
Part IV

Epilogue: Conclusion and Future
Work
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CHAPTER 11

SUMMARY AND CONCLUSION

11.1 Summary

This work can be summarized as follows:

• In part I, we introduced basic elements of automata theory and computer ar-
chitecture that served as basis for understanding various aspects of the thesis.
In particular, the formal definition of a string recognizer in terms of its denota-
tional semantics was given. The chapter also depicted the complex operational
diagram of modern processors which showed some of the detail of how cache
memory plays an important role in an algorithm’s performance.

• Part II was devoted to the investigation of alternative algorithms for string
recognition. To this end, we started off (in Chapter 3) by presenting the core
TD and HC algorithms which led to the design of the core MM algorithm.
Furthermore, the denotational semantics of the core algorithms was specified in
terms of a single function. The next three chapters (Chapters 4, 5 & 6) of part II
were devoted to investigations of new strategies for the implementation of DFA-
based string recognizers. The function defining the recognizer’s denotational
semantics was then expanded to incorporate appropriate variables that specify
whether or not, and —where relevant— the way in which, each of the respective
strategies is to be deployed. In Chapter 7, a unified version of this denotational
semantics function was suggested, taking into account all strategy variables
discussed in previous chapters. The formalism resulted in the suggestion of a
total of 168 algorithms. This was then used for the construction of a taxonomy
tree whose nodes represent the different algorithms. The taxonomy was further
mapped into a class-diagram (Chapter 8) that represented the architectural
view for a toolkit of DFA-based string recognizers.

• In part III, attention was given on the implementation of some algorithms.
An introductory note on the way our experiments were conducted as well as
the software and hardware used for the experiments was given in Chapter 9. In
Chapter 10, experimental results of some selected algorithms were discussed. In
general, experiments conducted revealed that algorithms suggested throughout
the thesis are of interest and could prove useful when processing particular
kinds of strings. It was also shown in this part that each of the investigated
algorithms could be processed at optimum, as long as the kind of string to
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be processed reflects the algorithm’s best case behaviour. Moreover, although
it was already known that the core HC algorithm outperforms the core TD
algorithm for automata of size in the order of hundreds, it was also shown that
the MM algorithm could be used as a performance booster since it has been
explicitly designed to take advantage of both HC and TD capabilities.

Over the past few years, various aspects of our work have been published in
scientific journals, peer reviewed conferences, and workshops:

1. [NKW06a] represents the initial work that lead us to the investigation of new
implementation strategies since it was established that there is a correlation
between algorithm performance and cache memory capabilities.

2. In [NWK04, NWK05] various ideas were being shaped and we suggested a
framework for the dynamic implementation of FAs whose original concept is
still under investigation, and the notion of dynamic implementation resulted
in the investigation of the DSA strategy whose early publication in [NKW05b]
referred the strategy as state reordering, and an enhanced version in [NKW06b]
kept the terminology DSA. The hardcoded version of the DSA strategy was
published in [NKW06c].

3. Based on previous results, the idea of SpO and AVC strategies were investigated.
Resulting in a formal characterization of string recognizers using the notion
of denotational semantics. An early version of the idea was presented at a
workshop ([Nga05]) where the notion of taxonomy was first suggested. Further
improvements on the idea yielded the publication in [NKW06d] of a taxonomy
of DFA-based string processors.

4. Finally, the performance of all the TD algorithms was published in [NWK06].

In the next section, we provide a conclusion to our work.

11.2 Conclusion

We believe that the followings have been achieved in this thesis:

• Denotational Semantics of String Recognizers: Our work has established
the basic foundation for mathematically representing DFA-based string recog-
nizers. Although our parametric function relied on the suggested implementa-
tion strategies, many other strategies could be investigated, resulting therefore
to more algorithms, and of course several challenges for solving FA-based string
processing problems.

• New DFA-recognition algorithms: To date, DFA-based string recognition
has been limited to two alternative solutions: the core TD and HC algorithms.
Our work has provided for up to 166 different algorithms.
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• Knowledge of hardware: Although the design of optimal algorithms requires
sound theoretical knowledge, their implementation requires sound knowledge of
the computation medium on which the implemented algorithm is to be pro-
cessed. This work has empirically proven that data/instructions organization
plays an important role on the overall efficiency of any given algorithm.

