A Structured Systems Approach to Model Conceptualisation: An Executive Management Perspective

Johannes Andria Watkins

A thesis submitted in partial fulfilment of the requirements for the degree of

Philosophiae Doctor

in the

Faculty of Engineering

University of Pretoria

July 2000

© University of Pretoria
ABSTRACT

Title: A Structured Systems Approach to Model Conceptualisation: An Executive Management Perspective.

Author: Johannes Andria Watkins.

Promoter: Prof Dr P S Kruger.

Department: Industrial and Systems Engineering, University of Pretoria.

Degree: Philosophiae Doctor.

This thesis is about a specific structured systems approach to model conceptualisation, a way of ‘thinking’, about unstructured complex phenomena within the ambit and context of executive management. This way of ‘thinking’, according to Checkland [29], although broadly part of the science movement, uses some concepts, which are complementary to those of classical natural science. Model conceptualisation within the context of this thesis and graphically depicted below, refers to a specific sequence of events, which precedes ‘model construction’ and ‘model implementation’. These events include:

- The identification of unstructured complex phenomena.
- The analysis of the identified unstructured phenomena.
- The problem solving approach, which is to be followed to solve the identified complex phenomena.

![Diagram of Model Conceptualisation Process]

- Identification of complex phenomena
- Analysis phase
- Problem solving approach
- Model construction and implementation
- ‘Model conceptualisation’
- ‘Model building’
This *structured systems approach to model conceptualisation*, this way of ‘thinking’, implies thinking about the world outside ourselves, and doing so by means of a concept ‘system’, very much in the same way as envisaged by Einstein, in an extract cited by Schilpp [145]:

> “What, precisely, is ‘thinking’?” “When at the reception of sense impressions, memory pictures emerge, this is not yet ‘thinking’.”
>
> “And when such pictures form series, each member of which calls forth another, this is too not yet thinking”. “When, however, a certain picture turns up in many such series, then – precisely through such return – it becomes an ordering element for such series…” “Such an element becomes an instrument, a concept”. “I think that the transition from free association or ‘dreaming’ to thinking is characterised by the more or less dominating role which the ‘concept’ plays in it”.

For a number of valid business reasons, including the perceptual fact that ‘engineers are structured problem solvers’, engineers world-wide are drawn into professions other than engineering. This trend, which was evident from this research and contained in the research findings, is most prevalent in banks, the information technology industry, processing companies, financial institutions and consulting fields where engineers often form the core of the workforce at every level of the organisation hierarchy. A variety of reasons, can be attributed to this trend including the perceptual fact listed above. Furthermore, research shows that invariably, engineers employed in positions other than what they were trained for, rapidly climb the corporate hierarchy ladders, ultimately attaining the position of executive management. The negative side of this trend, is that the engineer who primarily has had training in the engineering profession, a discipline grounded in analytical and reductionist thinking, now finds himself in the position of executive management, hardly equipped with the multi-faceted management skills typically demanded from an executive, where the focus is on the handling of unstructured complex phenomena. Such unstructured complex phenomena are invariably societal and organisational based, viewed as ‘systems problems’ within a
particular worldview or ‘weltanschauung’ and require systems-integrated solutions to solve.

While this thesis has at its core the objective to introduce the concept of a structured systems approach to model conceptualisation into the realm of executive management within a broader context, it is in the view of the author the most suitable structured mechanism specifically aimed at the engineer in the emergent role of executive management dealing with unstructured complex phenomena.

A further consequence of this thesis, is that the author succeeds to bridge the gap between ‘hard’ and ‘soft’ systems methodologies, by combining the two disciplines to form a ‘midway approach’ in solving unstructured complex phenomena. In addition, the research findings show that such an approach manifests as an essential mechanism for modern executives to facilitate the resolution of unstructured complex phenomena within their respective organisations in a structured way. Furthermore, the research findings show that management philosophies formulated by revered academics during the Twentieth Century can be applied with success to Twenty First Century unstructured complex phenomena, thus becoming an accepted alternative management mechanism for this purpose.

