COOLING CHARACTERISTICS OF HIGH TITANIA SLAGS

by

Deon Bessinger

A dissertation submitted in fulfilment of the requirements for the degree

Magister Scientiae

In the Department of Materials Science and Metallurgical Engineering, Faculty of Engineering, the Built Environment and Information Technology, University of Pretoria

Supervisor: Professor J.M.A. Geldenhuis
Co-supervisor: Professor P.C. Pistorius

October 2000

© University of Pretoria
ABSTRACT

Various aspects relevant to the cooling of high titania slags were investigated. Rapidly quenched slags contain several phases, of which the M$_3$O$_5$ phase is the most prominent and important. Other phases include rutile, metallic iron and glass phases. The M$_3$O$_5$ phase (with M being mainly Ti and Fe) is essentially a solid solution, with Ti$_3$O$_5$ and FeTi$_2$O$_5$ as end members of the solid solution series. Impurities such as Al, Mg and Mn are also present in this solid solution. The composition of a typical high titania slag is approximately 10 per cent FeO, 30 per cent Ti$_2$O$_3$ and 55 per cent TiO$_2$. It was established that there is a linear relationship between the Ti$_2$O$_3$ content and FeO content of the slag. This relationship can be explained in terms of the M$_3$O$_5$ solid solution end members, Ti$_3$O$_5$ and FeTi$_2$O$_5$. A linear relationship between the tap temperatures and the FeO content of titania slags was also obtained.

Decrepitation behaviour of one ton slag blocks was observed during slow cooling of the high titania slag. For the purpose of this study decrepitation was defined as the disintegration or crumbling of a material into component parts or smaller fragments. This decrepitation process was simulated on a laboratory scale by heating various slag samples in air at temperatures below 600 °C for various times. Samples heated at temperatures above 600 °C did not decrepitate. The decrepitated samples were characterised by extensive cracking of the material. Decrepitation of the high titania slag was explained by oxidation of the M$_3$O$_5$ phase to form a M$_6$O$_{11}$ phase and anatase. This decrepitation, and the associated cracking of the slag, was probably caused by volume changes due to the formation of these new phases.

Key words
Titania slag, ilmenite smelting, decrepitation, anatase, rutile, pseudobrookite, oxidation, tapping temperatures, M$_3$O$_5$, slag cooling.
OPSOMMING

Verskeie aspekte relevant tot die afkoeling van titaanslak is ondersoek. Slakke wat vinnig geblus is bevat verskeie fases. Hiervan is die M₃O₅ fase die mees prominente en belangrike fase. Ander fases wat teenwoordig is sluit in rutiel, metalliese yster en glas fases. Die M₃O₅ fase (met M hoofsaaklik Ti en Fe) is ‘n vaste oplossing, met Ti₃O₅ en FeTi₂O₅ as die eindsamestellings van die mengreeks. Al, Mg en Mn is teenwoordig as onsuwerhede in die vaste oplossing. Die samestelling van tipiese hoë titaanslakke is ongeveer 10 persent FeO, 30 persent TiO₂ en 55 persent TiO₂. ‘n Lineêre verwantskap tussen die TiO₂ en FeO inhoud van die slak is bepaal. Die verwantskap is verduidelik in terme van die M₃O₅ vaste oplossing eindsamestellings, Ti₃O₅ en FeTi₂O₅. ‘n Lineêre verwantskap tussen die tap temperature en die FeO inhoud van titaanslakke is ook bepaal.

Dekrepitasiegedrag van een ton slak blokke is waargeneem tydens stadige afkoeling van die hoë titaanslak. Vir die doel van die studie is dekrepitasie gedefinieer as die disintegrasie of verbrokkeling van ‘n materiaal in kleiner komponente of fragmente. Die dekrepitasie proses is gesimuleer op ‘n laboratorium skaal deur verskeie slak monsters te verhit in lug by temperature onder 600 °C. Slak monsters wat bokant 600 °C verhit is het nie gedekripteer nie. Die gedekrepiteerde monsters het ‘n groot aantal krake vertoon. Dekrepitasie van die hoë titaanslak is verduidelik in terme van die oksidasie van die M₃O₅ fase om ‘n M₅O₁₁ fase en anataas te vorm. Die volume veranderings in die slak (en die verwante krake) as gevolg van die vorming van die nuwe fases is die mees waarskynlike oorsaak van dekrepitasie in die titaan slak.

