AN INTEGRATED AND INTELLIGENT METAHEURISTIC FOR CONSTRAINED VEHICLE ROUTING

JOHANNES WILHELM JOUBERT

A dissertation in partial fulfillment of the requirements for the degree

PHILOSOPHIAE DOCTOR (INDUSTRIAL ENGINEERING)

in the

FACULTY OF ENGINEERING, BUILT ENVIRONMENT, AND INFORMATION TECHNOLOGY

UNIVERSITY OF PRETORIA

June 2006
Summary

South African metropolitan areas are experiencing rapid growth and requires an increase in network infrastructure. Increased congestion negatively impacts both public and freight transport costs. The concept of City Logistics is concerned with the mobility of cities, and entails the process of optimizing urban logistics activities by concerning the social, environmental, economic, financial, and energy impacts of urban freight movement. In a cost-competitive environment, freight transporters often use sophisticated vehicle routing and scheduling applications to improve fleet utilization and reduce the cost of meeting customer demands.

In this thesis, the candidate builds on the observation that vehicle routing and scheduling algorithms are inherent problem specific, with no single algorithm providing a dominant solution to all problem environments. Commercial applications mostly deploy a single algorithm in a multitude of environments which would often be better serviced by various different algorithms.

This thesis algorithmically implements the ability of human decision makers to choose an appropriate solution algorithm when solving scheduling problems. The intent of the routing agent is to classify the problem as representative of a traditional problem set, based on its characteristics, and then to solve the problem with the most appropriate solution algorithm known for the traditional problem set. A not-so-artificially-intelligent-vehicle-routing-agentTM is proposed and developed in this thesis. To be considered intelligent, an agent is firstly required to be able to recognize its environment. Fuzzy c-means clustering is employed to analyze the geographic dispersion of the customers (nodes) from an unknown routing problem to determine to which traditional problem set it relates best. Cluster validation is used to classify the routing problem into a traditional problem set.

Once the routing environment is classified, the agent selects an appropriate metaheuristic to solve the complex variant of the Vehicle Routing Problem. Multiple soft time windows, a
heterogeneous fleet, and multiple scheduling are addressed in the presence of time-dependent travel times. A new initial solution heuristic is proposed that exploits the inherent configuration of customer service times through a concept referred to as time window compatibility. A high-quality initial solution is subsequently improved by the Tabu Search metaheuristic through both an adaptive memory, and a self-selection structure.

As an alternative to Tabu Search, a Genetic Algorithm is developed in this thesis. Two new crossover mechanisms are proposed that outperform a number of existing crossover mechanisms. The first proposed mechanism successfully uses the concept of time window compatibility, while the second builds on an idea used from a different sweeping-arc heuristic.

A neural network is employed to assist the intelligent routing agent to choose, based on its knowledge base, between the two metaheuristic algorithms available to solve the unknown problem at hand. The routing agent then not only solves the complex variant of the problem, but adapts to the problem environment by evaluating its decisions, and updating, or reaffirming its knowledge base to ensure improved decisions are made in future.

Keywords: Vehicle routing; fuzzy clustering, time-dependent travel time; metaheuristics
Contents

Contents iv
List of Figures viii
List of Tables x
Acronyms xiii

1 Introduction 1
1.1 *Modeling* as research motivation 2
1.2 *Intelligence* as the research driver 4
1.2.1 Intelligence 6
1.2.2 Complexity 7
1.3 Formulating the research question 7
1.4 Research design and methodology 9
1.5 The structure of the thesis 10

2 The *Vehicle Routing Problem*: origins and variants 11
2.1 The origins of the basic Vehicle Routing Problem (VRP) 11
2.1.1 The Traveling Salesman Problem (TSP) 11
2.1.2 The Multiple Traveling Salesman Problem (MTSP) 12
2.1.3 The Vehicle Routing Problem (VRP) 14
2.2 Variants of the (VRP) 15
2.2.1 The concept of time windows 16
2.2.2 Capacity constraints and vehicle characteristics 19
2.2.3 Uncertainty in vehicle routing 20
6 A Genetic Algorithm

6.1 Initialization .. 94
6.2 Clustering .. 94
6.3 Mutation ... 96
6.4 Crossover ... 96
 6.4.1 Enhanced Edge Recombination [EER] 96
 6.4.2 Merged Crossover [MX] 98
 6.4.3 Partially Matched Crossover [PMX] 100
6.5 Evaluating crossover operators 101
6.6 Conclusion .. 106

7 Clustering input data .. 107

7.1 Unsupervised clustering ... 109
 7.1.1 Fuzzy c-means clustering 110
 7.1.2 Validation indices .. 112
7.2 Evaluating fuzzy membership parameters 116
7.3 Validation of benchmark data 117
7.4 Conclusion .. 118

8 Dynamic intelligence through Artificial Neural Networks [ANNs] 119

8.1 Learning structures ... 119
 8.1.1 Bayesian networks 120
 8.1.2 Artificial Neural Networks [ANNs] 120
8.2 Basic mechanisms of an Artificial Neural Network [ANN] 121
8.3 Representation conventions 124
 8.3.1 Network architectures 124
 8.3.2 Data structures .. 127
8.4 Proposed network structure 128
8.5 Training the neural network 129
8.6 Integrating the neural network 130
8.7 Conclusion .. 132

9 Intelligent routing agents: birth or burial? ... 133

9.1 Answering the research questions 133
 9.1.1 Sensory perception 133
List of Figures

1.1 Operations Research cycle ... 3
1.2 Categories of artificial intelligence (Adapted from ?) 6
1.3 Overview of the intelligent agent’s decision process 9

2.1 Double sided hard time window 16
2.2 Soft time window ... 17
2.3 Time window for the depot, node 0 18
2.4 Multiple time windows .. 18
2.5 Travel time function .. 25
2.6 Double scheduling .. 27

3.1 Local vs. global optimum ... 46
3.2 Division of customers using seed angles (Thangiah et al., 1991) 55

4.1 Time window compatibility scenario 1 65
4.2 Time window compatibility scenario 2 66
4.3 Time window compatibility scenario 3 67
4.4 Time window compatibility scenario 4 67
4.5 Time window compatibility scenario 5 68
4.6 Geographical distribution of nodes around a depot 69
4.7 Sequential insertion of customers 72
4.8 Selection criteria ... 73
4.9 Best insertion position determined for each unrouted node 75
4.10 New route after inserting best customer 75
4.11 An excerpt of a problem set (Homberger, 2003) 77
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Selection of TS result graphs</td>
<td>90</td>
</tr>
<tr>
<td>6.1</td>
<td>Two parent solutions illustrating the Edge Recombination (ER) crossover</td>
<td>97</td>
</tr>
<tr>
<td>6.2</td>
<td>Depot and first 10 customers from the C2-2-2 problem set</td>
<td>100</td>
</tr>
<tr>
<td>6.3</td>
<td>Results for a random problem from each set, expressed relative to the best crossover mechanism for each set.</td>
<td>105</td>
</tr>
<tr>
<td>7.1</td>
<td>Clustering the C1-2-1 problem set</td>
<td>113</td>
</tr>
<tr>
<td>8.1</td>
<td>Typical transfer function shapes</td>
<td>122</td>
</tr>
<tr>
<td>8.2</td>
<td>Simple layered perceptron (Müller et al., 1995)</td>
<td>123</td>
</tr>
<tr>
<td>8.3</td>
<td>Training a neural network (Dermuth et al., 2005)</td>
<td>123</td>
</tr>
<tr>
<td>8.4</td>
<td>A basic neuron</td>
<td>124</td>
</tr>
<tr>
<td>8.5</td>
<td>A basic neuron using the abbreviated notation</td>
<td>125</td>
</tr>
<tr>
<td>8.6</td>
<td>A layer of neurons</td>
<td>126</td>
</tr>
<tr>
<td>8.7</td>
<td>A layer of neurons using the abbreviated notation</td>
<td>126</td>
</tr>
<tr>
<td>8.8</td>
<td>A three-layer network</td>
<td>127</td>
</tr>
<tr>
<td>8.9</td>
<td>A three-layer network using the abbreviated notation</td>
<td>127</td>
</tr>
<tr>
<td>8.10</td>
<td>Proposed network in abbreviated form</td>
<td>128</td>
</tr>
<tr>
<td>8.11</td>
<td>Convergence of the objective function error towards zero</td>
<td>129</td>
</tr>
<tr>
<td>8.12</td>
<td>Regression results for the trained network</td>
<td>130</td>
</tr>
<tr>
<td>8.13</td>
<td>Update frequency function</td>
<td>132</td>
</tr>
</tbody>
</table>
List of Tables

<table>
<thead>
<tr>
<th>Section</th>
<th>Table Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2</td>
<td>Time windows and service times</td>
<td>69</td>
</tr>
<tr>
<td>4.3</td>
<td>Number of infeasible time window instances</td>
<td>71</td>
</tr>
<tr>
<td>4.4</td>
<td>Heterogeneous fleet data [Liu and Shen 1999a]</td>
<td>78</td>
</tr>
<tr>
<td>4.5a</td>
<td>Initial solution summary for the c_1 problem class</td>
<td>79</td>
</tr>
<tr>
<td>4.5b</td>
<td>Initial solution summary for the c_2 problem class</td>
<td>79</td>
</tr>
<tr>
<td>4.5c</td>
<td>Initial solution summary for the r_1 problem class</td>
<td>80</td>
</tr>
<tr>
<td>4.5d</td>
<td>Initial solution summary for the r_2 problem class</td>
<td>80</td>
</tr>
<tr>
<td>4.5e</td>
<td>Initial solution summary for the rc_1 problem class</td>
<td>81</td>
</tr>
<tr>
<td>4.5f</td>
<td>Initial solution summary for the rc_2 problem class</td>
<td>81</td>
</tr>
<tr>
<td>6.1</td>
<td>Edge lists</td>
<td>97</td>
</tr>
<tr>
<td>6.2</td>
<td>Time window details for customers from the C_2-2-2 problem set</td>
<td>99</td>
</tr>
<tr>
<td>6.3a</td>
<td>Analysis of random problems for each data set</td>
<td>103</td>
</tr>
<tr>
<td>6.3b</td>
<td>Analysis of random problems for each data set</td>
<td>104</td>
</tr>
<tr>
<td>B.1</td>
<td>TS results for benchmark data sets</td>
<td>154</td>
</tr>
<tr>
<td>B.1</td>
<td>TS results for benchmark data sets (continued)</td>
<td>155</td>
</tr>
<tr>
<td>B.1</td>
<td>TS results for benchmark data sets (continued)</td>
<td>156</td>
</tr>
<tr>
<td>C.1a</td>
<td>Summary of GA results</td>
<td>157</td>
</tr>
<tr>
<td>C.1b</td>
<td>Summary of GA results (continued)</td>
<td>157</td>
</tr>
<tr>
<td>C.1c</td>
<td>Summary of GA results (continued)</td>
<td>158</td>
</tr>
<tr>
<td>D.1</td>
<td>Cluster validation results for test set with two clusters</td>
<td>160</td>
</tr>
<tr>
<td>D.2</td>
<td>Cluster validation results for test set with three clusters</td>
<td>161</td>
</tr>
<tr>
<td>D.3</td>
<td>Cluster validation results for test set with four clusters</td>
<td>162</td>
</tr>
</tbody>
</table>
D.4 Cluster validation results for test set with five clusters 163
E.1 Cluster validation results for benchmark problem sets 165
E.1 Cluster validation results for benchmark problem sets (continued) 166
List of Algorithms

3.1 Tabu Search .. 48
3.2 Simulated Annealing .. 51
3.3 Genetic Algorithm .. 53
3.4 Ant Colony Optimization 58
4.1 Initial solution heuristic 62
4.2 Travel time calculation procedure 64
4.3 Incorporating time window compatibility with time dependent travel time . . 64
5.1 Tabu Search (TS) Overview 86
5.2 Tabu Search (TS) Initialization 87
5.3 Tabu Search (TS) Optimization 88
6.1 Genetic Algorithm (GA) overview 93
6.2 GA clustering .. 95
7.1 Fuzzy c-means clustering 111
8.1 The intelligent agent ... 131
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACO</td>
<td>Ant Colony Optimization</td>
</tr>
<tr>
<td>ACS</td>
<td>Adapted Combined Savings</td>
</tr>
<tr>
<td>AI</td>
<td>Artificial Intelligence</td>
</tr>
<tr>
<td>AMD</td>
<td>Absolute Mean Deviation</td>
</tr>
<tr>
<td>AMP</td>
<td>Adaptive Memory Procedure</td>
</tr>
<tr>
<td>ANN</td>
<td>Artificial Neural Network</td>
</tr>
<tr>
<td>ANNs</td>
<td>Artificial Neural Networks</td>
</tr>
<tr>
<td>AOOS</td>
<td>Adapted Optimistic Opportunity Savings</td>
</tr>
<tr>
<td>AROS</td>
<td>Adapted Realistic Opportunity Savings</td>
</tr>
<tr>
<td>CMTSP</td>
<td>Capacitated Multiple Traveling Salesman Problem</td>
</tr>
<tr>
<td>CS</td>
<td>Combined Savings</td>
</tr>
<tr>
<td>CVRP</td>
<td>Capacitated Vehicle Routing Problem</td>
</tr>
<tr>
<td>CW</td>
<td>Clarke-Wright</td>
</tr>
<tr>
<td>DP</td>
<td>Dynamic Programming</td>
</tr>
<tr>
<td>EER</td>
<td>Enhanced Edge Recombination</td>
</tr>
<tr>
<td>ER</td>
<td>Edge Recombination</td>
</tr>
<tr>
<td>FIFO</td>
<td>First-In-First-Out</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>FSMVRP</td>
<td>Fleet Size and Mix Vehicle Routing Problem</td>
</tr>
<tr>
<td>FSMVRPTW</td>
<td>Fleet Size and Mix Vehicle Routing Problem with Time Windows</td>
</tr>
<tr>
<td>GA</td>
<td>Genetic Algorithm</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographical Information System</td>
</tr>
<tr>
<td>HVRP</td>
<td>Heterogeneous Fleet Vehicle Routing Problem</td>
</tr>
<tr>
<td>ILP</td>
<td>Integer Linear Program</td>
</tr>
<tr>
<td>ITS</td>
<td>Intelligent Transportation System</td>
</tr>
<tr>
<td>LP</td>
<td>Linear Programming Problem</td>
</tr>
<tr>
<td>MPVRP</td>
<td>Multi Period Vehicle Routing Problem</td>
</tr>
<tr>
<td>MSE</td>
<td>Mean Square Error</td>
</tr>
<tr>
<td>MTMCP</td>
<td>Multiple Tour Maximum Collection Problem</td>
</tr>
<tr>
<td>MTSP</td>
<td>Multiple Traveling Salesman Problem</td>
</tr>
<tr>
<td>MTVRP</td>
<td>Multi-Trip Vehicle Routing Problem</td>
</tr>
<tr>
<td>MVRPSP</td>
<td>Multi-Vehicle Routing Problem with Split Pick-ups</td>
</tr>
<tr>
<td>MX</td>
<td>Merged Crossover</td>
</tr>
<tr>
<td>OOS</td>
<td>Optimistic Opportunity Savings</td>
</tr>
<tr>
<td>PFIH</td>
<td>Push Forward Insertion Heuristic</td>
</tr>
<tr>
<td>PMX</td>
<td>Partially Matched Crossover</td>
</tr>
<tr>
<td>ROS</td>
<td>Realistic Opportunity Savings</td>
</tr>
<tr>
<td>SA</td>
<td>Simulated Annealing</td>
</tr>
<tr>
<td>SEC</td>
<td>Subtour Elimination Constraints</td>
</tr>
<tr>
<td>SIH</td>
<td>Sequential Insertion Heuristic</td>
</tr>
<tr>
<td>TDTSP</td>
<td>Time Dependent Traveling Salesman Problem</td>
</tr>
<tr>
<td>TDVRP</td>
<td>Time Dependent Vehicle Routing Problem</td>
</tr>
</tbody>
</table>
TP Thesis Problem
TS Tabu Search
TSP Traveling Salesman Problem
TWC Time Window Compatibility
TWCM Time Window Compatibility Matrix
VFM Vehicle Fleet Mix problem
VRP Vehicle Routing Problem
VRPHE Vehicle Routing Problem with a Heterogeneous fleet of vehicles
VRPM Vehicle Routing Problem with Multiple use of vehicles
VRPMVTTW Vehicle Routing Problem with Multiple Vehicle Types and Time Windows
VRPPD Vehicle Routing Problem with Pickups and Deliveries
VRPTW Vehicle Routing Problem with Time Windows
Chapter 1

Introduction

South Africa’s level of urbanization closely follows international trends in developed countries, with the highest level of economic activity focused in a few metropolitan areas; attracting both people and investment. The good functioning of these metropolitan areas is of strategic importance to the country, as these areas are the main focus for economic and social development. The level of transport services provided impacts directly on the efficiency and the quality of the development in the metropolitan areas. South African metropolitan areas are experiencing rapid growth, and are having difficulties in controlling the physical urban expansion. Both public and freight transport costs are negatively impacted by these phenomena. As demand for transport increases faster than the supply of these services, commuting and freight transportation costs increase at a higher than inflation rate. The community at large experiences the demands for more extensive infrastructure and services.

Customers, both businesses and private consumers, demands products and services at the point of utilization. The geographically dispersed point of supply and point of utilization are bridged through transport. The majority of urban freight is carried by means of road transport, and the definition of the Organization for Economic Co-operation and Development (OECD) for urban freight transport applies:

“The delivery of consumer goods (not only retail, but also by other sectors such as manufacturing) in city and suburban areas, including the reverse flow of used goods in terms of clean waste.” — [OECD] (2003)

Goods transport has a major impact on the economic power, quality of life, accessibility and attractiveness of local communities, especially in city and metropolitan areas, but receives much less attention in comparison to passenger movement. According to the first State of
Logistics Survey for South Africa prepared by CSIR Transportek (2004), 83% of the total tonnage transport bill of ZAR 134 billion is transported via road, while 22% of the total tonnage is transported within metropolitan areas. Freight transport within metropolitan and urban areas have different characteristics from long haulage, and the main attributes include (Taniguchi et al., 2004):

- Frequent deliveries of smaller quantities
- Low utilisation of the capacity of trucks
- Time windows

Efficiently transporting goods within urban areas facilitates the establishment of sustainable cities. OECD (2003) acknowledges the contribution that freight vehicles make to traffic congestion, energy consumption and negative environmental impacts. Yamada and Taniguchi (2005) conclude that the majority of benefits for freight carriers can be achieved by implementing advanced vehicle routing and scheduling systems, hence addressing congestion, energy consumption, and indirectly environmental impacts. The problem concerned with allocating customer deliveries (or collections) to vehicles, and determining the visiting order of those customers on each vehicle route, is classified as the Vehicle Routing Problem (VRP), and has as its main objective to minimize some measurable function, such as distance traveled, time traveled, or total fleet cost.

1.1 Modeling as research motivation

South Africa provides a fascinating interface between the developed and the developing world. In a critical review, Leinbach and Stansfield (2002) have emphasized that Industrial Engineers should re-adopt a systematic view. They argue that the perception of Industrial Engineers has been negatively impacted by their ability to model the obvious, and in the oversimplification of their models, to the extent that reality is not represented comprehensively. Industrial engineers should therefor appreciate the complex and intertwined relationships between social, political, and economic factors influencing urban freight transport systems.

A systematic approach in addressing a problem is illustrated in the lower cycle of Figure 1.1 where a problem is modeled, the model is solved, and the solution is interpreted so as to change the original problem through decisions (Rardin, 1998). Identifying and scoping a problem is not a trivial matter, and is important in ensuring that the final solution that a decision is based upon, will in fact represent, and ultimately address the core problem. Taha
Figure 1.1: Operations Research cycle

(2003) expands the action of *modeling* in Figure 1.1 and illustrates how representations of the real world can easily be over-simplified. Interrelationships within the *real* world are so complex and abundant, that no one person can comprehend it in its entirety. We refer to the *problem in the real world* as the first level of abstraction. The human is a contextual being: the cultural, social and emotional context of an individual forms the individual’s perception of the reality in which he or she exist. The second level of abstraction therefore represents the contextually sensitive view, referred here to as the *assumed reality*, that an individual has of the real problem. But even the abstract and fragmented view is often too complex to solve in its entirety. Through the actions of analyzing, and applying a methodology of *divide-and-conquer*, the individual scopes the problem in a structured way through simplifying assumptions. These assumptions may be justified in the absence of complete and accurate data about the assumed reality. The third level of abstraction is referred to as a *model*. The verb *modeling* therefore requires the problem solver to not only scope the problem, but also justify the endeavors to ensure that the assumed reality has been challenged to represent the real problem more comprehensively. This is illustrated through the arrows stretching the boundaries of the assumed reality towards the real world. Although
the model can be any representation of a real problem, from scraps of paper with notes on them, a functional flow block diagram or process maps, in this thesis the term is used as a structured and mathematical model with an optimization intent.

Once the model is a true representation of the problem at hand, the decision maker can proceed to solve the model. It should be emphasized that only the model is solved, and not the problem itself. The availability and the ease of use of new generation optimization software have facilitated the process of solving models representing complex operational problems. The rapidly increasing processing power of computers brings the optimization opportunities right to the desk of the practitioner. The solution, however, is often but a list of numerical results.

The numerical solution, and its sensitivity to changes in parameters, requires careful consideration before recommendations and decisions are made, and is only considered as decision support. Implementation impacts, and possible change factors are considered before a final decision is made and implemented. The impact of the decision is then assessed so as to close the problem solving-cycle. Implemented changes may either address the original problem adequately, or may elicit new problems that require modeling, solving, and decision making.

1.2 Intelligence as the research driver

Freight carriers are sharing the road network with various modes of public transport. The use of private vehicles have rapidly increased. The increase can be attributed to both an increase in the number of trips undertaken, and increased journey lengths (Banister, 1995; Spence, 1998). Road network performance is negatively impacted by the higher usage of private vehicles and results in higher levels of congestion, and a significant reduction in operating speeds. Public transport performance is impacted negatively when operating speeds decrease, resulting in increased operating costs for the carriers, and thus impacting negatively on its attractiveness. As a result, the economically able part of the population turn to their private vehicles for a reliable source of transport, and unknowingly contributes to the hyper-congestion phenomenon.

Congestion does not only increase the stress levels of road users from a commuting point of view, but it also increases the complexity for vehicle and fleet managers overseeing the scheduling, routing, and optimization of their fleet concerns.

Carrier companies represent both public and private entities executing the logistic and
distribution functions of freight. This thesis addresses the complexities of freight transport. Freight carriers are continuously expected to provide higher levels of service at lower rates, and therefore try to minimize their logistic costs, and maximize their profit. Sharing the road infrastructure with other vehicles such as private cars and public transport forces carriers to plan their freight routes more carefully. Enhanced vehicle routing and scheduling takes the congestion constraint into account and attempts to improve the vehicular utility through shorter routes and higher load factors. Software applications often do not provide adequate functionality by not being able to address complex business requirements such as companies having a fleet of vehicles that differ in capacity and/or running costs, and multiple scheduling where vehicles are allowed to complete a trip, return to the depot to renew it’s capacity, i.e. offload goods collected, or loading goods to be delivered. The reason for software deficiencies are related to the extreme computational complexity when solving routing models. Human intervention is required to, for instance, split the fleet into vehicle categories that represent similar or the same capacity and/or costs. Each category is then solved independently, adjusting demand as customers are serviced by other categories. Human operators can also intervene by evaluating vehicular routes, and identifying vehicles that may be used for a second trip, and then schedule such vehicles accordingly. Although such interventions are mechanistic in nature, they require the time and effort of experienced individuals having a thorough understanding of vehicle routing so as to intervene wisely.

We refer to ourselves (in a more formal way) as *homo sapiens* — man the wise — and value our mental abilities to think and reason to assist us in improving our surroundings. We require our thought processes and intelligence to make decisions that will maximize the utility that we obtain from logistics — moving goods from points of manufacture to points of consumption that are geographically dispersed.

“What is mind? What is the relationship between mind and the brain? What is thought? What are the mechanisms that give rise to imagination? What is perception and how is it related to the object perceived? What are emotions and why do we have them? What is will and how do we choose what we intend to do? How do we convert intentions into action? How do we plan and how do we know what to expect from the future?”— Albus (1999)

It seems clear from the quote by Albus (1999) that before one toss terms such as thinking and planning around, one should carefully consider how such actions take place, and how one intends to employ such actions to improve, for example, urban freight congestion.
1.2.1 Intelligence

In their leading text, Russell and Norvig (2003) introduce Artificial Intelligence (AI) as not only understanding the human intellect, but also building entities (or agents) that are intelligent. Although it encompasses a huge variety of subfields of study, with many varying definitions, the authors have categorized AI approaches in a two-dimensional framework represented in Figure 1.2.

![Figure 1.2: Categories of artificial intelligence (Adapted from ?)](image)

The top half of the framework is concerned with thought processes and reasoning, as opposed to the lower half that is concerned with the behavioral element of intelligence. The left side of the framework measures the success of an agent’s intelligence against the fidelity of human performance. The right half establishes an ideal concept of intelligence as a benchmark, referred to as rationality. This is analogous to effectiveness — doing the right things. However, the right within rationality is only relative to what is known at the time of the doing.

An agent is something that acts. This thesis is concerned with the development of a computer agent that could intelligently intervene in the routing and scheduling of distribution vehicles. But how is it to be distinguished from mere programming? It should be able to operate autonomously, perceive the environment, persist over a period of time, and be able to adopt the goals and objectives of another entity. As an improvement on a basic agent, this thesis propose a rational agent that has a strategy to achieve the best possible outcome.
for a given objective, either known, or the expected outcome should some of the parameters
be uncertain. The focus of the thesis is therefor not on understanding the human thought
processes, but on creating a system that can think, and act rationally.

1.2.2 Complexity

Perfect rationality in modeling is often too difficult to attain due to too high computational
demands when looking for exact solutions. Problems such as the routing and scheduling
of vehicles can often not be solved exactly, and require the use of solution algorithms that
provided approximate solutions where the optimality of the solution can neither be proved
in advance, nor confirmed once a solution is found. The different opinions with regards
to either finding an exact optimal solution versus settling for a good enough solution given
a specific environment have led to the split that occurred between Decision Theory and
Artificial Intelligence in the latter half of the twentieth century.

Decision Theory is the field of study where probability theory and utility theory are
combined to present a formal framework for decision making under uncertainty. The field
of operations research addresses complex management decisions rationally. The intention of
the pure branch of decision theory is to obtain a rational decision, or a global optimum.

On the contrary, the complexity in finding a single optimum value led the pioneers of such as Herbert Simon (1916–2001) to prove that being able to find a good enough answer
describes human behavior more accurately — and earned him the Nobel prize in economics
in 1978. And although the computational ability of computers have increased dramatically
over the past decade, the intention is still to assist mere mortal logistics decision makers to
improve their ability to manage distribution fleets.

1.3 Formulating the research question

The primary research question that this thesis intends to answer is whether it is feasible to
develop a rational and intelligent agent to schedule a predefined variant of the VRP. In order
to answer the question, a number of secondary research questions will be stated in terms of
the concept of an intelligent agent.

In his paper on the engineering of mind, identifies four functional elements of an intelligent system.

Sensory perception — accepting input data from both outside and from within the sys-
tem. The data is then transformed through classification and clustering into meaningful
representations of the real world. The first secondary research question addresses the analysis of input data and is stated as follows:

How should customer parameters be clustered so that meaningful classification can be done prior to executing the solution process?