This thesis then, is about both a structured systems approach to model conceptualisation and systems practice and the relationship between the two entities, aimed at dealing with unstructured complex phenomena within the ambit of executive management. From this the conclusion can be drawn that the systems dynamics of the formulated structured systems approach to model conceptualisation specifically applied to the art of executive management, can be used to structure the outcomes of paradigm shifts introduced into organisations as a result of unstructured complex phenomena. Furthermore, the outcome of the research is not as much ‘an approach’, as it is a ‘set of principles to an approach’, which in any particular situation have to be reduced to a method uniquely suitable to the particular situation, hence the applicability of the
structured systems approach to model conceptualisation over a spectrum of disciplines.
SAMEVATTING

Title: A Structured Systems Approach to Model Conceptualisation: An Executive Management Perspective.
Outeur: Johannes Andria Watkins.
Promotor: Prof Dr P S Kruger.
Departement: Bedryfs-en Stelselingenieurswese
Universiteit van Pretoria
Graad: Philosophia Doctor

Hierdie proefskrif adresseer spesifiek 'n gestructureerde stelselsbenadering met betrekking tot modelkonseptualisering, 'n 'wyse van denke' tot die oplossing van ongestructureerde komplekse fenomene soos dit voorkom binne die konteks van uitvoerende bestuur. Hierdie 'wyse van denke' volgens Checkland [29], verwys na denke wat oorhoofs deel uitmaak van die wetenskaplike beweging en wat gebruikmaak van konsepte wat complementêr is tot die klassieke natuurwetenskappe. Modelkonseptualisering binne die konteks van hierdie proefskrif en grafies voorgestel hieronder, verwys na 'n spesifieke volgorde van gebeurtenisse wat 'modelkonstruksie' en 'modelimplementering' voorafgaan. Hierdie volgorde van gebeurtenisse sluit die volgende in:

➢ Die identifikasie van ongestructureerde komplekse fenomene.
➢ Die analise van sodanige ongestructureerde komplekse fenomene.
➢ Die probleemoplossingsbenadering wat gevolg sal word vir die oplossing van die geïdentificeerde ongestructureerde komplekse fenomene.
Hierdie gestructureerde stelselsbenadering met betrekking tot model konseptualisering, hierdie ‘wyse van denke’, verwys na denke buite die perseptuele raamwerk van die mens by wyse van die konsep ‘stelsel’, soos waargeneem deur Einstein en aangehaal deur Schilpp [145], (hier aangehaal in die oorspronklike teks):

“What, precisely, is ‘thinking’?” “When at the reception of sense impressions, memory pictures emerge, this is not yet ‘thinking’”. “And when such pictures form series, each member of which calls forth another, this is too not yet ‘thinking’”. “When, however, a certain picture turns up in many such series, then – precisely through such return – it becomes an ordering element for such series…” “Such an element becomes an instrument, a concept”. “I think that the transition from free association or ‘dreaming’ to thinking is characterised by the more or less dominating role which the ‘concept’ plays in it”.

As gevolg van geldige besigheidsredes, die vernaamste daarvan die aanvaarde feit dat ingenieurs wêreld-wyd waargeneem word as ‘gestructureerde probleemoplossers’, word ingenieurs gereeld in posisies binne organisasies aangestel vir doeleindes wat buite die bestek van hulle formele opleiding as profesionele ingenieurs val. Hierdie praktysk, wat ook duidelik blyk uit die navorsingsresultate, is veral waarneembaar by banke, inligtingstegnologie maatskappye, prosesmaatskappye, finansiële instellings en konsultasie maatskappye waar ingenieurs somtyds die kern van die personeelkorps vorm op elke vlak van die organisatoriese hiërargie. Hierdie tendens kan aan ’n legio aantal redes toegeskryf word, die belangrikste daarvan moontlik, die genoemde aanvaarde feit dat ingenieurs waargeneem word as ‘gestructureerde probleemoplossers’. Navorsing toon dat ingenieurs wat buite die bestek van hul formele opleiding aangewend word, gewoonlik vinniger binne ’n organisasiëhiërargie styg tot op die vlak van uitvoerende bestuur, as persone wat nie as ingenieurs oplei is nie. ’n Nadeel van hierdie tendens is dat ingenieurs, wat oorwegend vaardighede ontwikkel het binne die bestek van die ingenieursprofessie, ’n displine gefundeer in analitiese en afgeleide denke,
hulself nou in 'n uitvoerende bestuursposisie bevind sonder die spektrum van bestuursvaardighede soos vereis van die pos van die uitvoerende bestuurder met betrekking tot modelkonseptualisering, waar die aksent by uitstek gefokus word op die hantering van komplekse fenomene. Hierdie ongestructureerde komplekse fenomene het normaalweg 'n gemeenskaps- en organisatoriese basis, word waargeneem as 'stelselsprobleme' binne die bestek van 'n spesifieke waarneming van die wêreld of 'weltanschauung', en vereis stelsels-geïntegreerde oplossings.