• Processor Performance: Although our work only relied on the design of cache
optimized algorithms, the complex operational diagram of modern processors
is made of various other components that may be regarded as time consumers.
This work has thus raised the need to algorithmically investigate the effect of
those components on running programs in general. Such investigation may lead
to the design of algorithms that take advantage of the capabilities of those
various components.

Based on the above mentioned lessons learnt from our work, a personal perspective
could be summarized as follows: the design of efficient algorithms based on theoretical
abstractions is good; but a design that takes into account the potentialities and
weaknesses of the computational medium on which the algorithm is to be processed,
is better. It is thus of importance to account for hardware capabilities when designing
algorithms that have to account for efficiency. In the next chapter, we present further
directions that this work could take.
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CHAPTER 12

FUTURE WORK

Although this research has closed the gap in the availability of alternative im-
plementation strategies for FA-based string processors, there is a variety of future
challenges that require further investigations. Each subsection below contains a list
of projects that could be undertaken by future researchers.

12.1 Projects of limited scale

The following projects are of limited scale and could conceivably be undertaken
by junior graduate students (for example, in their 4th year of study).

• Algorithm Performance Analysis: Carry out an analysis of the perfor-
mance of the various algorithms, based on artificial data, in order to capture
their strengths and weaknesses. In this project the researcher should select an
algorithm from the 168 available. The best case behaviour of each algorithm
should be determined as well as a complete analysis of the effect of caching
on the algorithm. The researcher should also determine the effect of any other
hardware component (pipeline, trace-cache, branch prediction, etc.) on the
algorithm.

• Applied Algorithms Analysis: This involves an investigation of each algo-
rithm as applied to specific problems such as network intrusion detection, tan-
dem repeat finding, natural and computer virus scanning, etc. In this project,
an algorithm should be identified and various analysis on it should be performed,
using a real-life application. There is a need to investigate whether or not the
chosen algorithm will outperform the conventional one (usually the TD). If the
algorithm appears to under-perform its conventional counterpart, then there
would be a need to investigate possible ways of improving the algorithm.

12.2 Medium-scale projects

• A toolkit for FA-based string recogintion: This project aims at improving
and implementing the architectural design suggested in Chapter 8. The project
is currently being undertaken as a postgraduate (masters level) exercise.
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• Extension of the taxonomy for DFA-based string recognizers. The tax-
onomy suggested in Chapter 7 relied on the three implementation strategies that
were used as parameter variables associated with the core algorithms. However,
investigations could also be conducted not only on new strategies, but also on
any other data-structure based recognizers such as linked-lists, trees, graphs,
etc. A new taxonomy of DFA-based string processing algorithms could be pro-
posed.

• Improvement of the HC, TD, and MM algorithms. This would be a
project in high-performance computing. Alternatives ways should be investi-
gated of how to obtain even faster TD, HC, and MM algorithms.

• Platform specific investigation of the algorithms. Various hardware plat-
forms (such as Intel, Power-PC, Silicon Graphics, and the like) should be used
to conduct experiments testing for performance of the various algorithms. The
effects of cache, pipelining, branch prediction on various platforms should be
investigated.

12.3 Advanced research projects

• Hardware implementation of DFA-based string processing. The hard-
coded algorithm would be the starting point of this challenging project. All the
HC algorithms should be translated to hardware. The advantages/disadvantages
of implementing string recognizers on hardware should be explored. This might
result in the implementation of specialized DFA-based applications on hardware.

• Design and implementation of other cache optimized applications.
There may be other computational problems, unrelated to DFA-based string
recognition, that are performance sensitive and that could be investigated fol-
lowing the same approach used throughout this thesis.

• Investigation of other hardware performance metrics: The operational
diagram suggested in Chapter 3 requires further investigations in that we only
restricted ourselves to the cache’s locality of references. However, several other
aspects could be envisaged for performance enhancement. Further analysis
of the operational diagram could lead to suggestions on whether and how it
might be possible to algorithmically influence positively the performance of
those components.

12.4 End note

The source code for the various experiments conducted have intentionally not been
released, but are available on request by e-mailing the author.
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