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5 INCOMPLETE CONTINGENCY TABLES

An incomplete contingency table is a contingency table where information on one or more of the cate-
gorical variables is missing. It is assumed that the data are MAR and the missing data mechanism 1s
ignorable. This chapter discusses ML estimation of cell probabilities in an incomplete contingency table
by using all the observed data - including data where information on one or more of the categorical
variables is missing. Lipsitz, Parzen and Molenberghs (1998) uses the Poisson generalized linear model
to obtain ML estimates of cell probabilities for the saturated loglinear model whilst Little and Rubin
(1987) describes and uses the EM algorithm to determine the ML estimates of cell probabilities for any
loglinear model. Maximum likelihood estimation under constraints is also discussed in this chapter as a
method to determine the ML estimates of cell probabilities. The advantage of this method is that it is
less computational intensive compared to the more generally used EM algorithm. It also illustrates the
elegance with which the method of ML estimation under constraints can be applied.

5.1 ML ESTIMATION IN INCOMPLETE CONTINGENCY TABLES

Consider an I x J contingency table with categorical variables C) = {1,2,...,I} and ¢ = {1,2,...,J}.
A multinomial sampling procedure is assumed. Let Y;; be the count in cell {4, §), y;; the observed value
of ¥;; and n = 3_ 3" y; the total counts. The counts in each cell can be arranged to form the complete
data vector Y’ = (Y11, Y12, ..., Y1s) with E (Y) = g, the vector of expected counts.
If information on one or both of the categories is missing the contingency table is said to be incomplete.
The data to be classified in the contingency table can be split into two parts namely:

- the fully classified cases where information on all the categories is available and,

- the partially classified cases where information on some of the categories is missing.
It is assumed that the data are MAR and the missing data mechanism is ignorable.
In this section the saturated model is considered and the EM algorithm and ML estimation under con-
straints are described and illustrated as methods which uses both the fully and partially classified cases
to determine the ML estimates of the cell probabilities.

5.1.1 The EM Algorithm

Multinomial Sampling
If the probability that an observation falls in cell (4, §) is 7;;, where 7;; > 0 and 3> 7;; = 1 then the
complete data Y have a multinomial distribution,

Y ~ Mult(ﬂ;ﬂll,ﬂlz,...,ﬂjj)

with probability function

n! 1 12
flylm) = mﬁi iy emyy (56)

where = (ﬂ]],ﬂ'lg,...,‘fn_]).
The kernel of the complete data log-likelihood is

L(mjy) =y logmn +pzlogmiz + -+ yrslogmp.
The cell counts, Y;;, are the sufficient statistics and the MLE of m;; is

= Yij
Tij = —-
n
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Product Multinomial Sampling
Let Y;, = 5" Y:; be the total counts in row ¢ and 7y, = ;5 the probability that an element falls

+ 3 7 + 7 ¥ P

'Tl'.,;j
it '
j=1,2,...,J, then, given the row total ¥;, and the vector of cell probabilities m, the elements of row i
have a multinomial distribution

in row 7. If the Y;; elements of row i are independent, each having a probability distribution

i1 T2 Tid ) (57)

Y, Yi, - Yas|Yiy m ~ Mult (yf+;—,—,--- ;
Tiy Mit it

Tiqg
and E (Yi|Yie = pig) = yis [ —

it
When samples from different rows are independent, the joint probability function for the entire data set
is the product of I multinomial probability functions,

I 0 3 ¥il . Yiz . Yil
Yit: Til iz mir
Fylmas yor, o yrg) = H [_l—!_—I ( ) (.__,..) () :| .
i=1 L¥ir-Yi2l - - Yirs \Tig it Tit

Similarly, if the column totals are fixed then the elements of column 7 will have a multinomial distribution

17 T2y I -
Ylij2j:"' sYIJ‘YJrj)TrNM’U‘Et (y+j; 3 1T (08)
Tvj Wi Mt

with E(Yy1Yy; = v45) = vty (WU )

Tti
EM algorithm to determine the ML estimates of the cell probabilities in an incomplete I x.J
contingency table: data missing on both categories
If missing values occur on both € and Cs, the observed data can be partitioned into three parts denoted
by A, B and C respectively, where A includes units having both ; and C; observed, B includes those
having only C; observed and € includes those where only Cp was observed. In part A observations are
fully classified and in B and C only partially. The three parts of the sample are displayed in Table 5.1.
The objective is to determine the ML estimates of cell probabilities in the I x J table by using the fully
and partially classified data.

