the ROI can be calculated. In this particular case the total coverage hole

percentage was calculated as 14.12%.

2.4.2 Construction of Voronoi polygons

A Voronoi polygon of a node has the property that each point in it is closer to

its associated node than to any other node in its surroundings. A Voronoi-diagram, a

decomposition of the ROI, is the result of determining all the Voronoi polygons in the

Background Information - WSAN

ROI. Voronoi polygons constitute important objects in computational geometry and

GIS-based applications (Aurenhammer 1991).

Figure 2-10 - Voronoi polygon Gp(S) of point (S) (Wang 2004).

Figure 2-10 represents a Voronoi polygon of some node, S. The Voronoi

polygon of S, can be represented by (Vp(S), Ep(S)), where Vp(S) is the set of Voronoi

vertices, Ep(S) is the set of Voronoi edges. Thus, in the example given in Figure 2-10

(Wang et al. 2004), Vp(S) = {v1, v2, v3, v4, v5}, Ep(S) = {v1 v2, v2 v3, v3 v4, v4 v5,

v5 v1}. Furthermore, the set of neighbouring nodes of S is {A,B,C,D,E}.

Each line drawn between node S and a neighbouring node in this set will

intersect an edge of the Voronoi polygon at right angles. This line will also be

bisected by this polygon edge. Thus, line (A,S) intersects (v5,v1) at right angles, and

is bisected by (v5,v1). These direct neighbours are deemed as the closest points to S,

where closest is defined as straight-line distance.

Various algorithms (Aurenhammer 1991) have been created for accurately and

efficiently calculating the Voronoi polygons and consequently the Voronoi-diagram.

The following section describes in the form of pseudo code, a high level view of the

process of creating a Voronoi-diagram given, a set of nodes.

Table 2-2 - Pseudo code for the construction of a Voronoi-diagram.

1. For each node, Si, in the ROI, generate a Voronoi polygon as follows:

a. Find Sj, the closest node to the Si

b. Draw a line bisecting the line connecting Si and Sj

c. Select the next closest neighbour Sk to Si

d. Draw a line bisecting the position of Sk and Si

i. If two lines intersect, the meeting point is a vertex of the
polygon

Background Information - WSAN

e. Repeat until a closed polygon is created around Si

2.5 Chapter Conclusion
In this Chapter we addressed the issue of sensor deployment. Special

emphasis was placed on the unreliability of the network layout during the lifetime of

the network, either due to malfunction or initial location placement of nodes during

deployment. Reconfiguration and re-organisation algorithms have been proposed to

address the above problem. However it has been seen that these solutions assume

location aware nodes. To date, it has not been determined how much of an impact the

location inaccuracies have on these algorithms, and it is in this regard that present

study intends to contribute.

3 Background Information - GIS and Simulation

Chapter 3

Background Information – GIS

and Simulation

Background Information – GIS and Simulation

“Geography is just physics slowed down,

with a couple of trees stuck in it.”

T. Pratchett - The Last Continent

In the previous chapter the properties of WSAN deployment were outlined,

included in these properties is that of location. The chapter introduced the possible

dependency the reconfiguration and deployment algorithms have on location being

accurate. An effective approach to studying the robustness of WSAN reconfiguration

algorithms is to place nodes in the field and observe their coverage when their

reconfiguration is based on location inaccuracies. This approach is costly and

impractical. The next best method would be to place the sensors within a virtual

world with the same obstacles and objects seen in the real-world.

The present chapter introduces Geographical Information Systems (GIS), key

GIS principles, as well as a proposed GIS based simulation tool to assess the impact

of location on various self-organising reconfiguration algorithms.

Section 3.1 discusses GIS and its position within this study, followed by a

discussion on the usage of GENS5 Smallworld for simulation. Smallworld is used as

a development platform for the simulator as well as a repository to store data related

to the GIS environment and to the simulator. Section 3.2 addresses the simulator and

the architecture used to develop the tool. Section 3.3 details a simulation model and

assessment of the algorithms. An explanation on the Smallworld Core program, how

to use the application and the interface, is omitted from this work as it is deemed to be

outside the scope of this study.

3.1 GIS Aided Simulation Platform
For the purpose of examining the extent to which the deployment and

reconfiguration algorithms are capable of reducing coverage holes, this study

proposes the development of a simulation tool based on a GIS application. Building

on the discussion of the previous chapter, the simulator has to take into account

distance and location. By integrating the environment with that of a GIS application,

5 GENS – a division of General Electric that maintains and manages the GIS application created by a
company called Smallworld, now acquired by GE. The name Smallworld continues as the product
name and not the former company (GENS 2003).

Background Information – GIS and Simulation

real-world distance and scaling can be applied. A further benefit is that GIS systems

come with a large library of mathematical classes, specifically in the field of

geometry. These libraries assist in the overall implementation of the reconfiguration

algorithms.

3.1.1 Geographical Information Systems

A Geographical Information System or GIS, is an information system capable

of capturing, storing, analysing and managing data, data that is spatially referenced to

the Earth6. The usage of GIS technology is widespread, including scientific research,

environmental impact assessment, asset management, telecommunication network

inventory management, urban planning and cartography to name a few (Huxhold

1991).

Figure 3-1 represents a brief history leading up to the development of current

GIS systems. A GIS system by definition is a solution that associates object attributes

to that of a graphical map or picture (Huxhold 1991). These attributes could contain

information such as population density, commercial spending habits or even

telecommunication infrastructure. If we apply this definition of a GIS system to

history, then the first traces of such a system can be seen as far back as ±20000BC in

Lascaux, France. Cro-Magnon hunters drew rock paintings of local animals with the

migratory patterns linked to each artwork (Frazee 1997). Much later John Snow7

mapped the 1854 cholera outbreak in London, England. Snow pinpointed all the

reported cases of cholera, water sources and city streets on a map of London. The

data assisted him in locating the source of the outbreak, contaminated water pumps,

one of which later became known as Snow’s pump, at Broad Street station (Vinten-

Johansen 2003).

The time between 1969 and 1982 saw the birth of the modern day GIS system,

in other words a system using computers to assist with spatial data analysis and

storing. This sudden growth in GIS was spurred mainly by the progression of

computer hardware and software development. During this time period, institutes

such as ESRI (Environmental Systems Research Institute) and CGIS (Canada

Geographic Information Systems) were founded. These institutes established

6 Expansion of this definition to include other planets and natural satellites such as the moon is
underway. An example of this is Google MarsTM, an extension on Google EarthTM.
7 John Snow – 1813 – 1858, British physician and leader in medical hygiene (Vinten-Johansen 2003).

Background Information – GIS and Simulation

common standards and commercial acceptance of GIS tools (Huxhold 1991, Johnston

1990).

The last decade has seen an exponential growth in GIS based systems with the

release of Earth Viewer in 2004, later acquired by Google and renamed as Google

Earth in 2005, the founding of OpenGEO, a consortium aimed at standardising and

approving open-source geo-information systems and application, in 2006. Finally

various companies releasing web based tools allowing other applications to build on

the GIS properties offered – such companies being eSpatial’s iSmart, AutoDesk’s

Map 3D and MapGuide, Microsoft’s Live Maps and GE MapFrame used on mobile

devices.

Background Information – GIS and Simulation

Figure 3-1 - Timeline to the development of modern GIS solutions.

Background Information – GIS and Simulation

In 1989 Dick Newell founded the Smallworld company in Cambridge,

England. The company’s key role was developing a GIS application to be used by

utilities companies, such as the gas, telecommunications and electrical industries. The

Smallworld Company was later acquired by General Electric in 2000. The company

only exists as the name of the GIS suite of products supplied by GE today. Finally in

2006 the Open Source Geospatial Foundation (OSGeo) is founded, a non-profit

organisation providing financial, organisation and legal support for free and open

source geospatial software. OSGeo leads the way to open source GIS software such

as OpenStreetMap, GRASS GIS and OpenLayers (FOSS4G2008 2008)

A GIS application allows objects to be modelled in much the same way as any

other database oriented application. In the case of the simulation tool, these objects

could take the form of the network sensors, regions of interest, buildings, roads and

even vegetation.

Common objects such as coast lines, buildings (land use) and vegetation can

be grouped into layers. These layers can then be grouped further within a map

topology and finally placed on top of a picture layer, Tagged Image File (TIF), or

photo file.

Figure 3-2 shows various layers being placed over a map.

Background Information – GIS and Simulation

Figure 3-2 - Layers in a map topology.

A key difference with GIS applications is the way the data is represented.

There exists a fair amount of specially designed databases to deal with geo-spatial

data. Databases such as Oracle 10g spatial, Hibernate Spatial, GoeView, Siro-DBMS

and VMDS are all equipped to store the data in such a manner as to make the data

retrievable via geo-spatial queries (Gőting 1994, GENS 2003). Queries that are

created with space in mind, for example the distance two objects are from one

another, the area covered by an object or whether or not two objects interact spatially.

Within the context of our sensor network deployment, the map topologies imported

into the Core application are from the ESRI suite of standards. The map represents

the Western Cape area of South Africa. The topology includes layers representing

land use, man-made infrastructure - buildings and roads, and finally the natural

landscape, for example the coastlines. Other objects such as the sensors are

represented using Smallworld data types and are modelled directly within the

Smallworld database.

3.1.2 Data Representation

In order for any GIS application to model the real-world environments, objects

and data must first be modelled. Real-world objects can be represented in two distinct

Background Information – GIS and Simulation

forms; discrete objects, such as parcels, houses, streets etc: and continuous fields,

such as rainfall or land elevation.

The data is stored in the database as either a raster data type or vector data

type. Collectively the data types are often referred to as an image (Huxhold 1991).

With raster data, the layer is divided into rows and columns forming cells. Each cell

contains data or information about that specific area, such as land use, population etc

(Huxhold 1991) - Figure 3-3 (a). Vector data on the other hand consists of

geometrical shapes: points, lines and closed polygons (Huxhold 1991). Each of these

shapes is associated to data in a database, a row in relational databases or an object in

object-oriented database. These shapes are specified with an instance of a co-ordinate

– a location in other words - Figure 3-3 (b). Each co-ordinate is represented in terms

of a co-ordinate system (Huxhold 1991).

Figure 3-3 - Comparison of Raster and Vector image data-types.

A co-ordinate system can be defined by two different notations: a spherical

system - Figure 3-4 (a) - using co-ordinates of latitude and longitude; or using a

decimal point notation, covering a rectangular surface, where each rectangle is a small

area of the Earth’s surface - Figure 3-4 (b).

Background Information – GIS and Simulation

Figure 3-4 - Spherical Co-ordinate System vs. Rectangular Co-ordinate System.

For any GIS application to understand a valid co-ordinate system, a

geographical world must be set up. A geographical world, as defined by GE

Smallworld, is an object that contains a projection that includes the scale of the image

(Huxhold 1991, GENS 2003). The projection scales the topology to fit within a given

co-ordinate system (Huxhold 1991). Huxhold discusses three of the commonly used

projection systems used within today’s GIS applications: Lamberts conic projection,

Transverse Mercator projection and Stereographic projection.

A projection can be understood by considering the result of unwrapping an

ink-stained soccer ball covered in wrapping paper. The resulting image on the paper

would then be the projection of the ink-stains on the ball. It would be simplest to

wrap the ball in one huge sheet of paper, folding the paper in places to make it fit

snugly around the ball. What if the wrapper wishes to wrap the ball with as minimum

folds as possible? If cutting the paper were an option, the wrapper could stick small

strips of paper, one at a time on the ball, thus minimising the folds. When the ball is

unwrapped later, the paper can be stuck back together on a flat surface with no folds

and creases. The folds in the paper represent errors within the projection; when the

paper is folded, parts of the paper are not visible anymore. The same applies to maps

being projected. The Earth is a geo-sphere much like the soccer ball. Thus when an

aerial photo or map, known as a geographical topology, is created of a given area, the

map is created with the contours and shape of the Earth. Small snap shots of the Earth

are taken from the Earth’s surface. These sections are stretched and skewed

according to a given mathematical algorithm (known as the projection) and laid flat.

Without a valid projection, a view of the Earth would

double in visual size and a continent su

importance of an accurate projection system within the context of this study can be

seen. The projection allows us to determine valid locations and distances, key aspects

to this assessment. The locations in conjuncti

assist in the implementation of the reconfiguration algorithms. By using industry

tested libraries, inaccuracies in the analysis are omitted.

In keeping with the Robben Island example for the ROI, a map of the Wester

Cape region of South Africa is projected onto our geographical world. The co

ordinate system used within this study is that of a rectangular surface area. The

benefits of using a rectangular system are

within a Cartesian plane with

within the real-world. This system makes the co

mathematically as well as being

The projection applied to thi

Conical projection is the process of creating a cone like shape around the Earth. The

cone is then unwrapped and laid flat to represent the area in a 2

Figure 3-5 - (GENS 2003).

Figure 3-5 -

The chosen GIS application

GENS Smallworld Core. The reasons for choosing

Background Information – GIS and Simulation

s surface. These sections are stretched and skewed

according to a given mathematical algorithm (known as the projection) and laid flat.

Without a valid projection, a view of the Earth would display Greenland

double in visual size and a continent such as Africa would shrink. Thus the

importance of an accurate projection system within the context of this study can be

seen. The projection allows us to determine valid locations and distances, key aspects

The locations in conjunction with the GIS mathematical libraries

assist in the implementation of the reconfiguration algorithms. By using industry

tested libraries, inaccuracies in the analysis are omitted.

In keeping with the Robben Island example for the ROI, a map of the Wester

Cape region of South Africa is projected onto our geographical world. The co

ordinate system used within this study is that of a rectangular surface area. The

benefits of using a rectangular system are that the system is read as if it were

plane with X and Y float values representing a position of an object

. This system makes the co-ordinates easy to manage

being visually comprehensible for the user.

The projection applied to this area is that of the Lambert conical projection.

Conical projection is the process of creating a cone like shape around the Earth. The

cone is then unwrapped and laid flat to represent the area in a 2-dimensional state

- Representation of conic projection (GENS)

The chosen GIS application on which to implement the simulator

The reasons for choosing this application is the ease with

GIS and Simulation

s surface. These sections are stretched and skewed

according to a given mathematical algorithm (known as the projection) and laid flat.

Greenland

shrink. Thus the

importance of an accurate projection system within the context of this study can be

seen. The projection allows us to determine valid locations and distances, key aspects

on with the GIS mathematical libraries

assist in the implementation of the reconfiguration algorithms. By using industry

In keeping with the Robben Island example for the ROI, a map of the Western

Cape region of South Africa is projected onto our geographical world. The co-

ordinate system used within this study is that of a rectangular surface area. The

were placed

float values representing a position of an object

ordinates easy to manage

s area is that of the Lambert conical projection.

Conical projection is the process of creating a cone like shape around the Earth. The

dimensional state -

on which to implement the simulator is that of

this application is the ease with

Background Information – GIS and Simulation

which a system can be extended using the object oriented programming language,

Magik.

3.1.3 GENS Smallworld Core Application

Smallworld is a GIS suite of products written for General Electric Network

Solutions, GENS. The GIS platform is based on two GENS technologies.

The first, the object oriented programming language, Magik. The language is

loosely based on that of Smalltalk, supporting multiple inheritance, polymorphism

and a dynamically typed variable set (Yearsley et al. 1994, Wachowicz 1999).

The second is a proprietary database called Version Managed Data Store,

VMDS (Wachowicz 1999, GENS 2003). The database has been developed with

spatial technologies in mind. Optimisation is done for storing and analysing complex

spatial queries. A spatial query is a query that selects data based on geometric

principles. For example, does a geometric polygon intersect another polygon or is

one polygon contained within another. These properties allow for a simple

management of objects within a 2-dimensional world. The objects are then extended

to include their spatial properties, location, direction and distance.

Figure 3-6 - Smallworld Application containing a topology of Robben Island.

The above figure shows the Smallworld Core application’s GUI. Contained

within the map area is a scaled map topology of Robben Island. The topology

contains information regarding the land use, shown in dark, as well as the natural

landscape such as the coastal lines.

Background Information – GIS and Simulation

Each object is represented as a polygon where each polygon has a type

property, for example the objects runway, road and building are all polygons with a

type runway, road and building associated to them respectively. Each polygon is also

made aware of other polygons within the topology, this awareness is brought forward

as a database relationship to other records in the table. Objects can be modelled with

the same attributes as that of its real-world equivalent, thus modelling a virtual region

for deployment.

By using a valid co-ordinate and projection system, Smallworld is able to

place the objects to an accuracy of 1mm within this virtual world.

The following section introduces the development side to the simulator. In

other words it discusses how the Smallworld Architectural Framework (SWAF) was

used to develop the tool, as well as how the simulator may be extended to support

further development.

3.2 Proposed Architecture
Appendix A.1 includes a table derived from Becker 2007 that compares all

known WSAN simulators currently within the realm of research. Although some of

the tools take into account the effects of radio interference – a further assumption of

these algorithms - none of them deal with location.

Previously it was suggested that a GIS system such as Smallworld could be

used to replicate the behaviour of real-world objects and their properties. We propose

the development of a simulation tool that uses the properties and libraries of the GIS

environment to accurately place nodes within a given target area.

