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Summary

The Hurst parameter H 2 [0; 1] is a useful measure for the predictability of stock

prices. The Hurst parameter was estimated for di¤erent South African stocks over

di¤erent periods of time to determine if there was persistency in the returns. Frac-

tional Brownian motion (fBm) is a Gaussian process that depends on the Hurst

parameter which allows for the modeling of autocorrelation in price returns.

In this dissertation when modeling �nancial derivatives, the underlying driving

process is replaced with fBm. fBm is not a semimartingale, thus arbitrage cannot

be excluded by the choice of integration theory. The classical theory of stochastic

calculus is not applicable and the solution of the fractional stochastic di¤erential

equation is found using fractional Wick Itô Skorohod integrals.

Fractional Black-Scholes and Black formulas are derived in three di¤erent frame-

works where the underlying is driven by fractional Brownian motion in each case.

The mathematics behind the models is discussed, in addition some analysis of the

models is done. It was found that there is a range of possible combinations of Hurst

and volatility parameters corresponding to a given price in the models.

The performance of the models is investigated by using South African futures

option prices and warrants. Assuming a constant Hurst parameter the fractional

implied volatilities were backed out and compared to the market volatilities. We

found simple relationships between the implied fractional volatilities and the market

volatility for each of the models. For �xed Hurst parameters the out-of-sample per-

centage pricing errors and absolute pricing errors are calculated to investigate the

performance of the models.
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Chapter 1

Introduction

In this dissertation we are studying option pricing models when the underlying asset

is driven by fractional Brownian motion. In particular we are investigating European

options on shares and options on futures. A European call option gives the buyer

the right but not the obligation to buy an asset at a certain time in the future for a

predetermined price. A European put option gives the buyer the right but not the

obligation to sell an asset at a certain time in the future for a predetermined price.

The classical Black-Scholes formula is usually used to determine the price when the

underlying is a stock and the Black formula when the underlying is a future on a

stock.

In �nancial mathematics the Black-Scholes option pricing model consists of a

risky asset, stock S (t) ; and a risk free asset, a bond. The risky asset is a stochastic

process S (t) which follows a geometric Brownian motion and is de�ned by the sto-

chastic di¤erential equation dS (t) = �S (t) dt + �S (t) dB (t) : In the Black-Scholes

model the returns are independent of each other, i.e. today�s price change has no cor-

relation with previous price changes. Some studies (Mandelbrot, 1967) have shown

long-range dependency does exist between the returns in some markets. It is pro-

posed to replace Brownian motion in modelling derivatives with fractional Brownian

motion BH (t).

2
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Mandelbrot (1977) introduced the term fractals to describe objects related to the

whole and Mandebrot (2006) describes the ten heresies of �nance1. When dealing

with chaos, complexity, fractals or probabilities a question that brings to mind if

"God plays dice?" see Carr (2004) :

Long-range dependency has been investigated by many authors2. It has been

shown that many of the emerging markets do exhibit a Hurst exponent that is

larger than 1
2
, thus implying that the returns have long-term memory. Cheung and

Lai (1995) investigated long memory in 18 countries and only 5 showed persistent

behaviour. Cajueiro and Tabak (2003) investigated the Brazilian equity market and

found persistency more importantly their results suggest the the Hurst parameter is

time varying even after adjusting for short-range dependency. Cajueiro and Tabak

(2004) investigated 11 emerging markets and the U.S. and Japan, their results con-

cluded signi�cant long range-dependency in Asian countries, less in the Latin Amer-

ican countries, except Chile, the U.S. and Japan were the most e¢ cient. Sadique

and Silvapulle (2001) found persistency in Korea, New Zealand, Malaysia, Singa-

pore, while no or little evidence of persistency was found in Japan, the U.S. and

Australia. The returns of the Standard & Poor�s 500 and the Dow Jones Industrial

Average returns did not display trend reinforcing behaviour see Grau-Carles (2000).

Lo (1989) found little evidence of long term memory in U.S. stock market returns.

1

Mandelbrot and Hudson (2006) discuss ten heresies of �nance.
1. Markets are turbulent 6. Markets are deceptive.
2. Markets are very risky. 7. Time is �exible

3.
Market timing in�uences
gains and losses.

8. Prices leap.

4.
Markets are uncertain
and bubbles will occur.

9.
Predicting prices is dangerous
but future volatility can be estimated.

5. All markets work the same. 10.
The idea of �nancial "value"
has limited value.

2Sewell (2011) gives a list of studies.
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Cheung (1993) investigated long memory in foreign exchange rates and found evi-

dence of long-memory. Wei and Leuthold (2000) investigated the agricultural market

and found long memory in the sugar market. Jamdee and Los (2005) and (2007) show

evidence of long memory on European options through a time-dependent volatility.

The South African market showed persistency for some stocks in this dissertation.

Peters (1991) suggests that if a stock time series has a high Hurst exponent, then

the stock will be less risky and there will be less noise in the data set. Motivated by

these results the application of fractional Brownian motion is proposed. Replacing

Brownian motion with the fractional Brownian motion is suggested to reduce model

risk. Fractional Brownian motion is self-similar and captures long-range dependency.

The fractional option pricing models depend on an extra parameter, the Hurst para-

meter H:

The Hurst parameter 0 � H � 1 classi�es a time series into three di¤erent

groups. If H = 1
2
then events follow a random walk. The returns are uncorrelated

and random. If 0 � H < 1
2
then the time series is said to have anti-persistent

behaviour, i.e. mean reverting and if 1
2
< H � 1 then the time series is said to have

persistent behaviour, i.e. trend reinforcing. If the stock prices have a H > 1
2
this

shows that long-range dependence exists in the stock prices. Long-range dependency

is the same as a long-memory process where past events have a decaying e¤ect on the

future. Mandelbrot (1982) pointed out two characteristics of the stock market price

behaviour and called them the Noah and Joseph e¤ects. The Noah-e¤ect refers to

the observed instances of large discontinuous jumps in the stock prices, or outliers.

The Joseph-e¤ect refers to the tendency of the stock prices to have long term trends

with non-periodic cycles see Lo (1989) who investigate long term memory in stock

market prices.
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Fractional Brownian motion is a continuous Gaussian process that depends on

the Hurst parameter H and is de�ned by its covariance function. When H = 1
2

fractional Brownian motion becomes the ordinary Brownian motion.

Mandelbrot and Van Ness (1968) de�ned a stochastic integral representation of

fractional Brownian motion. WhenH 6= 1
2
; BH (t) is not a semimartingale, and there-

fore the application of classical Itô calculus is not possible. Incorporating fractional

Brownian motion to price options using pathwise integration theory is not possible as

it allows for arbitrage possibilities. Under pathwise integration fractional Brownian

motion does not have zero expectation, which already implies the possibility of a

riskless gain. Duncan and Pasik-Duncan (1991) introduce another integration theory

based on the Wick product and a so-called Wick Itô Skorohod integral for fractional

Brownian motion. The Wick Itô stochastic integral has a zero expectation.

Delbaen and Schachermayer (1994) proved if the underlying stock price process

is not a semimartingale then there exist a weak form of arbitrage called "free lunch

with vanishing risk". This statement holds true if the de�nitions of arbitrage, self-

�nancing and admissibility remain unchanged.

Hu and Øksendal (2000) proposed that, in order to consider non semimartingale

models, one needs to modify the underlying de�nition of the portfolio value. A Wick

self-�nancing condition is imposed on the portfolio. The authors derive a closed form

solution to the fractional Black-Scholes formula. The market becomes free of strong

arbitrage and completeness can be shown. Elliot and van der Hoek (2003) derived

similar results as Hu and Øksendal.

Björk and Hult (2005) criticized the work of both Hu and Øksendal (2003) and

Elliot and van der Hoek (2003), stating that the self-�nancing strategies used by the

above authors do not have a reasonable economic interpretation. But Björk and Hult
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did emphasize that they were not against the usage of fractional Brownian motion

in �nance, only against the particular application.

Necula (2002) used Wick stochastic calculus to generalize a fractional Black-

Scholes formula to price option from any arbitrary time t to the maturity time

T using quasi-conditional expectations. Using the results of the quasi-conditional

expectations, a fractional risk-neutral valuation theorem is derived and used to price

options.

Mathematically, the approaches of Hu and Øksendal and Necula are correct and

accurate, but when trading in continuous time the Wick Itô integration theory still

admits weak arbitrage. Researchers have proposed that by imposing suitable restric-

tions, arbitrage can be excluded. Cheridito (2002) proved that when using an arbi-

trarily small amount of time between two consecutive transactions, arbitrage can be

excluded from the models. Therefore, it is assumed that investors cannot react imme-

diately when the information is received and, due to the large number of investors,

the prices will be fair. It is suggested to restrict the modeling to a discontinuous

trading strategy.

Rostek (2009) derived a formula for pricing fractional European options using

conditional expectation in a risk preference based pricing approach by assuming a

minimal time between trading strategies. The underlying stock process follows a

fractional Brownian motion. This model also assumes that traders are risk neutral

but they possess some knowledge of the past. Rostek and Schöbel (2010) derived

the same model by assuming that participants have a constant relative risk aversion

and trade in discrete time. The investor�s wealth and the stock process follow a

bivariate log-normal distribution. Under assumed investor objectives a stochastic

discount factor is introduced to satisfy an equilibrium condition.
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Bender (2003) proves that the law of one price holds in a market where the stock

is driven by fractional Brownian motion.

Nualart (2001) investigated stochastic volatility models driven by fractional

Brownian motion to price options and showed that the market is incomplete and

martingale measures are not unique. Rogers (1997) states that fractional Brownian

motion is a absurd candidate for pricing options and suggests replacing the process

with similar process that captures long-range dependency of returns while avoiding

arbitrage. Bender, Sottinen and Valkeila (2006) states that it is not sensible to use

just fractional models but an add on of Brownian motion to fractional Brownian

motion should be considered. These models allow less arbitrage possibilities and

they include hedges see Bender, Sottinen and Valkeila (2009) : Mishura (2008)

investigated the stochastic calculus behind the mixed models. Bratyk and Mishura

(2008) investigate the application of Brownian motion and fractional Brownian

motion to the modeling of hedge contingent claims and found absence of arbitrage

and incompleteness.

The application of various estimation methods of the Hurst parameter, namely

the aggregated variance method, absolute moments method, Higuchi method, and

the rescaled range analysis, were implemented. The Hurst parameter was estimated

over two periods one before and one after the 2008 market crash, for the whole

period, as well as at yearly intervals for di¤erent South African stocks.

The derivation of the fractional Black-Scholes models was studied and key results

and arguments are given for each of the models. We derive a fractional Black model

for all the settings because a majority of the options that are traded in South Africa

are options on futures. Options on stocks are known as warrants in South Africa.
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Using ALSI, SBK and MTN data on calls on futures and warrants, the models are

examined using two di¤erent perspectives. Fixing a constant empirical Hurst para-

meter, the fractional implied volatility was backed out. The relationship between the

fractional implied volatilities and the market implied volatilities was studied, and

the out-of-sample pricing comparison was investigated. Keeping a constant Hurst,

the performance of the models is compared with the out-of-sampling pricing per-

formance for di¤erent strikes and for di¤erent Hurst parameters. The out-of-sample

pricing errors re�ect the model�s static performance.

The goal of this dissertation is to understand the mathematical application of

fractional Brownian motion in option pricing. The empirical applicability of these

models and to get a deeper insight into how these models perform compared to the

performance of the classical Black-Scholes and Black formula.

The dissertation is organized in the following way. Chapter 2 paves in the way

by presenting nessary results to option pricing of derivatives where the underlying is

driven by Brownian motion. Chapter 3 presents numerical methods for estimating

the Hurst parameter and provides evidence of dependency in the South African mar-

kets. Chapter 4 provides an introduction to chaos, fractals and fractional Brownian

motion. The Wick product as well as the main theorems are introduced in Chapter

5. Results are presented that are needed for the derivation of the models as well as

an alternative fractional Brownian motion is presented as done by Bender. Chapter

6 deals with Hu and Øksendal�s model. A fractional Black-Scholes option pricing

model is derived and a fractional Black formula is proved. Björk and Hult�s criticism

is also noted. In chapter 7 Necula�s model is presented. Rostek and Schöbel �s Black-

Scholes model is presented in chapter 8 and a conditional fractional Black formula is

proved. The tools needed for the empirical comparison of the models are presented

in Chapter 9. Application to the ALSI, SBK, MTN calls on futures and warrants
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is shown in chapter 10. In chapter 11 a conclusion follows. Appendices A and B

contains tables of di¤erent Hurst parameters for di¤erent sectors of the economy.

Appendix C deals with white noise analysis. Appendix D states the Malliavin deriv-

ative and appendix E gives a description of an optimization algorithm. Appendix F

contains MATLAB code that was used. Appendix G gives the tables of the ALSI

pricing errors by option and by day.

 
 
 



Chapter 2

Option Pricing with Brownian Motion

2.1 Introduction

Imagine a market with participants such as speculators, arbitrageurs and hedgers

all trying to make a pro�t at the end of the day, in which Brownian motion is

used to drive the process of the underlying stock. Around 1900, Bachelier, did his

thesis on the pricing of options assuming the stock price follows a Brownian motion

with zero expectation (Merton, 1973) : The Black-Scholes formula allows one to price

derivatives such as European or American call or put options. The price returns are

independent and the distribution of returns is log-normal. But through historical

observation prices returns are known to not be log-normal (Lo and MacKinlay, 1999)

and long term memory can be found. Outliers and catastrophes occur as well which

no Gaussian character will ever capture.

Black and Scholes (1973) derived a formula to price options that assumes a

constant volatility for the underlying. Again through empirical studies the implied

volatility smile was found and volatility surfaces through time shows us di¤erent

behaviour. Thus we see that options cannot be correctly priced with a single volatility

thus the Black-Scholes model is incorrect. Regardless though, it is the most popular

means of pricing derivatives in practice.

The Black and Scholes world relies heavily on the assumption of no-arbitrage

which implies that two assets with identical payo¤s cannot sell at di¤erent prices.

10
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This is a vital assumption otherwise one can make a risk free pro�t whilst trading.

The participants want to make a risk-free pro�t thus due to the demand arbitrage

opportunities will quickly disappear. There will be an absence of arbitrage in this

market if and only if there exists a local martingale measure (Björk, 2004). As an

example of arbitrage, buying bottled water or a slice of cake at a shoppingmall is

substantially more expensive than buying the water at a reservoir and the ingredients

separately and these are forms of arbitrage opportunities. The law of one price

states that if we look at two investments that have the same payo¤ because of no

arbitrage through the mathematical modeling the two instruments will have the same

price. E¢ cient markets1 are priced in such a way that prices move only when new

information is received. Therefore, it is assumed that investors react immediately

when the information is received and due to the large number of investors the prices

will be fair. But it is obvious that markets are not e¢ cient.

In this chapter the modeling of stock price movements is done using Brownian

motion B (t) : For time t greater than zero we have a stochastic process such that

B (t) � B (s) has Gaussian distribution with mean 0 and variance t � s. For each

sample path, B (t) is a continuous function of t, yet not di¤erentiable. Some main

de�nitions and theorems concerning B (t) will be presented here. Integration with

Brownian motion is done using the Itô integral and is important for solving stochastic

di¤erential equations driven by B (t).

1The assumptions to the E¢ cient Market Hypothesis are:

1. Investors are rational and risk-adverse.

2. Markets which are made up of large number of investors participate continuously.

3. Today�s prices will only be a¤ected by todays news and the prices are uncorrelated
with yesterdays prices.

4. Investors react immediately when information is received.
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Thereafter we will create a market setup consisting of a risky stock and riskless

government security. The markets operates continuously and is e¢ cient implying

that all relevant information is already contained in the prices.

In this chapter we will be discussing the Black-Scholes formula and the Black

formula, they are used to price vanilla options. An European option gives the

right but not the obligation to exercise the claim on a underlying at maturity

for the strike price. A forward contract amounts to buying or selling today an

underlying with a some delivery date and a future contract is similar to a forward

(Bouchaud and Potters, 2000). The Black formula prices a European option on a

future on an underlying.

The mathematics behind the European call option pricing model as done by

Black and Scholes (1973) by using delta hedging techniques will be discussed here.

The objective is to create a replicating a portfolio consisting of positions in the

underlying and risk free instruments such that this portfolio through arbitrage will

replicate the value of the call option. There are many other ways in which one

can derive the option pricing formula for European options some of which include

expectations, the binomial lattice, change of numeraire or Monte-Carlo simulations.

2.2 Stochastic Process Driven by Brownian Motion

2.2.1 Brownian motion

Consider the probability space (
;Ft; P ) ; where 
 is the state space of random

events, Ft is the �-�eld generated by all Brownian motion on 
 and P is the under-

lying measure: We de�ne Brownian motion as

De�nition 2.1 (Durret, 1996). A one dimensional Brownian motion starting at

zero is the process B (t) ; in R and has the following properties:
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1. Let t0 < t1 < ::: < tn then B (t0) ; B (t1) � B (t0) ; :::; B (tn) � B (tn�1) are

independent implying that Brownian motion has independent increments.

2. Let s; t � 0 then

P (B (s+ t)�B (s)) =
Z
R

1p
2�t

exp

�
�x

2

2t

�
dx

with probability of 1. It follows that B (s+ t)�B (s) has a normal distribution

with mean 0 and variance t:

3. B (0) = 0 and t 7�! B (t) is continuous.

Properties of one dimensional Brownian motion are

1. If B (0) = 0 then for any t > 0 we have fB (st) ; s � 0g d
=
n
t
1
2B (s) ; s � 0

o
also known as the scaling relation.

2. B (t) is a Gaussian process.

3. E [B (s)] = 0; and E (B (s)B (t)) = s ^ t = min fs; tg :

4. We also have B (t)�B (s) � N (0; t� s) :

The Markov property states that given the present state B (s) what hap-

pened before s does not matter for predicting what will came next. What hap-

pened before is described by the �ltration which is a collection of �-�elds: De�ne

Ft = � (B (r) : r � t) ; for each t � 0 then for s � t, Fs � Ft. We say Brownian

motion is measurable with respect to Fs and set F0s = � (B (r) : r � s) and

F+s = \t>sF0s which is right continuous. Let C be a space of continuous coordinate

maps C = f! : t! ! (t)g and C the �-�eld generated by the coordinate maps, then

for t; s � 0 and ! 2 
 we let � (s) : C ! C be a shift transformation given by

� (s) (!) (t) = ! (s+ t)
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see Durret (1996) : Let Y : C ! R is C measurable. The conditional expectation

of Y � � (s) given F+s is the expected value of Y for a Brownian motion starting at

B (s) :

Theorem 2.1 The Markov property. If s � 0 and Y is bounded and C measurable

then for all x 2 Rd we have

Ex
�
Y � � (s) jF+s

�
= EB(s)Y:

For the proof see Durret (1996; page 9).

2.2.2 Itô Formula

Let M be a square integrable martingale, Mt be a martingale process with

supt�0E [M
2
t ] < 1 and M0 = 0. We denote by M2 be the space of all mar-

tingales. Let limt!1E [Mt] = E [M1] < 1: Then we endow M2 with the inner

product (M;N) = E [M1N1] : It follows that M2 is a Hilbert space. A random

step process is a process of the form f (t) =
Pn�1

i=0 �i1[ti;ti+1) (t) where �i is square

integrable and �i is Fti measurable. The Wiener process W (t) is a martingale with

respect to the �ltration Ft and we can de�ne a stochastic process by

(f �W ) (t) =
n�1X
i=1

�i (W (ti+1)�W (ti)) :

And is de�ned to be the L2 limit of the stochastic integralZ t

0

f (s) dW (s) :

For t � 0; a continuous stochastic process � (t) is called an Itô process if it has the

form

� (T ) = � (0) +

Z T

0

a (t) dt+

Z T

0

b (t) dW (t)
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where b (t) 2 M2
T ; for T > 0 and a (t) is Ft adapted such that

R T
0
ja (t)j dt < 1

almost surely for all T � 0 (Brzézniak and Zastawniak, 2006):

Lemma 2.1 A simpli�ed Itô formula in di¤erential notation is given by

df (t;W (t)) =

�
@f (t;W (t))

@t
+
1

2

@2f (t;W (t))

@W 2 (t)

�
dt+

@f (t;W (t))

@W (t)
dW (t)

Proof. For the proof see Brzézniak and Zastawniak (2006; page 196) :We apply

stochastic calculus and by the Taylor expansion we have

df (t;W (t)) = f (t+ dt;W (t) + dW (t))� f (t;W (t))

=
@f (t;W (t))

@W (t)
dW (t) +

@f (t;W (t))

@t
dt+

1

2

@2f (t;W (t))

@W 2 (t)
(dW (t))2

+
@f (t;W (t))

@W (t) @t
dW (t) dt+

1

2

@2f (t;W (t))

@t2 (t)
(dt)2 + :::

with dW (t) dt = 0 and (dt)2 = 0:

Example 2.1 (Brzézniak and Zastawniak, 2006): Let B (�) be a Brownian motion

then Z t

0

B (s) dB (s) =
1

2
B2 (t)� 1

2
t:

Example 2.2 (Durret, 1996): Consider a stochastic di¤erential equation of the form

dX (s) = bX (s) ds+ �X (s) dB (s) which can be rewritten in integral form as

X (t) = X (0) +

Z t

0

bX (s) ds+ �

Z t

0

X (s) dB (s) (2.1)

using stochastic calculus the solution to this equation is a di¤usion process with

continuous paths. Let X0 be a real number and B (t) a standard one dimen-

sional Brownian motion and let X (t) = X0 exp (�t+ �B (t)) be the exponential

Brownian motion: Using Itô formula the solution is X (t) = X0 +
R t
0
�X (s) ds +R t

0
�X (s) dB (s) + 1

2

R t
0
�2X (s) ds thus we get the solution of the stochastic di¤eren-

tial equation with b (x) =
�
�+ �2

2

�
x and � (x) = �x: Exponential Brownian motion

is used to represent stock prices.
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2.2.3 Girsanov Formula

In �nance the Girsanov formula gives us the possibility to change between equivalent

measures.

De�nition 2.2 (Schoutens, 2003) : An equivalent martingale measure Q is equiva-

lent to P if they have the same null sets and the discounted stock-price process is

a under the risk neutral measure is a martingale. If the equivalent martingale mea-

sure exists then it is related to the absence of arbitrage while the uniqueness of the

measure is related to market completeness.

X is a continuous semimartingale if X (t) can be written as M (t) +A (t) where

M (t) is a continuous local martingale and A (t) is a continuous adapted process that

is locally of bounded variation. X (t) =M (t)+A (t) is a continuous semimartingale

if M (t) and A (t) are continuous process with A (0) = 0; and the decomposition

is unique see Durret (1996). We denote the quadratic variation as hXi (t) and the

covariance hX; Y i (t) is the same under P and Q.

A collection of semimartingales and the de�nition of the stochastic integral are

not a¤ected by a local change of measure. Two measures Q and P de�ned on a

�ltration Ft are said to be locally equivalent if for each t their restriction to Ft, Qt,

and Pt are equivalent, i.e. mutually absolutely continuous. We set

� (t) =
dQ (t)

dP (t)
:

Theorem 2.2 The Girsanov�s formula states that if X is a local martingale under

the measure P and let A (t) =
R t
0
��1 (s) d h�;Xi (s) ; then X (t) � A (t) is a local

martingale under the measure Q:

For the proof see Durret (1996; page 91).

A bounded local martingale is a martingale see Durret (1996) :
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2.3 Derivatives Driven by Brownian Motion

2.3.1 The Market

Consider a Black-Scholes market with an investment in a money account and a stock

driven by Brownian motion in a continuos setting 0 � t � T . Let r > 0 be a constant

riskless interest rate and the same for all maturities. Then the money market account

A (t) at time t develops according to the equation

dA (t) = rA (t) dt (2.2)

A (0) = 1:

The solution of equation (2:2) is

A (t) = exp (rt) (2.3)

Let � = � (t) be the drift of the stock and � 6= 0 be the corresponding volatility.

The stock price process has the following dynamics

dS (t) = � (t)S (t) dt+ �S (t) dB (t) (2.4)

S (0) = S0 > 0:

If we let

dB̂ (t) = dt+ dB (t) (2.5)

it follows by the Girvsanov theorem B̂ is normally distributed with zero mean and

variance dt under measure Q. Substituting equation (2:5) into equation (2:4) we get

dS (t) = �S (t) dt+ �S (t) dB (t)

= �S (t) dt+ �S (t)
�
dB̂ (t)� dt

�
= S (t) (�� �) dt+ �S (t) dB̂ (t)
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under the equivalent martingale measure Q: Setting the market price of risk as

 =
�� r
�

then it follows

dS (t) = S (t)

�
�� �

�
�� r
�

��
dt+ �S (t) dB̂ (t)

= rS (t) dt+ �S (t) dB̂ (t) : (2.6)

If we let H (t; S (t)) = lnS (t) then

@H (t; S (t))

@t
= 0;

@H (t; S (t))

@S (t)
=

1

S (t)
and

@2H (t; S (t))

@S2 (t)
= � 1

S2 (t)
:

It follows from the Itô formula, lemma (2:1) that

dH (t; S (t)) =
1

S (t)
dS (t)� 1

2

1

S2 (t)
(dS (t))2 (2.7)

Substituting equation (2:6) into equation (2:7) we obtain

dH (t; S (t))

=
1

S (t)

�
rS (t) dt+ �S (t) dB̂ (t)

�
� 1
2

1

S2 (t)

�
rS (t) dt+ �S (t) dB̂ (t)

�2
=

�
r � 1

2
�2
�
dt+ �dB̂ (t)

Integrating we get

S (t) = S0 exp

�
�B̂ (t) + rt� 1

2
�2t

�
: (2.8)

We can create a self-�nancing portfolio Z (t) consisting of �(t), delta, in the

risky asset and u (t) in the riskless asset as follows

Z (t) = � (t)S (t) + u (t)A (t) : (2.9)

We say the portfolio is admissible if

dZ (t) = � (t) dS (t) + u (t) dA (t) : (2.10)
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2.3.2 Vanilla Model Assumptions

The assumptions to pricing the Black-Scholes formula and the Black formula are as

follows:

1. The stock price follows a geometric Brownian motion and changes in the stock

price follow a Markov process.

2. Stochastic di¤erentials are interpreted in the Itô Skorohod sense.

3. The stock prices are log-normally distributed implying that the returns have

a Gaussian distribution.

4. There exists a unique equivalent martingale measure under Q.

5. Absence of arbitrage, no free lunch with vanishing risk and the law of one price

holds.

6. The market is complete and the e¢ cient market hypothesis holds.

7. The drift � and volatility � are constant and the r is a constant risk-free rate

of interest.

8. The portfolio is self-�nancing as in equation (2:9) :

9. The de�nition of an admissible portfolio is give in (2:10) and is done using the

normal multiplication.

10. Short selling is allowed and there are no penalties for shortselling.

11. There are no transactions costs or taxes.

12. There are no dividends or commissions.

13. Trading is done continuously.
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14. All securities are perfectly divisible.

15. The option is European implying it can be only exercised at time T .

2.3.3 Black-Scholes Option Pricing formula

Black and Scholes (1973) derive a call option pricing formula in equilibrium, where

the expected return on the hedged position must be equal to the return on the

riskless asset.

Theorem 2.3 Black-Scholes formula. At time t let S (t) be the underlying stock, K

the strike price and T the maturity date then the price of an European call option

C (t; S (t)) is given by

C (t; S (t)) = S (t)N (d1)�Ke�r(T�t)N (d2) (2.11)

with

d1 =

ln

�
S (t)

K

�
+ r (T � t) + 1

2
�2 (T � t)

�
p
(T � t)

and

d2 =

ln

�
S (t)

K

�
+ r (T � t)� 1

2
�2 (T � t)

�
p
(T � t)

where N (x) is the cumulative probability distribution function for a Gaussian dis-

tribution

N (t) =
1p
2�

Z t

�1
exp

�
�x

2

2

�
dx:

Proof. Black and Scholes (1973) :

We create a hedged portfolio consisting of a long position in the stock and a short

position in the option. The number of options sold short against one stock long is

1

@C (t; S (t))

@S (t)

:
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This is the inverse of the delta of the option where the delta of the option is de�ned

as the change in the call option with respect to the change of the underlying stock,

i.e. the sensitivity of the portfolio with respect to the option stock price. Thus the

value of this position is

S (t)�
�
@C (t; S (t))

@S (t)

��1
C (t; S (t)) :

Let dt be a increment of in�nitesimal time since we can self �nance the change in

the value of the portfolio value over a in�nitesimal period of time is

dS (t)�
�
@C (t; S (t))

@S (t)

��1
dC (t; S (t)) : (2.12)

The portfolio value after the change at time t+ dt is

S (t) + dS (t)�
�
@C (t; S (t))

@S (t)

��1
(C (t; S (t)) + dC (t; S (t))) :

By the Itô formula we have

dC (t; S (t)) =
@C (t; S (t))

@S (t)
dS (t) +

1

2
�2S2 (t)

@2C (t; S (t))

@S2 (t)
dt+

@C (t; S (t))

@t
dt

(2.13)

substituting (2:13) into (2:12) we have the change

dS (t)�
�
@C (t; S (t))

@S (t)

��10@ @C(t;S(t))
@S(t)

dS (t) + 1
2
�2S2 (t) @

2C(t;S(t))
@S2(t)

dt

+@C(t;S(t))
@t

dt

1A
= �

�
@C (t; S (t))

@S (t)

��1�
1

2
�2S2 (t)

@2C (t; S (t))

@S2 (t)
+
@C (t; S (t))

@t

�
dt:

Because no arbitrage holds the value of this portfolio has to equal to the risk free

return on the investment otherwise there are obvious arbitrage possibilities. The

risk in the hedge position is zero if the short position in the option is adjusted

continuously

�
�
@C (t; S (t))

@S (t)

��1�
1

2
�2S2 (t)

@2C (t; S (t))

@S2 (t)
+
@C (t; S (t))

@t

�
dt

=

 
S (t)�

�
@C (t; S (t))

@S (t)

��1
C (t; S (t))

!
rdt:
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Rearranging we have the Black-Scholes partial di¤erential equation

rS (t)
@C (t; S (t))

@S (t)
+
1

2
�2S2 (t)

@2C (t; S (t))

@S2 (t)
+
@C (t; S (t))

@t
= rC (t; S (t)) : (2.14)

Let K be the exercise price, then the call option looks like

K

Call Price

Stock Price

Call Option

thus at time T if S < K the payo¤ of the call becomes worthless, else if S � K the

payo¤ of a call is S (t)� C (t; S (t)). We can write the claim as

� (T ) = max fS (T )�K; 0g : (2.15)

The solution of equation (2:14) given boundary conditions (2:15) is done by making

the following substitution

C (t; S (t))

= er(t�T )y

0@ 2
�2

�
r � 1

2
�2
�
+ ln S(t)

K
�
�
r � 1

2
�2
�
(t� T )

� 2
�2

�
r � 1

2
�2
�2
(t� T )

1A (2.16)

where

y (u; 0) = 0; u < 0

= K

 
exp

 
u
�
1
2
�2
��

r � 1
2
�2
�!� 1! , u � 0:

The solution follows as

y (u; s) =
1p
2�

Z 1

� up
2s

K

 
exp

 
�2

2

�
u+ q

p
2s
��

r � 1
2
�2
� !

� 1
!
exp

�
�q

2

2

�
dq: (2.17)
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Substituting (2:17) into equation (2:16) we obtain the price of a European call option

as

C (t; S (t)) = S (t)N (d1)�Ke�r(T�t)N (d2) :

Suppose we create a portfolio X (t) at time t consisting of a long in a European

put option on a strike K with maturity T and a long the underlying stock then the

value of the portfolio becomes

X (t) = P (t; S (t)) + S (t) :

At time t suppose we also create another portfolio Y (t) consisting of a long in a

European call option on a strike K with maturity T and we long the amount K of a

riskless government security bond A (t) paying one unit at time T then the portfolio

becomes

Y (t) = C (t; S (t)) +KA (t) :

At time T if S (T ) < K then portfolio X (T ) is worth K � S (T ) + S (T ) = K

since the put gets exercised. While portfolio Y (T ) is worth K since the call expires

worthless: If S (T ) � K we have portfolio X (T ) is worth S (T ) and portfolio Y (T )

is worth S (T )�K +K = S (T ). Thus at time T portfolio X (T ) is equal to Y (T )

and since the law of one price holds and we must have at time t the put-call parity

relationship

P (t; S (t)) = C (t; S (t)) +KA (t)� S (t) :

Through symmetry a European put option can be derived as

P (t; S (t)) = Ke�r(T�t)N (�d2)� S (t)N (�d1) :
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2.3.4 Black Option Pricing formula

The Black formula can be derived using the Black-Scholes option pricing formula by

doing a suitable substitution.

Theorem 2.4 Black formula. The price at every t 2 [0; T ] of an European call

option with strike price K and maturity T on the futures contact F; is given by

c (t; F (t)) = e�r(T�t) (F (t)N (d1)�KN (d2))

with

d1 =

ln

�
F (t)

K

�
+
1

2
�2 (T � t)

�
p
(T � t)

and

d2 =

ln

�
F (t)

K

�
� 1
2
�2 (T � t)

�
p
(T � t)

where N (x) is the cumulative normal density function.

For the proof see Björk (2004; page 104:)

Because the law of one price holds we can create a portfolio consisting of put

options on future contacts and some other ingredients and through arbitrage argu-

ment and symmetry we derive a Black formula for a European put p at time T which

is given by

p (t; F (t)) = e�r(T�t) (KN (�d2)� F (t)N (�d1)) :

2.3.5 The Clark-Ocone formula

Consider the �ltration fBt; t � 0g generated by a d-dimensional Brownian motion

with B (0) = 0: All local martingales adapted to fBt; t � 0g are continuous and
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every random variable X 2 L2 (
;B1; P ) can be written as a stochastic integral.

If we let B (t) =
�
B1 (t) ; :::; Bd (t)

�
with B (0) = 0 and we let fBit; t � 0g be the

�ltration then by the martingale representation theorem for any X 2 L2 (
;B1; P )

there are unique �i which is a predictable process such that

X = E [X] +

dX
i=1

Z 1

0

�i (s) dBi (s) :

The Clark-Ocone formula provides an explicit martingale representation for certain

random variables using the Mallivian derivative see Carmona and Tehranchi (2004) :

Theorem 2.5 For the Clark-Ocone formula we let F =
P1

n=0 In (fn) where

ffng1n=0, f 2 R; is a sequence of functions and f (�1;:::;�n) (t1; :::; tn) are functions

which are symmetric in the variables (t1; :::; tn). Let 
 be the tensor product then we

de�ne

In (f) =
X

(�1;:;�n)2In

Z
[0;T ]n

f (�1;:::;�n) (t1; :::; tn) dM
�1
t1 
 :::
 dM

�n
tn

and the norm is kFk2L2(
) =
P1

n=0 n! kfnk
2
n : Let the space D1;2 � L2 (
) with

norm
P1

n=1 n � n! kfnk
2
n < 1 and is dense in L2 (
). For F 2 D1;2 let D be a

operator given by Dt;�F =
P1

n=1 nIn�1 (f
�
n (�; t)) ; then

F = E [F ] +
X
�2I

Z T

0

E [Dt;�F jFt�] dM�
t

where [Dt;�F jFt�] is the projection of Dt;�F:

For the proof see Løkka (1999; page 12).

Carmona and Tehranchi (2004) derive a hedging formula in the setting of interest

rate option using the Clark Ocone formula.

 
 
 



Chapter 3

The Hurst Parameter

3.1 Introduction

In the early 20th century a hydrologist named Harold Edwin Hurst worked on the

Nile river dam project. Hurst�s (1951) plan involved storing the water in�ows from

the great lakes into the Nile river basin from the good years for the use in bad years

and this necessitated that the dam needed to be large enough to meet the unexpected

phenomena. Most hydrologists assumed that water in�ows were a random process.

Hurst (1956) found that even after shu ing the data the data still approximated

the Gaussian distribution and high and low values clustered, grouped together, more

than the random1 process should. Hurst found that there were cycles in the time

series even though the series was non-periodic (Long, 2002). He later found that

most natural systems, like temperature, river discharges and sunspots do not follow

a random walk (Peters, 1991).

The Hurst parameter 0 � H � 1 classi�es a time series into three di¤erent

groups. If H = 1
2
then events follow a random walk, thus present events will not

1Mandelbrot (1997, page 123) categorizes randomess into

1. Mild randomness.

2. Slow randomness.

3. Wild randomness.
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in�uence the future and the returns are independent of each other, see �gure 3.1. If

0 � H < 1
2
then the time series is said to exhibit anti-persistent behaviour, meaning

it is mean reverting, see �gure 3.2. If 1
2
< H � 1 then the time series is said to have

persistent behaviour in other words trend reinforcing, see �gure 3.3.

Peters (1991) de�nes a fractal time series as time series which are statistically

self-similar with respect to time. If you look at the graph of such a time series it

displays jagged lines. An anti-persistance chart would display a time series with many

jagged lines as it is subject to reversals. In other words, if the prices experienced

an up movement then the next movement is more likely to be down and vice versa.

Persistent chart would result in a series that is less jagged and closer to a line. If

the stock prices were up, then there is a higher probability that stock prices will

be up again in the next movement and vice versa. If it is assumed that the Hurst

parameter was 0.6 and that the last move was up, then there is a 60% chance that

the next move will again be up. Today�s returns have some correlation with the past

returns.

De�nition 3.1 (Biagini, Hu, Øksendal and Zhang, 2008). A stochastic function

fX (t)gt�0 is self-similar if for every a > 0 there exists b > 0 such that

Law (X (at)) = Law (bX (t)) :

In other words the two processes X (at) and bX (t) have the same �nite-

dimensional distribution functions. For every choice t0; :::; tn in R;

P (X (at0) � x0; :::; X (atn) � xn) = P (bX (t0) � x0; :::; bX (tn) � xn)

where x0; :::; x1 2 R: In other words no matter which level of scale is chosen the

process qualitatively looks the same. Compressing or uncompressing the process by
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Figure 3.1: Fractional Brownian motion for H = 0:5 showing Brownian motion.

Figure 3.2: Fractional Brownian motion for H = 0:1 showing anti-persistency.
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Figure 3.3: Fractional Brownian motion for H = 0:9 showing persistency.

a factor only changes the characteristic of the process up to a scaling. The same

idea is associated when thinking of fractals. See �gures 3.4, 3.5 and 3.6. Let b = a�H

in the above de�nition then stochastic function fX (t)gt�0 is a self-similar process

with the Hurst parameter H. The quantity D = 1
H
is called the statistical Hurst

dimension of X:

De�nition 3.2 (Biagini, Hu, Øksendal and Zhang, 2008). A stationary sequence

(X (n))n2N exhibits long-range dependence if the autocovariance function which is

� (n) = cov (X (k) ; X (k + n))

satis�es

lim
n!1

�n
cn��

= 1
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Figure 3.4: Anti-persistency. Fractional Brownian motion scaling for H = 0:1 and
a = 10:

Figure 3.5: Random Walk. Fractional Brownian motion scaling, H = 1
2
; a = 10:
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Figure 3.6: Persistent. Fractional Brownian motion scaling, H = 0:9; a = 10:

for some constant c and � 2 (0; 1) ; then the dependence between the increments

decays slowly as n!1 and
1X
n=1

� (n) =1:

If the stock prices have a H > 1
2
this shows that long-range dependence exists

in the stock prices. Long-range dependency is the same as a long-memory process.

A long-memory process in a data set implies that the present price increment is

autocorrelated with a price increment in the future. This autocorrelation decays

over time and the decay follows the power law

� (n) = H (2H � 1)n2H�2

where � (n) is the autocorrelation function with lag n (Biagini, Hu, Øksendal and

Zhang, 2008). Figure 3.7 shows the autocorrelation function for di¤erent lags and
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Figure 3.7: Autocorrelation function for di¤erent lags and di¤erent Hurst parameters.

three Hurst parameters, H = 0:51; H = 0:55 and H = 0:6. It can be seen that the

autocorrelation function quickly goes to zero when the Hurst parameter is close to

0:5:2

3.2 Numerical Methods

Mandelbrot used the rescaled range analysis (R/S) to model the Hurst parameter

for the Nile (Peters, 1991). Rescaled range (R/S) analysis is a common tool for

estimating the Hurst parameter in many applications but this analysis is not reliable

2Econophysics is the study of �nancial markets using tools froms physics see Bouchaud
(2002) ; Farmer and Lux (2008), Lo and Mueller (2010), Sharma, Agrawal, Sharma,
Bisen and Sharma (2011) and Stanleya, Amaral, Canning, Gopikrishnan, Lee, Liu
(1999) :Researchers in this �eld study have also studied correlation in �niancial time series
see for intance Mantegna and Stanley (2000) :
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for small samples (Clark, 2005). Gammel (1997) used the Rescaled Range method to

�nd correlations in generated pseudo random numbers in Monte Carlo simulations.

Newer methods have been introduced to improve the approximation.

If a statistic f (m) behaves like maH+b as m ! 1 for some constant a and b,

then

log f (m) � (aH + b) logm+R

where R is independent of H: The Hurst parameter H is computed by the estimated

slope (aH + b) : Using linear regression for the log plot of f (m) against the log plot

of m should produce a straight line with this slope see Biagini, Hu, Øksendal and

Zhang (2008).

De�ne a data series X (t) and let N be the length of the vector X. Divide the

original series X (t) into k number of blocks of size m for k = 1; 2; :::;M; whereM =�
N

m

�
denotes the integer part of

N

m
: The mean of each block is taken and a new

aggregated series X(m) is formed

X(m) (k) =
1

m

kmX
i=(k�1)m

Xi:

Let the sample average of X, E [X] is

E [X] =
1

N

NX
i=1

Xi:

Algorithm 3.1 (Biagini, Hu, Øksendal and Zhang, 2008). The aggregated variance

method is based on the self-similarity property of a sample. The variance is given as

V ar
�
X(m) (k)

�
=

1

N=m

MX
i=1

�
X(m) (i)� E [X]

�2
:

Where V ar
�
X(m) (k)

�
behaves likem2H�2 for largem: In particular, log

�
V ar

�
X(m) (k)

��
=

(2H � 2) logm+R. The estimator of H is obtained by plotting log
�
V ar

�
X(m) (k)

��
versus m on a log-log scale.
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Algorithm 3.2 (Biagini, Hu, Øksendal and Zhang, 2008). The absolute moments

(value) method is a generalization of the aggregated variance method and is given by

AM
�
X(m) (k)

�
=

1

N=m

MX
k=1

��X(m) (k)� E [X]
��

where AM
�
X(m) (k)

�
behaves like mH�1 for large m:

Algorithm 3.3 (Montanari, Taqqu and Teverovsky, 1999). The Higuchi method

takes the partial sums Y (n) =
Pn

i=1X (i) of the original series. Instead of using

non intersecting blocks, a sliding window is used. Let M (i) =

�
N � i
m

�
and

L (m) =
N � 1
m3

mX
i=1

1

M (i)

M(i)X
k=1

jY (i+ km)� Y (i+ (k � 1)m)j

then L (m) � Cm�D; where D = H � 2 and C is a constant. The log-log plot of

L (m) versus m should produce a straight line with a slope of D = H � 2:

Algorithm 3.4 (Biagini, Hu, Øksendal and Zhang, 2008). Rescaled range analysis

method uses the time series X1; ::; XN by dividing the whole series into k non-

intersecting blocks that all contain M elements with M being the greatest integer

that is smaller than
N

k
. Let Y (t) =

Pt
i=1X (i) be partial sums. The range series R

is calculated as

R (t; k) = max
0�i�k

�
Y (t+ i)� Y (t)� i

k
(Y (t+ k)� Y (t))

�
�min
0�i�k

�
Y (t+ i)� Y (t)� i

k
(Y (t+ k)� Y (t))

�
:

The standard deviation of the series is given as

S (t; k) =

vuut1

k

t+kX
i=t+1

 
X (i)� 1

k

t+kX
i=t+1

X (i)

!2
:

The rescaled adjusted range is computed for di¤erent numbers of t and k and is

given by

RS (k) =
R (t; k)

S (t; k)
:
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RS (k) behaves like kH in distribution for large k values.

Morales, Matteo, Gramatica and Aste (2011) applied the weighted generalized

Hurst parameter which assigns more weight to the more recent events to �nd stability

or instability in �nancial companies. This way large outliers in the past in�uence

the present less. Bayraktar, Poor and Sircar (2008) estimated the Hurst parameter

of the S&P 500 index using Wavelt analysis and their method exhibits robustness

to non-stationarities that are present in the data.

Descriptions of the MATLAB codes used are given in the appendix F.

To investigate the aggregated variance, absolute moments, Higuchi and the

Rescaled Range methods we generated a random walk i.e. H = 1
2
: Uniformly

distributed random numbers were used for our random walk. The mean and the

standard deviation of the Hurst parameter estimates are given for di¤erent sample

sizes, see table 3.1. It was found the more observation the better the Hurst parameter

estimate. When dealing with stocks it is not always possible to obtain historical

data over long periods.

Based on the di¢ cultly of distinguishing dependency from a random walk we

make the following conservative proposal.

Remark 3.1 For 0 < H < 0:25 we say the data series of stock returns displays

a strong anti-persistent behaviour. For 0:25 < H < 0:45 the data series displays a

slight anti-persistent behaviour. For 0:45 < H < 0:55 we say the data series has a

Hurst parameter close to a half, i.e. H � 1
2
. For 0:55 < H < 0:65 the data series

displays a slight persistent behaviour. For 0:65 < H < 1 the data series displays a

strong persistent behaviour.
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Table 3.1: Hurst�s Mean and Standard Deviation.
Aggregated Variance Absolute Moments
N mean Stdev N mean Stdev
500 0.4705 0.0713 500 0.4730 0.0753
1000 0.4756 0.0619 1000 0.4754 0.0585
10000 0.4826 0.0310 10000 0.4846 0.0354

Higuchi Rescaled Range
N mean Stdev N mean Stdev
500 0.4951 0.0744 500 0.6043 0.0376
1000 0.4957 0.0570 1000 0.5877 0.0318
10000 0.4962 0.0370 10000 0.5556 0.0141

3.3 South African Stock Market

We refer the reader to interesting articles on the South African market by Wentzel

and Maré (2007) who investigate the South African equity market using Extreme

Value Theory. Zhou and Sornette (2008) investigated �nancial bubbles in 45 indices

between 2003 and 2006 and �ve indices showed a fast acceleration in prices.

An investigation of the South African market was done in this investigation to

see whether key stocks displayed persistent or anti-persistent behaviour. The South

African economy is an emerging market and there are sectors in which we found high

persistency. The Hurst parameter was investigated for the log returns of 130 stocks.

The data was obtained from Sharenet. We also looked at the Hurst parameter for

the period before the recession and after. The Hurst parameter varies across di¤erent

periods.

� The �rst interval, the whole interval, was from the �rst date on which we had

data available, for a speci�c stock, up to 17-Feb-2011.
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Figure 3.8: JSE-ALSI, 1985/03/27-2011/02/17.

� The second interval was from the beginning up to 23-May-2008, and is the

period preceding the recession. The 23rd of May 2008 was the highest value in

the domain of the JSE-ALSH index data which was obtained from Sharenet.

� The third interval was after the crash, from the period 23-May-2008 to 17-Feb-

2011.

Figure 3.8 and �gure 3.9 are the All share index (JSE-ALSH) plots from 27-Mar-

1985 till 17-Feb-2011. The investigation of 2; 3 and 4 yearly intervals for persistency

and anti-persistency was done.

One hundred thirty di¤erent stocks from 45 sectors were investigated using two

methods, the Higuchi and the absolute moments method. Using the classi�cation

criterion in the remark 3.1 above we found when looking at the whole interval that
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Figure 3.9: JSE-ALSI, 2007/06/01-2011/02/17.

31.54% of the stocks displayed a persistent trend using both methods and that

26.92% of the stocks displayed a persistent trend using one of the methods see �gure

3.10. Further, 30% of the stocks displayed a H � 1
2
trend using both methods while

4.62% of the stocks displayed anti-persistent behaviour using both methods, 5.38%

of the stocks displayed anti-persistent behaviour using one method and 1.54% of the

stocks displayed persistent behaviour for one method and anti-persistent behaviour

for one method, see �gure 3.10.

When looking at the interval before the crash till 23 May 2008, 25.23% of the

stocks displayed a persistent trend using both methods and that 25.23% of the stocks

displayed a persistent trend using one of the methods. Further, 30.84% of the stocks

displayed a H � 1
2
trend using both methods while 5.62% of the stocks displayed

anti-persistent behaviour using both methods, 6.54% of the stocks displayed anti-

 
 
 



39

Persistency, Normality, AntiPersistentcy on Whole Interval

30%
Normal for

both methods

31.54%
Persistent for
both methods

26.92%
Persistent for
 one method

4.62%
Antipersistent for

both methods

5.38%
Antipersistent for

one method
1.54%

Persistent for one
method and

antipersistent
for one method

3

2

7

12

17

22

27

32

37

1 2 3 4 5 6

Pe
rc

en
t

Figure 3.10: Persistency, H � 1
2
, Anti-Persistentcy on Whole Interval.

persistent behaviour using one method and 6.54% of the stocks displayed persistent

behaviour for one method and anti-persistent behaviour for one method (see Figure

3.11).

When looking at the interval after the crash, from 23 May 2008 till 17 February

2011, 18.88% of the stocks displayed a persistent trend using both methods, 8.49%

of the stocks displayed a persistent trend using one of the methods, 18.88% of the

stocks displayed a H � 1
2
trend using both methods while 24.53% of the stocks

displayed anti-persistent behaviour using both methods and 27.34% of the stocks

displayed anti-persistent behaviour using one method. Further, 1.88% of the stocks

displayed persistent behaviour for one method and anti-persistent behaviour for one

method, (see Figure 3.12).
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Figure 3.11: Persistency, H � 1
2
and Anti-persistency before crash of 23 May 2008.