Sleutelwoorde
Titaanslak, ilmeniet smelting, dekrepitasie, anataas, rutiel, pseudobrookiet, oksidasie, tap temperature, M₃O₅, slak afkoeling.
TABLE OF CONTENTS

1 INTRODUCTION ... 1

1.1 FEEDSTOCKS TO THE TITANIUM DIOXIDE PIGMENT INDUSTRY .. 1

1.1.1 Smelting of ilmenite to produce Titania Slag ... 2

1.1.2 Synthetic rutile ... 2

1.2 THE TITANIUM DIOXIDE PIGMENT INDUSTRY ... 4

1.2.1 Pigment manufacturing processes ... 4

1.2.2 Pigment markets ... 7

2 CHARACTERISTICS OF SOME HIGH TITANIA SLAGS PRODUCED IN A 3 MVA PLASMA FURNACE ... 8

2.1 INTRODUCTION .. 8

2.2 LITERATURE SURVEY ... 8

2.2.1 Mineralogy of high titania slags .. 8

2.2.2 Chemical analyses of high titania slags .. 13

2.2.3 Liquidus and tapping temperatures applicable to ilmenite smelting 19

2.2.4 Other aspects of high titania slags .. 24

2.3 EXPERIMENTAL DETAILS ... 27

2.3.1 Slag samples ... 27

2.3.2 Analytical techniques ... 28

2.4 RESULTS AND DISCUSSION .. 30

2.4.1 Mineralogical analyses of the slags .. 30

2.4.2 Chemical analyses of the slags .. 38

2.4.3 Tapping temperatures for ilmenite smelting ... 45

2.5 CONCLUSIONS AND RECOMMENDATIONS .. 49

3 THE DECREPITATION OF HIGH TITANIA SLAGS ... 51

3.1 BACKGROUND .. 51

3.2 LITERATURE SURVEY ... 51

3.2.1 Decrepidation of slags .. 51

3.2.2 Phases and phase relations applicable to titanium slags at low temperatures 54

3.3 APPROACH FOR THE STUDY OF DECREPITATION OF TITANIA SLAGS .. 62

3.4 EXPERIMENTAL DETAILS .. 62

3.4.1 Slag samples used for small-scale experiments ... 62

3.4.2 Testwork on pressed pellet samples .. 62

3.4.3 Testwork with miniature slag blocks .. 63

3.4.4 Testwork on the effect of different atmospheres on decrepitation 65

3.4.5 Testwork carried out during the pilot plant ilmenite smelting campaign 66

3.4.6 Analytical techniques ... 67

3.5 RESULTS AND DISCUSSION ... 68

3.5.1 Results obtained from the pressed pellet samples .. 68

3.5.2 Results obtained from the testwork with miniature slag blocks .. 80

3.5.3 Results from testwork in different atmospheres ... 91

3.5.4 Results from the data obtained during the May 2000 smelting campaign 94

3.6 GENERAL COMMENTS, CONCLUSIONS AND RECOMMENDITIONS ... 105

4 ACKNOWLEDGEMENTS .. 107

5 REFERENCES ... 107
LIST OF FIGURES

Figure 1: Flowsheet of the improved Becher process (from Formanek et al., 1997).......................... 3
Figure 2: Flowsheet for a typical sulphate processing route (from Fisher, 1997).............................. 5
Figure 3: A typical post-treatment process for titanium dioxide pigments (from Fisher, 1997)........... 6
Figure 4: Flowsheet for a typical chloride processing route (from Fisher, 1997)............................... 7
Figure 5: Phase diagram of the FeTiO$_2$-Ti$_2$O$_3$ join (Eriksson et al., 1996)................................. 12
Figure 6: Variations in the FeO and Ti$_2$O$_3$ content of Sorel slags (Grau and Poggi, 1978)............ 18
Figure 7: Optimised FeO-TiO$_2$ phase diagram (Eriksson and Pelton, 1993)................................. 20
Figure 8: Optimised Ti$_2$O$_3$-TiO$_2$ phase diagram (Eriksson and Pelton, 1993)......................... 20
Figure 9: FeO-Ti$_2$O$_3$-TiO$_2$ isothermal phase diagram - 1500 °C (from Pesl, 1997)............... 21
Figure 10: FeO-Ti$_2$O$_3$-TiO$_2$ isothermal phase diagram - 1600 °C (from Pesl, 1997)........ 22
Figure 11: Conjectural liquidus diagram of the FeTiO$_2$-Ti$_2$O$_3$-TiO$_2$ ternary system (Pistorius and Coetsee, 2000).......................... 23
Figure 12: Sorel slag tapping and melting temperatures (Grau and Poggi, 1978)......................... 23
Figure 13: Liquidus temperatures of various industrial titania slags as a function of the FeO content (Du Plooey, 1997).......................... 24