The simulator, developed using object-oriented principles in Magik, is built as

an application extending the GENS Smallworld Core application. Communication

with the Core application is done via the databus - Figure 3-7. By communicating

with the Core application, the simulator is able to retrieve all the GIS properties of the

map and objects contained within the map. The databus uses a structure of publish

and subscribe. This implies that the simulator sends requests via the databus to the

Core application to perform tasks such as updating of the map, or retrieval of object

locations, status and other properties. These requests are pushed onto the databus by

the simulator; the Core application in turn has registered as a subscriber with the

databus – when messages are sent across the database all subscribers registered with

Background Information – GIS and Simulation

the databus listen for those specific messages. When the data is passed to the Core

application, the data is picked up off the bus and handled accordingly.

Figure 3-7 - Simulator application architecture

The modelling of objects within the Smallworld database is done via a

Computer-aided Software Engineering (CASE) tool. The tool assists in creating

objects, associating attributes, and associating exemplar class files to objects. The

exemplar class files are Magik files that contain code to extend the functionality and

logic of each object. In other words objects are implemented via the exemplar, much

the same as a Java class file (Wachowicz 1999). Exemplars can be mapped directly to

a table within VMDS, extending behaviour of the object that the table represents

(Wachowicz 1999).

Figure 3-8 outlines the CASE tool data model for the set of objects used by the

simulator.

Background Information – GIS and Simulation

Figure 3-8 - Simulator data-model

Each sensor has a one-many relationship with that of a ROI. Thus, a single

sensor can be contained by many ROIs. The ROI is modelled as a geometric polygon

containing nodes and having a configuration. A ROI contains a single configuration

of nodes. The configuration object includes the attributes for setting up the ROI and

the placement of nodes within the network. Default values for sensing range and

communication range are also specified by the configuration. Each of the database

objects is mapped to a Magik exemplar.

Figure 3-9 - Custom database objects with associated attributes.

Background Information – GIS and Simulation

Figure 3-9 shows a UML diagram for each database object. Shown in the

diagram are the attributes and the data type of each object as well as the exemplar file

associated to the object.

The sensor object has the properties of location, movement, sensing and

communication distance as well as its local Voronoi polygon. Movement is stored as

a Boolean data type, by storing movement as boolean, the property of movement can

be turned on or off. Location is defined as a geometric point. The Voronoi polygon,

sensing and communication attributes are represented as geometric polygons.

Geometric polygons and points are objects containing geographical properties such as

location, distance and area. The sensor object is extended by the sensor.magik

exemplar, which provides additional logic to the database object.

The configuration object is responsible for storing different deployment

scenarios within a given ROI. The configuration object contains a join field to the

sensor object, as well as to the ROI object. A configuration object has default

communication and sensing ranges, both are represented by an integer value. These

values are used during the deployment of sensors where the communication and

sensing range is uniform across all the sensors. Lastly a configuration has a unique

name used for identification.

The ROI object is a simple geometric area. The object is aware of size and

area as well as the sensors that have been deployed within its self. As with all other

objects that are modelled, the ROI has a unique name for identification within the

database. The geometric properties of the ROI object assist the simulator in

calculating the presence of coverage holes by using spatial queries. The ROI object is

extended by the roi.magik exemplar, providing methods to calculate coverage,

coverage holes, node activity and algorithm results.

As GIS applications use images and shapes to represent data, it was deemed

appropriate to develop a user interface to allow for the real time visualisation of the

sensor objects moving within the ROI – Figure 3-10 shows the map of Robben Island

as seen in Smallworld. The ROI area is enlarged to show how the sensors location

changes over three iterations as a reconfiguration algorithm is run.

Background Information – GIS and Simulation

Figure 3-10 - An example ROI in relation to the map of Robben Island as seen during sensor
reconfiguration

3.2.1 Simulator Interface

The simulator interface is developed using SWAF. SWAF has a software

development architecture used by Smallworld for the development of applications.

The framework uses the concepts of reusable plug-ins and modules.

SWAF consists of a 2-tier architecture. The first tier, the presentation layer,

contains the plug-ins, the second is a combination of the logical and persistent layers

containing the database as well as the module engines (GENS 2003). The SWAF

architecture defines an application as a standalone graphical interface that consists of

its own set of functionality, toolbars and plug-ins (GENS 2003). A plug-in is defined

as a lightweight object that provides top-level access to the application, for example

an action button to trigger an event in the database (GENS 2003). Each plug-in

makes a call to an engine for the processing of the GUI request. The engine contains

all the business logic – this can be compared to Java Beans used by the J2EE

development environment. Figure 3-11 shows the simulator, consisting of five plug-

ins within the application.

Background Information – GIS and Simulation

Figure 3-11 - Proposed Simulator Application.

The simulator GUI gives the user the option to create, modify or delete a

configuration object. This is done via the Configuration editor. New nodes can be

added to the ROI via the Deployment plug-in. The deployment plug-in allows the

user to specify the naming convention used in the creation of new nodes as well as the

degree of randomness that should be implemented during the deployment process. By

changing the deployment seed values of either the X or Y axis the user has the ability

to deploy nodes sparsely or densely clustered within the ROI. A second benefit of

specifying the seed values is that the deployment setup (randomness) of the nodes can

be replicated. All the newly deployed nodes are deployed within the selected

configuration. The default deployment of nodes is in the mobile state.

Running of algorithms is done via the Properties plug-in. A drop down list is

provided for the selection of the algorithm to be run on the specified configuration.

The user is given the option to run the algorithm a given number of times or

iterations. Thus acting as a terminating criterion for the algorithm. Terminating

conditions are discussed in further detail in Chapter 4.

Depending on the type of algorithm to be run, an option is given to set a given

sub-set of the nodes to be mobile or static.

Background Information – GIS and Simulation

Finally the user has the ability to invoke inaccuracy upon the node locations.

All the nodes contain an attribute for ‘inaccurate location’. By setting the inaccurate

checkbox the inaccurate location value is used throughout the process.

Results of the algorithm are displayed to the user in the Result plug-in. Within

this plug-in the user is able to see the properties setup for the algorithm as well as the

total coverage hole percentage, total movement and mean movement of the sensor

nodes. The application has the option to export the data to Microsoft Excel. The

exported data contains the configuration setup, node names and data associated with

the configuration for all iterations including the coverage hole, distance travelled and

mobility status for all nodes.

3.2.2 Development of Algorithms

All of the coverage algorithms are implemented within a single module within

Smallworld. A module in terms of Smallworld can be compared to a package in Java.

The coverage_protocol exemplar is an abstract class that contains the methods

required by the simulator to run, reset, stop and pause the algorithm. These methods

are used for all coverage algorithms. Further abstract methods are added by children

classes depending on the type of algorithm developed - Figure 3-12. Searching for

classes inheriting from coverage_protocol allows the simulator to detect a new

algorithm.

Figure 3-12 - Class diagram for the development of new coverage algorithm.

An outlined API for each component to the simulator is covered in Addendum

A - Development API.

Background Information – GIS and Simulation

Further modules used in the development of the simulator include:

voronoi_diagram, a module used in the computation of Voronoi polygons and

coverage holes. This module contains exemplars and methods for calculating the

Voronoi polygons and diagrams for a given set of nodes as well as the existence of

coverage holes; sw_core, a module used for enhancements to the Smallworld Core

application, such as modifications to the database and map classes; finally the

geometry module, a module for common mathematical methods used by the protocols

or simulator engine exemplars.

Figure 3-13 shows all the exemplar files developed for the simulator. This

excludes the exemplars supplied by the Smallworld Core library. For a detailed

description on the methods refer to the Development API Addendum.

Background Information – GIS and Simulation

Figure 3-13 - UML diagram containing all exemplars within the simulation application.

Background Information – GIS and Simulation

3.3 Proposed Assessment
It has been established that location plays an important role in the

reconfiguration or self-organising WSAN algorithms. In the introduction we brought

forth two research questions. Both of the questions are centred on the assessment of

location accuracy in the deployment and reconfiguration of the networks. We have

also seen the benefits of using the properties of GIS to aid in replicating WSAN

deployment. We propose to use these properties of the GIS environment and the

simulator to assess the sensitivity of the various coverage algorithms to the quality of

the node location data. The simulator allows for repetitive experiments to assess each

algorithm.

3.3.1 Experiments

The simulation exercises first address the algorithms within a perfect world.

By this is meant that no inaccuracies, interference or malfunction of nodes is

introduced. Further experimentation is performed where inaccuracy is introduced into

the world. The network is subjected to gradual increase in the number of inaccurate

nodes, followed by a worse-case scenario, high-inaccuracy, of all the nodes being

inaccurate. Each of the algorithms contains a termination criterion. The termination

criterion prevents the algorithms from running indefinitely. This criterion can take

the form of a given number of runs or even an acceptable degree of coverage. The

current simulation models take into account two degrees of termination. In the first

case, the termination criterion is set at an acceptable real-world level. In the second

case, simulations are performed with an unrealistic termination criterion, forcing a

much larger number of runs then needed within the real-world.

Various algorithm authors have assessed algorithms in terms of different

properties. For example Jiang and Dou (2004) assess the static algorithms based on

energy saving, whilst Wang et al. (2003a, 2004) assess their algorithms based on the

degree of movement by each node and final coverage. For the sake of commonality,

the algorithms tested here were assessed on the percentage of total coverage within

the ROI after the algorithms have been executed. The following chapter, titled

Methods and Procedures, addresses the experiments in greater detail.

Radio interference and node malfunction are two factors that may influence

the network layout. However these are deemed to be areas of future research.

Background Information – GIS and Simulation

3.4 Chapter Conclusion
In this chapter we discussed briefly the history of GIS and how it may benefit

WSAN simulation. We outlined a simulator tool to be built using GENS Smallworld

Core as the underlying GIS application. The benefits expected of such a simulator are

to aid in the study of how inaccuracies affect the overall outcome of the self-

organising coverage protocols introduced in Chapter 2. Further studies can also be

implemented using the simulator. Such studies are discussed in the concluding

chapters.

The next chapter introduces and explains each of the five algorithms, followed

by a discussion on the assessment experiments, used to re-evaluate each algorithm

based on location inaccuracy and final coverage.

4 Methods and Procedures

Chapter 4

Methods and Procedures

Methods and Procedures

“Space is big. You just won't believe how vastly,
 hugely, mind- bogglingly big it is.

I mean, you may think it's a long way
 down the road to the chemist's,

but that's just peanuts to space.”

D. Adams – The Hitchhikers
Guide to the Galaxy

We have seen the benefits of a GIS integrated simulation tool to model

WSANs as if they were placed in the real-world. The present chapter discusses how

the study assesses five deployment and reconfiguration algorithms used in WSANs.

Section 4.1 discusses each of the experiments that are performed on the algorithms.

The experiments take into account accurate and inaccurate location within the

algorithm as well as terminating criterion. The next section, 4.2, discusses, in detail,

each of the algorithms. The section includes basic pseudo-code for the running of the

algorithms.

As the deployment of large networks is costly, the GIS environment allows for

the set up of a virtual world containing real-world objects and network behaviour. By

applying the network within this context the experiments can be performed on the

algorithms as if they were being done in the real-world at a much less cost and time.

4.1 Experiments
For the purpose of assessing the five algorithms, five experiments were set up

using the simulator. The first experiment, control, is used to assess algorithm

performance in an ideal world with no inaccuracies. The second experiment confirms

the results of the control experiments by testing the algorithms with different starting

scenarios. The third, fourth and fifth experiments introduce location inaccuracy to the

algorithm.

Methods and Procedures

Figure 4-1 - Initial starting scenarios.

An environment is simulated in which 25 - 50 nodes are deployed randomly

within an ROI that has an area 1615m2. Each node was assigned a sensing range of 5

meters and twice that in communication range – i.e. 10 meters. The value of the

communication range is derived from the study by Zhang and Hou (2003) where they

prove that by setting the radio communication range to at least double the sensing

range, a complete coverage of a convex area implies connectivity among the set of

nodes within the ROI.

Depending on the deployment state of the network being static, hybrid or

mobile, a percentage of the nodes were deemed to be capable of self-movement, and

all to be unaware of power consumption. It was also assumed that all the nodes were

deployed without failure, and that sensing and communication took place within the

respective radii without interference.

All the algorithms run iteratively until a given terminating condition is

satisfied. The terminating condition for the algorithms may be defined in various

ways. For example: a given degree of coverage is reached; or no movement by nodes

for more than one iteration. For the purpose of consistency, the terminating condition

and experiment configuration is kept the same for all the algorithms. By

configuration we mean the ROI, node count, layout of the network, sensing distance

and communication range.

The environment setup depicts that of a potential real-world setup and

represents the environments consistent with that described by the original authors of

the algorithms.

Methods and Procedures

4.1.1 Control Experiment

The control experiment is used as a benchmark environment, in other words

an environment that contains no flaws, or errors, which is used as a basis for

comparison. The results obtained from this experiment are compared to the results

obtained by the algorithms’ authors. All nodes are deployed into the given ROI and

the algorithm run. During the control experiment, a real-world terminating condition

is set. By real-world conditions, we mean termination such as limited energy or

limited mobility (in the case of movement-assisted nodes).

4.1.2 Initial Deployment Sensitivity

The initial deployment of nodes within a ROI could potentially affect the final

outcome of the algorithms’ performance. For example, in the case of movement-

assisted algorithms, when nodes are extremely clustered in one area, the algorithm

needs more iterations to disperse the nodes. The following experiment aims at

assessing the outcome of different random starting scenarios, in each case the random

deployment limiting the nodes to the ROI. In contrast to the control experiment a

high, unrealistic, terminating condition is set. Thus we are able to assess the

algorithm performance long after real-world conditions would have caused

termination. This allows for extended assessment to verify that the normal

termination condition does not lead to premature termination.

Methods and Procedures

Figure 4-2 - Initial deployment of nodes under fifteen different scenarios for mobile and hybrid
networks.

Methods and Procedures

Figure 4-3 - Initial deployment of nodes under fifteen different scenarios for static networks.

Each algorithm’s behaviour is tested from each of fifteen randomly

determined initial deployment locations. The starting locations are kept constant for

mobile and hybrid networks - Figure 4-2. However with static networks, a further 25

nodes are deployed into the ROI to allow for some redundancy within the network -

Figure 4-3. The minimum, maximum and average coverage hole size is recorded for

each iteration.

Using the statistical observation method of outliers the study will compare the

results of each of the starting scenarios to one another at different intervals. The

method used for identifying the outliers chosen is that of the Interquartile range

(IQR). An outlier is defined as an observation that appears to be inconsistent with the

other observations in the data set (Barnett and Lewis 1994). By observing these

Methods and Procedures

starting scenarios the study will be able to determine if there are any scenarios that

deviate from the rest.

IQR is a measure of variability or statistical dispersion. It is the difference

between the top 75%, (Q3), and the lower 25% (Q1). If the observed value aObv is

within Llmt and Ulmt then it can be said that the value observed for that starting

scenario is within a reasonable limit of being similar to the other starting scenarios -

Equation 4-1. If the observed value is outside Llmt and Ulmt, then it can be said the

value differs from the rest. K is the outlier coefficient, used to determine the degree

of certainty in an unskewed distribution. In this case the value is left as the minimum

of 1.5 (Barnett and Lewis 1994).

The final coverage hole value for each of the 15 starting scenarios is used as

the sample rate to assess. By performing the assessment on the final states of the

network, the experiment attempts to show that the final results do not differ

significantly.

Equation 4-1

Q1 = Percentile(aObvn, 0.25)

Q3 = Percentile(aObvn, 0.75)

IQR = Q3 – Q1

Outlier lower limit Llmt = [Q1 – k.IQR]

Outlier upper limit Ulmt = [Q3 + k.IQR]

4.1.3 Graduated Inaccuracies - Sensitivity to Inaccuracy I

Real-world inaccuracy is unlikely to occur in all nodes within the network.

Thus, this experiment, Sensitivity to Inaccuracy I, simulates nodes whose actual

positions are inaccurately reported to the respective 5 placement algorithms. In each

case, the percentage of inaccurate nodes is progressively reduced within the network,

thus assessing how the algorithms behave when the percentage or ratio of inaccurate

nodes to accurate nodes decrease. This experiment assists in evaluating algorithm

dependency on various degrees of the node inaccuracy.

Methods and Procedures

The experiment is run on the same criteria as that of the next Sensitivity to

Inaccuracy II. In this case however the percentage of inaccurate nodes is decreased

gradually.

4.1.4 High-Inaccuracy – Sensitivity to Inaccuracy II

The following experiment, Sensitivity to Inaccuracy II, is used to test the

algorithms effectiveness against worst-case inaccuracy, i.e. all the nodes in the

network are inaccurate to the same degree. The same initial deployment setup as with

the control experiment is used to run each algorithm with various levels of inaccuracy.

Twenty simulations are run per algorithm. In each simulation, all the nodes are set at

an inaccuracy level of n, where the inaccuracy ranged from 1 meter to 10 meters, in

intervals of 0.5 meters. A realistic termination criterion is used to reduce the number

of iterations. The Initial Deployment Sensitivity experiments are used to determine

what the termination factor should be. Each algorithm is run 50 times per inaccuracy

level, recording the minimum, maximum and average coverage holes. Each run

allows for a different inaccurate location point for the sensor.

4.1.5 Termination Criterion Sensitivity

A final experiment is performed on each algorithm. The same criterion is used

as that of high-inaccuracy and graduated inaccuracies experiments. However during

this experiment, an iterative termination count of 100 is put in place. By this is meant

that the algorithm terminates after 100 iterations. By performing this experiment we

are able to assess the impact of location inaccuracies over an extended period of time.