Terwyl die doel van hierdie proefskrif die toepassing van 'n gestructureerde stelselbenadering met betrekking tot modelkonseptualisering binne die breë bestek van uitvoerende bestuur is, is die ouer van mening dat sodanige gestructureerde benadering 'n hoë toepaslikheidsgraad het op die ingenieur in die rol van uitvoerende bestuur, almal met betrekking tot die oplossing van ongestructureerde komplekse fenomene.

'N Verdere gevolg van hierdie proefskrif is dat die ouer met sukses die gaping tussen 'harde' en 'sagte' stelselsmetodologieë oorbrug, deur die twee uiteenlopende begrippe te combineer in 'n 'middeweg' benadering vir die oplossing van ongestructureerde komplekse fenomene. Die navorsingsresultate van hierdie proefskrif toon verder dat sodanige 'middeweg' benadering manifesteer as 'n noodsaaklike mecanisme vir uitvoerende bestuur in die gebruik daarvan vir die oplossing van ongestructureerde komplekse fenomene op 'n gestructureerde basis binne hul onderskeie organisasies. Verder toon die navorsingsresultate van hierdie proefskrif dat bestuursfilosofieë wat ge-formuleer is gedurende die Twintigste Eeu, met sukses toegepas kan word vir die oplossing van ongestructureerde komplekse fenomene van die Een-en-Twintigste Eeu, en ook aanvaar word as 'n alternatiewe bestuursmeganism vir hierdie doel.

Hierdie proefskrif, het dus ten doel die formulering van 'n gestructureerde stelselbenadering met betrekking tot model konseptualisering, en gepaardgaande 'stelselstopepassing', en die verhouding tussen die twee konsepte, gemik op die oplossing van ongestructureerde komplekse fenomene binne die bestek van uitvoerende bestuur. Vanuit hierdie samevatting, kan die afleiding gemaak word dat die stelselsdynamika van 'n die 'n gestructureerde stelselbenadering met
betrekking tot model konseptualisering wat spesifiek geformuleer is vir die
gebrauk deur uitvoerende bestuur, gebruik kan word om die uitkomste van
paradigmaverskuiwings te rig wat in organisasies plaasvind as gevolg van
ongestrukureerde komplekse fenomeene. Die resultaat van hierdie navorsing dui
meer op 'n ‘stel riglyne tot 'n benadering’, as op 'n ‘spesifieke benadering’ wat in
enige situasie gereduseer moet word tot 'n unieke metode, geformuleer vir 'n
spesiale toepassingsveld. Hierdie feit maak die gestrukureerde stelselsbenadering
met betrekking tot model konseptualisering, hoogs toepaslik vir die doeleindes
van model konseptualisering oor 'n spektrum van dissiplines.
ACKNOWLEDGEMENTS

This, my second doctoral thesis, has been undertaken with the true belief that my years of 'thinking' and 'practising' a unique structured approach to management, can facilitate the task of every managing executive to the extent of solving unstructured complex phenomena. Furthermore, it is my conviction that this 'set of principles to an approach', which is based on the philosophies formulated by revered academics during the Twentieth Century and, which includes the author's own contribution, can add value to the existing body of knowledge and the art of executive management. This with particular reference to the systems dynamics of the formulated *structured systems approach to model conceptualisation* when applied by executive management of the Twenty First Century, to structure the outcomes of paradigm shifts introduced into organisations as a result of unstructured complex phenomena.

In submitting this thesis, I wish to take this opportunity to express my sincerest appreciation and gratitude towards the following persons, for their specific and valued contributions:

- My wife Hannetjie, my friend and soul mate for believing in me (yet again) and providing sustained encouragement, love and support.

- My promoter Prof Dr P S Kruger, for the personal interest taken and making a special effort to direct and guide me to bring this work to finality.

- My friend Mike Hare, who planted the first seeds of the 'systems approach'.