Behavior generation — planning and controlling actions so that goals are achieved. An intelligent agent accepts task with goals, objects and priorities. The tasks are then broken up into jobs and, along with resources, are assigned to agents. Hypothetical plans are created and simulated to predict the outcome of the plans. The simulated results are evaluated, and the agent selects the best expected hypothesized plan. In terms of this thesis an agent refers to computational elements that plan and control the execution of a routing algorithm, correcting for errors and perturbations along the way. The planning processes of the agent are heuristics and metaheuristics that attempt to converge to optimal vehicle routes and schedules. This lead to another secondary research question:

How can heuristics and metaheuristics be used to establish vehicle routes and schedules in a complex and constrained environment?

Value judgement — the computation of a predefined set of costs, risks, benefits, and or penalties related to the vehicle routes. In operations research terms these computational expressions are referred to as the objective function(s). The third secondary research question is derived from value judgement:

What should constitute the objective function of the model so that the real problem is adequately represented?

World modeling — an overall strategy that uses input parameters and variables to update a knowledge database. Data is used to query the behavior generation of plans regarding current routes and schedules. The strategy further simulates possible results of future plans after analyzing the current plans. Simulated results are evaluated, using the value judgement, so the best expected plan for execution can be selected. After execution, the strategy allows for sensory expectations to be created regarding future actions — analogous to bumping your feet against an obstacle in the dark. After stumbling, and reacting to the pain, you lift your feet unnaturally high so as to avoid the next obstacle. The fourth and fifth, probably the most challenging secondary research questions addresses the agents ability to learn from the past and improve in future:
What critical parameters influence the agent’s learning, and should therefore be included in creating future expectations?

How are future expectations created from the past performance?

1.4 Research design and methodology

The process diagram in Figure 1.3 provides an overview of an intelligent agent’s decision process. The agent in this thesis will be a hybrid computerized solution algorithm that has the following inputs:

- Fleet structure
- Customer structure, i.e. demand quantity, geographical location, time windows
- Network structure, derived from customers’ geographical locations

The algorithm will analyze the clustering characteristics of the geographical distribution of customers. Based on the randomness (or clusteredness) of the distribution and the time window characteristics of the customers, the algorithm will select an appropriate solution strategy — a combination of a metaheuristic solution algorithm, along with its appropriate parameter values. The problem instance is solved, and the solution is interpreted and
presented in a useful loading instruction and route sheet. Behind the scenes the algorithm will initiate comparative analysis of the proposed solution strategy by solving the provided problem instance with various metaheuristics and various parameter values for each metaheuristic. The algorithm will then learn from these analysis through a neural network, and update the intelligence database by recommending new solution strategies for the given problem instance, or reiterating current solution strategies.

The algorithm will be coded using the MATLAB® development environment. The analysis and solution components, and the comparative analysis components will run on separate computer processors to optimize for speed and in doing so, address the computational complexity of the hybrid algorithm.

1.5 The structure of the thesis

To elaborate on the exact nature of the research problem, Chapter 2 reviews literature on the VRP and its variants. The chapter concludes with the mathematical formulation of the Capacitated Heterogeneous Fleet Vehicle Routing Problem with Multiple Soft Time Windows and Probabilistic Travel and Service Time as addressed in this thesis. The review of solution algorithms, both exact and approximate, are conducted in Chapter 3 concluding with the recommendation of two metaheuristic solution algorithms, each covered in more detail in later chapters. The analysis of the customer structure is reviewed in Chapter 7, and the chapter proposes an algorithm to determine the level of clusteredness of a customer network. The algorithm is tested by analyzing benchmark data sets provided for pre-defined problem instances in literature.

Chapters 4 through 6 is dedicated to the development of various metaheuristic solution algorithms. Chapter 4 develops an improved initial solution algorithm to enhance the computational performance of the Tabu Search solution algorithm, developed in Chapter 5. The Genetic Algorithm is less sensitive to the quality of an initial solution, and is treated independently in Chapter 6. For each metaheuristic the various parameters are discussed, and default values proposed. The respective algorithms are discussed at high level, followed by detailed discussions of algorithmic particularities, and concluded by testing and validating the algorithm through benchmark data sets.

The integration of the algorithms, as well as the agent’s ability to learn from repetitive decision making is covered in Chapter 8. The thesis is concluded in Chapter 9 with a critical analysis of the research contribution, and setting a research agenda.
Chapter 2

The Vehicle Routing Problem: origins and variants

Rardin (1998) states that the organizing of a collection of customer locations, jobs, cities, or points, into sequences and routes are among the most common discrete optimization problems. The first of the two review chapters focus on the origins and the mathematical formulation of the VRP and its variants.

2.1 The origins of the basic VRP

2.1.1 The Traveling Salesman Problem (TSP)

The simplest, and probably most famous of routing problems known to researchers is the TSP that seeks a minimum-total-length route visiting every one of \(N \) points in a given set \(V = \{1, 2, \ldots, N\} \) exactly once across an arc set \(A \). The distance between all point combinations in \(A \), \((i, j)\), where \((i, j) \in V | i \neq j\), is known. In the notation introduced by Rardin (1998), the symbol \(\triangleq \) denotes defined to be. With the decision variable \(x_{ij} \) defined as:

\[
x_{ij} \triangleq \begin{cases}
1 & \text{if a salesman travels from node } i \text{ to node } j, \text{ where } i, j = \{1, 2, \ldots, N\} \\
0 & \text{otherwise}
\end{cases}
\] (2.1)

we formulate the problem as

\[
\min z = \sum_{(i, j) \in A} c_{ij}x_{ij} \tag{2.2}
\]
subject to

\[\sum_{i=1}^{N} x_{ij} = 1 \quad \forall j \in \{2, \ldots, N\} \quad (2.3) \]
\[\sum_{j=1}^{N} x_{ij} = 1 \quad \forall i \in \{2, \ldots, N\} \quad (2.4) \]
\[\sum_{i \in S} \sum_{j \in S} x_{ij} \leq |S| - 1 \quad \forall S \subset V \quad (2.5) \]
\[x_{ij} \in \{0, 1\} \quad \forall i, j \in \{2, \ldots, N\} \quad (2.6) \]

The objective of the problem minimizes the total distance traveled in (2.2). Each node must be visited exactly once according to (2.3) and (2.4), also referred to as degree constraints. Subtours are eliminated through the introduction of (2.5). The \(|S|\) denotes the number of elements in the subset \(S\). Schrage (2002) states that there are of the order \(2^n\) constraints of type (2.5), as opposed to the alternative in (2.7)

\[u_j \geq u_i + 1 - (1 - x_{ij})n \quad \forall j \in \{2, \ldots, N\} | j \neq i \quad (2.7) \]
of which there are of the order \(N - 1\) constraints. Only a few of the former type constraints will be binding in the optimum. Padberg and Rinaldi (1987) therefore propose an efficient and effective iterative process of adding violated constraints of type (2.5) as needed.

Although a number of TSP variations exist, our interest is in the variant where multiple salesmen are routed simultaneously.

2.1.2 The Multiple Traveling Salesman Problem (MTSP)

The MTSP is similar to the notoriously difficult TSP that seeks an optimal tour of \(N\) cities, visiting each city exactly once with no sub-tours. In the MTSP, the \(N\) cities must be partitioned into \(M\) tours, with each tour resulting in a TSP for one salesperson. The MTSP is more difficult than the TSP because it requires determining which cites to assign to each salesperson, as well as the optimal ordering of the cities within each salesperson’s tour (Carter and Ragsdale 2005; Kara and Bektas 2005). Consider a complete directed graph \(G = (V, A)\) where \(V\) is the set of \(N\) nodes (or cities to be visited), \(A\) is the set of arcs and \(C = (c_{ij})\) is the cost (distance) matrix associated with each arc \((i, j) \in A\). The cost matrix can be symmetric, asymmetric, or Euclidean. The latter refers to the straight-line distance measured between the two geographically dispersed nodes. There are \(M\) salesmen based at the depot, denoted as node 1. The single depot MTSP consists of finding tours
for the M salesmen subject to each salesman starting and ending at the depot, each node is located in exactly one tour, and the number of nodes visited by a salesman lies within a predetermined time (or distance) interval. The objective is to minimize the cost of visiting all the nodes. We define the decision variable, x_{ij}, in (2.1). For any salesman, u_i denotes the number of nodes visited on that salesman’s route up to node i, with corresponding parameters K and L denoting the minimum and maximum number of nodes visited by any one salesman, respectively. We can therefor state that $1 \leq u_i \leq L$ when $i \geq 2$, and when $x_{i1} = 1$, then $K \leq u_i \leq L$. The following Integer Linear Program (ILP) formulation is proposed by Kara and Bektas (2005).

$$\min z = \sum_{(i,j) \in A} c_{ij}x_{ij}$$

subject to

$$\sum_{j=2}^{N} x_{ij} = M$$

$$\sum_{i=2}^{N} x_{i1} = M$$

$$\sum_{i=1}^{N} x_{ij} = 1 \quad \forall j \in \{2, \ldots, N\}$$

$$\sum_{j=1}^{N} x_{ij} = 1 \quad \forall i \in \{2, \ldots, N\}$$

$$u_i + (L - 2)x_{i1} - x_{i1} \leq L - 1 \quad \forall i \in \{2, \ldots, N\}$$

$$u_i + x_{i1} + (2 - K)x_{i1} \geq 2 \quad \forall i \in \{2, \ldots, N\}$$

$$x_{i1} + x_{i1} \leq 1 \quad \forall i \in \{2, \ldots, N\}$$

$$u_i - u_j + Lx_{ij} + (L - 2)x_{ji} \leq L - 1 \quad \forall i, j \in \{2, \ldots, N\} | i \neq j$$

$$x_{ij} \in \{0, 1\} \quad \forall i, j \in \{2, \ldots, N\}$$

The objective in (2.8) minimizes the total cost of traveling to all nodes, while constraints (2.9) and (2.10) ensures that all M salesmen are allocated routes. Degree constraints are imposed by (2.11) and (2.12). The MTSP specific constraints (2.13) and (2.14) are referred to as bounding constraints and Kara and Bektas (2005) introduce these as the upper and lower bound constraints on the number of nodes visited by each salesman. The value of u_i is initialized to 1 if and only if node i is the first node on the tour of any salesman. Inequality (2.15) forbids a salesman to only visit a single node on its tour. The formation of subtours between all nodes in $V \setminus \{1\}$ (all nodes except the depot) are eliminated by (2.16) as it ensures...
that \(u_j = u_i + 1 \) if and only if \(x_{ij} = 1 \). They are also referred to as Subtour Elimination Constraints (SEC).

Next we consider a variant where each of the \(M \) salespeople has a predefined, yet similar, capacity. An analogy is having salespeople traveling with samples in their vehicles. Not only do their cars have limited space for the samples, but each customer visited may require a different number of the samples. As a variant of the MTSP it is referred to as the Capacitated Multiple Traveling Salesman Problem (CMTSP), but in the context of this thesis the vehicular related name, Vehicle Routing Problem (VRP), is preferred.

2.1.3 The Vehicle Routing Problem (VRP)

The distribution problem in which vehicles based at a central facility (depot) are required to visit — during a given time period — geographically dispersed customers in order to fulfill known customer requirements are referred to as the VRP (Christofides, 1985). The main objective of the VRP is to minimize the distribution costs for individual carriers, and can be described as the problem of assigning optimal delivery or collection routes from a depot to a number of geographically distributed customers, subject to constraints (\(?\)). The most basic version of the VRP have also been called vehicle scheduling, truck dispatching, or simply the delivery problem. A number of different formulations appear in the authoritative work of Christofides (1985). The basic problem can be defined with \(G = (V, A) \) being a directed graph where \(V = \{v_1, \ldots, v_N\} \) is a set of vertices representing \(N \) customers, and with \(v_1 \) representing the depot where \(M \) identical vehicles, each with capacity \(Q \), are located (\(?\)). \(E = \{(v_i, v_j)|v_i, v_j \in V, i \neq j\} \) is the edge set connecting the vertices. Each vertex, except for the depot \((V\{v_1\})\), has a non-negative demand \(q_i \) and a non-negative service time \(s_i \). A matrix \(C = (c_{ij}) \) is defined on \(A \). In some contexts, \(c_{ij} \) can be interpreted as travel cost, travel time, or travel distance for any of the identical vehicles. Hence, the terms cost, time, and distance are used interchangeably, although \(t_{ij} \) denotes the travel time between nodes \(i \) and \(j \) in the formulation provided below. The basic VRP is to route the vehicles one route per vehicle, each starting and finishing at the depot, so that all customers are supplied with their demands and the total travel cost is minimized. Although Christofides (1985) presents three different formulations from the early 1980s, the following mathematical formulation of the VRP is adapted from Bodin et al. (1983) and Filipec et al. (1998). During this period little changes were made to the formulation of the problem. The decision variable, \(x_{ij}^k \) is
defined as
\[
x^k_{ij} \triangleq \begin{cases}
1 & \text{if vehicle } k \text{ travels from node } i \text{ to } j, \text{ where } i, j \in \{1, 2, \ldots, N\} | i \neq j, \text{ and } k \in \{1, 2, \ldots, K\} \\
0 & \text{otherwise}
\end{cases}
\] (2.18)

\[
\min z = \sum_{i=0}^{N} \sum_{j=0}^{N} \sum_{k=1}^{K} c_{ij} x^k_{ij}
\] (2.19)

subject to
\[
\sum_{i=0}^{N} \sum_{k=1}^{K} x^k_{ij} = 1 \quad \forall j \in \{1, \ldots, N\}
\] (2.20)

\[
\sum_{j=0}^{N} \sum_{k=1}^{K} x^k_{ij} = 1 \quad \forall i \in \{1, \ldots, N\}
\] (2.21)

\[
\sum_{i=0}^{N} x^k_{ip} - \sum_{j=0}^{N} x^k_{pj} = 0 \quad \forall p \in \{1, \ldots, N\}, k \in \{1, \ldots, K\}
\] (2.22)

\[
\sum_{j=0}^{N} q_j \left(\sum_{i=0}^{N} x^k_{ij} \right) \leq Q \quad \forall k \in \{1, \ldots, K\}
\] (2.23)

\[
\sum_{i=0}^{N} \sum_{j=0}^{N} t_{ij} x^k_{ij} \leq D \quad \forall k \in \{1, \ldots, K\}
\] (2.24)

\[
\sum_{j=1}^{N} x^k_{0j} \leq 1 \quad \forall k \in \{1, \ldots, K\}
\] (2.25)

\[
\sum_{i=1}^{N} x^k_{i0} \leq 1 \quad \forall k \in \{1, \ldots, K\}
\] (2.26)

\[
x^k_{ij} \in \{0, 1\} \quad \forall i, j \in \{1, \ldots, N\}, k \in \{1, \ldots, K\}
\] (2.27)

The degree constraints are represented by (2.20) and (2.21). Route continuity is enforced by (2.22) as once a vehicle arrived at a node, it must also leave that node. No one vehicle can service customer demands that exceeds the vehicle capacity in (2.23). A maximum route length is limited by (2.24). Constraints (2.25) and (2.26) ensures that each vehicle is scheduled no more than once.

2.2 Variants of the **VRP**

The basic VRP makes a number of assumptions, including utilizing a homogeneous fleet, a single depot, one route per vehicle, etc. These assumptions can be eliminated by introducing
additional constraints to the problem. This implies increasing the complexity of the problem, and, by restriction, classifies the extended problem as an \(np \)-hard problem. It should be noted that most of these additional constraints are often implemented in isolation, without integration, due to the increased complexity of solving such problems. In the next few sections, these variants are introduced in isolation, before proposing an integrated formulation in Section 2.3.

2.2.1 The concept of time windows

A **time window** can be described as a window of opportunity for deliveries. It is an extension of the VRP that has been researched extensively \cite{ibaraki2005exact,taillard1999new,taillard1997,taillard1997approximation}. A time window is the period of time during which deliveries can be made to a specific customer \(i \), and has three main characteristics:

- Earliest allowed arrival time, \(e_i \), also referred to as the **opening time**
- Latest allowed arrival time, \(l_i \), also referred to as the **closing time**
- Whether the time window is considered **soft** or **hard**

Consider the example, illustrated in Figure 2.1, where customer \(i \) requests delivery between 07:30 and 17:00. To distinguish between the actual and the specified times of arrival, the variable \(a_i \) denotes the actual time of arrival at node \(i \). Should the actual arrival time at node \(i \), denoted by \(a_i \), be earlier than the earliest allowed arrival at the node, \(e_i \), then the vehicle will incur a waiting time, \(w_i \), which can be calculated as \(w_i = \max\{0, e_i - a_i\} \). The
introduction of time windows to the basic VRP sees the introduction of three new constraints.

\[a_0 = w_0 = s_0 = 0 \] \hspace{1cm} (2.28)

\[
\sum_{k=1}^{K} \sum_{i=0; i \neq j}^{N} x_{ij}^k (a_i + w_i + s_i + t_{ij}) \leq a_j \hspace{1cm} \forall j \in \{1, 2, \ldots, N\} \] \hspace{1cm} (2.29)

\[e_i \leq (a_i + w_i) \leq l_i \hspace{1cm} \forall i \in \{1, 2, \ldots, N\} \] \hspace{1cm} (2.30)

Constraint (2.28) assumes that vehicles are ready and loaded by the time the depot opens, which is indicated as time 0 (zero). Constraint (2.29) calculates the actual arrival time, while (2.30) ensures that each customer \(i \) is serviced within its time window.

When both an earliest and latest allowed arrival is stipulated, the time window is referred to as double sided. If no arrivals are allowed outside of the given parameters, the time window is said to be hard, as is the case in Figure 2.1. When delivery is allowed outside the specified time window, the time window is said to be soft, and customer \(i \) may penalize lateness at a cost of \(\alpha_i \) \cite{Koskosidis1992}. Customer \(i \) may specify a maximum lateness, \(L_i^{max} \). The example illustrated in Figure 2.2 sees customer \(i \) specifying a time window between 07:30 and 15:30. The customer will, however, allow late deliveries until 17:00. A hard time window

\[e_i \leq l_i \leq L_i^{max} \]

is therefore a special type of soft time window where \(L_i^{max} = 0 \). Should a vehicle arrive after the latest allowed arrival time, \(l_i \), but prior to the maximum lateness, \(L_i^{max} \), the lateness at node \(i \), \(L_i \), can be calculated as \(L_i = \max\{0, a_i - l_i\} \).\(|a_i - l_i| \leq L_i^{max} \). The lateness is penalized by introducing a penalty term to the VRP objective function (2.19), resulting in (2.31).

\[
\min z = \sum_{i=0}^{N} \sum_{j=0; j \neq i}^{N} \sum_{k=1}^{K} c_{ij} x_{ij}^k + \sum_{i=1}^{N} \alpha_i \times \max\{0, L_i\} \] \hspace{1cm} (2.31)

The time window for the depot, node 0, can be specified. The case illustrated in Figure 2.3 sees the depot specifying operating hours (time window) from 06:00 to 18:00, while the first customer on the route, customer 1, specifies a time window between 07:00 and 09:00, and the last customer, customer \(N \), requests delivery between 15:00 and 17:00.
Should a customer specify multiple time windows, an indexing symbol, \(a \), is introduced as superscript to the earliest and latest allowed arrival times, respectively, where \(a \in \{1, 2, \ldots, A\} \) in which \(A \) indicates the maximum number of time windows allowed for each customer. Consider the example where customer \(n \) requests delivery either between 06:30 and 09:00, or between 16:00 and 17:30 as illustrated in Figure 2.4. This example is typical of residents requesting home shopping deliveries outside business hours. The formulation changes with the introduction of the decision variable

\[
\psi^a_i = \begin{cases}
1 & \text{if the } a^{th} \text{ time window of customer } i \text{ is used, where } i \in \{1, 2, \ldots, N\}, \\
a \in \{1, 2, \ldots, A\} & \\
0 & \text{otherwise.}
\end{cases}
\]

To ensure that the decision variable is appropriately enforced in the formulation, we change constraint (2.30) to distinguish between different time windows, as proposed in (2.32)

\[
e^a_i - (1 - \psi^a_i) M \leq (a_i + w_i) \leq l^a_i + (1 - \psi^a_i) M \quad \forall i \in \{1, 2, \ldots, n\}, a \in \{1, 2, \ldots, A\}
\]

where \(M \) is a sufficiently large number, typically greater than the scheduling horizon. An enforcement of a single time window for each customer is required, and is subsequently introduced in (2.33).

\[
\sum_{a=1}^{A} \psi^a_i = 1 \quad \forall i \in \{1, 2, \ldots, N\}
\]
2.2.2 Capacity constraints and vehicle characteristics

Gendreau et al. (1999) propose a solution methodology for cases where the fleet is heterogeneous, that is, where the fleet is composed of vehicles with different capacities and costs. Their objective is to determine what the optimal fleet composition should be, and is referred to as either a Heterogeneous Fleet Vehicle Routing Problem (HVRP) or a Fleet Size and Mix Vehicle Routing Problem (FSMVRP). Liu and Shen (1999b) adds time windows in their problem application and refer to the problem as a Fleet Size and Mix Vehicle Routing Problem with Time Windows (FSMVRPTW). In yet another paper, Liu and Shen (1999a) refers to the heterogeneous fleet variant as the Vehicle Routing Problem with Multiple Vehicle Types and Time Windows (VRPMVTW). Taillard (1999) formulates the Vehicle Routing Problem with a Heterogeneous fleet of vehicles (VRPH) where the number of vehicles of type t in the fleet is limited; the objective being to optimize the utilization of the given fleet. Salhi and Rand (1993) incorporate vehicle routing into the vehicle composition problem, and refer to it as the Vehicle Fleet Mix problem (VFM).

The implication of a heterogeneous fleet on the standard VRP is that \(T\) type of vehicles are introduced, with \(t \in \{1, 2, \ldots, T\}\). The vehicle capacity parameter \(p\) is changed. The new parameter, \(p_t\), represents the capacity of vehicles of type \(t\), resulting in each vehicle \(k\) having a unique capacity, \(p_k\). The use of one vehicle of type \(t\) implies a fixed cost \(f_t\). A unique fixed cost, \(f_k\), is introduced for each vehicle \(k\), based on its vehicle type. The objective function changes to

\[
\min z = \sum_{i=0}^{n} \sum_{j=0}^{n} \sum_{k=1}^{K} c_{ij}x_{ij}^k + \sum_{k=1}^{K} \sum_{j=1}^{n} f_kx_{0j}^k
\]

(2.34)

while (2.23) changes to indicate the new capacity parameter

\[
\sum_{i=1}^{n} q_i \left(\sum_{j=0}^{n} x_{ij}^k \right) \leq p_k \quad \forall k = \{1, 2, \ldots, K\}
\]

(2.35)

Taillard (1999) introduces a variable \(c_{ijt}\) to represent the cost of traveling between nodes \(i\) and \(j\), using a vehicle of type \(t\). It is possible to introduce the variable portion of the vehicle cost into the objective function proposed in (2.34). The introduction will lead to (2.36)

\[
\min \sum_{i=0}^{n} \sum_{j=0}^{n} \sum_{k=1}^{T} \sum_{t=1}^{t} c_{ijt}x_{ij}^k x_{ij}^t + \sum_{k=1}^{K} \sum_{j=1}^{n} f_kx_{0j}^k
\]

(2.36)
where

\[\xi_k^t \triangleq \begin{cases}
1 & \text{if vehicle } k \text{ is of type } t, \text{ where } k = \{1, 2, \ldots, K\}, \text{ and } t = \{1, 2, \ldots, T\} \\
0 & \text{otherwise}
\end{cases} \]

2.2.3 Uncertainty in vehicle routing

The statements in Section 2.1.3 do not adequately describe a variety of practical VRP situations where one or several parameters are uncertain. Powell (2003) confirms that research into routing and scheduling algorithms, which explicitly captures the uncertainty of future decisions made now, is extremely young. Laporte et al. (1992), Lambert et al. (1993), and Ong et al. (1997) provide examples including vehicles collecting random quantities at various customers; and customers being visited on a random basis. A vehicle incurs a penalty proportional to the duration of its route in excess of a predetermined constant \(B \) — typical of applications where drivers are paid overtime for work done after normal hours. Laporte et al. (1992) propose an attractive and relatively simple chance constrained model (from a computational point of view). However, as the expected cost related to excess route duration needs to be taken into account, this thesis reverts to proposing a stochastic programming model with recourse.

First stage decisions made are the number of vehicles required, as well as their respective routes. Once the random travel time and service time variables are realized in the second stage, penalties are incurred for the excess duration. The following variables are defined.

\[x_{ij}^k \triangleq \begin{cases}
1 & \text{if vehicle } k \text{ travels from node } i \text{ to } j, \text{ where } i, j = \{1, 2, \ldots, n\} | i \neq j, \text{ and } k = \{1, 2, \ldots, K\} \\
0 & \text{otherwise}
\end{cases} \]

\[z_i^k \triangleq \begin{cases}
1 & \text{if node } i \text{ is visited by vehicle } k, \text{ where } i = \{1, \ldots, n\}, k = \{1, \ldots, m\} \\
0 & \text{otherwise}
\end{cases} \]

\[\tilde{\xi} \triangleq \text{a vector of random variables corresponding to travel and service times.} \]

Each realization \(r \) of \(\tilde{\xi} \), denoted by \(\xi^r \), is referred to as a state of the world (Kall and Wallace 1994)

\[\Xi \triangleq \text{the finite support of } \tilde{\xi} \text{ such that } \Xi = \{1, 2, \ldots, \xi^r, \ldots, \xi^R\} \text{ where } R \text{ is the total number of states in the problem world} \]

\[y^k(\tilde{\xi}) \triangleq \text{the excess duration of route } k \text{ as a function of the realization of } \tilde{\xi} \]
\(c_{ij}^k \triangleq \) the travel cost from node \(i \) to \(j \) with vehicle \(k \), where \(i, j = \{1, \ldots, n\}, k = \{1, \ldots, K\} \)

\(t_{ij}^k(\tilde{\xi}) \triangleq \) the travel time from node \(i \) to \(j \) with vehicle \(k \), where \(i, j = \{1, \ldots, n\}, k = \{1, \ldots, K\} \) expressed as a function of the realization of \(\tilde{\xi} \)

\(\tau_i^k(\tilde{\xi}) \triangleq \) the service time at node \(i \) with vehicle \(k \), where \(i = \{1, \ldots, n\}, k = \{1, \ldots, K\} \), expressed as function of the realization of \(\tilde{\xi} \)

\(\beta^k \triangleq \) the positive unit penalty cost for excess duration traveled by vehicle \(k \), where \(k = \{1, \ldots, m\} \)

\(f^k \triangleq \) the fixed cost of vehicle \(k \), where \(k = \{1, \ldots, K\} \)

\(B^k \triangleq \) the maximum time for route \(k \) over which a penalty is incurred, where \(k = \{1, \ldots, K\} \)

The model is then

\[
\min z = \sum_{k=1}^{K} f^k z_0^k + \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j \neq i}^{K} c_{ij}^k x_{ij}^k + E_{\tilde{\xi}} \left(\sum_{k=1}^{K} \beta^k y^k(\tilde{\xi}) \right) \tag{2.37}
\]

subject to

\[
\sum_{k=1}^{K} x_{ij}^k = 1 \quad \forall i \in \{1, \ldots, n\} \tag{2.38}
\]

\[
\sum_{j=1}^{n} \left(x_{0j}^k + x_{j0}^k \right) = 2z_0^k \quad k \in \{1, \ldots, K\} \tag{2.39}
\]

\[
\sum_{j=1}^{n} \left(x_{ij}^k + x_{ji}^k \right) = 2z_i^k \quad \forall i \in \{1, \ldots, n\}, k \in \{1, \ldots, K\} \tag{2.40}
\]

\[
\sum_{i \in S} \sum_{j \in S} x_{ij}^k \leq |S| - 1 \quad S \subset V, 3 \leq |S| \leq n - 3, k = \{1, \ldots, K\} \tag{2.41}
\]

\[
B^k - \sum_{i=1}^{n} \sum_{j=1}^{n} t_{ij}^k(\tilde{\xi}) x_{ij}^k - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \left(\tau_i^k(\tilde{\xi}) + \tau_j^k(\tilde{\xi}) \right) x_{ij}^k + y^k(\tilde{\xi}) \geq 0 \tag{2.42}
\]

\[
\forall k \in \{1, \ldots, K\}, \tilde{\xi} \in \Xi
\]

\[
x_{ij}^k \in \{0, 1\} \quad \forall i, j \in \{1, \ldots, n\}, k \in \{1, \ldots, K\} \tag{2.43}
\]

\[
z_i^k \in \{0, 1\} \quad \forall i \in \{1, \ldots, n\}, k \in \{1, \ldots, K\} \tag{2.44}
\]

\[
y^k(\tilde{\xi}) \geq 0 \quad \forall k \in \{1, \ldots, K\}, \tilde{\xi} \in \Xi \tag{2.45}
\]
The objective function minimizes total cost in (2.37) that includes fixed vehicle costs, travel costs, as well as the expected penalty costs as a result of exceeded route duration. All vehicles must be routed according to (2.38), while (2.39) calculates the number of routed vehicles. Degree constraints are introduced in (2.40). Subtours are eliminated through (2.41) where the reader may infer that \(n > 6 \). Constraint (2.42) combined with (2.45) implies a penalty to be calculated for vehicle \(k \), but only if the total route length including service times exceed \(B^k \).