Persistency, Normality and AntiPersistency after crash from 28 May 2008 till 17 Feb 2011
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Figure 3.12: Persistency, H � 1
2
and Anti-Persistency after crash from 23 May 2008

till 17 Feb 2011.
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Table 3.2: All share index Hurst parameter.
JSE-ALSH Hurst Parameter

Period N
Aggregated
Variance

Absolute
Moments

Higuchi R/S

27-Mar-85 to 17-Feb-11 6462 0.4917 0.5143 0.5886 0.6019
27-Mar-85 to 23-May-08 5775 0.4805 0.5043 0.5790 0.6134
23-May-08 to 17-Feb-11 688 0.5300 0.5474 0.5217 0.5816

The All share index (ALSI) was investigated using all four methods, see table

3.2. The results of the investigation for the whole period showedH � 1
2
for the aggre-

gated variance and absolute moments methods while the Higuchi and the rescaled

range analysis showed slight persistency. Looking just at the period before the reces-

sion the same was found. For the period after the recession all the methods except

the rescaled range analysis showed H � 1
2
. Using the absolute moments method and

the Higuchi method the data was divided into two and four year intervals and the

estimated Hurst parameter was plotted, see �gures 3.13, 3.14, 3.15 and 3.16. For two

year intervals the absolute moments method estimate appears to be mean reverting

around a Hurst parameter of 0.5 while for two year intervals the Higuchi method

estimate appears to be mean reverting above 0.5. We concluded that the ALSI has

a H � 1
2
to slightly anti-persistent.

In the metals and minerals sector, Assore Ltd (Assore) showed a strong level of

persistency throughout the interval. The data was divided into 2 yearly intervals from

27-Mar-1985 to 17-Feb-2011 and the Hurst parameter worked out for each interval.

This plotted in �gure 3.17, it can be seen that the Hurst parameter is above 0.5 for

the entire interval.
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Figure 3.13: The Hurst parameter for ALSI stock for two year intervals using
Absolute Moment method.

Figure 3.14: The Hurst parameter for ALSI stock for four year intervals using
Absolute Moment method.
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Figure 3.15: The Hurst parameter for ALSI stock for two year intervals using Higuchi
method.

Figure 3.16: The Hurst parameter for ALSI stock for four year intervals using Higuchi
method.
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Table 3.3: Sector: Metals and Minerals, Stock: Assore Ltd.
Assore Hurst Parameter
Period N Absolute Moment Higuchi
27-Mar-85 to 17-Feb-11 5926 0.6244 0.6897
27-Mar-85 to 23-May-08 5238 0.6262 0.6858
23-May-08 to 17-Feb-11 688 0.5788 0.5905

Figure 3.17: Stock Assore, Hurst parameter for two year interval.
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Table 3.4: Sector: Metals and Minerals, Stock: Merafe Resources Ltd.
Merafe Hurst Parameter
Period N Absolute Moment Higuchi
20-Jul-88 to 17-Feb-11 5635 0.4957 0.4940
20-Jul-88 to 23-May-08 4947 0.4789 0.4766
23-May-08 to 17-Feb-11 688 0.6443 0.6546

Table 3.5: Sector: Metals and Minerals, Stock: Metorex Limited.
Metorex Hurst Parameter
Period N Absolute Moment Higuchi
19-Jun-96 to 17-Feb-11 3659 0.5700 0.5627
19-Jun-96 to 23-May-08 2971 0.5227 0.5080
23-May-08 to 17-Feb-11 688 0.6992 0.7033

Merafe Resources Ltd (Merafe) and Metorex Limited (Metorex) had a

H � 1
2
trend up to the second quarter of 2008 and then rose to a strong persistent

behaviour. The Hurst graph for Merafe is given in �gure 3.18.

York Timber Holdings Limited (York) from the forestry subsector had an

overall slight persistency and after the recession the persistency rose. The Hurst

graph of York was plotted for 3 year intervals in �gure 3.19.

Adcock Ingram Hlgs Ld (Adcock) from the pharmaceuticals subsector had a

strong persistency trend on the overall interval although when the separate intervals

Table 3.6: Sector: Forestry: Stock: York Timber Holdings Limited.
York Hurst Parameter
Period N Absolute Moment Higuchi
26-Mar-87 to 17-Feb-11 5963 0.6224 0.6313
26-Mar-87 to 23-May-08 5275 0.6858 0.6077
23-May-08 to 17-Feb-11 688 0.6858 0.7201
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Figure 3.18: Stock Merafe, Hurst parameter for two year interval.

Figure 3.19: Stock: York Timber Holdings Limited Hurst parameter for three year
intervals.
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Table 3.7: Sector: Pharmaceuticals, Stock: Adcock Ingram Hlgs Ld.
Adcock Hurst Parameter
Period N Absolute Moment Higuchi
06-Sep-85 to 17-Feb-11 4233 0.7010 0.7397
06-Sep-85 to 23-May-08 3545 0.7229 0.7367
23-May-08 to 17-Feb-11 688 0.4733 0.6214

were observed it was seen that there is a drop in the persistency level after the

recession, see �gure 3.20.

Figure 3.20: Stock Adcock Hurst parameter for three year interval.

Telkom SA Limited (Telkom) from the Fixed-line telecommunications sector

had strong persistency over the whole interval, see table 3.8.

 
 
 



48

Table 3.8: Sector: Fixed-Line Telecom Services, Stock: Telkom SA Limited.
Telkom Hurst Parameter
Period N Absolute Moment Higuchi
04-Mar-03 to 17-Feb-11 1991 0.6378 0.6218
04-Mar-03 to 23-May-08 1303 0.5095 0.5890
23-May-08 to 17-Feb-11 688 0.6188 0.6526

Table 3.9: Sector: Brewers, Stock: Awethu Breweries Ltd.
Awethu Hurst Parameter
Period N Absolute Moment Higuchi
20-Nov-97 to 17-Feb-11 3306 0.3648 0.4037
20-Nov-97 to 23-May-08 2618 0.3709 0.3799
23-May-08 to 17-Feb-11 688 0.2434 0.2125

In beverages brewers subsector Awethu Breweries Ltd (Awethu) showed

strong anti-persistency (see table 3.9), while Sabmiller Plc (Sabmiller) showed

H � 1
2
before the crash and slight anti-persistency afterwards (see table 3.10).

Figure 3.21 displays the stock prices for the di¤erent South African banks. Before

the global crisis hit South Africa, ABSA Group Limited (Absa) had a H � 1
2

trend, however after the crash of mid 2008 the bank�s Hurst parameter dropped thus

showing an anti-persistent behaviour. For Nedbank Group Ltd (Nedcore), Rand

Table 3.10: Sector: Brewers, Stock: Sabmiller Plc.
Sabmiller Hurst Parameter
Period N Absolute Moment Higuchi
27-Mar-85 to 17-Feb-11 6462 0.4833 0.5599
27-Mar-85 to 23-May-08 5774 0.4808 0.5580
23-May-08 to 17-Feb-11 688 0.4370 0.4532
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Figure 3.21: South African banks

Merchant Bank Holdings Limited (Rmbh) and Standard Bank Group Lim-

ited (Stanbank), one method showed H � 1
2
on the whole interval, before the crash

and anti-persistency afterwards. The other method showed slight persistency on the

whole interval, before the crash and anti-persistency after the crash. Firstrand

Limited (Firstrand) has a H � 1
2
on the whole interval and anti-persistent on

the intervals before the crash and after the crash. Saambou Holdings limited

(Saambou) Hurst parameter was close to 1
2
to slightly persistent until the bank col-

lapsed. Capitec (Capitec) displayed persistency on all three intervals using Higuchi

method and the absolute moments method showed H � 1
2
on the whole interval and

the interval after the crash while anti-persistency before the crash.

From �gure 3.21 it is clear thatMercantile Bank Holdings (Mercantil) stock

prices are anti-persistent. The Mecantil data set was divided into 5 groups, �rst one
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Table 3.11: Sector: Banks, Stock: ABSA Group Limited.
ABSA Hurst Parameter
Period N Absolute Moment Higuchi
03-Dec-86 to 17-Feb-11 6038 0.4894 0.5473
27-Mar-85 to 23-May-08 5350 0.4834 0.5435
23-May-08 to 17-Feb-11 688 0.3876 0.4180

Table 3.12: Sector: Banks, Stock: Nedbank Group Ltd.
Nedcor Hurst Parameter
Period N Absolute Moment Higuchi
27-Mar-85 to 17-Feb-11 6462 0.5321 0.5674
27-Mar-85 to 23-May-08 5775 0.5241 0.5689
23-May-08 to 17-Feb-11 688 0.4433 0.4521

Table 3.13: Sector: Banks, Stock: Rand Merchant Bank Holdings Limited.
Rmbh Hurst Parameter
Period N Absolute Moment Higuchi
25-Nov-92 to 17-Feb-11 4551 0.5280 0.5642
25-Nov-92 to 23-May-08 3864 0.5197 0.5689
23-May-08 to 17-Feb-11 688 0.3676 0.4059

Table 3.14: Sector: Banks, Stock: Standard Bank Group Limited.
Stanbank Hurst
Period N Absolute Moment Higuchi
06-Sep-85 to 17-Feb-11 6356 0.4530 0.5603
06-Sep-85 to 23-May-08 5669 0.4503 0.5591
23-May-08 to 17-Feb-11 688 0.3809 0.4005

Table 3.15: Sector: Banks, Stock: Firstrand Limited.
Firstrand Hurst Parameter
Period N Absolute Moment Higuchi
25-May-98 to 17-Feb-11 3184 0.4631 0.4519
25-May-98 to 23-May-08 2496 0.4292 0.4295
23-May-08 to 17-Feb-11 688 0.3896 0.4136

Table 3.16: Sector: Banks, Stock: Capitec.
Capitec Hurst Parameter
Period N Absolute Moment Higuchi
18-Feb-02 to 17-Feb-11 2253 0.5162 0.6570
18-Feb-02 to 23-May-08 1565 0.4417 0.6256
23-May-08 to 17-Feb-11 688 0.5112 0.7109
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Table 3.17: Sector: Banks, Stock: Saambou Holdings limited.
Saambou Hurst Parameter
Period N Absolute Moment Higuchi
11-Nov-87 to 07-Feb-02 3545 0.5501 0.5774

Table 3.18: Sector: Banks, Stock: Mercantile Bank Holdings.
mercantil Hurst Parameter

Period N
Aggregated
Variance

Absolute
Moments

Higuchi

12-Aug-98 to 17-Feb-11 3129 0.4671 0.5024 0.4932
12-Aug-98 to 17-Aug-00 500 0.3479 0.3623 0.4200
18-Aug-00 to 16-Aug-02 500 0.3108 0.3623 0.4129
19-Aug-02 to 21-Aug-06 1000 0.3250 0.3197 0.3876
22-Aug-06 to 17-Feb-11 1126 0.2666 0.3464 0.3298

being the whole interval, the second and third interval has 500 observations, the

fourth interval has 1000 observations while the �th interval has 1126 observations.

Using the aggregated variance, absolute moments and the Higuchi methods a Hurst

close to a half was found for the whole interval while all the other intervals showed

anti-persistency.

Nawrocki (1995) found empirical results that support persistency in a �nite �nan-

cial data set and no evidence of long termmemory assuming an in�nite memory series

using Rescaled range method. Davidsson (2011) investigated the Standard & Poor�s

500 data and found that the returns are serially independent while volatility and

expected returns have positive serial correlation.

Results for the other sectors are shown in appendices A and B.

 
 
 



Chapter 4

Fractional Brownian Motion

4.1 Introduction

Chaos is the science of the global nature of systems. Generally, Chaos is de�ned

as a state without order. Mathematically, Chaos is de�ned as the randomness that

is generated by a simple deterministic system (Peitgen, Jürgens and Saupe, 2004).

Dynamical systems are systems that move or change in time. Unpredictable systems

are non linear systems that display complexity and irregularity. A de�nition of a

fractal is an object in which parts are related to the whole (Mandelbrot; 1977).

Leibniz imagined a drop of water containing a universe and within containing another

water droplet with its own universe and so forth. As he said, �To see the world in

a grain of sand�(Gleick, 1998). Chaos, unpredictability and free will create novelty

and novelty is the beginning of new order (Marion, 1999) :

Fractals give structure to complexity and beauty to chaos they are curves whose

dimension are greater than one, (Mandelbrot; 1982). Another important aspect of

fractals is their self similarity property. Fractals such as cauli�ower, trees or sea shells

show symmetry across scale. Some time series can be described using fractals, price

charts display self similarity as at �ner and �ner time scales a resembling pattern

occurs with a constant measure, (Peters, 1991).

A simple example of a fractal is the Koch Curve which is no where di¤erentiable

and has an in�nite length in a �nite space and the self similarity is built in the
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construction process. An example of a random fractal is the Sierpinski Triangle

(Mandelbrot; 1977). The stock price dynamics are driven by Brownian motion in the

Black-Scholes model, which, topologically, is a curve with a dimension of one. Yet,

Brownian motion can be seen as the trail of a �ne particle that is constantly moving

up, down, accelerating, stopping; in other words it is in constant irregular motion.

Thus it ends up �lling a plane and has a fractal dimension of two (Mandelbrot; 1982).

Fractal time series are time series which are statistically self similar with respect to

time. If you look at the graph of such a time series it displays jagged lines. They

are not one dimensional as they are not straight lines, but neither do they have a

dimension of two as they do not �ll a plane. Their fractal dimension is between one

and two (Peters, 1991). The fractal structure of the market is exhibited in the self-

similarity property. Price charts display self-similarity as at �ner and �ner time scales

a resembling pattern occurs. By zooming in on successive monthly price changes this

pattern may resemble the structure of weekly price changes.

Mandelbrot (1967) investigated the cotton prices and concluded that the price of

cotton did not follow a Gaussian stationary random walk. He applied the Rescaled

Range analysis to approximate the Hurst parameter that measures whether the

prices of the stock markets has any underlying trend. Mandelbrot showed that prices

changes follow a levy stable distribution which is a power law distribution.

De�nition 4.1 Sornette (2003) : An observable O depending on x is said to be scale

invariant under x! �x if there is a number � (�) such that

O (x) = �O (�x) : (4.1)

The solution of (4:1) is a power law O (x) = x�; where � is

� = � ln�
ln�

:
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Scale invariance in a special case of the self similarity property. In �nance, if we

let X (t) be the stock return and let P�t [X (t+�t)�X (t) = 0] be the probability

of return of the origin as a function of the time change �t. Mantegna and Stanley,

(2000) investigate the S&P500 with �(t) taking on values between one minute and

thousand minutes, when plotted on the log-log scale we observe a power law scaling

behaviour:

De�nition 4.2 Óswi ¾ecimka, Kwapién, Dro·zd·z, G·orski and Rak (2006). LetX (t;�t) =

X (t+�t)�X (t) be a stationary process such that

E [X (t;�t)q] � �t�(q)+1

where � (q) is the scaling exponent. If � (q) depends on q non-linearly we say that

X (t;�t) possesses a multifractal character. If � (q) depends on q linearly we say

that the process is a monofractal.

Fractional Brownian motion is a example of a monofractal.

Mandelbrot (1996) developed a �exible multifractal model of asset returns

(MMAR) that incorporates long-tails and the Lévy-stable distribution. The model

contains long-range dependence in the absolute value of the price returns incre-

ments, while the price returns are uncorrelated as well as long memory in volatility

see Mandelbrot, Fisher and Calvet (1997) : MMAR is a cointinuous-time stochastic

process see Calvet and Fisher (2002) :On a time scale multifractality is de�ned as a

set of limitations imposed on the stochastic process moments and is scale consistent.

The MMAR is a alternative for ARCH-type models.

Czarnecki and Grech (2009) did multifractal analysis on the Polish stock market

and found that multifractal image is obscured for very long time horizon. Mu, Chen,
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Kertész and Zhou (2009) did multifractal analysis of Chinese stocks. Jamdee and Los

(2005) show that the multifractal model of asset returns is consistent with martingale

pricing. Barunik, Aste, Matteo and Liu (2012) apply the genealized Hurst parameter

to multifractal analysis for di¤erent �nancial data .Ghosh, Jaekel and Petruccione

(2012) investigated the multi-fractal structure of the Johannesburg Stock Exchange

and found presence of the power law in the �uctuations of the returns.

Researchers started applying fractional Brownian motion to many �elds, some

of which include hydrology, telecommunications, �uidodynamics, economics and

�nance (Gradinaru, Nourdin, Russo and Vallois, 2005). Peters (1991) proposed a

Fractional Market Hypothesis1 that combines fractals and chaos theory.

4.2 Fractional Brownian motion

Fractional Brownian motion depends on the Hurst parameter H and is given by the

following de�nition.

De�nition 4.3 (Biagini, Hu, Øksendal and Zhang, 2008). Let the Hurst parameter

H be a constant with 0 < H < 1. A continuous and centered Gaussian process

1The assumptions to the Fractional Market Hypothesis are:

1. The markets are stable and have su¢ cient liquidity when it comprises of investors
with di¤erent time horizons.

2. Investors stay in their preferred time horizon.

3. Not all information may be re�ected in the market prices.

4. A market price trend indicates the changes in expected earnings.

(Peters; 1991)
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BH (t)

	
t�0 for all t; s 2 R is a fractional Brownian motion (fBm) when it�s covari-

ance function is given as

E
�
BH (t)BH (s)

�
=
1

2

�
jtj2H + jsj2H � jt� sj2H

�
:

Properties of fractional Brownian motion:

1.

BH (0) = 0:

2. The expectation of fractional Brownian motion is

E
�
BH (t)

�
= 0 for all t > 0:

3. The variance of fractional Brownian motion is

V ar
�
BH (t)

�
= E

�
BH (t)2

�
� E

�
BH (t)

�2
= E

�
BH (t)BH (t)

�
=

1

2

�
jtj2H + jtj2H � jt� tj2H

�
= t2H :

4. WhenH = 1
2
fractional Brownian motion coincides with the classical Brownian

motion.
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For example, setting H = 1
2
and for t > s > 0 the covariance of fractional

Brownian motion is given as

E
h
B

1
2 (t) ; B

1
2 (s)

i
=

1

2

�
jtj2

1
2 + jsj2

1
2 � jt� sj2

1
2

�
=

1

2
(jtj+ jsj � jt� sj)

=
1

2
((t) + (s)� (t� s))

=
1

2
(2s)

= s

= min (s; t) :

Fractional Brownian motion BH (t) has stationary increments implying that the

distribution of the increments depends only on the length of the interval and not on

the time they occur. WhenH = 1
2
then fBm has independent increments. WhenH >

1
2
the increments of fBm are positively correlated and the series exhibits persistent

behaviour. When H < 1
2
the increments of fBm are negatively correlated and the

series exhibits anti-persistent behaviour. Fractional Brownian motion is self-similar

in the sense that BH (�t) has the same distribution law as �HBH (t) for � > 0: If

H > 1
2
then fBm has long-range dependence, implying it has long-memory. If H 6= 1

2

then fBm is non-Markovian and is not a semimartingale. Fractional Brownian motion

does not have di¤erentiable sample paths.

Figure 4.1 displays paths of fractional Brownian motion for three di¤erent Hurst

parameters.

Mandelbrot and Van Ness (1968) de�ned a stochastic integral representation of

fractional Brownian motion as follows

BH (t) = cH

�Z 0

�1

h
(t� s)H�

1
2 � (�s)H�

1
2

i
dB (s) +

Z t

0

(t� s)H�
1
2 dB (s)

�
(4.2)
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Figure 4.1: Path of fractional Brownian motion for varying Hurst parameter.

where cH is the normalizing constant and given as

cH =

s
2H�

�
3
2
�H

�
�
�
1
2
+H

�
� (2� 2H)

;

and � (�) is the Gamma function.

For example setting the Hurst parameterH =
1

2
the normalizing constant reduces

to

c 1
2
=

s
21
2
�
�
3
2
� 1

2

�
�
�
1
2
+ 1

2

�
�
�
2� 21

2

�
=

s
� (1)

� (1) � (1)

= 1
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and fractional Brownian motion becomes the standard Brownian motion as

B
1
2 (t) = c 1

2

�Z 0

�1

h
(t� s)

1
2
� 1
2 � (�s)

1
2
� 1
2

i
dB (s) +

Z t

0

(t� s)
1
2
� 1
2 dB (s)

�
=

Z t

0

dB (s)

= B (t) :

Jakubowski (2009) introduced the idea of a local predictor which shows the

existence of fractional Brownian motion for H > 1
2
:

 
 
 



Chapter 5

Wick-Itô Stochastic Calculus

5.1 Introduction

In stochastic calculus Brownian motion is used as an input variable to the system.

The stock price dynamics depends on an assumed integration theory. In the usual

case we assume the Itô stochastic integral. Since fractional Brownian motion is not

a semimartingale when H 6= 1
2
ordinary stochastic calculus is not applicable so dif-

ferent integration theories have to be applied; a fractional pathwise integral was the

�rst integral that was introduced to solve the problem. Under pathwise integration

stochastic fractional Brownian motion does not have zero expectation. It was shown

that one can create a replicating portfolio which produces arbitrage possibilities (see

for instance Biagini, Hu, Øksendal and Zhang, 2008 for the proof) thus pathwise

integration cannot be used in the markets. Another integration theory that is based

on white noise theory has been established. Duncan, Hu, Pasik-Duncan (1991) devel-

oped a Wick calculus universe based on the Wick product, which is denoted by the

symbol �. A fractional stochastic integral was introduced, that is de�ned by means

of the Wick product. Only some basic Wick product properties will be discussed

here. Under this Wick-based integration theory the stochastic integral has a zero

expectation and the market is free from strong arbitrage.

Stochastic integration with respect to fractional Brownian motion for 1
2
< H < 1

is brie�y discussed in the following chapter and only the necessary theorems and
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results are presented. Fractional Brownian motion is expressed in terms of fractional

white noise and fractional white noise is the derivative of fractional Brownian motion.

An in-depth discussion of fractional white noise requires technical concepts so we

refer the reader to appendix C for white noise analysis as presented by Hida, Kuo,

Pottho¤ and Striet (1993) and Grothaus, Kondratiev and Us (1998) who show that

the wick product can be expressed in terms of the S transform. Bender (2003)

contrast an alternative fractional Brownian motion which has the same covariance

structure as the fractional Brownian motion under Biagini, Hu, Øksendal and Zhang

(2008). The Clark-Ocone theorem under Biagini, Hu, Øksendal and Zhang (2008)

is not well-de�ned therefore we present the Clark-Ocone theorem as presented by

Bender and Elliot (2002).

Dai and Heyde (1996) give a representation of the Itô formula with respect to

fractional Brownian motion and show that the solution of the stochastic di¤erential

equation is unique.

5.2 Construction of Fractional Brownian Motion

In order to obtain the fractional Wick Itô integral a function � is introduced to

handle the existence of the Wick product. For a �xed Hurst parameter 1
2
< H < 1

and for s; t 2 R we introduce a function � : R2 ! R de�ned by

� (t; s) = H (2H � 1) jt� sj2H�2 :

For s; t > 0 we have (Biagini, Hu, Øksendal and Zhang, 2008)Z t

0

Z t

0

� (u; v) dudv = t2H

and Z t

0

Z s

0

� (u; v) dudv =
1

2

�
s2H + t2H � jt� sj2H

�
: (5.1)
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Let S (R) be a Schwartz space1 of rapidly decreasing real-valued smooth functions

on R: Let f; g : R ! R and if f; g 2 S (R) then we de�ne the inner product of the

two functions f and g as

hf; gi� =
Z
R

Z
R
f (s) g (t)� (t; s) dsdt

and the norm as

jjf jj2� =
Z
R

Z
R
f (s) f (t)� (t; s) dsdt

which is �nite (Biagini, Hu, Øksendal and Zhang, 2008), i.e.

kfk2� <1:

We can now construct a Hilbert space L2� (R) which is the completion of S (R) : One

can similarly construct a Hilbert space L2� (R+) for the positive real numbers. Let


 = S 0 (R) be the dual of S (R) also called the tempered distributions and let B (
)

be Borel subsets of 
: Denote h!; fi the action of ! 2 S 0 (R) on f 2 S (R) ; then we

have the map S (R) � S 0 (R) ! R: By the Bochner-Minlos theorem there exists a

probability measure �� on B (
) such thatZ



exp (i h!; fi) d�� (!) = exp
�
�1
2
jjf jj2�

�
:

See Biagini, Hu, Øksendal and Zhang (2008).

The expectation under the probability measure �� (Biagini, Hu, Øksendal and

Zhang, 2008) is

E�� [h!; fi] = 0
1(Stein and Shakarchi, 2003) A Schwartz space S (R) on R consists of the sets of all

di¤erentiable functions f so that f and all it�s derivatives f 0; f 00; :::; f (l) .. are rapidly
decreasing such that for every k; l � 0

sup
x2R
jxjk

���f (l) (x)��� <1:
And if f 2 S (R), we have

f 0 (x) =
df

dx
2 S (R)

and xf (x) 2 S (R) :
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and

E��
�
h!; fi2

�
= jjf jj2� :

Fractional Brownian motion BH (t) is de�ned on a probability space
�

;FHt ; ��

�
,

where FHt is the Borel �-algebra2 generated by BH (t). Let � be a piecewise function

of the form

�[0;t] =

8>>>><>>>>:
1

�1

0

0 � s � t

t � s � 0

otherwise

then for t 2 R we de�ne

~BH (t) = ~BH (t; !) =


!; �[0;t] (�)

�
and ~BH (t) 2 L2

�
��
�
(Biagini, Hu, Øksendal and Zhang, 2008): Where the space

Lp
�
��
�
for each p � 1 is the space of all random variables F : 
! R such that

kFkLp(��) = E�� [jF j
p]

1
p <1:

Then there exists a continuous version BH (t) of ~BH (t) which is also a fractional

Brownian motion.

5.3 Stochastic Integral for Deterministic Functions

In this section we introduce the stochastic integral of a deterministic function which

is driven by fractional Brownian motion using approximating step functions which

is a piecewise function. Denote L2H (R) the subspace of deterministic functions con-

tained in L2� (R) : In order to represent a stochastic integral with respect to fractional

Brownian motion we de�ne the integration of a function f which is an element in

2(Björk, 2004). Let X = Rn, then we de�ne the Borel algebra B (Rn) as the sigma-
algebra which is generated by the class of open sets on Rn:
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L2H (R) : A simple function is the sum of a real constant multiplied by the indi-

cator function and we approximate the integrand by using simple functions. For

0 = t0 < ti < :: < tm < T we partition the interval and let there be a sequence of

functions ffm (t)g !
m!1

f (t) such that

fm (t) =
mX
i=1

ami
�
�[0;i+1] (t)� �[0;i] (t)

�
is piecewise constant and ai is a sequence of constants. Setting

h!; fmi = ! (fm)

= !

 
mX
i=1

ami
�
�[0;i+1] (t)� �[0;i] (t)

�!

=

mX
i=1

ami !
�
�[0;i+1] (t)� �[0;i] (t)

�
=

mX
i=1

ami
�
!
�
�[0;i+1] (t)

�
� !

�
�[0;i] (t)

��
=

mX
i=1

ami
�

!; �[0;i+1] (t)

�
�


!; �[0;i] (t)

��
=

mX
i=1

ami
�
BH (ti+1)�BH (ti)

�
=

Z
R
fm (t) dB

H (t) :

Taking limit from both sidesZ
R
f (t) dBH (t) = lim

m!1

Z
R
fm (t) dB

H (t)

and the integral belongs to L2
�
��
�
: By using the approximating step functions the

pairing is given as

h!; fi =
Z
R
f (t) dBH (t; !) :

Then if f and g belong to L2H (R), then
R
R f (s) dB

H (s) and
R
R g (s) dB

H (s) are

Gaussian random variables with zero mean

E��

�Z
R
f (t) dBH (t)

�
= 0; (5.2)
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variance (see Dasgupta and Kallianpur, 1999)

E��

�Z
R
f (t) dBH (t)

�2
= jjf jj2� (5.3)

and covariance

E��

�Z
R
f (t) dBH (t)

Z
R
g (s) dBH (s)

�
=

Z t

0

Z s

0

f (u) g (v)� (u; v) dudv (5.4)

= hf; gi� :

The expectation of BH (t) with respect to the measure �� and using (5:2) is

E��
�
BH (t)

�
= E��

�

!; �[0;t]

��
= E��

�Z
R
�[0;t] (u) dB

H (u)

�
= 0 (5.5)

For all t; s 2 R fractional Brownian motion is a Gaussian process
�
BH (t)

	
t�0 with a

zero expectation. Setting t > s and using (5:1)and (5:3) the covariance of fractional

Brownian motion is given as

E��
�
BH (t)BH (s)

�
= E��

�

!; �[0;t]

� 

!; �[0;s]

��
= E��

�Z
R
�[0;t] (u) dB

H (u)

Z
R
�[0;s] (v) dB

H (v)

�
= E��

�Z t

0

dBH (u)

Z s

0

dBH (v)

�
=

Z t

0

Z s

0

� (u; v) dudv

=
1

2

h
jtj2H + jsj2H � jt� sj2H

i
:

The variance follows as (Rostek, 2009)

V ar
�
BH (t)

�
= E��

�
BH (t)2

�
� E��

�
BH (t)

�2
= t2H : (5.6)
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Exponentials functions " (f) are de�ned with deterministic integrands f . Then

for any f 2 L2H (R) we de�ne

" (f) = exp

�Z
R
f (t) dBH (t)� 1

2

Z
R

Z
R
f (s) f (t)� (s; t) dsdt

�
= exp

�Z
R
f (t) dBH (t)� 1

2
jjf jj2�

�
then " (f) 2 Lp

�
��
�
for each p � 1: We have that (see Rostek, 2009)

E�� [" (f)] = 1: (5.7)

It also follows by Rostek (2009) that
R1
0
f (t) dBH (t) is normally distributed with

zero mean and variance kfk2� and exp
�R
R f (t) dB

H (t)
�
is log-normally distributed

with a mean of exp
�
1
2
kfk2�

�
:

5.4 Results from Wick Calculus

The preliminary results from Wick calculus are presented in this section; for further

results refer to Holden, Øksendal, Ubøe and Zhang (1996) and Biagini, Hu, Øksendal

and Zhang (2008). In the fractional market Hu and Øksendal (2003) change the

de�nition of the portfolio value by using the Wick product.

We do not formally expand on the fractional Hida test function space (S)H and

its dual, the fractional Hida distribution space (S)�H : Refer theorem (5:6) for the

description of a Hida test function space (S) which is the projective limit and its dual,

the Hida distribution space (S)� which is the lnductive limit3. The Wick product
3(See Kelley and Namioka(1963)) : An inductive system has the following: an A index

set with partial ordering =; for each t 2 A, Et is a linear space; for t = s = r there is a
canonical linear map Qts of Es into Et such that: Qts �Qsr = Qtr and Qtt is the identity
map of Et 8t: Let N be the subspace of the direct sum

P
fEt; t 2 Ag, then the inductive

limit is de�ned as the quotient space (
P
fEt; t 2 Ag) =N which is a space of elements

which of the form x+N where x in
P
fEt; t 2 Ag : A projective system has the following:

an A index set with partial ordering =; for each t 2 A, Et is a linear space; for t = s = r
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is not the same as normal multiplication and is de�ned using Hermite polynomials

in R: If we de�ne F;G 2 (S)�H , then the Wick product of F � G 2 (S)
�
H . Refer to

appendix C for the construction of the wick product between two distributions in a

generalized Gaussian space as presented by Grothaus, Kondratiev and Us (1998)

Lemma 5.1 (Holden, Øksendal, Ubøe and Zhang, 1996):The Wick product of F �G

has the following algebraic properties:

a) Commutative law F;G 2 (S)�H

F �G = G � F:

b) Associated law F;G;H 2 (S)�H

F � (G �H) = (F �G) �H:

c) Distributive law F;A;B 2 (S)�H

F � (A+B) = F � A+ F �B: (5.8)

d) If F;G;H 2 (S)�H then

(F �G) �H 6= F � (G �H) :

Although suppose that a least one of F and G is deterministic e.g. F = c 2 R;

then the Wick product coincides with normal multiplication

F �G = F �G:

Another example is if F = 0, then F �G = 0: Wick algebra obeys the same rules as

the ordinary algebra for example

(X + Y )�2 = X�2 + 2X � Y + Y �2

there is a caconical transformation Pst of Et into Es such that: Prt = Prs � Pst and Pss is
the identity transformation 8s in A: The projective limit of the system is the subspace of
the product X fEt; t 2 Ag which consists of all x such that Pst (x (t)) = x (s).
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and

exp� (X + Y ) = exp� (X) � exp� (Y )

(see Øksendal, 1997). The expectation is well de�ned as

E�� [F �G] = E�� [F ]E�� [G] (5.9)

De�nition 5.1 (Biagini, Hu, Øksendal and Zhang, 2008). The Wick Power of X 2

(S)�H is

X�n = X �X � ::: �X| {z }
n

:

Examples include X�0 = 1 and X�k = X �X�(k�1) for k = 1; 2; ::: .If E�� [X] 6= 0;

we can de�ne the Wick inverse X�(�1) with the following property (see Holden,

Øksendal, Ubøe and Zhang, 1996)

X �X�(�1) = 1:

Let f; g 2 L2H (R) ; then the Wick product of two integral functions is�Z
R
fdBH

�
�
�Z

R
gdBH

�
=

�Z
R
fdBH

�
�
�Z

R
gdBH

�
� hf; gi�

and is an element of (S)�H (Biagini, Hu, Øksendal and Zhang, 2008).

De�nition 5.2 (Biagini, Hu, Øksendal and Zhang, 2008). Wick exponentials of X

2 (S)�H is

e� (X) =

1X
n=0

1

n!
X�n

provided that the series converges in (S)�H .

The following concept will often be used later. For ! 2 
 being a random variable

and f 2 L2H (R) then

exp� (h!; fi) = exp

�
h!; fi � 1

2
jjf jj2�

�
= " (f) :
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(See Biagini, Hu, Øksendal and Zhang, 2008). Denote L2H (R+) the subspace of deter-

ministic functions contained in L2� (R+) : Moreover for any f 2 L2H (R+) we have

" (f) = exp�
�Z 1

0

f (t) dBH (t)

�
= exp

�Z 1

0

f (t) dBH (t)� 1
2
jjf jj2�

�
= exp

�Z 1

0

f (t) dBH (t)� 1
2

Z 1

0

Z 1

0

f (s) f (t)� (s; t) dsdt

�
:

Wick exponential functions will play an important role when solving stochastic dif-

ferential equations.

5.5 Wick-Itô Skorohod Integral

In the previous section we dealt with integrals of deterministic functions. In this

section we show an extension to the general case. Biagini, Hu, Øksendal and Zhang

(2008) show the fractional stochastic integral of Itô type can be represented using

fractional white noise. We denote fractional white noise at time t as WH (t) 2 (S)�H
for all t and it is de�ned in Biagini, Hu, Øksendal and Zhang (2008; page 56). For

0 � s � t and t ! WH (t) is a continuous function from R into (S)�H : Fractional

white noise WH (t) is integrable in (S)�H and the integral isZ t

0

WH (s) ds = BH (t) :

When regarded as a map BH (�) : R! (S)�H fractional Brownian motion is di¤eren-

tiable with respect to t;
d

dt
BH (t) =WH (t) : (5.10)

De�nition 5.3 (Biagini, Hu, Øksendal and Zhang, 2008). Given a function Y :

R! (S)�H such that Y (t)�WH (t) is integrable in (S)�H then the fractional Wick-Itô

Skorohod integral is de�ned asZ
R
Y (t) dBH (t) =

Z
R
Y (t) �WH (t) dt: (5.11)
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Let F 2 Lp
�
��
�
be a random variable then Rostek (2009) shows

E��

�Z T

0

F (s) dBH (s)

�
= 0:

Example 5.1 (Biagini, Hu, Øksendal and Zhang, 2008). Suppose Fi 2 (S)�H and

we set

Y (t) =

nX
i=1

Fi (!) I[ti;ti+1) (t) :

Then the integral can be expressed asZ
R
Y (t) dBH (t) =

Z
R

nX
i=1

Fi (!) I[ti;ti+1) (t) dB
H (t)

=
nX
i=1

Z
R
Fi (!) I[ti;ti+1) (t) �WH (t) dt

=
nX
i=1

Z ti+1

ti

Fi (!) �WH (t) dt

but we see thatZ ti+1

ti

Fi (!) �WH (t) dt = lim
m!1
�sj!0

m�1X
j=0

Fi (!) �WH
�
�j
�
(sj � sj�1)

where �j 2 [sj�1; sj] and �sj = (sj � sj�1) : Since Fi (!) does not depend on t and

by the distributive law for Wick products (5:8) we have

lim
m!1
�sj!0

m�1X
j=0

Fi (!) �WH
�
�j
�
(sj � sj�1) = Fi (!) � lim

m!1
�sj!0

m�1X
j=0

WH
�
�j
�
(sj � sj�1) :

It follows Z
R
Y (t) dBH (t) =

nX
i=1

Fi (!) �
Z ti+1

ti

WH (t) dt

=
nX
i=1

Fi (!) �
�
BH (ti+1)�BH (ti)

�
:
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Example 5.2 (Biagini, Hu, Øksendal and Zhang, 2008). Using stochastic Wick cal-

culus we obtain the following integralZ t

0

BH (s) dBH (s)

=

Z t

0

BH (s) �WH (s) ds

=

Z t

0

BH (s) � d

ds
BH (s) ds

=
1

2

�
BH (t)

��2
=

1

2

�
BH (t) �BH (t)

�
=

1

2

�Z t

0

�[0;t] (u) dB
H (u) �

Z t

0

�[0;t] (u) dB
H (u)

�
=

1

2

�Z t

0

�[0;t] (u) dB
H (u)

Z t

0

�[0;t] (u) dB
H (u)�

Z t

0

Z t

0

� (t; s) dsdt

�
=

1

2

�
BH (t)

�2 � 1
2
t2H :

Example 5.3 (Biagini, Hu, Øksendal and Zhang, 2008). Consider a fractional sto-

chastic di¤erential equation, with x; � and � constants, � 6= 0 which is given as

dX (t) = �X (t) dt+ �X (t) dBH (t)

X (0) = x > 0:

The stochastic equation can be rewritten as

X (t) = X (0) +

Z t

0

�X (s) ds+

Z t

0

�X (s) dBH (t) :

Using the Wick Itô Skorohod integral we get

X (t) = X (0) +

Z t

0

�X (s) ds+

Z t

0

�X (s) �WH (s) ds:

It follows

d

dt
X (t) = �X (t) + �X (t) �WH (t)

= X (t) �
�
�+ �WH (t)

�
:
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The solution of this di¤erential equation is similar to that of the ordinary di¤erential

for exponentials function but the ordinary multiplication sign is replaced with the

Wick product.

X (t) = X (0) � exp�
�Z t

0

�ds+ �

Z t

0

WH (s) ds

�
= x exp�

�
�t+ �BH (t)

�
To show that the above is a solution we di¤erentiate

dX (t)

dt
=

d

dt

�
x exp�

�
�t+ �BH (t)

��
= x exp�

�
�t+ �BH (t)

�
� d
dt

�
�t+ �BH (t)

�
= x exp�

�
�t+ �BH (t)

�
�
�
�+ �WH (t)

�
= X (t) �

�
�+ �WH (t)

�
:

Using Wick calculus the solution can be rewritten as

X (t) = x exp�
�
�t+ �BH (t)

�
= x exp� (�t) � exp�

�
�BH (t)

�
= x exp (�t) exp�

�
�BH (t)

�
:

Setting f = ��[0;t] hence h!; fi = �BH (t) and using Wick exponentials we have

exp�
�
�BH (t)

�
= exp

�
�BH (t)� 1

2
�2
Z t

0

Z t

0

� (s; t) dsdt

�
= exp

�
�BH (t)� 1

2
�2t2H

�
:

It follows that the solution is

X (t) = x exp

�
�BH (t) + �t� 1

2
�2t2H

�
:
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5.6 Fractional Girsanov Theorem

The fractional Girsanov theorem in �nance gives us the possibility of converting

between equivalent measures which describes the probability of fractional Brownian

motion refer to theorem (2:2) for the Girsanov�s formula under Brownian motion.

Theorem 5.1 Let T > 0 and let  be a continuous function with the support, supp

 � [0; T ] : Let K a function with K � [0; T ] such that for all f 2 S (R) and the

supp f � [0; T ] we have

hK; fi� = h; fiL2(R)

then for 0 � t � T it followsZ
R
K (s)� (s; t) ds =  (t) :

On �-algebra FHT generated by
�
BH (s) ; 0 � s � T

	
, de�ne a probability measure

��;
d��;
��

= exp� f� h!;Kig :

Then for 0 � t � T it follows that

B̂H (t) = BH (t) +

Z t

0

 (s) ds

is a fractional Brownian motion under the new measure ��;:

For the proof see Biagini, Hu, Øksendal and Zhang (2008, page 60).

Lemma 5.2 (Biagini, Hu, Øksendal and Zhang, 2008). Wick products on di¤erent

white noise spaces. Let �� be the measure on B
H (t) and let ��; be the new measure

de�ned by the fractional Girsanov theorem on B̂H (t) = BH (t) +

Z t

0

sds. Let the

Wick products corresponding to �� and ��; be denoted by ��� and ���; :Then

F ��� G = F ���; G (5.12)

for all F;G 2 (S)�H :
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5.6.1 Quasi-Conditional Expectation and the Fractional Clark-

Ocone Theorem

When modelling �nancial instruments, especially when the derivation of the Black-

Scholes option pricing formula is done using expectations, the conditional expec-

tation of the fractional Brownian motion process E��
�
BH (t)

��FHs � is di¢ cult to
compute due to the correlation with the past. For this reason a system of quasi-

conditional expectations is developed for fractional Brownian motion. The fractional

conditional expectation ~E is di¤erent from the ordinary expectation E. The de�ni-

tion of quasi-conditional expectation is quite involved and we will therefore not give

it here, refer to Biagini, Hu, Øksendal and Zhang (2008).

Let FHt be the �-algebra generated by fractional Brownian motion for 0 � s � t;

then we denote the fractional quasi-conditional expectation of G with respect to FHt
by ~E��

�
G
��FHt � : We have for 0 � s � t

~E��
�
BH (t)

��FHs � = BH (s)

and fractional Brownian motion BH (t) is thus called a quasi-martingale. If G 2

L2
�
��
�
then

~E��
�
G
��FHt � = G a:s:, E��

�
G
��FHt � = G a:s:

Unfortunately the normal properties of conditional expectation do not hold. For

instance for the normal conditional expectation if G is FHt measurable then

E
�
FGjFHt

�
= GE

�
F jFHt

�
but this may not hold for quasi-conditional expectation (Hu and Peng, 2009).

Another property of conditional expectation that does not hold is monotonicity.

Namely if �1 � �2, then

E
�
�1jFHt

�
� E

�
�2jFHt

�
:
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In fact Hu and Peng (2009) show there may be � � 0 a.s. such that ~E
�
�jFHt

�
< 0

with a positive probability. However quasi-conditional expectation will be monotone

on some subsets. The quasi-conditional expectation of the wick product of F;G is

~E��
�
F �G

��FHt � = ~E��
�
F
��FHt � � ~E�� �G ��FHt � :

Denote D�
sF =

R
R � (s; t)DtFdt; where DtF refers to the Malliavin derivative.

Refer to the appendix D for the Malliavin derivative. Let L1;2� (R) denote the com-

pletion of the set of all FHt -adapted processes f (t) = f (t; !) such that

kfk2L1;2� (R) = E��

�Z
R

Z
R
f (s) f (t)� (s; t) dsdt

�
+ E��

"�Z
R
D�
s f (s) ds

�2#
<1:

(5.13)

Lemma 5.3 (Necula, 2002).

a) If we let f 2 L2H (R) and

" (t) = exp

�Z t

0

f (s) dBH (s)� 1
2

����f�[0;t]����2��
then " (t) is a quasi-martingale.

b) Let f 2 L1;2� (R) and

M (t) =

Z t

0

f (s; !) dBH (s) (5.14)

then M (t) is a quasi-martingale.

We refer the reader to equation (2:5) for the Clark-Ocone theorem. Before we

introduce the fractional Clark-Ocone theorem we have to de�ne the Hida Malliavin

derivative.

De�nition 5.4 (Biagini, Hu, Øksendal and Zhang, 2008). Let F : S 0 (R)! R be a

given function and let  2 S 0 (R) : Then F has a directional derivative in (S)�H in

the direction of  if the following

DH
 F (!) = lim

"!0

F (! + ")� F (!)
"
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exists in (S)�H : The function F : S 0 (R) ! R is di¤erentiable if there exists a map

	 : R! (S)�H such that

	(t)  (t) = 	 (t; !)  (t)

is integrable in (S)�H . Then for all  2 L2 (R) we have

DH
 F (!) =

Z
R
	(t; !)  (t) dt:

The stochastic gradient (Hida Malliavin derivative) of F at t is de�ned as

DH
t F (!) =

dF

d!
(t; !)

= 	 (t) :

Example 5.4 (Biagini, Hu, Øksendal and Zhang, 2008). If F (!) = h!; fi =R
R f (t) dB

H (t; !) then for some f 2 S (R) and  2 L2 (R) then the directional

derivative in the direction of  is

DH
 F (!) = lim

"!0

F (! + ")� F (!)
"

= lim
"!0

[h! + "; fi � h!; fi]
"

= lim
"!0

h"; fi
"

= h; fi

=

Z
R
f (t)  (t) dt:

It follows by the de�nition that F is di¤erentiable and the stochastic gradient of

F (!) is given as

DH
t F (!) = f (t)

for almost all (t; !) :

We say G is FHT -measurableH;Ø if

~E��
�
GjFHt

�
= G:
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Note that this di¤ers from the usual de�nition of FHT -measurability.

Hu and Øksendal (2000) use the fractional Clark-Ocone theorem to show com-

pleteness in the market.

Theorem 5.2 A fractional Clark-Ocone theorem.

a) Let G (!) be FHT -measurableH;Ø, then the quasi-conditional expectation

~E��
�
DH
t G

��FHt � �WH (t) is integrable in (S)�H and

G (!) = E�� [G] +

Z T

0

~E��
�
DH
t G

��FHt � �WH (t) dt:

b) Suppose G (!) is FHT -measurableH;Ø. De�ne

	(t; !) = ~E��
�
DH
t G

��FHt �
for t 2 [0; T ]. Then

G (!) = E�� [G] +

Z T

0

~E��
�
DH
t G

��FHt � dBH (t) :

For the proof see Biagini, Hu, Øksendal and Zhang (2008; page 85).

Bender (2003) proves that theorem (5:2) is not well-de�ned and we give an alter-

native fractional Clark-Ocone theorem in theorem (5:5).

5.7 An Alternative Fractional Brownian Motion

In this section we look at Bender (2003)(a), Bender (2003) (b) ; Bender (2003) (c) and

Bender and Elliot (2002) perspective on fractional Brownian motion, the fractional

Clark-Ocone theorem and fractional White noise.
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5.7.1 Setup

For 0 � t < 1; let B(1) (t) and B(2) (t) be two continuous independent Brownian

motions on a probability space (
;A; P ). Let F 0 denote the �-�eld generated by

these two Brownian motions and let N be the Null sets of F 0 given as

N = fG; 9F2F 0G � F ^ P (F ) = 0g

Let F = � (F 0 [N ) and let (L2) = L2 (
;F ; P ) be the space of square integrable

random variables on a probability space (
;F ; P ) and k�k0 be the norm. For i = 1; 2

and 0 � s � t, denote F 0 (i) the augmentation of the �-�elds � (Bi (s)). Let s; t 2 R

be real numbers and let 0 < H < 1 be the Hurst parameter, then a continuous

stochastic process BH (t) is a called a two sided fractional Brownian motion if it

follows a covariance structure as de�ned in de�nition 3.1. When H = 1
2
we get a two

sided Brownian motion. For i = 1; 2 let F (i) = � (F 0 (i) [N ) and F (i)t be measurable

process. Let X (t) be F (1)t -adapted and X (�t) be F
(2)
t -adapted measurable process

such that X : 
� R! R andZ
R
EP
�
X2 (t)

�
dt <1:

Lemma 5.4 A process X (t) is a two sided Brownian motion if and only if the

processes X(1) (t) = X (t) and X(2) (t) = X (�t) are independent Brownian motions.

From lemma 5.4 we set

B (t) = B
1
2 (t) =

8<: B(1) (t) ;

B(2) (�t) ;

if t � 0

if t < 0
:

De�ne stochastic integrals driven by Brownian motion as a two sided Itô integralZ
R
X (t) dB (t) =

Z 1

0

X (s) dB(1) (s)�
Z 1

0

X (�s) dB(2) (s) (5.15)

and we have

EP

�Z
R
X (s) dB (s)

Z
R
Y (s) dB (s)

�
= EP

�Z
R
X (t)Y (t) dt

�
:
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For a; b 2 R let the indicator function be given as

1 (a; b) (t) =

8>>>><>>>>:
1;

�1;

0;

if a � t < b

if b � t < a

otherwise

;

then we can represent the classical Brownian motion as follows

B (t) =

Z
R
1 (0; t) (s) dB (s) :

Let f 2 L2 (R) be a deterministic function and denote the Wiener integral by

I (f) =

Z
R
f (t) dB (t) :

For f and g 2 L2 (R) we de�ne the inner product as

(f; g)0 =

Z
R
f (s) g (s) ds

with corresponding norm j�j0 : For x > 0 the Gamma function is given as

� (x) =

Z 1

0

sx�1e�sds:

Let

s
H� 1

2
+ =

8<: sH�
1
2

0

if s > 0

otherwise
;

then for H 6= 1
2
we de�ne a continuous modi�ed fractional Brownian motion

~BH (t) = ~KH

Z
R

�
(t� s)H�

1
2

+ � (�s)H�
1
2

+

�
dB (s)

with normalizing constant

~KH = �

 
2H�

�
3
2
�H

�
� (H + 1)� (2� 2H)

! 1
2

:

(See Bender (2003) (b) , page 3) : Denote fractional Brownian motion by BH (t) : It

follows the same properties as in chapter 3. Recall that BH (t) not a semi-martingale
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and consider a partition a = � 0 < � 1 < ::: < �N = b, then for i = 0; ::; N , BH (�) is

nowhere di¤erentiable, in fact

lim
�!�0

sup

����BH (�)�BH (� 0)

� � � 0

���� =1:
We are now going to de�ne the stochastic integral with respect to fractional Brownian

motion.

