
Part IV

Epilogue: Conclusion and Future
Work

145

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– KKeettcchhaa NNggaassssaamm,, EE ((22000077))

CHAPTER 11

SUMMARY AND CONCLUSION

11.1 Summary

This work can be summarized as follows:

• In part I, we introduced basic elements of automata theory and computer ar-
chitecture that served as basis for understanding various aspects of the thesis.
In particular, the formal definition of a string recognizer in terms of its denota-
tional semantics was given. The chapter also depicted the complex operational
diagram of modern processors which showed some of the detail of how cache
memory plays an important role in an algorithm’s performance.

• Part II was devoted to the investigation of alternative algorithms for string
recognition. To this end, we started off (in Chapter 3) by presenting the core
TD and HC algorithms which led to the design of the core MM algorithm.
Furthermore, the denotational semantics of the core algorithms was specified in
terms of a single function. The next three chapters (Chapters 4, 5 & 6) of part II
were devoted to investigations of new strategies for the implementation of DFA-
based string recognizers. The function defining the recognizer’s denotational
semantics was then expanded to incorporate appropriate variables that specify
whether or not, and —where relevant— the way in which, each of the respective
strategies is to be deployed. In Chapter 7, a unified version of this denotational
semantics function was suggested, taking into account all strategy variables
discussed in previous chapters. The formalism resulted in the suggestion of a
total of 168 algorithms. This was then used for the construction of a taxonomy
tree whose nodes represent the different algorithms. The taxonomy was further
mapped into a class-diagram (Chapter 8) that represented the architectural
view for a toolkit of DFA-based string recognizers.

• In part III, attention was given on the implementation of some algorithms.
An introductory note on the way our experiments were conducted as well as
the software and hardware used for the experiments was given in Chapter 9. In
Chapter 10, experimental results of some selected algorithms were discussed. In
general, experiments conducted revealed that algorithms suggested throughout
the thesis are of interest and could prove useful when processing particular
kinds of strings. It was also shown in this part that each of the investigated
algorithms could be processed at optimum, as long as the kind of string to

146

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– KKeettcchhaa NNggaassssaamm,, EE ((22000077))

be processed reflects the algorithm’s best case behaviour. Moreover, although
it was already known that the core HC algorithm outperforms the core TD
algorithm for automata of size in the order of hundreds, it was also shown that
the MM algorithm could be used as a performance booster since it has been
explicitly designed to take advantage of both HC and TD capabilities.

Over the past few years, various aspects of our work have been published in
scientific journals, peer reviewed conferences, and workshops:

1. [NKW06a] represents the initial work that lead us to the investigation of new
implementation strategies since it was established that there is a correlation
between algorithm performance and cache memory capabilities.

2. In [NWK04, NWK05] various ideas were being shaped and we suggested a
framework for the dynamic implementation of FAs whose original concept is
still under investigation, and the notion of dynamic implementation resulted
in the investigation of the DSA strategy whose early publication in [NKW05b]
referred the strategy as state reordering, and an enhanced version in [NKW06b]
kept the terminology DSA. The hardcoded version of the DSA strategy was
published in [NKW06c].

3. Based on previous results, the idea of SpO and AVC strategies were investigated.
Resulting in a formal characterization of string recognizers using the notion
of denotational semantics. An early version of the idea was presented at a
workshop ([Nga05]) where the notion of taxonomy was first suggested. Further
improvements on the idea yielded the publication in [NKW06d] of a taxonomy
of DFA-based string processors.

4. Finally, the performance of all the TD algorithms was published in [NWK06].

In the next section, we provide a conclusion to our work.

11.2 Conclusion

We believe that the followings have been achieved in this thesis:

• Denotational Semantics of String Recognizers: Our work has established
the basic foundation for mathematically representing DFA-based string recog-
nizers. Although our parametric function relied on the suggested implementa-
tion strategies, many other strategies could be investigated, resulting therefore
to more algorithms, and of course several challenges for solving FA-based string
processing problems.