THANK YOU
“You cannot discover new oceans unless you have the courage to lose sight of the shore”1

1 Anonymous
CONTENTS

<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>SAMEVATTING</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>x</td>
</tr>
<tr>
<td>CONTENTS</td>
<td>xii</td>
</tr>
</tbody>
</table>

PART 1

CHAPTER 1

THE SCOPE OF THE RESEARCH

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Introduction and Background</td>
<td>1</td>
</tr>
<tr>
<td>1.1.1 Realities of Real World Phenomena</td>
<td>3</td>
</tr>
<tr>
<td>1.1.2 Sources of Power</td>
<td>6</td>
</tr>
<tr>
<td>1.2 The Research Problem</td>
<td>7</td>
</tr>
<tr>
<td>1.3 The Research Question</td>
<td>11</td>
</tr>
<tr>
<td>1.4 The Research Process</td>
<td>12</td>
</tr>
<tr>
<td>1.5 The Research Design and Methodology</td>
<td>13</td>
</tr>
<tr>
<td>1.6 The Demand for a Qualitative Research Strategy</td>
<td>15</td>
</tr>
<tr>
<td>1.7 An Overview of the Thesis Structure</td>
<td>18</td>
</tr>
<tr>
<td>1.7.1 Chapter and Content Analysis</td>
<td>19</td>
</tr>
<tr>
<td>1.8 Conclusion</td>
<td>23</td>
</tr>
</tbody>
</table>
CHAPTER 2

THE COMPLEXITY OF THE SYSTEMS APPROACH

2.1 Introduction 25
2.2 The concept system defined 29
2.3 General Systems Theory 35
2.4 The concept Systems Approach defined 39
2.5 Cybernetics defined 44
2.6 Closed and Open systems defined 48
2.7 The role of Models 50
2.8 Impact of the notions ‘Weltanschauung’ and Appreciative Systems 55
2.9 Causal Loop Diagrams and Reinforcing and Balancing Processes 57
2.10 Science and Technology impact 62
2.11 Putting the systems approach into practice 64
2.12 Conclusion 65

PART 2

CHAPTER 3

A HIGH LEVEL ANALYSIS OF THE HARD SYSTEMS APPROACH

3.1 Introduction 68
3.2 Systems Engineering 70
3.3 Systems Analysis 73
3.4 Operational Research 76
3.5 Management Cybernetics 79
3.5.1 Black Box Technique 80
3.5.2 Negative Feedback 81
3.5.3 Variety Engineering 82
3.6 Systems Dynamics 83
3.6.1 Philosophy of Systems Dynamics 84
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.6.2 Principles of Systems Dynamics</td>
<td>86</td>
</tr>
<tr>
<td>3.6.3 Model and Methodology of Systems Dynamics</td>
<td>86</td>
</tr>
<tr>
<td>3.6.4 Model utilisation of Systems Dynamics</td>
<td>87</td>
</tr>
<tr>
<td>3.6.5 Tests for building confidence Systems Dynamics models</td>
<td>88</td>
</tr>
<tr>
<td>3.7 Criticism of hard systems thinking</td>
<td>88</td>
</tr>
<tr>
<td>3.8 Positive aspects and features of hard systems</td>
<td>90</td>
</tr>
<tr>
<td>3.9 Hard and soft system methodologies compared</td>
<td>91</td>
</tr>
<tr>
<td>3.10 Conclusion</td>
<td>93</td>
</tr>
</tbody>
</table>