TABLE 5.1 (a}, (b) and (c): Classification of sample units in an incomplete I x J contingency table.

Sample part A
{a} Both variables observed

Co=1 Co=2 - (Cp=J
Ci=1 yi} yiz e yi.] yi}
Ci =2 un Y39 o Yy Yoy
' _ . A ) A i A ) A
Cy=1 y% y£12 e y{qJ Yy

Y Yz o Vi

Sample part B Sample part C
(b) ' missing (¢) ) missing
Co=1 Co=2 - Co=J

Cr=1 y§+ [ v5s ¥52 Sy |
C} =2 Y2y
Cy=1 y}B-q-
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Assume that the data are MAR and the$s#_ fUNIBESITHI YA PRETORIAjorable. Let YA = (Y]’j‘, Y, ..., Y4),
YZ = (YE YA, YA )and YV = (Y, Y, ... .Y} be the random vectors with counts for sample
parts A, B and C respectively. Since Cs is missing in sample part B, the counts observed are totals across
(3. Hence, compared to sample part A, row totals are observed in sample part B and column totals in
sample part C. The observed data are

(YA YEYEi=12,.. I, j=12..J}

Let Y, = (YA’,YB’,YC’) be the observed data vector, Y’ = (¥11,Y12,...,Ys) the complete data
vector and 7' = (111,712,...,717) the vector of cell probabilities for which the ML estimates must be
determined.

Each complete data count, Y;;, can be expressed as the sum of contributions from each of the three
sample parts, that is ¥i; = Y;# + Y/Z + ¥,$. For sample part B totals across C are observed, that is Y7,
whilst the individual cell counts, Y;f , are missing. It follows from (37) that the predictive distribution of

the missing data in part B given Y. and 7 is a product multinomial,

B B BB B, Tl Ti2 TiJ
}file‘i2="'sYi,]1Y£+1ﬁNMult yi-{-: : 1 1 T 1 (59)
Wi+ iy it

. e
with £ (V7Y = v, m) =vi} (ﬁ)
1

For part (' only the totals across (; are observed, that is ij. From (58) the predictive distribution of
the missing data in sample part C given Y, and 7 is a product multinomial given by

14 T4 Trs
YEYE, - YEIYE , m~ Mult €22 2% ... ~1 60
17+ 25 ’ Ijl +3 i y+_; Ty T T, ( )
. Mg
mthE(}ggqyfj:ygj,ﬂ):ygj( J).
Ttj
—_ .y
Thus, E(YijIYObS)ﬂ-) ZE(YiJA+Yi?+}/i}CIYOb3Jﬂ) Zyé +yi19+ (ﬂ,_w ) +y£'j (Trm') -
i+ +z7

The distribution of the complete data belong to the regular exponential family with sufficient statistics
the cell counts, Y;;. In the E-step of the EM algorithm E(YijlYobs,fr(’")) is calculated where w("),
r=0,1,2,..., is the rth estimate of #. From (59} and (60)

E (Yl Yoo, 7)) = B(Yg + YE + VS Yo, )

yf} +E (Yileobs, 1\'(’")) +E (YiﬂYobs, ‘rr(r))

PR L o {77
Yiz + iy (i) -+ Yyj (':") . (61)
7T,H_ T

+35

In the M-step 7("*?) is calculated by substituting the results from the E-step into the expression of the
MLE of 7 for the complete data. That is,

LD

ij E (Y,-,j Y ops, T m)

() (r)

A, B [T o [ Ty
yij + yi+ ( (i)) + y+j (i) (62)

ﬂ-i+ 71'+j

The process iterates between (61) and (62) until convergence is attained.
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5.1.2 ML Estimation under corsein, loa [ BESITHI YA PRETORIA