Methods and Procedures

4.1.6 Overview of Experiments

The following table provides an overview of the above mentioned experiments. For completeness the values related to the experiments

such as initial number of nodes deployed, number of times the experiment is run, the number if iterations within each experiment and

termination criterion are included – these are to be discussed in further detail in the following Chapter.

Table 4-1 - Experiment Summary

Algorithm
Network

Layout

Initial number

of nodes

deployed

Number of

experiments

run

Iterations per

experiment run

Accurate :

Inaccurate

nodes

Termination

Criterion
Placement Error

Control

Mobile 25 1

4 (as a result of

the termination

criterion)

25 : 0
Mean distance

10m
None

Hybrid
48 (25 static : 23

mobile)
1 4 48 : 0

When no mobile

movement is

made

None

Static 50 1
1 (CPNSS)/ 50

(OGDC)
50: 0 None † None

Initial Deployment

Sensitivity

Mobile 25 15 100 25 : 0 None † None

Hybrid
48 (25 static : 23

mobile)
15

Varied – based on

the algorithm,

average ±5

48 : 0

When no mobile

movement is

made

None

Static 50 15
1 (CPNSS)/ 50

(OGDC)
50 : 0 None † None

Methods and Procedures

Algorithm
Network

Layout

Initial number

of nodes

deployed

Number of

experiments

run

Iterations per

experiment run

Accurate :

Inaccurate

nodes

Termination

Criterion
Placement Error

Inaccuracy

Sensitivity I

Mobile 25 25

4 (as a result of

the termination

criterion)

Varied *
Mean distance

10m
Varied **

Hybrid
48 (25 static : 23

mobile)
20

Varied – averaged

± 6
Varied *

When no mobile

movement is

made

Varied **

Static 50 50
1 (CPNSS)/ 50

(OGDC)
Varied * None † Varied **

Inaccuracy

Sensitivity II

Mobile 25 20 50 0 : 25 50 Iterations Varied **

Hybrid
48 (25 static : 23

mobile)
20

Varied – averaged

± 6
Varied *

When no mobile

movement is

made

Varied **

Static 50 20 50 Varied * 50 Iterations Varied **

Termination

Criterion Sensitivity

Mobile 25 1 100 25 : 0 100 Iterations None

Hybrid
48 (25 static : 23

mobile)
n/a n/a 48 : 0

When no mobile

movement is

made

None

Static 50 n/a n/a 50 : 0 n/a None

† Due to the nature of the network topology the experiment shall terminate or converge at a given point without the need for a termination criterion.
* The ratio of accurate to inaccurate nodes is adjusted, after which the experiment is run again.
** The placement error is changed according to the level of inaccuracy needed to assess the experiment.

Methods and Procedures

4.2 Algorithms
Two prominent algorithms from each of the three deployment scenarios were

chosen for assessment, namely mobile, hybrid and static. The decisions to use the

algorithms are based on the results presented by the authors of the respective

algorithms. The presented results suggested that the chosen algorithms were the most

efficient in terms of solving the coverage hole problem.

4.2.1 Mobile Algorithms

Here the so-called VEC and VOR algorithms are described as representative

of a class of mobile node placement algorithms, i.e. a class that assumes that the

nodes can be moved. Both algorithms are due to Wang et al. 2004. In the case of

mobile algorithms, 25 nodes are deployed to the ROI – Figure 4-1 (a). By deploying

a number of nodes that would result in large coverage holes within the ROI,

movement is guaranteed.

4.2.1.1 VECtor-based Algorithm (VEC)

The VEC algorithm is a push-based algorithm in that it pushes the

neighbouring nodes away from each other. The algorithm is inspired by the

behaviour of electromagnetic particles: two particles exert a force on each, inversely

related to the distance between them that pushes them apart (Wang et al. 2004).

Nodes are assumed to be optimally placed when they are evenly distributed

within the ROI, each one being at some constant distance, davg, from its neighbours.

Since the number of nodes and ROI size is known, this value may be pre-computed.

Suppose that d(Si,Sj) is the distance between sensor Si and Sj. If d(Si,Sj) > davg

and if Sj is within communication distance of Si, then VEC assumes that Si and Sj

mutually exert a “virtual force” on one another that is proportional to (davg – d(Si, Sj))

/ 2. In general, this virtual force, cumulatively determined for node Si, determines the

distance and direction that Si moves in each iteration of the algorithm.

However, there are a number of special considerations. In the first place, if Si

already covers its local area as defined by the Voronoi polygon, then it will not be

moved. Instead, the force (davg – d(Si, Sj)) will be exerted on the node Sj only.

Secondly, to prevent the nodes from moving too close to the boundary, an additional

force is generated by the boundary of the ROI. The boundary force will push the

Methods and Procedures

node to move (davg/2 – db(Si)), where db(Si) is the distance of Si to the ROI boundary.

Refer to Figure 4-4.

Figure 4-4 - (a) Virtual Forces between two sensors, (b) Virtual Force exerted by a boundary.

To prevent greater coverage holes from forming due to the movement of a

node, Wang et al. (2004) introduce movement-adjustment. After the final virtual

force on a node has been determined, the local coverage is recalculated based on the

potential movement. If the coverage is not improved, a midway point between the

node’s current location and calculated location is examined. If the local coverage is

increased at this new target location then the node is moved accordingly; otherwise

the node remains in the current position for one iteration.

A further check is put in place to prevent the node from moving outside the

ROI. If the node location is placed outside the ROI, then the node remains in the

current position for one iteration.

The VEC algorithm thus runs iteratively until a given threshold is reached.

Each iteration consists of two phases:

• a discovery phase, done locally by each node, in which the broadcasting of

locations to neighbouring nodes as well as the calculation of the local

polygons for each node takes place; and

• a movement phase, during which the movement of each node is determined.

During this phase a new location for the node is determined. This location is

deemed as a new optimal position for the node to be placed. By optimal it is

meant a new position that best covers the Voronoi Polygon

Table 4-2 - VEC algorithm pseudo-code.

Notation:

S = Sensor

Methods and Procedures

N = set of neighbours

Ci = complete coverage of Voronoi polygon

Vi = moving vector for sensor
d = distance

davg = Average distance between sensors when the sensors are evenly distributed
within the network

fV = Force exerted, i.e. the distance to move away from the current position

Algorithm:

1. Enter discovery phase

a. Broadcast current location to all nodes within the reachable network

b. Calculate Voronoi-diagram
2. Enter movement phase

a. Calculate the presence of a coverage hole
b. If Ci = false then

i. Vi = 0, i.e. set the movement of the node to 0

ii. Loop over all the neighbour nodes (Ni) of the current node (Si)
1. Check if both the neighbour Sj and Si should move

a. If true then fV = ((davg – d(Sj ,Si)) / 2)

b. Else fV = (davg - d(Sj ,Si))

2. Check if the boundary exerts a force on Si

a. If true apply fV = (davg - d(Sj ,Si)) on Si

3. Sum forces with Vi

iii. Perform movement according to Vi

c. else
i. Skip current node

4.2.1.2 VORonoi-based Algorithm (VOR)

The VOR algorithm is a pulled-based algorithm in that it pulls the sensors to

their local maximum coverage hole. The maximum coverage hole can be described as

the largest area within a node’s local area, as specified by the Vornonoi-polygon,

which is not covered by the sensor. Once the node detects the existence of a coverage

hole, the node then moves towards the farthest vertex of the relevant Voronoi

polygon. The distance that the node moves, denoted as Vfar, is calculated as the

distance to the farthest vertex, less the sensing radius of the node, i.e. Vfar = d(Si, A) –

Ri. In Figure 4-5, it is assumed that Vfar corresponds to the distance from Si to B, so

that the node Si should be moved to point B. However the distance moved is limited

Methods and Procedures

to be at most half the communication distance (as opposed to the sensing distance).

This avoids situations where the node’s local view of the Voronoi polygon does not

account for the existence of a neighbour. Wang et al. (2004) argue that without such

a limitation, the node might be moved too close to the neighbour’s sensing area, thus

distorting the result.

Figure 4-5 - Movement of nodes using VOR (Wang 2004).

VOR can be classified as a greedy algorithm in that it attempts to reduce the

largest holes. However, the movement of a node to solve a hole in one direction

could potentially cause another hole in the opposite direction, resulting in movement

oscillations, so that the sensor moves back and forth continuously between two points.

To prevent this, the VOR algorithm introduces oscillation control. The previous

direction of movement of each node is stored. Each time that a node needs to move, a

check is first made to verify that the next move is not in the opposite direction to the

last move made. If this holds true, then the node remains in the current position for

one iteration.

Due to the greedy nature of the algorithm, a second problem may occur: much

the same as in VEC, the reduction of the size of one coverage hole may result in an

even greater coverage hole appearing elsewhere. For this reason, a second movement

adjustment rule is put in place. Before committing a node to a certain movement, the

potential Voronoi polygon that would result if the move were to be made is

calculated. If the resulting coverage hole is equal or greater than the current coverage

hole, then the node remains in the current position for one iteration.

The VOR algorithm shares the same attributes as VEC in the sense that it runs

iteratively until a given threshold is reached. Each iteration consists of the same two

phases as VEC, a discovery phase and a movement phase.

Methods and Procedures

Table 4-3 - VEC algorithm pseudo-code.

Notation:

Ci = complete coverage of Voronoi polygon

iV = moving vector for sensor

fiV , = vector from Si to Vfar

dmax = maximum moving distance i.e. the communication range

Algorithm:

1. Enter discovery phase

a. Broadcast current location to all nodes within the reachable network
b. Calculate Voronoi-diagram

2. Enter movement phase

a. Calculate the presence of a coverage hole
b. If Ci = false then

i. Calculate Vfar as the furthest vertex of Si

ii. Calculate iV as fiV , -sensing range of Si

iii. If iV > dmax then reduce Vi = dmax

iv. perform oscillation control
a. Check if movement direction is opposite to that of the

previous round
v. perform movement-adjustment

a. Check if local coverage will be increased if the movement
occurs

c. else

i. Skip current node

d. Move sensors according to Vi

4.2.2 Hybrid Algorithms

The hybrid algorithm chosen for this study is that presented by Wang et al.

2003a and is the bidding algorithm. It is implemented in much the same way as the

previous two algorithms, but with a slight variation introduced to optimise energy

consumption. It was deemed appropriate to analyse the algorithm’s error-sensitivity

from two directions, designated as Variation I and Variation II below. Details will

follow in the next two subsections.

Methods and Procedures

4.2.2.1 Bidding Algorithm - Variation I

The bidding protocol is an extension to the movement-assisted algorithms of

VEC and VOR. The algorithm uses the mobile nodes to solve the coverage problems

of the static nodes within the network. The static nodes use Voronoi polygons to

determine the existence of local coverage holes. On discovery of a hole, the hole is

weighted by some function on the size of the hole. The nature of the weight is pre-

determined, but may simply be the area of the hole. The value of the weight is used

by the mobile nodes to determine whether or not to fulfil the request by the static

node. The higher the weight the higher the priority to cover the coverage hole – the

process of determining the priority is known as bidding.

The algorithm executed by each mobile node consists an initialisation phase,

followed by iterations through three phases: service advertisement; bidding; and

serving. During the initialisation phase of the algorithm, the mobile nodes set the

base threshold value to zero. Each mobile node broadcasts the threshold value to the

static nodes, during the service advertisement phase. During the bidding phase, the

static nodes calculate the size of local coverage holes. The area of the hole is

measured and assigned as the node’s bidding value. Static nodes send these bids as

requests to the mobile nodes to move and solve the local holes. In the case of two or

more mobile nodes responding to the static nodes call, the mobile node closest to the

requesting node is used. The bidding value of the static node is assigned to the

threshold value of the mobile node that partially or completely covers its local hole.

The new position of the mobile node is determined as the furthest vertex in relation to

the static node. This is known as the serving phase. The algorithm runs iteratively

until no static node exceeds the mobile nodes threshold, i.e. until no weight of a static

node is higher than the ones already healed by the mobile nodes

A potential problem to the algorithm is that of duplicate healing - Figure 4-6.

Duplicate healing occurs when two static sensors, S1 and S2 detect a coverage hole

and broadcast two independent requests for mobile sensors, M1 and M2, to solve the

same hole at point P. Wang et al. (2003a) solve the problem by allowing one of the

mobile sensors to reset its base threshold to zero. Thus, after the move is made, the

next iteration will see the mobile node solve another coverage hole.

Methods and Procedures

Figure 4-6 - Duplicate healing at P by Sc and Sd (Wang et al. 2003a)

Table 4-4 - Bidding Algorithm pseudo-code.

Notation:

bid(loc, size) : target location of a mobile sensor, and the estimated additional
coverage needed to heal a coverage hole

listb : list of bid(loc, size)

mobile(id, loc, base_price) : the id, location and base_price of a mobile sensor
listm : list of mobile(id, loc, base_price)

static(id, loc) : the id and location of a static sensor
lists : list of static(id, loc)

Algorithm:

At static node Ni

1. Initialization
a. Broadcast static locations

2. Enter bidding phase

a. Construct Voronoi polygons with lists and listm whose base price > 0
b. Calculate the existence of a coverage hole

i. If true then calculate the bid price of the hole
ii. Find the closest mobile node Nj from listm such that base_price

< h_size
iii. Send bid to Nj if Nj is found

3. Upon receiving mobile(j, locj, base_pricej) from Nj
a. Add mobile(j, locj, base_pricej) to listb

4. Upon receiving static(j, locj) from Nj

a. Add static(j, locj) to lists

At mobile node Ni

1. Initialization

a. Set base_pricei to 0

2. Upon entering service-advertisement phase
a. Broadcast mobile(i, loci, base_pricei)

3. Upon entering bidding phase

Methods and Procedures

a. If base_price ≠ 0

i. Construct Voronoi polygons with lists and listm whose base
price > 0

ii. Calculate the existence of a coverage hole

1. If true then calculate the bid price of the hole
2. Find the closest mobile node Nj from listm such that

base_price < h_size
3. Send bid to Nj if Nj is found

4. Upon entering serving phase
a. Check if listb contains nodes

i. If true

1. search listb for the node with the greatest coverage hole
2. move Ni to h_loc, where h_loc is the destination for the

node to heal the coverage hole

3. set the base price of the Ni to the size of the hole it heals
ii. else

1. do duplicate healing detection, setting Ni base_price = 0
if duplicate healing happens

2. do local adjustment if no duplicate healing happens
5. Upon receiving mobile(j, locj, base_pricej) from Nj

a. Add mobile(j, locj, base_pricej) to listm

6. Upon receiving static(j, locj) from Nj
a. Add static(j, locj) to lists

For the first variation of the algorithm, inaccuracy was introduced to the static

sensors only. The mobile devices are deemed to be accurate in their location

placement. In other words the mobile nodes are accurately placed at the

recommended position given by the static nodes.

4.2.2.2 Bidding Algorithm - Variation II .
The second variation of the bidding algorithm implements the algorithm in the

same manner as before. However this time the location inaccuracy is placed on the

mobile nodes. The static nodes will calculate the healing position accurately with the

mobile nodes fulfilling this request, but with their resulting positions having some

built in inaccuracy.

Methods and Procedures

4.2.3 Static Algorithms

For the static algorithms we introduced more nodes into the ROI. By doubling

the number of nodes within the network we introduce redundant nodes and

overlapping of sensing areas – Figure 4-1 (b). The sensing radius, coverage radius

and size of the ROI remain the same.

The Coverage-Preserving Node Scheduling Scheme and Optimal

Geographical Density control algorithms, developed by Tian et al. 2002 and Zhang

and Hou (2003) respectively, was chosen as the algorithms representing static

networks.

4.2.3.1 Coverage-Preserving Node Scheduling Scheme (CPNSS)

The behaviour of static networks is different to that of mobile and hybrid

networks in that nodes are unable to move. Instead of movement the networks use

signal strength to reconfigure. On the detection of a coverage hole, the nodes increase

their signal strength to provide sensor coverage. Tian et al. 2002 use node scheduling

to reduce the energy consumption of sensors within large networks. Node scheduling

is the process of switching nodes on and off, increasing the sensing radius of the

active nodes to cover the entire network whilst turning off redundant nodes. By

reducing the energy consumption of the nodes in the network, the entire lifetime of

the network can be extended.

This algorithm is not a direct solution to solving coverage holes but instead is

used to minimise energy consumption of the network. However the algorithm does

use coverage-hole detection during the process of node scheduling. By detecting and

solving coverage holes the authors guarantee that during the scheduling process

coverage is addressed as well as possible.

The node-scheduling problem can be described by two problem statements.

The first asks under what rule should the nodes in the network power down. In other

words what makes a node redundant? This rule is known in this algorithm as the

coverage-based off-duty eligibility rule. The second problem addresses the question

of when and how often the nodes should reassess the network for redundant nodes.

Tian et al. 2002 address the first problem by calculating each nodes sensing

area and then comparing it with its neighbours. This process is referred to as

sponsored coverage calculation.

Methods and Procedures

In this algorithm the set of neighbours, N(i), of a currently considered node, i,

is defined as the set of nodes whose distance from the current node i is equal to or less

than the sensing range, Sri, of the current node. This is represented in Equation 4-2,

where n denotes all the nodes deployed within the region of interest and d(i,j) is the

distance between the current node i and the neighbour j.