Figure 14: Viscosity of two typical Sorel slags and of a CaO-TiO$_2$ mixture (Handfield, Charette and Lee, 1971) .. 26
Figure 15: Slag compositions from the smelting of ilmenite. Fluidity values (min channel length) adjacent to points (Swinden and Jones, 1978).......................... 26
Figure 16: Variation of electrical conductivity with increasing equivalent TiO$_2$ content at 1973 K (Desrosiers et al., 1980).......................... 28
Figure 17: Micrograph of a typical high titania slag... 32
Figure 18: Micrograph of metallic iron globules (F) with a Fe-sulphide rich outer margin (S)........... 39
Figure 19: Micrograph of fine metallic iron precipitates (F) within the rutile phase (R)................. 39
Figure 20: Relationship between the FeO and Ti$_2$O$_3$ content of titania slag (This study)........ 43
Figure 21: Comparison of various results for the FeO-Ti$_2$O$_3$ relationship in titania slags........ 43
Figure 22: Relationship between the FeO and Ti$_2$O$_3$ content of titania slag in this study (Effect of impurities taken into account).................. 44
Figure 23: Relationship between the FeO and total titanium content (expressed as TiO$_2$) of titania slag in this study.......................... 45
Figure 24: Tapping temperatures as a function of the slag composition (compositions expressed as mole fractions).................. 46
Figure 25: Tap temperature of slag as a function of the FeO content of the slag...... 47
Figure 26: Tap temperature of slag as a function of the Ti$_2$O$_3$ content.......................... 48
Figure 27: Liquidus temperature data for the FeTiO$_2$-Ti$_2$O$_3$ tie line................................. 49
Figure 28: Side view of a slag block (tap 68) that had decroped (tap ladle in background)........ 52
Figure 29: Micrograph of a typical slag sample that has shown no decroped.......................... 52
Figure 30: Micrograph of a slag sample that has undergone decroped (Sample DB157)............ 52
Figure 31: X-ray diffraction patterns for various products (from Grey, Cranswick et al., 2000)........... 55
Figure 32: Phase diagram for the system Fe-Fe$_2$O$_3$-TiO$_2$ at 800 °C. Compositions are in mol-units (From Borowiec and Rosenqvist, 1981).......................... 58
Figure 33: Phase diagram for the system Fe-Fe$_2$O$_3$-TiO$_2$ at approximately 700 °C. Compositions are in mol-units (From Borowiec and Rosenqvist, 1981).......................... 58
Figure 34: The oxygen potential required for the oxidation of relevant M$_2$O$_3$ phases........ 59
Figure 35: Suggested phase diagram for the Fe-Fe$_2$O$_3$-TiO$_2$ system at approximately 650 °C. Compositions are in mol-units (From Borowiec and Rosenqvist, 1981).......................... 59
Figure 36: Proposed Fe-Fe$_2$O$_3$-TiO$_2$ phase diagram at 700 °C (Gupta et al., 1989)........... 61
Figure 37: The Ti$_2$O$_3$-Fe$_2$O$_3$-TiO$_2$ system as a function of temperature (from Borowiec and Rosenqvist, 1985).......................... 61
Figure 38: Simplified schematic of the equipment used for the unidirectional crushing tests...... 66
Figure 39: Photograph of a pellet sample treated at 1000 °C for 24 hours (Sample no. DB104).... 69
Figure 40: Photograph of a pellet sample treated at 800 °C for 24 hours (sample DB109)........ 71
Figure 41: Photograph of a pellet sample treated at 800 °C for 384 hours (sample DB105)....... 72
Figure 42: Photograph of a pellet sample treated at 600 °C for 24 hours (sample DB115)........ 74
Figure 43: Iron and titanium analyses from the centre to the rim of a typical particle treated at 600 °C for 24 hours (sample DB115).......................... 74
Figure 44: Photograph of a pellet sample treated at 600 °C for 384 hours (sample DB114)..... 76
Figure 45: Photograph of a pellet sample treated at 400 °C for 2 hours (sample DB129)............ 77
LIST OF TABLES