2.2.4 Time-dependent travel time

Although unpredictable events such as accidents and vehicle breakdowns render travel times as stochastic, the candidate postulates that the subtle, yet partially predictable event of congestion during peak hours of the day requires more attention. The assumption is made that by addressing the time-dependent nature of travel times, a modeling approach that is a stronger approximation of the actual real-world conditions of vehicle routing and scheduling than by catering for stochastic travel times, will be achieved.

Hill and Benton (1992) review the two main approaches in estimating travel distance between two nodes \(i \) and \(j \), denoted by \(d_{ij} \), namely Minkowski distance and Pythagorean distance. The former is presented in (2.46).

\[
d_{ij} = \left[|x_i - x_j|^\omega + |y_i - y_j|^\omega \right]^{\frac{1}{\omega}}
\]

When \(\omega \) is 2, the Minowski distance, denoted by \(d_{ij} \), is the Pythagorean distance. When \(\omega \) is 1, the Minowski distance is the *city-block* right-angled distance. In (2.46) the coordinate pair \((x_i, y_i)\) of each node \(i \) is required. A similar approach can be followed if only latitude and longitude data is available, i.e. from a Geographical Information System (GIS) database.

The problem, however, is that researchers often reduce vehicle travel speed to an approximate speed, denoted by \(r_c \), and simply apply the scalar transformation of distance in (2.47) to find the travel time between the two nodes,

\[
t_{ij} = \frac{d_{ij}}{r_c}
\]

without cognisance of an acceleration stage to get onto the road, the cruising stage, and the deceleration stage at the destination node (Assad, 1988). If the three stages were to be acknowledged, \(d_c \) denotes the distance required for the vehicle to reach its cruising speed, and \(\alpha \) denotes the acceleration, a more appropriate way of calculating the travel time is given
In most metropolitan areas, travel times are much longer during the start and end of workday rush hours, especially on main arterial routes. If one were to inflate all route times equally during peak periods, one would be able to route and schedule vehicles without taking time-dependent travel times into consideration, and not compromise optimality of routes. However, road networks are unevenly congested, i.e. traveling from A to B during the morning rush hour traffic might be more congested than when traveling from B to A at the same time.

Malandraki and Daskin (1992) state that the travel time is not only a function of the distance, but should take the time of day into account as well. Ichoua et al. (2003) state that research on time-dependent problems started towards the end of the 1950s with references to the time-dependent shortest path problem, the time-dependent path choice problem, and the Time Dependent Traveling Salesman Problem (TDTSP). Of the earliest research found on the Time Dependent Vehicle Routing Problem (TDVRP) is Hill et al. (1988), followed by Hill and Benton (1992). In their papers customer nodes were assigned time-dependent piecewise constant speeds — these speeds reflect the traveling speed surrounding the nodes. The edge travel time between two nodes were derived as the average speed of the two nodes concerned. At the time Hill and Benton (1992) attribute the lack of time-dependent travel time research to:

- Immense efforts to estimate travel time parameters
- Prohibitive data storage requirements
- Inefficient solution algorithms

Malandraki and Daskin (1992) formulate an elegant variant of the Vehicle Routing Problem with Time Windows (VRPTW) with the introduction of piecewise constant travel times on the edges. Approaches to accommodate time-dependent travel times mentioned so far all allow passing: the event where one vehicle my pass another vehicle on the same edge although it started later than the vehicle it passed, but in a different time period with shorter traveling time.

Ahn and Shin (1991) use similar notation as used in the introduction of the VRPTW and also introduce:
\(\tau_{ij}(x) \triangleq \) travel time from node \(i \) to node \(j \) via arc \((i,j)\) \(\in \mathcal{A} \), given that the trip starts from node \(i \) at time \(x \)

\(s_i \triangleq \) the constant service time at node \(i \)

\(t_i \triangleq \) the time at which service begins at node \(i \)

\(A_{ij}(t_i) \triangleq \) arrival time at node \(j \) through arc \((i,j)\) \(\in \mathcal{A} \) given \(t_i \), that is \(A_{ij}(y) = y + s_i + \tau_{ij}(t_i + s_i) \)

\(d_i \triangleq \) the effective latest service start time at node \(i \) that allows us to maintain the feasibility of a current route

Each customer \(i \) is to be serviced within its time window \([e_i, l_i]\). The internode travel time \(\tau_{ij}(\cdot) \) and the arrival time \(A_{ij}(\cdot) \) are functions of the departure time representing time-dependent congestion levels. In this thesis multiple links are not considered. The non-passing property can be expressed as:

For any two nodes \(i \) and \(j \), and any two service start times \(x \) and \(y \) at node \(i \) such that \(x < y \), \(A_{ij}(x) < A_{ij}(y) \) must hold, that is, earlier departure from node \(i \) guarantees earlier arrival at node \(j \).

Raw travel time data in the form of a step function is not appropriate for use in the routing of vehicles, as it only provides average travel time data for specific time periods. In such data sources, let:

\(\tau_{ijk} \triangleq \) the shortest travel time from node \(i \) to node \(j \) if the start time at node \(i \) is in time slot \(Z_k \), where \(i,j \in \mathcal{A} \), and \(k \in \{1, 2, \ldots, K\} \),

where the day (planning horizon) is divided into time slots such that

\[Z_k = [z_{k-1}, z_k] \quad \forall k \in \{1, 2, \ldots, K\}, \]

where the interval \([z_0, z_K]\) reflects the full day, or planning horizon under consideration. Figure 2.5 is used for illustrative purposes. The travel time, being a function of the time of day, is not continuous in the point \(z_k \) and may lead to passing if travel time decrease for the \(k+1^{\text{th}} \) segment. To obtain a smoothed travel time function, let:

\(\tau_{ij}(t) \triangleq \) the travel time from node \(i \) to node \(j \) given that the travel started at time \(t \) from node \(i \)
A parameter δ_{ijk} is introduced for each breakpoint z_k, where $k \in \{1, 2, \ldots, K\}$, between two consecutive time slots Z_{k-1} and Z_k. The values of $\delta_{ij0} = \delta_{ijk} = 0$. The jump between two consecutive travel times segments Z_{k-1} and Z_k is linearized in the interval $[z_k - \delta_{ijk}, z_k + \delta_{ijk}]$ provided the parameter δ_{ijk} and determining the slope

$$s_{ijk} = \frac{\tau_{ijk,k+1} - \tau_{ijk}}{2\delta_{ijk}}$$

The travel time function, as illustrated by Figure 2.5(b) is expressed as

$$\tau_{ij}(t) = \begin{cases}
\tau_{ijk} & \text{for } z_{k-1} + \delta_{ij,k-1} \leq t \leq z_k - \delta_{ijk} \\
\tau_{ijk} + (t - z_k + \delta_{ijk}) s_{ijk} & \text{for } z_k - \delta_{ijk} < t < z_k + \delta_{ijk}
\end{cases}$$

The travel time function holds for all $k \in \{1, 2, \ldots, K\}$. Fleischmann et al. [2004] prove that if $\delta_{ijk} > 0$ for all intermediate breakpoints and the slope $s_{ijk} > -1$, that the arrival time function

$$A_{ij}(t) = t + \tau_{ij}(t)$$

is continuous and monotonic i.e. adheres to the non-passing property. The papers by Ichoua et al. [2003] and Potvin et al. [2006] also refer to the non-passing property as the First-In-First-Out (FIFO) property. As $A_{ij}(\cdot)$ is a strictly increasing function, it possesses

\footnote{There is a designated sequence such that successive members are either consistently increasing or decreasing with no oscillation in relative value, i.e. each member of a monotone increasing sequence is greater than or equal to the preceding member; each member of a monotone decreasing sequence is less than or equal to the preceding member.}
the inverse function $A^{-1}_{ij}(\cdot)$. $A^{-1}_{ij}(x)$ is interpreted as the departure time at node i so that node j can be reached at time x. Let $(i_0, i_1, i_2, \ldots, i_m, i_0)$ denote a partially constructed feasible route with m customer nodes where i_0 denotes the depot. The partial route could be simplified for illustration purposes to $(0, 1, 2, \ldots, m, 0)$.

In the presence of the non-passing property, the effective latest service start time at node i on the partial feasible route, denoted by d_i, could then be given by the backward recursive relation given in (2.52).

$$d_i = \begin{cases}
\min \{l_i, A^{-1}_{i0}(l_0)\} & \text{for } i = m \\
\min \{l_i, A^{-1}_{i,i+1}(d_{i+1})\} & \text{for } 0 \leq i \leq m-1
\end{cases}$$ \hspace{1cm} (2.52)

The actual service start time for each node i can be determined by the forward recursion given in (2.53).

$$t_i = \begin{cases}
\max \{e_i, A_{01}(t_0)\} & \text{for } i = 1 \\
\max \{e_i, A_{i-1,i}(t_{i-1})\} & \text{for } 2 \leq i \leq m
\end{cases}$$ \hspace{1cm} (2.53)

The computation of both d_i and t_i is fairly elementary. The advantage is only apparent when route improvements are made, and subsequent feasibility check routines are eased.

The formulation used in this thesis refers to both travel and service times as **uncertain** and dependent on the realization of uncertain events. A principle distinction, however, is made between **stochastic** service times and **time-dependent** travel times. The implications of such a distinction will become apparent in the calculations and feasibility checks when solution algorithms are developed in later chapters, as only time-dependent travel time is considered. In the majority of applications, demand is assumed to be known at the time of establishing the actual route.

2.2.5 Multiple scheduling

It is often not viable to assume that each vehicle will only complete a single route. **Multiple scheduling** is concerned with the case where a vehicle could complete deliveries on a scheduled route, return to the depot where its capacity is renewed, after which a second, or consecutive trip is executed with the renewed capacity. [Taillard et al. 1996] refer to this type of problem as the Vehicle Routing Problem with Multiple use of vehicles (VRPM). [Butt and Ryan 1999] consider the Multiple Tour Maximum Collection Problem (MTMCP) and assumes that the routes are constrained in such a way that all of the customers cannot be visited. Their approach aims to maximize the number of customers serviced. [Brandão and Mercer 1997]
introduce the Multi-Trip Vehicle Routing Problem (MTVRP) and address the combination of multiple trips with time windows. The special case of multiple scheduling where only trips are considered is referred to as **Double Scheduling**.

This thesis considers a vehicle that starts and ends its tour at the depot. A *tour* consists of one or more *routes*, each starting and ending at the depot. The same vehicle can only be used for two or more routes if the routes do not overlap. As opposed to Equation (2.28) multiple routes require a service time to be specified for the depot. Consider the example illustrated in Figure 2.6. The depot has a time window from 06:00 to 18:00. A vehicle fills its capacity at the depot for a time period of $s_0 = 0.5$ hours. It leaves the depot at 06:30, services the first route, and returns to the depot at 11:00, where its capacity is renewed. A second route, of five hours, is serviced before the vehicle returns to the depot.

Taillard et al. (1996) state that the multiple scheduling type of problem has received very little attention in literature. This thesis proposes a way to deal with multiple routes. The proposed solution involves a time verification process. If a vehicle arrives back at the depot at time a_m, and the service time is specified as s_0, then the vehicle is considered for an additional route on its current tour if, after the capacity has been renewed, the depot’s time window is still open. The case is presented in (2.54).

$$a_m + s_0 \leq l_0$$

The mathematical formulation of the VRPM requires a redefinition of the decision variables, as well as the constraints. The VRPM is addressed in the next section where the complete problem is defined and formulated.
2.3 The integrated problem at hand

An extended variant of the [VRP] where multiple soft time windows, a heterogeneous fleet, and multiple scheduling are considered in an environment with uncertain travel and service times, is presented. Due to the complexity associated when concatenating elements from various variant acronyms, we revert to using a simple reference, the Thesis Problem (TP). To formulate the complex problem, we will redefine some of the variables and parameters used earlier, and introduce a few additional variables. We define the following basic parameters.

\[N \triangleq \text{total number of customers to be serviced} \]
\[q_i \triangleq \text{deterministic demand for customer } i, \text{ where } i = \{1, 2, \ldots, N\} \]
\[K \triangleq \text{total number of vehicles available} \]
\[z_{ik}^k \triangleq \begin{cases} 1 & \text{if node } i \text{ is visited by vehicle } k, \text{ where } i = \{1, \ldots, N\}, k = \{1, \ldots, K\} \\ 0 & \text{otherwise} \end{cases} \]
\[\tilde{\xi} \triangleq \text{a vector of uncertain variables corresponding to travel and service times.} \]

Each realization \(\gamma \) of \(\tilde{\xi} \), denoted by \(\tilde{\xi}^\gamma \), is referred to as a state of the world [Kall and Wallace 1994].

\[\Xi \triangleq \text{the finite support of } \tilde{\xi} \text{ such that } \Xi = \{1, 2, \ldots, \tilde{\xi}^\gamma, \ldots, \tilde{\xi}^\Gamma\} \text{ where } \Gamma \text{ is the total number of states in the problem world} \]

\[t_{ij}^k (\tilde{\xi}) \triangleq \text{the travel time from node } i \text{ to } j \text{ with vehicle } k, \text{ where } i, j = \{1, \ldots, N\}, k = \{1, \ldots, K\} \text{ expressed as a function of the realization of } \tilde{\xi} \]

\[\tau_i^k (\tilde{\xi}) \triangleq \text{the service time at node } i \text{ with vehicle } k, \text{ where } i = \{1, \ldots, N\}, k = \{1, \ldots, K\}, \text{ expressed as function of the realization of } \tilde{\xi} \]

To expand the formulation and to include a heterogeneous fleet, we let:

\[T \triangleq \text{number of different types of vehicles available} \]
\[c_{ijt} \triangleq \text{travel cost if a vehicle of type } t \text{ travels from customer } i \text{ to customer } j, \text{ where } t = \{1, 2, \ldots, T\}, \text{ and } i, j = \{0, 1, 2, \ldots, N\} \]
\[p_t \triangleq \text{capacity of a vehicle of type } t, \text{ where } t = \{1, 2, \ldots, T\} \]
\[f_t \triangleq \text{fixed cost of a vehicle of type } t, \text{ where } t = \{1, 2, \ldots, T\} \]
\[\phi_k^t \triangleq \begin{cases} 1 & \text{if vehicle } k \text{ is of type } t, \text{ where } k = \{1, 2, \ldots, K\}, \text{ and } t = \{1, 2, \ldots, T\} \\ 0 & \text{otherwise} \end{cases} \]
Multiple soft windows will be addressed by introducing the following parameters:

- \(A_i \triangleq \) number of time windows for customer \(i \), where \(i = \{0, 1, 2, \ldots, N\} \)
- \(a_i(\tilde{\xi}) \triangleq \) the actual arrival time at customer \(i \), where \(i = \{0, 1, 2, \ldots, N\} \), expressed as a function of the realization of \(\tilde{\xi} \)
- \(e^a_i \triangleq \) earliest allowed arrival time for customer \(i \)'s \(a^{th} \) time window, where \(i = \{0, 1, 2, \ldots, N\} \) and \(a = \{1, 2, \ldots, A_i\} \)
- \(l^a_i \triangleq \) latest allowed arrival time for customer \(i \)'s \(a^{th} \) time window, where \(i = \{0, 1, 2, \ldots, N\} \) and \(a = \{1, 2, \ldots, A_i\} \)
- \(L_{i}^{\text{max}} \triangleq \) maximum lateness allowed by customer \(i \), where \(i = \{0, 1, 2, \ldots, N\} \)
- \(\alpha_i \triangleq \) lateness penalty at customer \(i \) in cost per time unit, where \(i = \{0, 1, 2, \ldots, N\} \)
- \(\lambda_i(\tilde{\xi}) \triangleq \) actual lateness at customer \(i \), where \(i = \{0, 1, 2, \ldots, N\} \), expressed as a function of the realization of \(\tilde{\xi} \)
- \(w_i(\tilde{\xi}) \triangleq \) waiting time at customer \(i \), where \(i = \{0, 1, 2, \ldots, N\} \), expressed as a function of the realization of \(\tilde{\xi} \)

To ensure that multiple scheduling is considered, we let:

- \(R_k \triangleq \) number of routes scheduled for vehicle \(k \), where \(k = \{1, 2, \ldots, K\} \)
- \(Q \triangleq \) maximum number for routes allowed for any one vehicle
- \(M^k \triangleq \) maximum tour time (all routes) allowed for vehicle \(k \), where \(k = \{1, 2, \ldots, K\} \)
- \(d^k_{r}(\tilde{\xi}) \triangleq \) vehicle \(k \)'s departure time from the depot as it embarks on servicing its \(r^{th} \) route, where \(k = \{1, 2, \ldots, K\} \) and \(r = \{1, 2, \ldots, R_k\} \), expressed as a function of the realization of \(\tilde{\xi} \)
- \(g^k_{r}(\tilde{\xi}) \triangleq \) vehicle \(k \)'s return time at the depot after servicing its \(r^{th} \) route, where \(k = \{1, 2, \ldots, K\} \) and \(r = \{1, 2, \ldots, R_k\} \), expressed as a function of the realization of \(\tilde{\xi} \)
- \(\delta^k(\tilde{\xi}) \triangleq \) the amount by which vehicle \(k \) exceed its allowable tour time, where \(k = \{1, 2, \ldots, K\} \), expressed as a function of the realization of \(\tilde{\xi} \)
- \(\beta^k \triangleq \) the positive unit penalty cost for vehicle \(k \) when exceeding its allowable tour time, where \(k = \{1, \ldots, K\} \)

With the notation established the decision variables for the LP are defined as:
\[x_{ij}^{kr} \triangleq \begin{cases}
1 & \text{if vehicle } k \text{ travels from customer } i \text{ to customer } j \text{ on its } r^{th} \text{ route,} \\
0 & \text{otherwise}
\end{cases} \]

where \(i, j = \{1, 2, \ldots, N\}, k = \{1, 2, \ldots, K\}, r = \{1, 2, \ldots, R_k\} \)

\[\psi_{ai}^{a} \triangleq \begin{cases}
1 & \text{if the } a^{th} \text{ time window of customer } i \text{ is used, where } i \in \{1, 2, \ldots, N\}, \\
0 & \text{otherwise.}
\end{cases} \]

The mathematical formulation of the TP is provided.

\[
\begin{align*}
\min z &= \sum_{i=0}^{N} \sum_{j=0}^{N} \sum_{k=1}^{K} \sum_{t=1}^{T} \sum_{r=1}^{R_k} c_{ijt} x_{ij}^{kr} \phi_k^t + \sum_{j=1}^{N} \sum_{k=1}^{K} \sum_{r=1}^{R_k} \frac{f_{kr}^j}{R_k} + E \tilde{\xi} \left[\sum_{i=1}^{N} \alpha_i \lambda_i \left(\tilde{\xi} \right) + \sum_{k=1}^{K} \beta^k \delta^k \left(\tilde{\xi} \right) \right] \\
\text{subject to} \\
\sum_{j=1}^{N} \sum_{r=1}^{R_k} x_{0j}^{kr} &= R_k & \forall k \in \{1, 2, \ldots, K\} \\
\sum_{j=1}^{N} \sum_{r=1}^{R_k} x_{j0}^{kr} &= R_k & \forall k \in \{1, 2, \ldots, K\} \\
\sum_{i=1}^{N} \sum_{k=1}^{K} x_{ij}^{kr} &= 1 & \forall j \in \{1, 2, \ldots, N\}
\end{align*}
\]
\[\sum_{j=1}^{N} \sum_{k=1}^{K} \sum_{r=1}^{R_k} x_{ij}^{kr} = 1 \quad \forall i \in \{1, 2, \ldots, N\} \quad (2.59) \]

\[\sum_{q=1}^{N} q_i \sum_{j=1}^{N} x_{ij}^{kr} \leq p^k \quad \forall k \in \{1, 2, \ldots, K\}, \]

\[e_i^a - (1 - \psi_i^a) M \leq a_i \left(\hat{x} \right) + w_i \left(\hat{x} \right) \quad \forall i \in \{1, 2, \ldots, N\}, \]

\[L_i^{\text{max}} + (1 - \psi_i^a) M \geq a_i \left(\hat{x} \right) + w_i \left(\hat{x} \right) \quad \forall i \in \{1, 2, \ldots, N\}, \]

\[\sum_{a=1}^{A_i} \psi_i^a = 1 \quad \forall i \in \{1, 2, \ldots, N\} \quad (2.63) \]

\[\max \left\{ 0, e_j - \left(d^{kr} \left(\hat{x} \right) + t_{0j} \right) \sum_{k=1}^{K} \sum_{r=1}^{R_k} x_{0j}^{kr} \right\} = w_j \left(\hat{x} \right) \quad \forall j \in \{1, 2, \ldots, N\} \quad (2.64) \]

\[\max \left\{ 0, \left(a_i \left(\hat{x} \right) - l_i \right) \right\} = \lambda_i^a \left(\hat{x} \right) \quad \forall i \in \{1, 2, \ldots, N\}, \quad \forall a \in \{1, 2, \ldots, A_i\} \quad (2.65) \]

\[d_{k1} \geq e_0 + s_0 \quad \forall k \in \{1, 2, \ldots, K\} \quad (2.66) \]

\[\sum_{k=1}^{K} \sum_{r=1}^{R_k} x_{0j}^{kr} \left(d^{kr} \left(\hat{x} \right) + t_{0j} \right) \leq a_j \left(\hat{x} \right) \quad \forall j \in \{1, 2, \ldots, N\} \quad (2.67) \]

\[\sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{k=1}^{K} \sum_{r=1}^{R_k} x_{ij}^{kr} \left(a_i \left(\hat{x} \right) + w_i \left(\hat{x} \right) + \tau_i^k \left(\hat{x} \right) + t_{ij}^k \left(\hat{x} \right) \right) \leq a_j \left(\hat{x} \right) \quad \forall j \in \{1, 2, \ldots, N\} \quad (2.68) \]

\[\sum_{i=1}^{N} x_{i0j}^{kr} \left(a_i \left(\hat{x} \right) + \tau_i^k \left(\hat{x} \right) + w_i \left(\hat{x} \right) + t_{i0} \right) \leq g^{kr} \left(\hat{x} \right) \quad \forall k \in \{1, 2, \ldots, K\}, \quad \forall r \in \{1, 2, \ldots, R_k\} \quad (2.69) \]

\[g^{k,r-1} \left(\hat{x} \right) + s_0 = d^{kr} \left(\hat{x} \right) \quad \forall k \in \{1, 2, \ldots, K\}, \quad \forall r \in \{2, 3, \ldots, R_k\} \quad (2.70) \]
\[g^{kr} \left(\bar{\xi} \right) + s_0 \leq l_0 \]
\[\forall k \in \{1, 2, \ldots, K\}, r \in \{2, 3, \ldots, R_{k-1}\} \]
(2.71)

\[g^{kR_k} \left(\bar{\xi} \right) \leq M_k + \delta^k \left(\bar{\xi} \right) \]
\[r_k \leq Q \]
\[\forall k \in \{1, 2, \ldots, K\} \]
(2.72)
(2.73)

\[\sum_{r=R_k+1}^{Q} \sum_{i=1}^{N} \sum_{j=1}^{N} x_{ij}^{kr} = 0 \]
\[\forall k \in \{1, 2, \ldots, K\} \]
(2.74)

\[x_{ij}^{kr} \in \{0, 1\} \]
\[\forall i, j \in \{1, 2, \ldots, N\}, k \in \{1, 2, \ldots, K\}, r \in \{1, 2, \ldots, R^k\} \]
(2.75)

\[\psi_i^a \in \{0, 1\} \]
\[\forall i \in \{1, 2, \ldots, N\}, a \in \{1, 2, \ldots, A_i\} \]
(2.76)

The objective function in (2.55) minimizes a combination of deterministic and stochastic cost components. The first expression represents the total variable traveling cost, followed by the total fixed fleet cost. The third expression represents the expected lateness penalties and constitutes firstly the lateness at each customer, and secondly the lateness for each vehicle.

The combination of (2.56) and (2.57) calculates the total number of routes and ensures that the same number of routes that starts for each vehicle, also finishes. Each customer is visited exactly once according to the constraint combination (2.58) and (2.59). Vehicular capacity is enforced through (2.60) by ensuring that the sum of the demands of all customers assigned to a specific route of a given vehicle do not exceed the vehicle’s capacity, which may either by represented as weight or volumetric capacity, or both if additional constraints are added.

Constraints (2.61) and (2.62) ensure that the multiple soft time windows are adhered to where the parameter \(M\) represents a sufficiently large number, as discussed when multiple soft time windows were introduced. Actual arrival times and waiting times at any given customer is a function of the stochastic travel and service times of all customers preceding that specific customer, hence the stochastic notation. As each customer is visited only once, (2.63) ensures that only one time window for each customer is considered. The waiting time and lateness at each customer, both expressed as a stochastic variable, are determined in (2.64) and (2.65), respectively.

The departure time for each vehicle’s first route is determined by (2.66), while the actual
arrival time at the first customer on each route is determined by (2.67). Arrival times for subsequent customers are determined by (2.68).

The return time for each route is determined by (2.69). Consecutive route start times is determined by (2.70) by taking the service time of the depot into account where vehicles’ capacities are renewed as proposed in (2.54). Constraint (2.71) enforces all routes to finish within the operating hours of the depot, while (2.72) determines the lateness for each vehicle when exceeding its allowed tour time. Each vehicle may not execute more than a predetermined number of routes as provided for in (2.73). Should it be determined in equations (2.56) and (2.57) that the required number of routes is less than the preset limit Q, then all allowed routes not required are eliminated through the introduction of (2.74). Binary decision variables are provided for with the introduction of (2.75) and (2.76).

2.4 Conclusion

This chapter deals with the background of the VRP as well as the integration of multiple variants into a single problem instance — each contributing to the already complex nature of the problem. Although the model formulation is the first step in describing the problem comprehensively, only very small instances of the problem is currently solvable to optimality.