Equation 4-2

N(i) = {n | d(i j) ≤ Sr n ≠ i}

Thus for current node i, the off-duty eligibility rule, Equation 4-3, can be

represented as the union of the neighbours’ sensing areas as a complete superset of i’s

sensing area.

Equation 4-3

�
� є ����

	�
� � 	���

Figure 4-7 shows the rule applied to Si. Si is redundant in the sensing area of

its three neighbouring nodes. As the GIS system is able to compute the union and

intersection of polygons as well as the distance between special object, this case

nodes, makes it easy to apply the eligibility rule. Thus Equation 4-3 is easily

calculated using pre-existing GIS functionality.

Figure 4-7 - Coverage of node Si by neighbouring nodes (Tian et al. 2002).

Tian et al. 2002 proposes a two step iterative algorithm called the coverage-

preserving node scheduling scheme.

The first step gathers “neighbourhood” information. Each node broadcasts its

location to a distance equal to its sensing radius. Nodes that receive a message from

this signal are set as the broadcasting nodes neighbours.

Methods and Procedures

Post collection of neighbour information, each node evaluates its eligibility to

power off based on Equation 4-3. If all nodes decide simultaneously to turn off,

coverage holes may occur. Thus the authors introduce the back-off scheme where

each sensor determines its power down eligibility after a random time, Td. When a

node decides to power down it sends a message to its neighbouring nodes. The

neighbouring nodes then remove the eligible node from their list of nodes. Nodes that

have a long Td will not consider the nodes that have already powered down.

The sensor remains in a hibernation state until a ‘power on’ broadcast has

been received or a so-called hibernation timeout, Tw elapses after a fixed period.

The complete process is described in Table 4-5.

Table 4-5 – CPNSS pseudo-code.

Notation:

Si Current node

Ni Neighbouring nodes
Td Time delay for nodes to calculate their power down eligibility

Tw Time that the sensors remain in hibernation

Algorithm:

At static node Si

1. Neighbour Information Obtaining Step

a. Broadcast location a distance equal to Si sensing range

b. Receive neighbours broadcasted signal, compiling a list of neighbours
Ni

2. Wait for random eligibility time Td

3. Assess for power down eligibility, insuring that the nodes have sufficient
power to stay active during Tw

a. If true
i. Broadcast a power down message to all neighbours

ii. Go into hibernate state
4. Hibernate until a power up message has been received or hibernation timeout

has occurred, Tw.

4.2.3.2 Optimal Geographical Density Control (OGDC)

The OGDC presented by Zhang and Hou (2003) shares similarities with the

CPNSS algorithm presented above, in that they both run iteratively implementing a

form of node scheduling. OGDC however makes three key assumptions:

Methods and Procedures

• The radio coverage of each sensor is at least twice the distance provided by

sensor coverage. As discussed in Zhang and Hou (2003), this assumption

implies complete connectivity to a completely covered ROI.

• Nodes are aware of their own location.

• Nodes are controlled via some form of time synchronicity.

As opposed to CPNSS, OGDC allows nodes to be in any one of three states

namely UNDECIDED, ON or OFF. The algorithm runs iteratively, dividing the

lifetime of the network into rounds. At the beginning of each round all nodes within

the network are set to UNDECIDED. A random node Si is chosen to be a starting

point for determining the working nodes, where working nodes are defined to be

nodes in the ON state. A neighbour, Sj of Si is chosen. The neighbour is a random

node selected from a group of nodes within a distance of √3� to Si,, where r is the

sensing radius. Sj is set to ON and all other nodes in Si’s sensing radius are set to

OFF. The next optimal position for a node is computed, denoted as O in Figure 4-8.

This optimal position is on the line that bisects the line connecting Si and Sj. It is at a

distance of r from the line connecting Si and Sj. (There are, of course, two optimal

positions - one on either side of the bisected line.) The next node to set ON, Sk, is the

one closest to an optimal position. The cycle is repeated with the neighbour node of

Sk being selected.

Figure 4-8 - Determining the neighbouring node of Si.

Table 4-6 – OGDC pseudo-code.

Notation:

Sx Current sensor
Td Time to wait before repeating the algorithm

Methods and Procedures

Algorithm:

1. Set all nodes to UNDECIDED

2. Select node Si randomly from set of nodes
a. Set Si to ON

3. Determine the neighbouring node of Si as Sj

a. Select all nodes within a radius of √3�
b. Randomly select node Sj from this set

c. Set to Sj ON
d. Set all other nodes in the set of neighbours as OFF

4. Determine the next optimal position of a third node
a. Calculate the ideal position of the third node by constructing a line

from Si as Sj. A second line perpendicular to the first a length equal to
the sensing radius.

b. Repeat in the opposite direction to calculate the north bound sensor

5. Select Sk
a. Find the closest UNDECIDED node to the optimal position

b. Set the closest node as Sk

6. Repeat the algorithm from step 3 by determining the neighbour of Sk
7. Terminate the selection of Working nodes once all nodes are set to ON or OFF

8. Allow the algorithm to execute for time Td where Td is determined as a time
greater than that needed to select the working nodes, but less than that of the
lifetime of the sensor with the least lifespan from the list of working nodes

4.3 Chapter Conclusion
In this chapter we discussed each of the five algorithms as described by their

original authors. Two were mobile algorithms, one was a hybrid, and another two

where static algorithms. Algorithm selection for this study was based on the results

obtained by the original developers, i.e. algorithms that performed reconfiguration

with the least effort were chosen. A discussion on each of the experiments to be

performed was also given, outlining the methods used to assess the impact that

location inaccuracies might have. The following chapter discusses the results of the

experiments that were carried out to assess the impact location inaccuracy might have

on the five algorithms.

5 Analysis and Results

Chapter 5

Analysis and Results

Analysis and Results

"The time with which we have to deal
is of the order of two billion years.…

Given so much time the 'impossible' becomes possible,
the possible probable, and the probable virtually certain.

 One has only to wait: time itself performs miracles.”

G. Wald, "The Origin of Life," - 1955

Based on the experiments outlined in the previous chapter, the present chapter

addresses the results and findings of the experiments. The two algorithms from each

deployment type are compared to each other followed by a comparative conclusion.

5.1 Mobile Algorithms
The following section examines the results obtained for the two movement-

assisted algorithms. During the control experiments, a limit on the mean total

distance travelled by the nodes served as a termination condition for the iterations:

after each iteration, the distance travelled by each node from its initial to its present

position, was summed over all nodes and divided by the number of nodes. If this

mean distance travelled is greater than the limit, then the algorithm is terminated;

otherwise another iteration is executed.

A mean total distance of 10 meters was chosen as a terminating condition for

both algorithms. This corresponds to the communication range that had been

assigned to the nodes.

5.1.1 VECtor-based Algorithm (VEC)

The VEC algorithm was assessed using the experiments outlined in the

previous chapter. The control experiment enforced a terminating criterion of 10

meters mean total distance. The criterion resulted in four iterations of the algorithm.

Figure 5-1 represents each of the iterations. The original coverage hole was

calculated as 31.57% (68.43% of the ROI is covered). After the fourth iteration the

coverage hole had been reduced to 16.21% of the ROI, and 83.79% of the ROI was

now covered. This means that the coverage hole was reduced by approximately 49%

Analysis and Results

Figure 5-1 - Execution of the VEC Algorithm over four iterations.

The above experiment correlates with that of the original authors, Wang et al.

(2004). The results provide a level of confidence that the algorithm was implemented

accurately.

As a single starting scenario is used in the control experiment, it could be said

that the placement of the nodes assist in the results obtained. To determine if the

starting scenarios of the nodes play a role in the overall outcome of the algorithm the

following experiment was setup. Fifteen scenarios were configured. In each case, the

starting position of each node was randomly determined. The coverage holes ranged

between 32.5% to 44.7%. As oppose to using the 10-meter terminating condition, the

algorithm was run for 100 iterations for each of the 15 starting scenarios. This means

that nodes were allowed to drift as far from their original position as was dictated by

100 iterations of the algorithm.

Figure 5-2 - Alternative randomly deployed starting scenarios for the VEC algorithm.

Analysis and Results

The results of variable starting positions for the VEC algorithm are shown in

Figure 5-2. The graph displays – for the 15 starting scenarios – the average,

maximum and minimum coverage hole size at each iteration. All initial scenarios

generally improve over the 100 iterations, the final average, maximum and minimum

coverage hole percentages being 17.53%, 21.68% and 14.4% respectively. Although

improvement is not guaranteed from one iteration to the next, no starting scenario

causes the VEC algorithm to diverge as the number of iterations increased. After

approximately 20 iterations the average improvement is approximately 20% and its

rate of decline slows down considerably. At about 90 iterations, the minimum

coverage hole of about 10% is attained.

Using the statistical observation we see that the values of coverage hole

percentage observed (Observed Value percentage axis on the graph) at the end of each

scenario falls within the upper and lower outlier limits. This result affirms that the

outcomes of the various scenarios are not significantly different - Figure 5-3. Because

of this it was assumed that the starting scenario used in the control experiment could

be used to adequately represent results that were obtained by other scenarios if they

were to be run. As a result, the starting scenario in the control experiment was used in

subsequent experiments described below.

Figure 5-3 - Using outliers to compare the resulting coverage hole of each starting scenario
(VEC).

The simulations of the control experiment assumed a best-case scenario – one

in which all the nodes in the network accurately reported their position to the same

extent. The initial deployment setup of the control experiment was used to run each

Analysis and Results

algorithm with various levels of inaccuracy. Twenty five simulations were run per

algorithm. In each case, gradual increases in the number of inaccurate nodes were set

to determine the VEC algorithm’s degree of recovery as the number of accurate nodes

increases. When there are no accurate nodes, the coverage hole varies between about

23% and 37%, depending on the level of inaccuracy. When 20 out of the 25 nodes

report accurately, at 2 meters inaccuracy the coverage hole drops to around 20%,

while at 4, 6 and 8 meters inaccuracy the final recovery is the same at about 26%.

The slope of graph indicates a gradual increase in coverage hole per new inaccurate

node introduced in a somewhat linear fashion. Very broadly, one could say that each

inaccurate node decreases the VEC algorithm’s effectiveness.

Figure 5-4 - Increasing the percentage of inaccurate nodes (VEC).

The previous experiment shows a gradual increase in inaccuracy as the

number of inaccurate nodes increased, the following experiment assesses the

algorithm from a worst-case scenario i.e. all the nodes are assumed to be inaccurate.

Twenty simulations were run per scenario. In each case, all the nodes were set

at an inaccuracy level of n meters, where the inaccuracy, n, ranged from 1 to 10

meters, increasing in 0.5 meter intervals. The termination criterion used in the control

experiment was retained. For each inaccuracy level, say of n, the algorithm was run

50 times. Each such run located each node in each iteration at a displacement of n

meters away (in a randomly determined direction) from the node’s previous position

as determined by the VEC algorithm. The minimum, maximum and average coverage

holes were computed over these 50 runs.

Analysis and Results

Figure 5-5 - Coverage hole(%) related to an increase in location inaccuracy (VEC).

Figure 5-5 shows the results obtained for the VEC algorithm. The coverage

hole rapidly increases as the inaccuracy level is increased – i.e. inaccuracy has a

pronounced effect on coverage. For example, at an inaccuracy of 2.5m the initial

accurately-determined coverage hole of 16.20% almost doubles to 30.68% on

average. As inaccuracies increase to 5 meters per node, the coverage hole grows to

about 35%.

Interestingly, the coverage hole remains at around 37% for higher

inaccuracies. This is evidently due to the way in which the VEC algorithm deals with

the ROI boundary. If the node determines its new location to be outside the

boundary, then the VEC algorithm does not allow the node to move.

The foregoing described experiments that were based on a termination

criterion applied to the VEC algorithm, whereby the total average node movement

relative to original node position was limited to 10 meters. It seemed important to

verify that this did not represent some artificial termination point, and that significant

coverage improvement could not perhaps be gained, even in the face of inaccuracies,

by increasing the number of iterations. In Figure 5-6, the coverage is shown under the

various worst-case inaccuracy scenarios as the number of iterations was increased to

100.

Analysis and Results

Figure 5-6 - Coverage hole (%) by number of iterations (VEC)

In Figure 5-6 it is evident that in all cases, no significant gains are to be had by

increasing the number of iterations. For example, the simulation cases for the

accurate locations shows a 16.21% coverage hole after four iterations and 13.22%

after 100. In the presence of any form of inaccuracy, the algorithm diverges, and all

nodes eventually drift to the boundary.

5.1.2 VORonoi-based Algorithm (VOR)

The same terminating criterion for the control experiment was implemented

during the execution of VOR. As with VEC, this resulted in four iterations. Figure

5-7 shows the results of VOR after each iteration. After the fourth iteration the

coverage hole had been reduced to 14.12% of the ROI, and 85.88% of the ROI was

now covered. In comparison to the VEC algorithm, the coverage hole reduction was

slightly larger – approximately 55%.

Figure 5-7 - Execution of the VOR Algorithm over four iterations.

0

5

10

15

20

25

30

35

40

45

50

1 11 21 31 41 51 61 71 81 91 101

Iterations

C
ov

er
ag

e
ho

le
 (%

)
Accurate

2m Inaccurate

4m Inaccurate

6m Inaccurate

8m Inaccurate

Analysis and Results

The final result shows a network with significant improvement in coverage

over the ROI.

Figure 5-8 shows the results for the VOR algorithm for various random node

deployment as starting scenarios for the VOR algorithm. The overall picture is

similar to that provided by the VEC algorithm, although convergence (below 10%

coverage after 15 iterations) and overall performance is somewhat better. The final

average, maximum and minimum coverage hole percentage is 8.6, 12.4 and 5.5

respectively, and a minimum coverage of less than 5% is attained several times after

80 iterations.

Figure 5-8 - Alternative randomly deployed starting scenarios for the VOR algorithm.

As can be seen in Figure 5-9 the upper and lower outlier limits are less than

those of the VEC algorithm. This is due to the lower levels of coverage holes

resulting in lower first and third quartiles. The observed coverage hole (Observed

Value percentage axis on the graph) values still lie between the upper and lower limits

suggesting that they are not significantly different from one another. As with VEC, it

can be said the control starting scenario is a fair comparison for the behaviour of the

algorithm for the forthcoming experiments.

Analysis and Results

Figure 5-9 - Using outliers to compare the resulting coverage hole of each starting scenario
(VOR).

Analysis and Results

As can be seen in Figure 5-10, the VOR algorithm generally performs better in

the presence of inaccuracies than the previous VEC algorithm. The VOR algorithm

seems reasonably tolerant of inaccuracies, even fairly large ones, provided that the

number of inaccurate nodes is limited. By “fairly large” it is meant, inaccuracies (6 to

8 meters) that are of the same order of magnitude as the sensing radius (5 meters).

When 5 nodes were inaccurate at a level of 8 meters (i.e. 20% of the 25 nodes were

inaccurate), the coverage hole was about 20% of the ROI – a mere 6% degeneration

from the control coverage hole of 14.12%. On the other hand, at 2 and 4 meters

inaccuracy, the algorithm’s performance appears to be reasonably indifferent to the

number of accurate nodes, suggesting that VOR is quite robust in the presence of

relatively small inaccuracies. In these cases, the coverage hole remains close to the

control of 14.12%, and indeed, in certain instances drops below it.

Figure 5-10 - Increasing the percentage of inaccurate nodes (VOR).

Figure 5-11 shows the results obtained for the VOR algorithm as location

inaccuracy is increased. In this case, the coverage hole percentage recovery is

relatively robust for inaccuracies up to about 6 meters. Thereafter, the inaccuracy has

a relatively pronounced effect on coverage. As the location inaccuracy increases, so

does the coverage hole. A coverage hole of approximately 15%, for an inaccuracy

level of 6 meters, increases by more than 10% when the inaccuracy doubles to 8

meters. This is clearly due to the VOR algorithm’s dependency on location both

Analysis and Results

during the discovery phase when creating polygons, as well as during the movement

phase in determining the position to which the node should move.

Figure 5-11 - Coverage hole (%) related to an increase in location inaccuracy (VOR).

To highlight how such a decline in effectiveness could occur, consider the

scenario in Figure 5-12. During the discovery phase of the VOR algorithm, it

constructs a local Voronoi polygon to determine the existence of a coverage hole. If

the locations broadcast by the neighbouring nodes are inaccurate, then the local

Voronoi polygon of Si is erroneous. Figure 5-12 indicates that the accurate Voronoi

polygon, Si would result in a shift towards vertex v3. However, due to the inaccurate

location details broadcast to Si by neighbouring nodes, Si could instead be moved in a

totally different direction, presented in the figure by v5. As a result, in each iteration

the nodes may move away from their optimal locations. Unlike the VEC algorithm,

this also applies to the nodes on the boundaries of the ROI: if locations are

inaccurate, then these nodes become unaware that the calculated movement could

place them outside the ROI. The nodes knowledge of the boundary is limited to the

edge of the Voronoi polygon.

Analysis and Results

Figure 5-12 - Inaccurate calculation of a Voronoi polygon.

In Figure 5-13 it is evident that no significant gains are to be had by increasing

the number of iterations. For example, in the case of the simulations based on

accurate location data, the percentage of ROI that had coverage holes dropped from

14.12% after four iterations to 11.86% after 100 iterations. Indeed, the data shows

that in the presence of high inaccuracy (8 meters) the algorithm diverges, and

eventually all nodes drift out of the ROI.