• New DFA-recognition algorithms: To date, DFA-based string recognition
has been limited to two alternative solutions: the core TD and HC algorithms.
Our work has provided for up to 166 different algorithms.

147

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– KKeettcchhaa NNggaassssaamm,, EE ((22000077))

• Knowledge of hardware: Although the design of optimal algorithms requires
sound theoretical knowledge, their implementation requires sound knowledge of
the computation medium on which the implemented algorithm is to be pro-
cessed. This work has empirically proven that data/instructions organization
plays an important role on the overall efficiency of any given algorithm.

• Processor Performance: Although our work only relied on the design of cache
optimized algorithms, the complex operational diagram of modern processors
is made of various other components that may be regarded as time consumers.
This work has thus raised the need to algorithmically investigate the effect of
those components on running programs in general. Such investigation may lead
to the design of algorithms that take advantage of the capabilities of those
various components.

Based on the above mentioned lessons learnt from our work, a personal perspective
could be summarized as follows: the design of efficient algorithms based on theoretical
abstractions is good; but a design that takes into account the potentialities and
weaknesses of the computational medium on which the algorithm is to be processed,
is better. It is thus of importance to account for hardware capabilities when designing
algorithms that have to account for efficiency. In the next chapter, we present further
directions that this work could take.

148

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– KKeettcchhaa NNggaassssaamm,, EE ((22000077))

CHAPTER 12

FUTURE WORK

Although this research has closed the gap in the availability of alternative im-
plementation strategies for FA-based string processors, there is a variety of future
challenges that require further investigations. Each subsection below contains a list
of projects that could be undertaken by future researchers.

12.1 Projects of limited scale

The following projects are of limited scale and could conceivably be undertaken
by junior graduate students (for example, in their 4th year of study).

• Algorithm Performance Analysis: Carry out an analysis of the perfor-
mance of the various algorithms, based on artificial data, in order to capture
their strengths and weaknesses. In this project the researcher should select an
algorithm from the 168 available. The best case behaviour of each algorithm
should be determined as well as a complete analysis of the effect of caching
on the algorithm. The researcher should also determine the effect of any other
hardware component (pipeline, trace-cache, branch prediction, etc.) on the
algorithm.

• Applied Algorithms Analysis: This involves an investigation of each algo-
rithm as applied to specific problems such as network intrusion detection, tan-
dem repeat finding, natural and computer virus scanning, etc. In this project,
an algorithm should be identified and various analysis on it should be performed,
using a real-life application. There is a need to investigate whether or not the
chosen algorithm will outperform the conventional one (usually the TD). If the
algorithm appears to under-perform its conventional counterpart, then there
would be a need to investigate possible ways of improving the algorithm.

12.2 Medium-scale projects

• A toolkit for FA-based string recogintion: This project aims at improving
and implementing the architectural design suggested in Chapter 8. The project
is currently being undertaken as a postgraduate (masters level) exercise.

149

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– KKeettcchhaa NNggaassssaamm,, EE ((22000077))

• Extension of the taxonomy for DFA-based string recognizers. The tax-
onomy suggested in Chapter 7 relied on the three implementation strategies that
were used as parameter variables associated with the core algorithms. However,
investigations could also be conducted not only on new strategies, but also on
any other data-structure based recognizers such as linked-lists, trees, graphs,
etc. A new taxonomy of DFA-based string processing algorithms could be pro-
posed.

• Improvement of the HC, TD, and MM algorithms. This would be a
project in high-performance computing. Alternatives ways should be investi-
gated of how to obtain even faster TD, HC, and MM algorithms.

• Platform specific investigation of the algorithms. Various hardware plat-
forms (such as Intel, Power-PC, Silicon Graphics, and the like) should be used
to conduct experiments testing for performance of the various algorithms. The
effects of cache, pipelining, branch prediction on various platforms should be
investigated.

12.3 Advanced research projects

• Hardware implementation of DFA-based string processing. The hard-
coded algorithm would be the starting point of this challenging project. All the
HC algorithms should be translated to hardware. The advantages/disadvantages
of implementing string recognizers on hardware should be explored. This might
result in the implementation of specialized DFA-based applications on hardware.