The data from parts A, B and € in Table 5.1 can be considered as three independent multinomial samples.
Let n4 = Zny}, nF =% yf and n¢ = zyfj be the tatal counts in sample parts A, B and
respectively.
1 1 . .
Let p* = — y* p” = —5 y¥ and p® = — ¥“ be the proportions in each sample part and
n n
p’ob.?: (PA!,PB’,PC’) with E(PL,,S) — ﬂ-gbs — (TFA',TTB',WC") )
For the saturated model the maximum likelihood estimates of 7, can be determined under the con-

straints
7?54+—7Tf|_:0 fori=1,2,...,1 (63)

and
ﬂ'ijfﬂ'g:’lzo forj:]_,z,.,.] (64}

Hence, the constraint can be written as Amg ;= 0 where
I;®1,
A(I+J)X(IJ+I+J): , —I]+J
11 By IJ

and where 1’; and 1% indicates 1 x J and 1 x I row vectors respectively with all values equal to 1.
The ML estimate of the vector of cell probabilities, under the constraint Am.s,= 0 is given by

I
Fopsic = (L 7R ) = Poss— (AVi,0) (AVr,, A) ' Apy, (65)
where
Cov (n#) 0 0
Ve, = 0 Cov (m?) 0
0 0 Cov (’ﬂ'c)
L (Dpn — wAmAY) 0 0
= 0 L (Dpw — wBmB) 0 . (66)
0 0 “e (D — wx@)

Since the constraint, Amg,.= 0, is linear in 7, iteration is only over 7.
The ML estimates of cell probabilities in the I x .J table are given by the elements of 74 in T obs,c-
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EXAMPLE 5.1

Determining the ML estimates of cell probabilities in an incomplete contingency table by using the EM

algorithm.

Consider the data in Table 5.2 from Schafer (1997) obtained through the National Crime Survey conducted
by the U.S. Bureau of the Census. Housing unit cccupants were interviewed to determine whether they
had been victimized by crime in the preceding six-month period. Six months later the units were visited

again to determine whether the occupants had been victimized in the intervening months.

TABLE 5.2: Victimization status from the National Crime Survey.

Second Visit

First Visit Crime-free Victims Missing
Crime-free 392 55 33
Victims 76 38 9
Missing 31 7

Following the notation in 5.1.1,
Vi = (yA’,yB’,yC’) where
vA = {yi; 11,5 = 1,2} = (392,55, 76,38)
B — {yﬂ_ 13 = 1,2} =(33,9)
@ ={y§,:5=12} =(3L7).
The fully classifted data, y#, were used to determine a starting value for the algorithm,
w0 = 1= (392,55, 76,38) =~ (0.70,0.10,0.13,0.07). From (62} the first estimate of 717 is

{1} 1] a B (0) g?
T o Yt T ¥y (0) ty +J (0)
Tt T

0.70 0.70
i [392+33 (0 80) +31 (W)]

= 0.6974.

Similarly, the first estimates of 7o, 72, and 74, are

o 1 0.10 0.10\] _

Mz T fal _55 3 (0 g0) T "\oar )| =007
o 1 0.13 013\]

el (0 20) * \oss )| 01
o 1 0.07 007\]

Tl (0 20) T \ox7 )| 00T

This gives {1 = (0.6974,0.0987,0.1353,0.0687) which is used to calculate the second estimate for 7.
The process continues until convergence is attained. Table 5.3 shows the values at different steps of the

algorithm.

TABLE 5.3: Tterations of the EM algorithm.

LR I )

r

0 07000 0.1000 0.1300 0.0700
1 06974 0.0987 0.1353 0.0687
2 06972 0.098 0.1357 0.0685
3
00

0.6971 0.0986 0.1358 0.0685
0.6971 0.0986 0.1358 0.0685
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EXAMPLE 5.2
Determining the ML estimates of cell probabilities in an incomplete contingency table under constraints.

Consider the data in Example 5.1.

yf)bs — (yA/’yB/:ny) where
1

yA = {yy 14,5 = 1,2} = (392,55,76,38) and p? = 0 v
1

y® = {yf 1i=1,2} = (33,9) and p = — y*
1

vy ={yg;:i=1,2} =(31,7) and p© = = yC.