The following chapter introduces the complexity of the problem at hand, and reviews solution approaches for solving the problem. Exact, heuristic, as well as metaheuristic solution algorithms are considered.
Chapter 3

Intelligence in solution algorithms

Once a model of the perceived reality is formulated, a process is required to obtain a solution to the model which, in turn, could be implemented to solve the problem in reality. It should always be noted that models are solved, not real problems. Rardin (1998) refers to numerical search as the process of systematically trying different choices for decision variables so that the best feasible solution could be found. This chapter is dedicated to review the three primary search strategies used to solve mathematical programming models.

The first of these are exact solution algorithms where one can prove that the best feasible solution found is in fact the global optimum for the problem. The first section of the chapter introduces some of the fundamental exact solution algorithms, with reference to further review articles for interested readers.

Exact solution algorithms are unfortunately not always viable when the size of a problem increases. To compensate for the time-consuming computational burden, solution seekers opt for approximate solutions, also referred to as heuristics, where the best solution may, or may not, be the true optimum for the problem. Yet, heuristics offer solutions that are often better than the typical industrial solutions obtained through intuition and common sense. The second section introduces a number of heuristics dating back from the 1950’s, and follows a few variations of these heuristics.

Heuristics have evolved during the 1990’s to what is referred to as metaheuristics — intelligent strategies governing the execution of various heuristics in order to find even better solutions. The third section introduces a number of metaheuristics and its variations, from where a conclusion is drawn and a motivation is provided for the choice of solution algorithms for this thesis.
3.1 Exact solution algorithms

It might at first seem counterintuitive that integer (discrete) linear and combinatorial problems are more difficult to solve than their continuous counterparts, seeing that the algebra for Linear Programming Problem (LP) algorithms can be quite daunting. A discrete model with a finite number of possible decision variable values, on the other hand, seems much easier. This reasoning holds only for small instances of discrete problems, and Rardin (1998) confirms that total enumeration of all possible combinations is the most effective method to find the best solution. Consider a problem with only two binary variables, x_1 and x_2. There are only $2^2 = 4$ possible cases. Although ten binary variables will require $2^{10} = 1024$ cases to be enumerated, it is still viable using computers. The exponential growth in the number of case evaluations when enumerating requires alternative algorithms for problems of practical size.

This thesis follows the classification proposed by Laporte and Nobert (1987) and Laporte (1992) whereby exact algorithms are grouped into three primary categories, each covered in the following subsections.

3.1.1 Direct tree search methods

The analogy of a tree in search methods represents the primary stem being some initial solution, from where the stem is split into branches, or secondary stems that are related to the primary stem. These secondary stems, in turn, branch into tertiary stems, etc.

The first step in direct tree search methods is to find the primary, or initial solution. Because discrete optimization models are typically hard to solve, it is natural to find related, yet easier formulations of the problem. Auxiliary models are referred to as relaxations of the original discrete problem and are easier to solve as some of the constraints, or objective function(s) of the discrete problem are weakened. Solving the relaxations can lead the modeler to make solution interpretations of the original problems. Various relaxation techniques vary in strength. Rardin (1998) defines a relaxation as strong or sharp if the relaxation’s optimal value closely bounds that of the original model, and the relaxation’s solution closely approximates an optimum in the original problem. Various relaxation methods exist in introductory Operations Research textbooks and include LP relaxations, stronger Big-M constants and the introduction of valid inequalities (for example the Cutting Plane algorithm (Jeroslow, 1979)) (Hillier and Lieberman, 2005; Rardin, 1998; Taha, 2003; Winston and Venkataramanan, 2003). An even stronger relaxation, referred to as Lagrangian...
relaxation, do not weaken integrality constraints, but rather relax some of the main linear constraints after which they are dualised (or weighed) in the objective function with Lagrangian multipliers (Fisher and Jaikumar 1981). Desrosiers et al. (1988) use Lagrangian relaxation methods to solve a variant of the MTSP with time windows.

Once a relaxation is solved to optimality, and the solution also conforms to all constraints in the original problem, the solution is also the optimal solution for the original problem. If not, various strategies and algorithms are employed to systematically work towards a relaxation of which the optimal solution is also optimal for the original problem.

The branch-and-bound search algorithms combine relaxations with an enumeration strategy to find optimal candidate solutions, while bounding the search by previous solutions. Laporte et al. (1989) adapt the branch-and-bound algorithm in solving a class of stochastic location routing problems with networks of 20 and 30 nodes. Laporte et al. (1986) solve the asymmetrical Capacitated Vehicle Routing Problem (CVRP) for 260 nodes. The structure of the VRP and its relationship with one of its relaxations, the MTSP is exploited by Laporte (1992) in a similar manner.

The branch-and-bound algorithm has been modified with the introduction of stronger relaxations prior to the branching of a partial solution. The modified algorithm is referred to as branch-and-cut as the stronger relaxations are obtained with the inclusion of new inequalities. The inequalities should hold for all feasible solutions of the original discrete problem, but should render the last relaxation’s optimum as infeasible, hence the term cut. Padberg and Rinaldi (1987) illustrate the generation of cuts in a symmetrical TSP with 532 nodes. Laporte et al. (1992) describe a general branch and cut algorithm for the VRP with stochastic travel times. The authors introduce cuts in the form of subtour elimination constraints, and introduce lower bounds on penalties if a route exceeds its predetermined route duration limit.

Van Slyke and Wets (1969) introduce the \(L \)-shaped method as a variant of the cutting plane algorithm for specific linear programs. Birge and Louveaux (1988) acknowledge that the method holds opportunity for stochastic programming applications and modify the method to create multiple cuts in each major iteration. Laporte and Louveaux (1993) further expand the method and refer to their general branch-and-cut procedure as the integer \(L \)-shaped method and apply it to stochastic integer programs and note that fathoming rules are different than in branch-and-bound trees. In another variation on branching, Christofides et al. (1979) propose a depth-first tree search in which single feasible routes are generated as and when required in their VRP formulation based on the TSP.
In their recent review of exact algorithms based on branch-and-bound, Toth and Vigo (2002a) state that these types of algorithms remain the state of the art with respect to exact solutions, especially in the case where asymmetric cost matrices exist. Giaglis et al. (2004) confirm that exact approaches are applicable to problems of practical size only if they have low complexity.

3.1.2 Dynamic Programming (DP)

DP determines the optimum solutions of an n-variable problem by decomposing it into n stages each consisting of a single-variable subproblem (Taha, 2003). The objective is to divide-and-conquer real-life problems by enumerating in an intelligent way through a state space of solutions (Brucker, 2004). In solving shortest path problems, Rardin (1998) claims that DP methods exploit the fact that it is sometimes easiest to solve one optimization problem by taking on an entire family of shortest path models. DP was first proposed for solving VRPs by Eilon et al. (as cited by Laporte (1992)).

Hamacher et al. (2000) faced the requirement that the nodes to be routed in a tour must be chosen from a small region of the map, and motivate their choice by the fact that the truck drivers have a local knowledge of the environment and is subjected to business constraints. Although the most natural DP formulation results in a DP with infinite state and action spaces, an optimality-invariance condition recently introduced by Lee et al. (2006) establishes leads to an equivalent problem with finite state and action spaces. Their formulation leads to a new exact algorithm for solving the Multi-Vehicle Routing Problem with Split Pick-ups (MVRPSP), based on a shortest path search algorithm, which they claim to be conceptually simple and easy to implement.

Although in a different problem context, Beaulieu and Gamache (2006) present an enumeration algorithm based on DP for optimally solving the fleet management problem in underground mines. Their problem consists of routing and scheduling bidirectional vehicles on a haulage network composed of one-lane bidirectional road segments.

Li et al. (2005) integrate the machine scheduling problem with a delivery routing problem and formulate a DP recursion since there are a finite number of time points for the start time of a trip of the vehicle. They conclude, however, that the problem can be simplified by limiting deliveries to direct shipments, a situation that is inappropriate if there is a large number of customers and small shipments across a geographically dispersed network.
3.1.3 Integer linear programming

The set partitioning formulation is a method that starts by assuming that the totality of routes which a single vehicle can operate feasibly, can be generated (Christofides et al., 1979). Let A denote the set of nodes representing customers. Then if $S \subseteq A$ is the subset of nodes which can be feasibly supplied on a single route by a vehicle v_k, it is assumed that the total variable cost associated with the optimal routing of nodes in S can be calculated. This is not trivial if $|S|$ is large as it relates to a TSP (one vehicle with a single route). For each vehicle v_k a family S_k of all feasible single routes for that specific vehicle is generated. A matrix $G = [g_{ij}]$ is produced with row i representing customer x_i and M blocks of columns where the k^{th} block of columns corresponds to vehicle v_k and column j_k of the block corresponds to a feasible single route S_{jk} of vehicle v_k. The VRP now becomes the problem of choosing at most one column from each block of G so that each row of G has an entry when

$$g_{ijk} = \begin{cases}
1 & \text{if customer } x_i \text{ is an element of the single route } S_{jk} \\
0 & \text{otherwise}
\end{cases}$$

Balinski and Quandt (as cited by Laporte (1992)) were among the first to propose such a set partitioning formulation for VRPs. But combinatorial problems often result in extremely large arrays of possibilities too complex to be modeled concisely (Rardin, 1998). Column generation adopt a two-part strategy for such problems. It first enumerates a sequence of columns representing viable solutions to parts of the problem, often employing DP. Part two of the strategy solves a set partitioning model to select an optimal collection of these alternatives fulfilling all problem requirements. It results in a flexible and convenient approach employing a multitude of schemes to generate columns which are complex. In this approach it becomes possible to address constraints that are often difficult to model. It suffers, however, from the shortcoming that the number of columns in G can be enormous.

A variant of the VRPTW is solved by Desrochers et al. (1992) who admit that exact solution algorithms have lagged considerably behind the development of heuristics. Their algorithm attempts to use best of breed by solving various subproblems using a branch and bound scheme, DP and column generation. The drawback remains that the set partitioning problem stops being competitive when a large number of customers are to be serviced on a single route, for example when demands are small in relation to the vehicle capacity. This results in the LP relaxation to become more dense — leading to possible degeneracy.

The MTMCP is closely related to both the TSP and the VRP with the major difference that it is not possible to service all nodes in the graph in the allocated time on a given set.
of tours. Hence the objective to maximize the earned reward of those nodes visited. In their paper Butt and Ryan (1999) combine column generation and constraint branching to achieve an optimal solution algorithm that solves problems with 100 nodes.

In more recent work Righini and Salani (2004) note that a trade-off remains between the time spent on the column generation, and the quality of the lower bound achieved, indicating that research into effective exact algorithms remain active. Choi and Tcha (2006) use a column generation approach in solving the HVRP with a maximum of 100 nodes in the test problems used. Column generation, however, is not easily adapted to the stochastic variant of a routing problem (Lambert et al., 1993).

3.2 A case for heuristics

Maffioli (1979) indicates that real life combinatorial problems have a number of unpleasant features: problems are usually dimensionally large; problems have integrated constraints; and problems can not always be decomposed or generalized to simpler subproblems. It is noteworthy that although researchers attempt to solve real-world problems, complex problems are already solved in industry where decision makers often settle for good enough solutions (Russell and Norvig, 2003).

3.2.1 Route construction

Savings-based heuristics

Christofides et al. (1979) indicate that the majority of heuristics are constructive in nature in the sense that at any given stage one or more incomplete routes exist. Incomplete routes are extended to consecutive stages until a final route exists. The construction of routes may be either sequential if one route is completed prior to another being started, or parallel where more than one incomplete route may exist at a particular stage. After routes are created, a number of local improvements may be initiated to refine a route.

The savings algorithm established by Clarke and Wright (1964) is without doubt the most widely known heuristic in VRP, and has formed the basis of a substantial number of heuristic variations. The Clarke-Wright algorithm remains a computationally efficient algorithm, and deserves attention (Lenstra and Rinnooy Kan, 1981). The algorithm is defined as follows:

Step 1 Calculate the savings for all pairs of customers i and j, denoted by s_{ij}, where both customers are serviced on one route, as opposed to customer i being serviced on a new
dedicated route from the depot, using (3.1)

\[s_{ij} = c_{0i} - c_{ij} + c_{0j} \quad \forall i, j \in \{1, 2, \ldots, N\} \]

(3.1)

where \(N \) is the total number of customers in the network, and \(c_{ij} \) denotes the cost of traveling from node \(i \) to node \(j \), and where \(i = j = 0 \) represents the depot.

Step 2 Arrange the savings in descending order of magnitude.

Step 3 Starting from the top, use one of the following approaches:

Sequential approach

1. Find the first feasible link in the list which can be used to extend one of the two ends of the currently constructed route.
2. If the route cannot be expanded, or no route exist, choose the first feasible link in the list to start a new route.
3. Repeat (1) and (2) until no more links can be chosen.

Parallel approach

1. If making a given link results in a feasible route according to the constraints of the VRP, add the given link to the solution. If not, reject the link.
2. Try the next link in the list and repeat (1) until no more links can be chosen.

Step 4 The links form the solution to the VRP.

Christofides et al. (1979) suggest that in the parallel approach a maximum number of routes, \(M \), be introduced to ensure that vehicle feasibility constraints are adhered to. Mole and Jameson (1976) motivate why a sequential approach yields more benefit and adapt the savings procedure to calculate the best insertion position on edge \((i, j)\) of the partially constructed route \(C \) for customer \(u \), denoted by \(s(i, u^*, j) \), using the expression in (3.2)

\[s(i, u^*, j) = \min_{i,j \in C} \{s(i, u, j)\} \quad \forall u \in \{1, 2, \ldots, N\} | u \ni C \]

(3.2)

where \(C \) is the subset of the \(N \) nodes already routed, with

\[s(i, u, j) = 2d_{0u} + (d_{ij} - d_{iu} - d_{uj}) \]

(3.3)

The criteria used to determine the best edge to insert a specific customer is referred to as the **insertion criteria**. Once the best edge for insertion has been identified for each customer, the customer with the highest saving will be selected and inserted in its best position. The criteria used to select the best customer is referred to as the **selection criteria**.
Although a number of schemes have been suggested by Christofides et al. (1979) to identify the first customer on a new route, termed the seed customer, such as customer with earliest time window deadline; unrouted customer furthest from depot; or customer with largest demand, this thesis will propose a new method for identifying seed customers in Chapter 4.

Nelson et al. (1985) review and test a number of data structures to employ when implementing the Clarke-Wright algorithm. The authors establish methods of choice for VRPs with given characteristics of the network topology.

The savings heuristic has since its inception been adapted in quite a number of research contributions. Golden et al. (1984) refer to the basic savings algorithm as Clarke-Wright (CW), and introduced minor changes through their Combined Savings (CS) algorithm. They proceeded to introduce both the Optimistic Opportunity Savings (OOS) and Realistic Opportunity Savings (ROS). The latter was extended to the ROSγ that included variety into the algorithm. Solomon (1987) not only applied the savings technique in solving the VRPTW but also established benchmark problems which have since been used extensively. Paessens (1988), Salhi and Rand (1993) and Tung and Pinnoi (2000) propose various adaptations to the savings heuristic and apply the algorithms to generate feasible routes prior to an improvement stage. In a banking application Lambert et al. (1993) use the savings algorithm on both a deterministic and stochastic variant of the VRPTW. Dullaert et al. (2001) continue the development and adapt the original criteria for sequential insertion, referred to as the Adapted Combined Savings (ACS), Adapted Optimistic Opportunity Savings (AOOS), and the Adapted Realistic Opportunity Savings (AROS).

Liu and Shen (1999b) challenge the prior research by stating that a parallel approach to route construction actually yields superior results, and use the savings algorithm in solving the VRPMVTTW.

Ong et al. (1997) introduce new selection criteria and use the sequential approach on a variant of the Multi Period Vehicle Routing Problem (MPVRP) with time windows, specific vehicle type constraints, multiple depots and stochastic demand constraints. Liu and Shen (1999a) considered the FSMVRPTW and introduced some modifications on the savings expressions with added route shape parameters.

The basic Clarke-Wright algorithm is adapted by Hill et al. (1988), Ahn and Shin (1991), Hill and Benton (1992) and Malandraki and Daskin (1992) to accommodate forward scheduling where time-dependent travel times are modeled. Fleischmann et al. (2004) test three saving algorithms on a time-dependent travel time variant of the VRPTW.
Sweep algorithm

A different approach was introduced by Gillett and Miller (1974). Their proposed algorithm divides the locations into a number of routes. The following notation is introduced to explain the algorithm. Let:

- \(N \triangleq \) number of locations including the depot (where the depot is always referred to as location 1)
- \(q_i \triangleq \) the demand at location \(i \), where \(i \in \{2, 3, \ldots, N\} \)
- \((x_i, y_i) \triangleq \) rectangular coordinates of the \(i^{th} \) location, where \(i \in \{1, 2, \ldots, N\} \)
- \(C \triangleq \) the capacity of each vehicle
- \(d_{ij} \triangleq \) the distance between locations \(i \) and \(j \), where \(i, j \in \{1, 2, \ldots, N\} \)
- \(\angle_i \triangleq \) the polar coordinate angle (measured from the depot) of the \(i^{th} \) location, where \(i \in \{2, 3, \ldots, N\} \)
- \(r_i \triangleq \) the radius from the depot to location \(i \), where \(i \in \{2, 3, \ldots, N\} \)

The polar coordinate angle is calculated through (3.4).

\[
\angle_i = \arctan \left(\frac{y_i - y_1}{x_i - x_1} \right) \tag{3.4}
\]

This results in \(-\pi < \angle_i < 0 \) if \(y_i - y_1 < 0 \), and \(0 \le \angle_i \le \pi \) if \(y_i - y_1 \ge 0 \). The locations are renumbered in ascending order according to the size of their polar coordinate angle such that

\[
\angle_i < \angle_{i+1} \quad \forall i \in \{2, 3, \ldots, N - 1\}
\]

The forward sweep portion of the algorithm partitions locations into routes beginning with the location with the smallest angle. Locations are added until the vehicle’s capacity is reached, or a preset distance constraint on a route is reached. Subsequent routes are generated in a similar manner until all locations are routed. Each route is then optimised using either exact or heuristic algorithms for the TSP. The minimum distance traveled is then the sum of the distances of each optimised route.

The \(x\)-\(y \) axis is then rotated counterclockwise so the first location becomes the last, the second becomes the first, the third the second, etc. The minimum distance is calculated again. The rotation of the \(x\)-\(y \) axis and the calculation of the distance traveled is repeated for all possible axis configurations. The minimum forward sweep distance is the least total distance traveled taken from all axis configurations that was calculated.
The backward sweep portion is similar to the forward portion except that it forms the routes in reverse order, i.e. it start with the last reordered entry based on the polar coordinate angle.

Gillett and Miller (1974) state that the two portions often produce different routes and minimum distances traveled, hence the sweep algorithm’s result is the route with the lowest distance traveled of the two portions.

Generalized assignment

Where assignment problems involve the optimal pairing of objects of two distinct types, for example exactly one job order to exactly one machine, or exactly one customer to exactly one sales representative, the generalized assignment problem allows for each object \(i\) to be assigned to some \(j\), and each \(j\) being allowed to receive a number of \(i\) (Rardin, 1998). Fisher and Jaikumar (1981) reformulate the VRP in a two-stage approach. First customers are assigned to vehicles, hence the relation to generalized assignment problems. Secondly, for each vehicle the customers assigned to that vehicle is sequenced using the TSP formulation or some other route construction algorithm. The approach is heuristic as the assignment problem’s objective function is a linear approximation of the second stage’s distance traveled. A number of methodological variants are provided in Nygard et al. (1988). Koskosidis et al. (1992) extend the approach to solve a time window variant of the routing problem.

Giant tours

In the VRP version, a giant tour, including the depot, is first created. A giant tour is a single tour that starts from the depot, passes through all customer sites and returns to the depot. A directed cost network is then constructed. Define the tour \(T_{ab}\) as a tour beginning with an arc from the depot to customer \(a\), then following the giant tour between customers \(a\) and \(b\) (which might include other nodes), finishing with an arc from customer \(b\) to the depot. There exist a directed edge in the cost network from \(a\) to \(b\) if and only if the tour \(T_{ab}\) is feasible in terms of vehicle capacity and distance restriction. The length of the edge \(ab\) in the cost network is the length of \(T_{ab}\). The shortest path problem is subsequently solved using Dijkstra’s (1959) algorithm, providing a partitioning of the giant tour.

The procedure is repeated starting from different giant tours and the overall least cost solution is chosen. In their experiments Nagy and Salhi (2005) constructed 5 giant tours; one using the nearest neighbor, another using the least insertion cost rule, and the remaining
three tours are generated randomly. A detailed description on how to generate these giant
 tours and how to construct the associated cost networks can be found in Salhi et al. (1992).

3.2.2 Route improvement

Numerical search is the process of systematically trying different values for the decision variables in an attempt to find a better solution. The process keeps track of the feasible solution with the best objective function value found thus far, referred to as the *incumbent solution*. Rardin (1998) states that most optimization procedures can be thought of as variations of a single theme: *improving search*. Synonyms of the theme include *local improvement*, *hill climbing*, *local search*, and *neighborhood search*.

An improving search heuristic for vehicle routing and scheduling usually starts with a feasible solution created through the route construction heuristics suggested in Section 3.2.1. A characteristic, and unfortunately a drawback of an improving search heuristic is that it advances along its search path of feasible solutions only while the objective function value improves. The search space in which new solutions are investigated is best explained through the analogy of a neighborhood: nearby points of the current solution, each within a small distance from the current solution.

Slight modifications to the current route are referred to as *perturbations*, and are accepted if they yield feasible solutions with an improved objective function value. Although the discussion in this section is by no means exhaustive, it introduces some of the basic mechanisms for creating perturbations. Authors such as Nagy and Salhi (2005) apply combinations of these perturbations sequentially to obtain improved solutions. For purposes of this discussion nodes will be denoted by a, b, c, etc., and routes by bolded characters \mathbf{x}, \mathbf{y}, \mathbf{z}, etc.

Route reversal

A procedure introduced by Nagy and Salhi (2005) in their Vehicle Routing Problem with Pickups and Deliveries (VRPPD). They observed that changing the direction of a route does not lead to an increase in the route length, and may lead to increased feasibility. In their application the objective is to minimize the infeasibilities when integrating both pickups and deliveries simultaneously, as opposed to sequentially.
2-Opt

A routine introduced by Lin (1965) based on interchanging two edges, say \(ab\) and \(cd\), to form two new edges \(ac\) and \(bd\).

3-Opt

A modification of the 2-Opt routine. In this case three arcs are exchanged with three other edges.

Shifting node

Similar to the 3-Opt routine involving two routes. A single node \(a\) is removed from a route \(x\) and inserted into another route \(y\).

Exchanging nodes

An extension of the Shifting node routine. A node \(a\) is identified on route \(x\), and node \(b\) on route \(y\). The two nodes \(a\) and \(b\) are exchanged in their respective positions.

\(\lambda\)-Interchange

When an equal number of nodes, \(\lambda\), are exchanged between two routes, the perturbation is referred to as \(\lambda\)-Interchange (Tan et al. 2001c; Thompson and Psaraftis 1993). The Exchanging nodes perturbation is therefor a special case where \(\lambda = 1\).

Double shift

A more complex extension of the Shifting node routine where two nodes, \(a\) and \(b\), and three routes, \(x\), \(y\), and \(z\), are considered. Node \(a\) is removed from route \(x\) and inserted into route \(y\), while node \(b\) is removed from route \(y\) and inserted into route \(z\). This is different from performing the Shifting routine twice, as after the first Shift the resulting route may be infeasible. It should be noted that this routine is computationally more complex as the possible combinations to consider increases substantially.

Splitting a route

According to Mosheiov (as cited by Nagy and Salhi (2005)) a route can be improved if the depot is reinserted into the route, resulting in two routes being created from the original one route considered.
Combining routes

If feasible, two routes x and y are combined, considering both orders xy and yx.

3.3 Metaheuristics

The improving search heuristics discussed in the previous section are applied until there are no solutions in the immediate neighborhood that include a solution that is both feasible and improving. The incumbent solution is then referred to as a *local optimum*. The advantage of heuristics is that good feasible solutions can still be found even though optimality cannot be guaranteed; the disadvantage is that uncertainty exists about how close the solutions actually came to the optimal. Herein lies the drawback of heuristics, as the initial solution may negatively influence the optimality of the local optimum found. Refer to the overly simplified illustration in Figure 3.1 and note that if the heuristic starts with a solution at a, it can only improve until it reaches the local optimum at A. If the same heuristic starts with a solution at b it can reach the local optimum at B which also happens to be the *global optimum*: a feasible solution such that no other solution has a superior objective function value.

The interested reader is referred to the TOP Program (2006) research group within the *Foundation for Scientific and Industrial Research at the Norwegian Institute of Technology* (SINTEF). The group has an extensive bibliography of research contributions in the field of vehicle routing, with the majority being on metaheuristics and future research opportunities.

![Figure 3.1: Local vs. global optimum](image)
Metaheuristics are master strategies which use intelligent decision making techniques to guide algorithms to find global optimal solutions by temporarily allowing moves in the neighborhood that result in solutions with inferior objective function values compared to the incumbent solution. Such a deteriorating move is illustrated in Figure 3.1 with a solution starting at \(a \), and deteriorating towards \(b \) along the dotted line before improving towards \(B \). A problem arises with accepting temporarily deterioration moves. Consider \(a \) and \(b \) to be neighbor solutions. Each solution can thus be reached from the other with a single perturbation. A move from \(a \) to \(b \) may be accepted as a temporarily deteriorating move. However, a move from \(b \) to \(a \) will always be accepted as it improves the objective function. This may lead to indefinite cycling around a single solution. All metaheuristics follow a similar process, although their specific naming conventions, analogies and detailed routines may vary.

Initialization The process of finding an initial solution. Some metaheuristics, such as the *Genetic Algorithm* performs well with randomly generated initial solutions that need not be feasible, while the *Tabu Search* is highly sensitive to the quality of the initial solution.

Diversification The mechanism that ensures that the underlying heuristics are searching a diversified neighborhood, and thus not getting trapped within local optima.

Intensification A mechanism that ensures the heuristic starts *zooming in* towards a single solution. The most promising neighborhoods are identified and those areas of the solution space are searched more thoroughly.

The diversification and intensification can repeat indefinitely, and hence requires a stopping criteria to terminate the metaheuristic (Van Breedam, 2001). The longer the metaheuristic is run, the higher the probability of converging to the global optimum.

An elementary metaheuristic would entail running the improving search heuristic with multiple initial solutions, each yielding a single local optimum. The best of these local optima is the incumbent solution, denoted by \(\hat{x} \). Such a process would be highly reliant on the choice of initial solutions and may yield inferior local optima if initial solutions are not selected and generated carefully.

Four promising metaheuristics are introduced, and interested readers can refer to Gendreau et al. (1998) for a general review of metaheuristics for the VRP.
3.3.1 Tabu Search (TS)

The TS is a memory-based local search metaheuristic introduced by Glover (1986) that searches the neighboring solution space (neighborhood) in search of an improving solution, updating the incumbent solution when improving moves are made. Deteriorating moves are allowed and the metaheuristic deals with cycling by declaring moves to recently visited solutions as tabu, hence the name. A thorough and recent review of the TS can be found in Bräysy and Gendreau (2001), where the authors focus on time window variants of the VRP.

