
5 INCOMPLETE CONTINGENCY TABLES 

An incomplete contingency table is a contingency table where information on one or more of the cate­
gorical variables is missing. It is assumed that the data are MAR and the missing data mechanism is 
ignorable. This chapter discusses rvIL estimation of cell probabilities in an incomplete contingency table 
by using all the observed data - including data where information on one or more of the categorical 
variables is missing. Lipsitz, Parzen and Molenberghs (1998) uses the Poisson generalized linear model 
to obtain ML estimates of cell probabilities for the saturated loglinear model whilst Little and Rubin 
(1987) describes and uses the EM algorithm to determine the ML estimates of cell probabilities for any 
loglinear model. Maximum likelihood estimation under constraints is also discussed in this chapter as a 
method to determine the ML estimates of cell probabilities. The advantage of this method is that it is 
less computational intensive compared to the more generally used EM algorithm. It also illustrates the 
elegance with which the method of ML estimation under constraints can be applied. 

5.1 ML ESTIMATION IN INCOMPLETE CONTINGENCY TABLES 

Consider an I x J contingency table with categorical variables C, = {I, 2, ... , I} and C2 = {l, 2, ... , J}. 
A multinomial sampling procedure is assumed. Let Yij be the count in cell (i)j), Yij the observed value 
of Yij and n = L: L: Yij the total counts. The counts in each cell can be arranged to form the complete 
data vector Y' = (Yl1, Y12 , ... , Y/ J) with E (Y) = 1-', the vector of expected counts. 
If information on one or both of the categories is missing the contingency table is said to be incomplete. 
The data to be classified in the contingency table can be split into two parts namely: 

- the fully classified cases where information on all the categories is available and, 
- the partially classified cases where information on some of the categories is missing. 

It is assumed that the data are MAR and the missing data mechanism is ignorable. 
In this section the saturated model is considered and the EM algorithm and ML estimation under con­
straints are described and illustrated as methods which uses both the fully and partially classified cases 
to determine the ML estimates of the cell probabilities. 

5.1.1 The EM Algorithm 

Multinomial Sampling 
If the probability that an observation falls in cell (i, j) is 7f ij, where 7f ij 2: 0 and ~ ~ 7f i] = 1 then the 
complete data Y have a multinomial distribution, 

with probability function 

(56) 

where 7r' = (7rll)7r12) ... ,7rIJ). 

The kernel of the complete data log-likelihood is 

The cell counts) Yij, are the sufficient statistics and the MLE of 7rij IS 
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Product Multinomial Sampling 
Let Yi+ = L:j Yij be the total counts in row i and ITi+ = L

J 
7rij the probability that an element falls 

rr 
in row i. If the Yi+ elements of row i arc independent, each having a probability distribution --.:!.L, 

7ri+ 

j = 1,2, ... ) J, then, given the row total Yi+ and the vector of cell probabilities 7r, the elements of row i 
have a multinomial distribution 

Yi , Yi2 ... Y:·JIYi+ .". ~ Mult y.+. - - ... 
( 

7ril 1Ti2 
1 , 1, ,1 1, 1", 

Jri+ 7rH 
(57) 

( 
rri) ) and E (Yij IYi+ = YH) = YH - . 
7fH 

When samples from different rows are independent, the joint probability function for the entire data set 
is the product of I multinomial probability functions, 

Similarly, if the column totals are fixed then the elements of column j will have a multinomial distribution 

(58) 

EM algorithm to determine the ML estimates of the cell probabilities in an incomplete I x J 
contingency table: data missing on both categories 
If missing values occur on both C1 and C2 ) the observed data can be partitioned into three parts denoted 
by A, Band C respectively, where A includes units having both C, and C2 observed, B includes those 
having only C1 observed and C includes those where only C2 was observed. In part A observations are 
fully classified and in Band C only partially. The three parts of the sample are displayed in Table 5.l. 
The objective is to determine the ML estimates of cell probabilities in the I x J table by using the fully 
and partially classified data. 

TABLE 5.1 (a), (b) and (c): Classification of sample units in an incomplete I x J contingency table. 