• Design and implementation of other cache optimized applications.
There may be other computational problems, unrelated to DFA-based string
recognition, that are performance sensitive and that could be investigated fol-
lowing the same approach used throughout this thesis.

• Investigation of other hardware performance metrics: The operational
diagram suggested in Chapter 3 requires further investigations in that we only
restricted ourselves to the cache’s locality of references. However, several other
aspects could be envisaged for performance enhancement. Further analysis
of the operational diagram could lead to suggestions on whether and how it
might be possible to algorithmically influence positively the performance of
those components.

12.4 End note

The source code for the various experiments conducted have intentionally not been
released, but are available on request by e-mailing the author.

150

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– KKeettcchhaa NNggaassssaamm,, EE ((22000077))

BIBLIOGRAPHY

[Ale01] Andrei Alexandrescu, Modern C++ Design: Generic Programming and
Design Patterns Applied, first ed., Addison-Wesley Professional, February
2001.

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman, Compilers: Principles,
Techniques, and Tools, second ed., Addison Wesley, 1986.

[AU73] Alfred V. Aho and Jeffrey D. Ullman, The Theory of Parsing, Transla-
tion, and Compiling, vol. 2, Prentice Hall, 1973.

[Bac99] Rebecca Gurley Bace, Intrusion Detection, first ed., Sams Publishing,
1999.

[Bro83] Mandfred Broy, Program Construction by Transformations: A Family
Tree of Sorting Programs, Computer Program Synthesis Methodologies,
vol. 95, 1983, pp. 1–49.

[CH91] J. M. Champarnaud and G. Hansel, Automate: A Computing Package
for Automata and Finite Semigroups, Journal of Symbolic Computation
(G. Rozenberg and A. Salomaa, eds.), vol. 12, 1991, pp. 197–220.

[CH97] Maxime Crochemore and Christophe Hancart, Automata for Matching
Patterns, Handbook of Formal Languages (G. Rozenberg and A. Salomaa,
eds.), vol. 2, Springer-Verlag, 1997, pp. 399–462.

[Cor02] Intel Corporation, The Intel Optimization Reference Manual,
http://www.intel.com/design/pentiumiii/manuals/, [last date accessed:
22 July 2005], 2002.

[Cra03] Chris Crawford, Chris Crawford on Game Design, first ed., New Riders
Games, 2003.

[Cro02] Tim Crothers, Implementing Intrusion Detection Systems : A Hands-On
Guide for Securing the Network, first ed., Wiley, 2002.

[CW05] Loek Cleophas and Bruce W. Watson, TAxonomy-Based Software COn-
struction of SPARE time: A Case Study, IEE Proceedings Software, vol.
152, February 2005, pp. 29–37.

[DC04] Rael Dornfest and Tara Calishain, Google Hacks : Tips & Tools for
Smarter Searching, second ed., O’Reilly Media, Inc., 2004.

151

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– KKeettcchhaa NNggaassssaamm,, EE ((22000077))

[Deu99] A. Deutsch, Principles of Biological Pattern Formation: Swarming and
Aggregation viewed as Self-organization Phenomena, Journal of Bio-
science, vol. 24, 1999, pp. 115–120.

[DF88] Edsger W. Dijkstra and W. H. J. Feijen, A Method of Programming,
Addison Wesley, 1988.

[DHI+00] C. C. Douglas, J. Hu, M. Iskandarani, M. Kowarschik, U. Rude, and
C. Weiss, Maximizing Cache Memory usage for Multigrid Algorithms,
In Multiphase Flows and Transport in Porous Media: State of the Art,
Springer, Berlin, 2000, pp. 124–137.

[Dij76] Edsger W. Dijkstra, A Discipline of Programming, Prentice Hall, 1976.

[DWM00] R. D. Dowsing, F.W.D Woodhams, and I. Marshall, Computers from
Logic to Architecture, second ed., McGraw-Hill, 2000.