Table 1: Global TiO₂ pigment consumption by industry (Fisher, 1997) ... 7
Table 2: Effective ionic radii of elements relevant to ilmenite smelting (Huheey, 1983) 9
Table 3: Bulk and phase analyses of Tyssedal slag (Borowiec, 1991) ... 10
Table 4: Cation distributions in various pseudobrookite phases (Bowles, 1988) 13
Table 5: Cation distributions for various pseudobrookite samples (Teller et al., 1990, pp.334-350) 13
Table 6: X-ray diffraction data for various M₃O₅ compounds (only peaks with I/I₀ > 10) 14
Table 7: Composition of lunar armalcolite and Sorel slag samples used for X-ray diffraction analyses (see Table 6) ... 14
Table 8: Unit cell data for various M₃O₅ compounds ... 15
Table 9: Chemical analyses of various high titania slags ... 16
Table 10: Standards used for the wavelength dispersive analyses ... 29
Table 11: Mössbauer hyperfine interaction parameters of selected Fe-Ti-O compounds at 300 K (Mubaba and Hearne, 1999) ... 31
Table 12: Bulk chemical analyses of selected slag samples ... 33
Table 13: Mössbauer analyses of selected slag samples ... 33
Table 14: Crystallographic data for sample DB156 ... 34
Table 15: Unit cell data for the M₃O₅ phases in the respective titania slags .. 35
Table 16: Proposed cation distribution in the M₃O₅ phases present in titania slags 36
Table 17: Microprobe analysis of a typical rutile phase (mass percentages) 36
Table 18: Bulk chemical analysis of sample YS2872 ... 37
Table 19: SEM analyses of the dark and light coloured glassy samples found in sample YS2872 37
Table 20: Microprobe analyses of the iron sulphide phase on the rim of an iron globule 38
Table 21: Chemical analyses of various high titania slags produced in the Iscor 3 MVA plasma furnace 40
Table 22: Mineralogical data on various iron and titanium phases that could potentially be present in the system under investigation .. 57
Table 23: Analyses of slag samples used for small-scale testwork .. 64
Table 24: Experimental details of the preliminary testwork ... 64
Table 25: Peak positions used for phase identification ... 68
Table 26: Summary of results obtained from Mössbauer spectroscopy for the pressed pellet samples heated at 800 and 1000 °C .. 70
Table 27: Summary of results obtained from Mössbauer spectroscopy for the pressed pellet samples heated at 400 and 600 °C .. 75
Table 28: A summary of the relative peak intensities for the various samples treated at 400 °C for various times .. 78
Table 29: Summary of results obtained from Mössbauer spectroscopy for a miniature block sample heated at 800 °C .. 82
Table 30: A summary of the relative peak intensities for various miniature block samples treated at 400 °C for various times ... 83
Table 31: A summary of the relative peak intensities for samples treated in various atmospheres 92
Table 32: Analyses of the samples treated in various atmospheres .. 92
Table 33: Chemical analyses of taps 73 and 79 ... 96
Table 34: Analyses of decrepitated slag samples taken from tap 68 .. 99
Table 35: Analyses of decrepitated slag samples taken from tap 70 .. 99
Table 36: Mössbauer analyses of the decrepitated samples taken from tap 68 100
Table 37: Mössbauer analyses of the decrepitated samples taken from tap 70 100
Table 38: A summary of the relative peak intensities for the decrepitated slag samples obtained during the campaign from tap 68 ... 102
Table 39: A summary of the relative peak intensities for the decrepitated slag samples obtained during the campaign from tap 70 ... 102
Table 40: Size distribution of decrepitated slag samples obtained from two slag blocks 103
Table 41: Analyses of selected samples obtained from the size distribution analyses shown in Table 40 .. 104
Table 42: Mössbauer analyses of two size fractions obtained from the size distribution analyses shown in Table 40 .. 104
Table 43: Comparison of the densities of decrepitated samples with their respective starting materials 105
Table 44: Chemical analyses of Sorel slags (measured from Figure 2 in Grau and Poggi, 1978) 113
Table 45: Results obtained from the crushing strength testwork ... 139
Table 46: Sieve analyses of the slag after crushing .. 140
Table 47: ANOVA summary of total energy required for the crushing of miniature slag blocks 141
Table 48: Summary of the results for the protected t test for the total energy required for crushing the miniature slag blocks... 142
Table 49: ANOVA summary of maximum force required for crushing of miniature slag blocks............ 142
Table 50: Summary of the results for the protected t test for the maximum force measured during crushing of the miniature slag blocks... 142
Table 51: ANOVA summary of percentage slag less than 500 μm after crushing................................. 143
Table 52: Summary of the results for the protected t test for the percentage of slag less than 500 μm after crushing... 143
LIST OF APPENDICES

Appendix A: Data obtained from Grau and Poggi used for calculation of equations and in figures 113
Appendix B: Normalised elemental phase analyses results of various samples ... 114
Appendix C: Mössbauer spectra of samples in this study .. 119
Appendix D: Crystallographic data for sample DB156 .. 123
Appendix E: X-ray diffraction patterns of the slag samples shown in Table 12 .. 125
Appendix F: Normalised oxide phase analyses results of various samples .. 127
Appendix G: X-ray diffraction patterns for the pellet samples .. 128
Appendix H: Calculation of the composition and cation oxidation states for sample DB125 (bulk phase) 133
Appendix I: X-ray diffraction patterns for the miniature block samples .. 135
Appendix J: Statistical analyses of the data obtained from the crushing testwork on miniature slag blocks . 138
Appendix K: X-ray diffraction patterns of selected samples from the unidirectional crushing testwork 144
Appendix L: X-ray diffraction patterns of samples treated in different atmospheres 146
Appendix M: Investigation into the interaction between the SiC sheath material and titania slag 147
Appendix N: X-ray diffraction patterns for the decrepitated slag samples obtained during the ilmenite smelting campaign .. 150
Appendix O: Data from density measurements ... 153