CHAPTER 4

A HIGH LEVEL ANALYSIS OF THE SOFT SYSTEMS APPROACH

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Introduction</td>
<td>95</td>
</tr>
<tr>
<td>4.2 Beer’s Viable System model</td>
<td>98</td>
</tr>
<tr>
<td>4.2.1 Background</td>
<td>98</td>
</tr>
<tr>
<td>4.2.2 Philosophy of the Viable Systems model</td>
<td>98</td>
</tr>
<tr>
<td>4.2.3 Principles of the Viable Systems model</td>
<td>99</td>
</tr>
<tr>
<td>4.2.4 Construction of the Viable Systems model</td>
<td>100</td>
</tr>
<tr>
<td>4.2.5 Advantages of the Viable Systems model</td>
<td>108</td>
</tr>
<tr>
<td>4.3 Churchman’s Social Systems design</td>
<td>108</td>
</tr>
<tr>
<td>4.3.1 Introduction</td>
<td>108</td>
</tr>
<tr>
<td>4.3.2 Social Systems design explained</td>
<td>109</td>
</tr>
<tr>
<td>4.3.2.1 The first aphorism analysed</td>
<td>109</td>
</tr>
<tr>
<td>4.3.2.2 The second aphorism analysed</td>
<td>110</td>
</tr>
<tr>
<td>4.3.2.3 The third aphorism analysed</td>
<td>111</td>
</tr>
<tr>
<td>4.3.2.4 The fourth aphorism analysed</td>
<td>111</td>
</tr>
<tr>
<td>4.4 Checkland’s Soft Systems methodology</td>
<td>112</td>
</tr>
<tr>
<td>4.4.1 Introduction</td>
<td>112</td>
</tr>
<tr>
<td>4.4.2 Philosophy of the Soft Systems methodology</td>
<td>113</td>
</tr>
<tr>
<td>4.4.3 Principles of the Soft Systems methodology</td>
<td>113</td>
</tr>
<tr>
<td>4.4.4 Soft Systems methodology</td>
<td>114</td>
</tr>
<tr>
<td>4.5 Ackoff’s Interactive Planning</td>
<td>119</td>
</tr>
<tr>
<td>4.5.1 Philosophy of Interactive Planning</td>
<td>119</td>
</tr>
</tbody>
</table>
PART 3

CHAPTER 5

DETAILED ANALYSIS OF THE KEY ELEMENTS OF THE STRUCTURED SYSTEMS APPROACH TO MODEL CONCEPTUALISATION

5.1 Introduction

5.2 Refocus on initial objectives

5.3 Reasoning and Thinking: A Perspective

5.4 Assumptions

5.5 Organisation Structure: Facilitating the approach to model conceptualisation

5.5.1 Structure formulation and approach

5.6 Formulation of the structured systems approach to model conceptualisation

5.6.1 The dynamic process of model conceptualisation

5.7 Chapter Five in summary

5.7.1 Holistic approach

5.7.2 Refocus on initial objectives

5.7.3 Reasoning and Thinking: A Perspective

5.7.4 Assumptions

5.7.5 The construction elements of the structured systems approach to model conceptualisation

5.8 Conclusion
CHAPTER 6

THE STRUCTURED SYSTEMS APPROACH TO MODEL CONCEPTUALISATION AS AN ALTERNATIVE MANAGEMENT MECHANISM

6.1 Introduction 168
6.2 The structured systems approach to model conceptualisation in practice: A case study 169
6.2.1 Current reality: The impetus to the business case 170
6.2.2 Key elements of the business case 173
6.2.3 A new wave of unstructured complex phenomena 176
6.3 The systems approach to model conceptualisation applied 178
6.3.1 The final outcome 182
6.4 Results mapped to the findings in Appendix B 183
6.5 Conclusion 184

PART 4

CHAPTER 7

CONCLUSION

7.1 Introduction 185
7.2 Chapter and content analysis 185
7.3 The research question 188
7.4 Investigative questions 188
7.5 The significance of the structured systems approach to model conceptualisation 189
7.6 Avenues for further research 190
7.7 Key objectives 190
7.8 Final conclusion 191
APPENDIX A

ANALYSIS OF THE SOURCES OF POWER

APPENDIX B

AN INDUSTRY PERCEPTION OF THE STRUCTURED SYSTEMS APPROACH TO MODEL CONCEPTUALISATION

B1 Introduction 196
B2 Data Collection 197
B3 The Target Population 198
B4 The Choice of Sampling Method 199
B5 Measurement Scales 199
B6 Questionnaire Design 200
B7 The Validation Questionnaire 201
B8 Analysis of the Survey Results 203
B8.1 Ranked average responses per individual question 207
B9 Conclusion 212

APPENDIX C

HISTORY AND EMERGENCE OF THE SYSTEMS APPROACH

C1 Introduction 214
C2 The rise of Systems Thinking 215
C2.1 From the parts to the whole 215
C2.2 Substance and Form 215
C2.3 Cartesian Mechanism 216
C2.4 The Romantic Movement 217
C2.5 Nineteenth-Century Mechanism 217
C2.6 Vitalism 218
C2.7 Organismic Biology 218
C2.8 Systems Thinking 219
C2.9 Quantum Physics 220
C2.10 Gestalt Psychology 220
C3 Conclusion 220