A general TS approach is presented in Algorithm 3.1. An initial solution \(x^0 \) and a stopping criteria is required. In this case the stopping criteria is determined to be a preset maximum iteration count \(t_{\text{max}} \). The algorithm is initialized by setting the iteration count to zero, setting the initial solution to be the incumbent solution, and clearing the tabu list. The objective function value \(c(x) \) is expressed as a function of the solution \(x \). A feasible move set \(M^{x^t} \) that represents the neighborhood around the current solution \(x^t \) is generated. The neighborhood is established through any of the perturbations discussed in Section 3.2.2. If either no non-tabu move \(\Delta x \in M \) leads to a feasible neighbor of the current solution \(x^t \) within the preset iteration limit, or some aspiration criterion is met, the metaheuristic

\[
\begin{align*}
\text{Algorithm 3.1: Tabu Search} \\
\text{Input: Initial feasible solution } x^0, \text{ Iteration limit } t_{\text{max}} \\
1 & t \leftarrow 0 \\
2 & \hat{x} \leftarrow x^t \\
3 & \text{Clear Tabu-list, } T = \{\cdot\} \\
4 & \text{Generate feasible move set } M^{x^t} \\
5 & \text{while either (} \Delta x \in M \text{ and } \Delta x \ni T \text{ and } t < t_{\text{max}} \text{) or (} \Delta x \text{ satisfies aspiration) do} \\
6 & \quad x^{t+1} \leftarrow x^t + \Delta x \\
7 & \quad T \leftarrow T \cup \{x^{t+1}\} \\
8 & \quad \text{if } c(x^{t+1}) < c(\hat{x}) \text{ then} \\
9 & \quad \quad \hat{x} \leftarrow x^{t+1} \\
10 & \text{endif} \\
11 & \quad t \leftarrow t + 1 \\
12 & \text{Generate feasible move set } M^{x^t} \\
13 & \text{endw}
\end{align*}
\]
terminates and the incumbent solution \hat{x} is the approximate optimum. If not, the new neighbor becomes the current solution and is added to the tabu list. The current solution replaces the incumbent if it has a superior objective function value $c(x^{t+1})$. The iteration count is incremented, a move set is generated for the new current solution, and the process is repeated.

In a comparison of heuristics and metaheuristics, Van Breedam (2001) identifies TS as a dominant improvement heuristic with the certainty of achieving at least a local optimum. Their observation is confirmed by Lee et al. (2006). Ichoua et al. (2003) implement the TS in both a static and dynamic setting, and claim that the model provides substantial improvements over a model based on fixed travel times. Recent developments include drastically reducing the size of the search neighborhood, so called granular neighborhoods (Toth and Vigo, 2003). Results obtained when using promising moves, as proposed by granular neighborhoods, yielded good solutions within short computing times.

3.3.2 Simulated Annealing (SA)

As opposed to a local search method, SA is a randomized search method (Brucker, 2004). To understand the concept of simulated annealing in optimization, one has to look at its analogy to the physical annealing system as first introduced by Kirkpatrick et al. (1983). The ground state of a solid, for example steel, is that state in which its atoms or particles are arranged into a minimum energy configuration – the most stable state of the solid. The ground state of a metal can be obtained through the process of physical annealing. The metal is first heated to a high temperature to induce its transformation from a solid to a liquid. This temperature is called the melting point of the metal. In its liquid state the metal is unstable, the particles move about freely, exhibiting high energy, since they are not arranged in any set configuration. The temperature is then carefully reduced to allow the particles to gradually settle into the arrangement of minimum energy and the ground state is obtained.

Similarly, SA is aimed at obtaining the minimum value of the objective function of an optimization problem which corresponds to the ground state of the solid (Tan et al., 2001c). Any other state of the solid corresponds to a feasible solution for the optimization problem, and the energy of a state of the solid is equivalent to the objective function value of a solution. A control parameter q, analogous to the temperature of the physical system, is used to control the gradual convergence of the SA algorithm towards the global optimum by
regulating the acceptance of moves that deteriorates the objective function value. Similar to a small displacement of the atoms of the solid, the current solution at stage t, x^t, undergoes small perturbations Δx as it converges towards the optimum solution.

The general SA metaheuristic provided in Algorithm 3.2 requires an initial solution x^0, and a stopping criteria. Alfa et al. (1991) indicate that the computational time required for finding good solutions are sensitive to the quality of initial solutions. As for the TS algorithm, an iteration limit count t_{max} is used. The algorithm also requires an initial temperature q^0 and a cooling parameter δ that reduces the temperature of the system after a sufficient number of iterations, denoted by q^{max}.

Initializing the SA algorithm entails setting both the iteration count and the temperature control count to zero, setting the temperature to the initial temperature, and assigning the initial solution as the incumbent \hat{x}. The neighborhood is established through any of the perturbations discussed in Section 3.2.2.

If either the iteration count limit t_{max} is reached, or there are no more feasible moves Δx in the neighborhood move set M^x_t for the current solution x^t, the algorithm terminates. Otherwise the move is tested for acceptance. If the move is improving the objective function value, it is accepted with a probability of 1. If the move is deteriorating, it will still be accepted with probability

$$P[\text{accept}] = e^{-\frac{c(\hat{x}) - c(x')}{T}}$$

Returning to the analogy between the physical annealing of a solid and the simulated annealing algorithm, the acceptance criterion for the SA algorithm is deducted from the Metropolis criterion. The Metropolis algorithm, as introduced by Metropolis et al. (as cited by Aarts and Korst (1989)) is a simple algorithm for simulating the physical annealing of a solid. It states that, given a current state i of the solid with energy E_i, a subsequent state j, with energy E_j is generated via a small displacement of the atoms of the solid. If the resulting energy difference, $E_j - E_i$, is less than or equal to zero, j is accepted as the new current state. If, however, the energy difference should be greater than zero, the state j will only be accepted with probability

$$P[\text{accept}] = e^{-\frac{E_i - E_j}{k_B T}}$$

where T is the current absolute temperature of the solid and k_B is known as the physical Boltzmann constant. Kirkpatrick et al. (1983) noted that since the temperature is merely a control parameter, the Boltzmanns constant can be omitted. The control parameter is
Algorithm 3.2: Simulated Annealing

Input: Initial feasible solution \(x^0 \); Iteration limit \(t_{\text{max}} \)

Input: Initial temperature \(q^0 \gg 0 \); Temperature limit \(q_{\text{max}} \); Cooling factor \(0 < \delta \leq 1 \)

1. \(t \leftarrow 0 \)
2. \(q_{\text{count}} \leftarrow 0 \)
3. \(q \leftarrow q^0 \)
4. \(\hat{x} \leftarrow x^t \)
5. Generate feasible move set \(M^{x^t} \)

6. while \(\Delta x \in M^{x^t} \) and \(t < t_{\text{max}} \) do

7. \(x' \leftarrow x^t + \Delta x \)
8. if \(q_{\text{count}} = q_{\text{max}} \) then
9. \(q \leftarrow \delta q \)
10. \(q_{\text{count}} \leftarrow 0 \)
11. else
12. \(q_{\text{count}} \leftarrow q_{\text{count}} + 1 \)
13. endif

14. if either \(c(x') < c(\hat{x}) \) or Probability \(\left(e^{\frac{c(\hat{x}) - c(x')}{q}} \right) \) then
15. \(x^{t+1} \leftarrow x' \)
16. if \(c(x^{t+1}) < c(\hat{x}) \) then
17. \(\hat{x} \leftarrow x^{t+1} \)
18. endif
19. else
20. \(x^{t+1} \leftarrow x^t \)
21. endif
22. \(t \leftarrow t + 1 \)
23. Generate feasible move set \(M^{x^t} \)
24. endw
formulated so as to allow virtually all deteriorating moves during the initial stages of the algorithm. As the control parameter is gradually decreased, the probability of accepting deteriorating moves also decreases, and the algorithm converges to the global optimum. Robusté et al. (1990) indicate in their application of SA that a human can actually outperform the algorithm for large problems in terms of the quality of the solution. Development of the SA have since continued with Van Breedam (1995) reviewing and comparing variants of the SA. Tan et al. (2001c) attribute a number of advantages to the SA metaheuristic:

- Deals with arbitrary systems and cost functions.
- Statistically guarantees an optimal solution (provided sufficient processing time).
- Relatively easy to code, even for complex problems.
- Generally gives a good solution within reasonable processing time.

The latter point has been supported by Van Breedam (2001) stating that the difference in solution quality between TS and SA never exceeded 4% in his evaluation. In their comparative analysis of three metaheuristics, Tan et al. (2001c) conclude that SA is a good compromise between computational effort and quality of solution.

3.3.3 Genetic Algorithm (GA)

GAs were developed and published by John Holland in 1975. GAs are algorithms that search for global optimal solutions by intelligently exploiting random search methods, emulating biological evolution (Rardin, 1998). The relationships between genetic evolution and optimization are:

- Populations are represented by groups, each representing a feasible solution.
- In a population, parents mate according to natural selection. This is analogous to randomly selected feasible parent solutions.
- Offspring are produced by the mating of the selected parents and represent newly created solutions.
- In nature, offspring exhibit some characteristics of each parent since chromosomes are exchanged to form new chromosome strings. The algorithm draws on the analogy by creating two new offspring solutions using perturbations such as swapping, on parts of the parent solutions. In GAs the perturbations are often referred to as crossovers.
• *Survival of the fittest* is also incorporated as the fitness of a solution can be related to its objective function value. The fittest solutions will typically reproduce to ensure the survival of the fittest solution in the next generation.

• *Mutation* for diversity is represented in the metaheuristic by the random modification of chromosomes, i.e. possible solutions.

Goldberg (1989) reviews GA applications in search strategies an optimization. The general GA metaheuristic provided in Algorithm 3.3 indicates p unique feasible initial solutions.

Algorithm 3.3: Genetic Algorithm

Input: Generation limit t_{max}

Input: Population size p; Initial feasible solutions x_1^0, \ldots, x_p^0

Input: Population subdivisions p_e, p_i, and p_c such that $p_e + p_i + p_c = p$

1. $t \leftarrow 0$
2. while $t < t_{\text{max}}$ do
3. begin elite
4. Copy p_e best solutions from generation t to generation $t + 1$
5. end
6. begin immigrant
7. Include p_i new solutions in generation $t + 1$
8. end
9. begin crossover
10. Choose $\frac{p_c}{2}$ non-overlapping pairs of solutions from generation t
11. Perform crossover perturbations
12. Include new solutions in generation $t + 1$
13. end
14. $t \leftarrow t + 1$
15. endw
16. $x^* \leftarrow \min_{i \in \{1, \ldots, p\}} \{x_i^t\}$
17. $\hat{x} \leftarrow$ locally optimized x^*

required to constitute generation 0. Filipe et al. (1998) test their GA with various population sizes and conclude that too small a population may terminate the algorithm prematurely as diversification is compromised, while too large populations slows down the convergence rate as more generations are required (increased computational effort) to initiate dominance of
quality solutions. Initial solutions are created either randomly or using route construction heuristics as discussed in Section 3.2.1 (Vas, 1999). Skrlec et al. (1997) and Tan et al. (2001c) suggest using only heuristics so as to improve the rate of convergence.

The algorithm only terminates when a sufficient number of generations have existed. Survival of the fittest is ensured as the p_e best solutions of generation t is cloned exactly into generation $t + 1$. A number, p_i, of new immigrant solutions are generated and included in generation $t + 1$. The balance of generation $t + 1$ is made up by performing various crossover perturbations on a random selection of p_c^2 solutions from generation t.

Two distinct approaches are found in literature to solve constrained VRPs with GAs.

Cluster first, route second

This approach was popular in early writings. Thangiah et al. (1991) developed GIDEON, a GA program used to solve the VRPTW. At the time it was the best algorithm available for the VRPTW as it produced the best known solutions for 41 of the 56 benchmark problems introduced by Solomon (1987). GIDEON has two distinct modules:

Clustering This module assigns customers to specific vehicles in a process called genetic clustering. It uses a GA to sector customers into clusters, with each cluster serviced by one vehicle. Figure 3.2 shows the sweeping motion that is is used together with seed angles to create clusters. Each vehicles cluster is routed to minimize route cost, not taking into account vehicle capacities or time windows. The first customer per route, referred to as the seed customer, is randomly selected out of the cluster, the rest of the route is formed by determining which customer, when inserted in the route, will produce the lowest route cost, i.e. using a savings heuristic. The best set of clusters obtained by this module is transferred to the next module.

Local route optimization Customers are exchanged between clusters to ensure the feasibility of the solution — taking into account time windows and vehicle capacities. To change a customers cluster, its angle is artificially altered. When a cluster is changed, a cheapest insertion algorithm is used to improve the cluster route.

Nygard and Kadaba (1991), Thangiah and Gubbi (1993), Malmborg (1996), Filipec et al. (1997), Skrlec et al. (1997) and Karanta et al. (1999) were among the contributors using the cluster first, route second approach. Nygard and Kadaba (1991) found that GAs for VRPs tend not to perform well when customers are geographically clustered and a small fleet is
used. For all other problem instances the GA performs well. Tan et al. (2001c) claims that the approach “is only a hybrid heuristic that constitutes some GA element”.

Route first, cluster second

Recently, path representations are implemented more often for all VRP variations (Filipec et al., 1998; Hwang, 2002; Maeda et al., 1999; Ochi et al., 1998; Prins, 2004; Tan et al., 2001b; Zhu, 2003). To indicate separate routes in a chromosome, extra partitioning characters need to be inserted into the chromosome. These extra characters may render the GA useless. GAs use two phases to solve VRP variations, with each chromosome representing a specific path through all the customers. In the first *routing* phase, the GA improves the long chromosome string by solving a TSP for all customers. The second *clustering* phase creates a route for each vehicle out of the long route. This is done by another algorithm that adds customers to a vehicle only if time windows are not violated, until the vehicle is full. The
following customer in the single route chromosome is then assigned to the next vehicle.

Tan et al. (2001c) were the first to compare three popular metaheuristics, TS SA and GA for VRP variants. They conclude that GAs were successful in solving the VRPTW but deduce that there is still no single metaheuristic generic enough to solve all routing problems.

3.3.4 Ant Colony Optimization (ACO)

ACO algorithms are classified as iterative, probabilistic metaheuristics for finding solutions to combinatorial optimization problems. ACO is a general term proposed by Dorigo and Stützle (2002) that includes all ant algorithms. The ant algorithm is an evolutionary approach where several generations of artificial ants search for good solutions. Every ant of a generation builds a solution in a step by step manner, going through several decisions. Ants that found good solution(s) mark their paths through the decision space by placing pheromone on the edges of the path. The ants of the next generation are attracted to pheromone and they are more likely to search the solution space near good solutions (Middendorf et al., 2002).

Ant algorithms are inspired by the foraging mechanism employed by real ants attempting to find a shortest path from their nests to food sources. A foraging ant will mark its path by distributing an amount of pheromone on the trail, thus encouraging, but not forcing, other foraging ants to follow the same path (Dorigo et al., 1999). Pheromone is the generic name for any endogenous chemical substance secreted by an organism to incite reaction in other organisms of the same specie. This principle of modifying the environment to induce a change in the ants’ behavior via communication is known as stigmergy. The effect of stigmergy provides the basis for the ant foraging behavior and artificial ant metaheuristics. Dorigo et al. (1999) discuss the experiments conducted that suggest that the social structure of ant colonies can determine shortest paths between the nest and food sources. A formal proof, however, is absent.

There are a number of direct relationships between real foraging ants and artificial ants used in the ACO metaheuristic.

Colony of cooperating individuals Similar to real ants, artificial ants are composed of a population (or colony) of concurrent and asynchronous entities cooperating to find food timeously. The artificial food are good solutions to the optimization problem under consideration. Although the complexity of each artificial ant is such that it can build a feasible solution, high quality solutions are the result of the cooperation among
the individuals of the whole colony. This is analogous to a real ant that can by chance find a path between the nest and the food. But only the cooperation of the whole colony can ensure that sufficient food sources are located as close as possible to the nest. Ants cooperate by means of the information they concurrently read and write on the problems states.

Pheromone trail and stigmergy Artificial ants modify some aspects of their environment as real ants do. While real ants deposit a chemical substance, pheromone, on the world state they visit, artificial ants change some numeric information locally stored in the problem state they visit. This information takes into account the ants current history or performance and can be read and written by any ant accessing the state. By analogy, this numeric information is called the artificial pheromone trail, *pheromone trail* for short. In ACO algorithms local pheromone trails are the only communication channels among the ants. This stigmergetic form of communication plays a major role in the utilization of collective knowledge. Its main effect is to change the way the environment (the problem landscape) is locally perceived by the ants as a function of all the past history of the whole ant colony.

Usually, in ACO algorithms an evaporation mechanism is employed, similar to real pheromone evaporation, that modifies pheromone information over time. Pheromone evaporation allows the ant colony slowly to forget its past history so that it can direct its search toward new directions without being over-constrained by past decisions, hence addressing the diversification issue raised for metaheuristics in general.

Shortest path searching and local moves Artificial and real ants share the common task of finding a shortest (minimum cost) path joining an origin (nest) and destination (food). Real ants systematically walk through adjacent terrains’ states. Similarly, artificial ants move step-by-step through the neighborhood of solutions of the problem. The exact definitions of state and neighborhood are problem specific.

Stochastic and myopic state transition policy Artificial ants, as does real ants, build solutions applying a probabilistic decision policy to move through adjacent states. As for real ants, the artificial ants’ decision policy makes use of local information only and it does not make use of lookahead to predict future states. Therefore, the applied policy is completely local, in space and time. The policy is a function of both the *a priori* information represented by the problem specifications (equivalent to the terrains
structure for real ants), and of the local modifications in the environment (pheromone trails) induced by past ants.

Artificial ants also have some characteristics that do not have counterparts in real ants. Artificial ants live in a discrete world and their moves consist of transitions from discrete states to discrete states. Artificial ants have an internal state. This private state contains the memory of the ants’ past actions. Artificial ants deposit an amount of pheromone that is a function of the quality of the solution found. Timing in pheromone laying is problem dependent and often does not reflect real ants behavior. For example, in many cases artificial ants update pheromone trails only after having generated a solution. To improve overall system efficiency, ACO algorithms can be enriched with extra capabilities such as the ability to forecast, local optimization, and backtracking that cannot be found in real ants.

An ant is a simple computational agent, which iteratively constructs a solution for the instance to solve. Partial problem solutions are seen as states. At the core of the ACO algorithm lies a loop, where at each iteration, each ant moves (performs a step) from a state i to another one j, corresponding to a more complete partial solution.

Algorithm 3.4 is based on [Maniezzo et al. (2004)] and requires an a priori desirability

<table>
<thead>
<tr>
<th>Algorithm 3.4: Ant Colony Optimization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: Attractiveness η_{ij}; Trail level τ_{ij}</td>
</tr>
<tr>
<td>Input: Number of ants k</td>
</tr>
<tr>
<td>1 while $t < t_{\text{max}}$ do</td>
</tr>
<tr>
<td>2 for each ant k do</td>
</tr>
<tr>
<td>3 repeat</td>
</tr>
<tr>
<td>4 choose in probability the state j to move to</td>
</tr>
<tr>
<td>5 append ant k’s set tabu_k</td>
</tr>
<tr>
<td>6 until ant k’s solution is complete</td>
</tr>
<tr>
<td>7 endfor</td>
</tr>
<tr>
<td>8 for each ant move (i,j) do</td>
</tr>
<tr>
<td>9 compute $\Delta \tau_{ij}$</td>
</tr>
<tr>
<td>10 update trail matrix</td>
</tr>
<tr>
<td>11 endfor</td>
</tr>
<tr>
<td>12 $t \leftarrow t + 1$</td>
</tr>
<tr>
<td>13 endw</td>
</tr>
</tbody>
</table>
of the route referred to as the attractiveness, η_{ij}, for each origin-destination pair (i,j). The attractiveness is often also referred to as the \textit{heuristic information} \cite{Meuleau2002}. The trail level τ_{ij} of the move from i to j is required and indicates how beneficial it has been in the past to make that particular move. The trail level therefore represents an \textit{a posteriori} indication of the desirability of the move. As in previous metaheuristics discussed, an iteration limit t_{max} terminates the ACO.

For each ant k a solution is incrementally built using both the attractiveness and the trail level, weighted with preset parameters. Each ant’s memory of tabu moves are updated accordingly to ensure only feasible solutions are created. Once all ants have their solutions, the pheromone trail matrix is updated by determining how many ants (solutions) traversed specific edges (i,j). The iteration number is incremented, and the process repeated until the maximum number of iterations have been reached.

Although \cite{Bullnheimer1999} could not improve on the best solutions found for sets of benchmark problems, the competitiveness of ACO is applaudable, given the immaturity of the approach to VRP variants compared to established, and well-researched metaheuristics. Detailed algorithmic approaches are provided by \cite{Dorigo1997a} for the TSP and \cite{Gambardella1999} for the VRPTW which should stimulate and accelerate research in the respective fields and its variants. A robust algorithm presented by \cite{Reimann2004} is able to solve a number of VRP variants.

3.4 Conclusion

In the first review article of ACO theory, \cite{Dorigo2005} comprehensively state that research contributions using metaheuristics as new as the ACO focus on proof-of-concept. This, however, is still true for the majority of theoretical papers on heuristics and metaheuristics. Solution quality and computational burden of various algorithm contributions are compared using benchmark problems \cite{VanBreedam2001}. The state-of-the-art for generic variants of the VRP are often implemented in commercial software applications. In such applications the parameter values for the specific metaheuristic are usually fixed, and are based on experiments with the benchmark data.

The majority of literature reviewed in this chapter either suggest parameter values that perform well in the majority of cases, or confirm that parameter settings are inherently problem specific. This review concludes with the observation that an intelligent routing
system is required that will be able to observe the problem environment in which it is implemented, and dynamically adjust parameter settings in order to improve future solutions.
An improved initial solution algorithm

Although Ichoua et al. (2003) employ a random insertion heuristic to create initial solutions, Van Breedam (2001) introduces an initial solution parameter in his evaluation of improvement algorithms, and finds that, in most cases, a good initial solution results in significantly better final results. This thesis proposes the use of a savings route construction heuristic based on Joubert (2003). Solomon (1987) concludes that, from the five initial solution heuristics evaluated, the Sequential Insertion Heuristic (SIH) proved to be very successful, both in terms of the quality of the solution, as well as the computational time required to find the solution. Section 3.2.1 reviews a number of route construction heuristics.

4.1 A route construction heuristic

An overview of the initial solution algorithm proposed in this thesis is provided in Algorithm 4.1. Initializing the algorithm requires a distance matrix. When using benchmark data sets only customer coordinates are provided, and the Minkowski distances are calculated using (2.46). If a Geographical Information System (GIS) is used, the travel distances can be determined through a process referred to as geocoding and route calibration. The initial solution algorithm also requires a travel time matrix for all node pairs \((i, j)\).

4.1.1 Time-dependent travel times

Congestion effects become critical when time windows are imposed by customers, because in routing the temporal issue is of greater concern than the spatial issue. Three valuable contributions that incorporate both time dependent travel time and time windows are Ahn...
Algorithm 4.1: Initial solution heuristic

Input: Customer data

Input: Fleet data

1. Initialize algorithm

2. repeat Initialize tour

3. Establish tour starting time

4. Assign vehicle

5. repeat Build tour

6. Establish route start time

7. Identify seed customer

8. repeat Expand partial route

9. Determine insertion criteria

10. Determine selection criteria

11. Insert node

12. until either all nodes are routed or no node identified for insertion

13. Determine multi route feasibility

14. until either all nodes are routed or route expansion infeasible

15. until either all nodes are routed or vehicles are depleted

16. Establish orphans

17. Report initial solution
and Shin (1991), Fleischmann et al. (2004), and Ichoua et al. (2003). Fleischmann et al. (2004) implement their routing algorithm when dynamic travel data is available through the Berlin traffic management system. Let:

\[\tau_{ijk} \triangleq \text{shortest travel time from node } i \text{ to node } j \text{ when the start time is in the time slot } Z_k \]

with the day divided into \(K \) time slots \(Z_k = [z_{k-1}, z_k], k \in \{1, 2, \ldots, K\} \). The planning horizon is denoted by the time interval \([z_0, z_K]\) which may coincide with the time window for the depot, becoming the time interval \([e_0, L_0^{\text{max}}]\). The authors propose a smoothing of the travel time function with the introduction of

\[\tau_{ij}(t) \triangleq \text{travel time from node } i \text{ to node } j \text{ for the start time } t \text{ at node } i. \]

This is similar to the travel time proposed by Ichoua et al. (2003) where real traffic data is not accessible. A computationally efficient routine is introduced to acquire the travel time. A distance matrix \(D = (d_{ij}) \) is created for all \(i, j \in \{1, 2, \ldots, n\} \) nodes. The planning horizon is also divided into \(K \) planning periods, while the edges are partitioned into \(C \) subsets \(A = (A_c)_{1 \leq c \leq C} \) based on, for example, road type. To limit the number of speed values stored for each edge \((i, j)\) for each time slot \(t \), a travel speed \(v_{ct} \) is associated with each edge partition \(c \) for each time slot \(t \). The dynamic travel time between nodes \(i \) and \(j \) can consequently be determined through Algorithm 4.2 if the travel start time at node \(i \) is denoted by \(t_0 \in Z_k = [z_{k-1}, z_k] \).

Calculating the travel time matrix, however, is computationally expensive. Instead of calculating a travel time between each \((i, j)\) pair for each time unit \(k \) in the scheduling period, Algorithm 4.3 introduces Time Window Compatibility (TWC) to only calculate travel time values for node pairs that have compatible time windows.

4.1.2 Time window compatibility

The introduction of the TWC concept assists in identifying, and eliminating, obvious infeasible nodes. This results in a more effective and robust route construction heuristic. The purpose of TWC is to determine the time overlap of all edges, or node combinations, \((i, j)\), where \(i, j \in \{0, 1, 2, \ldots, N\} \), and \(N \) the total number of nodes in the network. During the route construction phase, time window compatibility can be checked, and obvious infeasible nodes can be eliminated from the set of considered nodes. The Time Window Compatibility
Algorithm 4.2: Travel time calculation procedure

Input: Distance matrix $D = (d_{ij})$

Input: Travel speed matrix $V = (v_{ct})$

1. $t \leftarrow t_0$
2. $d \leftarrow d_{ij}$
3. $t' \leftarrow t + \frac{d}{v_c z_k}$
4. **while** $t' > z_k$ **do**
 5. $d \leftarrow d - v_c z_k (z_k - t)$
 6. $t \leftarrow z_k$
 7. $t' \leftarrow t + \frac{d}{v_c z_k}$
 8. $k \leftarrow k + 1$
5. **endw**
6. $t_{ij} = t' - t_0$

Algorithm 4.3: Incorporating time window compatibility with time dependent travel time

1. **foreach** node pair (i, j) **do**
2. calculate TWC_{ij}
3. **if** $TWC_{ij} \neq -\infty$ **then**
 4. **foreach** time period $k \in \{1, \ldots, K\}$ **do**
 5. calculate τ_{ijk} using Algorithm 4.2
 6. **endfch**
4. **else**
 5. **foreach** time period $k \in \{1, \ldots, K\}$ **do**
 6. $\tau_{ijk} \leftarrow \infty$
 7. **endfch**
5. **endif**
6. **endfch**
Matrix TWCM is a non-symmetrical matrix as the sequence of two consecutive nodes, i and j, is critical. Let:

- $N \triangleq$ be the total number of nodes
- $e_i \triangleq$ be the earliest allowed arrival time at customer i, where $i = \{0, 1, \ldots, N\}$
- $l_i \triangleq$ be the latest allowed arrival time at customer i, where $i = \{0, 1, \ldots, N\}$
- $s_i \triangleq$ be the service time at node i, where $i = \{0, 1, \ldots, N\}$
- $t_{ij} \triangleq$ be the travel time from node i to node j, where $i, j = \{0, 1, \ldots, N\}$
- $a_j^e \triangleq$ be the actual arrival time at node j, given that node j is visited directly after node i, and that the actual arrival time at node i was e_i, where $i, j = \{0, 1, \ldots, N\}$
- $a_j^l \triangleq$ be the actual arrival time at node j, given that node j is visited directly after node i, and that the actual arrival time at node i was l_i, where $i, j = \{0, 1, \ldots, N\}$
- $TWC_{ij} \triangleq$ be the time window compatibility when node i is directly followed by node j

TWC_{ij} indicates the entry in row i, column j of the TWCM. Consider the following five scenarios that illustrate the calculation of time window compatibility. Each scenario assume customer j to be serviced directly after customer i, a service time of one hour, and a travel time of two hours from node i to node j.