[Epp95] Susanna S. Epp, Discrete Mathematics with Applications, second ed.,
Thompson Publishing, 1995.

[FCH02] R. Franklin, D. Carver, and B. L. Hutchings, Network Intrusion De-
tection with Reconfigurable Hardware, in IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM) (Napa, CA, USA),
2002.

[FH91] Christopher W. Fraser and Robert R. Henry, Hard-coding Bottom-
up Code Generation Tables to save Time and Space, Software—
Practice&Experience, vol. 21, January 1991, pp. 1–12.

[Fri05] Michiel Frishert, FIRE Station: a FInite automata and Regular Expres-
sion playground, Master’s thesis, Department of Mathematics and Com-
puter Science, Eindhoven, The Netherlands, 2005.

[Ger98] Richard Gerber, The Software Optimization Cookbook: High-perfromance
Recipes for the Intel Architecture, third ed., Intel Press, 1998.

[GJ91] Dick Grune and Ceriel J. H. Jacob, Parsing Techniques: A Practical
Guide, Prentice Hall, 1991.

[Gov01] S. Govindarajan, Inside the Pentium 4,
http://www.pcquest.com/content/technology/101021101.asp, [last
date accessed: 22 July 2005], 2001.

[Gus97] Dan Gusfield, Algorithms on Strings, Trees, and Sequences: Computer
Science and Computational Biology, first ed., Cambridge University Press,
1997.

[Hau01] Roland R Hausser, Foundations of Computational Linguistics, second ed.,
Springer, 2001.

152

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– KKeettcchhaa NNggaassssaamm,, EE ((22000077))

[Hay98] John P. Hayes, Computer Architecture and Organization, third ed.,
McGraw-Hill, 1998.

[HMU01] John E. Hopcroft, Rajeev Montwani, and Jeffrey D. Ullman, Introduction
to Automata Theory, Languages, and Computation, second ed., Addison
Wesley, 2001.

[HP03] John L. Hennessy and David A. Patterson, Computer Architecture: A
Quantitative Approach, third ed., McGraw-Hill, 2003.

[HVZ02] C. Hamacher, Z. Vranesic, and S. Zaky, Computer Organization, fifth ed.,
McGraw-Hill, 2002.

[Hyd03] Randall Hyde, The Art of Assembly Language, first ed., No Strach Press,
September 2003.

[iCS03] Lecture Notes in Computer Science, Field-Programmable Logic and Appli-
cations, vol. 2778, Springer Berlin / Heidelberg, Lisbon, Portugal, 2003,
13th International Conference, FPL, Proceedings.

[Jon82] H. B. M. Jonkers, Abstraction, Specification and Implementation Tech-
niques, Ph.D. thesis, Faculty of Mathematics and Computer Science,
Eindhoven, the Nederlands, September 1982.

[JPTW90] V. Jansen, A. Pothoff, W. Thomas, and U. Wertmuth, A Short Guide to
the AMORE System, vol. 90, Aachener Informatik-Berichte, 1990.

[KMP77] D. E. Knuth, J. H. Jr. Morris, and V. R. Pratt, Fast Pattern Matching
in Strings, SIAM Journal on Computing, vol. 6, 1977, pp. 368–387.

[LMK+03] John W. Lockwood, James Moscola, Matthew Kulig, David Reddick, and
Tim Brooks, Internet Worm and Virus Protection in Dynamically Recon-
figurable Hardware, In Military and Aerospace Programmable Logic De-
vice (MAPLD) (Washington DC), NASA Office of Logic Design, Septem-
ber 2003.

[Los98] David Loshin, Efficient Memory Programming, Mcgraw-Hill, November
1998.

[LP81] Harry R. Lewis and Christo H. Papadimitrou, Elements of the Theory of
Computation, Prentice Hall, 1981.

[McC97] Roger A. McCain, Cellular Genetic Automata in Computer Simulation of
Economic Growth and Development with Romer Externalities, Comput-
ing in Economics and Finance, vol. 41, 1997.