APPENDIX D 222

EXISTING GUIDELINES ON MODEL CONCEPTUALISATION 222
D1 Introduction 222
D2 The process of modelling 222
D3 The social process as a basis for model conceptualisation 224
D4 The recommended procedure 224
D5 Roles and model building 225
D6 Other perspectives on model conceptualisation 226

BIBLIOGRAPHY 228
LIST OF TABLES

CHAPTER 1

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.1</td>
<td>Application scope of the Systems Theory</td>
<td>10</td>
</tr>
</tbody>
</table>

CHAPTER 3

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 3.1</td>
<td>Public sector application of the systems dynamics model</td>
<td>85</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Hard and Soft systems compared</td>
<td>92</td>
</tr>
</tbody>
</table>

CHAPTER 5

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 5.1</td>
<td>Observed balance between hard and soft issues</td>
<td>146</td>
</tr>
</tbody>
</table>

APPENDIX B

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table B1</td>
<td>Agreement Choices</td>
<td>200</td>
</tr>
<tr>
<td>Table B2</td>
<td>Validation Questionnaire</td>
<td>202</td>
</tr>
<tr>
<td>Table B3</td>
<td>Survey Results</td>
<td>203</td>
</tr>
<tr>
<td>Table B4</td>
<td>Respondent Biographical Information</td>
<td>204</td>
</tr>
<tr>
<td>Table B5</td>
<td>Number of Engineers Employed / Key Performance Areas</td>
<td>206</td>
</tr>
<tr>
<td>Table B6</td>
<td>Survey questions ranked by average response (Highest to Lowest)</td>
<td>207</td>
</tr>
<tr>
<td>Table B7</td>
<td>Factor Analysis</td>
<td>211</td>
</tr>
</tbody>
</table>

APPENDIX D

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table D1</td>
<td>The four stages of model construction</td>
<td>223</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

CHAPTER 1

Figure 1.1 The Question Hierarchy 12
Figure 1.2 Schematic depiction of thesis structure 22

CHAPTER 2

Figure 2.1 Chapters in context of the overall research 26
Figure 2.2 Classification of systems falling within the context of the Systems Approach 27
Figure 2.3 The Linear View Perspective (Single Loop) 57
Figure 2.4 The Feedback Loop Perspective (Double Loop) 57
Figure 2.5 Single-Loop and Double-Loop Learning 59
Figure 2.6 Reinforcing Processes 61
Figure 2.7 Balancing Processes 61

CHAPTER 3

Figure 3.1 Chapters in context of the overall research 69
Figure 3.2 Classification of systems falling within the context of the Systems Approach 71

CHAPTER 4

Figure 4.1 Chapters in context of the overall research 96
Figure 4.2 Classification of systems falling within the context of the Systems Approach 97
Figure 4.3 An operational unit dissected to show the major interactions 101
Figure 4.4 An operational unit showing the parts embedded 102
Figure 4.5 A set of related operational elements 102
Figure 4.6 System One: A set of operational elements, which collectively make up an organisational entity 103
Figure 4.7 Outline of the structure of the Viable Systems model 107
Figure 4.8 Hegel’s Dialectic 110
Figure 4.9 The Soft Systems methodology in summary 115

CHAPTER 5

Figure 5.1 Chapters in context of the overall research 133
Figure 5.2 Conceptual sequence of events pertaining to ‘model conceptualisation’ and ‘model building’ 134
Figure 5.3 Formulation approach 143
Figure 5.4 Proposed Organisational Structure for an Organisation or Operational Unit within an organisation 153
Figure 5.5 Model Conceptualisation Process 158
Figure 5.5.1 Alternative Worldview 161

CHAPTER 6

Figure 6.1 Chapters in context of the overall research 168
Figure 6.2 Global Credit Infrastructure: Current Reality 170
Figure 6.3 Global Credit Infrastructure: Future Operations 174
Chapter 1

THE SCOPE OF THE RESEARCH

“\textit{The one real object of education is to leave a man in the condition of continually asking questions}” \footnote{Quoted in C.A. Alington: \textit{Things Ancient and Modern}}

Bishop Creighton