Scenario 1: if $a_j^e > e_j$ and $a_j^l < l_j$, illustrated in Figure 4.1. Customer i specifies a time window $[e_i, l_i] = [08:00, 12:00]$, while customer j requires service during the time window $[e_j, l_j] = [09:00, 16:00]$. If service at customer i starts at the earliest allowed time, e_i,
then the actual arrival time at customer j would be calculated as

$$a_j^{ei} = e_i + s_i + t_{ij} \tag{4.1}$$

In this scenario $a_j^{ei} = 11:00$. Similarly, a_j^{lj} would be the actual arrival time at customer j, given that the actual arrival time at customer i was l_i, and is calculated as

$$a_j^{lj} = l_i + s_i + t_{ij} \tag{4.2}$$

The difference between a_j^{ei} and a_j^{lj} indicates the time window overlap between the two nodes. The time window compatibility is calculated as

$$TW C_{ij} = a_j^{lj} - a_j^{ei} \tag{4.3}$$

For this example, the time window compatibility is four hours (04:00).

Scenario 2: if $a_j^{ei} > e_j$ and $a_j^{lj} > l_j$, illustrated in Figure 4.2. Customer i specifies a time window $[e_i, l_i] = [08:00,12:00]$, while customer j requires service during the time window $[e_j, l_j] = [09:00,13:00]$. The calculations for a_j^{ei} and a_j^{lj} are similar to (4.1) and (4.2), respectively. The time windows of customer i and customer j only partly overlap, and the time window compatibility is calculated as

$$TW C_{ij} = l_j - a_j^{ei} \tag{4.4}$$

For this example, the time window compatibility is two hours (02:00).

Scenario 3: if $a_j^{ei} < e_j$ and $a_j^{lj} < l_j$, illustrated in Figure 4.3. Customer i specifies a time window $[e_i, l_i] = [08:00,12:00]$, while customer j requires service during the time window $[e_j, l_j] = [12:00,16:00]$. The calculations for a_j^{ei} and a_j^{lj} are similar to (4.1) and (4.2).
respectively. The time windows of customer i and customer j only partly overlap, and the time window compatibility is calculated as

$$TW C_{ij} = a_{ij} - e_j$$

(4.5)

For this example, the time window compatibility is three hours (03:00).

Scenario 4: if a_{ij}^{ei} and $a_{ij}^{li} < e_j$, illustrated in Figure 4.4. Customer i specifies a time window $[e_i, l_i] = [08:00,12:00]$, while customer j requires service during the time window $[e_j, l_j] = [17:00,18:00]$. The calculations for a_{ij}^{ei} and a_{ij}^{li} are similar to (4.1) and (4.2), respectively. The time windows of customer i and customer j do not overlap. Even if customer i is serviced as late as possible, l_i, a waiting time is incurred at customer j.

The time window compatibility is calculated as

$$TW C_{ij} = a_{ij} - e_j$$

(4.6)

For this example, the time window compatibility is negative two hours (-02:00). The significance of the negative time is that it is possible, in this case, to service customer j after customer i, although the waiting time is penalized.
Scenario 5: if $a_{j}^{e_i}$ and $a_{j}^{l_i} > l_j$, illustrated in Figure 4.5

Customer i specifies a time window $[e_i, l_i] = [08:00, 12:00]$, while customer j requires service during the time window $[e_j, l_j] = [07:00, 11:00]$. The calculations for $a_{j}^{e_i}$ and $a_{j}^{l_i}$ are similar to (4.1) and (4.2), respectively. Although the time windows of customer i and customer j partly overlap, it is impossible to service customer j, even if customer i is serviced as early as possible, e_i. Therefore, no time window compatibility exist.

A generalized equation is proposed that will address all five scenarios illustrated, and is given by (4.7).

$$TWC_{ij} = \begin{cases}
\min\{a_{j}^{l_i}, l_j\} - \max\{a_{j}^{e_i}, e_j\} & \text{if } l_j - a_{j}^{e_i} > 0 \\
-\infty & \text{otherwise}
\end{cases}$$ \hspace{1cm} (4.7)

The higher the value, the better the compatibility of the two time windows considered. Therefore an incompatible time window is defined to have a compatibility of negative infinity.

Example. Consider the following example with five nodes geographical distributed around a depot in Figure 4.6. In the example, node c has indicated two possible time windows. To accommodate multiple time windows, the customer is artificially split and treated as two separate nodes, c^1 and c^2, respectively, each having a single time window.

The time windows for each customer, including the depot, as well as the service time at each node, are given in Table 4.2. The distance matrix, D, is calculated using the rectangular distance between nodes. With the grid provided in Figure 4.6, the
Figure 4.6: Geographical distribution of nodes around a depot

<table>
<thead>
<tr>
<th>Node</th>
<th>Time window</th>
<th>Service time</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i)</td>
<td>(e<sub>i</sub>; l<sub>i</sub>)</td>
<td>s<sub>i</sub></td>
</tr>
<tr>
<td>Depot</td>
<td>07:00 – 18:00</td>
<td>0.00</td>
</tr>
<tr>
<td>a</td>
<td>08:00 – 12:00</td>
<td>0.50</td>
</tr>
<tr>
<td>b</td>
<td>11:00 – 13:00</td>
<td>0.25</td>
</tr>
<tr>
<td>c<sup>1</sup></td>
<td>08:00 – 09:00</td>
<td>0.25</td>
</tr>
<tr>
<td>c<sup>2</sup></td>
<td>15:00 – 17:00</td>
<td>0.25</td>
</tr>
<tr>
<td>d</td>
<td>08:00 – 12:00</td>
<td>0.50</td>
</tr>
<tr>
<td>e</td>
<td>10:00 – 15:00</td>
<td>0.25</td>
</tr>
</tbody>
</table>
distances can be obtained through inspection.

\[
D = \begin{bmatrix}
0 & 60 & 60 & 50 & 50 & 70 & 60 \\
60 & 0 & 20 & 70 & 70 & 110 & 120 \\
60 & 20 & 0 & 50 & 50 & 110 & 120 \\
50 & 70 & 50 & 0 & 0 & 80 & 90 \\
50 & 70 & 50 & 0 & 0 & 80 & 90 \\
70 & 110 & 110 & 80 & 80 & 0 & 70 \\
60 & 120 & 120 & 90 & 90 & 70 & 0
\end{bmatrix}
\]

If the average speed is known, the time matrix, \(T\), can be calculated, but in the presence of time dependent travel time, the travel times are calculated using Algorithm 4.2. For illustrative purposes in this example only, \(T\) is given. Values are in hours.

\[
T = \begin{bmatrix}
0 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 0.5 & 1 & 1 & 2 & 2 \\
1 & 0.5 & 0 & 1 & 1 & 2 & 2 \\
1 & 1 & 1 & 0 & 0 & 1.5 & 1.5 \\
1 & 1 & 1 & 0 & 0 & 1.5 & 1.5 \\
1 & 2 & 2 & 1.5 & 1.5 & 0 & 1 \\
1 & 2 & 2 & 1.5 & 1.5 & 1 & 0
\end{bmatrix}
\]

With the information at hand, the time window compatibility matrix can be calculated. For the given example,

\[
TWCM = \begin{bmatrix}
11 & 4 & 2 & 1 & 2 & 4 & 5 \\
4 & 3.5 & 2 & -\infty & -1.5 & 1.5 & 4 \\
2 & 0.25 & 1.75 & -\infty & -0.75 & -\infty & 1.75 \\
1 & 1 & -0.75 & 0.75 & -5.75 & 1 & 0.75 \\
1.75 & -\infty & -\infty & -\infty & 1.75 & -\infty & -\infty \\
4 & 1.5 & 2 & -\infty & -1 & 3.5 & 3.5 \\
5 & -\infty & 0.75 & -\infty & 1.75 & 0.75 & 4.75
\end{bmatrix}
\]

4.2 Improving the initial solution heuristic

Initialization criteria in Algorithm 4.1 refer to the process of finding the *seed customer*: the first customer to be inserted into a new route. Joubert (2003) proposes the use of the TWC concept to identify seed customers. When looking at the TWCM example, it is clear that the
Table 4.3: Number of infeasible time window instances

<table>
<thead>
<tr>
<th>Node</th>
<th>as origin</th>
<th>as destination</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depot</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>b</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>c₁</td>
<td>0</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>c₂</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>d</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>e</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Incompatibility is distinct for specific nodes. It is therefore possible to identify incompatible nodes. As opposed to the two most common initialization criteria, namely customer with earliest deadline, and furthest customer, as suggested by Dullaert et al. (2001), the author of this thesis proposes the use of the TWCM to identify seed nodes based on their time window compatibility. Table 4.3 indicates the number of instances where a node has an infeasible time window with another node, either as origin, or as destination. Both nodes c₁ and c₂ have five infeasible instances. The two artificial nodes are representing the same customer c. It can be concluded that customer c is the most incompatible node, and is identified as the seed customer. Ties are broken arbitrarily. Should two nodes have the same number of infeasible time window instances, either of the two customers could be selected as seed customer.

It may be possible to not have any infeasible time window instances. In such a scenario, a total compatibility value, denoted by C_total^a, can be determined for each node a, and is calculated using either (4.8) or (4.9),

\[
C_\text{total}^a = \sum_{i=1, i \neq a}^M TWC_{ia} + \sum_{j=1, j \neq a}^M TWC_{aj} + TWC_{aa} \quad \forall a \quad (4.8)
\]

\[
C_\text{total}^a = \sum_{i=1}^M TWC_{ia} + \sum_{j=1}^M TWC_{aj} - TWC_{aa} \quad \forall a \quad (4.9)
\]

where M refers to all the unrouted nodes, including all instances of those nodes that are split artificially. The customer with the lowest total compatibility is selected as seed customer.

Once the seed customer has been identified and inserted, the SIH algorithm considers, for
all unrouted nodes, the insertion position that minimizes a weighted average of the additional distance and time needed to include a customer in the current partially constructed route. This second step is referred to as the *insertion criteria*. Note that the terms *nodes* and *customers* are used interchangeably. The insertion and selection criteria can be simplified using the example illustrated in Figure 4.7. The partially constructed route in the example consists of the depot and three routed nodes, namely B, C, and E. The route can be expressed as *Depot-B-C-E-Depot*. Nodes A and D are unrouted. The insertion criteria, denoted by \(c_1(i, u, j) \), calculates the best position and associated cost, between two adjacent nodes \(i \) and \(j \) on the partial route, to insert a customer \(u \), and is calculated for each of the unrouted nodes. Consider node A in the example. There are four edges where the node can be inserted, namely *Depot-B*, *B-C*, *C-E*, or *E-Depot*, as illustrated in Figure 4.8. Dullaert et al. (2001) extend Solomon’s heuristic and determines \(c_1(i, A, j) \) for the unrouted node A as

\[
c_1(i, A, j) = \min_{p=1,2,...,m} \left[c_1(i_{p-1}, A, i_p) \right] \tag{4.10}
\]

in which \(m \) represents the routed nodes in the partially constructed route. If the expressions are generalized for all unrouted nodes \(u \), the insertion criteria is calculated as

\[
c_1(i, u, j) = \alpha_1 c_{11}(i, u, j) + \alpha_2 c_{12}(i, u, j) + \alpha_3 c_{13}(i, u, j) \tag{4.11}
\]
with

\[c_{11}(i, u, j) = d_{iu} + d_{uj} - \mu d_{ij}, \mu \geq 0 \] \hspace{1cm} (4.12)
\[c_{12}(i, u, j) = a_j^{\text{new}} - a_j \] \hspace{1cm} (4.13)
\[c_{13}(i, u, j) = ACS, AOOS, \text{ or } AROS \] \hspace{1cm} (4.14)

With the extension to Solomon’s heuristic, the weighting factors \(\alpha_i \) need not add up to 1. The additional distance, and the additional time needed to serve customer \(u \) after customer \(i \), but before customer \(j \) is denoted by \(c_{11}(i, u, j) \) and \(c_{12}(i, u, j) \), respectively. The new actual arrival time at node \(j \) is denoted by \(b_j^{\text{new}} \) in (4.13). The vehicle savings criteria, denoted by \(c_{13}(i, u, j) \), considers any one of three parallel approaches to vehicle cost, where the savings concepts introduced by Golden et al. (1984) are adapted. Let:

- \(F(z) \triangleq \) the fixed cost of the smallest vehicle that can service a cumulative route demand of \(z \)
- \(F'(z) \triangleq \) the fixed cost of the largest vehicle whose capacity is less than or equal to \(z \)
- \(P(z) \triangleq \) the capacity of the smallest vehicle that can service a demand of \(z \)
- \(Q \triangleq \) be the load of the vehicle currently servicing the route
- \(Q' \triangleq \) be the maximum capacity of the vehicle currently servicing the route
\(Q^{\text{new}} \triangleq \) be the new load of the vehicle after the customer has been inserted into the route

\(Q^{\text{new}} \triangleq \) be the (new) capacity of the vehicle after the customer has been inserted into the route

The Adapted Combined Savings (ACS) is defined as the difference between the fixed costs of the vehicles capable of transporting the load of the route after, and before, inserting customer \(u \), and is calculated by (4.15).

\[
ACS = F(Q^{\text{new}}) - F(Q)
\]

(4.15)

The Adapted Optimistic Opportunity Savings (AOOS) extends the ACS by subtracting the fixed cost of the vehicle that can service the unused capacity, and is calculated by (4.16).

\[
AOOS = [F(Q^{\text{new}}) - F(Q)] - F(Q^{\text{new}} - Q^{\text{new}})
\]

(4.16)

The Adapted Realistic Opportunity Savings (AROS) takes the fixed cost of the largest vehicle smaller than or equal to the unused capacity, \(F'(Q^{\text{new}} - Q^{\text{new}}) \), into account as an opportunity saving. It only does so if a larger vehicle is required to service the current route after a new customer has been inserted. AROS is calculated by (4.17).

\[
AROS = [F(Q^{\text{new}}) - F(Q)] - \delta(\omega)F'(Q^{\text{new}} - Q^{\text{new}})
\]

(4.17)

where

\[
\delta(\omega) = \begin{cases}
1 & \text{if } Q + q_u > Q \\
0 & \text{otherwise.}
\end{cases}
\]

Any one of these savings criteria can be used as all three outperformed previous best published results for the initial solution [Dullaert et al., 2001]. Once the best position for each unrouted node has been determined, as illustrated in Figure 4.9, the customer that is best according to the selection criteria, is selected — the third step in the SIH algorithm.

The procedure can be expressed mathematically as

\[
c_2(i, u^*, j) = \max_u [c_2(i, u, j)], u \text{ unrouted and feasible}
\]

(4.18)

\[
c_2(i, u, j) = \lambda(d_{ou} + t_{ou}) + s_u + F(q_u) - c_1(i, u, j), \lambda \geq 0
\]

(4.19)

The best customer, \(u^* \), is then inserted into the partially created route between its specific nodes \(i \) and \(j \). From Figure 4.9, consider node D to be the best node. After inserting D into
the current route, node A remains the only unrouted node, and the new route is illustrated in Figure 4.10, and can be expressed as $Depot-B-D-C-E-Depot$. The insertion process is repeated until no remaining unrouted nodes have a feasible insertion place. A new route is then initialized and identified as the current route.

A shortcoming of Solomon’s SIH 1987 is that it considers all unrouted nodes when calculating the insertion and selection criteria for each iteration. The fact that all unrouted nodes are considered makes it computationally expensive. The occurrence of obvious infeasible nodes in a partially constructed route becomes significant in the extended problem considered in this thesis. In each iteration, these criteria are calculated for each edge on the partially constructed route, irrespective of the compatibility of the time window of the node considered for insertion with the time windows of the two nodes forming the edge. For an
improved case, consider the example where node u is considered for insertion between nodes i and j. As the TWCM is already calculated, it is possible to check the compatibility of node u with the routed nodes i and j. If either TWC_{iu} or TWC_{uj} is negative infinity ($-\infty$), indicating an incompatible time window, the insertion heuristic moves on and considers the next edge, without wasting computational effort on calculating the insertion and selection criteria. In the earlier example, eleven instances of infeasible time windows occur. If these instances are identified and eliminated, a computational saving in excess of 22% is achieved. The saving is calculated as the percentage of instances with time window incompatibilities of the total number of travel time instances.

4.3 Initial solutions

Solomon (1987) introduced 54 benchmark problems contained in six distinctive sets for the VRPTW, denoted by c_1, c_2, r_1, r_2, rc_1, and rc_2, each with 100 customer nodes. Each set highlights several factors that can affect the behavior of routing and scheduling heuristics. These factors include the geographical dispersion; the number of customers serviced by a vehicle, i.e. the relation between customer demand and vehicle capacity; and time window characteristics such as percentage of time-constrained customers, as well as the tightness and positioning of time windows.

The geographical data for the first group of problem sets are randomly generated using a uniform distribution (denote the corresponding problem sets by $r1$ and $r2$). The second group of sets are clustered (denote the corresponding problems sets by $c1$ and $c2$). A third semi-clustered group of sets have a combination of randomly distributed and clustered points (denote the corresponding problem sets by $rc1$ and $rc2$). Problem sets $r1$, $c1$, and $rc1$ have short scheduling horizons and along with vehicular capacities only allow a few customers to be serviced by a single vehicle. Problem sets $r2$, $c2$, and $rc2$ have long scheduling horizons, and when combined with large vehicular capacities, allows for a much higher number of customers being serviced by a single vehicle.

Homberger and Gehring (1999) extend the original problems to include problem sets having 200, 400, 600, and 1000 customer nodes. For illustrative purposes, Figure 4.11 shows the header of one of the Homberger and Gehring (1999) problem sets, as well as the first few customers. The depot is represented by customer ‘0’. The attributes for each customer include a customer number, coordinates, the demand, the earliest and latest allowed arrival, as well as the service time at each customer. The problem sets do unfortunately not accom-
moderate a heterogeneous fleet, and the fleet structure proposed by [Liu and Shen (1999b)] is thereafter used in this thesis — presented in Table 4.4 for each of the problem classes.

Time windows provided in the problem sets are hard, i.e. they allow neither early nor late arrivals. To create problem sets that will test the initial solution algorithm with soft time windows, a maximum lateness of $L_{\text{max}} = 30$ time units is associated with each node, including the depot. Such time windows incur waiting time if arriving early, but allow late arrivals penalized at a unit cost of α.

Multiple scheduling is achieved through an elementary routine testing whether there is at least ρ time units between the return time of the current route and the end of the depot’s time window. In this thesis the author uses an arbitrary value of $\rho = 60$ minutes.

Tables 4.5a through 4.5f show the results for 60 problem instances executed on an Intel® Pentium® 4 computer with a 3.6GHz processor (64Bit) and 3.25GB RAM.

Each table indicates the specific [Homberger and Gehring (1999)] problem instance from which the 100 customer data set as taken, the numbers of tours (vehicles) used in the initial solution, the total number of routes, the average time required to generate the initial solution, and the number of orphans. Orphans are customers from the data set that could not
Table 4.4: Heterogeneous fleet data (Liu and Shen, 1999a)

(a) Set r_1

<table>
<thead>
<tr>
<th>Type</th>
<th>Capacity</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>80</td>
</tr>
<tr>
<td>3</td>
<td>80</td>
<td>140</td>
</tr>
<tr>
<td>4</td>
<td>120</td>
<td>250</td>
</tr>
<tr>
<td>5</td>
<td>200</td>
<td>500</td>
</tr>
</tbody>
</table>

(b) Set r_2

<table>
<thead>
<tr>
<th>Type</th>
<th>Capacity</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>300</td>
<td>450</td>
</tr>
<tr>
<td>2</td>
<td>400</td>
<td>700</td>
</tr>
<tr>
<td>3</td>
<td>600</td>
<td>1200</td>
</tr>
<tr>
<td>4</td>
<td>1000</td>
<td>2500</td>
</tr>
</tbody>
</table>

(c) Set c_1

<table>
<thead>
<tr>
<th>Type</th>
<th>Capacity</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>300</td>
</tr>
<tr>
<td>2</td>
<td>200</td>
<td>800</td>
</tr>
<tr>
<td>3</td>
<td>300</td>
<td>1350</td>
</tr>
</tbody>
</table>

(d) Set c_2

<table>
<thead>
<tr>
<th>Type</th>
<th>Capacity</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>400</td>
<td>1000</td>
</tr>
<tr>
<td>2</td>
<td>500</td>
<td>1400</td>
</tr>
<tr>
<td>3</td>
<td>600</td>
<td>2000</td>
</tr>
<tr>
<td>4</td>
<td>700</td>
<td>2700</td>
</tr>
</tbody>
</table>

(e) Set rc_1

<table>
<thead>
<tr>
<th>Type</th>
<th>Capacity</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>2</td>
<td>80</td>
<td>150</td>
</tr>
<tr>
<td>3</td>
<td>150</td>
<td>300</td>
</tr>
<tr>
<td>4</td>
<td>200</td>
<td>450</td>
</tr>
</tbody>
</table>

(f) Set rc_2

<table>
<thead>
<tr>
<th>Type</th>
<th>Capacity</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>2</td>
<td>200</td>
<td>350</td>
</tr>
<tr>
<td>3</td>
<td>300</td>
<td>550</td>
</tr>
<tr>
<td>4</td>
<td>400</td>
<td>800</td>
</tr>
<tr>
<td>5</td>
<td>500</td>
<td>1100</td>
</tr>
<tr>
<td>6</td>
<td>1000</td>
<td>2500</td>
</tr>
</tbody>
</table>
Table 4.5a: Initial solution summary for the \(c1\) problem class

<table>
<thead>
<tr>
<th>Problem</th>
<th>Tours</th>
<th>Routes</th>
<th>Time (sec)</th>
<th>Orphans</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_{1,2,1})</td>
<td>33</td>
<td>40</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>(c_{1,2,2})</td>
<td>27</td>
<td>30</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>(c_{1,2,3})</td>
<td>29</td>
<td>44</td>
<td>22</td>
<td>2</td>
</tr>
<tr>
<td>(c_{1,2,4})</td>
<td>19</td>
<td>19</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>(c_{1,2,5})</td>
<td>27</td>
<td>28</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>(c_{1,2,6})</td>
<td>28</td>
<td>37</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>(c_{1,2,7})</td>
<td>23</td>
<td>24</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>(c_{1,2,8})</td>
<td>23</td>
<td>23</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>(c_{1,2,9})</td>
<td>21</td>
<td>21</td>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td>(c_{1,2,10})</td>
<td>19</td>
<td>20</td>
<td>22</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 4.5b: Initial solution summary for the \(c2\) problem class

<table>
<thead>
<tr>
<th>Problem</th>
<th>Tours</th>
<th>Routes</th>
<th>Time (sec)</th>
<th>Orphans</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_{2,2,1})</td>
<td>39</td>
<td>50</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>(c_{2,2,2})</td>
<td>29</td>
<td>39</td>
<td>15</td>
<td>8</td>
</tr>
<tr>
<td>(c_{2,2,3})</td>
<td>27</td>
<td>46</td>
<td>20</td>
<td>7</td>
</tr>
<tr>
<td>(c_{2,2,4})</td>
<td>17</td>
<td>17</td>
<td>34</td>
<td>6</td>
</tr>
<tr>
<td>(c_{2,2,5})</td>
<td>24</td>
<td>24</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>(c_{2,2,6})</td>
<td>25</td>
<td>25</td>
<td>14</td>
<td>2</td>
</tr>
<tr>
<td>(c_{2,2,7})</td>
<td>27</td>
<td>30</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>(c_{2,2,8})</td>
<td>25</td>
<td>25</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>(c_{2,2,9})</td>
<td>28</td>
<td>35</td>
<td>19</td>
<td>2</td>
</tr>
<tr>
<td>(c_{2,2,10})</td>
<td>23</td>
<td>24</td>
<td>20</td>
<td>0</td>
</tr>
</tbody>
</table>
Table 4.5c: Initial solution summary for the $r1$ problem class

<table>
<thead>
<tr>
<th>Problem</th>
<th>Tours</th>
<th>Routes</th>
<th>Time (sec)</th>
<th>Orphans</th>
</tr>
</thead>
<tbody>
<tr>
<td>r1.2.1</td>
<td>34</td>
<td>76</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>r1.2.2</td>
<td>37</td>
<td>71</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>r1.2.3</td>
<td>40</td>
<td>67</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>r1.2.4</td>
<td>59</td>
<td>70</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>r1.2.5</td>
<td>39</td>
<td>74</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>r1.2.6</td>
<td>42</td>
<td>69</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>r1.2.7</td>
<td>42</td>
<td>68</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>r1.2.8</td>
<td>57</td>
<td>70</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>r1.2.9</td>
<td>36</td>
<td>70</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>r1.2.10</td>
<td>39</td>
<td>68</td>
<td>6</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 4.5d: Initial solution summary for the $r2$ problem class

<table>
<thead>
<tr>
<th>Problem</th>
<th>Tours</th>
<th>Routes</th>
<th>Time (sec)</th>
<th>Orphans</th>
</tr>
</thead>
<tbody>
<tr>
<td>r2.2.1</td>
<td>13</td>
<td>21</td>
<td>21</td>
<td>1</td>
</tr>
<tr>
<td>r2.2.2</td>
<td>9</td>
<td>17</td>
<td>34</td>
<td>1</td>
</tr>
<tr>
<td>r2.2.3</td>
<td>6</td>
<td>7</td>
<td>64</td>
<td>0</td>
</tr>
<tr>
<td>r2.2.4</td>
<td>6</td>
<td>9</td>
<td>84</td>
<td>0</td>
</tr>
<tr>
<td>r2.2.5</td>
<td>9</td>
<td>12</td>
<td>28</td>
<td>0</td>
</tr>
<tr>
<td>r2.2.6</td>
<td>9</td>
<td>9</td>
<td>57</td>
<td>0</td>
</tr>
<tr>
<td>r2.2.7</td>
<td>8</td>
<td>10</td>
<td>74</td>
<td>0</td>
</tr>
<tr>
<td>r2.2.8</td>
<td>6</td>
<td>7</td>
<td>94</td>
<td>0</td>
</tr>
<tr>
<td>r2.2.9</td>
<td>9</td>
<td>11</td>
<td>41</td>
<td>0</td>
</tr>
<tr>
<td>r2.2.10</td>
<td>10</td>
<td>11</td>
<td>41</td>
<td>0</td>
</tr>
</tbody>
</table>
Table 4.5e: Initial solution summary for the rc1 problem class

<table>
<thead>
<tr>
<th>Problem</th>
<th>Tours</th>
<th>Routes</th>
<th>Time (sec)</th>
<th>Orphans</th>
</tr>
</thead>
<tbody>
<tr>
<td>rc1.2.1</td>
<td>30</td>
<td>51</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>rc1.2.2</td>
<td>26</td>
<td>48</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>rc1.2.3</td>
<td>27</td>
<td>46</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>rc1.2.4</td>
<td>34</td>
<td>46</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>rc1.2.5</td>
<td>26</td>
<td>47</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>rc1.2.6</td>
<td>29</td>
<td>49</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>rc1.2.7</td>
<td>30</td>
<td>48</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>rc1.2.8</td>
<td>25</td>
<td>47</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>rc1.2.9</td>
<td>27</td>
<td>47</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>rc1.2.10</td>
<td>35</td>
<td>48</td>
<td>11</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 4.5f: Initial solution summary for the rc2 problem class

<table>
<thead>
<tr>
<th>Problem</th>
<th>Tours</th>
<th>Routes</th>
<th>Time (sec)</th>
<th>Orphans</th>
</tr>
</thead>
<tbody>
<tr>
<td>rc2.2.1</td>
<td>13</td>
<td>26</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>rc2.2.2</td>
<td>11</td>
<td>26</td>
<td>23</td>
<td>0</td>
</tr>
<tr>
<td>rc2.2.3</td>
<td>11</td>
<td>24</td>
<td>31</td>
<td>1</td>
</tr>
<tr>
<td>rc2.2.4</td>
<td>11</td>
<td>18</td>
<td>31</td>
<td>0</td>
</tr>
<tr>
<td>rc2.2.5</td>
<td>12</td>
<td>20</td>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td>rc2.2.6</td>
<td>12</td>
<td>18</td>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>rc2.2.7</td>
<td>9</td>
<td>18</td>
<td>21</td>
<td>0</td>
</tr>
<tr>
<td>rc2.2.8</td>
<td>11</td>
<td>18</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>rc2.2.9</td>
<td>13</td>
<td>18</td>
<td>21</td>
<td>0</td>
</tr>
<tr>
<td>rc2.2.10</td>
<td>13</td>
<td>19</td>
<td>25</td>
<td>0</td>
</tr>
</tbody>
</table>
feasibly be included in the initial solution. Ten iterations were used to calculate the average time values. Orphans are a result of the specific problem instance. The time dependent travel times that were calculated using randomly generated edge types, $v_{c,T}$, may result in a situation whereby a customer can not be serviced within the time window of the depot, even if such customers are serviced by a dedicated vehicle.