Sample part A 

(a) Both variables observed 

C, = 1 yf, 
C, = 2 ytl 

C, = I A Yll 
Y+l 

Sample part B 

(b) C2 missing 

C, = 1 
C, = 2 

C, = I yf' 

A 
YI2 

C2 = J 
yfJ A 

Yl+ 
A A 

Y2J Y2+ 

A 
YIJ 

A 
YI+ 

Y~ +J 

Sample part C 

(c) C, missing 
C2 - 1 C2 - 2 C2 - J 

43 



Assume that the data are MAR and the missing data mechanism is ignorable. Let Y Al = (Yl1 , Yl1, ... 1 y/; )) 
y 81 = (Yl~) Yl~- 1 ••• 1 y/t) and yOl = (Y~) y";;) ... 1 YfJ) be the random vectors with counts for sample 
parts A, Band C respectively. Since C2 is missing in sample part B 1 the counts observed are totals across 
C2 . Hence, compared to sample part A, row totals are observed in sample part B and column totals in 
sample part C. The observed data are 

Let Y~bs = (yA',yB"YC,) be the observed data vector, Y' = (Yl1,Y12, ... ,YIJ) the complete data 
vector and -rr' = (1r111 7T12, ... 1 7r I J) the vector of cell probabilities for which the 11L estimates must be 
determined. 
Each complete data cQunt, Yij, can be expressed as the sum of contributions from each of the three 
sample parts, that is Yij = Yi1 + fir + fiC;· For sample part B totals across C2 are observed, that is Yi~' 
whilst the individual cell counts, Y;f, are missing. It follows from (57) that the predictive distribution of 
the missing data in part B given Y obs and 7r is a product multinomial, 

(59) 

. (B I B B ) B (Jr ij ) wIth E Yi j fi+ = Yi+, 7r = Yi+ -- . 
7rH 

For part C only the totals across C) are observed, that is Y~. From (58) the predictive distribution of 
the missing data in sample part C given Y obs and 7r is a product multinomial given by 

(60) 

. hE(yclYc _ C ) _ C (Jri j ) WIt ij +j - Y+j' 7r - Y+j -- . 
7r +j 

Thus, E (Y;j IYob" 11") = E (Y;1 + Y;f + y;]' IYob" 11") = yj + Y~ (:;:) 

The distribution of the complete data belong to the regular exponential family with sufficient statistics 
the cell counts, Y;J. In the E-step of the EM algorithm E (Y;j IYob" 1I"(r)) is calculated where 1I"(r), 

r = 0, 1,2, ... , is the rth estimate of Jr. From (59) and (60) 

E (lit + lif + fi1IYobS,7r(r)) 

yj + E (Y;f IV ob" 1I"(r)) + E (Y;]'IYob" 1I"(r)) 

(61) 

In the M-step 1I"(r+1) is calculated by substituting the results from the E-step into the expression of the 
MLE of 11" for the complete data. That is, 

(62) 

The process iterates between (61) and (62) until convergence is attained. 
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5.1.2 ML Estimation under constraints 

The data from parts A, Band C in Table 5.1 can be considered as three independent multinomial samples. 
Let n A = I:I:yj, n B I:yf'r and n C = I:y~j be the total counts in sample parts A, Band C 
respectively. 
All 1 

Let p = A yA, pB = B yB and pC = c yC be the proportions 111 each sample part and 
n n n 

P ' = (pA' pB' pC') with E (p' ) = 7r' = (1TAI IrE! Tre ,) 
obs" obs obs ". 

For the saturated model the maximum likelihood estimates of 7r obs can be determined under the con­
straints 

7r~+ - nf+ = 0 for i = 1,2, ... 1 I 

and 
for j = 1,2, ... ,J. 