Let pl,,= (p*,p%,p%") with E (Poss) = Taps.
For the saturated model the constraint Amop,= 0 must hold, where the elements of A are

A A A A B B c c
M1 M2 21 22 T4 T34 Tyxp Tie

1 1 0 0 -1 0 0 0
A g 9 1 1 0 -1 0 0
1 0 1 0 0 o0 =1 0
o 1 0 1 0 0 0 -1

The ML estimate of 7, under the constraint Aw,s.— 0 is obtained with

!
Ropeso = (R TR ) = Pote— (AVi,) (AVa,, A) 7 AP, (67)
where
567 (Dra — ) 0 | 0
Vi = 0 25 (Den — w87 8) 0
0 0 & (Dpe — w%x")

The ML estimates of the cell probabilities in the 2 x 2 table are given by the elements of 7’1“';4‘ in T ons e
This procedure gives the same values for the ML estimates as obtained with the EM algorithm in Example
5.1. Results obtained under constraints and from the Genmod procedure in SAS are shown in Table 5.4.
The programs are given in the Appendix.

TABLE 5.4: ML estimates and standard errors.

Estimate | Std Err
w11 | 0.6971 0.0187
iz | 0.0986 0.0124
woy | 0.1358 0.0141
Tag | 0.0685 0.0104
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EXAMPLE 5.3
Determining the ML estimates of cell probabilities in an incomplete contingency table under constraints.

Consider the data in Table 5.5 (from Lipsitz, Parzen, Molenberghs (1998)) which contains the data
from the Six Cities Study, a study conducted to assess the health effects of air polution. The columns
corresponds to the wheezing status (no wheeze, wheeze with cold, wheeze apart from cold) of a child
at age 10. The rows represent the smoking status of the child’s mother (none, medium, heavy) during
that time. For some individuals the maternal smoking variable is missing, while for others the child’s
wheezing status is missing. The objective is to estimate the probabilities of the joint distribution of
maternal smoking and respiratory illness.

TABLE 5.5: Six Cities Data: Maternal Smoking Cross-Classified by Child’s Wheeze Status.

Child’s wheeze status

Maternal No Wheeze Wheeze with Cold  Wheeze apart from cold Missing
smoking

None 287 39 38 279
Moderate 18 6 4 27
Heavy 91 22 23 201
Missing 59 18 26

Similar as in Example 5.2:
Yioe = (¥, ¥, ¥y%") = (287,39, 38,18,6,4,91,22,23,279, 27,201, 59, 18, 26). For the constraint Amgps= 0
the elements of A are given by

Wﬁ 7"‘142 "‘Tid‘s 7Tf§'1 W?z "‘Téd's Wédl 1 7{?2 W’fa WIB+ 7T2B+ W?+ ng WEQ ‘”Es
1 1 1 © © © o0 o O -1 o 0 0 0 ©°
o 0o © 1 1 1 o O 0O 0O -1 0 0 0 o0
A9 9 0o o o0 o 1 1 1 © 0 -1 0 0 0
1 ¢ 0o 1 0 OO 1 0 © 0O 0 0O -1 0 ©
o 1 o0 © 1 o ©0o 1 0o 0 © 0o 0 -1 0

o o 1 o0 o0 1 0 o 1 0 0 0 0 0 -1

The ML estimate of @', =

Lps = (A, w8 79" is obtained iteratively with

i.Fctbs,c Pobs— (Avn'nb,)l (Av‘rrohs A-l)_l Apobs .

The ML estimates of the cell probabilities, given in Table 5.6, are the same as those obtained by Lipsitz,
Parzen and Molenberghs (1998). Procedures give asymptotically equivalent results. Slight differences in
the standard errors are indicated.

Table 5.6 also gives the ML estimates of cell probabilities when using only the 528 fully classified cases.

TABLE 5.6. ML estimates and standard errors.