Consider stopping times 0 � t0 � t1 � ::: � tn, for k 2 R let Hk be Ftk�1
measurable random variables and let Y (0) be a constant. Consider a simple process

of the form

Y (t) = Y (0) +
nX
k=1

Hk1 (tk�1; tk) (t) :

Consider a stochastic processX which is a semimartingale and has the form (Xt;Ft) :

Then YX is a stochastic process de�ned to be

YX =Y (0)X (0) +
nX
k=1

Hk (X (tk)�X (tk�1)) :

Let � denote the Wick product (see Bender 2003 (b) ; page 7), then we have

nX
k=1

Hk (B (tk)�B (tk�1)) =
nX
k=1

Hk � (B (tk)�B (tk�1))

and

Y�B
H =

nX
k=1

Hk �
�
BH (tk)�BH (tk�1)

�
with E

�
Y�B

H
�
= 0:

Wick exponentials of I (f) are de�ned as

: eI(f) := eI(f)�
1
2
jf j20

which is an element of (L2) with

EP
�
: eI(f) :

�
=

1p
2� jf j0

Z
R
exp

(
u� 1

2

 
jf j20 +

u2

jf j20

!)
du = 1
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and E
�
: eI(f) :: eI(f) :

�
= E

�
e(f;g)0 : eI(f+g) :

�
= e(f;g)0. Bender (2003(b) ; page 9)

proves that if we let fn converge to f in L2 (R) ; then : eI(fn) : converges to : eI(f) :

in (L2) : We can also write

: eI(f) : = exp

�Z 1

0

f (s) dB(1) (s)� 1
2

Z 1

0

f (s)2 ds

�
�
�
�
Z 1

0

f (�s) dB(2) (s)� 1
2

Z 1

0

f (�s)2 ds
�

then from the Girsanov theorem we see that we can use the wick exponential to

de�ne a new measure Qf equivalent to P as

dQf =: e
I(f) : dP

under which
�
B(1) (t)�

R t
0
f (s) ds; B(2) (t) +

R t
0
f (�s) ds

�
for 0 � t < 1 is a

two-dimensional Brownian motion and B (t) +
R t
0
f (s) ds for t 2 R is a two-sided

Brownian motion (see Bender (2003 (b) ; page 10)) :

We refer the reader to theorem (5:1) for the fractional Girsanov as presented by

Biagini, Hu, Øksendal and Zhang (2008) :

We will now de�ne the S-transform, refer to de�nition (C:3) in appendix C

for the S-transform in terms of the Wick exponential. The S-transform transforms

stochastic problems into deterministic ones. Let F 2 (L2) be a random variable and

let S (R) be the Schwartz space on R, then for � 2 S (R) the S-transform is de�ned

as

SF (�) = EQn [F ]

which is a mapping from (L2) into S (R) and EQnis the expectation under the mea-

sure Qn. The S-transform is linear and injective. The S-transform of (5:15) is given

as

S
�Z

R
X (s) dB (s)

�
=

Z
R
S (X (s)) (�) � (s) ds;

see Bender 2003(b) ; page 11.
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5.7.2 Fractional Brownian motion

Fractional Brownian motion can be expressed in terms of operators and the indicator

function. We introduce the Riemann-Liouville fractional integral (see Miana (2005)

for further details on the integral ) as the integral provides us with the link to get

the covariance structure of fractional Brownian motion.

For 0 < � < 1 de�ne fractional integrals of Riemann-Liouville type as

�
I��f

�
(x) =

1

� (�)

Z 1

0

f (x� t) t��1dt:

Let I� (Lp) be a space see Bender 2003 (b) : Let � 2 (0; 1), 1 � p < ��1 and " > 0

and f 2 I� (Lp) then fractional derivatives of Marchaud�s type are

�
I���;"f

�
(x) = lim

"!0+

�

� (1� �)

Z 1

"

f (x)� f (x� t)
t�+1

dt

if the limit exist is Lp (R). For � 2 S (R) we have the Riemann-Liouville fractional

derivative �
I���;"�

�
(s) = � d

ds

�
I���;"�

�
(s)

and Bender (2003 (b) ; page 29) provides us with a useful integration by parts ruleZ
R
f (x)

�
I�+g
�
(x) dx =

Z
R
g (x)

�
I��f

�
(x) dx

that holds for some conditions and for all t 2 R and � 2
�
�1
2
; 0
�
[
�
0; 1

2

�
we have

�
I��1 (0; t)

�
(s) =

1

� (� + 1)

�
(t� s)�+ � (�s)

�
+

�
:

Put M to be a martingale with zero expectation and covariance. For 0 < H < 1

de�ne the operators MH
� by

MH
� f =

8<: KHI
H� 1

2
� f;

f;

H 6= 1
2

H = 1
2
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with

KH = �

�
H +

1

2

�
�

 
2H�

�
3
2
�H

�
� (H + 1)� (2� 2H)

! 1
2

see Bender 2003 (b) ; page 29:

We summarize some important results.

Lemma 5.5 (Bender 2003 (a) ; 2003 (b) and 2003 (c)) : In some spaces under some

conditions we have

1. MH
� and MH

+ are dual operators such that
�
f;MH

� g
�
0
=
�
MH
+ f; g

�
0
.

2.
�
f;MH

� 1 (0; t)
�
0
=
R t
0

�
MH
+ f
�
(s) ds:

3. MH
+ f is continuous.

4.
�
f;MH

� 1 (0; t)
�
0
is di¤erentiable.

5. d
dt

�
f;MH

� 1 (0; t)
�
0
=MH

+ f (t) :

6. dn

dsn

�
MH
� �
�
(s) =MH

�
�
dn

dsn
�
�
(s) :

7. BH
t = I

�
MH
� 1 (0; t)

�
is a fractional Brownian motion.

8.
R
R f (s) dB

H (s) =
R
R

�
MH
� f
�
(s) dB (s) :

9. SBH
t (�) =

R t
0
MH
+ � (s) ds:

10. S
�R
R f (s) dB

H (s)
�
(�) =

R
R f (s)

�
MH
+ �
�
(s) ds:

11. S (F �G) (�) = SF (�)SG (�) :
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5.7.3 Fractional Clark-Ocone

Let n 2 N: We consider an n-dimensional space of symmetric functions and

let L2H (Rn) be the muliti-dimensional analogue of L2H (R) : For f 2 Lp (Rn)

and f : Rn ! R and for 0 < � < 1 we let I�;n� f =
�
I��
�
n

f be the n-

dimensional Riemann-Liouville fractional integrals which are symmetric; a gen-

eralized version in terms of tensor powers. De�ne n-dimensional operators as

MH;n
� f = Kn

HI
H� 1

2
;n

� f . For H = 1
2
the operators M

1
2
;n

� are identity mappings on

the space of measurable functions from Rn to Rn: For 0 < H < 1
2
we have a

space \L2H (Rn) =
n
I
1
2
�H;n

_ f; f 2 L2 (Rn) symmetric
o
endowed with a inner product

(f; g)L2H(R)
=
�
MH;n
� f;MH;n

� g
�
0
: For 1

2
< H < 1 we consider the space

��� \L2H (Rn) ���
which is a multi-dimensional analogue of the space jL2H (Rn)j ; this is the space of

symmetric functions f 2 Lp (Rn) for some 1 < p < 1

(H� 1
2)
:

Theorem 5.3 For n 2 N and if H 2
�
0; 1

2

�
then fn 2 \L2H (Rn) or if H 2

�
1
2
; 1
�
then

fn 2
��� \L2H (Rn)��� : Then we can denote the iterated fractional Itô integral of order n as

IHn (fn) = In

�
MH;n
� fn

�
= n!

Z
R

Z tn

�1
:::

Z t2

�1
fn (t1; ::; tn) dB

H
t1
:::dBH

tn�1dB
H
tn

if it exists.

For the proof see Bender (2003(b), page 85).

We now present the fractional chaos expansion theorem in terms of iterated

fractional Itô integrals.

Theorem 5.4 For H 2
�
0; 1

2

�
, F 2 (L2), f0 2 R and fn 2 \L2H (Rn) there is a

unique sequence (fn)n2N0 such that F has a fractional chaos decomposition given as

F =
1X
n=0

IHn (fn) (5.16)

=
1X
n=0

n!

Z
R

Z tn

�1
:::

Z t2

�1
fn (t1; ::; tn) dB

H
t1
:::dBH

tn�1dB
H
tn

 
 
 



85

which converges in (L2) : The (L2)-norm of F is given in terms of the fractional

chaos decomposition by

EP
�
F 2
�
=

1X
n=0

n! jfnj2L2H(Rn) :

For the proof see Bender (2003(b), page 86).

For H > 1
2
, F 2 (L2) and fn 2

��� \L2H (Rn)��� the fractional chaos decomposition
is the same but now an element of (L2H) which is a subspace of (L

2). See Bender

2003(b), page 87 for further details.

For �1 � a � b � 1; let FH[a;b] denote the augmentation of the �ltration

generated by
�
BH (s)

�
s2[a;b] : Let 0 < H < 1

2
and f 2 L2H (R) with support in

[a; b] ; then
R
R f (s) dB

H (s) is FH[a;b]-measurable. We de�ne the H-quasi-conditional

expectation of F 2 (L2H) with respect to FH[a;b] as

~EP
�
F jFH[a;b]

�
=

1X
n=0

n!

Z T

0

Z tn

0

:::

Z t2

0

fn (t1; ::; tn) dB
H
t1
:::dBH

tn�1dB
H
tn

=
1X
n=0

IHn
�
1 (a; b)
n fn

�
=

1X
n=0

In

�
MH;n
�
�
1 (a; b)
n fn

��
if the series converges in (L2) : This is the same as Hu and Øksendal but Bender

proves that this is not well-de�ned because the fractional chaos is not unique. For

H > 1
2
Bender (2003)(b) constructs a (L2)-random variable for which not all quasi-

conditional expectation exists in (L2).

We note that IHn (fn) = I (f)�n where I (f)�n = I (f)�n�1 � I (f) : For 1
2
< H < 1

let F 2 (L2H) be given as in (5:16) ; then F is called fractional Malliavin di¤erentiable

if

DH
t F =

1X
n=1

nIHn�1 (fn (�; t))
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converges in (L2) for almost all t 2 R: Let D1;2H be the space of H-fractionally

Malliavin di¤erentiable random variables such thatZ
R

Z
R
EP
���DH

t F
�� � ��DH

s F
��� jt� sj2H�2 dsdt <1:

If F 2 (L2H) and is H-fractionally Malliavin di¤erentiable then the fractional Clark-

Ocone derivative is the integral representation for a class of (L2)-random variables

in terms of fractional Itô integrals at time t and is given by

rHt F = ~EP
�
DH
t F jFH[0;t]

�
if expectation exist in (L2), but this again does not hold for some variables. So we

put
��D1;2H �� to be a space of fn such that

1X
n=1

nn!

Z
Rn

�
MH;n (jfnj) (t)

�2
dt <1

and by proposition 3.3.3 in Bender 2003(b) ; page 93 we have
��D1;2H �� � D1;2H .

Theorem 5.5 Let F 2
��D1;2H �� be FHT -measurableH;Ø then at almost every time t 2

[0; T ] the fractional Clark-Ocone derivative of F exists which satis�esZ T

0

Z T

0

EP
���rHt F �� � ��rHs F ��� jt� sj2H�2 dsdt <1

and is given as

F = EP [F ] +

Z T

0

rHt FdBH (t) :

For the proof see Bender (2003(b), page 94).

Bender (2003) also explicitly shows the fractional Clark-Ocone derivative for

functionals of fractional Wiener integrals.
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5.7.4 Fractional White Noise

Let E be a Hilbert space (function space) and let E (space of test functions) be a

subspace that will be endowed with a metric, and E 0 (space of generalized functions)

it�s dual and E � E � E 0: Let (E; (�; �)0) be a separable, in�nite dimensional (real

or complex) Hilbert space and let B : E ! E be a self-adjoint, injective, compact

operator with kBk < 1: For n 2 N we de�ne the linear space En = Bn (E), where

Bn is related to B. We de�ne an inner product on the space En by

(f; g)n =
�
B�nf;B�ng

�
0
;

with this choice (En; (�; �)n) becomes a Hibert space which can be shown to be iso-

metrically isomorphic to (E; (�; �)0) :

Theorem 5.6 Let E = \n2NEn: Then

1. (�; �)n de�nes an increasing ordered inner product on E :

2. The corresponding sequence of norms j�jn is compatible.

3. E is a complete space with respect to the metric

d (x; y) =
1X
n=0

2�n
jx� yjn

1 + jx� yjn
:

4. Let E 0n denote the completion of E with respect to the norm j�jn : For m 2 N

there is an n > m such that the embedding of E 0n into E
0
m is a Hilbert-Schmidt

operator.

For the proof see Bender (2003(b), page 113).

De�nition 5.5 (Bender 2003(b), page 113). A linear space E together with a

sequence of inner products (�; �)n satisfying conditions (1)-(4) is a nuclear space.
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On Rd; recall that S
�
Rd
�
denotes the space of tempered distributions and S 0

�
Rd
�

is the space of continuous linear functionals on S
�
Rd
�
; i.e. the dual space. We can

represent a triplet S 0
�
Rd
�
� L2

�
Rd
�
� S

�
Rd
�
: The nuclear space S

�
Rd
�
can be

constructed from L2
�
Rd
�
see Bender (2003; page ) Let A � Rm be a Borel set,

�1; ::; �m 2 S
�
Rd
�
; then a set of the form

�
F 2 S 0

�
Rd
�
; (F (�1) ; ::; F (�m)) 2 A

	
is

called a cylinder set in S 0
�
Rd
�
: Since S (R) is a nuclear space then by the Bochner-

Minlos theorem there exists a unique probability measure P on the space (S 0 (R) ;F) ;

where F is the �-�eld generated by the cylinder sets, such that for all � 2 S (R) we

have Z
S0(R)

exp fi h!; �ig dP (!) = exp
�
�1
2
j�j20
�

where h!; �i denotes the dual pairing ! (�) and P is the standard Gaussian measure

on S 0 (R) : The probability space (S 0 (R) ;F ; P ) is called the white noise space. For

� 2 S (R) the random variable h�; �i is a centered Gaussian with covariance

EP
�
h�; �i2

�
= j�j20 :

Bender 2003 (b), page 116 constructs a nuclear space starting from (L2) and the

operator � (B) de�ned in terms of the chaos decomposition We de�ne the inductive

limit of the sequence (S)�n to be the completion of (L2) with respect to k�k�n : The

nuclear space is obtained as projective limit of the sequence of Hilbert spaces (S)n.

De�nition 5.6 (Bender 2003 (b) , page 117) : The space of Hida test functions is

(S) = \n2N (S)n

and the space of Hida distributions is

(S)� = [n2N (S)�n :

It follows that (S)� is the dual space of (S) : Let F 2 (S)� and � 2 (S) then we

denote the dual pairing by hhF;�ii :
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Example 5.5 (Bender 2003 (b) , page 117) : For all � 2 S (R) the Wick exponential

: eI(�) : is a Hida test function.

The Hida distribution is uniquely determined by it�s S-transform.

De�nition 5.7 (Bender 2003 (b) , page 117) : The generalized S-transform is a

mapping from (S)� into S (R) and is de�ned by

SF (�) =



F ; : eI(�) :

��
:

The generalized S-transform is injective.

Let I � R be an interval then a mapping X : I ! (S)� is called a stochastic dis-

tribution process. Then X is di¤erentiable if limh!0 h
�1 (X (t+ h)�X (t)) exists in

(S)�. Let F : I ! S 0 (R) be di¤erentiable then h�; F (t)i is a di¤erentiable stochastic

distribution process and d
dt
h�; F (t)i =



�; d
dt
F (t)

�
: For 0 < H < 1 we have the oper-

ator MH
� 1 (0; �) which maps R ! S 0 (R) and is di¤erentiable and continuous. We

can expand this operator in terms of Hermite polynomials so for n = 0; 1; :::the n-th

Hermite polynomial is de�ned as Hn (x) = (�1)n ex
2 dn

dxn
e�x

2
and the n-th Hermite

function is de�ned as

�n (x) = ��
1
4 (2nn!)�

1
2
x2 Hn (x) :

The derivative of the operator is

d

dt
MH
� 1 (0; t) =

1X
k=0

�
MH
+ �k

�
(t) �k

with limit in S 0 (R) : Using fractional integration by parts we have�
d

dt
MH
� 1 (0; t) ; �

�
=

d

dt



MH
� 1 (0; t) ; �

�
=

d

dt

* 1X
k=0

�
MH
� 1 (0; t) ; �k

�
0
�k; �

+

=
d

dt

* 1X
k=0

Z t

0

�
MH
+ �k

�
(s) ds�k; �

+
=

�
MH
+ �
�
(t) :
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A modi�ed fractional Brownian motion is given as BH =


�;MH

� 1 (0; t)
�
and we

have
d

dt
BH (t) =

*
�;

1X
k=0

�
MH
+ �k

�
(t) �k

+
:

Let �t be the Dirac �-function and de�ne a distribution as



�t �MH

+ ; f
�
=
�
MH
+ f
�
(t)

where �t �MH
+ is a generalized Wiener integral. The derivative of BH is referred to

as fractional White noise and is de�ned as

WH (t) =


�; �t �MH

+

�
(5.17)

which is a mapping from R to (S)� (see Bender 2003 (b) , page 120) :

Equation (5:17) is fractional White noise and a representation of White noise is

di¤erent and can be found in Hida, Kuo, Pottho¤ and Striet (1993) :

Bender (2005) investigates solutions of fractional backward stochastic di¤eren-

tial equations. Bender and Parczewski (2010) deal with discrete Wick calculus for

fractional Brownian motion.

 
 
 



Chapter 6

Hu and Øksendal�s fBm Pricing Model

6.1 Introduction

In this section the application of fractional Brownian motion using Wick Itô type

integration to the markets will be discussed. Hu and Øksendal (2000) developed a

fractional Black-Scholes market based on the Wick Itô type integration. The market

is shown to be complete and free from strong arbitrage but the model is economically

meaningless. Hu and Øksendal (2000) prove an explicit formula for a fractional

Black-Scholes price of a European call option and also show explicitly the replicating

portfolio of such an option. A Black formula is proven under their framework.

Consider a fractional market with an investment in a money market account or

zero-coupon bond and a stock driven by fractional Brownian motion in a continuous

setting 0 � t � T . Let r > 0 be a constant riskless interest rate then the money

market account A (t) at time t develops according to the equation

dA (t) = rA (t) dt

A (0) = 1:

Let � be the drift of the stock and � 6= 0 be the corresponding volatility, �xed for

the tenure of the option. The stock price process has the following dynamics

dS (t) = �S (t) dt+ �S (t) dBH (t) (6.1)

S (0) = s > 0:

91
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Applying (5:11) and using Wick calculus the solution of the system is given as

S (t) = s exp

�
�BH (t) + �t� 1

2
�2t2H

�
:

An economic interpretation is given in Biagini, Hu, Øksendal and Zhang (2008).

We consider S(t; !) as a stochastic distribution in ! which is an element of (S)�H :

Assume that S (t) = S (t; �) is a generalized stock price process representing the

total value of a company. This value is not observed directly. We let the actual

observed stock price �S (t) be a result of applying the stochastic distribution of S (t)

to a stochastic test function  known as market observers. We will assume that they

have the following form

 (f) = exp�
�Z

R
h (t) dBH (t)

�
= exp

�Z
R
h (t) dBH (t)� 1

2
kfk2�

�
for some h 2 L2H (R) :We let D denote the set of all market observers. The observed

price �S (t) has the following form

�S (t) = hS (t; �) ;  (�)i

= hS (t) ;  i :

The economic interpretation is that the price is obtained when a market observer or

stock market confronts the general state of a company.

A portfolio or trading strategy Z� (t; !) = � (t; !) = (u (t) ; v (t)) is an FHt
adapted 2-dimensional process where u (t) is the amount that is invested in the

money account and v (t) is the amount that is invested in the stock at time t: Let v (t)

be a buy and hold strategy. The generalized total wealth process is Z� (t) = Z� (t; �)

and is given by

Z� (t) = u (t)A (t) + v (t) � S (t) :
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Lemma 6.1 Let F;G 2 (S)�H : Then

hF �G; i = hF;  i � hG; i

for all  2 D:

For the proof see Biagini, Hu, Øksendal and Zhang, (2008, page 174).

Let the actual observed wealth value be

�Z� (t) = u (t)A (t) + h(v (t) � S (t)) ;  i

= u (t)A (t) + hv (t) ;  i � hS (t) ;  i

= u (t)A (t) + hv (t; �) ;  (�)i � hS ((t; �) ;  (�))i

= u (t)A (t) + �v (t)� �S (t)

where the actual number of stocks is given as

�v (t) = hv (t; �) ;  (�)i :

6.2 Self-Financing, Arbitrage and Completeness

Assume that the value process Z� (t) = Z� (t; !) is given by

Z� (t; !) = u (t)A (t) + v (t) � S (t) :

The portfolio is called self-�nancing if t 2 [0; T ] we have

dZ� (t; !) = u (t) dA (t) + v (t) � dS (t)

= u (t) dA (t) + v (t) �
�
�S (t) dt+ �S (t) dBH (t)

�
= u (t) dA (t) + �v (t) � S (t) dt+ �v (t) � S (t) dBH (t) : (6.5)
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Lemma 6.2 Assets driven by the same fractional Brownian motion have the same

market price of risk.

Proof. Assume that we have two tradable assets S1 and S2 which are driven

by fractional Brownian motion and a riskless asset A (t) : The associated dynamics

follow

dS1 (t) = �1S1 (t) dt+ �1S1 (t) dB
H (t) ;

dS2 (t) = �2S2 (t) dt+ �2S2 (t) dB
H (t)

and

dA (t) = rA (t) dt:

Consider a self-�nancing portfolio consisting of an investment of � (t) units in S1 (t),

� (t) units in S2 (t) and u (t) units in A (t). Hence the portfolio becomes

�(t) = � (t) � S1 (t) + � (t) � S2 (t) + u (t)A (t) :

Since the portfolio is self-�nancing we have

d�(t)

= � (t) � dS1 (t) + � (t) � dS2 (t) + u (t) dA (t)

= � (t) �
�
�1S1 (t) dt+ �1S1 (t) dB

H (t)
�
+ � (t) �

�
�2S2 (t) dt+ �2S2 (t) dB

H (t)
�

+u (t) (rA (t) dt)

= �1� (t) � S1 (t) dt+ �1� (t) � S1 (t) dBH (t) + �2� (t) � S2 (t) dt

+�2� (t) � S2 (t) dBH (t) + u (t) rA (t) dt

= (�1� (t) � S1 (t) + �2� (t) � S2 (t) + u (t) rA (t)) dt

+(�1� (t) � S1 (t) + �2� (t) � S2 (t)) dBH (t) :

Setting

�1� (t) � S1 (t) + �2� (t) � S2 (t) = 0
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we let

� (t) = �2S2 (t) and � (t) = ��1S1 (t) : (6.6)

With this choice the stochastic term dBH (t) gets eliminated. Thus the portfolio

dynamics reduces to

d�(t) = (�1� (t) � S1 (t) + �2� (t) � S2 (t) + u (t) rA (t)) dt:

Because the portfolio is now riskless we have the following dynamics

d�(t) = r�(t) dt:

Substituting the dynamics of �(t) and the values for � (t) and � (t) the following is

obtained

�1� (t)�S1 (t)+�2� (t)�S2 (t)+u (t) rA (t) = r (� (t) � S1 (t) + � (t) � S2 (t) + u (t)A (t))

rearranging the terms and using Wick calculus properties we have

(�1 � r)� (t) � S1 (t) + (�2 � r) � (t) � S2 (t) = 0

substituting in (6:6)

�2 (�1 � r)S2 (t) � S1 (t)� �1 (�2 � r)S1 (t) � S2 (t) = 0

and

�2 (�1 � r) (S1 (t) � S2 (t)) � (S1 (t) � S2 (t))
�(�1)

= �1 (�2 � r) (S1 (t) � S2 (t)) � (S1 (t) � S2 (t))
�(�1) :

It follows

�2 (�1 � r) = �1 (�2 � r)

and
(�1 � r)
�1

=
(�2 � r)
�2

:
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By the Girsanov theorem, theorem (5:1) for fractional Brownian motion B̂H (t) is

a fractional Brownian motion under the new measure de�ned as �̂� and is expressed

as

B̂H (t) =
�� r
�

dt+ dBH (t) :

The measure �̂� is de�ned on FHT by

d�̂� (!) = exp

�
�
Z T

0

K (s) dBH (s)� 1
2
jKj2�

�
d�� (!) ;

where K (s) = K (T; s) is de�ned by the following properties: supp K � [0; T ] andZ T

0

K (T; s)� (t; s) ds =
�� r
�

for 0 � t � T: Hu and Øksendal (2000) prove an explicit expression for K (T; s)

which is given as

K (T; s) =
(�� r)

2�H (2H � 1) � (2H � 1) � (2� 2H) cos
�
�
�
H � 1

2

�� �Ts� s2� 12�H :

Lemma 6.3 A self-�nancing portfolio has the following value process under �̂�

dZ� (t; !) = rZ� (t; !) dt+ �v (t) � S (t) dB̂H (t) :

Proof. (Hu and Øksendal, 2000).

Assume that � = (u; v) is a self-�nancing portfolio and given as

Z� (t; !) = u (t)A (t) + v (t) � S (t) :

One can solve for the units invested in the riskless asset

u (t) =
Z� (t; !)� v (t) � S (t)

A (t)
: (6.7)
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Substituting (6:7) into (6:5), using Wick calculus and applying Girsanov theorem

for fractional Brownian motion the dynamics of the value process reduces to

dZ� (t; !)

= u (t) dA (t) + �v (t) � S (t) dt+ �v (t) � S (t) dBH (t)

=

�
Z� (t; !)� v (t) � S (t)

A (t)

�
rA (t) dt+ �v (t) � S (t) dt+ �v (t) � S (t) dBH (t)

= rZ� (t; !) dt� rv (t) � S (t) dt+ �v (t) � S (t) dt+ �v (t) � S (t) dBH (t)

= rZ� (t; !) dt+ (�v (t)� rv (t)) � S (t) dt+ �v (t) � S (t) dBH (t)

= rZ� (t; !) dt+ v (t) (�� r) � S (t) dt+ �v (t) � S (t) dBH (t)

= rZ� (t; !) dt+ �v (t) � S (t)
�
(�� r)
�

dt+ dBH (t)

�
= rZ� (t; !) dt+ �v (t) � S (t) dB̂H (t) :

We now want to obtain the discounted value of the portfolio

dZ� (t; !)� rZ� (t; !) dt = �v (t) � S (t) dB̂H (t)

dZ� (t; !)

dt
� rZ� (t; !) = �v (t) � S (t) dB̂

H (t)

dt
:

For 0 � t � T; we multiply throughout by e�rt and integrate

e�rtdZ� (t; !)

dt
� re�rtZ� (t; !) = e�rt�v (t) � S (t) dB̂

H (t)

dt

d

dt

�
e�rtZ� (t; !)

�
= e�rt�v (t) � S (t) dB̂

H (t)

dt

e�rtZ� (t; !)� Z� (0; !) =

Z t

0

e�r��v (�) � S (�) dB̂
H (�)

d�
d�

e�rtZ� (t) = z +

Z t

0

e�r��v (�) � S (�) dB̂H (�) (6.8)

where z = Z� (0) is the initial capital that is invested into the portfolio.
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De�nition 6.1 (Hu and Øksendal, 2000). A portfolio is Wick Itô Skorohod admis-

sible if it is self-�nancing and

v � S 2 L̂1;2� (R)

where L̂1;2� (R) is the space de�ned similarly to L1;2� (R) (see (5:13)) but with �� and

BH (t), replaced with �̂� and B̂
H (t) :

De�nition 6.2 (Hu and Øksendal, 2000). An admissible portfolio � is called a

strong arbitrage for the market (A (t) ; S (t)) for t 2 [0; T ] if the corresponding total

wealth process Z� (t) satis�es the following conditions:

Z� (0) = 0

Z� (T ) � 0a:s:

��
��
!;Z� (T; !) > 0

	�
> 0:

Theorem 6.1 There is no strong arbitrage admitted in the Wick Itô Skorohod frac-

tional Black-Scholes market (A (t) ; S (t)) :

Proof. (Biagini, Hu, Øksendal and Zhang, 2008).

Taking the expectation under �̂� and setting t = T of (6:8), applying (5:12) and

using the expectation of an Itô integral we have

E�̂�
�
e�rtZ� (t)

�
= Z� (0) + E�̂�

�Z t

0

e�rt�v (�) � S (�) dB̂H (�)

�
= Z� (0) + E��

�Z t

0

e�rt�v (�) � S (�) dBH (�)

�
= Z� (0) :

It follows

e�rTE�̂�
�
Z� (T )

�
= Z� (0) : (6.9)

Thus the condition will not be satis�ed.
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By (6:9) �̂� is a risk neutral measure. From the fractional Girsanov theorem we

have

B̂H (t) =
�� r
�

t+BH (t)

BH (t) = B̂H (t)� �� r
�

t:

The stock price is given by

S (t) = S (0) exp

�
�BH (t) + �t� 1

2
�2t2H

�
= S (0) exp

�
�

�
B̂H (t)� �� r

�
t

�
+ �t� 1

2
�2t2H

�
= S (0) exp

�
�B̂H (t) + rt� 1

2
�2t2H

�
:

Thus the stock price dynamics under the risk neutral measure are given as

dS (t) = rS (t) dt+ �S (t) dB̂H (t) : (6.10)

De�nition 6.3 (Biagini, Hu, Øksendal and Zhang, 2008). A Wick Itô Skorohod

admissible portfolio (u (t) ; v (t)) admits weak arbitrage if the total wealth process

Z� (t) satis�es

Z� (0) = 0

Z� (T ) ;  

�
� 0


Z� (T ) ;  
�

> 0

for every stochastic test function  .

There is weak arbitrage in the fractional Black-Scholes market (A (t) ; S (t)) : An

example can be found in Biagini, Hu, Øksendal and Zhang (2008).

De�nition 6.4 (Hu and Øksendal, 2000). The fractional Black-Scholes market

(A (t) ; S (t)) for t 2 [0; T ] is called complete if for every FHt -measurableH;Ø
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bounded random variable F there exists z = Z� (0) 2 R and an admissible portfolio

� (t) = (u (t) ; v (t)) such that

F (!) = Z� (T; !) :

Hu and Øksendal (2000) show that, similar to (6:8) this is the same as requiring

e�rTF (!) = z +

Z T

0

e�rt�v (t) � S (t) dB̂H (t) : (6.11)

Consider G (!) = e�rTF (!) ; applying the fractional Clark-Ocone theorem 5:2 to

G (!) = e�rTF (!) with ~E�̂� denoting the quasi-conditional expectation de�ned

under the new measure �̂� and D̂
H
t is the fractional Hida-Malliavin derivative with

respect to B̂H (t) we have

e�rTF (!) = E�̂�
�
e�rTF

�
+

Z T

0

~E�̂�

h
e�rT D̂H

t F
��FHt i dB̂H (�) : (6.12)

Comparing (6:11) and (6:12) the market is complete and there is a unique initial

value

z = E�̂�
�
e�rTF

�
= e�rTE�̂� [F ] : (6.13)

Lemma 6.4 The corresponding replicating / hedging portfolio � (t) = (u (t) ; v (t))

for the claim F is

v (t) = e�r(T�t)��1S�(�1) (t) � ~E�̂�
h
D̂H
t F

��FHt i
and

u (t) =
Z� (t)� v (t) � S (t)

A (t)
:

Proof. (Hu and Øksendal, 2000).
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Equating the random terms in (6:11) and (6:12) we getZ T

0

E�̂�

h
e�rT D̂H

t F
��FHt i dB̂H (�) =

Z T

0

e�rt�v (�) � S (�) dB̂H (�)

E�̂�

h
e�rT D̂H

t F
��FHt i = e�rt�v (t) � S (t)

e�(T�t)��1E�̂�

h
D̂H
t F

��FHt i = v (t) � S (t)

e�(T�t)��1E�̂�

h
D̂H
t F

��FHt i � S�(�1) (t) = v (t) � S (t) � S�(�1) (t)

e�(T�t)��1S�(�1) (t) � E�̂�
h
D̂H
t F

��FHt i = v (t) :

The rest follows.

6.3 Criticism of the Market Model

Björk and Hult (2005) prove that in the fractional Wick Itô Skorohod integration

model a portfolio can consist of a positive number of shares in a stock with a positive

price, with positive probability and yet the portfolio can have a negative value.

Example 6.1 Consider a portfolio consisting of a risky asset with Z� (t; !) =

� (t; !) = (0; v (t)). The portfolio consists of the amount v (t) = S (t)� s0 shares in

a stock and is given as S (t) = s0 exp

�
BH (t)� 1

2

�
for a discrete point in time. We

will express the stock as

S (t) = "
�
1[0;t]

�
= s0 exp

�
BH (t)� 1

2
t2H
�
:

Let 
0 =
�
! 2 


����BH (1; !) 2
�
1

2
;
3

2

��
. Hence S (t) > s0: The portfolio at time

t = 1 is given Z� (1; !) = � (1; !) = (0; v (1)) such that v (1) > 0 and the amount
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u (1) = 0 in the bank account. It follows for ! 2 
0

Z� (1; !)

= v (1) � S (1)

= (S (1)� s) � S (1)

= S (1) � S (1)� s0S (1)

= "
�
1[0;1]

�
� "
�
1[0;1]

�
� s0S (1)

= s0 exp
�
�Z 1

0

1[0;1]dB
H (t)

�
� s0 exp�

�Z 1

0

1[0;1]dB
H (t)

�
� s0S (1)

= s20 exp
�
�Z 1

0

1[0;1]dB
H (t) +

Z 1

0

1[0;1]dB
H (t)

�
� s0S (1)

= s20 exp

�Z 1

0

1[0;1]dB
H (t) +

Z 1

0

1[0;1]dB
H (t)� 1

2

1[0;1] + 1[0;1]2��� s0S (1)
= s20 exp

�
BH (1) +BH (1)� 1

2

����1[0;1] + 1[0;1]����2��� s0S (1)
= s20 exp

0B@ 2BH (1)

�1
2

Z 1

0

Z 1

0

�
1[0;1] (s) + 1[0;1] (s)

� �
1[0;1] (t) + 1[0;1] (t)

�
� (t; s) dsdt

1CA
�s0S (1)

= s20 exp

�
2BH (1)� 1

2

Z 1

0

Z 1

0

(2) (2)H (2H � 1) jt� sj2H�2 dsdt
�
� s0S (1)

= s20 exp

�
2BH (1)� 1

2
(4)

1

2

�
12H + 12H � j1� 1j2H

��
� s0S (1)

= s20 exp
�
2BH (1)� 2

�
� s20 exp

�Z 1

0

1[0;1]dB
H (t)� 1

2

1[0;1]2��

= s20 exp
�
2BH (1)� 2

�
� s20 exp

0B@ BH (1)

�1
2

Z 1

0

Z 1

0

�
1[0;1] (s)

� �
1[0;1] (t)

�
� (t; s) dsdt

1CA
= s20 exp

�
2BH (1)� 2

�
� s20 exp

�
BH (1)� 1

2

Z 1

0

Z 1

0

1H (2H � 1) jt� sj2H�2 dsdt
�

= s20 exp
�
2BH (1)� 2

�
� s20 exp

�
BH (1)� 1

2

1

2

�
12H + 12H � j1� 1j2H

��
= s20

�
exp

�
2BH (1)� 2

�
� exp

�
BH (1)� 1

2

��
Then there exists a portfolio with P (
0) > 0 such that v (1) � S (1) < 0 on 
0:
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This shows that the market setup has signi�cant problems.

6.4 Option Pricing Formula

The assumptions to pricing the fractional Black-Scholes formula and the fractional

Black formula are as follows:

1. The stock price follows equation (6:1) :

2. Stochastic di¤erentials are interpreted in the Wick Itô Skorohod sense.

3. The Hurst parameter is 1
2
< H < 1 and is constant over time.

4. The drift � and volatility � are constant and the r is a constant risk-free rate

of interest and the same for all maturities.

5. The de�nition of the portfolio is done using the Wick product.

6. The de�nition of an admissible portfolio is given by de�nition 6.1.

7. The portfolio is Wick self-�nancing as in equation (6:5) :

8. Short selling is allowed.

9. There are no transactions costs or taxes.

10. There are no dividends.

11. Trading is done continuously.

12. All securities are perfectly divisible.
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6.4.1 Fractional Black-Scholes Formula

In this section the fractional Black-Scholes option pricing model for European call

options is presented as derived by Hu and Øksendal (2000).

Theorem 6.2 Fractional Black-Scholes formula. The price of a fractional European

call option given the claim

F (!) = max fS (T; !)�K; 0g

is given as

CH (0; S (0)) = S (0)N
�
dH1
�
�Ke�rTN

�
dH2
�

(6.14)

where

dH1 =

ln

�
S (0)

K

�
+ rT +

1

2
�2T 2H

�
p
T 2H

;

and

dH2 =

ln

�
S (0)

K

�
+ rT � 1

2
�2T 2H

�
p
T 2H

and

N (t) =
1p
2�

Z t

�1
exp

�
�x

2

2

�
dx

is the standard normal cumulative distribution function.

Proof. (Hu and Øksendal, 2000):

Consider the claim

F (!) = max fS (T; !)�K; 0g :
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Using (6:13)

CH (0; S (0)) = e�rTE�̂� [F ]

= e�rTE�̂� [max f(S (T; !)�K) ; 0g]

= e�rTE�̂�

�
max

�
S (0) exp

�
�BH (T ) + �T � 1

2
�2T 2H

�
�K; 0

��
= e�rTE�̂�

�
max

�
S (0) exp

�
�B̂H (T ) + rT � 1

2
�2T 2H

�
�K; 0

��
doing a measure change we have

CH (0; S (0)) = e�rTE��

�
max

�
S (0) exp

�
�BH (T ) + rT � 1

2
�2T 2H

�
�K; 0

��
= e�rTE��

�
S (T ) 1fS(T )>Kg

�
� e�rTKE��

�
1fS(T )>Kg

�
:

Solving for the boundary

S (0) exp

�
�z + rT � 1

2
�2T 2H

�
> K

z >

ln

�
K

S (0)

�
� rT + 1

2
�2T 2H

�

= �
ln

�
S (0)

K

�
+ rT � 1

2
�2T 2H

�
:

Setting

d̂1 =

ln

�
S (0)

K

�
+ rT � 1

2
�2T 2H

�
:

Calculating the �rst expectation

E��
�
S (T ) 1fS(T )>Kg

�
=

1Z
�d̂1

1

TH
p
2�
exp

�
� y2

2T 2H

�
x exp

�
�y + rT � 1

2
�2T 2H

�
dy:
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Since the variance of BH (T ) is T 2H , see (5:6) and the mean is 0, see (5:5) and using

the Gaussian character of fractional Brownian motion, it follows that

E��
�
S (T ) 1fS(T )>Kg

�
= erT

1Z
�d̂1

1

TH
p
2�
exp

�
� y2

2T 2H
+ �y � 1

2
�2T 2H

�
xdy

= xerT
1Z

�d̂1

1

TH
p
2�
exp

�
� 1

2T 2H
�
y2 � 2�yT 2H + �2T 4H

��
dy

= xerT
1Z

�d̂1

1

TH
p
2�
exp

 
�1
2

�
y � �T 2H

TH

�2!
dy:

Let

z =
y � �T 2H

TH
) y = zTH + �T 2H

then

dy = THdz:

It follows that

E��
�
S (T ) 1fS(T )>Kg

�
= xerT

1Z
�d̂1��T2H

TH

1

TH
p
2�
exp

�
�1
2
(z)2

�
THdz

= xerT

d̂1+�T
2H

THZ
�1

1p
2�
exp

�
�1
2
(z)2

�
dz

= xerTN

 
d̂1 + �T 2H

TH

!
= xerTN

�
dH1
�
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where

dH1 =
d̂1 + �T 2H

TH

=

ln

�
S (0)

K

�
+ rT � 1

2
�2T 2H

�
+ �T 2H

TH

=

ln

�
S (0)

K

�
+ rT � 1

2
�2T 2H + �2T 2H

�TH

=

ln

�
S (0)

K

�
+ rT +

1

2
�2T 2H

�TH
:

Calculating the second integral

E��
�
1fS(T )>Kg

�
=

1Z
�d̂1

1

TH
p
2�
exp

�
� y2

2T 2H

�
dy

and setting

w =
y

TH
) y = wTH

di¤erentiating we have

dy = THdz:

Then it follows that

E��
�
1fS(T )>Kg

�
=

1Z
�d̂1
TH

1

TH
p
2�
exp

�
�1
2
w2
�
THdw

=

d̂1
THZ

�1

1p
2�
exp

�
�1
2
w2
�
dw

= N

 
d̂1
TH

!
= N

�
dH2
�

where

dH2 =

ln

�
S (0)

K

�
+ rT � 1

2
�2T 2H

�TH
:
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It follows that the price is

CH (0; S (0)) = S (0)N
�
dH1
�
�Ke�rTN

�
dH2
�
:

Setting H = 1
2
the classical Black-Scholes option pricing formula is achieved.

Theorem 6.3 The corresponding replicating portfolio � (t) = (u (t) ; v (t)) which is

given by (6:7) and (6:8) is given as

v (t) = e�r(T�t)��1S�(�1) (t) � � (S (t)) :

Where

� (y) =
1p

2� (T 2H � t2H)

Z
R
exp

 
� (ŷ � z)2

2 (T 2H � t2H)

!
h (z) dz

with

ŷ =
ln y � ln s� rt+ 1

2
�2t2H

�

and

h (z) = ��[K;1)

�
s exp

�
�z + rT � 1

2
�2T 2H

��
:

For the proof see Hu and Øksendal (2000 page 26).

6.4.2 Fractional Black Formula

We will now prove a fractional Black formula for pricing European options on futures.

Consider a fractional market with an investment in a money account and a stock in

a continuos setting 0 � t � T . Let r > 0 be a constant riskless interest rate then the

money account A (t) at time t develops according to the equation

dA (t) = rA (t) dt

A (0) = 1:
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Let � be the drift of the stock and � 6= 0 be the corresponding volatility. We assume

the future price process is a martingale under �̂� and has the following dynamics

dF (t) = �F (t) dBH (t) (6.15)

F (0) > 0:

Applying (5:11) and using Wick calculus the solution is

F (t) = F (0) exp

�
�BH (t)� 1

2
�2t2H

�
:

We consider F (t; !) as a stochastic distribution in ! which is an element of (S)�H :

A portfolio or trading strategy Z� (t; !) = � (t; !) = (u (t) ; v (t)) is an FHt
adapted 2-dimensional process where u (t) is the amount that is invested in the

money account and v (t) is the amount that is invested in the futures contract at time

t: Since the cost of taking a long or short position in a futures contract is ignored since

the initial margin requirements is small, then the value process Z� (t) = Z� (t; !) is

given by

Z� (t; !) = u (t)A (t) :

Using similar arguments as in Musiela and Rutkowski (2011), for the standard case,

the portfolio is called self-�nancing if t 2 [0; T ] and we have the dynamics

dZ� (t; !) = u (t) dA (t) + v (t) � dF (t)

= u (t) dA (t) + v (t) �
�
�F (t) dBH (t)

�
= u (t) dA (t) + �v (t) � F (t) dBH (t) : (6.17)

Lemma 6.5 A self-�nancing portfolio has the following value process under �̂�

dZ� (t; !) = rZ� (t; !) dt+ �v (t) � S (t) dB̂H (t) :
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Proof. Assume that � = (u; v) is a self-�nancing portfolio given as

Z� (t; !) = u (t)A (t) :

One can solve for the units invested riskless asset

u (t) =
Z� (t; !)

A (t)
: (6.18)

Substituting (6:18) into (6:17), usingWick calculus the dynamics of the value process

reduces to

dZ� (t; !)

= u (t) dA (t) + �v (t) � F (t) dB̂H (t)

=

�
Z� (t; !)

A (t)

�
rA (t) dt+ �v (t) � F (t) dB̂H (t)

= rZ� (t; !) dt+ �v (t) � F (t) dB̂H (t) :

Using similar arguments to the above we obtain the discounted wealth process

as

e�rtZ� (t) = z +

Z t

0

e�r��v (�) � F (�) dB̂H (�) (6.19)

where z = Z� (0) is the initial capital that is invested in the portfolio. There is no

strong arbitrage in the Wick Itô Skorohod fractional Black market (A (t) ; S (t)) :

The proof is similar to that of theorem 6.1.

De�nition 6.5 The fractional Black market (A (t) ; S (t)) for t 2 [0; T ] is called

complete if for every FHt -measurableH;Ø bounded random variable � there exists z =

Z� (0) 2 R and an admissible portfolio � (t) = (u (t) ; v (t)) such that

� (!) = Z� (T; !) :
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Similarly the market is complete and there is a unique initial value

z = E�̂�
�
e�rT�

�
= e�rTE�̂� [�] : (6.20)

Theorem 6.4 Fractional Black formula. The price of an European call option with

strike price K and maturity T on the futures contact F; is given as

cH (0; F (0)) = e�rT
�
F (0)N

�
dH�1
�
�KN

�
dH�2
��

(6.21)

where

dH�1 =

ln

�
F (0)

K

�
+
1

2
�2T 2H

�
p
T 2H

and

dH�2 =

ln

�
F (0)

K

�
� 1
2
�2T 2H

�
p
T 2H

:

Proof. Using equation(6:20)

cH (0; F (0)) = e�rTE�̂�
�
cH (T; F (T ))

�
= e�rTE�̂� [max f(F (T )�K) ; 0g]

= e�rTE�̂�

�
max

�
F (0) exp

�
�B̂H (T )� 1

2
�2T 2H

�
�K; 0

��
doing a measure change we have

cH (0; F (0)) = e�rTE��

�
max

�
F (0) exp

�
�BH (T )� 1

2
�2T 2H

�
�K; 0

��
= e�rTE��

�
F (T ) 1fF (T )>Kg

�
� e�rTKE��

�
1fF (T )>Kg

�
:

Calculating the �rst expectation

E��
�
F (T ) 1fF (T )>Kg

�
=

Z
R

1

TH
p
2�
exp

�
� y2

2T 2H

�
x exp

�
�y � 1

2
�2T 2H

�
dy:
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Since the variance of BH (T ) is T 2H , see (5:6) and the mean is 0, see (5:5) and using

the Gaussian character of fractional Brownian motion. Solving for the boundary

F (0) exp

�
�z � 1

2
�2T 2H

�
> K

z >

ln

�
K

F (0)

�
+
1

2
�2T 2H

�

= �
ln

�
F (0)

K

�
� 1
2
�2T 2H

�

and setting

d̂1 =

ln

�
F (0)

K

�
� 1
2
�2T 2H

�
:

Then it follows that

E��
�
F (T ) 1fF (T )>Kg

�
=

1Z
�d̂1

1

TH
p
2�
exp

�
� y2

2T 2H
+ �y � 1

2
�2T 2H

�
xdy

= x

1Z
�d̂1

1

TH
p
2�
exp

�
� 1

2T 2H
�
y2 � 2�yT 2H + �2T 4H

��
dy

= x

1Z
�d̂1

1

TH
p
2�
exp

 
�1
2

�
y � �T 2H

TH

�2!
dy:

Let

z =
y � �T 2H

TH
) y = zTH + �T 2H

then

dy = THdz:
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It follows

E��
�
F (T ) 1fF (T )>Kg

�
= x

1Z
�d̂1��T2H

TH

1

TH
p
2�
exp

�
�1
2
(z)2

�
THdz

= x

d̂1+�T
2H

THZ
�1

1p
2�
exp

�
�1
2
(z)2

�
dz

= xN

 
d̂1 + �T 2H

TH

!
= xN

�
dH�1
�

where

dH�1 =
d̂1 + �T 2H

TH

=

ln

�
F (0)

K

�
� 1
2
�2T 2H

�
+ �T 2H

TH

=

ln

�
F (0)

K

�
� 1
2
�2T 2H + �2T 2H

�TH

=

ln

�
F (0)

K

�
+
1

2
�2T 2H

�TH
:

Calculating the second integral

E��
�
1fF (T )>Kg

�
=

1Z
�d̂1

1

TH
p
2�
exp

�
� y2

2T 2H

�
dy

and setting

w =
y

TH
) y = wTH

di¤erentiating we have

dy = THdz:
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It follows

E��
�
1fF (T )>Kg

�
=

1Z
�d̂1
TH

1

TH
p
2�
exp

�
�1
2
w2
�
THdw

=

d̂1
THZ

�1

1p
2�
exp

�
�1
2
w2
�
dw

= N

 
d̂1
TH

!
= N

�
dH�2
�

where

dH�2 =

ln

�
F (0)

K

�
� 1
2
�2T 2H

�TH
:

It follows that the claim is

cH (0; F (0)) = e�rT
�
F (0)N

�
dH�1
�
�KN

�
dH�2
��
:

Setting H = 1
2
the classical Black option pricing formula is achieved.

6.4.3 Extending Fractional Black-Scholes and Fractional Black

Formulae to an Arbitrary Time t

The above models assume an absolute time T . In the model, time 0 is not speci�ed.