Hence, the constraint can be written as A 1[" obs = 0 where 

A : (I + J) x (I J + I + J) = ( 

and where 1~ and 1~ indicates 1 x J and 1 x I row vectors respectively with all values equal to 1. 
The ML estimate of the vector of cell probabilities, under the constraint A 7r obs = 0 is given by 

where 

( COY (1fA) 0 0 ) V1l'Ob8 0 Cov(1fB ) 0 
0 0 COY (1fC) 

( 1 (D A _ 1fA1fA') 0 0 ) "" ~ 0 ...L (D H _ 1fB.,..B') 0 nB 7r 

0 0 --;!c (D1I'c - 7rc 7rc ,) 

Since the constraint, A7robs= 0, is linear in 7Tabs iteration is only over 7Tabs-

The ML estimates of cell probabilities in the I x J table are given by the elements of 7r A in 7r Db, c. 
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EXAMPLE 5.1 
Determining the ML estimates of cell probabilities in an incomplete contingency table by using the EM 
algorithm. 

Consider the data in Table 5.2 from Schafer (1997) obtained through the National Crime Survey conducted 
by the U.S. Bureau of the Census. Housing unit occupants were interviewed to determine whether they 
had been victimized by crime in the preceding six-month period. Six months later the units were visited 
again to determine whether the occupants had been victimized in the intervening months. 

TABLE 5.2: Victimization status from the National Crime Survey. 

Second Visit 
First Visit Crime-free Victims rvIissing 
Crime-free 392 55 33 
Victims 76 38 9 

Missing 31 7 

Following the notation in 5.1.1, 
Y~b8 = (yAI, yB!, yel) where 
yA' = {Yij: i,j = 1,2} = (392,55,76,38) 
yB' = {yp+: i = 1,2} = (33,9) 
yC' = {Y';'j : j = 1, 2} = (31,7). 
The fully classified data, yA, were used to determine a starting value for the algorithm, 
".(0), = 5i, (392,55,76,38) '" (0.70,0.10,0.13,0.07). From (62) the first estimate of 7r11 is 

(1) 
"11 

1 A B 'lT ll C 'lT ll [ ( 
(0)) ( (0))] 

:;;: Yl1 + Y1+ ,,\~ + Y+j ,,~l 

1 [2 (0.70) (0.70)] 641 39 + 33 0.80 + 31 0.83 

0.6974. 

Similarly, the first estimates of 7r12, 7r21 and 7r22 are 

(1) _1_ [55 33 (0.10) 7 (0.10)] = 0.0987 
"12 641 + 0.80 + 0.17 

(1) 1 [ (0.13) (0.13)] 
"21 641 76 + 9 0.20 + 31 0.83 = 0.1353 

,,~~ 6~1 [38 + 9 (~~~) + 7 G~;)] = 0.0687 

This gives ".(1)' = (0.6974,0.0987,0.1353,0.0687) which is used to calculate the second estimate for fr. 
The process continues until convergence is attained. Table 5.3 shows the values at different steps of the 
algorithm. 

TABLE 5.3: Iterations of the EM algorithm. 

r (r) 
"11 

(r) 
" 12 

(r) 
"21 

( r) 
"22 

° 0.7000 01000 0.1300 0.0700 
1 0.6974 0.0987 0.1353 0.0687 
2 0.6972 0.0986 0.1357 0.0685 
3 0.6971 0.0986 0.1358 0.0685 
00 0.6971 0.0986 0.1358 0.0685 

46 



EXAMPLE 5.2 
Determining the ML estimates of cell probabilities in an incomplete contingency table under constraints. 

Consider the data in Example 5.1. 
Y~bs = (yAI, yEt, yC') where 

1 
yA' = {Yij: i,j = 1,2} = (392,55,76,38) and pA = 561 yA 

1 
yB' = {Y~: i = 1,2} = (33,9) and pB = 42 yB 

1 
yC' = {Y'.'j : i = 1, 2} = (31,7) and pC = 38 yo. 