A sample of an initial solution output file for the $r2_2_3$ problem set (see Table 4.5d) is provided in Appendix A. The initial solution indicates the algorithm’s ability to generate more than one route per vehicle, and indicates the vehicle type assigned to the specific route. Each line represents a route, with each route starting and ending at the depot. Sequential numbers in each route represent the customers and the sequence in which customers are serviced. In the solution for the $r2_2_3$ problem all nodes are routed, and no orphans exist.

4.4 Conclusion

To establish an initial solution that addresses not only time windows, but also time dependent travel times and a heterogeneous fleet, requires a computational expensive routine. In this chapter the author introduced the concept of Time Window Compatibility (TWC) to ease the computational burden. The concept of TWC is also employed to identify seed customers as the most incompatible customer nodes.

Data sets from literature were adapted to create test problems for which the initial solution algorithm found solutions within seconds. The initial solutions generated in this chapter is used as inputs to the route improvement metaheuristics that are developed in Chapters 5 through 6.
Chapter 5

A Tabu Search solution algorithm

The TS examines a trajectory sequence of solutions and moves to the best neighbor of the current solution. To avoid cycling, solutions that were recently examined are forbidden, or tabu, for a number of iterations \cite{Gendreau02}. Section 3.3.1 reviews the basic structure of the TS.

Taillard \cite{Taillard93} introduces a feature whereby the main problem is decomposed into independent subproblems so that the algorithm can be parallelized on multiple processors. Each subproblem is solved on a different processor before the tours are grouped together to construct a solution to the original problem. The new solution is then decomposed, and the process repeats itself for a given number of times. A random selection of components in the decomposition process ensures the algorithm produces different solutions from one execution to the next. In this thesis an approach similar to that of Taillard \cite{Taillard93} and Rochat and Taillard \cite{Rochat95} is followed, albeit on a single processor. The approach can be parallelized through the coding structure in future research, but recent software technology, i.e. cluster scheduling such as the MATLAB Distributed Computing system, provides the software the ability to automatically determine which segment of an algorithm can be parallelized on multiple clustered processors without adapting the code.

The chapter starts with a brief discussion of the main elements of a TS algorithm, followed by the TS proposed in this thesis, and a detailed discussion of each phase of the TS. The chapter concludes with an analysis of the algorithm’s results for problems based on integrated data sets of Solomon \cite{Solomon87}, Homberger and Gehring \cite{Homberger99}, and Liu and Shen \cite{Liu99a,b}.

83
5.1 Elements of the tabu algorithm

Tabu list A list of the last few moves (or solutions). The memory of moves can be recency or frequency-based. Short-term recency-based memory forbids cycling around a local neighborhood in the solution space through setting the last T moves as Tabu. Recently made moves are stored in a mechanism that is referred to as the Tabu-Move list. The number of moves in the list is determined by the tabu list size, denoted by T. The list operates on a first-in-first-out principle. Other recency information that is stored in the Tabu list is the solution configurations. The larger the value of T, the longer the moves and solutions stay tabu. The Tabu-Solution list is a set of solutions that have been created recently by exchanging segments between routes. The solutions are coded into an integer string. The total cost of the solution is also attached to the string.

Long-term frequency-based memory allows searches to be conducted in the most promising neighborhoods. The frequency-based memory provides additional information of how many times a tabu move have been attempted. To alleviate time and memory requirements, it is customary to record an attribute of a tabu solution, and not the solution itself.

Candidate list TS makes use of a candidate list that provides a list of moves to evaluate. One move of the candidate list is chosen to proceed with the search. The candidate list plays an important role in the performance of TS.

Intensification and diversification Two memory-based strategies that form a fundamental principle of TS. Gendreau (2003) claims diversification to be the single-most important issue in designing a TS. With the use of the intensification strategy regions around attractive solutions are more thoroughly searched, and typically operates by restarting a search from a solution previously found to yield good results. The restart is achieved through the candidate list representing attractive regions. Diversification, on the other hand, encourages the search process to examine unvisited regions and to generate solutions that differ in various significant ways from previous solutions. The probabilistic diversification and intensification introduced by Rochat and Taillard (1995) is also referred to as the Adaptive Memory Procedure (AMP).

Penalized objective function The objective function of a solution s is denoted by $f_1(s)$ and is calculated by (5.1) as the sum of the travel times of all routes and tours, and
the total lateness at all customers \cite{Ichoua2003}.

\[f_1(s) = \sum_{\text{Tours}} \sum_{\text{Routes}} t + \sum_{\text{Customers}} \alpha_i y_i \quad (5.1) \]

In the calculation, \(\alpha_i \) denotes the lateness penalty for customer \(i \), while \(y_i = \max \{0, a_i - l_i\} \).

The actual arrival time at customer \(i \) is denoted by \(a_i \), while \(l_i \) denotes the latest allowed arrival time at customer \(i \). The design of the algorithm ensures that \(a_i \leq l_i + L_i^{\text{max}} \), where \(L_i^{\text{max}} \) is the maximum allowed lateness at customer \(i \). The objective function is artificially adapted to incorporate a significant penalty for any unrouted customers, referred to as orphans. The artificial objective function, \(f_2(s) \), is expressed in (5.2),

\[f_2(s) = f_1(s) + \beta o \quad (5.2) \]

where \(\beta \) is a nonnegative penalty factor, and \(o \) the number of orphans in the final solution. Orphans are only created if the time window of the customer is completely incompatible with that of the depot, even if it is serviced by a dedicated vehicle.

Stopping criteria The search is terminated once a preset maximum number of iterations of the main TS algorithm have been reached. An alternative stopping criteria could be a predetermined number of attempts being made to set the same solution in the Tabu-Solution list as the new current solution. This indicates that the search has been caught in a local optimum, hence terminating the search.

5.2 Tabu algorithm

The phased approach of the TS algorithm, similar to the implementation of Taillard et al. (1997) and Gendreau et al. (1999), is illustrated in Algorithm 5.1. Data structures are indicated with sans serif font, while functional routines are indicated with typewriter font.

5.2.1 Initialization

The initial solution algorithm proposed in Chapter 4 forms the basis of the initialization phase, but generates only a single initial solution, \(s \). As \(I \), preferably different, initial solutions are required, the routine in Algorithm 5.2 is proposed. For each initial solution required, a random node \(I_i^* \) is identified and removed from the problem set \(P \). The remaining nodes in \(P' \) are used to create an initial solution using the improved initial solution algorithm proposed in Chapter 4. After the nodes in \(P' \) have been routed, the identified node \(I_i^* \) is reinserted into the first feasible position. The result is a set of initial solutions.
Algorithm 5.1: Tabu Search (TS) Overview

Input: stopping criteria

Input: Adaptive Memory size, M

1 begin Initialization (Section 5.2.1)

2 construct I unique initial solutions $s = \{s_1, s_2, \ldots, s_I\}$

3 $\hat{x} \leftarrow \min_{i \in \{1, \ldots, I\}} \{s_i\}$

4 decompose s into independent tour set T

5 store M best tours of $T \cup$ (Adaptive Memory) in the Adaptive Memory

6 end

7 begin Optimization (Section 5.2.2)

8 while stopping criteria is not met do

9 construct a biased solution, x from the tours in Adaptive Memory

10 $x^{\text{current}} \leftarrow x$

11 for W iterations do

12 $x^* \leftarrow$ locally optimized x^{current}

13 $x^{\text{current}} \leftarrow x^*$

14 if $x^{\text{current}} < \hat{x}$ then

15 $\hat{x} \leftarrow x^{\text{current}}$

16 endif

17 endfor

18 endw

19 decompose x^{current} into independent tour set T

20 store M best tours of $T \cup$ (Adaptive Memory) in the Adaptive Memory

21 end

22 report incumbent \hat{x}
Algorithm 5.2: Tabu Search (TS) Initialization

Input: Problem set P, with $|P| = n$ nodes

Input: Number of initial solutions required, I

1. identify $I^* \subset P$, a randomly identified subset with I nodes from problem set;

2. foreach $I^*_i \in I^*$ do
 3. $P' \leftarrow P \setminus \{I^*_i\}$;
 4. find initial solution s by executing Initial solution heuristic with P';
 5. re-insert I^*_i into initial solution to create s_i

endfch

$s = \{s_1, s_2, \ldots, s_I\}$. Each initial solution’s tours are stored in the adaptive memory, and associated with it the objective function value of the initial solution from which the tour originates. All tours consisting of only a single node are removed from the adaptive memory.

5.2.2 Optimization

The TS optimization routine listed in Algorithm 5.3 terminates after executing a predefined number of local optimization iterations, denoted by I^{max}. A partially constructed tour is created through iteratively selecting tours from the adaptive memory, and removing all tours from the adaptive memory that share nodes with the selected tour. The probability of selecting any tour is based on the objective function associated with the tour, which in turn is taken from the solution from which the tour originates. Glover (1990) notes that the use of probabilities, based on past performance, as an underlying measure of randomization yields efficient and effective means of diversification. The better a solution, the higher the probability of selecting a tour from that solution. Once a tour is selected from the adaptive memory, all tours sharing nodes with the selected tour are removed from memory. Removing tours from the adaptive memory ensures each node is represented only once in the partially constructed tour. The selection of tours from the adaptive memory, and the removal of tours with common nodes, is repeated until no more tours remain in the adaptive memory. As not all nodes are represented, the partially constructed tour denoted by s, is completed by inserting the remaining unrouted nodes into feasible positions of s. The resulting tour, denoted by s^*, is achieved through either identifying positions on a current route, creating a new route on a current tour, or creating a new tour with its associated vehicle.
Algorithm 5.3: Tabu Search (TS) Optimization

Input: Incumbent solution, \hat{x}

Input: Iteration limit for local optimization, I_{\max}

Input: Frequency parameter, ζ

1. $s = \{\cdot\}$
2. assign set of tours, $A \leftarrow$ Adaptive Memory
3. repeat
4. select $a \in A$
5. $s \leftarrow s \cup a$
6. $A \leftarrow A \ominus (a \cap A)$
7. until $A = \{\cdot\}$
8. $s^* \leftarrow s \ominus (\{1, 2, \ldots, N\} \ominus s)$
9. $i \leftarrow 0$
10. repeat
11. $i \leftarrow i + 1$
12. if $\left\lfloor \frac{i}{\zeta} \right\rfloor = \frac{i}{\zeta}$ then
13. exchange heuristic $j = \{1, 2\}$
14. else
15. select exchange heuristic $j \in \{1, 2\}$ with probability p_j
16. endif
17. $s'_j \leftarrow e_j(s^*)$
18. $s' \leftarrow \min_j \{s'_j\}$
19. $x' \leftarrow f(s')$
20. if $x' < \hat{x}$ then
21. $\hat{s} \leftarrow s'$
22. $s^* \leftarrow s'$
23. endif
24. until $i > I_{\max}$
Two exchange operators are considered. The first operator removes a randomly selected node from one tour and inserts the node into the best possible position in another tour that has the same vehicle type. The second operator also removes a randomly selected node from an origin tour, but selects the best insertion position for the node on a tour having a different vehicle type than the origin tour.

Initially the probability of selecting either of the operators is equal. A frequency parameter, \(\zeta \), ensures that every \(\zeta \) iterations both operators are used to create perturbations. The probability of the operator producing the best solution is then increased relative to its current probability. Consider, during a general iteration, the first operator having a weight of \(\alpha = 30 \) and the second operator having a weight of \(\beta = 60 \). If both operators are executed, and the first operator yields a better solution, its weight will be increased by a factor \(\gamma \). In this thesis \(\gamma \) is arbitrarily set to 2. The new probability of selecting the first operator is

\[
p_1 = \frac{\gamma \alpha}{\gamma \alpha + \beta} = \frac{2 \times 30}{2 \times 30 + 60} = 0.50,
\]

and the probability of selecting the second operator is calculated as

\[
p_2 = 1 - p_1.
\]

5.3 Results and analysis

The TS algorithm proposed in this thesis contains a random component similar to the algorithm proposed by Rochat and Taillard (1995). This means that two runs of the algorithm will generally produce two different solutions. Figure 5.1 provides graphs for a random selection of problems. Each graph indicates the iteration number on the \(x \)-axis, while the objective function value is represented on the \(y \)-axis. The thinner of the two lines on each graph represent the actual objective function value of the solution for the given iteration, while the thick line represents the incumbent — the best solution found thus far, at that iteration.

It is noticeable that the incumbent for the first iteration is frequently lower than the actual iteration value. This is the result of the incumbent being represented by one of the ten initial solutions created for the TS, whereas the first iteration’s solution is created through the solution-building mechanism that selects tours from the adaptive memory. The incumbent,
never improved by more than 10% over the 100 iterations, reflecting on the high quality initial solution proposed in Chapter 4.

Because of the randomness inherent in the structure of the proposed TS, the results presented in Appendix B sees four independent runs executed, with Tables B.1(a) through B.1(f) providing the objective function values for each of the runs, as well as the average objective function value obtained. The last column of the result tables provide the average time (in seconds) required to obtain a solution. The average time is provided under the assumption that time-dependent travel time matrices are not available, and that such matrices have to be established once, and adhere to the triangular inequality

$$t_{ik} + t_{kj} \geq t_{ij} \quad \forall i, j, k \in \{1, 2, \ldots, N\}.$$ \hspace{1cm} (5.3)

Although Toth and Vigo (2002b) interpret the triangular inequality as being inconvenient to deviate from the direct link between nodes i and j, it may be practical to adjust the link
from i to j to rather pass via node k without actually visiting node k. This occurs when the direct link is heavily congested during peak times. Adjusting the route selection in combination with time-dependent travel times are highly dependent on an accurate GIS.

5.4 Conclusion

A Tabu Search (TS) algorithm is proposed that generates a number of initial solutions as input, from where tours are added to an Adaptive Memory Procedure (AMP). During each consecutive iteration, tours are selected from the AMP in a biased manner to construct a new solution. Non-tabu, feasible solutions are generated in an attempt to escape local minima.

The algorithm is coded in MATLAB, and tested on 60 benchmark data sets adapted from literature. The sets are adapted to accommodate multiple routes per tour, as well as a heterogeneous fleet in an environment where time dependent travel times occur. The results are promising, yielding solutions between 670 and 4762 seconds on a standard Intel Pentium Centrino laptop computer with a 1.5GHz processor and 512MB of RAM. Four independent runs are executed for each of the 60 problems. The Absolute Mean Deviation (AMD) of the solution quality between the 240 runs is 3.6%, indicating an algorithm that produces consistent solutions between runs.

In the next chapter, the GA is investigated as an alternative to the TS.
Chapter 6

A Genetic Algorithm

In this thesis the approach by Tan et al. (2001c) is followed whereby a Genetic Algorithm (GA) uses a path representation to code chromosomes (routes). For example, the chromosome string 4-5-2-3-1 represents a route that starts at node 4, followed by node 5, then 2, 3, and 1 before returning to node 4. Each element in the chromosome is referred to as an allele. For a problem with \(n \) customers, each chromosome will be an integer string with \(n \) elements. Although elementary crossover routines often destroy the validity of tours and routes, specific crossover routines have been developed to ensure that tours and routes remain valid, and keeps improving.

A slightly adapted version of the GA discussed in Algorithm 3.3 is provided in Algorithm 6.1. The GA requires a generation limit similar to the iteration limit for TS and SA. The population size determines the number of solutions in a single generation. The population subdivision parameters establishes the fraction of the population that will undergo specific genetic manipulation. To ensure the natural phenomena of survival of the fittest, the elitist parameter \(p_e \) ensures that the \(p_e \) fittest solutions in a given generation \(g \) is exactly copied to the next generation \(g + 1 \). The mutation parameter \(p_m \) determines the number of chromosomes that will undergo random changes, or mutation. The crossover parameter, \(p_c \), determines the number of solutions that will produce offspring by sharing elements of its chromosomes.

The algorithm is initialized with the generation of \(p \) solutions, each containing a single TSP string of nodes. Vns (1999) states that initial solutions can be generated either randomly or heuristically, while Tan et al. (2001c) suggest a combination of solutions: some generated using an efficient Push Forward Insertion Heuristic (PFIH), and the balance generated randomly.
Algorithm 6.1: Genetic Algorithm (GA) overview

Input: Generation limit g^{max}

Input: Population size p

Input: Population subdivisions p_e, p_m, and p_c such that $p_e + p_m + p_c = p$

1. $g \leftarrow 0$

2. **begin initialization**
 3. generate feasible TSP solutions x_1^0, \ldots, x_p^0

4. **end**

5. **repeat**

6. $g \leftarrow g + 1$

7. **cluster** TSP solutions

8. determine fitness of TSP solutions

9. **begin elite**
 10. Copy p_e best solutions from generation g to generation $g + 1$

11. **end**

12. **begin mutation**
 13. Include p_m mutated solutions in generation $g + 1$

14. **end**

15. **begin crossover**
 16. Choose p_c non-overlapping pairs of solutions from generation g
 17. **execute** crossover perturbations
 18. Include new solutions in generation $g + 1$

19. **end**

20. **until** $g = g^{max}$

21. $x^* \leftarrow \min_{i \in \{1, \ldots, p\}} \{x_i^g\}$

22. $\hat{x} \leftarrow$ locally optimized x^*
The GA proceeds for g_{max} generations. During each generation, the single string solution, also referred to as a TSP solution, is clustered and assigned to vehicles. Each solution’s fitness is calculated as the objective function of the specific solution. Based on the fitness, the algorithm reproduces the next generation through a combination of cloning the p_e fittest solutions exactly to the next generation, mutating p_m solutions through small changes referred to as perturbations, and creating p_c new offspring by performing crossover perturbations on a selection of generation g solutions.

The following sections discuss some of the elements of the GA in more detail.

6.1 Initialization

The simplest and computationally most efficient way of generating p initial solutions, each containing n customers, is to create p random permutations of integers between 1 and n. Each integer value represents a specific customer. To generate a population of 200 solutions (chromosomes), each with 200 nodes takes MATLAB on average 0.014 seconds (average obtained from 10,000 independent runs) on a standard Intel Pentium Centrino laptop computer with a 1.5GHz processor and 512MB of RAM.

As an alternative, initial solutions can be generated using the algorithm presented in Chapter 4 and adapted for the TS in Algorithm 5.2.

6.2 Clustering

Each chromosome represents a solution in the form of a single integer string, similar to the TSP strings proposed by Michalewicz (1992). The difficulty with having a single string to represent multiple tours and routes is that the chromosome needs to be clustered, and assigned to vehicles.

Although Tan et al. (2001c) simply adds the first allele of the chromosome to the end of the current tour until vehicle capacity is met, the author of this thesis propose the clustering routine presented in Algorithm 6.2 to address multiple scheduling. The first allele of the chromosome is considered for insertion on each edge of each route of the current tour, and not only at the end of the route. If no position is found for the customer, a new route on the current tour is considered. If an additional route leads to infeasibilities, a new tour is initialized, and the customer is inserted. A customer is only orphaned if it can not be serviced by a dedicated tour.
Algorithm 6.2: GA clustering

Input: population

1. foreach chromosome in population do
2. repeat
3. found ← 0
4. forall the routes of current tour do
5. forall the edges on current route do
6. if feasible insertion then
7. found ← 1
8. endif
9. endfall
10. endfall
11. if found = 1 then
12. insert customer
13. else if multiple routes are feasible then
14. insert customer into new route
15. else
16. create new current tour
17. create new first route
18. endif
19. until all customers are routed, or vehicles are depleted
20. report orphans
21. endfch
6.3 Mutation

A proportion, \(p_m \) of all chromosomes in a given generation is mutated to ensure that the GA does not get stuck in a local optimum [Vas, 1999]. The proportion is typically very low to ensure that good chromosomes remain intact. Michalewicz (1992) introduces a non-uniform mutation rate whereby the number of chromosomes mutated decreases to ensure that the solution space is searched widely during early generations, and only searched locally in later generations.

In the majority of applications binary representation is used and mutation involves changing a 0 value to 1, and vice versa. In this thesis the approach of [Tan et al., 2001a] is followed whereby randomly selected customers are swapped in an integer string representation of a chromosome.

6.4 Crossover

Crossover operators are concerned with producing offspring solutions for the next generation from two parent solutions from the current generation. Parents are selected using a biased roulette wheel. A number of the operators produce only a single offspring from the two parents, while others produce two offspring. To illustrate the various crossover operators, the first ten nodes of the C2-2-2 problem set is used.

6.4.1 Enhanced Edge Recombination (EER)

Whitley, Starkweather & Fuquay (as cited by Michalewicz, 1992) developed the Edge Recombination (ER) crossover technique which they claim transfer more than 95% of the edges from the parents to a single offspring. To illustrate the ER, consider two single string TSP solutions, A and B, illustrated in Figures 6.1(a) and 6.1(b) respectively. The edge table created in Table 6.1(a) lists for each node all the neighbouring nodes from both parent solutions. The single offspring, denoted by C, starts by selecting a starting element. Starkweather et al. (1991) state that the starting element can be either chosen randomly from the set of elements which has the fewest entries in the edge table, or a random choice between the starting element from either parent A or B. The latter option is used in this thesis. Of the elements that have links to the last element in C, choose the element which has the fewest number of unassigned links in the edge table entry, breaking ties randomly. The process is repeated until the new offspring chromosome is complete.
Figure 6.1: Two parent solutions illustrating the ER crossover

Table 6.1: Edge lists

<table>
<thead>
<tr>
<th>City</th>
<th>Links</th>
<th>City</th>
<th>Links</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a)</td>
<td>ER edge list</td>
<td>(b)</td>
<td>EER edge list</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2, 4, 9, 10</td>
<td>1</td>
<td>2, 4, 9, 10</td>
</tr>
<tr>
<td>2</td>
<td>1, 3, 4, 10</td>
<td>2</td>
<td>1, 3, 4, 10</td>
</tr>
<tr>
<td>3</td>
<td>2, 4, 5, 8</td>
<td>3</td>
<td>2, 4, 5, 8</td>
</tr>
<tr>
<td>4</td>
<td>1, 2, 3, 5</td>
<td>4</td>
<td>1, 2, 3, 5</td>
</tr>
<tr>
<td>5</td>
<td>3, 4, 6</td>
<td>5</td>
<td>3, 4, -6</td>
</tr>
<tr>
<td>6</td>
<td>5, 7</td>
<td>6</td>
<td>-5, -7</td>
</tr>
<tr>
<td>7</td>
<td>6, 8, 9</td>
<td>7</td>
<td>-6, 8, 9</td>
</tr>
<tr>
<td>8</td>
<td>3, 7, 9, 10</td>
<td>8</td>
<td>3, 7, 9, 10</td>
</tr>
<tr>
<td>9</td>
<td>1, 7, 8, 10</td>
<td>9</td>
<td>1, 7, 8, 10</td>
</tr>
<tr>
<td>10</td>
<td>1, 2, 8, 9</td>
<td>10</td>
<td>1, 2, 8, 9</td>
</tr>
</tbody>
</table>

Suppose element 1 is selected from A as starting element in C. Since 1 has been assigned to C, all occurrences of 1 is removed from the edge list. Element 1 has links to 2, 4, 9 and 10, each having 3 remaining links in the edge table. Element 2 is randomly chosen as next element in C and all element 2’s occurrences are removed from the edge table. Element 2 has links with 3, 4 and 10, of which 4 and 10 have only 2 remaining links in the edge table. Element 10 is chosen randomly as the next element in C, having links to elements 8 and 9. Element 9 has the least (2) number of remaining links in the edge list, and chosen as the next element in C. The process continues until \(C = [1 \ 2 \ 10 \ 9 \ 7 \ 8 \ 3 \ 4 \ 5 \ 6] \).

To enhance the random breaking of ties when selecting among elements, Starkweather et al. (1991) changed the edge list to indicate common edges. This is achieved by flagging a common edge by inverting, for example, 3 to \(-3\) if an element has a common edge to element 3 in both parents. Table 6.1(b) indicates the edge list with flagged common edges. When a tie exist between elements, preference is given to the element with the highest number of remaining flagged elements. If a tie still exists, it may be broken randomly. Following the same procedure as for the ER example above, a slightly different offspring \(C' = [1 \ 2 \ 10 \ 9 \ 7 \ 6 \ 5 \ 3 \ 4 \ 8] \) is obtained. The offspring chromosome is illustrated in Figure 6.1(c). The only new edge in the offspring is the edge connecting elements 6 and 1. Hence, 90% of the edges are transferred from the parents to the offspring solution.

6.4.2 Merged Crossover (MX)

The MX was first introduced by Blanton and Wainwright (1993) and is based on the notion of a global precedence among genes of any chromosome, rather than defining a precedence among genes specific to parents in a local crossover such as the EER. A number of precedence vectors have been established in literature.

Latest allowed arrival time

Chen et al. (1998) state that there is a natural precedence relationship among all customers based on the upper limit of their time windows. The precedence list, denoted by \(P \), for the example problem is \(P = [2 \ 8 \ 3 \ 5 \ 7 \ 1 \ 10 \ 6 \ 9 \ 4] \), based on the time window details provided in Table 6.2.