Fully Classified Cases Fully and Partially Classified Cases
n = 528 n = 528 4 610
Estimate Std Err Estimate Std Err{Genmod)

711 0.5436 0.0217 0.4747 0.0179 (0.0174)
19 0.0739 0.0114 0.0701 0.0105 (0.0102)
T13 (.0720 0.0112 0.0742 0.0108 (0.0107)
Tat 0.0341 0.0079 0.0327 0.0065 (0.0064)
Moo 0.0114 0.0046 0.0120 0.0044 {0.0043)
To3 0.0076 0.0038 0.0087 0.0039 (0.0041)
T31 0.1723 0.0164 0.2060 0.0149 (0.0158)
T3o 0.0417 0.0087 0.0558 0.0094 (0.0106)
T3 0.0436 0.0089 0.0658 0.0100 (0.0116)
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5.2 LOGLINEAR MODELS FOR INCOMPLETE CONTINGENCY
TABLES

In this section the EM algorithm and ML estimation under constraints are discussed as methods to
determine the ML estimates of the cell probabilities in the complete table for any loglinear model where
both the fully and partially classified cases are used.

It is assumed that the data are MAR and the missing data mechanism is ignorable.

5.2.1 The EM algorithm

The starting values used in the EM algorithm are the ML estimates of cell probabilities obtained by
using only the data in the fully classified table. The process then iterates between the E-step and the
M-step. In the E-step the counts in the partially classified table are distributed into the full table by
using the ML estimates of the cell probabilities obtained in the M-step. In the M-step ML estimates of
the cell probabilities for the filled in table are obtained and used in the E-step as the next approximation
of the ML estimates of the cell probabilities in the complete table. The ML estimation procedure under
constraints for loglinear models (Section 3.1) can be used in the M-step of the algorithm.

5.2.2 ML Estimation under constraints

Consider an I x J x K countingency table with (', C3 and 5 the three categorical variables where
Cy=1{12,....,1}, Co = {1,2,...,J} and C3 = {1,2,...,K}. Suppose that for n? cases, information
for C1, Ca and Cy is known and for n? cases () is missing. The n* cases are classified in an I x J x K
table and the n® cases in a J x K table. The objective is to determine the ML estimates of the cell
probabilities in the I x J x K contingency table, for a specific loglinear model, by using both the n? fully
classified cases and the n? partially classified cases. A specific loglinear model is assumed.

Suppose [ = J = K = 2. Let YV = (Yii1, Y{is, Y131, Yi%, Yai1, Yila, Ya3), Ylo) be the IJK x 1 vector
of cell counts for the fully classified table with E (Y4} = p# and let Y® = (Y8, Y7, Y5, Y 2)
the JK x 1 vector of cell counts for the partially classified table with E (Y®) = u”. Furthermore let

yi)bs: (yAr?yBr), ”.'Obs: (”AI’”Bf) and ngs: (%MAI’ 7_11}:“3’) _ (ﬂ.AI’ﬂ.Bf)'

Two sets of constraints are imposed; the first pertains to the specific loglinear model that is fitted and
the second is used to constrain the marginal probabilities in the fully and partially classified tables.

Constraint 1
The saturated loglinear model for the fully classified data is

logu® = X3 (68)

where pp? is the vector with expected cell frequencies, X : TJK x I JK is the design matrix and 8 : IJK x 1
15 the parameter vector for the saturated model.
The unsaturated model can be written as

log p* = X8, (69)

where X, is a submatrix of X given in (68) and 3, is the parameter vector of the model.
Let P =1— X, (X,X,) ™ X/. The constraint for the model in (69) is

g1 (#*) = Plogp® = PX,8,=0. (70)

Constraint 2

The sum of the expected cell probabilities in the I x J x K fully classified table over category C1, gives
the expected marginal cell probabilities,

I
=Y e fori=12.,Jand k=12, K.
i=1
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The constraint which must hold betw.& vunieesiTHI va preToriA ssified tables is

Wi‘jk = ijk, for all j, k.

Hence, the second constraint can be written as

1 1
82 (p‘obs) = ( n_Ali' & Lk _n_BIJK ) Hops— 0.

swar=( 207 )= (7)
- g2 (Hops) 0

The ML estimate of p, ;. subject to g (gt ,,) = 0 is determined iteratively with

Combining (70} and (71) gives

-1
—~ ’
Bobec = Yovs — (Gu,, Vi) (Gynb,.VmsGLobs) & (Yovs) + 0 (|[¥obs — £ops )

where ( A)
Og1 (p .
_ og (11.,,) | ek, | : PD, 4 OIJ{(XJK

Hovs 8“"01)3 Jg2 (I"‘obs) H_Al} QT r A.n—BIJK ’

al—’*obs
08 (Hobs )
Yobs T;g|u,,;,s:ym and
Visars = Do = a5 Hovs Hobs-

The ML estimates of the cell probabilities in the I x J x K table is
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EXAMPLE 5.4
Determining the mazimum likelihood estimates of cell probabilities in an incomplete contingency table for
any loglinear model.