Let P~b8= (pA',pE',pC,) with E(Pobs) = '1r obs. 
For the saturated model the constraint A7robs= 0 must hold, where the elements of A are 

1I"tl nt2 71"2\ 7r~2 B 
7fH 

B 
7f2+ 

C 
7f +1 

C 
7f +2 

1 1 0 0 -1 0 0 0 
A: 0 0 1 1 0 -1 0 0 

1 0 1 0 0 0 -1 0 
0 1 0 1 0 0 0 -1 

The ML estimate of 7r abs under the constraint A1Tobs= 0 is obtained with 

where 

~ (~AI ~B! ~C')' I I -1 
7r obs,c= 7rc , 1Tc , 7rc =Pobs-(AV1l"ObJ (AV1l"Ob"A) APobs 

o 
-l2 (D7rH _7rB 1rB ,) 

o 

o 
o 

1 (D C C') 38 11"{7 - 7r 7r 
) 

(67) 

The ML estimates of the cell probabilities in the 2 x 2 table are given by the elements of ii~ in ii Db,.,. 
This procedure gives the same values for the ML estimates as obtained with the EM algorithm in Example 
5.1. Results obtained under constraints and from the Genmod procedure in SAS are shown in Table 5.4. 
The programs are given in the Appendix. 

TABLE 5.4: ML estimates and standard errors. 

Estimate Std Err 
7fll 0.6971 0.0187 
7f12 0.0986 0.0124 
7f21 0.1358 0.0141 
7f22 0.0685 0.0104 
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EXAMPLE 5.3 
Determining the ML estimates of cell probabilities in an incomplete contingency table under constraints. 

Consider the data in Table 5.5 (from Lipsitz, Parzen, Molenberghs (1998)) which contains the data 
from the Six Cities Study, a study conducted to assess the health effects of air polution. The columns 
corresponds to the wheezing status (no wheeze, wheeze with cold, wheeze apart from cold) of a child 
at age 10. The rows represent the smoking status of the child's mother (none, medium, heavy) during 
that time. For some individuals the maternal smoking variable is missing, while for others the child's 
wheezing status is missing. The objective is to estimate the probabilities of the joint distribution of 
maternal smoking and respiratory illness. 

TABLE 5.5: Six Cities Data: Maternal Smoking Cross-Classified by Child's Wheeze Status. 

Maternal 
Smoking 
None 
Moderate 
Heavy 

Missing 

No Wheeze 

287 
18 
91 

59 

Similar as in Example 5.2: 

Child's wheeze status 
Wheeze with Cold Wheeze apart from cold Missing 

39 38 279 
6 4 27 
22 23 201 

18 26 

y~b' = (yA', yB', yC') = (287,39,38,18,6,4,91,22,23,279,27,201,59,18,26). For the constraint An ob,= 0 
the elements of A are given by 

1l"fl 1l"f2 7rt3 A 
71"21 

A 
71"22 

A 
71"23 

A 
71"31 

A 
71"32 7rt3 B 

71"1+ 
B 

71"2+ 
B 

71"3+ 
C 

71"+1 
C 

71"+2 
C 

1i'+3 

1 1 1 0 0 0 0 0 0 -1 0 0 0 0 0 
0 0 0 1 1 1 0 0 0 0 -1 0 0 0 0 

A: 0 0 0 0 0 0 1 1 1 0 0 -1 0 0 0 
1 0 0 1 0 0 1 0 0 0 0 0 -1 0 0 
0 1 0 0 1 0 0 1 0 0 0 0 0 -1 0 
0 0 1 0 0 1 0 0 1 0 0 0 0 0 -1 

The ML estimate of 7r~bs = (7T
A1

, 1r
B1

, 1r
C1

) is obtained iteratively with 

The ML estimates of the cell probabilities, given in Table 5.6, are the same as those obtained by Lipsitz, 
PaIzen and Molenberghs (1998). Procedures give asymptotically equivalent results. Slight differences in 
the standard errors are indicated. 
Table 5.6 also gives the ML estimates of cell probabilities when using only the 528 fully classified cases. 

TABLE 5.6. ML estimates and standaId errors. 