Figure 5-13 - Coverage hole (%) by number of iterations (VOR)

5.1.3 Conclusion

The above assessment of the two movement-assisted coverage algorithms

suggests that the VOR algorithm is reasonably robust if the inaccuracies are

0
10
20
30
40
50
60
70
80
90

100
110

1 11 21 31 41 51 61 71 81 91 101

Iterations

C
ov

er
ag

e
H

ol
e

P
er

ce
nt

ag
e

Accurate

2m Inaccurate

4m Inaccurate

6m Inaccurate

8m Inaccurate

Analysis and Results

somewhat lower than the sensing distance. It remains reasonably robust when the

inaccuracies are somewhat higher, provided that they do not affect a very high

proportion of nodes.

On the other hand, the VEC algorithm shows a high dependency on the

accurate calculation of node locations. However the algorithm acquires a certain type

of robustness in relation to node behaviour at the ROI boundary.

By keeping all the nodes within the ROI, in the high-inaccuracy experiment,

nodes may cluster along the boundary, but a coverage hole of 100% can never occur.

5.2 Hybrid Algorithms
This section examines the behaviour of two hybrid algorithms. For the

purpose of the control experiment, the terminating condition is when no movement of

mobile nodes occurs in a complete iteration. It can be assumed that when no

movement occurs, this is because the mobile sensors are unable to further heal the

coverage hole of any static nodes.

The same network layout used in the mobile network topology is reused as the

static network. This network layout results in 25 static nodes randomly placed within

the ROI. A balance of 23 mobile nodes was used by the algorithm during execution.

The balance of mobile nodes was determined as the number of nodes required to

completely cover the coverage holes left by the static network. A more efficient

method for calculating the ratio between mobile and static nodes is deemed outside

the scope of this study and is to be considered for future research.

As hybrid networks are dependent on two forms of node deployment, namely

static and mobile, this study deemed it to be appropriate to assess the effects on a

popular algorithm of node location inaccuracy from the two corresponding view

points.

5.2.1 Bidding Protocol – Variation I

For this variation of the algorithm, location inaccuracy is in reference to the

positions of the static nodes contained in the network. Thus, the positions of the

mobile nodes are computed by the static nodes based on inaccurate information of

static node positioning. Thereafter, mobile nodes are accurately placed at the

positions determined for them.

Analysis and Results

Figure 5-14 shows visually the results of algorithm. As can be seen not all the

coverage holes were healed. The algorithm ran a total of 20 iterations (however no

change to the network is seen after 7 iterations) with the final result of 4.1% coverage

hole being achieved after the sixth iteration, and no subsequent improvement — see

Figure 5-15. As the algorithm runs until no movement from a mobile node can

resolve coverage holes greater than the ones currently being resolved, the termination

criterion is as a result of the execution of the algorithm. For this reason the algorithm

determines the maximum number of iterations that may be executed and at best the

simulator may be set to reduce that number. For the assessment of this and the next

variation the simulator allowed the algorithm to execute the maximum number of

times. The algorithm did not behave as efficiently as expected. There is a significant

improvement to the network coverage but the overall network coverage after the

algorithm is completed could still be improved.

Figure 5-14 - Results of the bidding algorithm after the control experiment.

Analysis and Results

Figure 5-15 - Coverage hole results of the control experiment.

Analysis and Results

The sum of redundant nodes placed in the network as mobile nodes to solve

the coverage holes should have allowed the network to completely cover the ROI.

A reference to the next figure shows two scenarios that illustrate why the

algorithm cannot guarantee full coverage, even if the total mobile node coverage

should, in theory, be sufficient to cover all holes.

Figure 5-16(a) shows a mobile node, P1, placed at the furthest vertex to solve a

coverage hole. Since this new position lies at the edge of the network, three quarters

of the node’s sensing ability is wasted on an area outside the ROI.

Figure 5-16(b) illustrates the notion of what this study refers to as close

proximity healing. This is where the vertices to which the mobile nodes P2 and P3 are

moved, are very close to each other. When close proximity occurs the nodes waste

large sums of sensing ability due to overlapping with other nodes. Close proximity

healing is similar to duplicate healing—i.e. a scenario in which two mobile nodes are

move to the same vertex. However, the algorithm explicitly avoids duplicate healing,

but does not disallow close proximity healing.

Figure 5-16 - Flaws with the bidding algorithm.

A further problem that may occur is that after all the mobile nodes are placed,

small coverage holes – shown in Figure 5-16(b) – may still exist. These holes are

never solved as the bidding value assigned to the mobile nodes for the previous holes

solved are greater than the smaller coverage hole. As shown in the Section 4.2.2 the

mobile nodes will only move if the coverage hole to solve is greater than the current

hole it is covering.

No doubt, the algorithm could be optimized by, for example, shifting nodes

slightly away from the vertices when close proximity healing occurs. Optimisation of

the algorithm is to be considered as a future research opportunity.

Analysis and Results

To check for consistency, the same mobile and static nodes were deployed

from fifteen randomly selected starting scenarios.

Figure 5-17 - Alternative randomly deployed starting scenarios for the Bidding algorithm.

As with the control experiment above, Figure 5-17 shows that there was a

significant improvement to the network coverage for each of the 15 starting scenario.

The algorithm could still be improved, since a 0% coverage hole is never achieved,

even though there are sufficient nodes in the network to accomplish this. The figure

shows the initial coverage hole percentage in the ROI excluding the mobile nodes.

The average coverage hole percentage taken over the 15 starting scenarios is 37.8%.

The figure also shows the final coverage hole percentage after the algorithm has been

executed. Execution of the algorithm improved the starting scenarios by an average

of 60%, where A, E and F improved slightly more than the rest. The algorithm

converged after an average of 5 iterations over the 15 starting scenarios—much the

same as that of the control experiment’s 6 iterations.

The results of the gradual increase in inaccurate static nodes within the

network are shown in Figure 5-18. As can be seen, there is no obvious connection

between the number of inaccurate nodes and coverage. In previous algorithms the

corresponding graph shows a tendency for coverage performance to degrade as more

nodes become inaccurate. In other words as the number of inaccurate nodes increase

so does the overall coverage hole.

Analysis and Results

Figure 5-18 - Increasing the percentage of inaccurate nodes (Bidding Protocol I).

In contrast the above graph shows a very random result. This can also be seen

in the next experiment where all static nodes are set be inaccurate.

Figure 5-19 - Coverage hole(%) related to an increase in location inaccuracy (Bidding Protocol
I).

Figure 5-19 shows the effects of complete inaccuracy injected into all the

static nodes. The experiment is run using inaccurate location details between 0.5 and

10 meters. The inaccuracy is injected when the static nodes broadcast the location to

the mobile nodes. The mobile nodes in this variation are placed without inaccuracy at

the position suggested by the static node. The results obtained also show a random

outcome.

Analysis and Results

As the static nodes are fixed in their position, it can be said the network would

maintain at least the degree of coverage provided by the static nodes. The initial

coverage hole within the ROI without the mobile sensors is 32%. The worst case

coverage hole size in this experiment was 11.73%—more than double that of the

control experiment. As the static nodes determine the placement of the mobile nodes,

in a worst case scenario boundary static nodes may place some or all of the mobile

nodes outside the ROI, resulting in the spikes seen in Figure 5-19. As not all the

static nodes are on the boundary, a large percentage of the mobile nodes would still be

kept within the ROI.

As the termination of the algorithm is determined by the mobile nodes in a

reasonable time, the termination criterion experiment is omitted from this variation.

5.2.2 Bidding Protocol – Variation II

This second variation of the algorithm was executed in the same way as that of

the first variation discussed in Section 5.2.1. The difference was that location

inaccuracy is now placed within the mobile nodes. The static nodes determined the

position at which for the mobile nodes should be placed. Once the mobile nodes are

made aware of the new position, this position is injected with a degree of inaccuracy.

The control and initial deployment sensitivity experiments were omitted, as

they would yield the same results as that of the first variation.

The results of the gradual increase in inaccurate mobile nodes within the

network are shown in Figure 5-20. The coverage is only negatively affected by the

inaccuracies when a large number of the mobile nodes are inaccurate. This is

understandable as the static nodes make up a substantial degree of the ROI network

coverage. The mobile nodes simply act as assistants to the static nodes. In a worst

case scenario all of the mobile nodes could be placed outside the ROI resulting in no

change in network coverage. Thus the network can always assume a worst case

coverage of the same degree that the static nodes are providing in the initial network

deployment.

Analysis and Results

Figure 5-20 - Increasing the percentage of inaccurate nodes (Bidding Protocol II).

Different from the previous variation, the above graph shows an increase in

coverage hole as the number of inaccurate nodes increases. A definite threshold at

around 9 inaccurate nodes can be seen. At this point the algorithm begins to behave

in much the same way as that of the previous variation in that the coverage hole is

random with the same effect seen irrespective of the degree of inaccuracy. This

randomness in the coverage hole is seen again in the next experiment.

Figure 5-21 - Coverage hole(%) related to an increase in location inaccuracy (Bidding Protocol
II).

Figure 5-21 shows the effects of complete inaccuracy injected into all the

mobile nodes. The experiment is run with all the mobile nodes placed at degrees of

Analysis and Results

inaccuracy varying between 0.5 and 10 meters. As the static nodes cannot be moved

it would suggest that the worst case result of the algorithm would be to have the

coverage hole remain at the initial value of 32%. The worst case shown in this

experiment was a mere 10%, twice the value obtained in the control experiment, yet a

third less than the worst possible case. For the result of 32% to be achieved all nodes

would either need to be placed outside the ROI or completed overlapped by redundant

nodes. This did not occur in the experiment, and would presumably only occur if

random errors of much more than 10 meters were injected.

By design the algorithm results in a valid termination of the algorithm and a

possible benefit in the case of location inaccuracy. When a mobile node is moved

into position, to heal the coverage hole left by the static node, the mobile node is

given the healed coverage hole as its new weight or bidding value. In implementing

the algorithm in the presence of injected inaccuracies in the positioning of mobile

nodes, it was necessary to make a design decision about the following matter. When a

mobile node is moved into position to heal the coverage hole left by the static node, it

is given the healed coverage hole as its new weight or bidding value. It was decided to

set this value as if the mobile node had been accurately positioned. If this were not to

be the case the algorithm could run infinitely, as coverage holes may never be

resolved thereby always leaving the termination criterion unsatisfied. This infinite

running could potentially see nodes move outside the ROI in much the same way as

that of the VEC algorithm previously.

As with the previous variation, the termination criterion experiment is omitted

from this algorithm.

5.2.3 Conclusion

A hybrid network attempts to reduce costs and complexity of the network by

introducing a combination of mobile and static nodes. In this section the study

compared the effects of location inaccuracies with respect to both the static nodes and

the mobile nodes. When inaccuracies are introduced to the mobile nodes the

algorithm appears to behave in an acceptable manner, meaning that the number of

inaccurate mobile nodes directly relates to the effectiveness the nodes have on the

network. Thus one can say that the network planner may have confidence in the

network if majority of the mobile nodes are fairly accurate with all the static nodes

being accurate. On the other hand if minor inaccuracies are placed within the static

Analysis and Results

nodes, whether this is in the degree of inaccuracy or the number of inaccurate nodes,

the algorithm appears to behave in a random fashion. The results of both experiments

suggest that for the network to perform optimally, the static nodes need their position

accurately reported within the ROI, while limited inaccuracies in the mobile nodes are

tolerable.

5.3 Static Algorithms

The following section examines the results obtained for the two static

algorithms. As the static algorithms do not move nodes but simply reduce the number

of nodes sensing the network at a given time, the algorithm’s assessment included the

number of nodes active at that time in combination with the actual coverage of the

ROI.

The control and initial deployment sensitivity experiments assessed the

algorithm based on the number of deactivated nodes. The reason for not assessing the

overall coverage hole in these experiments is that if the coverage hole were to

fluctuate then this would suggest that the algorithm is not implemented correctly. The

coverage hole is still checked in these experiments as way of ensuring the correct

implementation of the algorithm. One would expect the coverage hole to remain the

same as the algorithms goal is to maintain coverage with minimum node activation.

Subsequent experiments assessed the algorithms based on changes in the

overall coverage hole. By examining the coverage holes the study assessed the

sensitivity of the algorithms to node location inaccuracy.

As discussed in Chapter 4, the number of nodes is doubled to 50 in the static

algorithms. The reason for increasing the number of nodes is to cause overlapping of

node’s sensing areas. By introducing overlapping in the sensor area of nodes,

redundancy is introduced into the network.

5.3.1 Coverage-Preserving Node Scheduling Scheme (CPNSS)

The CPNSS algorithm presented by Tian et al. 2002, is one of the simplest

algorithms in terms of processing and calculation. The algorithm determines a set of

neighbouring nodes that are within a given nodes sensing area. If the given node is

completely covered by its neighbours then that node is deactivated. Interestingly

enough the simplest algorithm has resulted in the most robust of all the algorithms

Analysis and Results

implemented in this study - so much so that it appears that the algorithm is completely

immune to location inaccuracies within the ranges that were examined.

Figure 5-22 shows a visual result of the algorithm’s single iteration. The

execution of the algorithm over a single iteration is a result of the following: since the

locations are constant, the outcome of calculating the neighbours is always the same.

As the simulator does not take into account energy consumption and remaining

energy of nodes, nodes are deemed to be fit to support their neighbouring nodes 100%

of the time. (Refer Section 4.2.3.1 to for details on the algorithm.)

The figure shows the algorithm powering down two nodes within the network

(Sensors 7 and 26) whilst maintaining coverage of 91.36%. Since a two-node

redundancy did not seem like a significant number of nodes to power down, a

subsequent experiment containing a larger dataset was run later in this study.

However, the present configuration was retained for experiments to test the

algorithm’s sensitivity to the initial positioning of nodes, and to node location

inaccuracy.

Figure 5-22 - Execution of the CPNS Algorithm for control purposes

Figure 5-23 shows the impact the algorithm had on a further fifteen network

layouts. In each case, initial placement of nodes was randomly determined. The

layouts range in degree of coverage hole percentages as well as in the extent of

network clustering. (Network clustering is a reference to groups of nodes forming in

the network with greater degrees of sensing area redundancy within the groups.)

The algorithm powers down an average of 2 nodes, or 4% of the network

across the various scenarios.

Analysis and Results

Analysis and Results

Figure 5-23 - Fifteen random starting position.

Analysis and Results

As with the previous algorithms, Figure 5-25 and Figure 5-26 introduce

location as a factor. As with the previous algorithms, location inaccuracies in node

positions at distances ranging from 0.5 metres to 10 metres (in increments of 0.5

metres) were systematically introduced. Again, the number of inaccurate nodes were

varied from 0 to 25 nodes. The results of the experiment showed that the algorithm

was entirely immune to location inaccuracies—i.e. within the range of the given

inaccuracies, inaccurate locations did not impact the algorithm whatsoever.

This would appear to be due to one key factor: the algorithm uses the union of

the areas of the neighbouring nodes to calculate whether a node should be powered

down. If it is perceived that the node is not covered by its neighbours then it remains

active. Figure 5-24 illustrates this in practice. Figure 5-24 (a) shows the sensors

when the neighbours are accurately chosen. As can be seen sensor Si is completely

covered by its neighbouring nodes (shown as the grey area around the sensing area)

and for this reason sensor Si would be deactivated. Figure 5-24 (b) shows the same

scenario with a single sensor, S3, broadcasting its node inaccurately. The union of the

neighbouring nodes is calculated as two separate geometric polygons with Si not

falling within the neighbour’s bounds. The result is that Si remains active. The same

applies to nodes that falsely find themselves in Si sensor area. For sensor Si to

deactivate it would take at least three nodes to be inaccurately placed within Si
’s

sensing area in such away that their sensing areas would cover Si. This did not seem

to occur in any of the experiments performed.

Figure 5-24 - Location inaccuracy in determining node neighbours.

Even if the algorithm were to fail at deactivation of nodes, with no nodes

powering down whatsoever, coverage of the original network would remain the same.

Analysis and Results

Figure 5-25 - Increasing the percentage of inaccurate nodes (CPNSS).

Figure 5-26 - Coverage hole (%) related to an increase in location inaccuracy (CPNSS).

Since the algorithm only involves one iteration as opposed to multiple

iterations in the case of the hybrid and mobile algorithms, an analysis of the algorithm

in terms of number of iterations does not apply. As this study does not take into

account energy consumption as the basis for choosing the starting nodes, each

iteration will choose the same nodes to power down.

As the algorithm would only be implemented as a single iteration, no

termination criterion is put in place. For this reason a test for Termination Criterion

Sensitivity did not apply.

Analysis and Results

As a final experiment, it was decided to run the algorithm with a larger

network set of 100 nodes. The aim of the experiment was to assess whether or not a

higher redundancy of nodes impacts the algorithm at all.

Figure 5-27 - Network with 100 randomly placed nodes.

Figure 5-27 shows the network with 100 randomly placed nodes. The initial

coverage hole in this network layout was 4.6% of the ROI. The experiment was run a

total of 100 times, each time allowing a different node to initiate the algorithm. The

experiment was run a further 20 times, each time with a different degree of inaccuracy

in the same way outlined in Section 4.1.4. The algorithm was then assessed on

average coverage hole obtained by the 100 iterations at each run.

Analysis and Results

Figure 5-28 - Coverage hole (%) related to an increase in location inaccuracy (CPNSS) with 100
nodes.