In Table 5.7, from Little and Rubin (1987}, the survival of infants are related according to the amount of
prenatal care recelved by the mothers and the clinic they attended. For data in Table 5.7(a) information
on survival, prenatal care and clinic attended were recorded but in Table 5.7(b) information of the clinic
attended is missing.

TABLE 5.7. A 2% contingency table with partially classified observations.
Survival (5)

Clinic (') Prenatal Care (P} Died Survived
(a) Fully Classified Cases
A Less 3 176
More 4 293
B Less 17 197
More 2 23 715 cases

(b) Partially Classified Cases (Clinic missing)

Less 10 150
More 5 90 255 cases

The ML estimates of cell probabilities for different loglinear models are given in Table 5.8. The cell
probabilities are given in the form 1007~ ps where

C =1 if Clinic = “A” and C = 2 if Clinic = “B”;

P =11if Care = “Less” and P = 2 if Care = “More”;

S =1 if Survival = “Died” and 5 = 2 if Survival = “Survived”.
The saturated model {C'PS} was fitted to the incomplete data as explained in section 5.1.2 and the
models {P8,CS,CP}, {CS,CP} and {PS,CS5} were fitted by using the EM algorithm and the ML
procedure under constraints.

TABLE 5.8: ML estimates of cell probabilities for different loglinear models.

[CPST [ {P5.CS,CP) [{PS,CST [ {CS,ChT
100711, | 0.4630 0.4350 0.8327 0.4963
100712 | 25.4410 25.4680 36.7015 25.4203
1007121 | 0.7560 0.7913 0.3053 0.7579
100712 | 38.8002 |  38.7845 98.4910 | 38.8208
1007211 | 2.6280 2.6578 2.3601 36787
1007212 | 28.4765 28.4495 17.2160 28.4150
1007221 | 0.3780 0.3427 0.8287 | 0.2939
100739, | 3.0465 3.0712 13.3647 3.1172

Only the {C8, ¢ P} loglinear model is discussed in more detail. The programs are given in the Appendix.
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The observed frequency vector for the 715 fully classified cases is yA'= (3, 176,4,293,17,197,2,23) and
for the 255 partially classified cases y5' = (10, 150, 5, 90).
The EM algorithm is used to determine ji and 7, the ML estimates of the cell frequencies and cell
probabilities in the 2% table.

The steps for the EM algorithm are as follows:

Step 1: Starting value for the EM algorithm

The starting value of the EM algorithm are the ML estimates obtained by using only the data in the
fully classified table.

From section 3.1.3, u9), the first approximation of ji, is determined iteratively with

-1
@ = y4-ac (ALD;IAG) T g (rY) +o (v — al) (75)

(i}
and from this, 7% = ﬂ
715
Step 2: E-Step
In the E-step '), + = 0,1, ... is used to distribute the 235 partially classified counts into the full table.
The filled in frequency vector at the rth step of the EM algorithm is

ﬂ.(r)

(o )

11

yP=y'+

where the division and multiplication indicated with “4” in the last term is elementwise.

Step 3: M-Step
In the M-step y{) is used to obtain the next approximation of the ML estimate of g,

,U.(H'l) _ y(r)*AC (A’CD;(lr)Ac)_l g (y(f)) + o (”y(r) — }—L“) .

p(r+1)

The next approximation of 7 is w(™t1) = ,r=01,2,.. ..

The EM algorithm iterates between Step 2 and Step 3 until covergence is attained.
Table 5.9 gives values at different steps of the algorithm.