We could also do the modelling from any time t:We will assume that time 0 is when

we want to price the option. This means T becomes the time to maturity in (6:14)

or (6:21) : In other words we have the following two conjectures.
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Conjecture 6.1 Fractional Black-Scholes formula. The price of a fractional Euro-

pean call option at time t is given as

CH (t; S (t)) = S (t)N
�
dH1
�
�Ke�r(T�t)N

�
dH2
�

where

dH1 =

ln

�
S (t)

K

�
+ r (T � t) + 1

2
�2 (T � t)2H

�

q
(T � t)2H

and

dH2 =

ln

�
S (t)

K

�
+ r (T � t)� 1

2
�2 (T � t)2H

�

q
(T � t)2H

:

Since the Law of one price holds in this market, put-call parity will hold regardless

of the pricing model. We will prove the fractional European put option using this

put-call parity

CH (t; S (t))� PH (t; S (t)) = S (t)�Ke�r(T�t):

Thus

PH (t; S (t)) = CH (t; S (t))� S (t) +Ke�r(T�t)

= S (t)N
�
dH1
�
� e�r(T�t)KN

�
dH2
�
� S (t) +Ke�r(T�t)

= S (t)
�
N
�
dH1
�
� 1
�
+Ke�r(T�t)

�
1�N

�
dH2
��
:
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It follows

N
�
dH1
�
� 1 =

dH1Z
�1

1p
2�
exp

�
�y

2

2

�
dy �

1Z
�1

1p
2�
exp

�
�y

2

2

�
dy

= �

0B@ dH1Z
�1

� 1p
2�
exp

�
�y

2

2

�
dy +

1Z
�1

1p
2�
exp

�
�y

2

2

�
dy

1CA
= �

0B@1Z
dH1

1p
2�
exp

�
�y

2

2

�
dy

1CA
= �

0B@�dH1Z
�1

1p
2�
exp

�
�y

2

2

�
dy

1CA
= �N

�
�dH1

�
:

Following similar arguments we have

1�N
�
dH2
�
= N

�
�dH2

�
:

Thus the price at every t 2 [0; T ] of a fractional European put option with strike

price K and maturity T is given by

PH (t; S (t)) = Ke�r(T�t)N
�
�dH2

�
� S (t)N

�
�dH1

�
:

Conjecture 6.2 The price at every t 2 [0; T ] of an European call option with strike

price K and maturity T on the futures contact F; is given as

cH (t; F (t)) = e�r(T�t)
�
F (t)N

�
dH�1
�
�KN

�
dH�2
��

where

dH�1 =

ln

�
F (t)

K

�
+
1

2
�2 (T � t)2H

�

q
(T � t)2H
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and

dH�2 =

ln

�
F (t)

K

�
� 1
2
�2 (T � t)2H

�

q
(T � t)2H

:

A put-call parity relation holds for futures (Hull, 2006) regardless of the pricing

model

cH +Ke�r(T�t) = pH + F (t) e�r(T�t):

Hence we have

pH = cH +Ke�r(T�t) � F (t) e�r(T�t)

= e�r(T�t)
�
F (t)

�
N
�
dH�1
�
� 1
�
+K

�
1�N

�
dH�2
���

:

A Black formula for a European put pH at time T is

pH (t; F (t)) = e�r(T�t)
�
KN

�
�dH�2

�
� F (t)N

�
�dH�1

��
:

6.5 Model Analysis

In the �gure 6.1 Hurst parameters of 0.2, 0.5 and 0.8 were chosen and the power

factor (T )2H ; which replaces the expiration time in the pricing formula, is plotted

against expiration time. We used a Hurst parameter less than 1
2
for comparison with

the other models even though in this model it is assumed that H > 1
2
: When the

expiration time is longer than a year the persistent power factor is bigger than the

anti-persistent case and the normal case. For shorter expiration times the persistent

power factor is less than the normal case.

The price of a fractional European call option with respect to di¤erent spot

prices S is graphed for the anti-persistent, persistent and normal case as well as the
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Figure 6.1: Hu and Øksendal power factor (T )2H for a varying time T.

intrinsic value line which is max fS (t)�K; 0g. In �gure 6.2 the time to expiration

is T = 0:25; and the graph displays that the price of the persistent case will be less

than the normal and the anti-persistent case. In �gure 6.3 the time to expiration is

T = 1 and all the prices will be the same for varying spot prices. In �gure 6.4 the

time to expiration is T = 2 and the graph shows that the price of persistent case

will be larger than that of the normal case. We see that when the time to maturity

increase the prices move away from the intrinsic value line.

Using the conjectured model we plot the pricing formula for varying Hurst para-

meters for a �xed time T and for three di¤erent t. For shorter time to expiration

T = 0:5 and t = 0:1; t = 0:25 and t = 0:4 �gure 6.5 shows the price of a call option

decreases as the Hurst parameter increases. For larger time to expiration T = 5 and
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Figure 6.2: Hu and Øksendal price of European call for varying spot for �xed para-
meters K = 100; r = 0:02; � = 0:2 and T = 0:25 and the intrinsic value line.
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Figure 6.3: Hu and Øksendal price of European call for varying spot for �xed para-
meters K = 100; r = 0:02; � = 0:2 and T = 1 and the intrinsic value line.
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Figure 6.4: Hu and Øksendal price of European call for varying spot and �xed
parameters K = 100; r = 0:02; � = 0:2 and T = 2 and intrinsic value.

Table 6.1: Time to maturity e¤ects
Persistent Anti-Persistent

Short-Run Less volatile, lower price More volatile, higher price
Long-Run More volatile, higher price Less volatile, lower price

t = 1; t = 2:5 and t = 4 �gure 6.6 shows the price of a call option increases as the

Hurst parameter increases.

Rostek and Schöbel (2009) explained this e¤ect known as the power e¤ect for

their model. For a persistent time series there will be less short run deviations from

the mean and more long run deviations from the mean. For an anti-persistent series

the e¤ect will be the opposite, see table 6.1.

For � 2 (0; 1) and H 2 (0; 1) we generated numbers and the price of the option

is plotted against volatility and the Hurst parameter for three di¤erent time to
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Figure 6.5: Hypothetical Hu and Øksendal price of European call with varying Hurst
and t = 0:1, t = 0:25 and t = 0:4: Fixed parametersK = 100, S = 100 ; � = 0:2; r =
0:02 and T = 0:5:
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Figure 6.6: Hypothetical Hu and Øksendal price of European call with varying Hurst
and t = 1, t = 2:5 and t = 4: Fixed parameters K = 100, S = 100 ; � = 0:2; r =
0:02 and T = 5:
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Figure 6.7: Black Hu and Øksendal Price vs Hurst vs Volatility Ft = 110; St =
100; K = 100; (T � t) = 0:25:

expirations. On the z-axis we have the price of the call on a future contract, on the

x-axis the volatility is plotted and on the y-axis we plot the Hurst parameter. Setting

F (t) = 110; S (t) = 100; K = 100 and (T � t) = 0:25 we obtain concave upward

�gure 6.7. We see that when � ! 1 and H ! 0 the price increases signi�cantly.

Choosing (T � t) = 0:75 we obtain �gure 6.8 which is more linear and as the

volatility increase for all Hurst parameters the price increases.

Choosing (T � t) = 5 we obtain concave down �gure 6.9 and we see that when

� ! 1 and H ! 1 the prices are the largest.
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Figure 6.8: Black Hu and Øksendal Price vs Hurst vs Volatility Ft = 110; St =
100; K = 100; (T � t) = 0:75
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Figure 6.9: Black Hu and Øksendal Price vs Hurst vs Volatility Ft = 110; St =
100; K = 100; (T � t) = 5:

 
 
 



Chapter 7

Necula�s fBm Pricing Model

7.1 Introduction

Necula (2002) applied Wick stochastic calculus to generalize a fractional Black-

Scholes formula to price European puts and calls from any arbitrary time t to the

maturity time T if the underlying is driven by fractional Brownian motion for the

case H 2
�
1
2
; 1
�
: Necula presented results regarding quasi-conditional expectation

for fractional Brownian motion. Under the results of quasi-conditional expectation

we compute the expected value of an exponential when it is driven by fractional

Brownian motion. The fractional Clark-Ocone theorem is applied to prove the frac-

tional risk-neutral evaluation theorem. A change in the risk neutral measure is

assured by the fractional Girsanov transform and using properties of normality a

quasi-conditional Black-Scholes formula for pricing European options and a quasi-

conditional Black is proved.

Theorem 7.1 Let BH (t) be a fractional Brownian motion with respect to the mea-

sure ��: For every 0 < t < T and � 2 C; where C is a set of complex number

then

~E��

h
e�B

H(T )
��FHt i = exp��BH (t) +

�2

2

�
T 2H � t2H

��
:

Proof. (Necula, 2002).
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Consider the following stochastic fractional di¤erential equation

dX (t) = �X (t) dBH (t)

X (0) = 1

using Wick calculus the solution of the system is

X (t) = exp

�
�BH (t)� 1

2
�2t2H

�
: (7.1)

Since

X (t) =

Z t

0

�X (s) dBH (s)

and using the property of quasi-conditionality from (5:14) ; the expectation under

the measure �� follows as

~E��
�
X (T )

��FHt � = X (t) : (7.2)

Then substituting (7:1) into (7:2)

~E��

�
exp

�
�BH (t)� 1

2
�2T 2H

� ��FHt � = exp��BH (t)� 1
2
�2t2H

�
:

Then it follows that

~E��

h
e�B

H(T )
��FHt i = exp��BH (t) +

�2

2

�
T 2H � t2H

��
:

Theorem 7.2 Let f be a function such that
�
f
�
BH (T )

��
< 1: Then for every

t � T , the quasi�conditional expectation is

~E��
�
f
�
BH (T )

� ��FHt � = Z
R

1p
2� (T 2H � t2H)

exp

 
�
�
x�BH (t)

�2
2 (T 2H � t2H)

!
f (x) dx:

For the proof Necula (2002; page 8).
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Corollary 7.1 (Necula, 2002). Let A 2 B (R), where B (R) is a Borel �-algebra.

Then

~E��
�
1A
�
BH (T )

� ��FHt � = Z
A

1p
2� (T 2H � t2H)

exp

 
�
�
x�BH (t)

�2
2 (T 2H � t2H)

!
dx:

Consider the process

Z (t) = "
�
���[0;t]

�
= exp

0B@
R1
0
���[0;t] (u) dBH (u)

�1
2

Z 1

0

Z 1

0

� ��[0;t] (u)� ��[0;t] (v)� (u; v) dudv

1CA
= exp

�Z t

0

��dBH (u)� 1
2

Z t

0

Z t

0

�2� (u; v) dudv

�
= exp

�
��BH (t)� �2

2
t2H
�
:

Let � 2 R and for 0 � t � T consider the process

B̂H (t) = BH (t) + �t2H (7.3)

= BH (t) +

Z t

0

2H�� 2H�1d� :

By fractional Girsanov formula, refer to theorem (5:1) it follows that B̂H (t) is a

fractional Brownian motion under the measure ��;. We will denote ~E��; the quasi-

conditional expectation under the measure ��;:

Theorem 7.3 Let f be a function such that E��
�
f
�
BH (T )

��
<1: Then for every

t � T

~E��;
�
f
�
BH (T )

� ��FHt � = 1

Z (t)
~E��
�
f
�
BH (T )

�
Z (T )

��FHt � :
Proof. (Necula, 2002).

Let f̂ be the Fourier transform of f .

f̂ (�) =

Z
R
exp (�ix�) f (x) dx:
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Then the inverse Fourier transform f of f̂ is

f (x) =
1

2�

Z
R
exp (ix�) f̂ (�) d�:

It follows

f
�
BH (T )

�
=
1

2�

Z
R
exp

�
iBH (T ) �

�
f̂ (�) d�:

The left hand side

~E��
�
f
�
BH (T )

�
Z (T )

��FHt �
= ~E��

�
1

2�

Z
R
exp

�
iBH (T ) �

�
exp

�
��BH (T )� �2

2
T 2H

�
f̂ (�) d�

��FHt �
= ~E��

�
1

2�

Z
R
exp

�
BH (T ) (i� � �)

�
exp

�
��

2

2
T 2H

�
f̂ (�) d�

��FHt �
=

1

2�
exp

�
��

2

2
T 2H

�Z
R

~E��
�
exp

�
BH (T ) (i� � �)

� ��FHt � f̂ (�) d�
applying theorem 7:1 we have

~E��
�
f
�
BH (T )

�
Z (T )

��FHt �
=

1

2�
exp

�
��

2

2
T 2H

�Z
R
exp

�
BH (t) (i� � �) + 1

2
(i� � �)2

�
T 2H � t2H

��
f̂ (�) d�

=
1

2�
exp

�
��

2

2
T 2H

�Z
R
exp

0B@ BH (t) (i� � �)

+

�
��

2

2
� i�� + �2

2

��
T 2H � t2H

�
1CA f̂ (�) d�

=
1

2�
exp

�
��BH (t)� �2

2
t2H
�Z

R
exp

0B@ BH (t) (i�)

+

�
��

2

2
� i��

��
T 2H � t2H

�
1CA f̂ (�) d�

= Z (t)
1

2�

Z
R
exp

�
BH (T ) (i�) +

�
��

2

2
� i��

��
T 2H � t2H

��
f̂ (�) d�:

The right hand side

~E��;
�
f
�
BH (T )

� ��FHt �
= ~E��;

�
1

2�

Z
R
exp

�
i�
�
B̂H (T )� �T 2H

��
f̂ (�) d�

��FHt �
=

1

2�

Z
R

~E��;

h
exp

�
i�B̂H (T )

� ��FHt i exp ��i��T 2H� f̂ (�) d�
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applying theorem 7:1 we have

=
1

2�

Z
R
exp

�
i�B̂H (t) +

1

2
(i�)2

�
T 2H � t2H

��
exp

�
�i��T 2H

�
f̂ (�) d�

=
1

2�

Z
R
exp

�
i�B̂H (t)� �2

2

�
T 2H � t2H

��
exp

�
�i��T 2H

�
f̂ (�) d�

and using (7:3)

=
1

2�

Z
R
exp

�
i�
�
BH (t) + �t2H

�
� �2

2

�
T 2H � t2H

��
exp

�
�i��T 2H

�
f̂ (�) d�

=
1

2�

Z
R
exp

�
i�BH (t)� �2

2

�
T 2H � t2H

�
+ i��t2H � i��T 2H

�
f̂ (�) d�

=
1

2�

Z
R
exp

�
i�BH (t) +

�
��

2

2
� i��

��
T 2H � t2H

��
f̂ (�) d�:

It follows that

1

Z (t)
~E��
�
f
�
BH (T )

�
Z (T )

��FHt � = ~E��;
�
f
�
BH (T )

� ��FHt � :

7.2 The Market

Consider a market with an investment in a money account and a stock that is driven

by fractional Brownian motion. For 0 � t � T the money account A (t) at time t

develops according to the equation

dA (t) = rA (t) dt

A (0) = 1

where r > 0 is a constant riskless interest rate. The stock price S (t) has the following

the dynamics

dS (t) = �S (t) dt+ �S (t) dBH (t)

S (0) = s > 0
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where � and � 6= 0 are constants, for 0 � t � T: From (6:10) the stock price under

the risk neutral measure follows the following process

dS (t) = rS (t) dt+ �S (t) dBH (t) :

Necula�s states that he is working under Hu and Øksendal�s (2000) framework

where they show that the market is complete and that there is a self-�nancing

replicating portfolio of the claim, (u (t) ; v (t)) : It is not clear that this is the case

as Necula does not use the Wick de�nition of the portfolio. Let ~E�� denote the

quasi-conditional expectation with respect to the risk-neutral measure.

Theorem 7.4 Fractional risk neutral evaluation. For every t 2 [0; T ] ; the price of

a bounded FHT -measurableH;Ø claim where F 2 L2
�
��
�
is given by

F (t) = e�r(T�t) ~E��
�
F (T )

��FHt � :
Proof. (Necula, 2002).

Let u (t) be the amount invested in the money account and v (t) be the amount

invested in the stock. The portfolio value has the following form

F (t) = u (t)A (t) + v (t)S (t) :

The dynamics of the self-�nancing portfolio follows as

dF (t) = u (t) dA (t) + v (t) dS (t)

= u (t) rA (t) dt+ v (t)
�
rS (t) dt+ �S (t) dBH (t)

�
= r (u (t)A (t) + v (t)S (t)) dt+ v (t)S (t)�dBH (t)

= rF (t) dt+ �v (t)S (t) dBH (t) :

Denoting F (T ) = F we have

dF = rFdt+ �vSdBH :
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Multiplying both sides by the integrating factor e�rt we have

e�rtdF = re�rtFdt+ e�rt�vSdBH

e�rt
dF

dt
+ re�rtF = e�rt�vS

dBH

dt
d

dt

�
e�rtF

�
= e�rt�vS

dBH

dt
:

For 0 � t � T we integrate

e�rtF (t) = F (0) +

Z t

0

e�r��v (�)S (�) dBH (�) (7.4)

and by the fractional Clack-Ocone theorem it follows

F (!) = E�� [F ] +

Z t

0

~E��
�
DH
t F jFHt

�
dBH (t) :

Multiplying both sides by e�rT we obtain

e�rTF = E��
�
e�rTF

�
+ e�rT

Z T

0

~E��
�
DH
t F jFHt

�
dBH (�) : (7.5)

From the completeness of the market it follows

e�rt�v (�)S (�) = e�rT ~E��
�
DH
t F jFHt

�
:

For 0 � � � T we have

~E��
�
DH
t F jFHt

�
= er(T�t)�v (�)S (�) : (7.6)

Substituting (7:6) into (7:5) we have

e�rTF = E��
�
e�rTF

�
+ e�rT

Z T

0

er(T��)�v (�)S (�) dBH (�) ;

and taking the quasi-conditional expectation

~E��
�
e�rTF

��FHt � = E��
�
e�rTF

�
+ ~E��

�Z T

0

e�r��v (�)S (�) dBH (�)
��FHt � :

It follows from (5:14) that

~E��
�
e�rTF

��FHt � = E��
�
e�rTF

�
+

Z T

0

e�rt�v (�)S (�) dBH (�) (7.7)
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since the discounted price process are martingales under the risk neutral measure

we have

F (0) = E��
�
e�rTF

�
comparing (7:4) and (7:7), it follows that

F (t) = e�r(T�t) ~E��
�
F
��FHt � :

7.3 Option Pricing Formula

The assumptions for pricing the quasi-conditional fractional Black-Scholes formula

and the quasi-conditional fractional Black formula are as follows:

1. The stock price follows equation (6:1) :

2. Stochastic di¤erentials are interpreted in the Wick Itô Skorohod sense.

3. The Hurst parameter is 1
2
< H < 1 and the Hurst parameter is constant over

time.

4. The drift � and volatility � are constant and the r is a constant risk-free rate

of interest and the same for all maturities.

5. Working within Hu and Øksendal�s (2000) framework.

6. Short selling is allowed.

7. There are no transactions costs or taxes.

8. There are no dividends.

9. Trading is done continuously.
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10. All securities are perfectly divisible.

7.3.1 Quasi-Conditional Fractional Black-Scholes Formula

Theorem 7.5 Quasi-conditional fractional Black-Scholes formula. The price at

every t 2 [0; T ] of an European call option with strike price K and maturity T is

given as

CH (t; S (t)) = S (t)N
�
dH1
�
�Ke�r(T�t)N

�
dH2
�

where

dH1 =

ln

�
S (t)

K

�
+ r (T � t) + 1

2
�2
�
T 2H � t2H

�
�
p
T 2H � t2H

and

dH2 =

ln

�
S (t)

K

�
+ r (T � t)� 1

2
�2
�
T 2H � t2H

�
�
p
T 2H � t2H

where N (�) is the cumulative probability of the standard normal distribution.

Proof. (Necula, 2002).

The price of the claim under the measure �� using theorem 7.4 is given as

CH (t; S (t)) = e�r(T�t) ~E��
�
max f(S (T )�K) ; 0g

��FHt �
= e�r(T�t) ~E��

264max
8><>:S (0) exp

0B@ �BH (T ) + rT

�1
2
�2T 2H

1CA�K; 0
9>=>;��FHt

375
= e�r(T�t) ~E��

�
S (T ) 1fS(T )>Kg

��FHt �� e�r(T�t)K ~E��
�
1fS(T )>Kg

��FHt � :
The boundary for the option to be in the money is

S (T ) > K

in other words

S (0) exp

�
�BH (T ) + rT � 1

2
�2T 2H

�
> K:
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Denote

d̂2 =

ln

�
K

S (0)

�
� rT + 1

2
�2T 2H

�
:

For the option to be in the money is the same as requiring

BH (T ) > d̂2:

For the second expectation we apply corollary 7:1

~E��
�
1fS(T )>Kg

��FHt �
= ~E��

h
1fx>d̂2g

�
BH (T )

� ��FHt i
=

Z 1

d̂2

1p
2� (T 2H � t2H)

exp

 
�1
2

�
x�BH (t)p
T 2H � t2H

�2!
dx:

For the transformation set

w =
x�BH (t)p
T 2H � t2H

) dw =
1p

T 2H � t2H
dx:

It follows

~E��
�
1fS(T )>Kg

��FHt � =

BH (t)�d̂2p
T2H�t2HZ
�1

1p
2�
exp

�
�w

2

2

�
dw

= N
�
dH2
�

with

dH2 =
BH (t)� d̂2p
T 2H � t2H

=
�BH (t)�

�
lnK � lnS (0)� rT + 1

2
�2T 2H

�
�
p
T 2H � t2H

:

We see that

lnS (t) = lnS(0) + �BH (t) + rt� 1
2
�2t2H
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rearranging the terms

lnS(0) = lnS (t)� �BH (t)� rt+ 1
2
�2t2H

it follows that

dH2 =
�BH (t)�

�
lnK �

�
lnS (t)� �BH (t)� rt+ 1

2
�2t2H

�
� rT + 1

2
�2T 2H

�
p
T 2H � t2H

=
�BH (t)�

�
lnK � lnS (t) + �BH (t) + rt� 1

2
�2t2H � rT + 1

2
�2T 2H

�
p
T 2H � t2H

=

�BH (t)� ln K

S (t)
� �BH (t)� rt+ 1

2
�2t2H + rT � 1

2
�2T 2H

p
T 2H � t2H

=

ln

�
S (t)

K

�
+ r (T � t)� 1

2
�2
�
T 2H � t2H

�
�
p
T 2H � t2H

:

Now consider the process for 0 � t � T

B̂H (t) = BH (t)� �t2H

BH (t) = B̂H (t) + �t2H :

The fractional Girsanov theorem insures that there is a measure ��; such that B̂
H (t)

is as fractional Brownian motion under ��;: Let

Z (t) = exp

�
�BH (t)� �2

2
t2H
�
:

Solving for the �rst expectation and using theorem 7:3 we have the quasi-conditional

expectation as

~E��
�
S (T ) 1fS(T )>Kg

��FHt �
= ~E��

��
S (0) exp

�
rT + �BH (T )� 1

2
�2T 2H

��
1fx>d̂2g

�
BH (T )

� ��FHt �
= erTS (0) ~E��

�
Z (T ) 1fS(T )>Kg

��FHt �
= erTS (0)Z (t) ~E��;

�
1fS(T )>Kg

��FHt � :
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The stock price has the following form under the measure ��;

S (T ) = S (0) exp

�
rT � 1

2
�2T 2H + �BH (T )

�
= S (0) exp

�
rT � �2

2
T 2H + �

�
B̂H (T ) + �T 2H

��
= S (0) exp

�
rT +

�2

2
T 2H + �B̂H (T )

�
:

The stock price under the new measure brings about a new boundary change

S (T ) > K

implying

S (0) exp

�
rT +

1

2
�2T 2H + �B̂H (T )

�
> K

therefore

�B̂H (T ) > lnK � lnS (0)� rT � 1
2
�2T 2H :

Denote

d̂1 =

ln

�
K

S (0)

�
� rT � 1

2
�2T 2H

�
:

Applying theorem 7:3 we have

~E��;
�
1fS(T )>Kg

��FHt � = ~E��;

h
1fx>d̂1gB̂

H (T )
��FHt i

=

Z 1

d̂1

1p
2� (T 2H � t2H)

exp

0@�1
2

 
x� B̂H (t)p
T 2H � t2H

!21A dx:

For the transformation set

y =
x� B̂H (T )p
T 2H � t2H

) x = y
p
T 2H � t2H + B̂H (T )

di¤erentiating

dy =
1p

T 2H � t2H
dx) dx =

p
T 2H � t2Hdy:
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It follows

~E��;
�
1fS(T )>Kg

��FHt � =

1Z
d̂1�B̂H (T )p
T2H�t2H

1p
2� (T 2H � t2H)

exp

�
�1
2
y2
�p

T 2H � t2Hdy

=

B̂H (T )�d̂1p
T2H�t2HZ
�1

1p
2�
exp

�
�y

2

2

�
dy

= N

 
B̂H (T )� d̂1p
T 2H � t2H

!
= N

�
dH1
�
:

Following similar steps as above we get

dH1 =

ln

�
S (t)

K

�
+ r (T � t) + 1

2
�2
�
T 2H � t2H

�
�
p
T 2H � t2H

:

And since

S (t) = S (0) exp

�
rt� �2

2
t2H + �BH (t)

�
= S (0) ertZ (t)

we can rewrite

Z (t) =
S (t)

S (0)
e�rt:

Thus the �rst expectation follows as

~E��
�
S (T ) 1fS(T )>Kg

��FHt � = erTS (0)Z (t)N
�
dH1
�

= erT e�rtS (t)N
�
dH1
�

= er(T�t)S (t)N
�
dH1
�
:

Therefore the price of the call option follows as

CH (t; S (t))

= e�r(T�t) ~E��
�
S (T ) 1fS(T )>Kg

��FHt �� e�r(T�t)K ~E��
�
1fS(T )>Kg

��FHt �
= S (t)N

�
dH1
�
� e�r(T�t)KN

�
dH2
�
:
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Since Law of one price holds in the fractional market, the put-call parity will hold.

Using similar arguments as above the price at every t 2 [0; T ] of a quasi-conditional

fractional European put option with strike price K and maturity T is given by

PH (t; S (t)) = Ke�r(T�t)N
�
�dH2

�
� S (t)N

�
�dH1

�
:

7.3.2 Quasi-Conditional Fractional Black Formula

The quasi-conditional future model was used for the empirical comparison that was

done in the later chapters. We now assume that the futures prices, instead of the

stock prices, follow a fractional Brownian motion with dynamics under the measure

�� given by

dF (t) = F (t)�dBH (t)

and using Wick calculus the solution follows as

F (T ) = F (t) exp

�
�BH (t)� 1

2
�2t2H

�
:

Theorem 7.6 Quasi-conditional fractional Black formula. The price at every t 2

[0; T ] of an European call option on a futures contract with strike price K and matu-

rity T is given as

cH (t; F (t)) = e�r(T�t)
�
F (t)N

�
dH�1
�
�KN

�
dH�2
��

where

dH�1 =

ln

�
F (t)

K

�
+
1

2
�2
�
T 2H � t2H

�
�
p
T 2H � t2H

and

dH�2 =

ln

�
F (t)

K

�
� 1
2
�2
�
T 2H � t2H

�
�
p
T 2H � t2H

:
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Proof. The formula can be obtained using similar arguments as in the proof

above in theorem 7.5 (see Liu, 2007).

Also at time t the price of a quasi-conditional European put option, with exercise

date T and exercise price K on a futures contract is given by

pH (t; F (t)) = e�r(T�t)
�
KN

�
�dH�2

�
� F (t)N

�
�dH�1

��
:
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Figure 7.1: Necula factor
�
T 2H � t2H

�
for a �xed T = 0:25:

7.4 Model Analysis

Note for t = 0 �xed, the graph of the factor T 2H � t2H plotted against time to

maturity will be the same as �gure 6.1. We used a Hurst parameter less than 1
2

for comparison with the other models even though in this model it is assumed that

H > 1
2
: Fixing T and varying t we plot the factor for varying Hurst parameters.

Figure 7.1 is for T = 0:25; we see that the anti-persistent case decreases faster and is

above the normal, while the persistent case decreases at a much slower rate. Figure

7.2 is for a �xed T = 0:5; where we have a cross-over between the anti-persistent

and the persistent case. Figure 7.3 is for a �xed T = 1 in this case the persistent

case is above the normal.

We plot the pricing formula for varying Hurst parameters, for a �xed time T and

for three di¤erent t. For shorter time to expiration T = 0:5 and t = 0:1; t = 0:25
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Figure 7.2: Necula factor
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T 2H � t2H

�
for a �xed T = 0:5:
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for a �xed T = 1:
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Figure 7.4: Necula price of European call with varying Hurst and t = 0:1, t = 0:25
and t = 0:4: Fixed parameters K = 100, S = 100 ; � = 0:2; r = 0:02 and T = 0:5:

and t = 0:4 �gure 7.4 shows the price of a call option increases then decreases as the

Hurst parameter increases. For larger time to expiration T = 5 and t = 1; t = 2:5

and t = 4 �gure 7.5 shows the price of a call option increases as the Hurst parameter

increases.

The quasi-conditional Black function was plotted in three dimensions for H 2�
1
2
; 1
�
and � 2 (0; 1). Setting F (t) = 110; S (t) = 100; K = 100 and choosing a

time to maturity to be (T � t) = 0:25 we obtain �gure 7.6. As � ! 0 and for all

H 2
�
1
2
; 1
�
we see that the prices are the largest. Choosing (T � t) = 0:75 we obtain

�gure 7.7 and as � ! 0 and H ! 1
2
the prices are the largest.

Choosing (T � t) = 5 we obtain �gure 7.8 and as � ! 1 and H ! 1 the prices

are the largest.
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Figure 7.5: Necula price of European call with varying Hurst and t = 1, t = 2:5 and
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143

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

0.5

0.6

0.7

0.8

0.9

1
20

30

40

50

60

70

80

90

100

Hurst

Necula Black call for Ft=110, S=100, K=100, T=1 and t=0.25

Volatility

P
ric

e

Figure 7.7: Quasi-Conditional Black function Price vs Hurst vs Volatility Ft =
110; St = 100; K = 100; T = 1 and t = 0:25:
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Figure 7.8: Quasi-Conditional Black function price vs Hurst vs volatility Ft =
110; St = 100; K = 100; T = 5 and t = 2:5:
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For smaller times to maturity the graph is concave up while for larger time

horizons the graph is concave down.

Necula (2003) and (2007) priced Barrier options in the same quasi-conditional

market setting for H > 1
2
:

 
 
 



Chapter 8

Rostek and Schöbel�s fBm Pricing Model

8.1 Introduction

There is a weak form of arbitrage know as "free lunch with vanishing risk" present

in the fractional Brownian motion models considered in the previous chapters 6

and 7. E¢ cient markets are priced in such a way that prices move only when new

information is received. Therefore, it is assumed that investors react immediately

when the information is received and due to the large number of investors the prices

will be fair. If one assumes that a single investor cannot be as fast as the market,

i.e. under a very small time intervals all arbitrage possibilities are eliminated (see

Cheridito, 2003). More precisely a restriction is put on the minimal time between

two consecutive transactions. We will assume this in the following model.

Rostek and Schöbel (2010) derived a formula for fractional European options

using conditional expectation and an equilibrium pricing approach, assuming risk

averse traders that trade in discrete time. The underlying stock is assumed to follow

a conditional fractional Brownian motion. Recall that a market is complete if for any

contingent claim there exists a self-�nancing trading strategy such that at any time

t, the strategy replicates the claim. In other words all possible gambles on future

states of the world can be constructed with existing assets. A fundamental theorem

of derivative pricing states that if the model is arbitrage free then the market is

complete if and only if the martingale measure is unique (Björk, 2004). Since there
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is a minimal time between transactions, dynamical hedging and the possibility of

continuous adjustment of the replicating portfolio is not possible; hence we cannot

dynamically replicate all contingent claims. Due to the fact that fractional Brownian

markets are dynamically incomplete, in this model a stochastic discount factor is

derived and used for pricing instead of a change to a risk neutral measure.

Consider a �ltered probability space
�

;FHt ; P

�
; where 
 is the state space of

random events, FHt is the �-�eld generated by all BH (s) ; for s � t on 
 and P is the

distribution of BH (s) : Rostek (2009) de�nes an equivalence class for the conditional

distribution of fractional Brownian motion based on an in�nite knowledge of the past.

For s 2 R and T > t let BH (s) be a fractional Brownian motion with 1
2
< H < 1

for all ! 2 
. The equivalence class is de�ned as

[!1]t =
�
! 2 


��BH (s) (!) = BH (s) (!1) ; for all s 2 (�1; t]
	
:

The distribution of BH (T ) is conditional on the �-�eld generated by all s � t

FHt = �
�
BH (s) ; s � t

�
:

The conditional expectation of fractional Brownian motion BH (T ), T > t > 0;

based on FHt and concerning all information about the past is a random variable.

E
�
BH (T ) jFHt

�
(!1) is the expectation of BH (T ) over all ! 2 [!1]t :

Lemma 8.1 Let BH (s), s 2 R be a fractional Brownian motion with 0 < H < 1,

then for each T > t > 0, the conditional expectation of BH (T ) based on FHt can be

represented as

B̂H (T; t) = EP
�
BH (T )

��FHt �
= BH (t) + (T � t)H+

1
2

Z t

�1
g (T; t; s) ds

= BH (t) + �̂T;t
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where �̂T;t is the mean historical evolution of the past and

g (T; t; s) =
sin
�
�
�
H � 1

2

�� �
BH (s)�BH (t)

�
� (t� s)H+

1
2 (T � s)

:

See Rostek, 2009:

Lemma 8.2 The conditional variance of fractional Brownian motion BH (T ) for

T > t > 0; based on FHt is represented by

V ar
�
BH (T )

��FHt � = �H (T � t)2H

= �̂2T;t

where

vH =

8>><>>:
sin
�
�
�
H � 1

2

��
�
�
H � 1

2

� �
�
3
2
�H

�2
� (2� 2H) if H 6= 1

2

1 if H =
1

2

(8.1)

and � (�) is the Gamma function.

Proof. (Rostek, 2009).
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We have that

�̂2T;t = V ar
�
BH (T )

��FHt �
= EP

��
BH (T )� B̂H (T )

�2 ��FHt �
= EP

h��
BH (T )�BH (t)

�
� �̂T;t

�2 ��FHt i
= EP

h�
BH (T )�BH (t)

�2 � 2 �BH (T )�BH (t)
�
�̂T;t + �̂2T;t

��FHt i
= EP

h
E
h�
BH (T )�BH (t)

�2 ��FHt ii� 2EP ��BH (T )�BH (t)
�
�̂T;t

��FHt �
+EP

�
�̂T;t

��FHt �2
= EP

�
BH (T )�BH (t)

�2 � 2 �EP �BH (T )
��FHt ��BH (t)

�
EP
�
�̂T;t

��FHt �
+EP

�
�̂T;t

��FHt �2
= EP

�
BH (T )�BH (t)

�2 � 2 �BH (t) + �̂T;t �BH (t)
�
EP
�
�̂T;t

��FHt �
+EP

�
�̂T;t

��FHt �2
= EP

�
BH (T )�BH (t)

�2 � 2EP ��̂T;t�2 + EP
�
�̂T;t
�2

= EP
�
BH (T )�BH (t)

�2 � EP ��̂T;t�2
and

EP
�
BH (T )�BH (t)

�2
= EP

�
BH (T )

�2 � 2EP �BH (T )BH (t)
�
� EP

�
BH (t)

�2
= T 2H � 21

2

h
T 2H + t2H � (T � t)2H

i
+ t2H

= (T � t)2H

and

EP
�
�̂T;t
�2

= EP

�Z t

�1
g (T � t; s� t) dBH (s)

�2
= EP

�Z t

�1
g (T � t; s� t) dBH (s)

Z t

�1
g (T � t; s� t) dBH (s)

�
=

Z t

�1

Z t

�1
g ((T � t) ; (� � t)) g ((T � t) ; (! � t))� (�; !) d�d!:
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Setting x = t0 � � and y = t0 � ! it follows that

EP
�
�̂T;t
�2

=

Z 1

0

Z 1

0

g ((T � t) ; (�x)) g ((T � t) ; (�y))� (x; y) dxdy

= (T � t)2H (1� �H)

and we obtain

�̂2T;t = (T � t)2H � (T � t)2H (1� �H)

= (T � t)2H [1� (1� �H)]

= �H (T � t)2H :

Theorem 8.1 The conditional distribution of BH (T ) based on the observation [!1]t

is normal with expectation

EP
�
BH (T )

��FHt � (!1) = BH (t) + (T � t)H+
1
2

Z t

�1
g (T; t; s) ds

= BH (t) + �̂T;t (8.2)

and variance

V ar
�
BH (T )

��FHt � (!1) = �H (T � t)2H

= �̂2T;t: (8.3)

Proof. (Rostek, 2009).

This result follows from theorem 8.1 and lemma 8.2 and the Gaussian property

of the process BH (t) :

8.2 Conditional Stock Process

The stock price process which is driven by fractional Brownian motion has the

following dynamics

dS (t) = �S (t) dt+ �S (t) dBH (t) :
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Consider the conditional distribution of S (T ) given all the history up to time t1 < T ,

in other words we restrict S (T ) to the equivalence class [!1]t1 : Let the conditional

stock process be denoted as Ŝ (t) = S (t)
��[!1]t1 and the process is restricted to only

part of the probability space
�

;FHt ; P

�
namely to a space that is generated by the

equivalence class [!1]t1 which is
�
[!1]t1 ; �

�
[!1]t1

�
; P̂
�
; where P̂ is the conditional

probability.

Theorem 8.2 For t > t1 let Ŝ (t) be the conditional process of geometric fractional

Brownian motion. Then the following conditional fractional Itô theorem holds

F
�
T; Ŝ (T )

�
= F

�
t1; Ŝ (t1)

�
+

Z T

t1

@F

@t

�
t; Ŝ (t)

�
dt+

Z T

t1

@F

@x

�
t; Ŝ (t)

�
� (t) Ŝ (t) dt

+

Z T

t1

@F

@x

�
t; Ŝ (t)

�
� (t) Ŝ (t) dB̂H (t)

+�HH� (t)
2

Z T

t1

(t� t1)2H�1
@2F

@x2

�
t; Ŝ (t)

�
Ŝ (t)2 dt:

For the proof see Rostek (2009, page 89).

Let

F
�
t; Ŝ (t)

�
= ln

�
Ŝ (t)

�
:

The partial derivatives are

@F

@t

�
t; Ŝ (t)

�
= 0;

@F

@x

�
t; Ŝ (t)

�
=

1

Ŝ (t)
;
@2F

@x2

�
t; Ŝ (t)

�
= � 1

Ŝ (t)2
:

Applying the conditional Itô formula we get

F
�
T; Ŝ (T )

�
� F

�
t1; Ŝ (t1)

�
=

Z T

t1

� (t) dt� �HH�2
Z T

t1

t2H�1dt+ �

Z T

t1

dB̂H (t)

and di¤erentiating we have

ln Ŝ (T )� ln Ŝ (t1) = � (T � t1)�
1

2
�H�

2 (T � t1)2H+�
�
B̂H (T )� B̂H (t1)

�
: (8.4)

 
 
 



151

Therefore the solution of the conditional stock process is

Ŝ (T ) = Ŝ (t1) exp

�
� (T � t1)�

1

2
�H�

2 (T � t1)2H + �
�
B̂H (T )� B̂H (t1)

��
:

Remark 8.1 For the rest of the section we will write the conditional stock price

process Ŝ as S; the conditional fractional Brownian motion B̂H as BH and the prob-

ability measure P̂ as P for notational convenience.

We de�neMS di¤erently than in (Rostek and Schöbel, 2010). Rostek and Schöbel

subtract lnS (t) from the conditional expected value of lnS (T ) : We get the same

�nal results.

Lemma 8.3 The conditional log-normal process lnS (T ) is normally distributed.

The expectation MS and variance �2S is given as

MS = lnS (t) + � (T � t)�
1

2
�H�

2 (T � t)2H + ��̂T;t (8.5)

and

�2S = �H�
2 (T � t)2H : (8.6)

Proof. (Rostek and Schöbel, 2010).

From equation (8:4) we have

lnS (T ) = lnS (t) + � (T � t)� 1
2
�H�

2 (T � t)2H + �
�
BH (T )�BH (t)

�
:

Applying (8:2) and theorem 8.1 the expectation is

MS

= EP
�
lnS (T )

��FHt �
= EP

�
lnS (t) + � (T � t)� 1

2
�H�

2 (T � t)2H + �
�
BH (T )�BH (t)

� ��FHt �
= lnS (t) + � (T � t)� 1

2
�H�

2 (T � t)2H + �
�
EP
�
BH (T )

��FHt ��BH (t)
�

= lnS (t) + � (T � t)� 1
2
�H�

2 (T � t)2H + ��̂T;t
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and the variance follows as

�2S

= V ar
�
lnS (T )

��FHt �
= EP

�
lnS (T )�MS

��FHt �2
= EP

2664
�
lnS (t) + � (T � t)� 1

2
�H�

2 (T � t)2H + �
�
BH (T )�BH (t)

��
�
�
lnS (t) + � (T � t)� 1

2
�H�

2 (T � t)2H + ��̂T;t

� ��FHt
3775
2

= EP
�
�
�
BH (T )�BH (t)

�
� ��̂T;t

��FHt �2
= EP

h
�2
�
BH (T )�BH (t)

�2 � 2�2�̂T;t �BH (T )�BH (t)
�
+ �2�̂2T;t

��FHt i
= �2EP

h�
BH (T )�BH (t)

�2 ��FHt i� 2�2EP ��̂T;t ��FHt �EP �BH (T )�BH (t)
��FHt �

+�2EP
�
�̂T;t

��FHt �2
= �2EP

h�
BH (T )�BH (t)

�2 ��FHt i� 2�2 ��̂T;t� (EP �BH (T )
��FHt ��BH (t))

+�2
�
�̂T;t
�2

= �2EP

h�
BH (T )�BH (t)

�2 ��FHt i� 2�2 ��̂T;t�2 + �2
�
�̂T;t
�2

= �2EP

h�
BH (T )�BH (t)

�2 ��FHt i� �2 ��̂T;t�2 :
And

EP

h�
BH (T )�BH (t)

�2 ��FHt i
= EP

h�
BH (T )

�2 � 2BH (T )BH (t) +
�
BH (t)

�2 ��FHt i
= EP

h�
BH (T )

�2 jFHt i� 2EP �BH (T ) jFHt
�
BH (t) +

�
BH (t)

�2
= V ar

�
BH (T ) jFHt

�
+ EP

�
BH (T ) jFHt

�2 � 2EP �BH (T ) jFHt
�
BH (t) +

�
BH (t)

�2
= �H (T � t)2H +

�
BH (t) + �̂T;t

�2 � 2 �BH (t) + �̂T;t
�
BH (t) +

�
BH (t)

�2
= �H (T � t)2H +

�
�̂T;t
�2
:
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It follows

�2S = �2
�
�H (T � t)2H +

�
�̂T;t
�2�� �2 ��̂T;t�2

= �H�
2 (T � t)2H :

Using properties of the log-normal distribution, the stock price process S (T ) is

log-normally distributed with the following conditional expectation

EP
�
S (T )

��FHt �
= exp(MS +

1

2
�2S)

= exp

�
lnS (t) + � (T � t)� 1

2
�H�

2 (T � t)2H + ��̂T;t +
1

2
�H�

2 (T � t)2H
�

= exp
�
lnS (t) + � (T � t) + ��̂T;t

�
= S (t) exp

�
� (T � t) + ��̂T;t

�
:

8.3 The Market

Rostek and Schöbel (2010) constructs a wealth process that consists of a number of

investments in stocks and a bond. Now consider a market setting which consists of

a riskless bond or money account which has the following dynamics

dS0 (t) = rS0 (t) dt

where r > 0 is a constant riskless interest rate. For H > 1
2
let Hj = (H1; :::; HM) be

the Hurst vector. Consider a �nite number of assetsN 2 N, Si (t) = (S1 (t) ; :::; SN (t))

that are driven by a �nite number M 2 N, of fractional Brownian motions�
BH1
1 ; ::BHM

M

�
. For 0 � t � T , let �i = (�1; ::; �N) and �ij = f�NMg be vec-

tors representing the drift and volatility respectively. Consider a �nite number of
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assets Si with the following dynamics

dSi (t) = �iSi (t) dt+
MX
j=1

�ijSi (t) dB
Hj
j (t) : (8.7)

The stochastic processes are assumed independent. The wealth process W (t) is

de�ned as n0 units invested in the riskless bond S0 and ni units invested the asset

Si and is given as

W (t) =

NX
i=0

niSi (t)

its associated self-�nancing stochastic di¤erential equation as

dW (t) =
NX
i=0

nidSi (t) :

Let !i =
niSi
W

be the weights of the assets in the portfolio. The associated stochastic

di¤erential equation of the wealth process W (t) is

dW (t) =
NX
i=0

nidSi (t)

= n0rS0 (t) dt+
NX
i=1

ni

 
�iSi (t) dt+

MX
j=1

�ijSi (t) dB
Hj
j (t)

!

= !0rW (t) dt+
NX
i=1

!i

 
�iW (t) dt+

MX
j=1

�ijW (t) dB
Hj
j (t)

!

= !0rW (t) dt+

NX
i=1

!i�iW (t) dt+

NX
i=1

!i

MX
j=1

�ijW (t) dB
Hj
j (t)

=

 
!0r +

NX
i=1

!i�i

!
W (t) dt+

MX
j=1

 
NX
i=1

!i�ij

!
W (t) dB

Hj
j (t) :

Denoting

�W = !0r +

NX
i=1

!i�i

and

�Wj
=

NX
i=1

!i�ij:
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It follows that

dW (t) = �WW (t) dt+

MX
j=1

�Wj
W (t) dB

Hj
j (t) :

The solution of the stochastic di¤erential equation follows from the conditional multi-

dimensional Itô theorem, (see Biagini and Øksendal, 2003 for the multi-dimensional

fractional Itô formula)

W (T ) =W (t) exp

0B@ �W (T � t)�
1

2

PM
j=1 �Hj�

2
Wj
(T � t)2Hj

+
PM

j=1 �Wj

�
B
Hj
j (T )�BHj

j (t)
�

1CA :

We de�neMW di¤erently than in (Rostek and Schöbel, 2010). Rostek and Schöbel

subtract lnW (t) from the conditional expected value of lnW (T ) :

Lemma 8.4 (Rostek and Schöbel, 2010). The conditional log-normal wealth process

lnW (T ) is normally distributed with expectation MW and variance �2W which is

given as

MW = lnW (t) + � (T � t)� 1
2

MX
j=1

�Hj�
2
Wj
(T � t)2Hj +

MX
j=1

�Wj
�̂
Hj
T;t

and

�2W =

MX
j=1

�2Wj
�Hj (T � t)

2Hj : (8.8)

Consider one of the N assets Sh and assume that this asset is only driven by

a single fractional Brownian motion. We will denote this asset by S (t) ; this Hurst

parameter asH, the fractional Brownian motion asBH (t) and the drift and volatility

as � and � respectively: Due to the independence of the stochastic components the

stock process and the wealth process follow a bivariate log-normal distribution. The

joint distributions of the stock and wealth process is presented by the following

lemmas.
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Lemma 8.5 (Rostek and Schöbel, 2010). The conditional covariance of random

variables lnS (t) and lnW (t) is given as

�SW = cov
�
lnS (T ) ; lnW (T )

��FHt �
= ��Wh

�H (T � t)2H :

Lemma 8.6 (Rostek and Schöbel, 2010). The conditional correlation of the random

variables lnS (t) and lnW (t) is

�SW =
�Wh

p
�H (T � t)HqPM

j=1 �
2
Wj
�Hj (T � t)

2Hj
: (8.9)

The conditional wealth process given the conditional stock process will be dis-

cussed next.

Lemma 8.7 The conditional expectation MW jS and the conditional variance �2W jS

of lnW (t) given S (t) is normally distributed with

MW jS =MW + �SW
�W
�S

(lnS (T )�MS)

and

�2W jS = �
2
W

�
1� �2SW

�
:

Proof. Using properties of the bivariate normal distribution, the conditional

expectation is

MW jS = EP [lnW (T ) jS (T ) ]

= EP
�
lnW (T )

��FHt �+ �SW
�W
�S

�
lnS (T )� EP

�
lnS (T )

��FHt ��
= MW + �SW

�W
�S

(lnS (T )�MS)

and the conditional variance is

�2W jS = V ar [lnW (T ) jS (T )]

= �2W
�
1� �2SW

�
:
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Using the property of log-normal distribution, W (T ) is conditionally log-

normally distributed with the following expectation

EP [W (T ) jS (T ) ]

= exp

�
MW jS +

1

2
�2W jS

�
= exp

�
MW + �SW

�W
�S

(lnS (T )�MS) +
1

2
�2W

�
1� �2SW

��
= exp

�
MW + lnS (T )

�SW
�W
�S � �SW

�W
�S

MS +
1

2
�2W

�
1� �2SW

��
= S (T )

�SW
�W
�S exp

�
MW � �SW

�W
�S

MS +
1

2
�2W

�
1� �2SW

��
: (8.10)

8.4 Stochastic Discount Factor

Assume an investor wants to maximizes his utility by choosing today�s consumption

level and the number of units invested in each of the N risky assets. Denote c (t) as

the initial consumption and let U (�) be the utility function de�ned over the initial

consumption period. Denote V (�) as the utility function de�ned over the end of

the period wealth W (T ) : The objective function is de�ned by Rostek and Schöbel

(2010) as

max
fc(t); nig

8<:U (c (t)) + EP
24V

0@ (W (t)� c (t)) er(T�t)

+
PN

i=1 ni
�
Si (T )� Si (t) er(T�t)

�
1A ��FHt

359=; :

This can be written as

max
fc(t); nig

�
U (c (t)) + EP

�
V (W (T ))

��FHt �	 :
Investors are assumed to have a constant relative risk aversion also known as iso-

elastic utility. Denote  as the parameter of risk aversion and assume the utility
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function V (W ) is a power function of the following form

V (W (T )) =
1

1� W (T )1� (8.11)

with its �rst derivative

V 0 (W (T )) = W (T )� :

In a discrete time framework it is in general not possible to construct a risk-free repli-

cating portfolio (Brennan, 1979). In order to price derivatives using an equilibrium

approach we need to solve the aggregation problem, that is when can utility functions

of all investors be combined to give a average investor. Rubinstein (1974) showed

that this could be done assuming all investors have identical cautiousness and beliefs.