As can be seen in Figure 5-28 there is no change in the experiments result

when more nodes are introduced. Location inaccuracy appears to have no impact on

the algorithm with the coverage hole remaining at 4.6% suggesting that no nodes are

deactivated erroneously.

5.3.2 Optimal Geographical Density Control (OGDC)

The OGDC algorithm is slightly more complex to implement when compared

to the CPNSS algorithm discussed above. CPNSS was limited, per definition of the

algorithm, to a single iteration. The OGDC algorithm, in contrast, is started from a

random position each time it is executed. For this reason more than one iteration can

be executed. As opposed to starting the algorithm from a random node each time, as

was done by the algorithm’s authors, in this study, it was decided to run the algorithm

a total of 50 iterations, each time starting from a new node. By running the

experiment in the following way, each node is allowed to start the algorithm, yielding

an overall comparison of how the network would be represented if each node had an

opportunity to start the algorithm. After each iteration the algorithm resets the

network (nodes status of being ON or OFF). The control experiment’s starting

scenario the same as that used in the CPNSS algorithm above.

Figure 5-29 shows the control experiment over the 50 iterations, with each

iteration allowing a different node to be the starting node for the algorithm. (Note

that, as expected, the coverage hole remained constant at 8.64%.) The information in

Analysis and Results

the figure can be summarised by noting that the algorithm deactivated an average 0.62

nodes, that the minimum number of deactivated nodes was 0, and that the maximum

number was 5. The OGDC’s average number of deactivated nodes is thus slightly

lower than that of CPNSS and the maximum number of deactivated nodes is

somewhat higher than that of the CPNSS algorithm. The OGDC algorithm might

therefore sometimes be more efficient in that it might deactivate more nodes than that

of the CPNSS algorithm. However, optimal node deactivation takes place if and only

if the correct node is chosen as the starting node, and this cannot be guaranteed.

Figure 5-29 - Control experiment over 50 iterations.

As in the CPNSS algorithm, the OGDC was also executed over 15 other

starting scenarios. As with the control experiment, 50 runs were executed, allowing

all sensors to be used as the starting node. Figure 5-30 shows the minimum,

maximum and average number of inactive nodes for each starting scenario.

Analysis and Results

Figure 5-30 - Alternative randomly deployed starting scenarios for the OGDC algorithm.

The minimum value always stays at 0 as some starting scenarios may not yield

any inactive nodes. The maximum value of inactive nodes averages around the 7

node mark. The maximum values obtained occurred on a very minimal basis,

sometimes only once throughout the 50 iterations. The number of nodes to be

deactivated in a scenario therefore appears to be rather sensitive to the starting node.

In some scenarios, the maximum number of deactivated nodes could only be

determined from one unique starting position—all other starting positions resulted in

fewer deactivated nodes.

Interestingly though is that the average number of inactive nodes,

approximately 2 is similar to that of the control experiment. The average maximum

number of inactivate nodes is also similar to that of the control experiment at

approximately 7 nodes. It can then be said that the various starting scenarios behave

in a similar way to that of the scenario used in the control experiment.

Analysis and Results

Figure 5-31 - Increasing the percentage of inaccurate nodes (OGDC).

Figure 5-31 shows the overall coverage hole within the control experiment’s

network when the nodes are exposed to various degrees of inaccuracy. Inaccuracy is

introduced to a percentage of nodes starting with no nodes being inaccurate and

ending with all 25 nodes inheriting a degree of location inaccuracy. It can be seen

that as the number of inaccurate nodes increase so does the coverage hole percentage

– as with the other algorithms implemented for mobile and hybrid network topologies.

Interesting is the fact that with only 1 inaccurate node in the network, the network

shows vulnerability to inaccuracy.

The final experiment attempts to assess the algorithm’s performance when all

nodes in the network are rendered increasingly inaccurate. Again, in each case the

algorithm was run a total of 50 times, each time commencing with a different starting

node. The graph shows the minimum, maximum and average coverage hole within

the ROI. As the static algorithms do not increase the degree of coverage, it is not

unexpected to see that the minimum coverage hole remains at 8.64%. Consistent with

the previous experiment, the average coverage hole increases slightly with the

increase of location inaccuracy. The maximum values are interesting to note. As the

inaccuracy increases to 10m, the algorithm inappropriately deactivates nodes causing

larger coverage holes, with a peak at 72.3%.

To explain these high peaks, note that each node’s coverage represents

approximately 4.5% of network coverage. This statement is based on a node with no

overlapping coverage of a neighbouring node and complete coverage falling within

Analysis and Results

the ROI. Thus, for each incorrect deactivate of a node, there is a potential loss of

4.5% coverage in the network.

Figure 5-32 - Coverage hole (%) related to an increase in location inaccuracy (OGDC).

Since the notion of a termination criterion does not apply to this algorithm, the

previous experiments relating to termination criteria are not relevant for this

algorithm.

As with the CPNSS algorithm is was deemed appropriate to assess the

algorithm with a larger network size. The same network layout used in Figure 5-27

was used to assess the OGDC algorithm.

Analysis and Results

Figure 5-33- Coverage hole (%) related to an increase in location inaccuracy (OGDC) with 100
nodes.

As seen in Figure 5-33, the maximum coverage holes obtained at the various

inaccuracy levels around 10%, in contrast with the spikes seen in the previous

experiment. In this sense, the algorithm appears to be more stable with a larger

network size. This is as a result of the higher degree of redundancy and overlapping

of nodes within this network layout. In a scenario where a node is inappropriately

deactivated, there exists a larger group of nodes that are still sensing that given area.

If the study were then to assume that the worst degree of coverage hole obtained by

the algorithm is an average of 10%, then one can see that the algorithm is still

vulnerable at low degrees of inaccuracy. A maximum coverage hole of 6% is reached

when the nodes are a mere 0.5m inaccurate. This same behaviour was seen in the

previous experiment when a maximum coverage hole of 35% was reached at the same

degree of inaccuracy. With the larger network set the algorithms average coverage

hole percentage is very close to the starting coverage hole percentage of 4.6%.

5.3.3 Conclusion

The above assessment compared two static algorithms. Under accurate

location information, static algorithms do not increase the network coverage within

the ROI but simply attempt to reduce the number of active nodes. The OGDC

algorithm was shown have the potential of reducing the number of active nodes in the

network whilst maintaining the same degree of coverage to a better extent than that of

Analysis and Results

the CPNSS algorithm. However, this advantage depended on the starting node for the

algorithm and could not be guaranteed if an arbitrary starting node was selected.

OGDC was also found to depend more critically on the accuracy of location

data. A single node deactivating in the network unintentionally results in a loss of

coverage and an increase in the overall coverage hole percentage. The CPNSS

algorithm was found to be immune to location inaccuracies within the limits of the

various configurations tested: the algorithm’s overall objective of deactivating nodes

is accomplished without any loss of network coverage, irrespective of location

inaccuracies. From this perspective the CPNSS algorithm is superior to the OGDC.

5.4 Chapter Conclusion
In this Chapter the study analysed the results obtained by the experiments

outlined in Chapter 4. The chapter collected empirical information about algorithms

classified into the three network deployment types: mobile, hybrid and static. It

showed the key differences between algorithms within these network deployment

types. The following chapter presents the concluded results obtained by these

experiments. The chapter provides the answers to the questions proposed in Chapter

1.

6 Conclusion

Chapter 6

Conclusion

Conclusion

“No matter how many instances of
white swans we may have observed,
 this does not justify the conclusion

 that all swans are white.”
.

Sir K. R Popper –
The Logic of Scientific Discovery 1934

6.1 Conclusion
Wireless Sensor and Actuator Networks (WSANs) are a key topic of interest

in present day computing. In Chapter 1 it was noted that accurate location of nodes

was a key assumption made in all WSAN node deployment algorithms. The study

posed two questions: Firstly, what are the effects of location inaccuracies on the

networks? Secondly, how do the various network deployment types compare? Before

seeking answers to these questions, technical background was provided in Chapter 2

of this study, while Chapter 3 looked at the role that GIS simulation could play in the

ongoing WSAN research.

The consequences of the accurate node location assumption became evident in

the assessment of the algorithms, specifically node placement algorithms relating to

mobile networks. Both the VOR and the VEC algorithms were affected by location

inaccuracies to some degree, the VOR algorithm more so than the VEC algorithm.

The study showed that at a low degree of inaccuracy the VOR algorithm behaved in

an acceptable, somewhat robust manner. The VEC algorithm appeared to have a

greater dependency on location accuracy. An advantage of the VEC algorithm over

the VOR algorithm is that the VEC algorithm takes into account the boundary. By

including the boundary the nodes are contained within the ROI at all times. In the

case of VOR the nodes could potentially drift outside the ROI.

The study implemented a single algorithm to solve coverage within hybrid

networks. This algorithm, bidding protocol, was then run under two forms of node

location inaccuracy: from the viewpoint of the mobile node location inaccuracy and

then the static node location inaccuracy. The algorithm appeared to be stable only

when the static nodes were deemed to be accurately placed and the mobile nodes did

not exhibit large degrees of inaccuracy. Both these requirements are fairly

demanding, in the sense that in practice, static nodes may be inaccurately placed and

Conclusion

likewise the mobile nodes may contain larger degrees of inaccurate placement. It

could be said that the hybrid algorithms appeared to be more dependent on accurate

node locations than the other algorithms that were investigated.

Finally the static network topology was assessed using two algorithms, namely

the CPNSS and OGDC algorithms. Interestingly enough, the static algorithms

appeared to be the most stable. Within the experimental limits of the study, the

CPNSS algorithm was completely unaffected by the inaccuracies. The second

algorithm, OGDC, performed well in deactivating nodes compared to CPNSS.

Although this latter algorithm also exhibited a dependency on the node location

accuracy, but this dependency did not seem to increase as the location inaccuracy did.

In general it is difficult to assess or compare the three network topologies.

Due to the cost difference in networks as well as the landscape within which the

topologies can be deployed, the use of the three kinds of topologies will differ in the

real-world. Other factors aside, in terms of location dependencies, the static

algorithms behaved in such a way that they would be recommended when deciding

between network topologies.

The results of this study are useful in two ways. Firstly, they indicate the

degree of confidence that the network planners may have in the deployment

algorithms in the context of their dependency on accurate location information.

Secondly, the results suggest an approach to node placement in the first place:

simulate the optimal positioning of nodes as has been done in this exercise. Then

attempt to place the nodes in locations suggested by the simulation, but with a degree

of confidence that moderately erroneous placement, to the extent indicated by the

study, is unlikely to have a great impact on the extent of coverage.

6.2 Related Work
As this study has shown, location data plays an important role in network

deployment and reconfiguration. Work done by de Silva and Ghrist (2007)

concentrates on Homological Sensor Networks (HSN). These are networks whose

nodes, though in communication with their neighbours, are unaware of precise

neighbour locations. Invariant theorems about homology groups (homology is

characterised as measuring “certain types of chains, or objects built from simple

oriented pieces”) indicate the presence of coverage holes within the ROI, without the

Conclusion

need for location data. A current shortcoming in their solution is that nodes on the

boundary have to be aware of their status as boundary nodes. Potential failure of

nodes on the boundary would require a recalculation of the boundary nodes. The

calculation of the boundary nodes is seen as an example of the convex hull problem as

described in Harel (1996). This problem is considered to be polynomial, the

complexity of the algorithm is then estimated to be n, where n is the number of nodes

in the network.

6.3 Future Work
WSAN research is a new and emerging field. There currently exist many

branches of research, varying from energy management and control to cost-effective

construction. An area of unexplored research relates to extending the simulator to

deal with the effects of real-world objects on a WSAN layout. A key direction would

be to introduce radio attenuation and interference and to examine the effects that these

have on optimal placement. Current research omits these real-world objects and

assumes a uniform sensing area. This will not be the case in a ROI where buildings

cause radio frequencies to be scattered or shadowed. Areas in the network may not be

covered due to shadows, resulting in areas in the network that radio signals cannot

reach. Another area of interest is to consider the effects that different mediums, for

example soil and water, have on radio frequencies. For example, if sensors are used

underground, or for deep-sea research, these different mediums may cause the radio

signals to behave differently.

This study only assessed the major or more popular relocation algorithms.

Further studies may include some of the other algorithms mentioned within this work.

With regards to hybrid networks, an algorithm is needed to determine the

optimal ratio of static to mobile nodes during the deployment phase of a hybrid sensor

network.

Furthermore, future studies should consider other mobile networks that use

virtual forces or sequential approaches to calculate the placement of nodes. Virtual

force algorithms compute forces to push the nodes away from each other, where each

node acts as a virtual magnetic particle. All nodes, as well as the boundary, push

neighbours away from each other in much the same way as the VEC algorithm

presented earlier. The key difference is the force is not calculated as a result of the

Conclusion

location of the neighbour but more of a force such as that exhibited by magnets.

Nodes use the radio signals of their neighbouring nodes and strength thereof to

determine the distance to each other. The idea behind this approach is that the nodes

would self organise in a uniform position within the network.

The sequential approach, on the other hand, calculates the new locations of

nodes based on the previous deployment of nodes within the networks. Each node is

placed one-by-one in the network. Working in much the same way as the mobile

nodes used in the bidding protocol, this approach incrementally deploys nodes, with

each node’s place based on information gathered from the current nodes within the

network (Yang et al. 2006).

Addendum B

7 Glossary

Actuator A node that is able to act / change the region of interest

Attribute
A descriptive character mapped to a component of the topology,
either a cell as in the case of Raster images or a geometric shape
as in the case of Vector images.

AOA
Angle of Arrival, the angle at which a radio signal arrives at the
destination. Used in radiolocation.

Bandwidth Rate of data transfer measured in bit/sec

CASE Tool
Computer Aided Software Engineering tool, assists in the
creation of Smallworld objects for use in the VMDS and
Smallworld environment

CARIS
Computer Aided Resource Information Systems is a company
that produces GIS and hydrographical software

CCP
Coverage Configuration Protocol, solution to coverage
problems, specifically energy conservation in static sensor
networks

CGIS
Canada Geographic Information Systems, created in the 1950 to
assist in regulatory procedures for land-use management and
resource monitoring

Co-Fi

Coverage Fidelity algorithm, using computational geometry the
solution takes into account energy consumption to provide a
possible solution to the coverage hole problem for mobile
networks

Convergence
The process of the coverage algorithm approaching a limited
value on coverage hole percentage

Coverage hole
Area within the network that is not covered by at most k sensors
where k is amount of nodes required by the application

Databus Provides data communication between application

Delaunay
Triangulation

Given a set of points P, Delaunay triangulation is the process of
triangulating all the points within the set such that no point in P
is inside the circum circle of any other triangle

Deployment The process of scattering nodes within the region of interest

DSS

Distributed Self-spreading algorithm, inspired by the
equilibrium of molecules, is a solution to the coverage hole
problem in mobile sensor networks. The algorithm works at
reconfiguring the location of sensors within the network
topology

ESRI
Environmental Systems Research Institute. Consulting firm that
specialises in land use analysis projects

Addendum B

GENS General Electric Network Solutions

GEO-Location
Determining the location of an object via the aid of GPS satellite
transmission

GIS
A Geographical Information Systems is a systems capable of
managing geo-referenced data

GPS
Global Positioning System. An electronic device used to
determine location, direction, speed and time via satellite
communication

GRASS
Geographic Resources Analysis Support System, open source
GIS tool supporting both vector and raster data

Hybrid network
A WSA network that contains a mix of movement-assisted
nodes and static nodes

IDCA
Intelligent Deployment and Clustering Algorithm, much the
same as DSS, this algorithm uses clustering to further reduce the
energy consumption within the network

IQR Interquartile range, is a measurement of statistical dispersion

Iteration
A single completed phase of a simulation, including detection of
coverage holes and the solving of the hole

LCGSA
Laboratory for Computer Graphics and Spatial Analysis, a
research and development school associated with Harvard
Graduate School of Design

Magik
Object Oriented programming language developed by
SmallWorld to use with the SmallWorld application

Mobile Network
A WSA network that contains only nodes that are able to move
within the region of interest

Mobile Sensor
A node that is capable of movement, either via a third party or
self movement

Movement-
adjustment

The process of calculating potential coverage before a move is
made to solve a given coverage hole. If the new coverage is
“worse” than the current coverage the movement is reconfigured

Movement
oscillations

The back and forth movement of a node between two points

Mote See node

Node An element within a WSAN, either a sensor or an actuator

OGDC
Optimal Graphical Density Control, provides a potential
solution to the energy consumption of nodes in a densely
populated region of the network (inverse of coverage holes)

Addendum B

Outlier
An outlier is defined as an observation that appears to be
inconsistent with the other observations in the data set

Oscillation control
The prevention of movement oscillations by recording the angle
of the previous move. If the new angle to move is opposite that
of the previous move, movement is halted

Parcel
A piece of land that is commercial viable, i.e. can be sold or has
market value

Projection
This is the transformation of a map from a sphere to a 2-
dimensional plane surface.

