
1 INTRODUCTION 

There are a large number of maximum likelihood estimation procedures for categorical data available for 
scientific application. In this dissertation the most commonly used methods are compared with a maxi­
mum likelihood estimation procedure under constraints and an exposition of the theory and application 
of the methods are given. 

The more generally used methods of maximum likelihood estimation for categorical data includes the 
Newton-Raphson and Fisher scoring algorithms for complete data and the EM algorithm for incomplete 
data. The Newton-Raphson algorithm is an iterative procedure which is employed for solving non-linear 
equations. It makes use of the vector of first order partial derivatives and matrix of second order partial 
derivatives of the function to be maximized. The Fisher scoring algorithm is similar to the Newton­
Raphson algorithm, the distinction being that Fisher scoring uses the expected value of the second 
derivative with respect to the parameters in the model. 
In the broad class of models referred to as generalized linear models the observations come from an 
exponential family and a function of their expectation is written as a linear model using a link function. 
Agresti (1990) shows that when a canonical link function is used the Newton-Raphson and Fisher scoring 
algorithms are identical. 

The EM algorithm can be used for maximum likelihood estimation in incomplete contingency tables. 
The algorithm makes use of the interdependence between the missing data and the parameters to be 
estimated. The missing data are filled in based on an initial estimate of the parameters (the E-step). The 
parameters are then re-estimated based on the observed data and the filled in data (the M-step). The 
process iterates between the two steps until the estimates converge. The EM algorithm is specifically 
applied to the exponential family to determine ML estimates in incomplete contingency tables when the 
missing data mechanism is ignorable. Little and Rubin (1987) describes and uses the EM algorithm to 
determine the ML estimates of cell probabilities for loglinear models. 

Matthews (1995) presents a maximum likelihood estimation procedure for the mean of the exponential 
family subject to the constraint g (1-') = 0, where g is a vector valued function of 1-'. 
For the loglinear model and logistic regression the results obtained from this method are the same as 
those obtained from the Newton-Raphson algorithm. 
The analysis of patterns of symmetry in squared contingency tables are considered by using ML estimation 
under contraints and a program is given which can be used for any squared contingency table. Results 
obtained are the same as the special cases considered in literature. 
The method is also further developed to determine maximum likelihood estimates for loglinear mod­
els when the contingency table is incomplete and the missing data mechanism is ignorable. This also 
illustrates the elegance with which the method of ML estimation under contraints can be applied. 
The method under constraints is conceptually comprehensive, logically clear and at the same time com­
putationally less intensive than the EM and other algorithms. 
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1.1 THE EXPONENTIAL FAMILY 

Let Y be a p x 1 random vector and 0 a p x 1 vector of parameters. Barndorff-Nielsen (1978) defines the 
exponential family by 

p(y,O) = b(y)exply'O-K(O)], y E !RP , 0 E N (1) 

where K (8) is referred to as the cumulant generating function and N is the natural parameter space for 
the canonical parameter (J. 

The moment generating function of the exponential family is given by 

My (t) E [et'y] 
r·) b(y)exply'(O+t) -K(O)]dy 

exp I-K (0)] J ... J b (y)exp Iy' (0 +t)] dy 

exp I-K (0)] exp IK(O+t)] J ... J b(y) exp Iy' (0 +t) - K(O +t)]dy 

exp I-K (0)] exp II< (0 + t)]. 

From this the cumulant generating function can be derived. 

log My (t) I< (0 + t) - I< (0) 

1«0) + [:01«0)], t+~t' [8fJ~o'I«O)l t+r(t) - 1«0) 

[:OK(O)], t+~t' [80~0'K(0)l t+r(t). 

The mean vector and covariance matrix of Yare given by 

EXAMPLE 1.1 
The Poisson distribution as a member of the exponential family. 