For further details see for instance Rubinstein (1974) and Brennan (1979). Rubin-

stein (1976) proved the Black-Scholes formula in a discrete time model assuming

constant proportional risk aversion and bivariate log-normality, see Brennan (1979).

Optimization of the utility function as well as the pricing equilibrium condition

will be done in order to get the adjusted drift, so it can be applied to pricing options.

Lemma 8.8 The �rst order conditions are

U 0 (c (t))� er(T�t)EP
�
V 0 (W (T ))

��FHt � = 0
and

EP
�
V 0 (W (T ))Si (T )

��FHt �� Si (t) er(T�t)EP �V 0 (W (T ))
��FHt � = 0 for all i:

(8.12)

Proof. (Rostek and Schöbel, 2010).
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We want to maximizes the objective function therefore we di¤erentiate with

respect to the initial wealth and number of units invested for all assets.

d

dc (t)

24U (c (t)) + EP
24V

0@ (W (t)� c (t)) er(T�t)

+
PN

i=1 ni
�
Si (T )� Si (t) er(T�t)

�
1A ��FHt

3535
=

d

dc (t)
U (c (t)) + EP

24 d

dc (t)
V

0@ (W (t)� c (t)) er(T�t)

+
PN

i=1 ni
�
Si (T )� Si (t) er(T�t)

�
1A ��FHt

35
= U 0 (c (t)) + EP

24�er(T�t)V 0

0@ (W (t)� c (t)) er(T�t)

+
PN

i=1 ni
�
Si (T )� Si (t) er(T�t)

�
1A ��FHt

35
= U 0 (c (t))� er(T�t)EP

�
V 0 (W (T ))

��FHt �
Setting the above equal to zero we obtain the �rst equation.

d

dni

24U (c (t)) + EP
24V

0@ (W (t)� c (t)) er(T�t)

+
PN

i=1 ni
�
Si (T )� Si (t) er(T�t)

�
1A ��FHt

3535
= EP

"
d

dni
V

 
(W (t)� c (t)) er(T�t) +

NX
i=1

ni
�
Si (T )� Si (t) er(T�t)

�! ��FHt
#

= EP

24�Si (T )� Si (t) er(T�t)�V 0

0@ (W (t)� c (t)) er(T�t)

+
PN

i=1 ni
�
Si (T )� Si (t) er(T�t)

�
1A ��FHt

35
= EP

�
Si (T )V

0 (W (T ))� Si (t) er(T�t)V 0 (W (T ))
��FHt �

= EP
�
Si (T )V

0 (W (T ))
��FHt �� Si (t) er(T�t)EP �V 0 (W (T ))

��FHt �
Si (t) is measurable with respect to FHt : Setting the above equal to zero yields the

second equation.

Theorem 8.3 The pricing equilibrium condition is

S (t) = EP
�
z (t; T )S (T )

��FHt �
where z (t; T ) is the stochastic discount factor given by

z (t; T ) = e�r(T�t)
EP [V

0 (W (T )) jS (T ) ]
EP [V 0 (W (T )) jFHt ]

:
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Proof. (Rostek and Schöbel, 2010).

From the second constraint, equation (8:12) we have that

EP
�
V 0 (W (T ))S (T )

��FHt � = er(T�t)S (t)EP
�
V 0 (W (T ))

��FHt � :
Solving for the initial price S (t) and using properties of conditional expectation we

have

S (t) = e�r(T�t)
EP
�
V 0 (W (T ))S (T )

��FHt �
EP [V 0 (W (T )) jFHt ]

= e�r(T�t)EP

�
[V 0 (W (T ))S (T )]

EP [V 0 (W (T )) jFHt ]
��FHt � :

Since EP
�
V 0 (W (T ))

��FHt � is FHt measurable and using the tower property of con-

ditional expectation we have

S (t) = e�r(T�t)EP

�
EP

�
[V 0 (W (T ))S (T )]

EP [V 0 (W (T )) jFHt ]
jS (T )

� ��FHt �
= e�r(T�t)EP

��
EP [V

0 (W (T ))S (T ) jS (T )]
EP [V 0 (W (T )) jFHt ]

� ��FHt �
= e�r(T�t)EP

�
S (T )

�
EP [V

0 (W (T )) jS (T )]
EP [V 0 (W (T )) jFHt ]

� ��FHt � :
Since S (T ) is S (T ) measurable and setting

z (t; T ) =
EP [V

0 (W (T )) jS (T )]
EP [V 0 (W (T )) jFHt ]

(8.13)

it follows

S (t) = EP
�
z (t; T )S (T )

��FHt � :

A contingent claim C (t; S (t)) whose payo¤ at time T depends solely on S (T )

can be priced as follows

C (t; S (t)) = EP
�
z (t; T )C (T; S (T ))

��FHt � : (8.14)
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Lemma 8.9 The stochastic discount factor with respect to the utility function

V (W (T )) is

z (t; T ) = e�r(T�t)S (T )
��SW

�W
�S exp

�
�SW

�W
�S

MS �
1

2
2�2W�

2
SW

�
:

Proof. (Rostek and Schöbel, 2010).

The utility function V (W (T )) as de�ned in (8:11) and substituting into (8:13)

we have

z (t; T ) = e�r(T�t)
EP
�
W (T )� jS (T )

�
EP
�
W (T )� jFHt

� :
For a constant , the distribution of the process lnW (T )� = � lnW (T ) is nor-

mally distributed with �MW and 2�2W being the �rst and second moments respec-

tively of the process, refer to lemma 8.4. Using properties of the log-normal distribu-

tion it follows thatW (t)� is log-normally distributed with the following expectation

EP
�
W (t)�

��FHt � = exp��MW +
1

2
2�2W

�
:

The distribution of the conditional process W (t)� given S (t) has a conditional

expectation �MW jS and conditional variance 2�2W jS ; refer to lemma 8.7. From

(8:10) it follows thatW (t)� given S (T ) is log-normally distributed with the expec-

tation

EP
�
W (T )� jS (T )

�
= S (T )

��SW
�W
�S exp

0@ �MW + �SW
�W
�S
MS

+1
2
2�2W (1� �2SW )

1A :

The discount factor follows as

z (t; T ) = e�r(T�t)

S (T )
��SW

�W
�S exp

0@ �MW + �SW
�W
�S
MS

+1
2
2�2W (1� �2SW )

1A
exp

�
�MW +

1
2
2�2W

�

= e�r(T�t)

S (T )
��SW

�W
�S exp

0@ �MW + �SW
�W
�S
MS

+1
2
2�2W � 1

2
2�2W�

2
SW

1A
exp

�
�MW +

1
2
2�2W

�
= e�r(T�t)S (T )

��SW
�W
�S exp

�
�SW

�W
�S

MS �
1

2
2�2W�

2
SW

�
:
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Lemma 8.10 In equilibrium we have

MS = lnS (t) + r (T � t)�
1

2
�2S + �SW�W�S: (8.15)

Proof. (Rostek and Schöbel, 2010).

From the pricing equation we have

S (t) = EP
�
z (t; T )S (T )

��FHt �
= EP

24e�r(T�t)S (T )��SW �W
�S exp

0@ �SW
�W
�S
MS

�1
2
2�2W�

2
SW

1AS (T )
��FHt

35
= e�r(T�t)EP

24S (T )1��SW �W
�S exp

0@ �SW
�W
�S
MS

�1
2
2�2W�

2
SW

1A��FHt
35

= e�r(T�t)EP

�
S (T )

1��SW
�W
�S

��FHt � exp��SW �W�S MS �
1

2
2�2W�

2
SW

�
:

The distribution of lnS (T )1��SW
�W
�S is normally distributed with the following

moments, refer to lemma 8.3�
1� �SW

�W
�S

�
lnS (T ) � N

 �
1� �SW

�W
�S

�
MS;

�
1� �SW

�W
�S

�2
�2S

!
:

It follows that S (T )1��SW
�W
�S is log-normally distributed with the following condi-

tional expectation

EP

�
S (T )

1��SW
�W
�S

��FHt � = exp
 �

1� �SW
�W
�S

�
MS +

1

2
�2S

�
1� �SW

�W
�S

�2!
:
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Substituting the expectation into the pricing equation we have

S (t) er(T�t)

= exp

0B@
�
1� �SW �W

�S

�
MS +

1
2
�2S

�
1� �SW �W

�S

�2
+ �SW

�W
�S
MS

�1
2
2�2W�

2
SW

1CA
= exp

0B@ MS � �SW �W
�S
MS +

1
2
�2S

�
1� 2�SW �W

�S
+ 2�2SW

�2W
�2S

�
+�SW

�W
�S
MS � 1

2
2�2W�

2
SW

1CA
= exp

0@ MS � �SW �W
�S
MS +

1
2
�2S � �2S�SW �W

�S
+ 1

2
�2S

2�2SW
�2W
�2S

+�SW
�W
�S
MS � 1

2
2�2W�

2
SW

1A
= exp

�
MS +

1

2
�2S � �SW�W�S

�
therefore

exp (lnS (t) + r (T � t)) = exp
�
MS +

1

2
�2S � �SW�W�S

�
:

Taking logs on both sides we get

lnS (t) + r (T � t) =MS +
1

2
�2S � �SW�W�S:

Lemma 8.11 Equation (8:15) can be rewritten as

� (T � t) + ��̂T;t = r (T � t) + ��Wh
�H (T � t)2H : (8.16)

Proof. (Rostek and Schöbel, 2010).

Equating (8:5) and (8:15) we have

r (T � t) = � (T � t)� 1
2
�H�

2 (T � t)2H + ��̂T;t +
1

2
�2S � �SW�W�S:
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Substituting in (8:9), (8:8) and (8:6) we get

r (T � t) = � (T � t)� 1
2
�H�

2 (T � t)2H + ��̂T;t +
1

2
�2�H (T � t)2H

�
��Wh

�H (T � t)2H
q
�2�H (T � t)2H

qPM
j=1 �

2
Wj
�Hj (T � t)

2Hjq
�2�H (T � t)2H

qPM
j=1 �

2
Wj
�Hj (T � t)

2Hj

= � (T � t) + ��̂T;t � ��Wh
�H (T � t)2H :

The left hand side of (8:16) is the conditional drift of the stock process which

is composed of the unconditional drift and an adjustment resulting from the price

history.

8.5 Option Pricing Formula

The assumptions to pricing the fractional Black-Scholes formula and the fractional

Black formula are as follows:

1. The market consists of a bond and a �nite number of assets with dynamics

given in equation (8:7) :

2. Stochastic di¤erentials are interpreted in the Wick Itô Skorohod sense.

3. The stochastic processes driving the asset prices are independent.

4. The Hurst parameters 0 < Hj < 1; in equation (8:7) are constant over time.

5. The drifts �i and volatilities �ij are constant and the r is a constant risk-free

rate of interest and the same for all maturities.

6. We consider a single stock price following the dynamics of equation (6:1) :
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7. Market participants have a constant relative risk aversion.

8. The investors maximizes his utility over a single period.

9. Market participants have the same cautiousness and beliefs.

10. Short selling is allowed.

11. There are no transactions costs or taxes.

12. There are no dividends.

13. Trading is done in a discrete time.

14. All securities are perfectly divisible.

8.5.1 Conditional Fractional Black-Scholes Formula

Theorem 8.4 The price of a conditional fractional European call option with a

strike price K and maturity T is

~CH (t; S (t)) = S (t)N
�
~dH1

�
�Ke�r(T�t)N

�
~dH2

�
where

~dH1 =

ln

�
S (t)

K

�
+ r (T � t) + 1

2
�H�

2 (T � t)2H

p
�H� (T � t)H

and

~dH2 =

ln

�
S (t)

K

�
+ r (T � t)� 1

2
�H�

2 (T � t)2H

p
�H� (T � t)H

:

Proof. (Rostek and Schöbel, 2010).

Let S (T ) = X, then lnX � N (MS;�
2
S), i.e. normally distributed. For 0 < x <

1 it follows that X is log-normally distributed with the following density function

f (x) =
1

x
p
2��2S

exp

 
�1
2

(lnx�MS)
2

�2S

!
:
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Consider a contingent claim that has a payo¤ max fx�K; 0g when x > K: The

function ln (x�K) is de�ned for all K < x <1: From (8:14) we have

CH (t; S (t)) = EP
�
CH (T; x) z (x)

��FHt �
= EP

�
max f(x�K) ; 0g z (x)

��FHt �
=

Z 1

K

f (x) (x�K) z (x) dx

=

Z 1

K

1

x
p
2��2S

(x�K) exp
 
�1
2

(lnx�MS)
2

�2S

!
z (x) dx:

It follows

exp

 
�1
2

(lnx�MS)
2

�2S

!
z (x)

= e�r(T�t)x
��SW

�W
�S exp

�
� 1

2�2S
(lnx�MS)

2 + �SW
�W
�S

MS �
1

2
2�2W�

2
SW

�

= e�r(T�t)x
��SW

�W
�S exp

0BB@ � 1

2�2S
(2 lnx� 2 ln xMS +M2

S)

� 1

2�2S
(�2�SW�S�WMS + 2�2W�

2
S�

2
SW )

1CCA
= e�r(T�t)x

��SW
�W
�S exp

0@� 1

2�2S

0@ 2 ln x� 2 ln xMS +M2
S

�2�SW�S�WMS + 2�2W�
2
S�

2
SW

1A1A
= e�r(T�t) exp

0@��SW �W�S lnx
0@� 1

2�2S

0@ 2 ln x� 2 ln xMS +M2
S

�2�SW�S�WMS + 2�2W�
2
S�

2
SW

1A1A1A
= e�r(T�t) exp

0@� 1

2�2S

0@ 2�SW�S�W lnx+ 2 lnx� 2 ln xMS +M2
S

�2�SW�S�WMS + 2�2W�
2
S�

2
SW

1A1A
= e�r(T�t) exp

�
� 1

2�2S

�
2 ln x� 2 ln x (MS � �SW�S�W ) + (MS � �SW�S�W )

2��
= e�r(T�t) exp

�
� 1

2�2S

�
[lnx� (MS � �SW�S�W )]

2��
= e�r(T�t) exp

 
� 1

2�2S

 �
lnx�

�
lnS (t) + r (T � t)� 1

2
�2S

��2!!
:
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Setting

m = lnS (t) + r (T � t)� 1
2
�2S

= lnS (t) + r (T � t)� 1
2
�2�H (T � t)2H

and

v = �2S

= �2�H (T � t)2H :

Then we have

CH (t; S (t)) = EP
�
CH (T; x) z (t; T )

��FHt �
= e�r(T�t)

Z 1

K

1

x
p
2�v

(x�K) exp
�
� 1
2v

�
[lnx�m]2

��
dx

= e�r(T�t)
Z 1

K

1

x
p
2�v

exp

 
�1
2

(lnx�m)2

v

!
xdx

�Ke�r(T�t)
Z 1

K

1

x
p
2�v

exp

 
�1
2

(lnx�m)2

v

!
dx:

Calculation of the �rst integral

e�r(T�t)
Z 1

K

1

x
p
2�v

exp

 
�1
2

(lnx�m)2

v

!
xdx

= e�r(T�t)
Z 1

K

1p
2�v

exp

 
�1
2

�
lnx�mp

v

�2!
dx:

For the transformations set

y =
lnx�mp

v
) dy =

1

x
p
v
dx

solving for x we get

x = exp
�
m+

p
vy
�
) dx = x

p
vdy:

Solving boundary condition, since x > K it follows

exp
�
m+

p
vy
�

> K )

y >
lnK �mp

v
:
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Denote

� ~dH2 =
lnK �mp

v

and

~dH2 =
m� lnKp

v
:

Thus

e�r(T�t)
1Z

� ~dH2

1p
2�
p
v
exp

�
�1
2
y2
�
exp

�
m+

p
vy
�p

vdy

= e�r(T�t)em
1Z

� ~dH2

1p
2�
exp

�
�1
2
y2 +

p
vy

�
dy

= e�r(T�t)em
1Z

� ~dH2

1p
2�
exp

�
�1
2

�
y2 � 2

p
vy
��

dy

= e�r(T�t)em
1Z

� ~dH2

1p
2�
exp

�
�1
2

�
y �
p
v
�2
+
1

2
v

�
dy

= exp

�
m+

1

2
v � r (T � t)

� 1Z
� ~dH2

1p
2�
exp

�
�1
2

�
y �
p
v
�2�

dy:

Setting

z =
�
y �
p
v
�
) dz = dy:

Therefore it follows

exp

�
m+

1

2
v � r (T � t)

� 1Z
� ~dH2 �

p
v

1p
2�
exp

�
�1
2
z2
�
dz

= exp

�
m+

1

2
v � r (T � t)

� ~dH2 +
p
vZ

�1

1p
2�
exp

�
�1
2
z2
�
dz

= exp

�
m+

1

2
v � r (T � t)

�
N
�
~dH2 +

p
v
�

= exp

�
m+

1

2
v � r (T � t)

�
N
�
~dH1

�
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with

~dH1 = ~dH2 +
p
v

=
m� lnKp

v
+
p
v

=
m+ v � lnKp

v
:

Calculation of the second integral

Ke�r(T�t)
1Z
K

1

x
p
2�v

exp

 
�1
2

(lnx�m)2

v

!
dx

= Ke�r(T�t)
1Z

� ~dH2

1

exp (m+
p
vy)
p
2�v

exp

�
�1
2
y2
�
exp

�
m+

p
vy
�p

vdy

= Ke�r(T�t)

~dH2Z
�1

1p
2�
exp

�
�1
2
y2
�
dy

= Ke�r(T�t)N
�
~dH2

�
:

The price of the conditional fractional European call option is

EP
�
CH (t; S (t))

��FHt �
= exp

�
m+

1

2
v � r (T � t)

�
N
�
~dH1

�
�Ke�r(T�t)N

�
~dH2

�
= exp

0@ lnS (t) + r (T � t)� 1
2
�2�H (T � t)2H

+1
2
�2�H (T � t)2H � r (T � t)

1AN
�
~dH1

�
�Ke�r(T�t)N

�
~dH2

�
= S (t)N

�
~dH1

�
�Ke�r(T�t)N

�
~dH2

�
where

~dH1 =
m+ v � lnKp

v

=
lnS (t) + r (T � t)� 1

2
�H�

2 (T � t)2H + �H�
2 (T � t)2H � lnKq

�2�H (T � t)2H
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and

~dH2 =
m� lnKp

v

=
lnS (t) + r (T � t)� 1

2
�H�

2 (T � t)2H � lnKq
�2�H (T � t)2H

:

Following similar arguments to those of a conditional fractional European call,

the price of a conditional fractional European put option with a strike price K and

maturity T is

PH (t; S (t)) = Ke�r(T�t)N
�
� ~dH2

�
� S (t)N

�
� ~dH1

�
:

Thus one can obtain the put-call parity relationship

CH (t; S (t))� PH (t; S (t))

= S (t)N
�
~dH1

�
�Ke�r(T�t)N

�
~dH2

�
�
�
Ke�r(T�t)N

�
� ~dH2

�
� S (t)N

�
� ~dH1

��
= S (t)�Ke�r(T�t):

8.5.2 Conditional Fractional Black Formula

A futures contract is an agreement between two parties in which an individual agrees

at time t to buy an asset S (t) from the other party at time T for a price F (t). Futures

contracts are traded on exchanges. A forward contract is an agreement between two

parties in which an individual agrees at time t to buy an asset S (t) from the other

party at time T for a price f (t) : The di¤erence between a futures contact and a

forward contact is that there are daily settlements with the futures. In other words if

the futures price falls on a day then the party who is short has to pay the exchange

money which is then transferred to the party who is long and vice versa.
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Lemma 8.12 Assume a dividend yield of zero and if we denote a forward contract

by f then the price is

f (t) = er(T�t)S (t) :

Proof. If we assume that

f (t) > S (t) er(T�t)

then at time t one could borrow the amount S (t) rands and buy the stock S (t) :

Then the individual could agree to sell the stock at time T for the price F (t) :

At time T this individual owes S (t) er(T�t) to the bank and gains f (t) : Thus the

individual will make a riskless pro�t of f (t)� S (t) er(T�t): If we assume that

f (t) < S (t) er(T�t)

then at time t the individual could short sell the stock and the individual invests

the proceeds into the bank. The individual also enters a forward contract where he

agrees to buy f (t). At time T he receives S (t) er(T�t) from the bank and pays f (t),

thus making a riskless pro�t of S (t) er(T�t) � f (t) : Therefore

f (t) = S (t) er(T�t):

Lemma 8.13 If interest rates are constant then a futures price is the same as a

forward price

F (t) = er(T�t)S (t) : (8.17)

Proof. (Hull, 2006).

Let � be a constant daily interest rate. Let F be a futures contact expiring in n

days. Let F (i) be the price at the end of day i for 0 < i < n: Consider the following
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strategy, take a total long futures position of ei� at the end of day i� 1: The pro�t

and loss from the position on day i is

(F (i)� F (i� 1)) ei�:

Compounded at a risk free rate till the end of day n this becomes

(F (i)� F (i� 1)) e�ie(n�1)� = (F (i)� F (i� 1)) en�:

The value of the entire investment strategy at the end of day n is

nX
i=1

(F (i)� F (i� 1)) en�

= (F (n)� F (0)) en�

= (S (T )� F (0)) en�:

Since the sum is telescoping and the futures price at the end of day n is the same

as the terminal asset spot price S (T ) : An investment of F (0) in a risk-free bond

combined with this strategy has initial cost of F (0) as it costs nothing to enter into

a futures contract. At time T this new portfolio has value

F (0) e�n + (S (T )� F (0)) en� = S (T ) en�:

Suppose that a forward price at the end of day 0 is f (0) : Investing f (0) in a riskless

bond and taking a long forward position of en� forward contract also gives �nal

wealth of

S (T ) en�:

To avoid arbitrage we must have

f (0) = F (0) :
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Theorem 8.5 The price at every t 2 [0; T ] of an European call option with strike

price K and maturity T on the futures contact F; is given as

~cH (t; F (t)) = e�r(T�t)
�
F (t)N

�
~dH�1

�
�KN

�
~dH�2

��
with

~dH�1 =
ln
F (t)

K
+
1

2
�2�H (T � t)2Hq

�H�2 (T � t)2H

and

~dH�2 =
ln
F (t)

K
� 1
2
�2�H (T � t)2Hq

�H�2 (T � t)2H
:

Proof. Adapted from (Björk, 2004).

Consider a futures contract F (t; T1; S (t)) on delivery of S (T1) at time T1 and a

fractional European call option with exercise price K on the underlying future. It

follows that the call option price is

~cH (T ) = max f(F (T; T1; S (T ))�K) ; 0g

= max
��
S (T ) er(T1�T ) �K

�
; 0
	

= er(T1�T )max
��
S (T )� e�r(T1�T )K

�
; 0
	
:

Thus the futures option consists of er(T1�T ) call options on the underlying asset S

with exercise date T and exercise price isKe�r(T1�T ). Applying theorem 8:4 it follows

~cH (t) = er(T1�T )
�
S (t)N

�
~dH�1

�
�Ke�r(T�t)e�r(T1�T )N

�
~dH�2

��
where

~dH�1 =

ln

�
S (t)

Ke�r(T1�T )

�
+ r (T � t) + 1

2
�H�

2 (T � t)2H

p
�H� (T � t)H

and

~dH�2 =

ln

�
S (t)

Ke�r(T1�T )

�
+ r (T � t)� 1

2
�H�

2 (T � t)2H

p
�H� (T � t)H

:
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From (8:17) we have

S (t) = F (t) e�r(T1�t):

The price follows as

~cH (t; F (t)) = er(T1�T )
�
F (t) e�r(T1�t)N

�
~dH�1

�
�Ke�r(T�t)e�r(T1�T )N

�
~dH�2

��
= e�r(T�t)

�
F (t)N

�
~dH�1

�
�KN

�
~dH�2

��
where

~dH�1 =

ln

�
F (t) e�r(T1�t)

Ke�r(T1�T )

�
+ r (T � t) + 1

2
�H�

2 (T � t)2H

p
�H� (T � t)H

=

ln

�
F (t)

K

�
� r (T1 � t) + r (T1 � T ) + r (T � t) + 1

2
�H�

2 (T � t)2H

p
�H� (T � t)H

=

ln

�
F (t)

K

�
+ 1

2
�H�

2 (T � t)2H

p
�H� (T � t)H

and following similar arguments we have

~dH�2 =

ln

�
F (t)

K

�
� 1

2
�H�

2 (T � t)2H

p
�H� (T � t)H

:

Conditional Black formula for a put option ~pH at time T is

~pH (t; F (t)) = e�r(T�t)
�
KN

�
� ~dH�2

�
� F (t)N

�
� ~dH�1

��
:

8.6 Model Analysis

Rostek (2009) looks at the values of the fractional European call option for varying

Hurst parameters. Rostek de�nes two e¤ects, the narrowing e¤ect �H ; see equation
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Table 8.1: Power e¤ect.
Persistent Anti-Persistent

Short-Run Less volatile, lower price More volatile, higher price
Long-Run More volatile, higher price Less volatile, lower price

(8:1) and the power e¤ect (T � t)2H . The narrowing e¤ect 0 � �H � 1 only depends

on the Hurst parameter 0 � H � 1. When

lim
H!0

�H =
1

2
;

lim
H! 1

2

�H = 1

and

lim
H!1

�H = 0:

The critical point is when H = 1
2
which is the maximum and �H = 1; see �gure 8.1:

For H > 1
2
the function is decreasing, thus the fractional variance is multiplied by a

smaller number, which reduces the prices. Rostek�s explanation for this is that the

further away from 1
2
the less the uncertainty. The power e¤ect depends on the time

to maturity. For a persistent time series there will be less short run deviations from

the mean and more long run deviations from the mean. For an anti-persistent series

the e¤ect will be the opposite, see table 8.1.

The total e¤ect of the Hurst parameter on the call price is a result of these two

e¤ects.

The price of a conditional fractional European call option with respect to di¤erent

spot prices S is graphed for the anti-persistent, persistent and normal case. In �gure

8.2 the time to expiration is T = 0:25; and the graph displays that the price of the

persistent case will be less than the normal and the anti-persistent case. While in

�gure 8.3 the time to expiration is T = 1 and all the prices will be close together with
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Figure 8.1: Rostek and Schöbel. Narrowing factor �H :

the normal one being higher and the persistent case will be the lowest for varying

spot prices. In �gure 8.4 the time to expiration is T = 2 and the graph shows that

the price of the persistent case will be larger than that of the normal case.

We plot the pricing formula for varying Hurst parameters, for a �xed time T and

for three di¤erent t. For shorter time to expiration T = 0:5 and t = 0:1; t = 0:25 and

t = 0:4 �gure 8.5 shows the price of a call option decreases as the Hurst parameter

increases. For larger time to expiration T = 5 and t = 1; t = 2:5 and t = 4 �gure

8.6 shows the price of a call option increases and then rapidly decreases as the Hurst

parameter increases. This is due to the two above-mentioned e¤ects.

The conditional Black functions were plotted for varying volatility � 2 (0; 1) and

varying Hurst parameters H 2
�
0; 1

2

�
[
�
1
2
; 1
�
and for di¤erent times to maturity.

Setting F (t) = 110; S (t) = 100; K = 100 and choosing a time to maturity to be
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Figure 8.2: Rostek and Schöbel price of European call for varying spot for H=0.2,
H=0.5 and H=0.·8. Fixed parameters K = 100; r = 0:02; � = 0:2 and T = 0:25 and
t = 0:
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Figure 8.3: Rostek and Schöbel price of European call for varying spot for H=0.2,
H=0.5 and H=0.8. Fixed parameters K = 100; r = 0:02; � = 0:2 and T = 1 and
t = 0:
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Figure 8.5: Rostek and Schöbel price of European call with varying Hurst and t = 0:1,
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Figure 8.6: Rostek and Schöbel price of European call with varying Hurst and t = 1,
t = 2:5 and t = 4: Fixed parameters K = 100, S = 100 ; � = 0:2; r = 0:02 and
T = 5:

(T � t) = 0:25 we obtain �gure 8.7. As � ! 1 and for all H ! 0 we see that the

prices are the largest.

Choosing (T � t) = 0:75 we obtain �gure 8.8 and as � ! 1 and H ! 1
2
the prices

are the largest.

Setting the time to maturity (T � t) = 5 we obtain �gure 8.9 and as � ! 1 and

for the persistent case the prices are the largest.

In general for all time horizons the curves are parabolic increasing concave down.

As the time to maturity increase the prices for the persistency case increase. A small

volatility and a vary Hurst has little a¤ect on the price.
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Figure 8.7: Black under Rostek and Schöbel Price vs Hurst vs Volatility Ft =
110; St = 100; K = 100; (T � t) = 0:25:
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Figure 8.8: Rostek and Schöbel Price vs Hurst vs Volatility Ft = 110; St = 100; K =
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Figure 8.9: Rostek and Schöbel Price vs Hurst vs Volatility Ft = 110; St = 100; K =
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Chapter 9

Empirical Performance Part 1: Techniques

9.1 Introduction

An investigation of the South African stock market was done in chapter 3 and it was

found that the price changes of stocks returns are not always independent thus the

application of Brownian motion is not always sensible and newer methods should be

looked into. Wilcox and Gebbie (2008) did interesting research in the South African

market, in particular they used a modi�ed Rescaled Range analysis and found long

term memory in the �rst �ve eigenvector components of the estimated covariance

matrix in the Johannesburg Stock Exchange (JSE) data.

Three fractional Black-Scholes and Black formulas were presented in chapters

6, 7 and 8 where the pricing formula depends on two unknown parameters namely

the volatility parameter � and the Hurst parameter H. The option pricing formula

provided by Hu and Øksendal (2003) prices a European call option at a certain point

in time namely at t = 0: Due to this we conjectured a hypothetical Black-Scholes

and Black pricing formula under Hu and Øksendal�s framework where the volatility

enters the pricing equation through the term �2 (T � t)2H ; see conjectures 6.1 and

6.2 in chapter 6.

Necula (2002) generalized the European call option pricing formula to an

arbitrary current time t and a quasi-conditional Black formula is proven under

182

 
 
 



183

Necula�s framework where the volatility enters the pricing equation through the

term �2
�
T 2H � t2H

�
, see theorem 7.6 in chapter 7.

Rostek and Schöbel (2010) proves a fractional European option pricing formula

using equilibrium pricing of options where the traders are assumed to have a con-

stant relative risk aversion and trade in discrete time. The pricing formula now

also depends on a narrowing factor �H which depends on the Hurst parameter. A

conditional Black formula is proved as an extension of Rostek and Schöbel�s option

pricing formula for European options where the volatility enters the pricing equation

through the term �H�
2 (T � t)2H , see theorem 8.5 in chapter 8.

Comparing this to the classical Black-Scholes formula, see theorem 2.3 in chapter

2, where the volatility enters the pricing equation through the term � (T � t) and

it is clear that when setting H = 1
2
in the fractional Black-Scholes formulas the

classical Black-Scholes formula is obtained in all cases. The same holds for the Black

formulas.

The following questions arise: How do these fractional Black models compare

to each other and to the classical Black model? Which of these model results have

the lowest pricing errors? How does the volatility pattern compare between these

models? Is there an implied Hurst parameter? What is the relationship between the

volatility parameter and the Hurst parameter?

The option value of the classical Black formula depends critically on the expected

future volatility. Realized volatilities are obtained using historical stock data while

implied volatilities are obtained by inverting the Black-Scholes (Black) option pricing

formula. Implied volatility has to be inferred from option prices. The fractional
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models cannot be used if they are not calibrated to the market. Without market cal-

ibration there would be obvious arbitrage opportunities. Implied volatility is impor-

tant in many applications including option pricing, risk management, hedging and

�nancial modeling. The implied volatility that is derived from option prices depends

on the assumption that is made concerning the underlying asset price distribution.

The classical Black-Scholes model assumes that the underlying distribution of the

stock returns follows a log-normal distribution. Under this assumption the implied

volatilities of this model should be the same for options that have the same under-

lying asset irrespective of the strike prices and time to maturity. However in practice

the implied volatilities di¤er with di¤erent time to maturity and di¤erent strike

prices. The implied volatilities are a function of time and the underlying stock and

plotting the implied volatilities against the strike yields a volatility pattern that

resembles a skew. Before the 1987 market crash the smile curve was �at and after-

wards it formed a skew, see Derman (2007). On a day the implied volatility is

a quoting convention that incorporates the underlying price, strike price, time to

maturity and the trading of option is like trading volatility, see for example SAVI

squared futures on the Johannesburg Stock Exchange (JSE). The implied volatility

is a number that equates the price of the Black-Scholes (Black) option to that of the

observed market price of the option (Rebonato, 2004). The Black-Scholes (Black)

option pricing formulas cannot be analytically inverted such that we get the implied

volatility as a explicit function of the stock, strike, time to maturity, interest rates

and the option price, and numerically methods such as Newton-Raphson should

be used see Hurst, Platen and Rachev (1999). Imagine a three dimensional graph

with the implied volatility on the z-axis, the strike on the x-axis and time on the

y-axis, this is known as the volatility surface see Kotzé, Joseph, Naido, Boardman

and de Wet (2009). Gatheral and Lynch (2002) stochastic volatility models incorpo-

rate di¤erent strikes and di¤erent times to maturity. It has been noted that implied

 
 
 



185

volatilities decrease as the stock price rises and vice versa. Black (1976) wrote " I

have believed for a long time that stocks are related to volatility changes. When

stocks go up, volatilities seems to go down; and when stocks go down volatilities

seems to go up." Option prices are sensitive to volatility thus small changes in the

volatility have a large e¤ect on the price of an option.

Cajueiro and Barbachan (2003) compared Necula�s fractional Black-Scholes

option pricing formula with that of the classical Black-Scholes model using Brazilian

stock returns and found that the model does not deal with fat tails. Krzywda (2011)

compared Rostek and Schobël�s Black option pricing formula with that of the

classical Black model using Warsaw stock returns. In both of the investigations, a

constant historical Hurst parameter was obtained using the Rescaled Range analysis

and the volatility was estimated by a method that was introduced by Kukush,

Mishura and Valkeila (2002). ·Inkaya (2011) used the Dow Jones Industrial Average

index to price options using fractional Brownian motion under Hu and Øksendal and

Necula�s framework and followed the methodology of Zhang, Xiao and He (2009).

The di¤erent fractional Black formulas were investigated as a function of a

varying Hurst and volatility parameters. A large collection of volatility and Hurst

parameter combinations was generated and input to obtain prices with all other

parameters �xed. Figures 9.1, 9.2 and 9.3 plot the obtained prices on the horizontal

axis against all the Hurst and volatilities that correspond to each price. It can clearly

be seen that there is a range of possible Hurst and volatility parameters that give the

same price, and there is hence no unique volatility and Hurst parameter combination

that yields a speci�c price.

Fixing a constant Hurst parameter the implied volatility can be computed by

inverting the option valuation formula and solving for the implied volatility. The
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Figure 9.1: Conjectured Hu and Øksendal Black formula for parameters F =
110; S = 100; K = 100; (T � t) = 5:
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Figure 9.2: Necula quasi-conditional Black formula for parameters F = 110; S = 100;
K = 100; T = 5 and t = 0:
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Figure 9.3: Black formula under Rostek and Schöbel framework for parameters F =
110; S = 100; K = 100; (T � t) = 5:

option prices are observed in the markets and the remaining parameters can be

observed directly from historical data. A heuristic optimization algorithm, simulated

annealing, was used to back out the volatility for collections of options. In pricing the

fractional Black-Scholes (Black) models both the volatility parameter and the Hurst

parameter in�uence the price of the option, therefore the out of sampling pricing

performance is done to investigate their combined presence in the pricing formula.

The two parameters both a¤ect the price signi�cantly.

Techniques are presented in order to compare empirically the performance of

these models with that of the classical Black-Scholes (Black) formula. Bakshi, Cao

and Chen (1997) present measures of empirical sampling performance, we investigate

the implied volatility and out of sampling methods.
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9.2 Backing Out Fractional Implied Volatility

The objective is to minimize the objective function which is the square absolute

di¤erence between the actual observed market price and the estimated prices. The

implementing procedure is as follows: collect n = 1; ::N futures contacts F on the

same stock S which is taken from the same point in time t. Let Tn andKn be the time

to expiration of the futures contract and strike price on the n-th option respectively.

Let �n be the implied volatility associated with the classical Black formula for the

n-th option, this is how prices are quoted. Collect historical parameters F; S; Kn; t

and Tn from the market which can be easily done as the e¢ cient market hypothesis

holds. Assume the Hurst parameterH is a constant. Let �H;n be the implied volatility

associated with the fractional Black formula for the n-th option. The implied volatil-

ities �H;n are unknown and have to be estimated empirically from the market. Let

the price of the classical Black formula be denoted as cn (F; S;Kn; t; Tn; �n) and let

cHn (F; S;Kn; t; Tn; �H;n; H) be the price of the fractional Black formula for the n-th

option. For each n; the error function "n [�H;n] is de�ned as the model price less the

market price

"n [�H;n] = cHn (F; S;Kn; t; Tn; �H;n; H)� cn (F; S;Kn; t; Tn; �n) : (9.1)

The objective is to minimizes the objective function SSE which is given as the

sum of absolute squared di¤erences of the estimated model and the actual price. The

sum of squared pricing errors is given by

min
�H;n

SSE (�H;n; t) = min
�H;n

NX
n=1

�
j"n [�H;n]j2

�
: (9.2)

Using appropriate optimization techniques the implied volatility �H;n can be

estimated for each n by minimizing the objective function. Calculations are done

similarly for put options on futures and the method is similar for the Black-Scholes

formula.
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9.3 Out-of-Sample Pricing

By �xing a constant Hurst parameter the implied volatility is backed out for either

a single option or a collection of options with the same underlying. Then use the

previous day�s implied volatility, the same constant Hurst parameter, the current

day�s observed future and stock price, to price the options. The average pricing

error is calculated as the sum of the di¤erences between the market price and the

model price. The average absolute pricing error is calculated as the sample average

of the absolute di¤erence between the market price and the model price and the

average percentage pricing error is calculated as the sample average of the market

price minus the model�s price divided by the market price.

The model is implemented in the following way: at time t� 1 assume the future

price F (t� 1), stock price S (t� 1), strike Kn and the option c (t� 1) can be

observed directly from the market. Assume a constant Hurst parameter H which

can be empirically estimated from historical data. Using this information the implied

volatility �H (t� 1) can be backed out at time t� 1 by optimizing (9:2). At time t

compute the price of the fractional future option using the parameters F (t) ; S (t) ;

Kn and using the backed out implied volatility from the previous day �H (t� 1) and

the same Hurst parameter that was used to back out the implied volatility. Next

subtract the model determined price from the option price in the market at time t.

Let t = 2; :::;M be the number of days and let n = 1; ::; N be the number of options.

Repeat the procedure for numerous days.

At time t the average pricing error is calculated as the sample average of the

di¤erence between the market price and the model price and is given by

E [j" [�H;n]j] =
1

M

1

N

MX
t=1

NX
n=1

�
c (Ft; St; Kn; t; Tn; �t)� cH (Ft; St; Kn; t; Tn; �H;t�1; H)

�
:

(9.3)
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At time t the average absolute pricing error is calculated as the sample average of

the absolute di¤erence between the market price and the model price and is given

by

E [j" [�H;n]j] =
1

M

1

N

MX
t=1

NX
n=1

��c (Ft; St; Kn; t; Tn; �t)� cH (Ft; St; Kn; t; Tn; �H;t�1; H)
�� :

(9.4)

The average percentage pricing error is calculated as the sample average of the

market price minus the model�s price divided by the market price and is given by

E [" [PE (t)]] =
1

M

1

N

MX
t=1

NX
n=1

�
c (Ft ; St; Kn; t; Tn; �t)� cH (Ft; St; Kn; t; Tn; �H;t�1; H)

c (Ft; St; Kn; t; Tn; �t)

�
:

(9.5)

9.4 Optimization Techniques

According to Hamida and Cont (2005) equation (9:2) is very di¢ cult to solve due

to the function not being convex or having any particular structure to assist gra-

dient based methods. Also computing its gradient is di¢ cult as the function has

to be computed numerically. For this reason we use a heuristic known as simulated

annealing. We used Vandekerckhove�s (2006) MATLAB code, for details about the

simulated annealing algorithm see appendix E.

 
 
 



Chapter 10

Empirical Performance Part 2: Results

10.1 Introduction

In this chapter three listed futures are considered, namely the ALSI (JSE Top 40

index), SBK (Standard Bank) and MTN (South African cell phone company). His-

torical data were taken from Safex, the South African futures exchange.

Volatility changes over time and the implied volatilities di¤er for di¤erent

strike prices. An investigation of in-the-money (ITM), at-the-money (ATM), out-

the-money (OTM) futures is done. A relationship known as put-call parity holds

between a European call and the European put option, due to this the implied

volatility for a European call option is the same as the implied volatility for the

European put options, with the same strike and maturity and all other inputs kept

the same (Hull, 2006). Put-call parity relation also holds for fractional call and

puts. The implied volatilities were backed out for di¤erent Hurst parameters and

a volatility pattern is created by plotting the implied volatility of an option as a

function of its strike price. This pattern is known as volatility skew, of which one

type of the volatility skew is the volatility smile. The volatility smile is a U shaped

curve while another common skew pattern is the volatility smirk reverse skew which

is what appears for the ALSI, SBK and MTN options. This means that the implied

volatilities for options with lower strikes are higher than those with higher strikes.

One explanation for the reverse skew is that investors buy more puts for protection

as insurance against large drops in the market (Chance, 2008).
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If S is the stock price and K is the strike price then a call option is in-the-money

when K < S: A call option is at-the-money when S = K and a call option is out-

the-money when S < K: The backed out implied volatility patterns are plotted for

each of the fractional models and the actual observed volatilities are plotted to see

whether they are comparable and whether these models exhibit changes across in-

the-money, at-the-money, out-the-money options and across maturity. Plotting the

implied volatilities against time also gives an indication how these fractional models

capture di¤erent market trends across time. The implied volatilities are compared

to that of the actual market volatilities and thus their movements and deviations

can be observed. Using these daily implied volatilities the out of sampling pricing

performance of the models is done in order to compare the pricing to that of the

classical Black formula. The pricing errors are obtained using all the parameters

from the previous day�s. The objective of this chapter is to empirically compare the

performance of these models with that of the classical formulas.

10.2 Data

We will now introduce the data which has been used in this empirical comparison.

10.2.1 South African Options

In particular we are dealing with options written on futures. The JSE only supports

American style options. An American option is the same as a European option but it

can be exercised prematurely; this is not a problem as it is never optimal to exercise

these options early (JSE, 2008). Therefore we can still use the Black formula to price

them.
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Data were obtained from the SAFEX (South African Futures Exchange) website.

ALSI, MTN and SBK options on futures were collected from 1 April 2011 till 1 June

2011. The futures price, stock price, strike price, maturity date and implied volatility

were obtained. We used equation (8:17) to estimate the interest rates. The ALSI call

options expiring on 15 June 2011 were categorized into four di¤erent groups on

the 1st of April 2011. The �rst group was the in-the-money group with moneyness�
S

K

�
> 1:03 there were four strikes. The second group was the at-the-money group

with moneyness
�
S

K

�
2 [0:97; 1:03] ; there were six strikes. The third group was

the out-of-the money group with the moneyness
�
S

K

�
< 0:97, there were eight

strikes and �nally the fourth category was all the calls with 21 strikes. The MTN

call options expiring on 15 June 2011 was categorized into one group consisting of

�ve strikes on the 1st of April 2011. The SBK call options expiring on 15 June 2011

were categorized into one group consisting of four strikes on the 1st of April 2011.

10.2.2 South African Warrants

Warrants were introduced by the Deutsche Bank in October 1997 on the JSE Secu-

rities Exchange (JSE, 2002). Warrants are securities that are issued by a party

independent of the underlying asset, giving the right but not the obligation to buy

or sell an underlying asset. The warrant style can be either American or European.

TOPSBE and TOPSBF were the European call warrants which were taken into

consideration from 1 September 2011 till 31 October 2011; these warrants are issued

by Standard Bank. From the Sharenet website we gathered the underlying stock

price and the warrant price. From Dr A. Kotzé at the Johannesburg Stock Exchange

we obtained a reliable yield curve. We assumed the yield curve was linear between

the maturities we had available and used linear interpolation to obtain interests
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rates for the in-between maturities. Using an algorithm from Benninga (2000), (see

appendix F for the code) we backed out the implied volatilities for the individual

options.

10.3 Implied Volatilities Across Time

Using (9:2) we backed out the implied volatilities for collections of ALSI, MTN and

SBK calls on futures, using the classical Black formula and the Black formula�s

based on Hu and Øksendal�s, Necula�s and Rostek and Schöbel�s frameworks using

simulated annealing. For the ALSI calls on futures, seven Hurst parameters were

chosenH = f0:5043; 0:51426; 0:54736; 0:6; 0:7; 0:8; 0:9g for the analysis. Necula�s

model using the absolute times, T 2H � t2H ; this equation necessitates that we pick

a starting time. The starting time of 1st of April 2011 was chosen as the beginning

of our investigation.

For the entire collection of ALSI calls �gures 10.1, 10.2 and 10.3 display the

implied volatilities for the above mentioned fractional Black formulas with �xed

Hurst parameters. The volatilities backed out using the standard Black formula

are also given in each �gure. In all the �gures it can be seen that the higher the

Hurst parameter the higher the backed out implied volatilities for the fractional

models. In particular, it can be seen that as the calls approach expiration Hu and

Øksendal�s and Rostek and Schöbel�s volatilities diverge while Necula�s backed out

implied volatilities converge. In other words when the Hurst parameter is higher

as the option approaches expiration the implied volatilities get bigger much faster

for the fractional Black models under the Hu and Øksendal and Rostek and Schöbel

framework. The e¤ect is opposite for implied volatilities for the Black under Necula�s

framework. This behaviour will be made clearer later on.
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Figures 10.4, 10.5, 10.6, 10.7, 10.8, 10.9 and 10.10 each show for a single Hurst

parameter the models implied volatilities. The fractional implied volatilities fol-

lowed the movements of the Black implied volatilities. It can be seen that Hu and

Øksendal�s and Rostek and Schöbel�s implied volatilities are quite close below a cer-

tain Hurst threshold, but for higher Hurst parameters they diverge and Rostek�s and

Schöbel�s implied volatilities are larger.

Three Hurst parameters H = f0:5211; 0:5454; 0:597g were chosen to back out

the implied volatilities for the MTN calls on futures. Figure 10.11 displays the implied

volatilities for the models for only a Hurst H = 0:5454: For the SBK calls on futures

four Hurst parameters were chosen H = f0:4005; 0:45298; 0:51; 0:5603; 0:6g :

Figure 10.12 shows the implied volatility for the models with H = 0:4005; it can be

seen that for the anti-persistency case the fractional implied volatilities are lower

than the normal Black implied volatilities. For the TOPSBE and TOPSBF seven

Hurst parameters were chosen H = f0:5043; 0:51426; 0:54736; 0:6; 0:7; 0:8; 0:9g

for the backing out the implied volatilities. Figure 10.13 shows the implied volatilities

for a H = 0:6:
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Hu and Øksendal Implied volatilities for 21 calls on futures
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Figure 10.1: Hu and Øksendal implied volatilities for 21 calls on futures.

Necula Implied volatilities for 21 calls on futures
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Figure 10.2: Necula implied volatilities for 21 calls on futures.
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Rostek and Schöbel Implied volatilities for 21 calls on futures
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Figure 10.3: Rostek and Schöbel implied volatilities for 21 calls on futures.

Implied volatility for 21 ALSI calls on futures with H=0.5043
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Figure 10.4: Implied volatility for 21 ALSI calls on futures with H=0.5043.
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Implied volatility for 21 ALSI calls on futures with H=0.51426
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Figure 10.5: Implied volatility for 21 ALSI calls on futures with H=0.51426.

Implied volatility for 21 ALSI calls on futures with H=0.54736
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Figure 10.6: Implied volatility for 21 ALSI calls on futures with H=0.54736.
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Implied volatility for 21 ALSI calls on futures with H=0.6
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Figure 10.7: Implied volatility for 21 ALSI calls on futures with H=0.6.

Implied volatility for 21 ALSI calls on futures with H=0.7
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Figure 10.8: Implied volatility for 21 ALSI calls on futures with H=0.7.
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Implied volatility for 21 ALSI calls on futures with H=0.8
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Figure 10.9: Implied volatility for 21 ALSI calls on futures with H=0.8.

Implied volatility for 21 ALSI calls on futures with H=0.9

0.18

0.28

0.38

0.48

0.58

0.68

0.78

0.88

0.98

1.08

1.18

28Mar 07Apr 17Apr 27Apr 07May 17May 27May 06Jun

Time

Im
pl

ie
d 

vo
la

til
ity

Black
Hu and Øksendal
Necula
Rostek and Schöbel

Figure 10.10: Implied volatility for 21 ALSI calls on futures with H=0.9.
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Implied volatilty for 5 MTN calls on futures with H=0.5454
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Figure 10.11: Implied volatilty for 5 MTN calls on futures with H=0.5454.

Implied volatilities for 4 SBK calls on futures with H=0.4005
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Figure 10.12: Implied volatilities for 4 SBK calls on futures with H=0.4005.
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Implied Volatilities for TOPSBE and TOPSBF Warrants with H=0.6
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Figure 10.13: Implied volatilities for TOPSBE and TOPSBF warrants with H=0.6.