Radiolocation
Process of finding the location of a point with the aid of radio
waves

Raster data
A GIS data type. The object is divided into cells each cell
contains data about the area

Reconfiguration
The process of reorganising nodes within a WSAN for optimal
distribution

Run A collection of iterations making up a single simulation

Scale

The mathematical relationship between distances on a map and
the actual distance between objects on the Earth. This also
applies the size of an object as represented on a map as well as
the actual size on the Earth

Scalability
Property of a network or system to handle growth in work load
or expansion in size

Sensor A node that is able to sense the local environment

Simulation
Multiple iterations of the algorithm terminated by a preset
condition, run over multiple times or runs

Smallworld A GIS application suite developed by General Electric

Static Network
A WSA Network that contains only nodes that are not capable
of movement i.e. nodes that are fixed to their current locations

Static Sensor A sensor that is fixed to its current location

TIN Triangulated Irregular Network

TOA
Time of Arrival. The time taken for a radio signal to reach the
destination. Used in radiolocation.

Topology The arrangement of nodes within the sensor network

Addendum B

Triangulation
The process of calculating the location of a point using the
properties of triangles and the laws of sine

UAV Unmanned aerial vehicle.

USA-CERL
U.S. Army Corp of Engineering Research Laboratory,
developers of the open source application GRASS

Vector data
A GIS data type. Data is mapped to a geometric polygon, line
or point

VMDS Version Managed Data Store, SmallWorld developed database

Voronoi-diagram

Given a set of points P. This is the process of decomposing a
given area or plain into sections based. The sections or
polygons are determined via the proximity to neighbouring
points within the set P.

Voronoi polygon
The sections that make up a Voronoi-diagram. Each section or
polygon displays the property that the area within the polygon
are closest to the point making the polygon within the diagram

WSAN
Wireless Sensor and Actuator Networks are much the same as
mobile ad-hoc networks, however it is able to sense and act
within its environment.

References

1 References
[1] N. Ahmed, S.S. Kanhere, and S. Jha, “The Holes Problem in Wireless Sensor Networks: A Survey”, Mobile

Computing and Communication Review, NICTA, Sydney, Australia, 2005, volume 1, number 2.

[2] J. Albowicz, A. Chen and L. Zhang, “Recursive position estimation in sensor networks”, The 9th International

Conference on Network Protocols, November 2001, pg 35-41

[3] I.F. Alkyildiz, and I.H. Kasimoglu, “Wireless Sensor and Actor networks: research challenges”, Georgia

Institute of Technology, Georgia, USA, 2004.

[4] I.F. Alkyildiz, W. Su and Y. Sankarasubramaniam, “Wireless Sensor Networks: A Survey”, Computer

Networks, vol 38, issue 4, March 2002, pg 393-422

[5] F. Aurenhammer, “Voronoi Diagrams – A survey of a fundamental geometric data structure”, ACM

Computing surveys, 1991

[6] V. Barnett, T. Lewis, Outliers in Statistical Data, John Wiley and Sons, 1994 3rd edition.

[7] M.A. Batalin and G.S. Sukhtame, “Coverage, exploration and deployment by a mobile robot and

communication network”. Telecommunication Systems Journal, Special Issue on Wireless Sensor Networks,
26(2):181-196, 2004.

[8] M. Becker, Simulation Tool Comparison Matrix, November 2007

[9] K.Q. Brown, “Voronoi Diagrams from convex hulls”, 1979, pg 223-228

[10] R.F. Chavez, “Generating and Reintegrating Geospatial Data”, ACM, June 2000

[11] CompuWorld, “BP Pioneers Large-scale Use of Wireless Sensor Networks”, 14 March 2005,

http://www.computerworld.com

[12] J. Cortes, S. Martinez, T.Karatas and F. Bullo, “Coverage Control for Mobile Sensing Networks”. In

Proceedings of IEEE Conference on Robotics and Automation (ICRA), May, 2002.

[13] FOSS4G2008 Homepage - www.foss4g2008.org/, 2008

[14] C.A. Frazee, “World History, Volume One: The Easy Way”, Barrons Educational Series, 1997, pg 12, ISBN

0812097653

[15] S. Ganeriwal, A. Kansal and M.B. Srivastava, “Self Aware Actuation for Fault Repair in Sensor Networks”.

In Proceedings of IEEE International Conference on Robotics and Automation (ICRA), May 2004.

[16] GENS SmallWorld Core Documentation Version 4, GE Power Systems, 2003

[17] GIS Lounge Library Homepage, http://gislounge.com/, 2008

[18] R.H. Gőting, “An Introduction to Spatial Database Systems”, Spatial Database Systems of the VLDB Journal,

vol 3, no 4, October 1994

[19] N. Heo and P.K. Varshney, “An Intelligent Deployment and Clustering Algorithm for a Distributed Mobile

Sensor Network”. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics,
volume 5, pages 4576-4581, October 2003.

[20] C.F. Huang and Y.C. Tseng, “The Coverage Problem in Wireless Sensor Networks” In Proceedings of the 2nd

ACM WSNA’03, September 2003.

[21] W.E. Huxhold, “An Introduction to Urban Geographical Systems”, University of Wisconsin, Milwaukee,

Oxford University Press, 1991

[22] ICOMOS, “Robben Island”, International Council on Monuments and Sites, Recommendation for Robben

Island to be a world site, ICOMOS, September 1999.

[23] J. Jiang and W. Dou, “A Coverage-preserving density control algorithm for wireless sensor networks”, In

ADHOC-NOW’04, pg 42-55, July 2004

References

[24] K.M. Johnston, “Geo-processing and Geographic Information System Hardware and Software: Looking

towards the 1990s”, Geographical Information Systems for Urban and Regional Planning, pg215-227

[25] M. Kennedy, “The Global Positioning System and GIS: An Introduction”, Ann Arbor Press, Inc, Michigan

USA, 1996, ISBN 1-57504-017-4

[26] J.M. Khan, R.H. Katz and K.S. Pister, “Next Century Challenges: Mobile Networking for Smart Dust”, In

Proceedings of the 5th annual ACM/IEEE international conference on Mobile computing and networking,
1999, pg 271-278

[27] X.L. Li, P.J. Wan and O.Frieder, “Coverage in Wireless Ad Hoc Sensor Networks”, In IEEE Transactions on

Computers, vol 52, issue 6, June 2003, pg 753-763

[28] (a) S. Meguerdichian, F. Koushanfar, M. Potkonjak and M.B. Srivastava, “Coverage problems in wireless ad-

hoc sensor networks”, INFOCOM 2001, 20th annual joint conference of the IEEE Computer and
Communications Societies, Proceedings IEEE, Vol 3 April 2001, pg 1380 – 1387

[29] (b) S. Meguerdichian, S. Slijepcevic, V. Karayan and M. Potkonjak, “Localized algorithms in wireless ad-hoc

networks: location discovery and sensor exposure”, In Proceedings of the 2nd ACM international symposium
on Mobile ad hoc networking & computing, 2001, pg 106-116

[30] MicroStrain Homepage, http://www.microstrain.com/, 2007

[31] D. Niculescu and B. Nath, “Ad hoc positioning system (APS) using AoA”, In proceedings of the IEEE

INFOCOM, 2003.

[32] (a) H.A.B.F. Oliveira, E.F. Nakamura, A.A.F. Loureiro and A. Boukerche, “Error Analysis of Localization

Systems for Sensor Networks”, Proceedings of the 13th annual ACM international workshop on Geographic
Information Systems, 2005, p71-78

[33] (b) H.A.B.F. Oliveira, E.F. Nakamura, A.A.F. Loureiro and A. Boukerche, “Direct Position Estimation: A

Recursive localization approach for wireless sensor network”, the 14th IEEE International Conference on
Computer Communications and Networks, San Diego, California, USA, Oct 2005, pp 557-562

[34] D. Harel, “Algorithmics – The Spirit of Computing”, 2nd edition, Addison-Wesley Publishing Company, 1996

[35] M. Perry, F. Hakimpour and A. Sheth “Analyzing Theme, Space, and Time: An Ontology-based Approach”

ACM International Symposium on Geographic Information Systems, 2006, pp. 147-154.

[36] D. Righton, C.Mills, “Application of GIS to investigate the use of space in coral reef fish: comparison of

territorial behaviour in two Red Sea butterfly fishes”, International Journal of Geographical Infomration
Science, vol 20, Issue 2, Februaru 2006, pg 215 - 232

[37] A.G. Ruzzelli, M.J. O’Grady, G.M.P. O’Hare and R. Tyan, “Adaptive scheduling in Wireless Sensor

Networks”, In proceeding of WAC2005, the 2nd IFIP Workshop on Automatic Communication, 2005

[38] P. Santi “Topology Control in Wireless Ad Hoc and Sensor Networks” ACM Computing Surveys, Vol 37, No

2 ’05, June 2005, pp. 164-194.

[39] G. Simon, M. Maroti and A. Ledeczi, “Sensor Network-Based Counter-sniper System”, ACM Sensys

Conference, November 2004

[40] M. Sharifzadeh and C.Shahabi, “Supporting spatial aggregation in sensor network database”, In proceedings

of the 12th Annual ACM international Workshop on Geographic Information Systems, Washington DC,
November 2004, pg166-175

[41] SunSpots Homepage - http://www.sunspotworld.com/, 2007

[42] D. Tian and N.D. Georganas, “A Coverage Preserving Node Scheduling Scheme for Large Wireless Sensor

Networks”. In Proceedings of the first ACM WSNA ’02, September 2002.

[43] P. Vinten-Johansen, “Cholera, Chloroform, and the Science of Medicine: A Life of John Snow”, Oxford

University Press, US, 2003, ISBN 019513544X

[44] M. Wachowicz, “Object-Oriented Design for Temporal GIS”, Taylor & Francis, 1999, ISBN 0-7484-0831-2

References

[45] (a) G. Wang, G. Cao and T.L. Porta “A Bidding Protocol for Deploying Mobile Sensors”. In 11th IEEE
International Conference on Network Protocol ICNP’03, pages 315-324, November 2003.

[46] G. Wang, G. Coa and T.L. Porta “Movement-assisted Sensor Deployment” In IEEE INFOCOM 2004, June

2004.

[47] (b) X. Wang, G. Xing, Y. Zhang, C. Lu, R. Pless and C. Gill “Integrated coverage and connectivity

configuration in wireless sensor networks”. In Proceedings of the ACM SenSys ’03, pages 28-39, Nov 2003

[48] E.W. Weisstein, "Triangle." From MathWorld--A Wolfram Web Resource.

http://mathworld.wolfram.com/Triangle.html

[49] Xbow Homepage - http://www.xbow.com, 2007

[50] S. Yang, J. Wu and F. Dai, “Localized Movement-Assisted Sensor Deployment in Wireless Sensor

Networks”, Mobile Adhoc and Sensor Systems (MASS), 2006 IEEE International Conference, Oct 2006, pg
753-758.

[51] C. Yearsley, M.F. Worboys, P. Story, D.P.W. Jayawardena and P. Bofakos, “Computational support for

spatial information handling: models and algorithms”, Innovations in GIS, The First National Conference on
GIS Research, UK, vol 1, pg 75-88

[52] M. Zhang, X. Du and K. Nygard, “Improving coverage Performance in sensor networks by using mobile

sensors”, Military Communications Conference MILCOM 2005, IEEE, Oct 2005, vol 5, pg 3335-3341

[53] H. Zhang and J.C. Hou, “Maintaining Sensing Coverage and Connectivity in Large Sensor Networks”,
Technical Report UIUDCS-R-2003-2351, Department of Computer Science, University of Illinois at Urbana
Champaign, 2003.

Addendum A

A Addendum – Tables

A.1 Simulator Comparison Matrix (Becker 2007)

 TOSSIM TOSSIM ns-2 ns-2 GloMoSim
(Qualnet)

OMNeT++
(Omnest)

OMNeT++ OMNeT++ OMNeT++ OMNeT++

Version
1.1.15cvs 1.1.15cvs 2.30 2.0 (3.9.5) 3.4b2

+Tool Extension
(Tool Version)

 tython (1.1.15cvs) (BonnMotion,
BonnTraffic)

SensorSim (BonnMotion) Sensim 3.0 Mobility
Framework
2.0pre3

NesCT 30-09-06 EWSNSIM 171105

Simulator/Emulator
Simulator,
Emulator(AVR,
MSP)

same Simulator Simulator Simulator Simulator Simulator Simulator Emulator (TinyOS) Simulator

Transferability of
Code

Yes same No No No No No No Yes Yes

License, Cost

GPL same GPL GloMoSim:
Academic,
QualNet:
Commercial

Academic
Public License,
Omnest:
Commercial

Academic
Public License

Academic
Public License

Academic
Public License

Academic Public License Commercial,
University Program

Architecture
Component-based same Object-oriented Component-

based
Component-
based

Component-
based

Component-based Component-based

Platform

Windows, Linux same Windows,
Linux, Sun, Mac

 Windows,
Linux, Sun, Mac

Windows,
Linux,
FreeBSD, Mac
OS X

Windows,
Linux,
FreeBSD, Mac
OS X

Windows,
Linux,
FreeBSD, Mac
OS X

Windows, Linux, FreeBSD,
Mac OS X

Windows, Linux,
FreeBSD, Mac OS X

WSN Platforms
supported

MSP, AVR same

Status

Supported same Supported Not supported GlomoSim: Not
supported,
Qualnet:
Supported

Supported Not supported Supported,
Free
Community
Support,
Commercial
Support
(OmNest)

Supported

Addendum A

 TOSSIM TOSSIM ns-2 ns-2 GloMoSim
(Qualnet)

OMNeT++
(Omnest) OMNeT++ OMNeT++ OMNeT++ OMNeT++

Programming
language of the tool

Java same C++, OTcl Parsec (C, C++) C++, NED C++, NED C++

Programming
language of the

models

nesC same C++, OTcl C++, NED C++, NED C++, NED nesC nesC, C++, NED

GUI, API etc.
GUI:
TinyVIZ/SimDriver

same GUI: nam Yes GUI: TkEnv GUI: TkEnv gned, GUI:
TkEnv

GUI: TkEnv GUI: TkEnv

Scenario
description

format

 Python script OTcl NED NED NED NED

Parallel execution
 Pdns Pdns Parsec Yes: Parsim Yes: Parsim Yes: Parsim Yes: Parsim Yes: Parsim

Radio propagation
models

Empirical, Fixed
Radius

 Included: Free
space model,
Two-ray ground
model,
Shadowing
model
External:
realistic channel
propagation by
Wu Xiuchao,
ricean
propagation
model by Ratish
J. Punnoose

 Two Ray,
FreeSpace

 Plain pathloss
model

Plain pathloss
model,
: Free Space,
NoLoss,
Gilbert-Elliot

Physical layer and
antenna models

Empirical, Fixed
Radius

+PacketLossRatios SNR bounded,
BER based with
BPSK/QPSK
modulation

 Ideal unit gain
antennas, PSK, 16-
QAM, 256-QAM
 antenna models
ANSim Tool Traces

Addendum A

 TOSSIM TOSSIM ns-2 ns-2 GloMoSim
(Qualnet)

OMNeT++
(Omnest) OMNeT++ OMNeT++ OMNeT++ OMNeT++

Mobility models

No Mobility Scriptable Pathes (BonnMotion:
Random
Waypoint,
Gauss-Markov,
Manhattan Grid,
Reference Point
Group)

 RWP, Random
Drunken, Trace
based

No Yes (CircleMobility,
ConstSpeedMobility,
LinearMobility,
LineSegmentsMobilityBase,
MassMobility,
RectangleMobility)

Bonn Motion data,
LOGO scripts
(TurtleMobility),
CircularMobility,
LinearMobility,
MassMobility,
RectangleMobility,
ConstSpeedMobility

Standards
supported

802.15.4 AODV, OLSR,
DYMO, 802.11,
Bluetooth,
Mobile IP

802.15.4,
802.11
(BonnTraffic:
several Traffic
models)

CSMA, IEEE
802.11, MACA,
IP with AODV,
Bellman-Ford,
DSR, Fisheye,
LAR scheme 1,
ODMRP, WRP,
TCP, UDP,
CBR, FTP,
HTTP, Telnet +
more

802.11 802.11,
Directed
Diffusion with
GEAR

Supports Energy
Consumption

Research

with extension
PowerTOSSIM

with extension
PowerTOSSIM

Statistical support
(RNG, Batch

Means, Confidence
interval, LRE etc.)

 same (ns2measure) Akaroa RNG,
seedtool

 exhaustive exhaustive

Addendum A

 OPNET Avrora ATEMU EmStar/EmTOS
 SENS J-

Sim(JavaSim) ModelNet/NISTNet NESLSim WiSeNet JiST /
SWANS SwarmNet/Shawn AlgoSenSim Netwiser

Version
11.0 Beta 1.6.0 0.4 2.5 jan31-

2005b
1.3 + patch4 0.99/2.0.12 N/A 0.51 1.0.6 Daily builds 0.9.2.2 0.2.5

+Tool Extension
(Tool Version)

Wireless
Module

Simulator/Emulator
Simulator Simulator/

Emulator(AVR)
 Simulator

Transferability of
Code

No Yes No

License, Cost
GPL GPL N/A Academic BSD Commercial

license or
GPL

Architecture
Object-
oriented

Emulate
hardware
directly

 Object-oriented

Platform
 JVM Windows, Linux,

Any with Standard
C++

WSN Platforms
supported

 AVR

Status

Supported Supported but
not being
actively
developed

 Inactive
(Last update
2005)

 Supported Pre-alpha Supported

Programming
language of the tool

C, C++ Java Java Java C++

Programming
language of the

models

C, C++ C++

GUI, API etc.
GUI No GUI No GUI Eclipse

Plugin

Scenario
description format

GUI Plain Text

Addendum A

 OPNET Avrora ATEMU EmStar/EmTOS
 SENS J-

Sim(JavaSim) ModelNet/NISTNet NESLSim WiSeNet JiST /
SWANS SwarmNet/Shawn AlgoSenSim Netwiser

Parallel execution
Yes No

Radio propagation
models

Yes Perfect, Fixed
Radius

 Fixed Radius,
Radio Irregularity
Model (RIM),
Permalink

Physical layer and
antenna models

 Ideal

Mobility models
Yes No ns-2 mobility files

Standards
supported

802.11 802.11, 802.16,
MANET,
MobileIP

TinyOS
MAC, any
application

Supports Energy
Consumption

Research

Three
states
Radio
Model
(Sleep, Rx,
Tx)

Statistical support
(RNG, Batch

Means, Confidence
interval, LRE etc.)

exhaustive BSD RNG,
Batch Means

No

Addendum A

 DiSenS SENSE ModelNet/NISTNet NESLSim WiSeNet JiST /
SWANS SwarmNet/Shawn AlgoSenSim Netwiser DiSenS SENSE COOJA JProwler

Version
 2.0 0.99/2.0.12 N/A 0.51 1.0.6 Daily builds 0.9.2.2 0.2.5 2.0 No release

yet.