Let Yi, i = 1,2, ... ,p be independent Poisson random variables with E (Yi) = I'i' The joint probability 
function of Y' = (Y1 , Y2, ... , Yp) is 

which is a member of the exponential family since it has the form 

p (y, 0) = b (y) exp ly'O - I< (0)] 

with b (y) = exp 1- I:tog Yi!] 
(J a p x 1 vector with (Ji = lOgJ.Lil that is f-Li = eOi 

K(O) = L;l'i = L;exp(e i ). 

The mean vector of Y is given by 
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The covariance matrix of Y is 

Cov (Y) 
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Diag (1-') . 

1.2 COMPONENTS OF A GENERALIZED LINEAR MODEL 

Suppose that Y : p x 1 is a random vector and that the joint probability function is a member of the 
natural exponential family with E (Y) = 1-'. Let 0 be a p x 1 vector of natural parameters. 
A generalized linear model (GLM) consists of the following three components: 

1. The random component. 
The random component, Y'= (Y1 , Y2 , ... , Yp ), refers to the vector with response variables from a 
distribution in the natural exponential family. That is, the joint probability function is of the form 
given in (1). 

2. The systematic component. 
The systematic component relates parameters {'T]i} to the explanatory variables using a linear 
predictor 

In matrix form 

'T]i = L (3j X ij i = 1,2, ... ,p. 
j 

7/ = X{3 

where 1] : p x 1, f3 : m x 1 are model parameters, and X : p x m is the design matrix consisting of 
the values of the explanatory variables for the p observations. 

3. The link between the random and systematic components. 
The link function h, connects the expected values of the random component, f-Li' to the linear 
predictor by 

where h is a monotonic differentiable function. 
A GLM links I'i to the explanatory variables through the equation 

h (I'i) = 'fJi = 'L f3jXij i = 1,2, ... ,po 
j 

The link function that transforms Mil to the natural parameter Oil is called the canonical link, for 
which 

h(l'i) = 'fJi = Oi = 'Lf3,Xi,. 
j 
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EXAMPLE 1.2 
The components of a GLM for a loglinear model. 

Suppose the elements of Y : 3 x 1 are independent Poisson random variables with parameter vector p.. 
The model to be fitted is J1i = Q:,i-l OI, as a loglinear model 

log/li = loga + (i -1) log")'. 

The generalized linear model is 
log I-' = X{3. 

The three components of the GLM are: 

1. The random component Y. 
In Example 1.1 it was shown that the joint probability function of Y is a member of the natural 
exponential family. 

2. The systematic component 

ry = X{3 = u n ( ~~ ) 
with (3'= (/3,,/32) where /3, = log a and /32 = log")'. 

3. The link function) which is also a canonical link for this example, is given by 

'Ii = h(/li) = log/li =8i = 'Z,/3j X ij. 
j 

1.3 MEASURES OF GOODNESS OF FIT 

Suppose that {Ii,} are the estimated frequencies for the contingency table on fitting an appropriate model 
to the data The following statistics can be used to test the goodness of fit of a model: 

• The Pearson Chi-squared Statistic 

• The Deviance 
A saturated GLM has as many parameters as observations, giving a perfect fit. In a saturated 
model all variation is consigned to the systematic component. For a given unsaturated model the 
ratio 

21 ( maximum likelihood under model ) 
- og maximum likelihood under saturated model 

describes lack of fit. 
The deviance, as defined by Neider and Wedderburn (1972), is given by 

D = 2 [L (iJ" y) - L (y, y)] 

where L (iJ" y) is the log-likelihood maximized over some vector of parameters and L (y, y) is the 
maximum likelihood achievable in the saturated model. 
As an example consider the form of the deviance for the Poisson distribution. 
Let Y

" 
Y2 , .. . , Yn be n independent Poisson random variables with E (Yi) = /li. The log-likelihood 

function is 
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The deviance for a model with fitted values iii is 

D 2[LYilogl'i - Ll'i - LlogYi! - {LYilogYi - LYi - LlogYi!)] 

2 [L Yi log ~; + L (Yi - I'i)] . 

• The Wald Statistic 
If the model under consideration is formulated in terms of the constraints g (I") ~ 0 and G ~ 

a~~) II'~Y then the Wald statistic is 
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