10.3.1 Explanation

The di¤erence between the classical Black and Black-Scholes models and the con-

jectured models under Hu and Øksendal�s fractional pricing framework is that

�2 (T � t) is replaced by �2H;1 (T � t)
2H in the pricing formula, where we denote �H;1

the fractional volatility for Hu and Øksendal�s model. We can write

�2 (T � t) = �2H;1 (T � t)
2H

or

�2H;1 = �2
(T � t)
(T � t)2H

: (10.1)

Figure 10.14 displays the fractional volatility �H;1 for � = 0:2 and time to expi-

ration T = 2: When (T � t) is smaller than one then the fractional volatilities are
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Fractional volatility for Hu and Øksendal model with BlackScholes volatility = 0.2 and T=2
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Figure 10.14: Fractional volatility for Hu and Øksendal model with Black-Scholes
volatility = 0.2 and T=2.

greater than the Black-Scholes (Black) volatilities. This can also be seen from the

implied volatilities graphs above. As t ! T the fractional volatilities increase and

this is the same behaviour that can be seen with the empirical backed out volatilities

for Hu and Øksendal�s model.The di¤erence between the classical Black and Black-

Scholes models and the models under Necula�s quasi-conditional fractional pricing

framework is that �2 (T � t) is replaced by �2H
�
T 2H � t2H

�
in the pricing formula,

where we denote �H;2 the fractional volatility for Necula�s model. We can write

�2 (T � t) = �2H;2
�
T 2H � t2H

�
or

�2H;2 = �2
(T � t)

(T 2H � t2H) : (10.2)
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Fractional volatility for Necula's model with BlackScholes volatility = 0.2 and T=0.3
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Figure 10.15: Fractional volatility for Necula�s model with Black-Scholes volatility
= 0.2 and T=0.3.

Figure 10.15 displays the fractional volatility �H;2 for � = 0:2 and time to expira-

tion T = 0:3: We picked t0 as zero. As t! T the fractional volatilities decrease and

this is the same behaviour that can be seen with the empirical backed out volatili-

ties for Necula�s model and are greater than Black-Scholes (Black) volatility. While

�gure 10.16 displays the fractional volatility �H;2 for � = 0:2 and time to expiration

T = 2: In this case the fractional volatilities are below the the Black-Scholes (Black)

volatility.

The di¤erence between the classical Black and Black-Scholes models and the

models under Rostek and Schöbel�s conditional fractional pricing framework is that

�2 (T � t) is replaced by �H�2H (T � t)
2H in the pricing formula, where we denote
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Fractional volatility for Necula's model with BlackScholes volatility = 0.2 and T=2
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Figure 10.16: Fractional volatility for Necula�s model with Black-Scholes volatility
= 0.2 and T=2.

�H;3 the fractional volatility for Rostek and Schöbel�s model. We can write

�2 (T � t) = �2H;3�H (T � t)
2H

or

�2H;3 = �2
(T � t)

�H (T � t)2H
: (10.3)

Figure 10.17 displays the fractional volatility �H;3 for � = 0:2 and time to expiration

T = 2: As t ! T the fractional volatilities increase and this is the same behaviour

that can be seen with the empirical backed out volatilities for Rostek and Schöbel�s

model. The fractional volatilities are also larger than the Black-Scholes volatility

close to maturity.
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Fractional volatility for Rostek and Schöbel model with BlackScholes volatility = 0.2 and T=2
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Figure 10.17: Fractional volatility for Rostek and Schöbel model with Black-Scholes
volatility = 0.2 and T=2.

10.4 Volatility Smile

We used equations (10:1) ; (10:2) and (10:3) to get the fractional implied volatilities

for the models. The implied volatilities were backed out on the 1st of June 2011 for

the ALSI options expiring on the 15th of June 2011. Figures 10.18, 10.19 and 10.20

display the volatility smile curve for Hurst parameters H = f0:5043; 0:6; 0:9g : For

H > 1
2
we see that as the Hurst parameter increases the implied fractional volatility

smile curves move upward for the three fractional Black models. In particular we see

that when the strike is deep in-the-money the deviations from the observed implied

volatilities are greater than the other strikes. Necula�s fractional volatilities are closer

to the Black volatilities while Hu and Øksendal�s fractional volatilities are in between
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Volatility Smile for 90 calls and puts on ALSI futures with H=0.5043
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Figure 10.18: Volatility Smile for 90 calls and puts on ALSI futures with H=0.5043.

Necula�s and Rostek and Schöbel�s fractional volatilities and Rostek and Schöbel�s

fractional volatilities are the largest.

The fractional volatilities are inconsistent with the assumptions made in chapter

6, section 6.4, chapter 7, section 7.3 and chapter 8, section 8.5 where we assumed a

constant volatility on a underlying for all maturities. The fractional Black-Scholes

(Black) option pricing models imply the existence are multiple fractional implied

volatilities. The fractional vanilla option pricing models are incorrect. On a given

day with a certain strike in mind the implied volatility smile curve for di¤erent Hurst

parameters gives a good number to put into three fractional Black-Scholes (Black)

formulas to just get a price.
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Volatility Smile for 90 calls and puts on ALSI futures with H=0.6
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Figure 10.19: Volatility Smile for 90 calls and puts on ALSI futures with H=0.6.

Volatility Smile for 90 calls and puts on ALSI futures with H=0.9
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Figure 10.20: Volatility Smile for 90 calls and puts on ALSI futures with H=0.9.
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10.5 Pricing Performance

The pricing performance of the above mentioned models is done using equations

(9:4) and (9:5) : Tables 10.1, 10.2, 10.3 and 10.4 display the average absolute pricing

error and the percentage pricing error for the four groups of ALSI calls on futures

with the above chosen Hurst parameters. In appendix G tables G.1, G.2 and G.3

give the pricing errors and percentage pricing errors by option and by day for all of

the ALSI calls on futures with a Hurst parameter H = 0:54736:

Tables 10.5, 10.6 and 10.7 display the average absolute pricing error and the

percentage pricing error for the TOPSBE and TOPSBF warrants, MTN calls on

futures and SBK calls on futures for the above mentioned Hurst parameters.

As the Hurst parameter increases Hu and Øksendal�s model and Rostek and

Schöbel�s model average percentage pricing error becomes more positive implying

that the prices are getting lower. As the Hurst parameter increases Necula�s average

percentage pricing error becomes more negative implying that the prices are getting

larger. In the data studied the average percentage errors tend to be negative which

indicates the models are overpricing the options from day to day. This is not true for

all the options in the sample, but only on average see for instance G.1, the in-the-

money options are underpriced. It seems that by �nding the right Hurst parameter

Hu and Øksendal and Rostek and Schöbel�s models can give a smaller average per-

centage pricing error to that of the other models. For the average absolute pricing

error the Black model seemed to do the best, otherwise no other patterns were found.
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Table 10.1: ALSI calls on futures. In the money

4 Start Date 2011/04/04 End Date 2011/06/01

0.5043 0.51426 0.54736 0.6 0.7 0.8 0.9

Black 18.012498 18.012498 18.012498 18.012498 18.012498 18.012498 18.012498
Hu &
Øksendal 18.026863 18.062631 18.196415 18.394307 18.820003 19.4093 20.260574
Necula 17.996028 17.97009 17.879994 17.786036 17.755098 17.769587 17.781566
Rostek &
Schöbel 18.026475 18.063042 18.19366 18.393112 18.82475 19.408665 20.251002

Black 0.006689 0.006689 0.006689 0.006689 0.006689 0.006689 0.006689
Hu &
Øksendal 0.0025574 0.0088644 0.0432929 0.1015847 0.2068055 0.3122478 0.417679
Necula 0.0097838 0.0168441 0.036981 0.0664033 0.1157451 0.1567427 0.1922872
Rostek &
Schöbel 0.0024995 0.0074958 0.0439561 0.0999051 0.2071511 0.3123004 0.4166065

ALSI Futures Calls Expiring on 2011/06/15
In the money

Average Absolute Pricing Error

Average Percentage Pricing Error

Number of Options
Hurst Parameter

Table 10.2: ALSI calls on futures. At the money

6 Start Date 2011/04/04 End Date 2011/06/01

0.5043 0.51426 0.54736 0.6 0.7 0.8 0.9

Black 14.430497 14.430497 14.430497 14.430497 14.430497 14.430497 14.430497
Hu &
Øksendal 14.452676 14.440618 14.52466 14.819902 15.858503 17.237387 18.924485
Necula 14.39895 14.426945 14.406008 14.478622 14.71953 14.990342 15.236046
Rostek &
Schöbel 14.422105 14.448497 14.525178 14.83624 15.870418 17.242916 18.922303

Black 0.6932005 0.6932005 0.6932005 0.6932005 0.6932005 0.6932005 0.6932005
Hu &
Øksendal 0.6784631 0.6339232 0.462463 0.2110048 0.2734154 0.7558047 1.2317745
Necula 0.7122691 0.7287771 0.8041787 0.9054734 1.0872416 1.247004 1.384377
Rostek &
Schöbel 0.6784547 0.6317236 0.4665112 0.2116756 0.2743207 0.7560512 1.2323684

ALSI Futures Calls Expiring on 2011/06/15
At the money

Number of Options
Hurst Parameter

Average Absolute Pricing Error

Average Percentage Pricing Error
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Table 10.3: ALSI calls on futures. Out the money

8 Start Date 2011/04/04 End Date 2011/06/01

0.5043 0.51426 0.54736 0.6 0.7 0.8 0.9

Black 12.201549 12.201549 12.201549 12.201549 12.201549 12.201549 12.201549
Hu &
Øksendal 12.2096 12.211497 12.222444 12.262141 12.404469 12.587885 12.814268
Necula 12.205685 12.211891 12.214277 12.234941 12.322668 12.435347 12.545072
Rostek &
Schöbel 12.207748 12.21362 12.22434 12.261178 12.399524 12.590628 12.813643

Black 22.265037 22.265037 22.265037 22.265037 22.265037 22.265037 22.265037
Hu &
Øksendal 22.112735 21.809025 20.903119 19.447209 16.765899 14.184275 11.699985
Necula 22.294281 22.412552 22.702132 23.135782 23.955058 24.685726 25.344389
Rostek &
Schöbel 22.144483 21.839857 20.909077 19.454685 16.745921 14.174272 11.709711

ALSI Futures Calls Expiring on 2011/06/15
Out the money

Average Absolute Pricing Error

Average Percentage Pricing Error

Number of Options
Hurst Parameter

Table 10.4: ALSI calls on futures. All the calls

21 Start Date 2011/04/04 End Date 2011/06/01

0.5043 0.51426 0.54736 0.6 0.7 0.8 0.9

Black 40.215745 40.215745 40.215745 40.215745 40.215745 40.215745 40.215745
Hu &
Øksendal 40.215881 40.229523 40.263591 40.350366 40.584295 40.915756 41.327648
Necula 40.211863 40.199113 40.175294 40.137286 40.11996 40.123938 40.138608
Rostek &
Schöbel 40.222672 40.227293 40.263947 40.345247 40.583643 40.911719 41.329093

Black 40.654181 40.654181 40.654181 40.654181 40.654181 40.654181 40.654181
Hu &
Øksendal 40.520855 40.332567 39.613166 38.527657 36.500182 34.560021 32.666029
Necula 40.65847 40.715018 40.933274 41.240659 41.803962 42.300578 42.791527
Rostek &
Schöbel 40.545148 40.31065 39.652264 38.537832 36.520877 34.565609 32.668201

ALSI Futures Calls Expiring on 2011/06/15
All the calls

Number of Options
Hurst Parameter

Average Absolute Pricing Error

Average Percentage Pricing Error
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Table 10.5: ALSI warrants, TOPSBE and TOPSBF

2 Start Date 2011/09/01 End Date 2011/10/31

0.5043 0.51426 0.54736 0.6 0.7 0.8 0.9

Black
Scholes 46.07612 46.07612 46.07612 46.07612 46.07612 46.07612 46.07612
Hu &
Øksendal 45.998364 45.791276 45.135141 44.037378 43.632498 43.052791 42.552301
Necula 46.039266 45.887605 46.847187 48.206766 50.008029 50.697162 51.356258
Rostek &
Schöbel 45.984981 45.780222 45.126892 44.260013 43.65303 43.007768 42.498123

Black 2.6470886 2.6470886 2.6470886 2.6470886 2.6470886 2.6470886 2.6470886
Hu &
Øksendal 2.6486919 2.6413768 2.6302007 2.5900719 2.5411396 2.4838111 2.4300221
Necula 2.6644783 2.6777991 2.7330269 2.7774054 2.8265722 2.8259458 2.8238863
Rostek &
Schöbel 2.6432217 2.6368541 2.6268133 2.6006108 2.5420556 2.4818034 2.4276074

Average Absolute Pricing Error

Average Percentage Pricing Error

ALSI  Warrants
TOPSBE  Expiring on 2012/03/06 & TOPSBF  Expiring on 2012/03/02
Number of Options

Hurst Parameter

Table 10.6: MTN calls on futures

Start Date 2011/04/04 End Date 2011/06/01
5

0.5211 0.5454 0.597

Black 0.1133448 0.1133448 0.1133448
Hu &
Øksendal 0.1128939 0.1124757 0.1124616
Necula 0.1136021 0.113997 0.1151322
Rostek &
Schöbel 0.1128327 0.1124925 0.112427

Black 13.734046 13.734046 13.734046
Hu &
Øksendal 13.406401 13.055125 12.299014
Necula 13.875013 14.014264 14.335713
Rostek &
Schöbel 13.411999 13.059188 12.292762

MTN Futures Calls Expiring on 2011/06/15

Average Percentage Pricing Error

Number of Options
Hurst Parameter

Average Absolute Pricing Error
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Table 10.7: SBK calls on futures

Start Date 2011/04/04 End Date 2011/06/01
4

0.4005 0.45298 0.51 0.5603 0.6

Black 0.0663259 0.0663259 0.0663259 0.0663259 0.0663259
Hu &
Øksendal 0.06784 0.0669916 0.0662428 0.0659333 0.0661693
Necula 0.0668705 0.0661655 0.066421 0.06673 0.0671855
Rostek &
Schöbel 0.0678554 0.067012 0.066258 0.0659335 0.066162

Black 11.058446 11.058446 11.058446 11.058446 11.058446
Hu &
Øksendal 12.681148 11.778788 10.91622 10.111813 9.5119925
Necula 10.360816 10.767519 11.149505 11.434228 11.683333
Rostek &
Schöbel 12.651815 11.811202 10.930367 10.127603 9.5259285

SBK Futures Calls Expiring on 2011/06/15

Hurst Parameter

Average Absolute Pricing Error

Average Percentage Pricing Error

Number of Options

10.5.1 Explanation

Setting �1 = � and rewriting (10:1) we have

�1 = �H;1

s
(T � t)2H

(T � t) (10.4)

we call (10:4) the Black-Scholes (Black) equivalent volatility for Hu and Øksendal�s

framework. As substituting this volatility into the classical Black-Scholes (Black)

model will yield the fractional Hu and Øksendal�s Black-Scholes (Black) model.

Figure 10.21 shows the Black-Scholes equivalent volatility for �H;1 = 0:2 and for time

to expiration T = 2: It can be seen that as t! T , �1 decreases. Thus it can be seen

that the options prices for Hu and Øksendal�s framework will be underpriced relative

to the Black option prices. As we move from one day to the next the Black-Scholes

(Black) volatility will decrease from what was backed out the previous day; thus the
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BlackScholes Equivalent fractional volatility for Hu and Øksendal model for fractional
volatility of 0.2 and T=2
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Figure 10.21: Black-Scholes Equivalent fractional volatility for Hu and Øksendal
model for fractional volatility of 0.2 and T=2.

option prices will decrease from those predicted by the Black (Black-Scholes) model.

For H = 0:9 the decrease is more rapid. This can be seen in the average percentage

pricing errors.

Setting �2 = � and rewriting (10:2) we have

�2 = �H;2

s
T 2H � t2H
(T � t) (10.5)

we call (10:5) the Black-Scholes (Black) equivalent volatility for Necula�s framework.

Figure 10.22 shows the Black-Scholes equivalent volatility for �H;2 = 0:2 and for

time to expiration T = 2: It can be seen that as t ! T , �2 increases. Thus it can

be seen that the options prices for Necula�s framework will be higher relative to the

Black option prices. As we move from one day to the next the Black-Scholes (Black)

volatility will increase from what was backed out the previous day thus the option
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BlackScholes Equivalent fractional volatility for Necula's model for fractional volatility of 0.2
and T=2
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Figure 10.22: Black-Scholes Equivalent fractional volatility for Necula�s model for
fractional volatility of 0.2 and T=2.

prices will increase from those predicted by the Black (Black-Scholes) model. This

can be seen in the above average percentage pricing errors.

Setting �3 = � and rewriting (10:3) we have

�3 = �H;3

s
�H (T � t)2H

(T � t) (10.6)

we call (10:6) the Black-Scholes (Black) equivalent volatility for Rostek and Schöbel�s

framework. Figure 10.23 shows the Black-Scholes equivalent volatility for �H;3 = 0:2

and for time to expiration T = 2: It can be seen that as t! T , �1 decreases. Thus

it can be seen that the options prices for Rostek�s framework will be lower relative

to the Black option prices, using a similar argument as above for Hu and Øksendal.

In these practical applications Hu and Øksendal�s model and Rostek and Schöbel

model�s are very similar as vH is a constant.
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BlackScholes Equivalent fractional volatility for Rostek and Schöbel model for fractional
volatility of 0.2 and T=2
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Figure 10.23: Black-Scholes Equivalent fractional volatility for Rostek and Schöbel
model for fractional volatility of 0.2 and T=2.

10.5.2 Pricing Using a Single Call and Put Option on Futures Con-

tact

To further investigate the models we priced ALSI calls on futures expiring on the

15th of June 2011 with strikes deep in-the-money K = 25000, at-the-money, K =

29000 and deep out-the-money, K = 31700: The volatilities were backed out using

equations (10:1) ; (10:2) and (10:3) : Initially the volatilities were backed out for

the following Hurst parameters H = f0:5043; 0:51426; 0:54736; 0:6; 0:7; 0:9g : The

Rostek and Schöbel average percentage pricing errors increased from negative to

positive in all the cases; we conjectured that there should be a Hurst parameter giving

optimum pricing with respect to the average percentage pricing error. Through trial

and error we found Hurst parameters for Rostek and Schöbel�s model see table 10.8.
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Table 10.8: Hurst parameter giving the smallest percentage pricing error for Black
formula under Rostek and Schöbel�s framework.

Strike Hurst
Average Percentage
Pricing Error

25000 0.5415 0.000009343
29000 0.552 0.00045002
31700 0.902 0.006568214

ALSI Futures Call Expiring on 2011/06/15

Black under Rostek & Schöbel framework

Table 10.9: Hurst parameter giving the smallest average pricing error for Black
formula under Rostek and Schöbel�s framework.

Strike Hurst Average Pricing Error
25000 0.5638 0.000111928
29000 0.5834 0.000630687
31700 0.7193 0.000627825

ALSI Futures Call Expiring on 2011/06/15
Black under Rostek & Schöbel framework

We also investigated the average pricing errors using equation (9:3) : Through

trial and error we found Hurst parameters for Rostek and Schöbel�s framework see

table 10.9.

Tables 10.10, 10.11 and 10.12 display the errors for the above mentioned Hurst

parameters. It can be seen that while we are able to get low average percentage

pricing errors and average pricing errors for Rostek and Schöbel�s framework the

average absolute pricing errors were the highest in these models for all the Hurst

parameters we found. These Hurst parameters seem to have no correspondence with

the Hurst parameters estimated from the data and depended on the strike.
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Table 10.10: ALSI call on futures for K=25000.

Strike 25000 11/04/04 End Date 11/06/01

0.5043 0.51426 0.5415 0.54736 0.5638 0.6 0.7 0.9

Black 0.45171 0.45171 0.45171 0.45171 0.45171 0.45171 0.45171 0.45171
Hu &
Øksendal 0.42107 0.3502 0.15713 0.11574 0.000112 0.253838 0.944989 2.285553
Necula 0.48119 0.54811 0.72176 0.75743 0.8545 1.05378 1.51829 2.18428
Rostek &
Schöbel 0.42107 0.3502 0.15713 0.11574 0.000112 0.253838 0.944989 2.285553

Black 2.247492 2.247492 2.247492 2.247492 2.247492 2.247492 2.247492 2.247492
Hu &
Øksendal 2.254344 2.272486 2.341487 2.359458 2.410349 2.540477 2.992456 4.00815
Necula 2.238997 2.229163 2.210559 2.207161 2.211702 2.29557 2.584855 3.055914
Rostek &
Schöbel 2.254344 2.272486 2.341487 2.359458 2.410349 2.540477 2.992456 4.00815

Black 0.00726 0.00726 0.00726 0.00726 0.00726 0.00726 0.00726 0.00726
Hu &
Øksendal 0.0065 0.00476 9.34E06 0.001031 0.00389 0.01015 0.027196 0.060228
Necula 0.00794 0.0095 0.01353 0.01436 0.01663 0.02129 0.03227 0.04827
Rostek &
Schöbel 0.0065 0.00476 9.34E06 0.001031 0.00389 0.01015 0.027196 0.060228

Start Date

Average Absolute Pricing Error

Average Percentage Pricing Error

ALSI Futures Call Expiring on 2011/06/15
In the money

Hurst Parameter

Average Pricing Error
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Table 10.11: ALSI call on futures for K=29000.

Strike 29000 11/04/04 End Date 11/06/01

0.5043 0.51426 0.54736 0.552 0.5834 0.6 0.7 0.9

Black 2.45658 2.45658 2.45658 2.45658 2.45658 2.45658 2.45658 2.45658
Hu &
Øksendal 2.32954 2.03544 1.0595 0.92286 0.000631 0.488048 3.412655 9.202508
Necula 2.54239 2.73763 3.35313 3.43556 3.97068 4.23857 5.6671 7.83139
Rostek &
Schöbel 2.32954 2.03544 1.0595 0.92286 0.000631 0.488048 3.412656 9.202508

Black 7.105268 7.105268 7.105268 7.105268 7.105268 7.105268 7.105268 7.105268
Hu &
Øksendal 7.127347 7.182072 7.511283 7.566766 8.051174 8.336223 10.32012 14.74298
Necula 7.106727 7.111038 7.133287 7.137223 7.201994 7.315385 8.189455 9.903722
Rostek &
Schöbel 7.127346 7.182072 7.511283 7.566766 8.051173 8.336223 10.32012 14.74297

Black 0.23907 0.23907 0.23907 0.23907 0.23907 0.23907 0.23907 0.23907
Hu &
Øksendal 0.21922 0.17328 0.02088 0.00045 0.144598 0.220657 0.676713 1.577956
Necula 0.24839 0.26971 0.33786 0.3471 0.40774 0.43854 0.60835 0.88608
Rostek &
Schöbel 0.21922 0.17328 0.02088 0.00045 0.144598 0.220657 0.676713 1.577956

Start Date
Hurst Parameter

ALSI Futures Call Expiring on 2011/06/15
At the money

Average Pricing Error

Average Absolute Pricing Error

Average Percentage Pricing Error
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Table 10.12: ALSI call on futures for K=31700.

Strike 31700 11/04/04 End Date 11/06/01

0.5043 0.51426 0.54736 0.6 0.7 0.7193 0.9 0.902

Black 1.67561 1.67561 1.67561 1.67561 1.67561 1.67561 1.67561 1.67561
Hu &
Øksendal 1.64222 1.56496 1.30902 0.90455 0.14474 0.000628 1.342187 1.356842
Necula 1.71379 1.80023 2.06891 2.44438 3.01954 3.11376 3.80784 3.81399
Rostek &
Schöbel 1.64222 1.56496 1.30902 0.90455 0.14474 0.000628 1.342187 1.356842

Black 3.286138 3.286138 3.286138 3.286138 3.286138 3.286138 3.286138 3.286138
Hu &
Øksendal 3.302112 3.339072 3.466208 3.677424 4.11973 4.212421 5.106352 5.116342
Necula 3.288403 3.294153 3.317489 3.365744 3.706009 3.773356 4.329673 4.334973
Rostek &
Schöbel 3.302112 3.339073 3.466208 3.677424 4.11973 4.212421 5.106352 5.116342

Black 11.8437 11.8437 11.8437 11.8437 11.8437 11.8437 11.8437 11.8437
Hu &
Øksendal 11.7042 11.3821 10.3231 8.6744 5.65784 5.09245 0.04687 0.006568
Necula 11.8911 11.9999 12.3515 12.8828 13.8123 13.9813 15.4317 15.4466
Rostek &
Schöbel 11.7042 11.3821 10.3231 8.6744 5.65784 5.09245 0.04687 0.006568

Average Percentage Pricing Error

Start Date

Average Pricing Error

ALSI Futures Call Expiring on 2011/06/15
Out the money

Hurst Parameter

Average Absolute Pricing Error
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10.5.3 Error Minimizing Hurst Parameter

We used Rostek and Schöbel�s Black option pricing model to �nd a Hurst parameter

that satis�es E [j" [�H;n]j] = 0; where " [�H;n] is de�ned in equation (9:1) using call

and put options for di¤erent strikes on the same underlying with the same maturity.

We will refer to this Hurst parameter as the error minimizing Hurst parameter. There

were 37 put options on ALSI future contacts and 20 call options on ALSI futures con-

tacts. We had 6 put options on SBK futures and 4 call options on SBK futures, and

5 put options on MTN futures and 5 call options on MTN futures. All the options on

futures were dated from the 1 April 2011 till the 1 June 2011 expiring on the 15 of

June 2011. Through trial and error we found the Hurst parameters that minimizes

the average percentage error, equation (9:5). Plotting the error minimizing Hurst

parameter against the strike yields a interesting pattern. Figure 10.24 displays the

error minimizing Hurst parameter for call and put options on SBK futures. The error

minimizing Hurst parameter for the put options on futures is lower than the error

minimizing Hurst parameter for call options on futures. For example, for a strike

K = 115 the error minimizing Hurst parameter for a call option on a SBK futures

contact is 0:572104 while the error minimizing Hurst parameter for a put option on

a SBK future contracts is 0:41219. Figure 10.26 and 10.25 exhibit the error mini-

mizing Hurst parameter for call and put option on ALSI future contacts respectively.

In addition we plotted the average fractional volatilities given the error minimizing

Hurst parameter and the average market volatilities for each of the strikes. For a

given strike the average fractional volatilities are larger than the average market

volatilities, and the average fractional volatilities for put options on futures is lower

than the average volatilities for the call option on futures, and obviously the market

average volatilities for put options on futures is the same as for call options on

futures. Figure 10.27 shows the error minimizing Hurst parameter, the average frac-
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Minimizing Hurst parameter for call and put options on SBK futures.
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Figure 10.24: Error minimizing Hurst parameter for call and put options on SBK
futures using Rostek and Schöbel options on futures.

tional volatilities and the average market volatilities for both call and put options

on MTN futures. When the strike is deep-in-and-out money the error minimizing

Hurst parameter and the average fractional volatilities is larger than at-the money

strikes. In conclusion, we see a broken smile. Further investigation is needed to see

whether there is any practical application for pricing with this method as well as

the statistical properties of these error minimizing Hurst parameters.

A reason for the break in the fractional volatility smile is that since put options

o¤er protection there is a higher demand for them in the market thus they are not

priced the same way. This also shows that the implied fractional volatility smile does

not hold.
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Minimizing Hurst, Rostek and Schobel average fractional volatilities and average market
volatilities for put options on ALSI futures.
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Figure 10.25: Error minimizing Hurst, Rostek and Schöbel�s average fractional
volatilities and average market volatilities for put options on ALSI futures.

Minimizing Hurst, Rostek and Schobel average fractional volatilities and average market
volatilities for call options on ALSI futures.
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Figure 10.26: Minimizing Hurst, Rostek and Schobel average fractional volatilities
and average market volatilities for call options on ALSI futures.

 
 
 



224

Minimizing Hurst, average market volatility and Rostek and Schobel average fractional
volatility for put and call options on MTN futures
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Figure 10.27: Error minimizing Hurst, average market volatility and Rostek and
Schöbel�s average fractional volatility for put and call options on MTN futures.

 
 
 



Chapter 11

Conclusion

Originally, there was found to be a problem with the assumption of independence

of subsequent price changes since long term dependencies have been found in some

underlying stocks. The Hurst parameter provides an estimate of the persistency of

a time series. The Hurst parameter for a data set provides a measure of whether

a time series is a random walk, whether increments are uncorrelated, or if the

data set has some degree of autocorrelation. Four methods of estimating the Hurst

parameter where investigated, namely the aggregated variance method, absolute

moments method, Higuchi method and the rescaled range analysis. The rescaled

range analysis gave sizable errors especially when the data set was small. The

absolute moments method and Higuchi method was used to investigate the auto-

correlation for di¤erent stocks from di¤erent sectors in the South African stock

market.

Many of the South African stocks showed persistent behaviour. High persistent

behaviour was found in many individual stocks. Many of the stocks showed a decrease

in persistency after the crash of May 2008.

One reason for the application of fractional Brownian motion is that it has long-

memory when the Hurst parameter is greater than a 1
2
. Fractional Brownian motion

is not a semimartingale and the application of pathwise integrals is not possible as it

allows for arbitrage possibilities. The introduction of a new integration theory under

the Wick product is discussed in chapter 5. The introduction of Wick-Itô calculus
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inspired some authors who proved closed form fractional European option pricing

formulas. In chapter 6 the application of Wick calculus was discussed under Hu and

Øksendal�s (2000) framework. Even though these results appeared promising Björk

and Hult (2005) showed that their assumptions about changing the meaning of the

portfolio value has no economical meaning. In chapter 7 we discussed Necula�s (2002)

extension of the fractional Black-Scholes option pricing equation to an arbitrary time

using quasi-conditional expectation. Due to the fact that Necula�s formula contains

the term
�
T 2H � t2H

�
using it in application is problematical as absolute times are

included instead of the normal time to maturity (T � t) which just depends on the

di¤erence between the times. In chapter 8 a conditional fractional Brownian motion

was presented as in Rostek and Schöbel (2010). Where the underlying stock and

wealth of an investor are assumed to follow a bivariate log-normal distribution and

investors are assumed to be risk-averse.

Under certain assumptions, three fractional Black option pricing formulas are

presented. A Black formula is proved under Hu and Øksendal framework and its

extension is conjectured, a quasi-conditional Black formula under Necula�s frame-

work is proved and lastly a conditional Black formula is proved under Rostek and

Schöbel�s work. For shorter times to maturity Hu and Øksendal�s option pricing

models give lower prices for higher Hurst parameters, while for longer time to

maturities these models give higher prices for higher Hurst parameters. With all

the other inputs including volatility �xed. For shorter times to maturity Necula�s

option pricing models seemed to give lower prices for higher Hurst parameters, while

for longer times to maturity these models seemed to give higher prices for higher

Hurst parameters. For shorter times to maturity Rostek and Schöbel�s option pricing

models give lower prices for higher Hurst parameters and higher prices for lower

Hurst parameters. For longer times to maturity these models give higher prices then
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lower prices as the Hurst parameter increased. These e¤ects can be motivated as

follows: for the persistency case for shorter times to maturity the underlying is less

variable while for longer times to maturity the underlying is more variable. For the

anti-persistency case (Rostek and Schöbel only) the opposite is true. The Rostek

and Schöbel model also has an additional e¤ect where prices are lower as the Hurst

parameter moves away from 1
2
:

It was found that there is a range of possible combinations of the Hurst H and

volatility � parameter corresponding to a given price in the models for all three

models, thus an implied Hurst cannot be found using a single option on a speci�c

day.

In chapter 9 methods of empirical comparison of the models are explained. Finally

in chapter 10, using selected historical South African option and warrant data,

and using di¤erent constant Hurst parameters, the implied volatilities for the three

models were backed out and compared to that of the actual market implied volatil-

ities. The out of sampling performance was done to see how the Hurst parameter

a¤ects the price of the models.

To use these models in pricing they must be calibrated to the market. In chapter

10 we backed out the implied volatilities for the ALSI, MTN and SBK calls on

futures as well as TOPSBE and TOPSBF warrants by using a heuristic optimiza-

tion method to minimize an objective function. We observed that the higher the

Hurst parameter the higher the fractional volatility and that the implied fractional

volatilities capture the market movements. As the option approached time to expi-

ration Hu and Øksendal�s and Rostek and Schöbel�s implied volatilities increased

while Necula�s implied fractional volatilities decreased. We explained this behaviour

by a simple formula, and from the formula we also found that depending on the
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time interval the fractional volatilities might be lower. The volatility smile curve

was graphed for the fractional Black models for the ALSI future calls with chosen

Hurst parameters. The pricing performance of the models was done and it was found

that Hu and Øksendal and Rostek and Schöbel�s model are very similar. Using the

equivalent Black-Scholes volatility factor we could explain that as the Hurst para-

meter increased Hu and Øksendal and Rostek and Schöbel�s model gave lower prices

to that of the Black option model. As the Hurst parameter increased Necula�s option

prices were higher than those of the Black option prices. Our results were con�rmed

as Hu and Øksendal and Rostek and Schöbel�s average percentage pricing error kept

rising as the Hurst parameter increased while Necula�s average percentage pricing

error become more negative as the Hurst parameter increased. The implied fractional

volatilities were also backed out for single options that were deep in-the-money, at-

the-money and deep out-the-money and it was noted that the pricing errors for these

options changed from positive to negative thus we could �nd an optimumHurst para-

meters that could give the lowest average percentage pricing error or lowest average

pricing error. We found that these Hurst parameters depended on the strike. These

Hurst parameters di¤er from the estimated Hurst parameter from a time series of

the underlying. It remains to be seen if this has any application in the real world

option pricing.

We have discussed and achieved an understanding of the mathematical appli-

cation of fractional Brownian motion in option pricing. We have seen that there

is very little empirical applicability of these models when using a historical Hurst

parameter. Through formulas and empirical work we gained deeper insight into how

these models perform compared to the performance of the classical Black-Scholes and

Black formula. Some of the fractional models will perform better if an appropriate

Hurst parameter can be chosen.
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Further investigation would included option pricing models where the under-

lying is driven by fractional Brownian motion and Brownian motion and stochastic

volatility driven by fractional Brownian motion and Brownian motion. As well as

the sensitivities of these mixed models and hedging strategies.

 
 
 



Appendix A

Hurst Tables: Part 1

The tables display the Hurst parameter for di¤erent stocks from di¤erent sectors. The

Hurst parameter was modelled on the whole interval, the interval before the recession

and after the recession. The Hurst parameter for the stocks from the sectors will be

discussed using the criterion given in remark 3.1.

Table A.1 shows that Comair Limited (Comair) from sector airlines and air-

ports had a H � 1
2
on the whole interval and before the crash for both absolute

moment and Higuchi methods and anti-persistent after the crash. In the sector

builders merchants, Austro Group Limited (Austro) had a persistent behaviour

on the whole interval for both methods, see table A.2. Iliad Africa Limited (Iliad)

was persistent on the whole interval and before the crash for both methods. After

the crash the stock fell to an anti-persistent behaviour with Higuchi method and a

H � 1
2
trend with the absolute moments method, see table A.3. Marshall Mon-

teagle HD SA (Mt-egle) had a H � 1
2
on the whole interval and before the crash,

Table A.1: Sector: Airlines and Airports, Stock: Comair Limited.
Comair Hurst Parameter
Period N Absolute Moment Higuchi
22-Jul-98 to 17-Feb-11 3143 0.5054 0.5036
22-Jul-98 to 23-May-08 2457 0.5019 0.5017
23-May-08 to 17-Feb-11 688 0.4230 0.3806
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Table A.2: Sector: Builders Merchants, Stock: Austro Group Limited.
Austro Hurst Parameter
Period N Absolute Moment Higuchi
01-Feb-07 to 17-Feb-11 1013 0.6305 0.6344

Table A.3: Sector: Builders Merchants, Stock: Iliad Africa Limited.
Iliad Hurst Parameter
Period N Absolute Moment Higuchi
10-Jun-98 to 17-Feb-11 3172 0.5943 0.5737
27-Mar-85 to 23-May-08 2484 0.5834 0.5622
23-May-08 to 17-Feb-11 688 0.4605 0.4367

after the crash the stock fell to an anti-persistent behaviour for both methods, see

table A.4.Winhold Limited (Winhold) stock was persistent on the whole interval

and before the crash, while it had an anti-persistent stock after the crash with the

absolute method. With the Higuchi method the stock had a H � 1
2
on all three

intervals, see table A.5.

From the broadcasting contractors sector stock, Naspers Limited (Naspersn),

was persistent on the whole interval and before the crash, after the crash the stock

had aH � 1
2
for both the methods, see table A.6. From the building and construction

materials sector stock, Afrimat Ltd (Afrimat) was persistent on the whole interval

Table A.4: Sector: Builders Merchants, Stock: Marshall Monteagle HD SA.
Mt-egle Hurst Parameter
Period N Absolute Moment Higuchi
04-May-95 to 17-Feb-11 3939 0.5033 0.5175
04-May-95 to 23-May-08 3251 0.5232 0.5479
23-May-08 to 17-Feb-11 688 0.3147 0.3319
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Table A.5: Sector: Builders Merchants, Stock: Winhold Limited.
Winhold Hurst Parameter
Period N Absolute Moment Higuchi
11-Nov-86 to 17-Feb-11 6055 0.5706 0.5078
11-Nov-86 to 23-May-08 5367 0.5825 0.5078
23-May-08 to 17-Feb-11 688 0.4230 0.4932

Table A.6: Sector: Broadcasting Contractors, Stock: Naspers Limited.
Naspersn Hurst Parameter
Period N Absolute Moment Higuchi
08-Jan-96 to 17-Feb-11 3799 0.5573 0.5903
08-Jan-96 to 23-May-08 3110 0.5833 0.6002
23-May-08 to 17-Feb-11 688 0.4525 0.5289

and after the crash while H � 1
2
before the crash for both the methods, see table

A.7. Distribution and Warehousing Network Limited (Dawn) was persistent

on the whole interval and before the crash, after the crash the stock had a H � 1
2

for both the methods, see table A.8.Mazor Group Ltd (Mazor) was persistent on

the whole interval for both methods, see table A.9. Pretoria Port Cemnt (Ppc)

was persistent on the whole interval and before the crash and anti-persistent after

the crash with the Higuchi method. With the absolute moments method the stock

had a H � 1
2
and after the crash it was anti-persistent, see table A.10.

Table A.7: Sector: Building and Construction Materials, Stock: Afrimat Ltd.
Afrimat Hurst Parameter
Period N Absolute Moment Higuchi
07-Nov-06 to 17-Feb-11 1072 0.6695 0.6469
07-Nov-06 to 23-May-08 384 0.5424 0.5107
23-May-08 to 17-Feb-11 688 0.6848 0.6384

 
 
 



233

Table A.8: Sector: Building and Construction Materials, Stock: Distribution and
Warehousing Network Limited.

Dawn Hurst Parameter
Period N Absolute Moment Higuchi
09-Dec-87 to 17-Feb-11 5783 0.5931 0.6020
09-Dec-87 to 23-May-08 5095 0.5878 0.5779
23-May-08 to 17-Feb-11 688 0.4929 0.5370

Table A.9: Sector: Building and Construction Materials, Stock: Mazor Group Ltd.
Mazor Hurst Parameter
Period N Absolute Moment Higuchi
21-Nov-07 to 17-Feb-11 811 0.6058 0.6491

From the sector chemicals -speciality, stock A E C I Limited (Aeci), showed

persistency on all intervals for both methods except for one interval after the crash

using absolute moments that showed aH � 1
2
, see table A.11.African Oxygen Ltd

(Afrox) had a H � 1
2
throughout all the intervals with absolute moments method

and persistent on the whole interval and before the crash and the stock return had

a H � 1
2
with the Higuchi method, see table A.12. Freeworld Coatings Ltd

(Freeworld) had a H � 1
2
on the whole interval for both methods, see table A.13.

Omnia Holdings Ltd (Omnia) was persistent on the whole interval and before the

Table A.10: Sector: Building and Construction Materials, Stock: Pretoria Port
Cemnt.

Ppc Hurst Parameter
Period N Absolute Moment Higuchi
06-Sep-85 to 17-Feb-11 6352 0.5476 0.6071
06-Sep-85 to 23-May-08 5664 0.5388 0.6080
23-May-08 to 17-Feb-11 688 0.3279 0.2919
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Table A.11: Sector: Chemicals - Speciality, Stock: A E C I Limited.
Aeci Hurst Parameter
Period N Absolute Moment Higuchi
06-Sep-85 to 17-Feb-11 6352 0.5554 0.5670
06-Sep-85 to 23-May-08 5664 0.5626 0.5668
23-May-08 to 17-Feb-11 688 0.5322 0.5732

Table A.12: Sector: Chemicals - Speciality, Stock: African Oxygen Ltd.
Afrox Hurst Parameter
Period N Absolute Moment Higuchi
27-Mar-85 to 17-Feb-11 6462 0.5287 0.5817
27-Mar-85 to 23-May-08 5775 0.5257 0.5827
23-May-08 to 17-Feb-11 688 0.5472 0.5367

crash and had a H � 1
2
afterwards for both the methods, see table A.14. From the

sector clothing and footware, stock Compagnie Fin Richemont (Richemont) had

aH � 1
2
with the absolute moment method on the whole interval and before the crash

and there was strong persistent behaviour after the crash. With the Higuchi method

there was persistency on all the intervals, see table A.15. Seardel Investment

Corporation Limited (Seardel) was persistent on the whole interval, had a H � 1
2

before the crash and had a strong persistent behaviour after the crash for both

methods, see table A.16. From the coal sector stock, Coal of Africa Ltd (Coal) was

persistent on all three intervals using Higuchi method. With the absolute moments

Table A.13: Sector: Chemicals - Speciality, Stock: Freeworld Coatings Ltd.
Freeworld Hurst Parameter
Period N Absolute Moment Higuchi
03-Dec-07 to 17-Feb-11 803 0.5171 0.5121
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Table A.14: Sector: Chemicals - Speciality, Stock: Omnia Holdings Ltd.
Omnia Hurst Parameter
Period N Absolute Moment Higuchi
22-May-87 to 17-Feb-11 5926 0.5514 0.6077
22-May-87 to 23-May-08 5238 0.5639 0.6111
23-May-08 to 17-Feb-11 688 0.4597 0.4825

Table A.15: Sector: Clothing and Footware, Stock: Compagnie Fin Richemont.
Richemont Hurst Parameter
Period N Absolute Moment Higuchi
03-Nov-88 to 17-Feb-11 5564 0.5230 0.5878
03-Nov-88 to 23-May-08 4876 0.4840 0.5745
23-May-08 to 17-Feb-11 688 0.6623 0.6745

Table A.16: Sector: Clothing and Footware, Stock: Seardel Investment Corporation
Limited.

Seardel Hurst Parameter
Period N Absolute Moment Higuchi
06-Sep-85 to 17-Feb-11 6352 0.5593 0.5589
06-Sep-85 to 23-May-08 5664 0.5127 0.5324
23-May-08 to 17-Feb-11 688 0.7254 0.6942
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Table A.17: Sector: Coal, Stock: Coal of Africa Ltd.
Coal Hurst Parameter
Period N Absolute Moment Higuchi
01-Dec-06 to 17-Feb-11 1054 0.6270 0.6245
01-Dec-06 to 23-May-08 367 0.5225 0.5777
23-May-08 to 17-Feb-11 688 0.5696 0.6128

Table A.18: Sector: Coal, Stock: Keaton Energy Holdings Ltd.
Keaton Hurst Parameter
Period N Absolute Moment Higuchi
22-Apr-08 to 17-Feb-11 708 0.5099 0.6102

method it was persistent on the whole interval and after the crash, while the H � 1
2

on the interval before the crash, see table A.17. Keaton Energy Holdings Ltd

(Keaton) had a H � 1
2
using absolute moments method and persistent using the

Higuchi method, see table A.18. Optimum Coal Holdings Ltd (Optimum) had a

H � 1
2
using Higuchi method and persistent using the absolute moments method, see

table A.19.Wescoal Holdings Ltd (Wescoal) had a H � 1
2
on the whole interval,

anti-persistent before the crash and persistent after the crash for both methods, see

table A.20.

Exxaro Resources Limited (Exxaro) was anti-persistent on the whole interval

and before the crash and aH � 1
2
afterwards using absolute moments method. While

Table A.19: Sector: Coal, Stock: Optimum Coal Holdings Ltd.
Optimum Hurst Parameter
Period N Absolute Moment Higuchi
29-Mar-10 to 17-Feb-11 225 0.5705 0.5275
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Table A.20: Sector: Coal, Stock: Wescoal Holdings Ltd.
Wescoal Hurst Parameter
Period N Absolute Moment Higuchi
20-Jul-05 to 17-Feb-11 1398 0.5107 0.5207
20-Jul-05 to 23-May-08 710 0.3481 0.2979
23-May-08 to 17-Feb-11 688 0.5901 0.5776

Table A.21: Sector: Coal, Stock: Exxaro Resources Limited.
Exxaro Hurst Parameter
Period N Absolute Moment Higuchi
27-Nov-06 to 17-Feb-11 1087 0.4491 0.5271
27-Nov-06 to 23-May-08 400 0.3259 0.4242
23-May-08 to 17-Feb-11 688 0.5129 0.4625

using the Higuchi method the H � 1
2
on the whole interval and after the crash and

anti-persistent on the interval before the crash, see table A.21. From the diamond

sector, stock,BRCDiamondCore Ltd (Brc) had aH � 1
2
using absolute moments

method and persistent using the Higuchi method, see table A.22.Trans Hex Group

Limited (Trnshex) was persistent on the whole interval and before the crash and

displayed a strong persistent behaviour after the crash for both methods, see table

A.23. Sector distillers and vintners, stock, Capevin Inv Ltd (Capevin) displayed

persistency on the whole interval and before the crash while after the crash was

anti-persistent for both methods, see table A.24.

Table A.22: Sector: Diamond, Stock: BRC DiamondCore Ltd.
Brc Hurst Parameter
Period N Absolute Moment Higuchi
04-Feb-08 to 17-Feb-11 762 0.5218 0.5728
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Table A.23: Sector: Diamond, Stock: Trans Hex Group Limited.
Trnshex Hurst Parameter
Period N Absolute Moment Higuchi
04-Feb-08 to 17-Feb-11 6462 0:5785 0.5716
03-Nov-88 to 23-May-08 5774 0:5565 0.5756
23-May-08 to 17-Feb-11 688 0:6935 0.7150

Table A.24: Sector: Distillers and Vintners, Stock: Capevin Inv Ltd.
Capevin Hurst Parameter
Period N Absolute Moment Higuchi
22-May-87 to 17-Feb-11 5926 0.5654 0.6442
22-May-87 to 23-May-08 5239 0.5705 0.6475
23-May-08 to 17-Feb-11 687 0.4468 0.4235

Using absolute moments method Distell (Distell) had a H � 1
2
on the whole

interval and anti-persistent before and after the crash, while with the Higuchi method

the stock was persistent on the whole interval and before the crash and had a H � 1
2

after the crash, see table A.25. From the sector education, bus training and employ-

ment, stock Adcorp Holdings Limited (Adcorp) had a strong persistent behav-

iour on the whole interval and before the crash and after the crash the stock had a

H � 1
2
for both methods, see table A.26. Kelly Group Ltd (Kelly) was persistent

on the whole interval for both methods, see table A.27. Primeserv Group Lim-

Table A.25: Sector: Distillers and Vintners, Stock: Distell.
Distell Hurst Parameter
Period N Absolute Moment Higuchi
23-Mar-01 to 17-Feb-11 2479 0.4758 0.6002
23-Mar-01 to 23-May-08 1791 0.4353 0.6040
23-May-08 to 17-Feb-11 688 0.4337 0.4559
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Table A.26: Sector: Education, Bus Training and Employment, Stock: Adcorp Hold-
ings Limited.

Adcorp Hurst Parameter
Period N Absolute Moment Higuchi
09-Oct-87 to 17-Feb-11 5827 0.6754 0.6899
09-Oct-87 to 23-May-08 5139 0.6822 0.7050
23-May-08 to 17-Feb-11 688 0.4861 0.4520

Table A.27: Sector: Education,Bus Training and Employment, Stock: Kelly Group
Ltd.

Kelly Hurst Parameter
Period N Absolute Moment Higuchi
04-Apr-07 to 17-Feb-11 970 0.6099 0.6360

ited (Primeserv) had a H � 1
2
on the whole interval and before the crash while the

stock was anti-persistent after the crash for both the methods, see table A.28. From

the sector electrical equipment, stock, Allied Electronics Corporation Limited

(Altron-p) had a H � 1
2
on all three intervals using absolute moments method and

persistent on the whole interval and before the crash and had a H � 1
2
after the

crash using the Higuchi method, see table A.29.

Table A.28: Sector: Education,Bus Training and Employment, Stock: Primeserv
Group Limited.

Primeserv Hurst Parameter
Period N Absolute Moment Higuchi
29-Apr-98 to 17-Feb-11 3200 0.4945 0.5101
09-Oct-87 to 23-May-08 2512 0.4915 0.5089
23-May-08 to 17-Feb-11 688 0.4226 0.4450
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Table A.29: Sector: Electrical Equipment, Stock: Allied Electronics Corporation Lim-
ited.

Altron-p Hurst Parameter
Period N Absolute Moment Higuchi
18-Nov-94 to 17-Feb-11 4050 0.5300 0.5766
18-Nov-94 to 23-May-08 3362 0.5286 0.5625
23-May-08 to 17-Feb-11 688 0.5458 0.5330

Table A.30: Sector: Electrical Equipment, Stock: Allied Electronics Corporation Lim-
ited.