TABLE 5.9: Values at different steps of the EM algorithm for the {CS, C'P} model.

r=20 r=1 r=2 r=10
M-Step  E-Step | M-Step  E-Step | M-Step  E-Step M-Step E-Step
Cell T ¥ | 100= y(® 1007 (™) y{l} 10072 y@ 100710 y(10)

111 3 0.3682 4.3400 0.4802 4.5030 0.4919 4.5468 0.4963 4.5632
112 | 176 | 24.6668 | 246.8579 | 25.4165 | 246.8436 | 25.4201 246.8343 | 25.4203 246.8280
121 4 0.6109 7.4363 0.7338 7.5561 0.7513 7.5894 0.7579 7.6031
122 | 293 | 40.9276 | 376.4384 | 38.8409 | 376.3140 | 38.8230 376.3048 | 38.8208 376.3106
211 + 17 § 23794 | 25.6600 | 2.7148 | 254970 | 2.6883  25.4532 2.6737 25.4368
212 | 197 | 27.5507 | 276.1421 | 28.3988 | 276.1564 | 28.4009 276.1657 | 28.4150 276.1720
221 2 0.2780 3.5637 0.2980 3.4439 0.2953 3.4106 0.2939 3.3969
222 | 23 | 3.2185 | 20.5616 | 3.1170 | 29.6860 | 3.1202  29.6952 3.1171 29.6804
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Maximum likelihood estimation under constraints
Let y4'=(3,176,4,293,17,197,2,23) and y? = (10,150,5,90) be the observed frequency vectors for
the 715 fully and 255 partially classified cases respectively with E (YA) = p* and E (YB) = uf,

Furthermore y/,.= (y*,¥%') and p/,,= (p*', p®) . Assume a multinomial sampling scheme.

From Section 5.2.2 the ML estimate of g2/, = (u4', p®') subject to g (f1,,) = 0 is determined iteratively
with )

. ! -

Hobs,c = Yobs — (G#absvﬂ-obs) (GyﬂmvﬂgbﬂGLubﬂ) g (yobs) +o (Hyobs — Hobs El) (74)
where

1 (e Plog u#
g(ru’obs):(g(p’) ):( 1 o

1
m (111) ®I4P‘abs _'2-5—5'14}'.1.053 )

g2 (Kops)
dg1 (1) -1

_ ag (P‘obs) — alu'obs == 1 PDMA ?BX4

Hons E 982 (Hops ) =5 Lok - 2_5514 ,
alu'ob-‘l
2 (lu'obs)

— 2\ eas/ - and

Yoby Dthogs ium Yoby

1
Vﬂubs = Dﬂ'ab.q - %“Dbsiu"obs'

~A
The ML estimates of the cell probabilities in the incomplete contingency table are the elements of ”—;
n

and are the same as those obtained with the EM algorithm.

Table 3.10 gives the ML estimates of cell probabilities obtained under constraints when using only the
715 fully classified cases and when using all 970 counts. The standard errors are also given.

TABLE 5.10: ML estimates obtained under constraints for the {CS, CP} model.
n="715 n =970
Estimate 5td Error Estimate Std Error
w1 | 0.0037 0.0014 0.0050 0.0014
w11z | 0.2467 0.0160 0.2542 0.0153
w121 | 0.0061 0.0023 0.0076 0.0022
w122 | 0.4093 0.0183 0.3882 0.0159
w11 | 0.0238 0.0054 0.0268 0.0050
wa1e | 0.2755 0.0166 0.2842 0.0158
7oy | 0.0028 0.0008 0.0029 0.0008
mwooe | 0.0322 0.0064 0.0312 0.0063
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5.3 CONCLUSION

This dissertation has illustrated maximum likelihood estimation procedures for a number of generalized
linear models for categorical data. The results obtained with the method under constraints are the same
as those obtained with the more generally used Newton-Raphson, Fisher scoring and EM algorithms.
The advantage of the method under constraints is that it is computationally less intensive and also more
flexible to incorporate different models.

In this chapter the method was further developed to determine maximum likelihood estimates for loglinear
models when the contingency table is incomplete and the missing data mechanism is ignorable. This
illustrates the elegance with which the method under constraints can be applied.

This opens up new opportunities for the study of maximum likelihood estimation. This includes models for
incomplete data when the missing data mechanism is ignorable, such as logistic regression and analysis
of variance. Furthermore the same models for incomlete data can be studied when the missing data
mechanism is not ignorable.
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