[McN82] Robert McNaughton, Elementary Computability, Formal Languages and
Automata, Prentice Hall, 1982.

153

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– KKeettcchhaa NNggaassssaamm,, EE ((22000077))

[Mey90] Bertrand Meyer, Introduction to the Theory of Programming Languages,
c.a.r hoare series ed., Prentice Hall, 1990.

[MHP02] McGraw-Hill and Sybil P. Parker, Mcgraw-Hill Dictionary of Scientific
and Technical Terms, sixth ed., McGraw-Hill Professional, September
2002.

[MLLP03] J. Moscola, J. Lockwood, R. P. Loui, and M. Pachos, Implementation of
a Content-Scanning Module for an Internet Firewall, In Proceedings of
the Eleventh Annual IEEE Symposium on Field-Programmable Custom
Computing Machines, vol. 31, 2003.

[Mor94] Carroll Morgan, Programming from Specifications, second ed., Prentice
Hall, 1994.

[Nga03] Ernest Ketcha Ngassam, Hardcoding Finite Automata, Master’s thesis,
Department of computer Science, Pretoria 0002, South Africa, November
2003.

[Nga05] , Characterization of Finite Automata Implementations: A Pre-
liminary Taxonomy, The second FASTAR Worskhop, Finite Automata
Systems Thoeretical and Applied Research, October 2005.

[NKW05a] Ernest Ketcha Ngassam, Derrick G. Kourie, and Bruce W. Watson, Re-
ordering Finite Automata States for Fast String Recognition, In Proceed-
ings of the Prague Stringology Conference (Prague, Czech Republic),
Czech Technical University, August 2005.

[NKW05b] , Reordering Finite Automata States for Fast String Recognition,
In Proceedings of the Prague Stringology Conference (Prague, Czech Re-
public), Czech Technical University, August 2005.

[NKW06a] Ernest Ketcha Ngassam, Derrick G. Kourie, and Bruce Watson, Perfor-
mance of Hardcoded Finite Automata, Software Practice and Experience,
vol. 36, 2006, pp. 525–538.

[NKW06b] Ernest Ketcha Ngassam, Derrick G. Kourie, and Bruce W. Watson, Dy-
namic Allocation of Finite Automata States for Fast String Recognition,
International Journal of Foundations of Computer science (to appear),
2006.

[NKW06c] , FA-based String Processing: The Hardcoded Dynamic State Allo-
cation Algorithm, In Proceedings of the African Conference on Research
in Computer Science, Benin, ARIMA, November 2006.

[NKW06d] , A Taxonomy of DFA-based String Processors, In Proceedings of
the SAICSIT Conference (Gordon’s Bay, South Africa), ACM, October
2006, pp. 111–121.

154

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– KKeettcchhaa NNggaassssaamm,, EE ((22000077))

[NN02] Stephen Northcutt and Judy Novak, Network Intrusion Detection, third
ed., Sams Publishing, 2002.

[NR02] Gonzalo Navarro and Mathieu Raffinot, Flexible Pattern Matching in
Strings Practical: on-line search algorithms for texts and biological se-
quences, Cambridge University Press, 2002.

[NWK03a] Ernest Ketcha Ngassam, Bruce W. Watson, and Derrick G. Kourie, Hard-
coding Finite State Automata Processing, In Proceedings of the SAIC-
SIT Conference (Johannesburg, South Africa), ACM, September 2003,
pp. 111–121.

[NWK03b] , Preliminary Experiments in Hardcoding Finite Automata, In Pro-
ceedings of the 10th Conference on Implementation and Application of
Automata (Santa Barbara, CA, USA), Springer, July 2003, pp. 299–300.

[NWK04] , A Framework for the Dynamic Implemenation of Finite Au-
tomata for Performance Enhancement, In Proceedings of the Prague
Stringology Conference (Prague, Czech Republic), Czech Technical Uni-
versity, August 2004.

[NWK05] , A Framework for the Dynamic Implementation of Finite Au-
tomata for Performance Enhancement, International Journal of Founda-
tions of Computer Science, vol. 16, December 2005, pp. 1193–1206.