Altron Hurst Parameter
Period N Absolute Moment Higuchi
22-May-87 to 17-Feb-11 5926 0.5109 0.5227
22-May-87 to 23-May-08 5238 0.4861 0.5005
23-May-08 to 17-Feb-11 688 0.5355 0.5345

Allied Electronics Corporation Limited (Altron) had a H � 1
2
on all three

intervals for both methods, see table A.30. Using absolute moments method Arb

Holdings Ltd (Arb) was persistent on the whole interval and anti-persistent before

the crash and after the crash, while using the Higuchi method the stock return had a

H � 1
2
on all three intervals, see table A.31. Delta Emd Ltd (Delta) had a H � 1

2

on all three intervals for both methods, see table A.32. South Ocean Holdings

Ltd (S-Ocean) was persistent on the whole interval and the interval before the

Table A.31: Sector: Electrical Equipment, Stock: Arb Holdings Ltd.
Arb Hurst Parameter
Period N Absolute Moment Higuchi
20-Nov-07 to 17-Feb-11 812 0.5521 0.5425
20-Nov-07 to10 March-09 325 0.3926 0.5284
10 March-09 to 17-Feb-11 487 0.3644 0.4645
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Table A.32: Sector: Electrical Equipment, Stock: Delta Emd Ltd.
Delta Hurst Parameter
Period N Absolute Moment Higuchi
22-May-87 to 17-Feb-11 5926 0.5267 0.5491
22-May-87 to 23-May-08 5238 0.5117 0.5461
23-May-08 to 17-Feb-11 688 0.4533 0.4555

Table A.33: Sector: Electrical Equipment, Stock: South Ocean Holdings Ltd.
S-Ocean Hurst Parameter
Period N Absolute Moment Higuchi
28-Feb-07 to 17-Feb-11 994 0.5645 0.5948
28-Feb-07 to 10 March-09 509 0.5579 0.5633
10 March-09 to 17-Feb-11 487 0.4558 0.4623

crash, after the crash the stock had a H � 1
2
for both methods, see table A.33.

Sector, exchange traded funds, stock New Gold Issuer Ltd (Newgold) showed an

anti-persistent behaviour for the whole interval and the interval before the crash and

after the crash a H � 1
2
was found using absolute moment method. The Higuchi

method showed a persistent behaviour on the whole interval and before the crash

and an anti-persistent bahaviour after the crash, see table A.34. From the sector

farming and �shing, stock Afgri Limited (Afgri) was anti-persistent on the whole

Table A.34: Sector: Exchange Traded Funds, Stock: New Gold Issuer Ltd.
Newgold Hurst Parameter
Period N Absolute Moment Higuchi
02-Nov-04 :17-Feb-11 1605 0.4398 0.5810
02-Nov-04 to 23-May-08 917 0.4460 0.5583
23-May-08 to 17-Feb-11 688 0.4703 0.5227
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Table A.35: Sector: Farming and Fishing, Stock: Afgri Limited.
Afgri Hurst Parameter
Period N Absolute Moment Higuchi
11-Nov-96 to 17-Feb-11 3562 0.4194 0.4358
11-Nov-96 to 23-May-08 2874 0.4510 0.4626
23-May-08 to 17-Feb-11 688 0.4411 0.4065

Table A.36: Sector: Farming and Fishing, Stock: Astral Foods.
Astral Hurst Parameter
Period N Absolute Moment Higuchi
09-Apr-01 to 17-Feb-11 2468 0.5298 0.6210
09-Apr-01 to 23-May-08 1780 0.4734 0.6408
23-May-08 to 17-Feb-11 688 0.2998 0.3591

interval and the interval after the crash, before the crash the stock return had a

H � 1
2
, see table A.35.

Astral Foods (Astral) had a H � 1
2
on the whole interval and before the crash

and anti-persistent using absolute method. While using the Higuchi method the stock

was persistent on the whole interval and before the crash and anti-persistent after

the crash, see table A.36. Oceana Group Limited (Oceana) had a H � 1
2
on the

whole interval and before the crash and anti-persistent after the crash using absolute

moments method, while it was persistent on the whole interval and before the crash

and anti-persistent using the Higuchi method, see table A.37. From the sector food

and drug retailers, stockClicks Group Limited (Clicks) had aH � 1
2
on the whole

interval and before the crash, after the crash absolute moments method showed anti-

persistency while the Higuchi method showed persistency, see table A.38. Pick n

Pay Stores Limited (Picknpay) was anti-persistent on all three intervals using

absolute moments method and using the Higuchi method the stock returns had a

H � 1
2
on the whole interval and interval before the crash and was anti-persistent
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Table A.37: Sector: Farming and Fishing, Stock: Oceana Group Limited.
Oceana Hurst Parameter
Period N Absolute Moment Higuchi
06-Sep-85 to 17-Feb-11 6352 0.5359 0.5972
06-Sep-85 to 23-May-08 5664 0.5470 0.6141
23-May-08 to 17-Feb-11 688 0.3050 0.4360

Table A.38: Sector: Food and Drug Retailers, Stock: Clicks Group Limited.
Clicks Hurst Parameter
Period N Absolute Moment Higuchi
20-Mar-96 to 17-Feb-11 3717 0.4543 0.5072
06-Sep-85 to 23-May-08 3029 0.4606 0.4995
23-May-08 to 17-Feb-11 688 0.4309 0.5901

after the crash, see table A.39. Pick n Pay Holdings Limited (Pikwik) had a

H � 1
2
on the whole interval and the interval before the crash and anti-persistent on

the interval after the crash for both the methods, see table A.40.

Shoprite Holdings Limited (Shoprit) was persistent on the whole interval and

before the crash for both the methods while absolute moments method showed anti-

persistency after the crash and the Higuchi had a H � 1
2
behaviour, see table A.41.

The Spar Group Ltd (Spar) showed anti-persistent behaviour on all three intervals

Table A.39: Sector: Food and Drug Retailers, Stock: Pick n Pay Stores Limited.
Picknpay Hurst Parameter
Period N Absolute Moment Higuchi
27-Mar-85 to 17-Feb-11 6461 0.4214 0.5073
27-Mar-85 to 23-May-08 5773 0.4139 0.5031
23-May-08 to 17-Feb-11 688 0.3462 0.3462

 
 
 



244

Table A.40: Sector: Food and Drug Retailers, Stock: Pick n Pay Holdings Limited.
Pikwik Hurst Parameter
Period N Absolute Moment Higuchi
22-May-87 to 17-Feb-11 5925 0.4745 0.5317
22-May-87 to 23-May-08 5237 0.4878 0.5348
23-May-08 to 17-Feb-11 688 0.2861 0.4124

Table A.41: Sector: Food and Drug Retailers, Stock: Shoprite Holdings Limited.
Shoprit Hurst Parameter
Period N Absolute Moment Higuchi
05-Dec-86 to 17-Feb-11 5810 0.6178 0.6724
05-Dec-86 to 23-May-08 5122 0.6299 0.6730
23-May-08 to 17-Feb-11 688 0.2805 0.5195

using absolute moments method while the Higuchi method showed persistency on

the whole interval and before the crash and had a H � 1
2
after the crash, see

table A.42.Sector gaming, stock Gold Reef Resorts Limited (Goldreef) showed

persistency on the whole interval and before the crash and anti-persistency after

the crash for both methods, see table A.43. Phumelela Gaming And Leisure

Limited (Phumelela) showed persistency on all intervals for both methods except

for one after the crash, where H � 1
2
, see table A.44. Sun International Ltd

Table A.42: Sector: Food and Drug Retailers, Stock: The Spar Group Ltd.
Spar Hurst Parameter
Period N Absolute Moment Higuchi
18-Oct-04 to 17-Feb-11 1587 0.4092 0.5557
18-Oct-04 to 23-May-08 899 0.3654 0.5723
23-May-08 to 17-Feb-11 688 0.3640 0.4818
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Table A.43: Sector: Gaming, Stock: Gold Reef Resorts Limited.
Goldreef Hurst Parameter
Period N Absolute Moment Higuchi
14-Mar-91 to 17-Feb-11 4971 0.5601 0.5803
14-Mar-91 to 23-May-08 4283 0.5545 0.5628
23-May-08 to 17-Feb-11 688 0.4430 0.3524

Table A.44: Sector: Gaming, Stock: Phumelela Gaming And Leisure Limited.
Phumelela Hurst Parameter
Period N Absolute Moment Higuchi
14-Jun-02 to 17-Feb-11 2173 0.6173 0.6192
14-Jun-02 to 23-May-08 1486 0.5838 0.6532
23-May-08 to 17-Feb-11 688 0.5558 0.5219

(Sunint) had a H � 1
2
on the whole interval and before the crash, after the crash

there was anti-persistency for both methods, see table A.45.

In the sector gold mining, stock, Anglo Gold Ashanti Limited (Anggold)

was anti-persistent on all three intervals using absolute moments method and anti-

persistent on the whole interval while anti-persistent on the interval before and after

the crash using Higuchi, see table A.46. Gold Fields Limited (G�elds) had a

H � 1
2
for both methods except for the Higuchi method after the crash where anti-

Table A.45: Sector: Gaming, Stock: Sun International Ltd
Sunint Hurst Parameter
Period N Absolute Moment Higuchi
27-Mar-85 to 17-Feb-11 6462 0.5081 0.5338
27-Mar-85 to 23-May-08 5774 0.5003 0.5159
23-May-08 to 17-Feb-11 688 0.4095 0.4363
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Table A.46: Sector: Gold Mining, Stock: Anglo Gold Ashanti Limited.
Anggold Hurst Parameter
Period N Absolute Moment Higuchi
19-Jun-96 to 17-Feb-11 3659 0.4195 0.4277
19-Jun-96 to 23-May-08 2971 0.4500 0.4394
23-May-08 to 17-Feb-11 688 0.4850 0.4410

Table A.47: Sector: Gold Mining, Stock: Gold Fields Limited.
G�elds Hurst Parameter
Period N Absolute Moment Higuchi
02-Feb-98 to 17-Feb-11 3259 0.4685 0.4723
02-Feb-98 to 23-May-08 2571 0.4686 0.4807
23-May-08 to 17-Feb-11 688 0.4538 0.4247

persistency was found, see table A.47.Gold One International Ld (Goldone) had

a H � 1
2
on all three intervals for both methods, see table A.48. Central Rand

Gold Ltd (Cenrand) had a H � 1
2
using absolute moments method and persistent

using Higuchi method, see table A.49. Randgold and Exploration Company

Limited (Rangold) was persistent for both methods except for one interval after

the crash where anti-persistent behaviour was found, see table A.50. Using absolute

moments method Witwatersrand Cons Gold (Witsgold) had a H � 1
2
on the

whole interval and before the crash and persistent after the crash, while using the

Table A.48: Sector: Gold Mining, Stock: Gold One International Ld.
Goldone Hurst Parameter
Period N Absolute Moment Higuchi
24-Mar-87 to 17-Feb-11 5965 0.5079 0.4870
24-Mar-87 to 23-May-08 5277 0.4862 0.4824
23-May-08 to 17-Feb-11 688 0.5066 0.5077
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Table A.49: Sector: Gold Mining, Stock: Central Rand Gold Ltd.
Cenrand Hurst Parameter
Period N Absolute Moment Higuchi
08-Nov-07 to 17-Feb-11 820 0.4686 0.6123

Table A.50: Sector: Gold Mining, Stock: Randgold and Exploration Company Lim-
ited.

Rangold Hurst Parameter
Period N Absolute Moment Higuchi
01-Feb-93 to 17-Feb-11 4500 0.6918 0.6747
01-Feb-93 to 23-May-08 3811 0.6941 0.6952
23-May-08 to 17-Feb-11 688 0.6558 0.4491

Higuchi method there was persistency on the whole interval and after the crash a

H � 1
2
was found before the crash, see table A.51.

Drdgold Ltd (Drdgold) had aH � 1
2
on all three intervals for both methods, see

table A.52. Simmer and Jack Mines Limited (Simmers) had a H � 1
2
for both

methods except for one interval after the crash where anti-persistency was found, see

table A.53. Village Main Reef Ltd (Village) had a H � 1
2
on all three intervals

using absolute moments method and anti-persistent on all three intervals using the

Higuchi method, see table A.54.From the sector hospital management and long term

Table A.51: Sector: Gold Mining, Stock: Witwatersrand Cons Gold.
Witsgold Hurst Parameter
Period N Absolute Moment Higuchi
24-Apr-06 to 17-Feb-11 1208 0.54158542858070 0.5710
24-Apr-06 to 23-May-08 520 0.45083555368597 0.5448
23-May-08 to 17-Feb-11 688 0.56749183577265 0.5790
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Table A.52: Sector: Gold Mining, Stock: Drdgold Ltd.
Drdgold Hurst Parameter
Period N Absolute Moment Higuchi
27-Mar-85 to 17-Feb-11 6462 0.5003 0.5157
27-Mar-85 to 23-May-08 5775 0.5054 0.5259
23-May-08 to 17-Feb-11 688 0.4863 0.5107

Table A.53: Sector: Gold Mining, Stock: Simmer and Jack Mines Limited.
Simmers Hurst Parameter
Period N Absolute Moment Higuchi
27-Mar-85 to 17-Feb-11 6462 0.5094 0.5108
27-Mar-85 to 23-May-08 5775 0.4938 0.4875
23-May-08 to 17-Feb-11 688 0.3939 0.5325

care, stock Life Healthcare Grp Holdings Ltd (Lifehc) was anti-persistent using

absolute moments method and had a H � 1
2
using the Higuchi method, see table

A.55.Litha Healthcare Group Ltd (Litha) was persistent using both the methods,

see table A.56.

Mediclinic International (Medclin) had a H � 1
2
using absolute moments

method on all three intervals while using the Higuchi method the data series was

persistent on the whole interval and before the crash and had aH � 1
2
after the crash,

Table A.54: Sector: Gold Mining, Stock: Village Main Reef Ltd.
Village Hurst Parameter
Period N Absolute Moment Higuchi
27-Mar-85 to 17-Feb-11 6462 0.4527 0.4310
27-Mar-85 to 23-May-08 5775 0.4509 0.4383
23-May-08 to 17-Feb-11 688 0.4513 0.4363
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Table A.55: Sector: Hospital Management and Long Term Care, Stock: Life Health-
care Grp Holdings Ltd.

Lifehc Hurst Parameter
Period N Absolute Moment Higuchi
10-Jun-10 to 17-Feb-11 175 0.4346 0.5068

Table A.56: Sector: Hospital Management and Long Term Care, Stock: Litha Health-
care Group Ltd.

Litha Hurst Parameter
Period N Absolute Moment Higuchi
17-May-10 to 17-Feb-11 193 0.6426 0.6987

see table A.57.Using absolute moments method Netcare Limited (Netcare) had a

H � 1
2
on all three intervals while persistent on the whole interval and before the

crash and had aH � 1
2
after the crash using the Higuchi method, see table A.58.From

sector insurance - non-life, stock Santam Ltd (Santam) had a H � 1
2
on the whole

interval and before the crash and anti-persistent using absolute moments method

while it was persistent on the whole interval and before the crash and anti-persistent

using the Higuchi method, see table A.59.Sector insurance brokers, stockGlenrand

M-I-B Ltd (Glenmib) had a H � 1
2
on all three intervals using absolute moments

method and anti-persistent on all three intervals using the Higuchi method, see table

Table A.57: Sector: Hospital Management and Long Term Care, Stock: Mediclinic
International.

Medclin Hurst Parameter
Period N Absolute Moment Higuchi
22-May-87 to 17-Feb-11 5925 0.5423 0.6021
22-May-87 to 23-May-08 5237 0.5422 0.6028
23-May-08 to 17-Feb-11 688 0.5083 0.5380
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Table A.58: Sector: Hospital Management and Long Term Care, Stock: Netcare
Limited.

Netcare Hurst Parameter
Period N Absolute Moment Higuchi
04-Dec-96 to 17-Feb-11 3546 0.5367 0.5945
04-Dec-96to 23-May-08 2857 0.5370 0.5829
23-May-08 to 17-Feb-11 688 0.4025 0.4708

Table A.59: Sector: Insurance - Non-Life, Stock: Santam Ltd.
Santam Hurst Parameter
Period N Absolute Moment Higuchi
03-Mar-86 to 17-Feb-11 6232 0.4900 0.5873
03-Mar-86 to 23-May-08 5544 0.4647 0.5833
23-May-08 to 17-Feb-11 688 0.3927 0.4367

A.60.In the sector investment banks, stock Investec Plc (Invplc) had a H � 1
2
on

the whole interval, persistent on the interval before the crash and anti-persistent

after the crash using absolute moments methods, while the Higuchi method showed

persistency on the whole interval and before the crash and anti-persistency after

the crash, see table A.61.Sector Kruger Rands, stock Kruger Rand (Kr) had a

H � 1
2
on the whole interval and on the interval after the crash and before the

crash it was persistent using absolute moments method while the Higuchi method

Table A.60: Sector: Insurance Brokers, Stock: Glenrand M-I-B Ltd.
Glenmib Hurst Parameter
Period N Absolute Moment Higuchi
26-Jun-98 to 17-Feb-11 3161 0.4601 0.4365
26-Jun-98 to 23-May-08 2473 0.4903 0.4389
23-May-08 to 17-Feb-11 688 0.5086 0.4471
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Table A.61: Sector: Investment Banks, Stock: Investec Plc.
Invplc Hurst Parameter
Period N Absolute Moment Higuchi
22-Jul-02 to 17-Feb-11 2176 0.5495 0.5885
22-Jul-02 to 23-May-08 1488 0.5667 0.5993
23-May-08 to 17-Feb-11 688 0.3729 0.4456

Table A.62: Sector: Kruger Rands, Stock: Kruger Rand.
Kr Hurst Parameter
Period N Absolute Moment Higuchi
27-Mar-85 to 17-Feb-11 6465 0.5461 0.5636
27-Mar-85 to 23-May-08 5777 0.5522 0.5466
23-May-08 to 17-Feb-11 688 0.4651 0.5440

showed persistency on the whole interval and anti-persistency on the interval before

and after the crash, see table A.62.From sector life assurance, stock Clientele Ltd

(Clientele) showed persistency using both methods, see table A.63.

Discovery Holdings Limited (Discovery) had a H � 1
2
on the whole interval

and before the crash while after the crash the stock was anti-persistent for both

methods, see table A.64.Old Mutual Plc (Oldmutual) had a H � 1
2
on the whole

interval and anti-persistent using absolute moments method and had a H � 1
2
using

the Higuchi method before the crash and persistent using both methods after the

crash, see table A.65. Using absolute moments method Sanlam Limited (Sanlam)

Table A.63: Sector: Life Assurance, Stock: Clientele Ltd.
Clientele Hurst Parameter
Period N Absolute Moment Higuchi
19-May-08 to 17-Feb-11 692 0.5847 0.6165
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Table A.64: Sector: Life Assurance, Stock: Discovery Holdings Limited.
Discovery Hurst Parameter
Period N Absolute Moment Higuchi
21-Oct-99 to 17-Feb-11 2830 0.5110 0.5278
06-Sep-85 to 23-May-08 2142 0.5165 0.5299
23-May-08 to 17-Feb-11 688 0.2512 0.4058

Table A.65: Sector: Life Assurance, Stock: Old Mutual Plc.
Oldmutual Hurst Parameter
Period N Absolute Moment Higuchi
12-Jul-99 to 17-Feb-11 2901 0.5333 0.5272
06-Sep-85 to 23-May-08 2213 0.4458 0.4575
23-May-08 to 17-Feb-11 688 0.5864 0.5812

was anti-persistent on the whole interval and before the crash and had a H � 1
2

after the crash, while the Higuchi method showed a H � 1
2
on the whole interval and

before the crash and anti-persistency on the interval after the crash, see table A.66.

Grindrod Ltd (Grindrod) was persistent on the whole interval and the interval

before the crash, after the crash there was a H � 1
2
, see table A.67. From the sector

metals and minerals, stockAnglo American Plc (Anglo) had a H � 1
2
on all three

interval for both methods, see table A.68. Using absolute moments method African

Rainbow Minerals (Arm) was persistent on the whole interval and had a H � 1
2

Table A.66: Sector: Life Assurance, Stock: Sanlam Limited.
Sanlam Hurst Parameter
Period N Absolute Moment Higuchi
30-Nov-98 to 17-Feb-11 3052 0.4407 0.5077
06-Sep-85 to 23-May-08 2364 0.4454 0.4958
23-May-08 to 17-Feb-11 688 0.4511 0.4319
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Table A.67: Sector: Marine Transportation, Stock: Grindrod Ltd.
Grindrod Hurst Parameter
Period N Absolute Moment Higuchi
26-Mar-87 to 17-Feb-11 5963 0.5943 0.6293
26-Mar-87 to 23-May-08 5275 0.5887 0.6254
23-May-08 to 17-Feb-11 688 0.5167 0.4933

Table A.68: Sector: Metals and Minerals, Stock: Anglo American Plc.
Anglo Hurst Parameter
Period N Absolute Moment Higuchi
27-Mar-85 to 17-Feb-11 6462 0.5010 0.5472
27-Mar-85 to 23-May-08 5774 0.4973 0.5414
23-May-08 to 17-Feb-11 688 0.5436 0.5457

before and after the crash while the other method displayed persistency on the whole

interval and the interval before the crash and had a H � 1
2
after the crash, see table

A.69.

BHP Billiton Plc (Billiton) had a H � 1
2
on the whole interval and before

the crash and anti-persistent after the crash for both methods, see table A.70. From

the sector mining, stock Firestone (Firestone) was anti-persistent on the whole

interval for both methods, see table A.71. Sephaku Holdings Ltd (Sephaku) was

Table A.69: Sector: Metals and Minerals, Stock: African Rainbow Minerals.
Arm Hurst Parameter
Period N Absolute Moment Higuchi
27-Mar-85 to 17-Feb-11 6462 0.5519 0.5667
27-Mar-85 to 23-May-08 5774 0.5483 0.5581
23-May-08 to 17-Feb-11 688 0.5170 0.5215
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Table A.70: Sector: Metals and Minerals, Stock: BHP Billiton Plc.
Billiton Hurst Parameter
Period N Absolute Moment Higuchi
28-Jul-97 to 17-Feb-11 3418 0.4663 0.5473
28-Jul-97 to 23-May-08 1789 0.4598 0.5450
23-May-08 to 17-Feb-11 688 0.4341 0.3876

Table A.71: Sector: Mining, Stock: Firestone.
Firestone Hurst Parameter
Period N Absolute Moment Higuchi
16-Apr-09 to 17-Feb-11 462 0.2170 0.3058

persistent on the whole interval for both methods see table A.72. First Uranium

Corporation (Fiuranium) was persistent on the whole interval for both methods,

see table A.73. From the sector nonferrous metals, stock Metmar Ltd (Metmar)

was persistent on all three intervals using Higuchi method and had a H � 1
2
on the

whole interval and the interval after the crash and anti-persistent on the interval

before the crash using the absolute moments method, see table A.74.

Palabora Mining Company Limited (Palamin) had a H � 1
2
on the whole

interval and the interval before the crash and after the crash the stock showed

a persistent behaviour for both the methods, see table A.75. From the sector, oil

integrated, stockOando Plc (Oando) had an anti-persistency behaviour on all three

Table A.72: Sector: Mining, Stock: Sephaku Holdings Ltd.
Sephaku Hurst Parameter
Period N Absolute Moment Higuchi
21-Aug-09 to 17-Feb-11 376 0.6002 0.5564
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Table A.73: Sector: Nonferrous Metals, Stock: First Uranium Corporation.
Fiuranium Hurst Parameter
Period N Absolute Moment Higuchi
30-Mar-07 to 17-Feb-11 973 0.5686 0.6521

Table A.74: Sector: Nonferrous Metals, Stock: Metmar Ltd.
Metmar Hurst Parameter
Period N Absolute Moment Higuchi
22-May-06 to 17-Feb-11 1190 0.5363 0.5652
22-May-06 to 23-May-08 502 0.4222 0.5715
23-May-08 to 17-Feb-11 688 0.5352 0.5670

intervals using absolute moments method. Using the Higuchi method a H � 1
2
was

found on the whole interval and the interval after the crash while anti-persistency was

found before the crash, see table A.76. Sacoil Holding Ld (Sacoil) stock returns had

a H � 1
2
on the whole interval, an anti-persistent behaviour on the interval before

the crash and a persistent behaviour after the crash for both methods, see table

A.77. Sasol Limited (Sasol) stock returns had a H � 1
2
on the whole interval and

the interval before the crash and after the crash the stock fell to an anti-persistent

behaviour, see table A.78. Sector, paper, stockMondi Limited (Mondiltdp) had a

H � 1
2
on the whole interval for both methods, see table A.79.

Table A.75: Sector: Nonferrous Metals, Stock: Palabora Mining Company Limited.
Palamin Hurst Parameter
Period N Absolute Moment Higuchi
27-Mar-85 to 17-Feb-11 6462 0.5000 0.5193
27-Mar-85 to 23-May-08 5774 0.4930 0.5096
23-May-08 to 17-Feb-11 688 0.6202 0.6174
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Table A.76: Sector: Oil Integrated, Stock: Oando Plc.
Oando Hurst Parameter
Period N Absolute Moment Higuchi
25-Nov-05 to 17-Feb-11 1307 0.4451 0.4860
25-Nov-05 to 23-May-08 619 0.4142 0.3995
23-May-08 to 17-Feb-11 688 0.3565 0.4547

Table A.77: Sector: Oil Integrated, Stock: Sacoil Holding Ld.
Sacoil Hurst Parameter
Period N Absolute Moment Higuchi
19-Oct-94 to 17-Feb-11 4072 0.4764 0.4676
19-Oct-94 to 23-May-08 3384 0.3776 0.3580
23-May-08 to 17-Feb-11 688 0.6530 0.6254

Table A.78: Sector: Oil Integrated, Stock: Sasol Limited.
Sasol Hurst Parameter
Period N Absolute Moment Higuchi
27-Mar-85 to 17-Feb-11 6462 0.4626 0.5507
27-Mar-85 to 23-May-08 5774 0.4771 0.5454
23-May-08 to 17-Feb-11 688 0.4241 0.3946

Table A.79: Sector: Paper, Stock: Mondi Limited.
Mondiltdp Hurst Parameter
Period N Absolute Moment Higuchi
02-Jul-07 to 17-Feb-11 911 0.5073 0.5213
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Table A.80: Sector: Paper, Stock: Sappi Limited.
Sappi Hurst Parameter
Period N Absolute Moment Higuchi
27-Mar-85 to 17-Feb-11 6461 0.5370 0.5460
27-Mar-85 to 23-May-08 5774 0.5307 0.5579
23-May-08 to 17-Feb-11 687 0.6007 0.5966

Table A.81: Sector: Pharmaceuticals, Stock: Aspen Pharmacare Holdings.
Aspen Hurst Parameter
Period N Absolute Moment Higuchi
25-May-87 to 17-Feb-11 5171 0.5482 0.5881
25-May-87 to 23-May-08 4484 0.5724 0.5927
23-May-08 to 17-Feb-11 687 0.3865 0.5214

Using absolute moments method Sappi Limited (Sappi) showed a H � 1
2
on

the whole interval and the interval before the crash, after the crash persistency was

found. Using the Higuchi method the stock had a H � 1
2
on the whole interval

and persistency was found of the interval before and after the crash, see table A.80.

From the sector, pharmaceuticals, stock, Aspen Pharmacare Holdings (Aspen)

showed a H � 1
2
on the whole interval, persistency on the interval before the crash

and anti-persistency after the crash using absolute moments method. While using

the Higuchi method persistency was found on the whole interval and the interval

before the crash, after the crash a H � 1
2
was found, see table A.81. Cipla Medpro

SA Ltd (Ciplamed) showed persistency using absolute moments method and had a

H � 1
2
using the Higuchi method, see table A.82. From the sector, platinum, stock

Anglo American Platinum Corporation Limited (Angoplat) showed a H � 1
2

except for absolute moments method after the crash where persistency was found,

see table A.83. Anooraq Resources Corporation (Anooraq) was persistent on

the whole interval for both methods, see table A.84.
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Table A.82: Sector: Pharmaceuticals, Stock: Cipla Medpro SA Ltd.
Ciplamed Hurst Parameter
Period N Absolute Moment Higuchi
10-Jun-05 to 17-Feb-11 1425 0.5584 0.5097

Table A.83: Sector: Platinum, Stock: Anglo American Platinum Corporation Lim-
ited.

Angoplat Hurst Parameter
Period N Absolute Moment Higuchi
27-Mar-85 to 17-Feb-11 6460 0.5153 0.5297
27-Mar-85 to 23-May-08 5758 0.5140 0.5170
23-May-08 to 17-Feb-11 687 0.5802 0.5325

Using absolute moments method Aquarius Platinum Ltd (Aquarius) had a

H � 1
2
on the whole interval, anti-persistent on the interval before the crash and

persistent on the interval after the crash. Using the Higuchi method persistency

was found on all three intervals, see table A.85. Using absolute moments method

Impala Platinum Holdings Limited (Implats) stock had a H � 1
2
on the whole

interval and the interval before the crash while after the crash persistency was found.

Using the Higuchi method persistency was found on the whole interval and the

interval before the crash while after the crash there was a H � 1
2
, see table A.86.

From sector, rail, road and freight, stock Cargo Carriers Limited (Cargo) was

persistent for both methods except for one interval before the crash where a H �

Table A.84: Sector: Platinum, Stock: Anooraq Resources Corporation.
Anooraq Hurst Parameter
Period N Absolute Moment Higuchi
19-Dec-06 to 17-Feb-11 1042 0.5998 0.6228
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Table A.85: Sector: Platinum, Stock: Aquarius Platinum Ltd.
Aquarius Hurst Parameter
Period N Absolute Moment Higuchi
08-Dec-04 to 17-Feb-11 1551 0.5448 0.6190
08-Dec-04 to 23-May-08 863 0.3383 0.5817
23-May-08 to 17-Feb-11 688 0.5546 0.5550

Table A.86: Sector: Platinum, Stock: Impala Platinum Holdings Limited.
Implats Hurst Parameter
Period N Absolute Moment Higuchi
27-Mar-85 to 17-Feb-11 6462 0.5151 0.5537
27-Mar-85 to 23-May-08 5774 0.5172 0.5517
23-May-08 to 17-Feb-11 688 0.5554 0.5062

1
2
was found, see table A.87. From sector real estate holdings and development,

stock Acucap Properties Limited (Acucap) had a H � 1
2
on the whole interval

and the interval before the crash and anti-persistent after the crash using absolute

moments method. While using the Higuchi method there was persistency on the

whole interval and before the crash and anti-persistency after the crash, see table

A.88. Growthpoint Properties Limited (Growpnt) was persistent on the whole

interval and the interval before the crash and anti-persistent after the crash for both

methods, see table A.89. Hospitality Prop Fund A (Hosp-a) had a H � 1
2
on the

Table A.87: Sector: Rail, Road and Freight, Stock: Cargo Carriers Limited.
Cargo Hurst Parameter
Period N Absolute Moment Higuchi
05-Oct-87 to 17-Feb-11 5831 0.5802 0.5681
05-Oct-87 to 23-May-08 5143 0.5722 0.5432
23-May-08 to 17-Feb-11 688 0.7233 0.6321
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Table A.88: Sector: Real Estate Holdings and Development, Stock: Acucap Proper-
ties Limited.

Acucap Hurst Parameter
Period N Absolute Moment Higuchi
27-Mar-02 to 17-Feb-11 2229 0.5055 0.6004
27-Mar-02 to 23-May-08 1540 0.5284 0.6185
23-May-08 to 17-Feb-11 687 0.2963 0.4295

Table A.89: Sector: Real Estate Holdings and Development, Stock: Growthpoint
Properties Limited.

Growpnt Hurst Parameter
Period N Absolute Moment Higuchi
27-Nov-87 to 17-Feb-11 5793 0.5792 0.5967
27-Nov-87 to 23-May-08 5105 0.5851 0.5968
23-May-08 to 17-Feb-11 688 0.3097 0.4449

whole interval for both methods, see table A.90.

Using absolute moments methodHyprop Investments Limited (Hyprop) had

a H � 1
2
on the whole interval and the interval before the crash and after the crash

anti-persistency was found. The Higuchi method showed persistency on the whole

interval and the interval before the crash while H � 1
2
on the interval after the crash,

see table A.91. From sector, real estate investment trusts, stock Capital Property

Fund (Capital) had a H � 1
2
for both methods except for one interval after the

Table A.90: Sector: Real Estate Holdings and Development, Stock: Hospitality Prop
Fund A.

Hosp-a Hurst Parameter
Period N Absolute Moment Higuchi
16-Feb-06 to 17-Feb-11 1251 0.4685 0.5247
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Table A.91: Sector: Real Estate Holdings and Development, Stock: Hyprop Invest-
ments Limited.

Hyprop Hurst Parameter
Period N Absolute Moment Higuchi
24-Feb-88 to 17-Feb-11 5762 0.5423 0.5797
24-Feb-88 to 23-May-08 5074 0.5319 0.5640
23-May-08 to 17-Feb-11 688 0.3951 0.4685

Table A.92: Sector: Real Estate Investment Trusts, Stock: Capital Property Fund.
Capital Hurst Parameter
Period N Absolute Moment Higuchi
06-Sep-85 to 17-Feb-11 6352 0.4823 0.4887
06-Sep-85 to 23-May-08 5664 0.4912 0.4725
23-May-08 to 17-Feb-11 688 0.3351 0.4977

crash where anti-persistency was found, see table A.92. Caital Shopping Centres

Group Plc (Capshop) showed persistency for both methods except for one interval

before the crash where H � 1
2
for the absolute moments method, see table A.93.

Using one method Emira Property Fund (Emira) had a H � 1
2
on the whole

interval and the interval before the crash and anti-persistency after the crash using

absolute moment, while the Higuchi method showed a H � 1
2
on the whole interval,

persistency on the interval before the crash and anti-persistency after the crash, see

Table A.93: Sector: Real Estate Investment Trusts, Stock: Caital Shopping Centres
Group Plc.

Capshop Hurst Parameter
Period N Absolute Moment Higuchi
24-Jun-99 to 17-Feb-11 2913 0.5897 0.5842
24-Jun-99 to 23-May-08 2225 0.5104 0.5688
24-Jun-99 to 17-Feb-11 688 0.5805 0.6111
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Table A.94: Sector: Real Estate Investment Trusts, Stock: Emira Property Fund.
Emira Hurst Parameter
Period N Absolute Moment Higuchi
28-Nov-03 to 17-Feb-11 1805 0.4640 0.5450
28-Nov-03 to 23-May-08 1117 0.5062 0.5602
23-May-08 to 17-Feb-11 688 0.2959 0.4356

Table A.95: Sector: Real Estate Investment Trusts, Stock: Fountainhead Prop Trust.
Fpt
Period N Absolute Moment Higuchi
04-Jun-07 to 17-Feb-11 931 0.4076 0.4450

table A.94. Fountainhead Prop Trust (Fpt) showed an anti-persistent behaviour

on the whole interval for both methods, see table A.95. Syfrets and Commercial

Union Property Fund (Sycom) had aH � 1
2
on the whole interval and the interval

before the crash and after the crash the stock showed an anti-persistent behaviour

for both methods, see table A.96.

Sector, real estate investment and services, stock Pangbourne Propertise Ltd

(Panprop) had a H � 1
2
for both methods except for one interval where after the

crash anti-persistency was found, see table A.97. Sector, restaurants and pubs, stock

Table A.96: Sector: Real Estate Investment Trusts, Stock: Syfrets and Commercial
Union Property Fund.

Sycom Hurst Parameter
Period N Absolute Moment Higuchi
28-Apr-87 to 17-Feb-11 5972 0.5034 0.5153
28-Apr-87 to 23-May-08 5285 0.5279 0.5209
23-May-08 to 17-Feb-11 688 0.4253 0.3814
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Table A.97: Sector: Real Estate Investment and Services, Stock: Pangbourne Prop-
ertise Ltd.

Panprop Hurst Parameter
Period N Absolute Moment Higuchi
28-Jul-87 to 17-Feb-11 5911 0.5039 0.5248
28-Jul-87 to 23-May-08 5223 0.4901 0.5120
23-May-08 to 17-Feb-11 688 0.4061 0.5037

Table A.98: Sector: Restaurants and Pubs, Stock: Famous Brands Ltd.
Fambrands Hurst Parameter
Period N Absolute Moment Higuchi
09-Nov-94 to 17-Feb-11 4057 0.5555 0.5705
09-Nov-94 to 23-May-08 3369 0.5518 0.5671
23-May-08 to 17-Feb-11 688 0.4685 0.5658

Famous Brands Ltd (Fambrands) showed persistency for both methods, except for

one interval where the stock return had a H � 1
2
, see table A.98. Using one method

Spur Corporation Limited (Spurcorp) had a H � 1
2
on the whole interval and

anti-persistency on the interval before and after the crash using absolute moments

method. Using the Higuchi method persistency was found on the whole interval and

a H � 1
2
on the interval before and after the crash, see table A.99.

Table A.99: Sector: Restaurants and Pubs, Stock: Spur Corporation Limited.
Spurcorp Hurst Parameter
Period N Absolute Moment Higuchi
07-Dec-99 to 17-Feb-11 2797 0.5042 0.5734
07-Dec-99 to 23-May-08 2109 0.4251 0.5236
23-May-08 to 17-Feb-11 688 0.3740 0.4796

 
 
 



Appendix B

Hurst Tables: Part 2

From sector, retailers - multi department, stock,Massmart Holdings Ltd (Mass-

mart) showed a H � 1
2
on the whole interval and the interval before the crash and

anti-persistency after the crash using absolute moments method, while using the

Higuchi method persistency was found on the whole interval and the interval before

the crash and after the crash a H � 1
2
was found, see table B.1. Nictus Beperk

(Nictus) showed persistency on the whole interval and the interval before the crash

and a H � 1
2
after the crash for both methods, see table B.2. Verimark Holdings

Ltd (Verimark) showed persistency on the whole interval and the interval before

the crash, while absolute moments method showed anti-persistency and the Higuchi

method showed aH � 1
2
after the crash, see table B.3.Woolworths Holdings Lim-

ited (Woolies) had a H � 1
2
except for one interval, where the absolute moments

method showed anti-persistent behaviour, see table B.4. absolute moments method

showed that the stock for Mr Price Group Limited (Mrprice) had a H � 1
2

Table B.1: Sector: Retailers - Multi Department, Stock: Massmart Holdings Ltd.
Massmart Hurst Parameter
Period N Absolute Moment Higuchi
04-Jul-00 to 17-Feb-11 2660 0.4870 0.5716
04-Jul-00 to 23-May-08 1972 0.5073 0.5942
23-May-08 to 17-Feb-11 688 0.3774 0.5024
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Table B.2: Sector: Retailers - Multi Department, Stock: Nictus Beperk.
Nictus Hurst Parameter
Period N Absolute Moment Higuchi
26-Mar-87 to 17-Feb-11 5963 0.6433 0.6463
26-Mar-87 to 23-May-08 5275 0.6512 0.6613
23-May-08 to 17-Feb-11 688 0.5427 0.5276

Table B.3: Sector: Retailers - Multi Department, Stock: Verimark Holdings Ltd.
Verimark Hurst Parameter
Period N Absolute Moment Higuchi
12-Jul-05 to 17-Feb-11 1404 0.5860 0.6072
12-Jul-05 to 23-May-08 716 0.5813 0.5919
23-May-08 to 17-Feb-11 688 0.3840 0.4822

Table B.4: Sector: Retailers - Multi Department, Stock: Woolworths Holdings Lim-
ited.

Woolies Hurst Parameter
Period N Absolute Moment Higuchi
20-Oct-97 to 17-Feb-11 3329 0.5459 0.5487
20-Oct-97 to 23-May-08 2641 0.5463 0.5317
23-May-08 to 17-Feb-11 688 0.3938 0.5242
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Table B.5: Sector: Retailers - Soft Goods, Stock: Mr Price Group Limited.
Mrprice Hurst Parameter
Period N Absolute Moment Higuchi
12-Jun-89 to 17-Feb-11 5411 0.5143 0.5964
12-Jun-89 to 23-May-08 4723 0.5206 0.5919
23-May-08 to 17-Feb-11 688 0.3082 0.5453

Table B.6: Sector: Retailers - Soft Goods, Stock: The Foschini Group Ltd.
Tfg Hurst Parameter
Period N Absolute Moment Higuchi
06-Sep-85 to 17-Feb-11 6351 0.5521 0.6171
06-Sep-85 to 23-May-08 5663 0.5624 0.6186
23-May-08 to 17-Feb-11 688 0.3687 0.5005

for the whole interval and the interval before the crash and anti-persistent after the

crash. The Higuchi method showed persistency on the whole interval and the interval

before the crash and a H � 1
2
after the crash, see table B.5.

The Foschini Group Ltd (Tfg) showed persistency on the whole interval and

the interval before the crash, after the crash absolute moments method showed an

anti-persistent behaviour while the Higuchi method showed a H � 1
2
behaviour,

see table B.6. Truworths International Limited (Truwths) showed a H � 1
2
for

both methods, except for one interval and for absolute moments method where anti-

persistency was found, see table B.7. Ucs Group Limited (Ucs) was persistent

on the whole interval and the interval before the crash and after the crash the

absolute moments method showed a H � 1
2
while the Higuchi method showed an

anti-persistent behaviour, see table B.8. From the sector, steel, stockArcelormittal

(Arcmittal) showed persistency for both methods except for one interval, where

absolute moments method found a H � 1
2
, see table B.9. absolute moments method

showed that Evraz Highveld Steel and Van (Ehsv) had a H � 1
2
on the whole
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Table B.7: Sector: Retailers - Soft Goods, Stock: Truworths International Limited.
Truwths Hurst Parameter
Period N Absolute Moment Higuchi
11-May-98 to 17-Feb-11 3194 0.5068 0.5226
11-May-98 to 23-May-08 2506 0.5166 0.5219
23-May-08 to 17-Feb-11 688 0.3480 0.5012

Table B.8: Sector: Software, Stock: Ucs Group Limited.
Ucs Hurst Parameter
Period N Absolute Moment Higuchi
09-Sep-98 to 17-Feb-11 3109 0.5763 0.5946
09-Sep-98 to 23-May-08 2421 0.5592 0.5756
23-May-08 to 17-Feb-11 688 0.5084 0.4490

interval and the interval before the crash, while after the crash persistency was found.

The Higuchi method showed persistency on the whole interval and the interval after

the crash while a H � 1
2
was found on the interval before the crash, see table

B.10. Hulamin Limited (Hulamin) showed a H � 1
2
on the whole interval for both

methods, see table B.11.Kumba Iron Ore Ltd (Kumbaio) showed a H � 1
2
on the

whole interval for both methods, see table B.12. From sector, telecommunications

equipment, stock,Vodacom Group Limited (Vodacom) showed an anti-persistent

behaviour on the whole interval for both methods, see table B.13.

Table B.9: Sector: Steel, Stock: Arcelormittal.
Arcmittal Hurst Parameter
Period N Absolute Moment Higuchi
08-Nov-89 to 17-Feb-11 5306 0.5668 0.5773
08-Nov-89 to 23-May-08 4618 0.5779 0.5701
23-May-08 to 17-Feb-11 688 0.5368 0.5668
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Table B.10: Sector: Steel, Stock: Evraz Highveld Steel and Van.
Ehsv Hurst Parameter
Period N Absolute Moment Higuchi
06-Sep-85to 17-Feb-11 6350 0.5439 0.5539
06-Sep-85 to 23-May-08 5662 0.5401 0.5430
23-May-08 to 17-Feb-11 688 0.5784 0.5799

Table B.11: Sector: Steel, Stock: Hulamin Limited.
Hulamin Hurst Parameter
Period N Absolute Moment Higuchi
25-Jun-07 to 17-Feb-11 916 0.5096 0.5472

Table B.12: Sector: Steel, Stock: Kumba Iron Ore Ltd.
Kumbaio Hurst Parameter
Period N Absolute Moment Higuchi
20-Nov-06 to17-Feb-11 1093 0.5386 0.5323

Table B.13: Sector: Telecommunications Equipment, Stock: Vodacom Group Lim-
ited.

Vodacom Hurst Parameter
N Absolute Moment Higuchi

18-May-09 to 17-Feb-11 443 0.2964 0.3253
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Table B.14: Sector: Wireless Telecom Services, Stock: Allied Technologies Limited.
Altech Hurst Parameter
Period N Absolute Moment Higuchi
06-Sep-85 to 17-Feb-11 6352 0.5039 0.5386
06-Sep-85 to 23-May-08 5664 0.5322 0.5404
23-May-08 to 17-Feb-11 688 0.4967 0.5093

Table B.15: Sector: Wireless Telecom Services, Stock: Blue Label Telecoms Ltd.
Bluetel Hurst Parameter
Period N Absolute Moment Higuchi
14-Nov-07 to 17-Feb-11 816 0.5062 0.5399

From the sector, wireless telecom services, stock,Allied Technologies Limited

(Altech) showed a H � 1
2
on all the intervals for both methods, see table B.14. Blue

Label Telecoms Ltd (Bluetel) showed a H � 1
2
on all the intervals for both

methods, see table B.15. absolute moments method showed that MTN Group

Limited (Mtn) had a H � 1
2
on all the intervals, while the Higuchi method showed

a persistent stock on the whole interval and the interval before the crash and anti-

persistent stock after the crash, see table B.16.

Table B.16: Sector: Wireless Telecom Services, Stock: MTN Group Limited.
Mtn Hurst Parameter
Period N Absolute Moment Higuchi
15-Aug-95 to 17-Feb-11 3868 0.5454 0.5970
15-Aug-95 to 23-May-08 3180 0.5211 0.5997
23-May-08 to 17-Feb-11 688 0.4538 0.4136

 
 
 



Appendix C

Wick Calculus in Gaussian Spaces

C.1 Introduction

In this appendix we will be discussing white noise spaces and generalized processes

given by the time derivative of a Wiener process, i.e. the velocity of the Wiener

process. We mainly follow the presentation of Hida, Kuo, Pottho¤and Striet, (1993).

The generalized variables are in white noise spaces and we will consider stochastic

analysis in Gaussian spaces. The Wiener Itô chaos decomposition theorem is used

in the development of functions of white noise. We need to de�ne a measure on a

Gaussian space, which is the dual of a nuclear space. We cannot have a Lebesgue

measure on an in�nite dimensional vector space thus we will equip the space with

a Gaussian measure. A measure is constructed in the space S 0 (R) of tempered

distributions which is the dual of the Schwartz space of test functions S (R) :We

will also de�ne the Wick product of two distributions in terms of the S transform.

C.2 Preliminaries

Tables C.1 gives a list of the main spaces used in white noise analysis and some of

the spaces will be de�ned in the next section. The spaces obey the following

N � H � N �

and

S (R) � L2 (R) � S 0 (R)
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and

(N )1 � (N ) � L2 (�) � (N )� � (N )�1 :

See below for the description of norm.j�jn. j�j is the norm induced by the scalar

product on N :

C.3 White Noise

To construct a countably Hilbert space we let n 2 N and let D be a real vector

space equipped with a sequence f(�; �)ng of scalar products which induce norms j�jn
on D: Assume that the system of scalar products is compatible such that if f�ng is a

sequence in D which converges to zero with respect to a norm j�jn and is Cauchy with

respect to j�jm ; m 2 N; then it converges also to zero with respect to j�jm. Assume

that the norms are increasing in the sense that for n � m the norms obey j�jn � j�jm.

Let Nn be the completion of D under the j�jn. Let N denote the intersection of the

Hilbert spaces Nn as N = \nNn: N endowed with the projective limit topology � p

is called a countably Hilbert space. Assume also that for every n 2 N there exists

m 2 N; so that the injection �mn from Nm into Nn is a Hilbert-Schmidt operator 1.

Let N �
n = N�n with norm j�j�n denote the dual of Nn and let N � be the dual of

N . We have N � = [nN �
n . The dual pairing between N � and N is denoted by h�; �i :

Consider N � as equipped with a weak topology �: Let B be a Borel �-algebra on

N � generated by cylinder sets; see Hida, Kuo, Pottho¤ and Striet (1993) : N is a

separable pre-Hilbert space with scalar product (�; �) ; which is compatible with the

topology of N , (compatible with scalar products (�; �)n ; n2N):
1u is a Hilbert-Schmidt operator if u: H1 ! H2 which are Hilbert spaces such that u

admits an orthonormal representation with the scalar coe�cients in l2 which is a Hilbert
sequence space.
(See Diestel, Jarchowand and Tonge 1995, page 84)

 
 
 



272

Table C.1: Table of main spaces
Space Description
D Linear space on R with sequence (�; �) :
Nn Completion of D under j�jn
N = \nNn Nuclear separable pre-Hilbert space

with a scalar product compatible with the topology on N :
N �
n = N�n Dual of Nn:
N � = [nN �

n Dual of N �.
B Borel �-algebra on N �:
S (R) Choice for N , a Schwartz space of test functions.
S 0 (R) Dual of S (R) a space of generalized functions.
H Completion of N under j�j ; can be Nn for some n 2 N:
L2
�
Rd
�

Choice for H:
Lp (N �;B; �) = (Lp) for p � 1:
P Algebra of polynomials generated by X�; see below.
R Image of (L2) under T transform.
H(n) Closed linear span of fH�; � 2 Ing the nth homogenous chaos

where H� is a product of Hermite polynomials.
(L2) = �H(n) direct sum of H(n):
H
̂nC Tensor power of Hilbert space with dual N �
̂n

C :

N 
̂n =prlimp2NH
̂np :

N �
̂n =indlimp2NH
̂n�p :
L1 (�) Space of integrable functions with a Gaussian measure �:
L2 (�) Space of square integrable functions with a Gaussian measure �:
Ln (�) Subspace of L2 (�) consisting of In

�
f (n)

�
with f (n) 2 H
̂nC :

P (N �) Smooth polynomials on N �:

(Hp)�q Completion of P (N �) :

(N )� = \p;q�0 (Hp)�q :
(N )�� = [p;q�0 (H�p)���q :
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We will now state the Minlos Theorem.