Fully Classified Cases Fully and Partially Classified Cases 
n = 528 n = 528 + 610 

Estimate Std Err Estimate Std Err( Genmod) 
71"11 0.5436 0.0217 0.4747 0.0179 (0.0174) 
71"12 0.0739 0.0114 0.0701 0.0105 (0.0102) 
71"13 0.0720 0.0112 0.0742 0.0108 (0.0107) 
71"21 0.0341 0.0079 0.0327 0.0065 (0.0064) 
71"22 0.0114 0.0046 0.0120 0.0044 (0.0045) 
71"23 0.0076 0.0038 0.0087 0.0039 (0.0041) 
71"31 0.1723 0.0164 0.2060 0.0149 (0.0158) 
71"32 0.0417 0.0087 0.0558 0.0094 (0.0106) 
71"33 0.0436 0.0089 0.0658 0.0100 (0.0116) 
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5.2 LOG LINEAR MODELS FOR INCOMPLETE CONTINGENCY 
TABLES 

In this section the EM algorithm and ML estimation under constraints are discussed as methods to 
determine the lvIL estimates of the cell probabilities in the complete table for any loglinear model where 
both the fully and partially classified cases are used. 
It is assumed that the data are MAR and the missing data mechanism is ignorable. 

5.2.1 The EM algorithm 

The starting values used in the ElvI algorithm are the lvIL estimates of cell probabilities obtained by 
using only the data in the fully classified table. The process then iterates between the E-step and the 
lvi-step. In the E-step the counts in the partially classified table are distributed into the full table by 
using the lvIL estimates of the cell probabilities obtained in the lvi-step. In the lvi-step lvIL estimates of 
the cell probabilities for the filled in table are obtained and used in the E-step as the next approximation 
of the lvIL estimates of the cell probabilities in the complete table. The lvIL estimation procedure under 
constraints for loglinear models (Section 3.1) can be used in the lvi-step of the algorithm. 

5.2.2 ML Estimation under constraints 

Consider an I x J x K contingency table with CI, C2 and C3 the three categorical variables where 
C, = {I, 2, ... , I} , C2 = {I, 2, ... , J} and C3 = {I, 2, ... , K}. Suppose that for n A cases, information 
for GIl C2 and C3 is known and for n B cases C1 is missing. The n A cases are classified in an I x J x K 
table and the n B cases in a J x K table. The objective is to determine the lvIL estimates of the cell 
probabilities in the I x J x K contingency table, for a specific loglinear model, by using both the n A fully 
classified cases and the n B partially classified cases. A specific loglinear model is assumed. 

Suppose I = J = K = 2. Let yAI = (Yl11'Y112'Y111,Y112'Y211'Y212'Y211'Y212) be the IJK x 1 vector 
of cell counts for the fully classified table with E (yA) = JLA and let yB' = (Y-t"r" Y-t"r2' Y~" Y-f22) 
the J K x 1 vector of cell counts for the partially classified table with E (yB) = JLB Furthermore let 

Y' = (yA' yB') ,,' = ("A' "B') and Tr' = (-"-"A' -"-"B') = (TrA' TrB'). obs , , t-"'obs t-"',t-"' obs nAt-"" nRt-"' , 

Two sets of constraints are imposed; the first pertains to the specific loglinear model that is fitted and 
the second is used to constrain the marginal probabilities in the fully and partially classified tables. 

Constraint 1 
The saturated loglinear model for the fully classified data is 

(68) 

where JL A is the vector with expected cell frequencies, X : I J K x I J K is the design matrix and f3 : I J K x 1 
is the parameter vector for the saturated model. 
The unsaturated model can be written as 

where Xu is a submatrix of X given in (68) and f3u is the parameter vector of the model. 
Let P = I - Xu (X~Xu)-1 X~. The constraint for the model in (69) is 

Constraint 2 

(69) 

(70) 

The sum of the expected cell probabilities in the I x J x K fully classified table over category C
" 

gives 
the expected marginal cell probabilities, 

I 

7r~jk = L 7rjk) for j = 1,2, ... , J and k = 1,2, ... ,K. 
i=l 
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The constraint which must hold between the fully and partially classified tables is 

7r~jk = 7f~jk1 for all j, k. 