+Tool Extension
(Tool Version)

Simulator/Emulator
 Simulator Simulator,

Emulator
(MSP)

Transferability of
Code

 No Yes

License, Cost
 GPL N/A Academic BSD Commercial

license or
GPL

 Apache

Architecture

 Object-oriented Cross-Level
simulation.
(Nodes may
either be
simulated
or emulated)

Platform
 Windows, Linux,

Any with Standard
C++

 Linux,
Windows

WSN Platforms
supported

Status
 Supported Pre-alpha Supported Actively

developed

Programming
language of the tool

 Java C++ Java

Programming
language of the

models

 C++ C (or Java)

GUI, API etc.
 No GUI Eclipse Plugin GUI

Addendum A

 DiSenS SENSE ModelNet/NISTNet NESLSim WiSeNet JiST /
SWANS SwarmNet/Shawn AlgoSenSim Netwiser DiSenS SENSE COOJA JProwler

Scenario
description format

Parallel execution
 No No

Radio propagation
models

 Fixed Radius, Radio
Irregularity Model
(RIM),
Permalink

 Fixed Radius,
Ray-tracing
multipath
model

Physical layer and
antenna models

 Ideal

Mobility models
 ns-2 mobility files Supported,

no models

Standards
supported

 Glue driver
abstraction

Supports Energy
Consumption

Research

Statistical support
(RNG, Batch

Means, Confidence
interval, LRE etc.)

Addendum A

 Viptos/VisualSense/PtolemyII Sunflower WISENSE SenSor GTSNetS SensorSim SimulAVR Sidh SWAN TOSSF

Version
1.0 CVS 1.0 1.0.1 alpha

+Tool Extension
(Tool Version)

Simulator/Emulator
 Simulator Simulator

Transferability of
Code

 No No

License, Cost
 GPL

Architecture
 Object -oriented

Platform
 Python VM Linux, Windows

WSN Platforms
supported

 AVR

Status
Inactive (Last update 2005) Supported Withdrawn Inactive

(Last update
2004)

Inactive.
(Paper in
2005.)

Programming
language of the tool

 SDL Python C++

Programming
language of the

models

 SDL Python C++

GUI, API etc.
 GUI Qt based

animation tool

Scenario
description format

 C++

Addendum A

 Viptos/VisualSense/PtolemyII Sunflower WISENSE SenSor GTSNetS SensorSim SimulAVR Sidh SWAN TOSSF

Parallel execution
 Yes, libsync

library

Radio propagation
models

 Unit Disk Graph,
Two-ray ground
model,
Free space

Physical layer and
antenna models

 ideal

Mobility models
 Random-

waypoint and
variants

Standards
supported

 IEEE 802.3,
IEEE 802.11,
DSR, TCP, UDP,
CBR, FTP,
HTTP +more

Supports Energy
Consumption

Research

Statistical support
(RNG, Batch

Means, Confidence
interval, LRE etc.)

 Contains models
for a variety of
random number
generators,
including
exponential,
pareto, uniform,
normal,
empirical,
constant, and
sequential.
Supports data
collection using
histograms and
cumulative
distribution
functions.

Addendum B

B Addendum - Development API

B.1 Simulator
_pragma(classify_level=basic, topic={simulator,app,engine})
_method simulator_engine.init()

_pragma(classify_level=basic, topic={simulator,app,engine})
_method simulator_engine.commit()

_pragma(classify_level=basic, topic={simulator,app,engine})
_method simulator_engine.reset_roi(p_config)

_pragma(classify_level=basic, topic={simulator,app,engine})
_method simulator_engine.clean_roi(p_config)

_pragma(classify_level=basic, topic={simulator,app,engine})
_method simulator_engine.random_deploy(p_config, _optional p_sensor_amount,
p_name, p_rx_seed, p_ry_seed)

_pragma(classify_level=basic, topic={simulator,app,engine})
_method simulator_engine.deploy_sensors_for(p_config)

_pragma(classify_level=basic, topic={simulator,app,engine})
_method simulator_engine.create_voronoi_diagram(p_config)

_pragma(classify_level=basic, topic={simulator,app,engine})
_method simulator_engine.clean_sensors(p_config)

_pragma(classify_level=basic, topic={simulator,app,engine})
_method simulator_engine.get_optimal_sensor_count(p_config)

_pragma(classify_level=basic, topic={simulator,app,engine})
_method simulator_engine.get_stats_for(p_config)

_pragma(classify_level=basic, topic={simulator,app,engine})
_method simulator_engine.set_mobility(p_config, p_mobile)

_pragma(classify_level=basic, topic={simulator,app,engine})
_method simulator_engine.get_total_dist(p_config)

_pragma(classify_level=basic, topic={simulator,app,engine})
_method simulator_engine.get_mean_dist(p_config)

_pragma(classify_level=basic, topic={simulator,app,engine})
_method simulator_engine.get_protocols_from(p_filename)

_pragma(classify_level=basic, topic={simulator,app,engine})
_method simulator_engine.store_data(p_config)

Addendum B

_pragma(classify_level=basic, topic={simulator,app,engine})
_method simulator_engine.export_data(p_config, p_name)

_pragma(classify_level=basic, topic={simulator,app,plugins})
simulator_manager.def_property (:engine_name, :default, :simulator_engine)

_pragma(classify_level=basic, topic={simulator,app,plugins})
_method simulator_manager.init (_optional p_plugin, _gather p_args)

_pragma(classify_level=basic, topic={simulator,app,plugins})
_method simulator_manager.build_gui (p_container)

_pragma(classify_level=basic, topic={simulator,app,plugins})
_method simulator_manager.init_actions()

_pragma(classify_level=basic, topic={simulator,app,plugins})
_method simulator_manager.manage_actions()

_pragma(classify_level=basic, topic={simulator,app,plugins})
_method simulator_manager.handle_actions(p_method, _gather p_args)

_pragma(classify_level=basic, topic={simulator,app,plugins})
_method simulator_manager.refresh_stats(p_config)

_pragma(classify_level=basic, topic={simulator,app,plugins})
_method simulator_manager.set_mobility(p_config)

_pragma(classify_level=basic, topic={simulator,app,plugins})
_method simulator_manager.random_deploy(p_config)

_pragma(classify_level=basic, topic={simulator,app,plugins})
_method simulator_manager.run_protocol(p_config)

_pragma(classify_level=basic, topic={simulator,app,plugins})
_method simulator_manager.export_data(p_config)

_pragma(classify_level=basic, topic={simulator,app,plugins})
_method simulator_manager.toggle_run_inaccurate(p_config)

_pragma(classify_level=basic, topic={simulator,app,plugins})
_method simulator_manager.help_wanted(_optional p_id)

_pragma(classify_level=basic, topic={simulator,geometry})
_method common_math_mixin.get_xy_for_triangle(p_distance, p_angle)

_pragma(classify_level=basic, topic={simulator,geometry})
_method common_math_mixin.get_xy_for_boundary(p_distance, p_angle)

_pragma(classify_level=basic, topic={simulator,geometry})

Addendum B

_method common_math_mixin.get_xy_from_trail(p_distance, p_coord_a,
p_coord_b)

_pragma(classify_level=basic, topic={simulator,geometry})
_method voronoi_diagram.new()

_pragma(classify_level=basic, topic={simulator,geometry})
_method voronoi_diagram.construct_empty_circles(p_config)

_pragma(classify_level=basic, topic={simulator,geometry})
_method voronoi_diagram.find_neighbour_for(p_sensor, p_set)

_pragma(classify_level=basic, topic={simulator,geometry})
_method voronoi_diagram.find_vp_neighbours_for(p_tin, p_sensor)

_pragma(classify_level=basic, topic={simulator,geometry})
_method voronoi_diagram.find_direct_neighbours_for(p_sensor, p_set)

_pragma(classify_level=basic, topic={simulator,geometry})
_method voronoi_diagram.find_circumcenter_for(p_set)

_pragma(classify_level=basic, topic={simulator,geometry})
_method voronoi_diagram.construct_diagram(p_config)

_pragma(classify_level=basic, topic={simulator,geometry})
_method voronoi_diagram.get_diagram_coverage_hole(p_config)

_pragma(classify_level=basic, topic={simulator,geometry})
_method voronoi_diagram.calculate_uniformity(p_config)

_pragma(classify_level=basic, topic={simulator,geometry})
_method voronoi_diagram.calculate_local_uniformity(p_config, p_si)

B.2 Protocols
_pragma(classify_level=basic, topic={simulator,protocol})
coverage_protocol.define_shared_variable(:name, "", :public)

_pragma(classify_level=basic, topic={simulator,protocol})
_abstract _method coverage_protocol.init(p_config)

_pragma(classify_level=basic, topic={simulator,protocol})
_abstract _method coverage_protocol.run()

_pragma(classify_level=basic, topic={simulator,protocol})
_abstract _method coverage_protocol.reset()

_pragma(classify_level=basic, topic={simulator,protocol})
_abstract _method coverage_protocol.stop()

_pragma(classify_level=basic, topic={simulator,vec,protocol})

Addendum B

_method coverage_protocol.move_sensor(p_config, p_sensor, p_coord)

_pragma(classify_level=basic, topic={simulator,vec,protocol})
_method coverage_protocol.get_coverage_for?(p_sensor)

_pragma(classify_level=basic, topic={simulator,vec,protocol})
_method vec_protocol.init(p_config)

_pragma(classify_level=basic, topic={simulator,vec,protocol})
_method vec_protocol.run()

_pragma(classify_level=basic, topic={simulator,vec,protocol})
_method vec_protocol.discovery(p_config)

_pragma(classify_level=basic, topic={simulator,vec,protocol})
_method vec_protocol.get_neighbours_for(p_config, p_sensor, p_tin, p_ht)

_pragma(classify_level=basic, topic={simulator,vec,protocol})
_method vec_protocol.calculate_boundary_force_for(p_roi)

_pragma(classify_level=basic, topic={simulator,vec,protocol})
_method vec_protocol.moving(p_nsi, p_si, p_davg)

_pragma(classify_level=basic, topic={simulator,vec,protocol})
_method vec_protocol.calculate_average_for(p_config)

_pragma(classify_level=basic, topic={simulator,vec,protocol})
_method vec_protocol.reset()

_pragma(classify_level=basic, topic={simulator,vec,protocol})
_method vec_protocol.stop()

_pragma(classify_level=basic, topic={simulator,vor,protocol})
_method vor_protocol.init(p_config)

_pragma(classify_level=basic, topic={simulator,vor,protocol})
_method vor_protocol.run()

_pragma(classify_level=basic, topic={simulator,vec,protocol})
_method vor_protocol.get_farthest_vertex(p_si)

_pragma(classify_level=basic, topic={simulator,vec,protocol})
_method vor_protocol.move_sensor(p_si, p_d_asi, p_sl, p_v_coord)

_pragma(classify_level=basic, topic={simulator,vec,protocol})
_method vor_protocol.moving()

_pragma(classify_level=basic, topic={simulator,vec,protocol})
_method vor_protocol.discovery(p_config)

Addendum B

_pragma(classify_level=basic, topic={simulator,vor,protocol})
_method vor_protocol.reset()

_pragma(classify_level=basic, topic={simulator,vor,protocol})
_method vor_protocol.stop()

_pragma(classify_level=basic, topic={simulator,ogdc,protocol})
_method ogdc_protocol.init(p_config)

_pragma(classify_level=basic, topic={simulator,ogdc,protocol})
_method ogdc_protocol.run()

_pragma(classify_level=basic, topic={simulator,ogdc,protocol})
_method ogdc_protocol.reset()

_pragma(classify_level=basic, topic={ simulator,ogdc,protocol})
_method ogdc_protocol.stop()

_pragma(classify_level=basic, topic={ simulator,ogdc,protocol})
_method ogdc_protocol.find_nodes(p_sensor)

_pragma(classify_level=basic, topic={ simulator,ogdc,protoco })
_method ogdc_protocol.find_next_nodes(p_j_sensor, p_k_sensor)

_pragma(classify_level=basic, topic={ simulator,ogdc,protocol})
_method ogdc_protocol.get_random_node()

_pragma(classify_level=basic, topic={simulator,bidding,protocol})
_method ogdc_protocol.get_node_closest_to(p_coord)

_pragma (classify_level=basic, topic={simulator,ccp,protocol})
_method ccp_protocol.init(p_config)

_pragma (classify_level=basic, topic={simulator,ccp,protocol})
_method ccp_protocol.run()

_pragma (classify_level=basic, topic={simulator,ccp,protocol})
_method ccp_protocol.reset()

_pragma (classify_level=basic, topic={simulator,ccp,protocol})
_method ccp_protocol.stop()

_pragma (classify_level=basic, topic={simulator,ccp,protocol})
_method ccp_protocol.calculate_eligibility(p_sensor)

_pragma (classify_level=basic, topic={simulator,ccp,protocol})
_method ccp_protocol.get_union(p_neighbours)

B.3 Database Exemplars
_pragma(classify_level=basic, topic={simulator,map_objects})

Addendum B

sensor.define_shared_variable(:area_rad, 1, :public)

_pragma(classify_level=basic, topic={simulator,map_objects})
sensor.define_shared_variable(:comm_rad, 1, :public)

_pragma(classify_level=basic, topic={simulator,map_objects})
sensor.define_shared_variable(:inaccurate_offset, 0, :public)

_pragma(classify_level=basic, topic={simulator,map_objects})
sensor.define_shared_variable(:neighbours, {}, :public)

_pragma(classify_level=basic, topic={simulator,map_objects})
sensor.define_shared_variable(:movement_table, hash_table.new(), :public)

_pragma(classify_level=basic, topic={simulator,map_objects})
_method sensor.movement_vector

_pragma(classify_level=basic, topic={simulator,map_objects})
_method sensor.movement_vector << p_value

_pragma(classify_level=basic, topic={simulator,map_objects})
_method sensor.deploy(_optional p_area_rad, p_comm_rad)

_pragma(classify_level=basic, topic={simulator,map_objects})
_method sensor.clean()

_pragma(classify_level=basic, topic={simulator,map_objects})
_method sensor.activate()

_pragma(classify_level=basic, topic={simulator,map_objects})
_method sensor.deActivate()

_pragma(classify_level=basic, topic={simulator,map_objects})
_method sensor.set_sensor_range(_optional p_new_area)

_pragma(classify_level=basic, topic={simulator,map_objects})
_method sensor.set_communication_range(_optional p_new_comm)

_pragma(classify_level=basic, topic={simulator,map_objects})
_method sensor.set_location(p_new_coord)

_pragma(classify_level=basic, topic={simulator,map_objects})
_method sensor.move_to(p_new_coord, p_plot_trail?)

_pragma(classify_level=basic, topic={simulator,map_objects})
_method sensor.reset()

_pragma(classify_level=basic, topic={simulator,map_objects})
_method sensor.get_distance_traveled()

Addendum B

_pragma(classify_level=basic, topic={simulator,geometry})
_method sensor.get_coverage_hole_for()

_pragma(classify_level=basic, topic={simulator,map_objects})
_method sensor.insert_trigger()

_pragma(classify_level=basic, topic={simulator,map_objects})
_method sensor.commit()

_pragma(classify_level=basic, topic={simulator,map_objects})
_method sensor.calc_location

_pragma(classify_level=basic, topic={simulator,map_objects})
_method sensor.move_from_vector(_optional p_clear_rope?)

_pragma(classify_level=basic, topic={simulator,map_objects})
export_data.define_shared_variable(:s_distance_moved, rope.new(), :public)

_pragma(classify_level=basic, topic={simulator,map_objects})
export_data.define_shared_variable(:s_coverage_hole, rope.new(), :public)

_pragma(classify_level=basic, topic={simulator,map_objects})
export_data.define_shared_variable(:c_coverage_hole, rope.new(), :public)

_pragma(classify_level=basic, topic={simulator,map_objects})
export_data.define_shared_variable(:c_active, rope.new(), :public)

_pragma(classify_level=basic, topic={simulator,map_objects})
export_data.define_shared_variable(:c_mobile, rope.new(), :public)

_pragma(classify_level=basic, topic={simulator,map_objects})
_method export_data.init()

_pragma(classify_level=basic, topic={simulator,map_objects})
_method export_data.reset_data()