De�nition C.1 (Hida, Kuo, Pottho¤ and Striet, 1993) : We let C be a function on

N such that C is continuous on N , C is positive de�nite and C (0) = 1; then C is a

characteristic function on N . Then there exist a unique probability measure �C on

(N �;B) such that for all � 2 N we haveZ
N �
exp (i hx; �i) d�C (x) = C (�) : (C.1)

If C is a continuous function with respect to the norm j�jp for p2N and if n (> p) is

such that the injection �mn : Nn ! Np is of Hilbert-Schmidt type, then �C (N�n) = 1:

The sample paths of white noise are not functions but generalized functions. The

topology structure of S (R) is one of nuclear countably Hilbert spaces. Gaussian

spaces are the topological dual of a countably Hilbert space equipped with a Gaussian

measure. We choose N to be the Schwartz space S (R) of test functions. The norm

induced by the scalar products is denoted by j�j and the completion of N with

respect to this norm is denoted by H. We can choose H to be one of the spaces

Nn (Hida, Kuo, Pottho¤ and Striet, 1993) : Consider the characteristic function C

on N

C (�) = exp

�
�1
2
j�j2
�
: (C.2)

Consider the probability space (N �;B; �) ; where � is the Gaussian measure given

by equation C.1 and equation C.2 We call (N �;B; �) the Gaussian space associated

with (N ; j�j) and choosing N � = S 0 (R) we get the space

(S 0 (R) ;B; �) (C.3)

which is called the white noise space. For d 2 N we let N = S
�
Rd
�
be the Schwartz

space of rapidly decreasing C1�functions on Rd; endowed with it�s usual topology.
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S
�
Rd
�
is countably Hilbert and it is nuclear. Let H = L2

�
Rd
�
be real with a

Lebesgue measure on it. Then the space
�
S 0
�
Rd
�
;B; �

�
is called white noise with a

d-dimensional time parameter. If we let d = 1 then we have white noise.

For � 2 N , we denote the random variable x 7�! hx; �i by X�. The associated

coordinate process X over N is given by X� (x) = hx; �i which we will call white

noise. The mapping � 7�! X� is called the canonical coordinate process over N and

we let P denote the algebra of polynomials generated by X� which are dense in

(Lp) : For f 2 H the connection between white noise and Brownian motion is the

coordinate process onN which has an extension toH such that this mapping is linear

from H into \p�1 (Lp) and is continuous in every k�kp for p � 1 which is denoted by

X : f 7! Xf (�) = h�; fi :The process is centered Gaussian with covarianceZ
N �
hx; fi hx; gi d� (x) = (f; g) :

Let 1A be the indicator of A 2 B (R). Then we form random variables as followsn
X1[0;t) =



�; 1[0;t)

�
; t 2 R+

o
, which are centered Gaussian with the following covari-

ance structure

Z
S0(Rd)



�; 1[0;t)

� 

�; 1[0;s)

�
d� (x) =

�
1[0;t); 1[0;s)

�
= t ^ s:

At time zero this family of random variables is a one dimensional Brownian motion

starting at the origin.

The time derivative of Brownian motion is a distribution. For time t > 0 we can

write Brownian motion as B (�) =


�; 1[0;t)

�
; and if we let x (t) be the time derivative

of Brownian motion then Brownian motion is represented as

B (t; x) =

Z t

0

x (s) ds:
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This again is a family of random variables which is centered Gaussian with covariance

under the measure � which is given as

E� [B (t)B (s)] = t ^ s:

Then we can de�ne B (t) as a Brownian motion.

C.3.1 S-Transform

Consider the structure (L2) = L2 (N �;B; �) then the Wiener-Itô decomposition the-

orem states that (L2) has a direct sum decomposition into homogeneous chaos. In

order to do so we will introduce the T transform �rst, it�s sort of like the Fourier

transform but not quite. The second transform is the S transform and both trans-

forms are represented as elements in (L2) in terms of Wick powers of distributions.

The details of the T transform deals with complex numbers and will not be discussed

here and for further details refer to Hida, Kuo, Pottho¤ and Striet (1993).

De�nition C.2 (Hida, Kuo, Pottho¤ and Striet (1993)) : For � 2 N and ' 2 (L2)

the T transformation on (L2) is given by

T ' (�) =
Z
exp (i hx; �i)' (x) d� (x) :

T transforms functionals on N � into an N -functional and is linear. The image of

(L2) under T is a vector space of complex valued functions on N denoted by R. T

is isomorphic from (L2) onto R. The mapping �! T ' (��) has the entire analytic

extension.

De�nition C.3 (Hida, Kuo, Pottho¤ and Striet (1993)) : For ' 2 (L2), � 2 N

and x 2 N �we set the S transformation on (L2) as

S' (�) = C (�) T ' (�i�)
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or

S' (�) =
Z
' (x) : exp (hx; �i) : d� (x)

with

: exp (hx; �i) := exp
�
hx; �i � 1

2
j�j2
�
: (C.4)

Equation (C:4) is often referred to as aWick exponentials and is often represented

with the Wick exponential symbol �:

C.3.2 Chaos Expansion

For n 2 N we de�ne Hermite polynomials with u of order n and parameter � > 0 as

: un :�2=
�
��2

�n
exp

�
u2

2�2

�
dn

dun
exp

�
� u2

2�2

�
:

For the construction of a basis of (L2) we let f 2 H and we form random variables

as

: h�; fin :=: h�; fin :jf j2 ;

and we note that : hx; ��in : and : h�x; �in : are not the same. Let In be a set of

naturally ordered n-tuples � in Nn; nk (�) is a number of entries in � equal to k 2 N

and n (�)! =
Q1
k=1 nk (�)! with the empty product equal to one. Let (ek; k 2 N) be

an orthonormal basis of H and let n 2 N, � 2 In: Set H� (x)! =
Q1
k=1 : hx; eki

nk(�) :

and the collection of fH�; � 2 I; n 2 N0g forms an orthogonal basis of (L2) with

norm kH�k22 = n (�)!: For ' 2 (L2) we have ' (x) =
P1

n=0 '
(n) (x) and the chaos

decomposition follows as

'(n) (x) =
X
�2In

a�H� (x) :
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C.4 Generalized Functions

Let 
̂ be the symmetric tensor product (Hida, Kuo, Pottho¤ and Striet (1993)) :

Then we de�ne Wick powers by

: x
0 := 1

: x
1 := x

: x
n :=: x
n�1 : 
̂x� (n� 1) : x
n�2
̂Tr

where Tr=
R
�
2t dt and is an element of T and a distribution on S (R2) : If f 2

S (R2) ; then hTr; fi =
R1
�1 f (t; t) dt see Hida, Kuo, Pottho¤ and Striet (1993) : For

� 2 N and x 2 N � we have a Wick exponential of the form

: exp (hx; �i) :=
1X
n=0

1

n!



: x
n :; �
n

�
see Grothaus, Kondratiev and Us (1998) : For n 2 N0 we let x 7!: x
n : be a map

from N � into N �
̂n: For '(n) 2 N �
̂n we de�ne smooth Wick monomials of order

n corresponding to the kernel '(n) as follows In
�
'(n)

�
(x) =



: x
n :; '(n)

�
. Smooth

Wick monomials are orthogonal with respect to the inner product. Let f (n) 2 N �
̂n
C

then we let Ln (�) be a subspace of L2 (�) consisting of In
�
f (n)

�
(x) : Let

P (N �) =

(
'j' (x) =

NX
n=0



: x
n :; '(n)

�
; '(n) 2 N �
̂n

C ; x 2 N �; N 2 N0

)
be a space which is dense in L2 (�) : Grothaus, Kondratiev and Us (1998) infer that

for any ' 2 P (N �) we have

L2 (�) =
1M
n=0

Ln (�) :

De�nition C.4 (Grothaus, Kondratiev and Us (1998)) : For any f 2 L2 (�) and

f (n) 2 N �
̂n
C we have the Itô-Segal-Wiener chaos decomposition

f (x) =

1X
n=0



: x
n :; f (n)

�
:
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To get generalized functions we have to construct a space of test functions.

For x 2 N � consider Wick polynomials f (x) =
PN

n=0



: x
n :; f (n)

�
, with norm

kfk2p;q;� =
P1

n=0 (n!)
(1+�) 2nq

��f (n)��2
p
and then we de�ne a Hilbert space as follows

(Hp)�q =
(
f 2 L2 (�) jf (x) =

NX
n=0



: x
n :; f (n)

�
; kfk2p;q;� <1

)
:

The space of test functions (N )� is de�ned as the projective limit of the spaces

(Hp)�q and (N )
� = \p;q�0 (Hp)�q : Let (H�p)

��
�q be the dual with respect to L

2 (�)

and let (N )�� = [p;q�0 (H�p)���q : The space of Hida distributions is (N )
� = (N )�0.

Let (N )1 be the largest space of generalized stochastic functions and the dual paring

between (N )1 and (N )�1 be denoted by hh�; �ii :

Let � 2 (N )�1 be a distribution such that E� (�) = hh�; 1ii. For ' 2 (N )1

consider �(n) 2 N �
̂n
C then there exists a distribution In

�
�(n)

�
that acts as test

functions in the sense that we have a pairing




In
�
�(n)

�
; '
��
= n!



�(n); '(n)

�
see Grothaus, Kondratiev and Us (1998) : Denote In

�
�(n)

�
=


: x
n :;�(n)

�
as dis-

tributions then for any � 2 (N )1 we have the unique decomposition

� =

1X
n=0



: x
n :;�(n)

�
if it converges in (N )1. The dual pairing is given by

hh�; 'ii =
1X
n=0

n!


�(n); '(n)

�
:

Let x 2 N � at � 2 N then the S transform of a generalized function is de�ned as

S� (�) = hh�; : exp (h�; �i) :ii

=
1X
n=0



�(n); �
n

�
:
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If we let �;	 2 (N )�1 ; then we de�ne the Wick product by

� �	 = S�1 (S� � S	)

which is a element in (N )�1 :

We refer readers to theorem 5.1 for the algebraic properties of the Wick product.

 
 
 



Appendix D

Malliavin Derivative

Consider a Banach space 
 = C0 ([0; T ]) ; where C0 ([0; T ]) is a space of continuous,

real functions ! on [0; T ] such that ! (0) = 0; then

k!k1 = sup
t2[0;T ]

j! (t)j

is a norm on 
:We call 
 aWiener space. Let L2 ([0; T ]) be the space of deterministic

square integrable functions with respect to the Lebesgue measure � (dt) = dt on

[0; T ] : Let g 2 L2 ([0; T ]) be a deterministic function and we put

 (t) =

Z t

0

g (s) ds (D.1)

the integral is an element of 
 (see Øksendal, 1997):

De�nition D.1 Øksendal (1997). Let F : 
 ! R be a random variable then we

de�ne the directional derivative of F at the point ! 2 
 in the direction of  2 
 by

DF (!) =
d

d"
[F (! + ")]"=0

if it exists in the (strong) sense that

DF (!) = lim
"!0

F (! + ")� F (!)
"

exists in L2 (
).
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De�nition D.2 Øksendal (1997). Assume that F : 
 ! R has a directional

derivative in all directions  of the form (D:1) and there also exists  (t; !) 2

L2 ([0; T ]� 
) such that DF (!) can be written in the following form

DF (!) =

Z T

0

 (t; !) g (t) dt:

Then we say F is di¤erentiable and the derivative of F is given as

DtF (!) =  (t; !) :

Let D1;2 be a set of all di¤erentiable random variables.

Example D.1 Øksendal (1997). Let 
 be a Wiener space and consider a Wiener

process (Brownian motion) W (t; !) ; then for ! 2 C0 ([0; T ]) we set

W (t; !) = ! (t) :

For f (s) 2 L2 ([0; T ]) let

F (!) =

Z T

0

f (s) dW (s; !) =

Z T

0

f (s) d! (s)

be a stochastic process. For  2 
 if

 (t) =

Z t

0

g (s) ds

) d (t) = g (t) dt

we have

F (! + ") =

Z T

0

f (t) (d! (t) + "d (t))

=

Z T

0

f (t) d! (t) + "

Z T

0

f (t) d (t)

=

Z T

0

f (t) d! (t) + "

Z T

0

f (t) g (t) dt
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it follows that

DF (!) = lim
"!0

F (! + ")� F (!)
"

= lim
"!0

1

"

�Z T

0

f (t) d! (t) + "

Z T

0

f (t) g (t) dt�
Z T

0

f (t) d! (t)

�
=

Z T

0

f (t) g (t) dt:

Then F is di¤erentiable and F 2 D1;2: For t 2 [0; T ] and ! 2 
 the derivative is

DtF (!) = f (t) :

Let �[0;t] (s) be a piecewise de�ned function of the form

�[0;t] (s) =

�
1 if s 2 [0; t]
0 if s =2 [0; t] :

Suppose t1 2 [0; t] we let

f (t) = �[0;t1] (t)

then

F (!) =

Z T

0

�[0;t1] (s) dW (s)

=

Z t1

0

1dW (s) +

Z T

t1

0dW (s)

= W (t1; !) :

The derivative of the Wiener process follows as

DtW (t1; !) = �[0;t1] (t) :

Let P denote the family of all random variables of the form

F (!) = ' (�1; ::; �n)

where ' (x1; ::; xn) =
P

� a�x
� is a polynomial in n variables x1; ::; xn and � =

(�1; ::; �n) a multi-index and �i =
R T
0
fi (t) dW (t) for some deterministic fi 2
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L2 ([0; T ]) : We call such random variables Wiener polynomials, P is dense in L2 (
)

and P � D1;2 for more details refer to Øksendal (1997). For F 2 D1;2 we introduce

a norm kFk1;2 = kFkL2(
) + kDtFkL2([0;T ]�
) on D1;2:

De�nition D.3 Øksendal (1997). De�ne D1;2 to be the closure of the family P with

respect to the norm k�k1;2 :

De�nition D.4 Øksendal (1997). Now we let F 2 D1;2 and suppose there exists a

sequence fFng � P such that fFng ! F in L2 (
) and fDtFng1n=1 is convergent in

L2 ([0; T ]� 
) : Then we de�ne

DtF = lim
n!1

DtFn

and

DF =

Z T

0

DtF � g (t) dt

for all

 (t) =

Z t

0

g (s) ds

where g (s) 2 L2 ([0; T ]) : We call DtF the Malliavin derivative of F .

 
 
 



Appendix E

Optimization Algorithm

Algorithm E.1 (Rardin, 2000). Simulated Annealing Search.

Step 0: Initialization. Choose any starting feasible solution x(0); an iteration limit

tmax; and a relatively large initial temperature q > 0: Then set incumbent solution

x̂ x(0) and solution index t 0:

Step 1: Stopping. If no move �x in move set M leads to a feasible neighbor of

current solution x(t); or if t = tmax, then stop. Incumbent solution x̂ is an approxi-

mate optimum.

Step 2: Provisional Move. Randomly choose a feasible move �x 2M as a provi-

sional �x(t+1); and compute (possibly negative) net objective function improvement

�obj for moving from x(t) to
�
x(t) +�x(t+1)

�
(increase for a maximize, decrease for

a minimize).

Step 3: Acceptance. If �x(t+1) improves, or with probability e�obj=q if �obj � 0;

accept �x(t+1) and update

x(t+1)  x(t) +�x(t+1):

Otherwise return to step 2.

Step 4: Incumbent Solution. If the objective function value of x(t+1) is superior

to that of incumbent solution x̂; replace x̂ x(t+1):

Step 5: Temperature Reduction. If a su¢ cient number of iterations have passed

since the last temperature change, reduce temperature q:

Step 6: Increment. Increment t t+ 1, and return to step 1.
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Appendix F

MATLAB Code

F.1 Hurst Parameter

F.1.1 Log Returns of a Stock Prices

The following function calculates the log returns of stock prices.

function [w]=logreturns(x)

[q,l]=size(x);

y=zeros(q,1);

rt=zeros(q-1,1);

y=x;

for i=1:q-1

rt(i)=log(y(i+1))-log(y(i)); %log returns of stock prices

end

w=rt;

F.1.2 Aggregated Variance Method

The following function estimates the Hurst parameter using the aggregated variance

method.

function []=AggregatedVarianceMethod(stockdata)

x=logreturns(stockdata);
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N=length(x);

varall=[];

nall=[];

prev=999;

for n=2:�oor(N/5) % n number of entries in each block

b=�oor(N/n); % b number of blocks

if prev~=b

prev=b;

nobs=b*n ; % Number of observations

Z=reshape(x(1:nobs),n,b) ; % Block matrix

aveZ=mean(Z); % Average of the mean of each block

aveR=mean(aveZ); % Mean of the average series

varR=var(aveZ); % Variance

varall=[varall varR];

nall=[nall n];

end

end

X=nall;

Y=varall;

logX=log(X);

logY=log(Y);

p=poly�t(logX,logY,1); %Regression

F.1.3 Absolute Moments Method

The following function estimates the Hurst parameter absolute moments method.

function []=AbsoluteMomentsMethod(stockdata)
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x=logreturns(stockdata);

moment=1;

N=length(x);

Aall=[];

nall=[];

prev=999;

for n=2:�oor(N/5); %n number of entries in each block

b=�oor(N/n); % b number of blocks

if prev~=b

prev=b;

x=x-mean(x);

nobs=b*n ; % number of observations

Z=reshape(x(1:nobs),n,b); % block matrix

aveZ=mean(Z); % average of the mean of each block

A=sum((abs(aveZ)).^moment)/b;

Aall=[Aall A];

nall=[nall n];

end

end

X=nall;

Y=Aall;

logX=log(X);

logY=log(Y);

p=poly�t(logX,logY,1);

HurstAbsoluteMoments=p(1)/moment+1
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F.1.4 Higuchi Method

The following function estimates the Hurst parameter Higuchi method.

function []=HiguchiMethod(stockdata)

x=logreturns(stockdata);

N=length(x) %N length of the series

Lall=[];

nall=[];

prev=999;

x=cumsum(x);

for n=2:�oor(N/5) % n number of entries in each block

numb=�oor(N/n); % numb is the number of blocks

if prev~=numb

prev=numb;

b=�oor((N-n)/n);

A=zeros(n,b); % temp length

for i=1:n

for k=1:b

A(i,k)=abs(x(i+k*n)-x(i+(k-1)*n)); % second sum of L(n)

end

end

avgA=mean(A,2) ; % mean of A in colunm vector form

L=sum(avgA)*((N-1)/n^3);

Lall=[Lall L];

nall=[nall n];

end

end
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X=nall;

Y=Lall;

logX=log(X);

logY=log(Y);

p=poly�t(logX,logY,1);

HurstHiguchi=2+p(1)

F.1.5 Rescaled Range Method

The following function estimates the Hurst parameter rescaled range method.

function []=RescaledRangeMethod(stockdata)

x=logreturns(stockdata);

N=length(x); %N length of the series

RSavgall=[];

nall=[];

prev=999;

for n=5:�oor(N/5) % n number of entries in each block

b=�oor(N/n) ; % b number of blocks

if prev~=b

prev=b;

nobs=b*n ; % number of observations

Z=reshape(x(1:nobs),n,b); % block matrix

aveZ=mean(Z); % average of the mean of each block

W=Z-ones(n,1)*aveZ; % mean adjusted series W

V=cumsum(W) ; % series V is cumulative deviation from the mean

R=max(V)-min(V); % Range

S=std(Z); % The standard deviation
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RS=R./S ; %Rescaled Range estimate

RSavg=mean(RS); % mean of R/S

RSavgall=[RSavgall RSavg];

nall=[nall n];

end

end

X=nall;

Y=RSavgall;

logX=log(X);

logY=log(Y);

p=poly�t(logX,logY,1);

HurstRescaledRange=p(1)

F.2 Fractional Brownian Motion

The following function generates a fractional Brownian motion using equation (4:2) :

function []=FractionalBrownianMotion(H)

b=1000; % b Lower bound for the 1st intergral

N=1000; %N Sample number

b1=randn(b+1,1);

b2=randn(N+1,1);

ch=sqrt((2*H*gamma(3/2-H))/(gamma(H+1/2)*gamma(2-2*H))); %Normal-

izing constant

bh=zeros(N,1);

for n=1:N

x1=0;
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for k=-b:-1

x1=x1+((n-k)^(H-0.5)-(-k)^(H-0.5))*b1(k+b+1);

end

x2=0;

for k=0:n-1

x2=x2+(n-k)^(H-0.5)*b2(k+1);

end

ch;

bh(n)=ch*(x1+x2);

end

bh;

plot (n),hold;

hold on;

plot(bh,�-r�);

axis([0, N, -100, 100])

xlabel(�Time�)

ylabel(�Fractional Brownian Motion�)

title(�Plot Fractional Brownian Motion�);

end

F.3 Fractional Black-Scholes Functions

F.3.1 Fractional Call Price vs Spot

The following function calculates the fractional Black-Scholes European call price for

Rostek and Schöbel�s model for varying spot and plots the resulting values. Similar

codes were written for Hu and Øksendal�s and Necula�s models.
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function []=CallvstockRostek()

K=100;

r=0.02;

sigma=0.2;

T=2;

t=0;

H1=0.2

H2=0.8

c1all=[];

Sall=[];

c2all=[];

c3all=[]

for S=K-20:K+20

ph1=((sin(pi*(H1-0.5)))/(pi*(H1-0.5)))*((gamma((3/2-H1)^2))/(gamma(2-

2*H1)));

dH11=(log(S/K)+r*(T-t)+((ph1*sigma^2)/2)*(T-t)^(2*H1))/(sqrt(ph1)*sigma*(T-

t)^H1);

dH21=dH11-(sqrt(ph1)*sigma*(T-t)^H1);

ndH11=normcdf(dH11);

ndH21=normcdf(dH21);

c1=S*ndH11-K*exp(-r*(T-t))*ndH21;

ph2=((sin(pi*(H2-0.5)))/(pi*(H2-0.5)))*((gamma((3/2-H2)^2))/(gamma(2-

2*H2)));

dH12=(log(S/K)+r*(T-t)+((ph2*sigma^2)/2)*(T-t)^(2*H2))/(sqrt(ph2)*sigma*(T-

t)^H2);

dH22=dH12-(sqrt(ph2)*sigma*(T-t)^H2);

ndH12=normcdf(dH12);
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ndH22=normcdf(dH22);

c2=S*ndH12-K*exp(-r*(T-t))*ndH22;

% calculates the black scholes call option price

d1=(log(S/K)+(r-sigma^2/2)*(T))/(sigma*sqrt(T)); %calculates the d1 value

d2=d1-sigma*sqrt(T);

nd1=normcdf(d1);

nd2=normcdf(d2); % normcdf is a built in function that calculates

% the value from the cumulative normal distribution

c3=S*nd1-K*exp(-r*(T))*nd2; % computes the call black scholes call price

c1all=[c1all c1];

c2all=[c2all c2];

c3all=[c3all c3];

Sall=[Sall S];

end

c1all;

c2all;

c3all;

Sall;

plot(Sall,c1all,�-y�,�LineWidth�,2);

hold on

plot(Sall,c2all,�-g�,�LineWidth�,2)

hold on

plot(Sall,c3all,�-r�,�LineWidth�,2)

xlabel(�Spot Price S �), ylabel(�Call Price�), title(�Price of Rostek European call

and T=2 and t=0�);
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F.3.2 Fractional Call Price vs Hurst

The following function calculates Necula�s price of European call with varying Hurst

and plots the resulting values. Similar codes were written for Hu and Øksendal�s and

Rostek and Schöbel�s models.

function []=CallPricevsHurstNecula()

S=100;

K=100;

r=0.02;

sigma=0.2;

T=5

t1=1

pall1=[];

Hall1=[];

for H=1:1000

H=H/1000;

D1=((log(S/K)+(r)*(T-t1))+(sigma^2/2)*(T^(2*H)-t1^(2*H)))/(sigma*sqrt(T^(2*H)-

t1^(2*H)));

D2=((log(S/K)+(r)*(T-t1))-(sigma^2/2)*(T^(2*H)-t1^(2*H)))/(sigma*sqrt(T^(2*H)-

t1^(2*H)));

nD1=normcdf(D1);

nD2=normcdf(D2);

p=S*nD1-K*exp(-r*(T-t1))*nD2;

pall1=[pall1 p];

Hall1=[Hall1 H];

end
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t2=2.5

pall2=[];

Hall2=[];

for H=1:1000

H=H/1000;

D1=((log(S/K)+(r)*(T-t2))+(sigma^2/2)*(T^(2*H)-t2^(2*H)))/(sigma*sqrt(T^(2*H)-

t2^(2*H)));

D2=((log(S/K)+(r)*(T-t2))-(sigma^2/2)*(T^(2*H)-t2^(2*H)))/(sigma*sqrt(T^(2*H)-

t2^(2*H)));

nD1=normcdf(D1);

nD2=normcdf(D2);

p=S*nD1-K*exp(-r*(T-t2))*nD2;

pall2=[pall2 p];

Hall2=[Hall2 H];

end

t3=4

pall3=[];

Hall3=[];

for H=1:1000

H=H/1000;

D1=((log(S/K)+(r)*(T-t3))+(sigma^2/2)*(T^(2*H)-t3^(2*H)))/(sigma*sqrt(T^(2*H)-

t3^(2*H)));

D2=((log(S/K)+(r)*(T-t3))-(sigma^2/2)*(T^(2*H)-t3^(2*H)))/(sigma*sqrt(T^(2*H)-

t3^(2*H)));

nD1=normcdf(D1);

nD2=normcdf(D2);

p=S*nD1-K*exp(-r*(T-t3))*nD2;
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pall3=[pall3 p];

Hall3=[Hall3 H];

end

plot(Hall1,pall1,�-b�);

hold on;

plot(Hall2,pall2,�-r�);

hold on;

plot(Hall3,pall3,�-g�);

xlabel(�Hurst Parameter H�),ylabel(�Price Fractional European Call Necula�),title(�Call

Price for �xed T=5 and t=1, t=2.5 and t=4�)

F.3.3 Fractional Call Price vs Hurst vs Volatility

The following function calculates the conjectured Hu and Øksendal�s fractional Black

price for varying Hurst and varying volatility and plots the 3D graph. Similar codes

were written for Necula�s and Rostek and Schöbel�s fractional Black models.

% On main screen

[X,Y] = meshgrid([0.05:0.01:0.9],[0.51:0.01:1]);

Z=CallpricevsHurstvsVolatilityHuandQksendal(110,100,100,1,0.25,X,Y);

mesh(X,Y,Z)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [c]=CallpricevsHurstvsVolatilityHuandQksendal(Ft,St,K,T,t,sigma,H)

format long g

r=log(Ft/St)/(T-t);

out1=[];
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[m1,n1] = size(H);

c=ones(m1,n1)*999;

for i=1:m1

for j=1:n1

dH1=(log(Ft/K)+(sigma(i,j)^2/2)*(T-t)^(2*H(i,j)))/(sigma(i,j)*sqrt((T-t)^(2*H(i,j))));

dH2=(log(Ft/K)-(sigma(i,j)^2/2)*(T-t)^(2*H(i,j)))/(sigma(i,j)*sqrt((T-t)^(2*H(i,j))));

ndH1=normcdf(dH1);

ndH2=normcdf(dH2);

c(i,j)=exp(-r*(T-t))*(Ft*ndH1-K*ndH2); %Fractional Future Call

out=[sigma(i,j), H(i,j), c(i,j)];

out1 = (cat(1,out1, out));

end

end

F.4 Implied volatility

F.4.1 Black-Scholes Formula

The following function calculates the price of the classical Black-Scholes option price.

function [x]= BScallputOption(callput,St,K,r,sigma,t,T)

%call=1 and put=0

T1=(T-t);

if callput

d1=(log(St/K)+(r+sigma^2/2)*(T1))/(sigma*sqrt(T1));

d2=d1-sigma*sqrt(T1);

nd1=normcdf(d1);

nd2=normcdf(d2) ;

x=St*nd1-K*exp(-r*(T1))*nd2;
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end

if ~callput

d1=(log(St/K)+(r+sigma^2/2)*(T1))/(sigma*sqrt(T1));

d2=d1-sigma*sqrt(T1);

nd1=normcdf(-d1);

nd2=normcdf(-d2);

x=K*exp(-r*(T1))*nd2-St*nd1;

end

end

F.4.2 Backing Out Implied Volatility

The following function obtains the implied volatilities for individual options given

all the other inputs using the method in Benninga (2000).

function []=callvolatilitytarget()

format long

callput=1;

K=28500.00;

T=40970.00/365;

St=[27753

27180

26554

];

r=[5.400550548

5.40206233

5.398904459

];
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t=[40787.00

40788.00

40791.00

]/365;

target=[2050

1700

1450

];

[n m]=size(target);

error=999*ones(n,1);

callvolatility=999*ones(n,1);

for i=1:n

high=1;

low=0;

while (high-low)>0.0001

if BScallputOption(callput,St(i),K,r(i)/100,((high+low)/2),t(i),T)>target(i)

high=(high+low)/2;

else

low=(high+low)/2;

end

end

callvolatility(i)=(high+low)/2;

error(i)=BScallputOption(callput,St(i),K,r(i)/100,callvolatility(i),t(i),T)-target(i);

end

callvolatility

error

end
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F.5 Implied Fractional Volatilities

The following code uses the simulated annealing algorithm by Vandekerckhove�s

(2006) to obtain the fractional implied volatility for a collection of options given

all the other inputs. The Black model for Rostek and Schöbel code is presented.

Similar codes are written for the classical Black-Scholes, Black, Hu and Øksendal

and Necula�s models.

F.5.1 External Hurst Loop

numberofdays=3;

numiter=3;

options.Verbosity=0;

error=@BlackRostekErrorFunction;

ErrorRostek=99*ones(numberofdays,7);

ImpliedRostek=99*ones(numberofdays,7);

for k=1:numberofdays

for j=1:7

loss=@(p)error(p(1),j,k);

x1=99*ones(numiter,1);

f1=99*ones(numiter,1);

for i=1:numiter;

vol(i)=rand()+0.005;

[x f]=anneal(loss,[vol(i)],options);

x1(i,1)=x;

f1(i)=f;

end
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time=k

C = cat(2,f1,x1);

C1= sort(C,1);

Error=C1(1,1);

ImpliedVol=C1(1,2);

ErrorRostek(k,j)=Error;

ImpliedRostek(k,j)=ImpliedVol;

end

end

ErrorRostek1= ErrorRostek(:,1:3)

ImpliedRostek1=ImpliedRostek(:,1:3)

ErrorRostek2= ErrorRostek(:,4:6)

ImpliedRostek2=ImpliedRostek(:,4:6)

ErrorRostek3= ErrorRostek(:,7)

ImpliedRostek3=ImpliedRostek(:,7)

F.5.2 Error Function

function e2=BlackRostekErrorFunction(vol,index,time)

AllHurst=[0.5043

0.51426

0.54736

0.6

0.7

0.8

0.9];

Hurst=AllHurst(index);
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Ft=[29653

29629

29628];

St=[29457

29457

29402];

t=[40654.00

40659.00

40661.00]/365;

T=40709.00/365;

Opt=[1

1

1

];

sigma=[ 0.2544 0.2256 0.2201

0.2544 0.2256 0.2201

0.2543 0.2256 0.2201

];

K=[25000

27000

27400];

r(time)=log(Ft(time)/St(time))/(T-t(time));

[n n2]=size(K);

if vol <= 0

e2=10^15;

else

error = 0;
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vol;

for i =1:n

d1=(log(Ft(time)/K(i))+(sigma(time,i)^2/2)*(T-t(time)))/(sigma(time,i)*sqrt(T-

t(time))) ;

d2=d1-sigma(time,i)*sqrt(T-t(time));

nd1=normcdf(d1);

nd2=normcdf(d2);

nd1p=normcdf(-d1);

nd2p=normcdf(-d2);

ph=((sin(pi*(Hurst-0.5)))/(pi*(Hurst-0.5)))*(gamma((3/2-Hurst)^2))/(gamma(2-

2*Hurst));

dH21=(log(Ft(time)/K(i))+((ph*vol^2)/2)*(T-t(time))^(2*Hurst))/(sqrt(ph)*vol*(T-

t(time))^Hurst);

dH22=dH21-(sqrt((ph))*vol*(T-t(time))^Hurst);

ndH21=normcdf(dH21);

ndH22=normcdf(dH22);

ndH21p=normcdf(-dH21);

ndH22p=normcdf(-dH22);

if Opt(i)

black(i)=exp(-r(time)*(T-t(time)))*(Ft(time)*nd1-K(i)*nd2);

x2(i)=exp(-r(time)*(T-t(time)))*(Ft(time)*ndH21-K(i)*ndH22);

end;

if ~Opt(i)

black(i)=exp(-r(time)*(T-t(time)))*(K(i)*nd2p-Ft(time)*nd1p);

x2(i)=exp(-r(time)*(T-t(time)))*(K(i)*ndH22p-Ft(time)*ndH21p);

end;

d2=x2(i)-black(i);
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error=error+(x2(i) - black(i))^2;

end

e2=error;

end

end

F.6 Out-of-Sample Pricing

The following code calculates the percentage pricing errors and the absolute pricing

errors for a collection of ALSI calls on futures.

function []=OutofsampleALSIcollection()

format long g

t0=40634.00/365;

T=40709.00/365; % Date of expiration 15 June 2011

time =[ 40637.00 40638.00 40639.00]/365;

T=T-t0;

time=time-t0;

Ft = [29531

29706

29882

]; % Future vector

St=[29235

29422

29655

]; % Spot Prices

K =[25000
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27000

27400

]; %Strike Price

Opt=[1

1

1]; % Option type: 1=Call, 0=Put

sigma=[0.2714 0.2607 0.2606

0.2433 0.2326 0.2326

0.238 0.2273 0.2273]; %Black Volatility Starting date 04 April 2011

impliedsigma=[0.236001725

0.237491498

0.226252265

]; %Black Volatility Starting date 01 April 2011

Hurst=0.5043; % Hurst Parameter

impliedsigma1=[0.2376

0.2392

0.2278 ]; % Implied Volatility Hu and Qksendal Starting date 01 April 2011

impliedsigma2=[0.237550633

0.239013246

0.227646677

]; % Implied Volatility Necula Starting date 01 April 2011

impliedsigma3=[0.23761491

0.239190639

0.227796687

]; % Implied Volatility Rostek and Schobel Starting date 01 April 2011

%Initializing%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[n n1]=size(Opt) ; % n number of options,
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[t1 t]=size(time) ; % number of time step

for j=1:t

r(j)=log(Ft(j)/St(j))/(T-time(j)); % vector of interest rates

end

Black=999*ones(n,t);

modelHu1=999*ones(n,t);

modelNecula1=999*ones(n,t);

modelRostek1=999*ones(n,t);

impliedBlack=999*ones(n,t);

error = 999*ones(n,t);

errorpercent=999*ones(n,t);

error1=999*ones(n,t);

error2=999*ones(n,t);

error3=999*ones(n,t);

errorpercent1=999*ones(n,t);

errorpercent2=999*ones(n,t);

errorpercent3=999*ones(n,t);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Black

function [P] = modelBlack(Ft1,r1,K1,T1,time1,sigma1,Opt1)

d1=(log(Ft1/K1)+(sigma1^2/2)*(T1-time1))/(sigma1*sqrt(T1-time1));

d2=(log(Ft1/K1)-(sigma1^2/2)*(T1-time1))/(sigma1*sqrt(T1-time1));

nd1c=normcdf(d1);

nd2c=normcdf(d2);

nd1p=normcdf(-d1);

nd2p=normcdf(-d2);

if Opt1
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P=exp(-r1*(T1-time1))*(Ft1*nd1c-K1*nd2c);

end

if ~Opt1

P=exp(-r1*(T1-time1))*(K1*nd2p-Ft1*nd1p);

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Hu and Qksendal

function [P] = modelHu(Ft1,r1,K1,T1,time1,sigma1,H1,Opt1)

dH11=(log(Ft1/K1)+(sigma1^2/2)*(T1-time1)^(2*H1))/(sigma1*sqrt(T1-time1)^(2*H1));

dH12=(log(Ft1/K1)-(sigma1^2/2)*(T1-time1)^(2*H1))/(sigma1*sqrt(T1-time1)^(2*H1));

ndH11c=normcdf(dH11);

ndH12c=normcdf(dH12);

ndH11p=normcdf(-dH11);

ndH12p=normcdf(-dH12);

if Opt1

P=exp(-r1*(T1-time1))*(Ft1*ndH11c-K1*ndH12c);

end

if ~Opt1

P=exp(-r1*(T1-time1))*(K1*ndH12p-Ft1*ndH11p);

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Necula

function [P] = modelNecula(Ft1,r1,K1,T1,time1,sigma1,H1,Opt1)

dH11=(log(Ft1/K1)+(sigma1^2/2)*(T1^(2*H1)-time1^(2*H1)))/(sigma1*sqrt(T1^(2*H1)-

time1^(2*H1)));
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dH12=(log(Ft1/K1)-(sigma1^2/2)*(T1^(2*H1)-time1^(2*H1)))/(sigma1*sqrt(T1^(2*H1)-

time1^(2*H1)));

ndH11c=normcdf(dH11);

ndH12c=normcdf(dH12);

ndH11p=normcdf(-dH11);

ndH12p=normcdf(-dH12);

if Opt1

P=exp(-r1*(T1-time1))*(Ft1*ndH11c-K1*ndH12c);

end

if ~Opt1

P=exp(-r1*(T1-time1))*(K1*ndH12p-Ft1*ndH11p);

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Rostek

function [P] = modelRostek(Ft1,r1,K1,T1,time1,sigma1,H1,Opt1)

ph=((sin(pi*(H1-0.5)))/(pi*(H1-0.5)))*(gamma((3/2-H1)^2))/(gamma(2-2*H1));

dH21=(log(Ft1/K1)+((ph*sigma1^2)/2)*(T1-time1)^(2*H1))/(sqrt(ph)*sigma1*(T1-

time1)^H1);

dH22=(log(Ft1/K1)-((ph*sigma1^2)/2)*(T1-time1)^(2*H1))/(sqrt(ph)*sigma1*(T1-

time1)^H1);

ndH21c=normcdf(dH21);

ndH22c=normcdf(dH22);

ndH21p=normcdf(-dH21);

ndH22p=normcdf(-dH22);

if Opt1

P=exp(-r1*(T1-time1))*(Ft1*ndH21c-K1*ndH22c);
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end

if ~Opt1

P=exp(-r1*(T1-time1))*(K1*ndH22p-Ft1*ndH21p);

end;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Black

for i=1:n

for j=1:t

Black(i,j)=modelBlack(Ft(j),r(j),K(i),T,time(j),sigma(i,j),Opt(i));

impliedBlack(i,j)=modelBlack(Ft(j),r(j),K(i),T,time(j),impliedsigma(j),Opt(i));

modelHu1(i,j)=modelHu(Ft(j),r(j),K(i),T,time(j),impliedsigma1(j),Hurst,Opt(i));

modelNecula1(i,j)=modelNecula(Ft(j),r(j),K(i),T,time(j),impliedsigma2(j),Hurst,Opt(i));

modelRostek1(i,j)=modelRostek(Ft(j),r(j),K(i),T,time(j),impliedsigma3(j),Hurst,Opt(i));

error(i,j)=abs(Black(i,j)-impliedBlack(i,j));

errorpercent(i,j)=(Black(i,j)-impliedBlack(i,j))/Black(i,j);

error1(i,j)=abs(Black(i,j)-modelHu1(i,j));

errorpercent1(i,j)=(Black(i,j)-modelHu1(i,j))/Black(i,j);

error2(i,j)=abs(Black(i,j)-modelNecula1(i,j));

errorpercent2(i,j)=(Black(i,j)-modelNecula1(i,j))/Black(i,j);

error3(i,j)=abs(Black(i,j)-modelRostek1(i,j));

errorpercent3(i,j)=(Black(i,j)-modelRostek1(i,j))/Black(i,j);

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

time=t

numberofoptions=n
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errorbyoption = 1/t*sum(error,2)

errorbyoptionpercent = 1/t*sum(errorpercent,2)*100

errorbyday = 1/n*sum(error,1)�

errorbydaypercent = 1/n*sum(errorpercent,1)�*100

aveabserror=1/t*1/n*sum(sum(error,2))

avepercenterror=1/t*1/n*sum(sum(errorpercent,2))*100

errorbyoption1 = 1/t*sum(error1,2)

errorbyoptionpercent1 = 1/t*sum(errorpercent1,2)*100

errorbyday1 = 1/n*sum(error1,1)�

errorbydaypercent1 = 1/n*sum(errorpercent1,1)�*100

aveabserror1=1/t*1/n*sum(sum(error1,2))

avepercenterror1=1/t*1/n*sum(sum(errorpercent1,2))*100

errorbyoption2 = 1/t*sum(error2,2)

errorbyoptionpercent2 = 1/t*sum(errorpercent2,2)*100

errorbyday2 = 1/n*sum(error2,1)�

errorbydaypercent2 = 1/n*sum(errorpercent2,1)�*100

aveabserror2=1/t*1/n*sum(sum(error2,2))

avepercenterror2=1/t*1/n*sum(sum(errorpercent2,2))*100

errorbyoption3 = 1/t*sum(error3,2)

errorbyoptionpercent3 = 1/t*sum(errorpercent3,2)*100

errorbyday3 = 1/n*sum(error3,1)�

errorbydaypercent3 = 1/n*sum(errorpercent3,1)�*100

aveabserror3=1/t*1/n*sum(sum(error3,2))

avepercenterror3=1/t*1/n*sum(sum(errorpercent3,2))*100

Black=Black�

ImpliedBlack=impliedBlack�

HuandQksendal=modelHu1�
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Necula=modelNecula1�

Rostek=modelRostek1�

allaveabserror=[aveabserror;aveabserror1;aveabserror2;aveabserror3]

allavepercenterror=[avepercenterror;avepercenterror1;avepercenterror2;avepercenterror3]

end

 
 
 



Appendix G

ALSI Calls on Futures

The following tables give the pricing errors and percentage pricing errors by option

and by day for ALSI calls on futures.
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Table G.1: ALSI calls on futures. Pricing errors and percentage pricing errors by
option.

ALSI Futures Calls Expiring 2011/06/15
Pricing Errors using all Calls
Hurst 0.54736

Number of
Options 21

Number of
Days 38

Implied
Black

Hu and
Øksendal Necula

Rostek
and

Schöbel
Strike

25000 36.01267 36.11486 35.91045 36.11514
27000 64.95573 65.63267 64.48794 65.62453
27400 63.62436 64.49102 63.05681 64.47999
28000 52.71764 53.86132 52.01139 53.84689
28200 46.66848 47.89045 45.92311 47.87538
28500 36.04474 37.26003 35.29596 37.25149
28700 29.12576 30.25905 28.37196 30.25621
28750 27.53241 28.59683 26.81399 28.59288
29000 21.68534 22.28707 21.12443 22.29079
29100 19.91391 20.3756 19.41607 20.37941
29250 18.89785 18.73814 18.52373 18.7682
29500 18.26538 17.98747 17.90207 18.01847
30000 29.66293 28.56175 30.40122 28.56626
30500 42.68532 41.68379 43.43167 41.68722
30600 44.45484 43.49494 45.18513 43.49763
30850 47.73538 46.87893 48.42272 46.87994
31000 48.9562 48.16019 49.61632 48.16033
31500 49.33508 48.72377 49.90046 48.72172
31550 49.11158 48.51701 49.66736 48.51481
31600 48.88394 48.30578 49.43014 48.30344
31700 48.26111 47.71474 48.78821 47.71215

Strike
25000 0.859319 0.861879 0.856939 0.861876
27000 2.830676 2.863563 2.811298 2.862936
27400 3.249189 3.29965 3.221788 3.298608
28000 3.503195 3.594615 3.458867 3.592596
28200 3.393217 3.503388 3.341647 3.500921
28500 2.919394 3.063804 2.85513 3.060516
28700 2.340962 2.512999 2.266834 2.509044
28750 2.159108 2.338741 2.082318 2.334601
29000 0.928315 1.150765 0.836847 1.145575
29100 0.280381 0.522479 0.182351 0.5168
29250 0.907062 0.63232 1.015804 0.638823
29500 3.553078 3.213689 3.682372 3.221869
30000 12.41393 11.88965 12.59818 11.90296
30500 29.27329 28.42667 29.54399 28.44991
30600 34.23136 33.29079 34.52562 33.31716
30850 50.20576 48.95951 50.57345 48.99681
31000 63.16245 61.66309 63.5879 61.71015
31500 143.4532 140.3041 144.2216 140.4287
31550 157.0701 153.6307 157.8955 153.7711
31600 172.6236 168.8491 173.5144 169.0082
31700 209.3078 204.7288 210.3539 204.9352

Error by Option

Error by Option Percent
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Table G.2: ALSI calls on futures. Pricing errors by day.
Pricing Errors using all Calls
Hurst 0.54736

Number of
Options 21

Number of
Days 38

Implied
Black

Hu and
Øksendal Necula

Rostek
and

Schöbel
Date
2011/04/04 68.77634 68.97466 68.18412 68.97545
2011/04/05 72.59072 72.35284 73.0144 72.34428
2011/04/06 65.5511 65.56487 65.47979 65.55926
2011/04/07 64.76699 64.82036 64.68712 64.849
2011/04/08 63.91944 63.9451 63.86537 63.93905
2011/04/11 62.06702 62.14758 61.92232 62.14111
2011/04/12 61.90386 61.99182 61.82954 62.03203
2011/04/13 60.74477 60.83851 60.62661 60.82633
2011/04/14 60.38515 60.46626 60.31019 60.50393
2011/04/15 58.25169 58.35069 58.15867 58.33713
2011/04/18 61.6008 62.42296 60.96875 62.39794
2011/04/19 55.18862 55.02577 55.2784 55.00793
2011/04/20 71.2158 70.82573 71.57203 70.80743
2011/04/21 53.75487 53.83852 53.72615 53.82646
2011/04/26 50.15676 50.45536 49.96142 50.46031
2011/04/28 48.25558 48.37009 48.18401 48.37489
2011/04/29 47.90571 47.94815 47.87586 47.94902
2011/05/03 44.57582 45.11029 44.29834 45.11946
2011/05/04 36.499 36.57359 36.45632 36.5623
2011/05/05 32.75306 32.71164 32.7794 32.7085
2011/05/06 35.82445 35.68014 35.86799 35.70513
2011/05/09 30.01239 30.37821 29.87623 30.35883
2011/05/10 33.59632 33.24219 33.7049 33.25505
2011/05/11 27.503 27.55267 27.49064 27.56062
2011/05/12 24.33054 24.45423 24.28939 24.42849
2011/05/13 25.55922 25.44037 25.58326 25.45029
2011/05/16 24.36696 24.2906 24.41548 24.28954
2011/05/17 21.31996 21.47541 21.31624 21.46202
2011/05/19 20.37751 20.21946 20.41893 20.21345
2011/05/20 18.53237 18.59048 18.51425 18.57441
2011/05/23 13.09957 13.3509 13.10546 13.34022
2011/05/24 25.27752 24.91135 25.35555 24.95867
2011/05/25 15.80214 15.53892 15.81181 15.55249
2011/05/26 16.15567 15.96067 16.18269 15.95701
2011/05/27 17.1595 17.32434 17.15279 17.31871
2011/05/30 13.30812 13.492 13.28332 13.49334
2011/05/31 12.86447 12.8712 12.87165 12.87065
2011/06/01 12.24551 12.50851 12.24176 12.51924

Error by Day
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Table G.3: ALSI calls on futures. Percentage pricing errors by day.
ALSI Futures Calls Expiring 2011/06/15
Pricing Errors using all Calls
Hurst 0.54736

Number of
Options 21

Number of
Days 38

Implied
Black

Hu and
Øksendal Necula

Rostek
and

Schöbel
Date
2011/04/04 6.363026 6.115722 7.10233 6.114736
2011/04/05 14.16887 14.07097 14.3433 14.06745
2011/04/06 6.344509 6.309183 6.527173 6.32359
2011/04/07 7.53055 7.449654 7.651648 7.406233
2011/04/08 6.66437 6.600046 6.799719 6.61522
2011/04/11 6.169359 5.960521 6.543416 5.977311
2011/04/12 9.570245 9.45739 9.665658 9.405825
2011/04/13 10.31622 10.18965 10.47586 10.20609
2011/04/14 9.840376 9.725023 9.947035 9.671475
2011/04/15 12.12046 11.99959 12.28027 12.01614
2011/04/18 8.194898 7.54692 8.694988 7.566596
2011/04/19 24.31735 24.09557 24.4396 24.07127
2011/04/20 24.38584 24.25311 24.5071 24.24688
2011/04/21 10.98798 10.80627 11.05038 10.83245
2011/04/26 10.44823 9.779205 10.88681 9.768119
2011/04/28 10.89241 10.6266 11.05871 10.61548
2011/04/29 9.971308 9.84968 10.05687 9.847195
2011/05/03 12.84156 12.02261 13.26892 12.00862
2011/05/04 28.98271 28.71955 29.19918 28.74646
2011/05/05 42.35852 41.94292 42.62219 41.91141
2011/05/06 35.15258 34.69008 35.29209 34.77018
2011/05/09 40.22352 38.62156 40.82586 38.70585
2011/05/10 33.79558 33.38618 33.92121 33.40104
2011/05/11 26.60513 26.22398 26.70034 26.16326
2011/05/12 33.66914 33.12522 33.85077 33.23816
2011/05/13 34.08493 33.50803 34.20164 33.5562
2011/05/16 28.42085 27.05834 28.81667 27.07094
2011/05/17 34.64547 33.87117 34.66408 33.93764
2011/05/19 43.01899 41.69013 43.36693 41.63956
2011/05/20 40.54431 39.75266 40.84919 39.84308
2011/05/23 86.27485 80.3793 87.39906 80.60212
2011/05/24 408.2131 401.9121 409.5614 402.7239
2011/05/25 114.5225 111.9713 114.6165 112.1024
2011/05/26 92.61958 90.79988 92.87243 90.76587
2011/05/27 42.88075 41.74368 42.92728 41.78237
2011/05/30 60.26737 55.70863 60.89846 55.67618
2011/05/31 57.79806 55.97946 57.89294 56.12331
2011/06/01 59.65338 57.35839 59.68639 57.26548

Error by Day Percent
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