[NWK06] , On Implementation and Performance of Table-driven DFA-based
String Processors, In Proceedings of the Prague Stringology Conference
(Prague, Czech Republic), Czech Technical University, August 2006.

[PD04] Thomas J. Pennello and Frank DeRemer, Efficient Computation of
LALR(1) Look-Ahead Sets, ACM Press Special Issue, vol. 39, April 2004,
pp. 14–27.

[Pen86] Thomas J. Pennello, Very Fast LR Parsing, In Proceedings of the SIG-
PLAN Symposium on Compiler Construction, 1986, pp. 145–151.

[PH05] David A. Patterson and John L. Hennessy, Computer Organization and
Design, third ed., Morgan Kaufmann, 2005.

[PTVF02] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P.
Flannery, Numerical Recipes in C++ : The Art of Scientific Computing,
second ed., Prentice Hall, February 2002.

[RBS99] E. Rotenberg, S. Bennett, and J. E. Smith, A Trace Cache Microarchitec-
ture and Evaluation, IEEE Trans. Computers, vol. 48, 1999, pp. 111–120.

[RP93] D. R. Raymond and D Pwood, The GRAIL papers: Version 2.0, Technical
Report University of Waterloo, Canada, January 1993.

155

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– KKeettcchhaa NNggaassssaamm,, EE ((22000077))

[SLT02] T. Sproull, J. W. Lockwood, and D. E. Taylor, Control and Configu-
ration Software for a Reconfigurable Networking Hardware Platform, In
IEEE Symposium on Field-Programmable Custom Computing Machines
(FCCM) (Napa, CA, USA), 2002.

[Tho68] Ken Thompson, Regular Expression Search Algorithm, Communications
of the ACM, vol. 11, 1968, pp. 323–350.

[TPS05] Andrew Turplin, Simon J. Puglisi, and William F. Smyth, A Taxonomy
of Suffix Array Construction Algorithms, In Proceedings of the Prague
Stringology Conference (Prague, Czech Republic), Czech Technical Uni-
versity, August 2005.

[Vic84] Gerard Y. Vichniac, Simulating Physics with Cellular Automata, Physica,
vol. D, 1984, pp. 96–116.

[VM03] John Viega and Matt Messier, Secure Programming Cookbook for C and
C++ : Recipes for Cryptography, Authentication, Input Validation &
More, first ed., O’Reilly Media, Inc.;, July 2003.

[Wat94] B. W. Watson, The Design and Implementation of FIRE Engine: A C++
Toolkit for Finite Automata and Regular Expressions, Technical Report,
Technical University of Eindhoven, 1994.

[Wat95a] Michael S. Waterman, Introduction to Computational Biology: Maps, Se-
quences and Genomes, last ed., Chapman & Hall CRC, 1995.

[Wat95b] Bruce W. Watson, Taxonomies and Toolkits of Regular Languages Al-
gorithms, Ph.D. thesis, Faculty of Mathematics and Computer Science,
Eindhoven University of Technology, the Nederlands, September 1995.

[WC93] William M. Waite and Lynn R. Carter, An Introduction to Compiler
Contruction, Harper Collins, 1993.

[WC04] Bruce W. Watson and Loek Cleophas, SPARE PARTS: A C++ Toolkit
for String Pattern Recognition, Technical Report, Technical University of
Eindhoven, vol. 34, 2004, pp. 697–710.

[Yao79] A. C. Yao, The Complexity of Pattern Matching for a Random String,
SIAM Journal on Computing, vol. 8, 1979, pp. 368–387.

156

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– KKeettcchhaa NNggaassssaamm,, EE ((22000077))

	Front
	Part I
	Part II
	Part III
	PART IV
	Epilogue: Conclusion and FutureWork
	Chapter 11
	11.1 Summary
	11.2 Conclusion

	Chapter 12
	12.1 Projects of limited scale
	12.2 Medium-scale projects
	12.3 Advanced research projects
	12.4 End note

	Bibliography