Hence, the second constraint can be written as 

(71) 

Combining (70) and (71) gives 

The ML estimate of I-'ob, subject to g (I-'ob,) = 0 is determined iteratively with 

G = 8g (I-'ob,) I _ and 
Yo/:>" a" JLob .• -Yobs 

robs 

V -D _ 1 , 
J.l- o/)., - J1- o/>.. nA + nBJ..LobsJ-Lobs· 

The ML estimates of the cell probabilities in the I x J x K table is 
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EXAMPLE 5.4 
Determining the maximum likelihood estimates of cell probabilities in an incomplete contingency table for 
any loglinear model. 

In Table 5.7, from Little and Rubin (1987), the survival of infants are related according to the amount of 
prenatal care received by the mothers and the clinic they attended. For data in Table 5. 7( a) information 
on survival, prenatal care and clinic attended were recorded but in Table 5. 7(b) information of the clinic 
attended is missing. 

TABLE 5.7. A 23 contingency table with partially classified observations. 

Survival (S) 
Clinic (C) Prenatal Care (P) Died Survived 

(a) FUlly Classified Cases 

A Less 3 176 

B 

More 4 293 

Less 
More 

17 
2 

197 
23 

(b) Partially Classified Cases (Clinic missing) 

Less 10 150 
More 5 90 

715 cases 

255 cases 

The ML estimates of cell probabilities for different loglinear models are given in Table 5.8. The cell 
probabilities are given in the form 100iTcps where 

C = 1 if Clinic = "A" and C = 2 if Clinic = "B"; 
P = 1 if Care = "Less" and P = 2 if Care = "More"; 
S = 1 if Survival = "Died" and S = 2 if Survival = "Survived". 

The saturated model {CPS} was fitted to the incomplete data as explained in section 5.1.2 and the 
models iPS, CS, CP}, {CS, CP} and iPS, CS} were fitted by using the EM algorithm and the ML 
procedure under constraints. 

TABLE 5.8: ML estimates of cell probabilities for different loglinear models. 

{CPS} {PS,CS,CP} {PS,CS} {CS,CP} 
100iT111 0.4639 0.4350 0.8327 0.4963 
100iT112 25.4410 25.4680 36.7015 25.4203 
100iT ,2, 0.7560 0.7913 0.3053 0.7579 
100iT'22 38.8092 38.7845 28.4910 38.8208 
100iT211 2.6289 2.6578 2.2601 2.6787 
100iT212 28.4765 28.4495 17.2160 28.4150 
100iT221 0.3780 0.3427 0.8287 0.2939 
100iT222 3.0465 3.0712 13.3647 3.1172 

Only the {CS, CP} loglinear model is discussed in more detail. The programs are given in the Appendix. 
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The EM algorithm 
The observed frequency vector for the 715 fully classified cases is yA'= (3, 176,4,293,17,197,2,23) and 
for the 255 partially classified cases yB' = (10,150,5,90). 
The EM algorithm is used to determine ji, and if, the ML estimates of the cell frequencies and cell 
probabilities in the 23 table. 
The steps for the EM algorithm are as follows: 

Step 1: Starting value for the EM algorithm 
The starting value of the EM algorithm are the ML estimates obtained by using only the data in the 
fully classified table. 
From section 3.1.3, J.L(O), the first approximation of il, is determined iteratively with 

1"(0) = yA_AC (A~D;lAc) -1 g (yA) + 0 (llyA - I"IIl 

1"(0) 
and from this, 7r(O) = 715 

Step 2: E-Step 

(73) 

In the E-step 7I"(r), r = 0,1, ... is used to distribute the 255 partially classified counts into the full table. 
The filled in frequency vector at the rth step of the EM algorithm is 

where the division and multiplication indicated with "#" in the last term is elementwise. 

Step 3: M-Step 
In the M-step y(r) is used to obtain the next approximation of the ML estimate of J.L, 

l"(r+1) 
The next approximation of 1r is 7r(r+l) = ----gro-' r = 0,1,2, .... 

The EM algorithm iterates between Step 2 and Step 3 until covergence is attained. 
Table 5.9 gives values at different steps of the algorithm. 

TABLE 5.9: Values at different steps of the EM algorithm for the {CS, CF} model. 

r-O r-l r-2 r - 10 
M-Step E-Step M-Step E-Step M-Step E-Step M-Step E-Step 

Cell yA 10071"(0) y(O) 10071"(1) y(1) 10071"(2) y(2) 10071"(10) y(10) 

111 3 0.3682 4.3400 0.4802 4.5030 0.4919 4.5468 0.4963 4.5632 
112 176 24.6668 246.8579 25.4165 246.8436 25.4201 246.8343 25.4203 246.8280 
121 4 0.6109 7.4363 0.7338 7.5561 0.7513 7.5894 0.7579 7.6031 
122 293 40.9276 376.4384 38.8409 376.3140 38.8230 376.3048 38.8208 376.3106 
211 17 2.3794 25.6600 2.7148 25.4970 2.6883 25.4532 2.6787 25.4368 
212 197 27.5507 276.1421 28.3988 276.1564 28.4099 276.1657 28.4150 276.1720 
221 2 0.2780 3.5637 0.2980 3.4439 0.2953 3.4106 0.2939 3.3969 
222 23 3.2185 29.5616 3.1170 29.6860 3.1202 29.6952 3.1171 29.6894 
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Maximum likelihood estimation under constraints 
Let yA' = (3, 176, 4, 293,17,197,2,23) and yB' = (10,150,5,90) be the observed frequency vectors for 
the 715 fully and 255 partially classified cases respectively with E (yA) = p,A and E (yB) = p,B 
Furthermore Y~bs= (yAI, yBI) and /-L~bs= (/-LAI, /-L BI ) . Assume a multinomial sampling scheme. 

From Section 5.2.2 the ML estimate of /-L~bs= (/-LAI, /-LEI) subject to g (/-Lobs) = 0 is determined iteratively 
with 

'iiob."c = Yob, - (G~oo. V ~"oJ' ( Gyo,'v ~"". G~",. r' g (Yob,) + a (1IYob, - P,ob, II) (74) 

OSx4 ) 
1 , 

--14 
255 

V - D __ 1_" ,,' 
~ob" - ~obs 970r-obsr-obs' 

~A 

The ML estimates of the cell probabilities in the incomplete contingency table are the elements of p,~ 
n 

and are the same as those obtained with the EM algorithm. 

Table 5.10 gives the ML estimates of cell probabilities obtained under constraints when using only the 
715 fully classified cases and when using all 970 counts. The standard errors are also given. 

TABLE 5.10: ML estimates obtained under constraints for the {CS, CP} model. 

n -715 n - 970 
Estimate Std Error Estimate Std Error 

7rlll 0.0037 0.0014 0.0050 0.0014 
7r112 0.2467 0.0160 0.2542 0.0153 
7r121 0.0061 0.0023 0.0076 0.0022 
7r122 0.4093 0.0183 0.3882 0.0159 
7r211 0.0238 0.0054 0.0268 0.0050 
7r2l2 0.2755 0.0166 0.2842 0.0158 
7r221 0.0028 0.0008 0.0029 0.0008 
7r222 0.0322 0.0064 0.0312 0.0063 
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5.3 CONCLUSION 

This dissertation ha.'3 illustrated maximum likelihood estimation procedures for a number of generalized 
linear models for categorical data. The results obtained with the method under constraints are the same 
as those obtained with the more generally used Newton-Raphson, Fisher scoring and El\.1 algorithms. 
The advantage of the method under constraints is that it is computationally less intensive and also more 
flexible to incorporate different models. 

In this chapter the method was further developed to determine maximum likelihood estimates for loglinear 
models when the contingency table is incomplete and the missing data mechanism is ignorable. This 
illustrates the elegance with which the method under constraints can be applied. 

This opens up new opportunities for the study of maximum likelihood estimation. This includes models for 
incomplete data when the missing data mechanism is ignorable, such as logistic regression and analysis 
of variance. Furthermore the same models for incomlete data can be studied when the missing data 
mechanism is not ignorable. 
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