To illustrate the crossover, we consider parents A and B from Figure 6.1. The first elements from both parents are considered: element 5 from B appears before element 1 from A in the precedence list \(P \), and is selected as first element in offspring \(C \). To maintain
Table 6.2: Time window details for customers from the C2-2-2 problem set

<table>
<thead>
<tr>
<th>Customer, (i)</th>
<th>Earliest allowed arrival, (e_i)</th>
<th>Latest allowed arrival, (l_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2808</td>
<td>2968</td>
</tr>
<tr>
<td>2</td>
<td>668</td>
<td>828</td>
</tr>
<tr>
<td>3</td>
<td>1021</td>
<td>1181</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>3481</td>
</tr>
<tr>
<td>5</td>
<td>1922</td>
<td>2082</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>3451</td>
</tr>
<tr>
<td>7</td>
<td>2597</td>
<td>2757</td>
</tr>
<tr>
<td>8</td>
<td>906</td>
<td>1066</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>3475</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>3445</td>
</tr>
</tbody>
</table>

validity, elements 1 and 5 are swapped in parent \(A \).

\[
A = [5 \ 2 \ 3 \ 4 \ 1 \ 6 \ 7 \ 8 \ 9 \ 10] \\
B = [5 \ 6 \ 9 \ 1 \ 4 \ 2 \ 10 \ 8 \ 3 \ 7] \\
C = [5 \star \star \star \star \star \star \star \star \star]
\]

Next, the second elements of each parent is considered. As element 2 from \(A \) appears before element 6 from \(B \) in the precedence list, element 2 is placed in the offspring, and elements 2 and 6 are swapped in parent \(B \).

\[
A = [5 \ 2 \ 3 \ 4 \ 1 \ 6 \ 7 \ 8 \ 9 \ 10] \\
B = [5 \ 2 \ 9 \ 1 \ 4 \ 6 \ 10 \ 8 \ 3 \ 7] \\
C = [5 \ 2 \star \star \star \star \star \star \star \star \star]
\]

The process is repeated until the offspring chromosome is completed with \(C = [5 \ 2 \ 3 \ 1 \ 4 \ 6 \ 7 \ 8 \ 9 \ 10] \). The \(MX \) approach is denoted by \(MX_{l_i} \).

Earliest allowed arrival time

Louis et al. (1999) suggest using the earliest allowed arrival time, given by \(e_i \) in Table 6.2, to establish the precedence list, denoted by \(MX_{e_i} \). Executing their recommendation results in a precedence list \(P = [4 \ 6 \ 9 \ 10 \ 2 \ 8 \ 3 \ 5 \ 7 \ 1] \). When using the precedence list on parents \(A \) and \(B \) from Figure 6.1 an offspring chromosome \(C = [5 \ 6 \ 9 \ 4 \ 1 \ 2 \ 10 \ 8 \ 3 \ 7] \) results.
Time window compatibility

Two novel ways of establishing a precedence list are suggested in this thesis. In the first novel approach denoted by MX_{twc}, the total compatibility for each customer is calculated using either (4.8) or (4.9), sorted in ascending order to create the precedence list. Ties are broken arbitrarily. The resulting precedence list sees incompatible nodes placed earlier in the chromosome. More compatible nodes are subsequently inserted to fill routes and tours.

Angles

The second novel way to establish the precedence list is to reconsider the fundamental way in which the the crossover operator is used. The simplicity, yet success of the sweep algorithm proposed by Gillett and Miller (1974) is incorporated in this MX approach denoted by MX_\angle. The angle for each customer is calculated, and the angles are sorted in ascending order to determine the precedence list. The resulting crossover ensures that customers that are located close to one another are assigned to the same route, time windows permitting.

With the depot’s location indicated by an open circle in Figure 6.2, the precedence list

$$P = [1 8 2 10 6 9 4 7 5 3]$$

is established.

6.4.3 Partially Matched Crossover (PMX)

PMX is a genetic operator often used with TSP problems using integer string representation (Goldberg and Lingle 1985). The operator selects two parent chromosomes using the biased roulette wheel, and produces two offspring chromosomes, as opposed to the previous operators producing only a single offspring. Consider again the two parent chromosomes A and B given in Figure 6.1. Two crossing positions a and b are randomly selected such that
\[1 \leq a < b \leq \|A\| + 1, \text{ where } \|A\| \text{ denotes the number of elements (alleles) in chromosome } A. \] For illustrative purposes let \(a = 3 \) and \(b = 7 \). To create offspring 1, denoted by \(C_1 \), the strings between the crossing positions from parent 2 is copied to \(C_1 \).

\[
C_1 = [\star \star 9 1 4 2 \star \star \star]
\]

For each element in \(A \) between \(a \) and \(b \), starting from position \(a \), look for elements in \(A \) that have not been copied to \(C_1 \). In the example element 3 is identified. Element 3’s position in \(A \) is occupied by element 9 in \(C_1 \), and hence element 9 in \(A \)’s position is filled in \(C_1 \) with 3 such that

\[
C_1 = [\star \star 9 1 4 2 \star 3 \star].
\]

Next, element 5 in \(A \) is identified, as element 4 has already been copied to offspring \(C_1 \). Element 5’s position in \(A \) is occupied by 4 in \(C_1 \), but since element 4 in \(A \)’s position is already occupied in \(C_1 \) by element 1, element 1’s position in \(A \) is identified for element 5 in \(C_1 \) such that

\[
C_1 = [5 \star 9 1 4 2 \star 3 \star].
\]

Element 6 in \(A \) is identified next. Element 6’s position in \(C_1 \) is occupied by element 2, which in turn, is located in position 2 in \(A \). Hence, element 6 is placed in position 2 in \(C_1 \) such that

\[
C_1 = [5 6 9 1 4 2 \star 3 \star].
\]

As all elements in \(A \) between positions \(a \) and \(b \) have been considered, \(C_1 \) is completed by duplicating the remaining elements from \(A \) such that

\[
C_1 = [5 6 9 1 4 2 7 8 3 10].
\]

The second offspring, denoted by \(C_2 \), is created in a similar fashion with the resulting offspring being \(C_2 = [1 2 3 4 5 6 10 8 9 7] \).

6.5 Evaluating crossover operators

The proposed GA algorithm is executed to identify appropriate crossover operators for the varying problem sets. Due to computational time complexity, a single problem is randomly selected from each problem set. Each crossover operator is then tested using 4 independent iterations. The fitness is calculated using an objective function which considers total
travel time, number of vehicles used, and total lateness at customers. The GA is executed for a maximum of 200 generations, each having 100 chromosomes. Of every new generation, 80% of chromosomes were generated through crossover operators. Initially 10% of a newly created generation is established through mutation to ensure that the solution space is widely searched. A non-uniform mutation rate introduced by Michalewicz (1992) reduces the number of mutated chromosomes as the number of generations increases. Hence the solution space is only locally searched towards the end of the algorithm. The balance of a new generation is created by cloning (copying exactly) the best chromosomes from the previous generation.

Figure 6.3 illustrates the performance of the various crossover mechanisms for each problem set. The performances are expressed and calibrated according to the best crossover operators for the specific problem set. Actual results are provided in Tables 6.3a and 6.3b, providing the best fitness (objective function value) obtained over the four independent runs, as well as the average time required (in seconds) to find a solution.

Contrary to Blanton and Wainwright (1993) claiming that most of their MX operators outperform the PMX operator, the results in this thesis indicates six instances in which the PMX is either significantly better in terms of fitness, or significantly faster than any of the other crossover operators. In only two instances, $c2_2.3$ and $rc2_3.8$, did MX prove significantly faster than the other crossover operators, of which one instance is the newly proposed MX_{twc}.

Using a standard statistical t-test, the EER crossover operators proved to be consistently worse and slower than other mechanisms, and is consequently omitted from further analysis. The remaining operators are again subjected to a t-test, resulting in some operators to be identified as significant, hence labels (e) and (f) in Tables 6.3a and 6.3b.

Self regulation can be achieved through a biased selection of operators based on past performance. Initially each operator (except EER) is assigned equal probability of being selected. A parameter λ indicates the frequency (in terms of generations) of testing all operators, and the probabilities are consequently adjusted based on the relative performance of each operator, similar to the self organizing mechanism proposed for exchange operators of the TS algorithm in Chapter 5.
Table 6.3a: Analysis of random problems for each data set

<table>
<thead>
<tr>
<th>Problem</th>
<th>EER</th>
<th>MX_{i}</th>
<th>MX_{e}</th>
<th>MX_{twe}</th>
<th>MX_{\angle}</th>
<th>PMX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fitness</td>
<td>Value</td>
<td>90026</td>
<td>88995</td>
<td>88510</td>
<td>85272</td>
<td>85043</td>
</tr>
<tr>
<td></td>
<td>Relative</td>
<td>1.064</td>
<td>1.051</td>
<td>1.046</td>
<td>1.008</td>
<td>1.005</td>
</tr>
<tr>
<td></td>
<td>t-Value</td>
<td>-3.096(^a)</td>
<td>-1.916</td>
<td>-1.514</td>
<td>1.865</td>
<td>2.104</td>
</tr>
<tr>
<td></td>
<td>Value</td>
<td>26478</td>
<td>25708</td>
<td>25747</td>
<td>25776</td>
<td>25560</td>
</tr>
<tr>
<td></td>
<td>Relative</td>
<td>1.044</td>
<td>1.014</td>
<td>1.015</td>
<td>1.016</td>
<td>1.008</td>
</tr>
<tr>
<td></td>
<td>t-Value</td>
<td>-4.569(^b)</td>
<td>0.412</td>
<td>0.160</td>
<td>-0.028</td>
<td>1.369</td>
</tr>
<tr>
<td>c1_2_8</td>
<td>Value</td>
<td>213070</td>
<td>212736</td>
<td>212572</td>
<td>212318</td>
<td>212261</td>
</tr>
<tr>
<td></td>
<td>Fitness</td>
<td>Relative</td>
<td>1.005</td>
<td>1.003</td>
<td>1.002</td>
<td>1.001</td>
</tr>
<tr>
<td></td>
<td>t-Value</td>
<td>-3.821(^b)</td>
<td>-1.559(^e)</td>
<td>-0.448</td>
<td>1.272</td>
<td>1.658</td>
</tr>
<tr>
<td></td>
<td>Value</td>
<td>24498</td>
<td>23783</td>
<td>23695</td>
<td>23416</td>
<td>23595</td>
</tr>
<tr>
<td></td>
<td>Time</td>
<td>Relative</td>
<td>1.046</td>
<td>1.016</td>
<td>1.012</td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td>t-Value</td>
<td>-4.725(^b)</td>
<td>0.059</td>
<td>0.516</td>
<td>2.336(^f)</td>
<td>1.168</td>
</tr>
<tr>
<td>c2_2_3</td>
<td>Value</td>
<td>37147</td>
<td>36779</td>
<td>36358</td>
<td>36144</td>
<td>35610</td>
</tr>
<tr>
<td></td>
<td>Fitness</td>
<td>Relative</td>
<td>1.081</td>
<td>1.071</td>
<td>1.058</td>
<td>1.052</td>
</tr>
<tr>
<td></td>
<td>t-Value</td>
<td>-2.672(^a)</td>
<td>-1.764</td>
<td>-0.724</td>
<td>-0.196</td>
<td>1.123</td>
</tr>
<tr>
<td></td>
<td>Value</td>
<td>20348</td>
<td>19746</td>
<td>19736</td>
<td>19697</td>
<td>19658</td>
</tr>
<tr>
<td></td>
<td>Time</td>
<td>Relative</td>
<td>1.047</td>
<td>1.016</td>
<td>1.015</td>
<td>1.013</td>
</tr>
<tr>
<td></td>
<td>t-Value</td>
<td>-4.650(^b)</td>
<td>0.201</td>
<td>0.282</td>
<td>0.596</td>
<td>0.911</td>
</tr>
</tbody>
</table>

\(^a\) Rejected with 97.5% certainty
\(^b\) Rejected with 99.0% certainty
\(^c\) Accepted with 97.5% certainty
\(^d\) Accepted with 99.0% certainty
\(^e\) Rejected with 97.5% certainty, EER omitted
\(^f\) Accepted with 97.5% certainty, EER omitted
Table 6.3b: Analysis of random problems for each data set

<table>
<thead>
<tr>
<th>Problem</th>
<th>EER</th>
<th>MX_{\text{li}}</th>
<th>MX_{\text{ei}}</th>
<th>MX_{\text{twe}}</th>
<th>MX_{\text{c}}</th>
<th>PMX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fitness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r2_2_5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value</td>
<td>51472</td>
<td>50715</td>
<td>50392</td>
<td>50147</td>
<td>49975</td>
<td>50277</td>
</tr>
<tr>
<td>Relative</td>
<td>1.030</td>
<td>1.015</td>
<td>1.008</td>
<td>1.000</td>
<td>1.000</td>
<td>1.006</td>
</tr>
<tr>
<td>t-Value</td>
<td>-4.434 b</td>
<td>-0.994 e</td>
<td>0.474</td>
<td>1.588</td>
<td>2.369</td>
<td>0.997</td>
</tr>
<tr>
<td>Time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value</td>
<td>17685</td>
<td>17160</td>
<td>17279</td>
<td>17374</td>
<td>17612</td>
<td>17003</td>
</tr>
<tr>
<td>Relative</td>
<td>1.040</td>
<td>1.009</td>
<td>1.016</td>
<td>1.022</td>
<td>1.036</td>
<td>1.000</td>
</tr>
<tr>
<td>t-Value</td>
<td>-3.113 a</td>
<td>1.797</td>
<td>0.684</td>
<td>-0.204</td>
<td>-2.430 e</td>
<td>3.266 c</td>
</tr>
<tr>
<td>Fitness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r1_2_8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value</td>
<td>42833</td>
<td>42310</td>
<td>41693</td>
<td>41327</td>
<td>41257</td>
<td>40772</td>
</tr>
<tr>
<td>Relative</td>
<td>1.051</td>
<td>1.038</td>
<td>1.023</td>
<td>1.014</td>
<td>1.012</td>
<td>1.000</td>
</tr>
<tr>
<td>t-Value</td>
<td>-3.679 b</td>
<td>-1.983 e</td>
<td>0.018</td>
<td>1.205</td>
<td>1.432</td>
<td>3.005 c</td>
</tr>
<tr>
<td>Time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value</td>
<td>61481</td>
<td>60192</td>
<td>60236</td>
<td>60007</td>
<td>59988</td>
<td>60215</td>
</tr>
<tr>
<td>Relative</td>
<td>1.025</td>
<td>1.003</td>
<td>1.004</td>
<td>1.000</td>
<td>1.000</td>
<td>1.004</td>
</tr>
<tr>
<td>t-Value</td>
<td>-4.908 b</td>
<td>0.701</td>
<td>0.510</td>
<td>1.507</td>
<td>1.589</td>
<td>0.601</td>
</tr>
<tr>
<td>Fitness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r2_2_8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value</td>
<td>37348</td>
<td>34763</td>
<td>34433</td>
<td>34294</td>
<td>34271</td>
<td>34045</td>
</tr>
<tr>
<td>Relative</td>
<td>1.097</td>
<td>1.021</td>
<td>1.011</td>
<td>1.007</td>
<td>1.007</td>
<td>1.000</td>
</tr>
<tr>
<td>t-Value</td>
<td>-4.909 b</td>
<td>0.189 e</td>
<td>0.840</td>
<td>1.114</td>
<td>1.160</td>
<td>1.605</td>
</tr>
<tr>
<td>Time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value</td>
<td>46954</td>
<td>46193</td>
<td>46561</td>
<td>46686</td>
<td>46605</td>
<td>47711</td>
</tr>
<tr>
<td>Relative</td>
<td>1.016</td>
<td>1.000</td>
<td>1.008</td>
<td>1.011</td>
<td>1.009</td>
<td>1.033</td>
</tr>
<tr>
<td>t-Value</td>
<td>-0.803</td>
<td>2.813</td>
<td>1.064</td>
<td>0.470</td>
<td>0.855</td>
<td>-4.400 b</td>
</tr>
</tbody>
</table>

a Rejected with 97.5% certainty
b Rejected with 99.0% certainty
c Accepted with 97.5% certainty
d Accepted with 99.0% certainty
e Rejected with 97.5% certainty, EER omitted
f Accepted with 97.5% certainty, EER omitted
Figure 6.3: Results for a random problem from each set, expressed relative to the best crossover mechanism for each set.
6.6 Conclusion

In this chapter a GA with integer string representation is developed to test a variant of the VRP that uses time-dependent travel time and that accommodates time windows, a heterogenous fleet, and multiple scheduling. Six crossover mechanisms are tested, two of which are newly proposed in this thesis.

The results suggest that although there are performance differences among the crossover operators, few prove to be significant. Therefor, it is suggested that when integrating the multiple optimization algorithms, namely GA and TS into the intelligent routing agent, internal learning or self regulation should be considered.
Clustering input data

In this chapter the concept of pattern identification on input data is investigated. What is peculiar about the benchmark problem sets proposed by both Solomon (1987) and Homberger and Gehring (1999) are the fact that they are preempting specific theoretical characteristics, unlike problems found in real applications. This is clearly illustrated when the assignment of time windows is discussed. For the problem sets R_1, R_2, RC_1, and RC_2 a percentage of customers are selected to receive time windows, say $0 < f \leq 1$. Next n random numbers from the random uniform distributions is generated on the interval $(0, 1)$, and sorted. Customers i_1, i_2, \ldots, i_n are then assigned time windows, where the number of customers requiring time windows can then be approximated by $n_1 \approx f.n$. The center of the time window for customer $i_j \in \{i_1, i_2, \ldots, i_n\}$ is a uniformly distributed, randomly generated number on the interval $(e_0 + t_{oij}, l_0 - t_{i,j0})$, where e_0 and l_0 denotes the opening and closing times of the depot, respectively, and t_{oij} and $t_{i,j0}$ denotes the travel distance from the depot to customer i_j, and back, respectively.

For clustered problem sets $C1$ and $C2$ the process becomes questionable. Customers in each cluster are first routed using a 3-opt routine as described in the previous chapter. An orientation is chosen for the route, and time windows are then assigned with the center being the arrival time at the customer. The width and density are derived in a similar fashion as for random and semi-clustered data. Although Solomon (1987) states that “this approach permits the identification of a very good, possibly optimal, cluster-by-cluster solution which, in turn, provides an additional means of evaluating heuristic performance”, it does not provide a credible means to evaluate real life problems where customers do not negotiate their sequence prior to stating a preferred time window.

Literature provides good references to what type of metaheuristics, or metaheuristic
configurations provide good answers to which of the six benchmark problems. When given a real data set from industry, however, one is not provided with the classification of “this a C1 problem set”. To therefore determine which solution algorithm to use, and which parameter setting, the routing agent first needs to classify the input data.

The idea behind learning is not so that an agent can act, but rather to improve an agent’s ability to act in future. In the context of vehicle routing the agent is the routing system proposed by this thesis. The acting is the routing of vehicles, given the demand inputs, using some metaheuristic with its associated parameter settings. For a routing systems to learn, it must perceive certain characteristics of the inputs, for example the geographical dispersion of customers or the width of time windows provided by customers, and choose an appropriate metaheuristic, and know what parameter values to suggest in order to obtain the best route in the shortest possible time. The execution of the metaheuristic makes up the performance element of the agent, and have been thoroughly introduced in Chapters 4 through 6. Deciding which metaheuristic to use forms the learning element of the agent.

The concepts of representation of an agents knowledge and its reasoning processes that brings that knowledge to life are central to the entire field of AI. The design of a learning element is affected by three distinctive components:

- Which components of the performance element are to be learned?
- What feedback is available to learn these components?
- What representation is used for the components?

The components of the performance element that the agent should learn from input data provided, are the geographical distribution of customers; the relation between customer demand and vehicle capacity, and time window characteristics. In order to determine the nature of learning for the agent, the type of feedback available to the agent is extremely important. Russell and Norvig (2003) distinguish between three types of feedback:

Supervised learning Learning takes place by providing both input and output examples. For instance, if an agent is provided with many pictures that he is told contain buses, the agent learns to recognize a bus. Both the input and the output is provided.

Unsupervised learning Patterns are learned by providing input, but in the absence of specific outputs. When commuting from home to work, a person might be able to distinguish between “good traffic days” and “bad traffic days”, without ever being
given examples of either of the two. A purely unsupervised agent cannot learn as it has no information as to what constitute a desirable state, or a correct action.

Reinforcement learning The most general of the three types of feedback. Without being told by a supervisor what to do, a reinforcement learning agent must learn through *reinforcement*, for example an action that is not followed by a tip or any confirmation is interpreted as an undesirable state.

The routing agent in this thesis will typically be given a data set without knowing whether it is clustered, randomly distributed, or whether the time windows are tight. As a supervisor also do not know whether it is clustered, or not, it would also not be possible to reinforce a correct action taken, as the evaluation of *correctness* would be flawed. The routing agent would hence have to learn unsupervised.

Knowledge and reasoning are both required for problem solving agents to perform well in complex environments. The concept of *knowledge representation* is important as an agent would require some structure in which to put the information that it has learnt, so as to be able to revisit its knowledge base in future when decision are made. This is necessary to improve future decision making. The central component of a knowledge-based agent is its *knowledge base*, expressed as sentences in a *knowledge representation language*. Each sentence asserts something about the agent’s world. There are ways to add new sentences to the knowledge base, and ways to query what is already known. In AI these two actions are referred to as *Tell* and *Ask*. Being a logical agent, when ‘Ask’ed a question, the answer would be related to what the knowledge base has been ‘Tell’ed previously. Also, the two tasks may involve *inference* where new sentences are derived from old ones.

7.1 Unsupervised clustering

The clustering problem is defined as partitioning a given data set into groups, or clusters, such that data points in a cluster are more similar to each other than to other points belonging to different clusters. According to Gath and Geva (1989) and Xie and Beni (1991) the criteria for the definition of *optimal partition* of the data into clusters are based on three requirements:

- Clear separation between the resulting clusters.
- Minimal volume of the clusters.
• Maximal number of data points concentrated in the vicinity of the cluster centroid, i.e. maximum cohesion.

Thus, although the environment is fuzzy, the aim of the classification is the generation of well-defined subgroups. To solve the clustering problem, a number of clustering algorithms have been proposed. One of the most important families of clustering techniques are **partitioning** clustering, with the most commonly used algorithm in this family being the *k*-means clustering algorithm and its numerous variants [Xu and Brereton 2005]. A main problem of the *k*-means clustering variants is that the algorithms require the number of clusters, *c*, as an input so that a data set can be clustered into *c* partitions.

Unsupervised clustering is the problem of discerning multiple categories in a collection of objects. The *categories* referred to are the components of the input data that the agent should learn, while *objects* refer to the input data points, i.e. the customers in the network. The learning process is unsupervised as the agent does not know whether the input data is randomly distributed, clustered, or a combination of both.

So if the number of clusters, *c*, is not known when learning should occur, the agent can perform a number of clustering attempts, each using a different values for *c*. In such a way the most appropriate value for *c* can be determined. Such an approach is defined as **cluster validation**. In this chapter, the behavior of a number of validation indices will be tested on benchmark data sets for the VRPTW. The objective is to establish trends that can be used to Tell the routing agent how to identify input data as belonging to either the *R*1, *R*2, *C*1, *C*2, *RC*1, or *RC*2 group of problems. The most appropriate metaheuristic can then be identified, along with its most appropriate parameter settings.

7.1.1 Fuzzy *c*-means clustering

One of the variants of the *k*-means clustering algorithm, fuzzy *c*-means (FCM) clustering, attempts to find the most characteristic point in each cluster *v*_i ∈ *V* = \{*v*₁,..., *v*_{*c*}\}, which can be considered as the *center* of cluster *i* and then grade the membership for each node *x*_j ∈ *X* = \{*x*₁,..., *x*_{*n*}\} in cluster *i*. The member allocation is achieved by minimizing the commonly used **membership weighted with-in cluster error** objective function defined in \[(7.1)\]

\[
J_{c}(U,V) = \sum_{i=1}^{c} \sum_{j=1}^{n} u_{ij}^m d_{ij}^2
\]

where *d*_{ij} is the Euclidean distance between object *j* and the *i*th center, and *u*_{ij} is the fuzzy membership of object *j* belonging to the *i*th cluster. The FCM is then described
by Algorithm 7.1. The algorithm requires the number of classes, a fuzzy factor and a convergence threshold as input. The centers matrix V is then initialized using a random selection of c nodes from the node set $\{1, \ldots, n\}$. The iteration count is zeroed before the membership matrix U^k is calculated. A new centers matrix is calculated, before the convergence of the objective function is tested. Xu and Brereton (2005) notes that when the fuzzy factor m approaches 1, the FCM is similar to the standard k-means clustering. When m approaches infinity, however, the clustering of the FCM is at its fuzziest: each node is assigned equally to each cluster. The authors also note that the FCM is but a local search

Algorithm 7.1: Fuzzy c-means clustering

Input: Number of classes, c

Input: Fuzzy factor, $m > 1$

Input: Convergence threshold, $\varepsilon > 0$

1. Randomly select c nodes to initialize centers matrix V^0.
2. $k \leftarrow 0$
3. $J_e^k \leftarrow \sum_{i=1}^{c} \sum_{j=1}^{n} u_{ij}^m(k) \left(d_{ij}^k\right)^2$
4. repeat
5. for $i \in \{1, \ldots, c\}$, $j \in \{1, \ldots, n\}$ do
6. \[u_{ij}^k = \left(\sum_{r=1}^{c} \left(\frac{d_{ij}^r}{d_{ij}^k} \right)^{\frac{2}{m-1}} \right)^{-1} \]
7. if For any $r \in \{1, \ldots, c\}$, $d_{ij}^k = 0$ then
8. $u_{ij}^k = 1$
9. for $i, r \in \{1, \ldots, c\}$, $i \neq r$ do
10. $u_{ij}^k = 0$
11. endfor
12. endif
13. for $i \in \{1, \ldots, c\}$ do
14. \[V_i^{k+1} = \frac{\sum_{j=1}^{n} u_{ij}^m(k) x_j}{\sum_{j=1}^{n} u_{ij}^m(k)} \]
15. endfor
16. $k \leftarrow k + 1$
17. $J_e^k \leftarrow \sum_{i=1}^{c} \sum_{j=1}^{n} u_{ij}^m(k) \left(d_{ij}^k\right)^2$
18. until $\|J_e^k - J_e^{k+1}\| < \varepsilon$
algorithm, and at best will find a local minimum, and is therefore sensitive to the random initial guess for \(\mathbf{V}^0 \). Figure 7.1 illustrates the clustering of one of the \(C1 \) problem sets provided by Gehring and Homberger (1999), \(C1-2-1 \), the first of their problem sets with 200 customers. The small circles indicate the customer nodes, while asterisks indicate the center of the cluster. All nodes clustered together are linked with gray lines. In establishing the clusters, a fuzzy factor of \(m = 3 \), convergence threshold of \(\varepsilon = 1.0 \times 10^{-5} \), and an iteration limit of \(k_{\text{max}} = 1000 \) is used. A number of validation indices are subsequently considered to evaluate the clustering.

7.1.2 Validation indices

A validation index is a single real value that describes the quality of a cluster partition. Some of the validation indices are only concerned with the membership value of the final clustering partition. Although Bolshakova and Azuaje (2003) do not apply the Silhouette index on fuzzy clusters, this thesis propose that for a given cluster \(i \in \{1, \ldots, c\} \), assign to each node \(j \) a quality measure \(s_j \), known as the silhouette width, defined in (7.2)

\[
s_j = \frac{b_j - a_j}{\max\{a_j, b_j\}}
\]

(7.2)

where \(a_j \) is the average distance between the \(j^{th} \) node and all the other nodes included in the \(i^{th} \) cluster, and \(b_j \) the average distance between node \(j \) and all the other nodes not in cluster \(i \). Here a node \(j \) is assigned to cluster \(i \) if \(u_{ij} = \max_{i \in \{1, \ldots, c\}} \{u_{ij}\} \). The value of \(s_j \) will range in the region \([-1, 1]\]. A value close to 1 indicates node \(j \) to be well clustered, i.e. appropriately assigned to cluster \(i \). A value for \(s_i \) in the region of zero indicates that node \(j \) may well be assigned to a neighboring cluster, and a value close to -1 indicates node \(j \) to be misclassified, i.e. assigned to the wrong cluster. For cluster \(i \) one may then determine a silhouette value \(S_i \), defined by (7.3)

\[
S_i = \frac{1}{m} \sum_{j=1}^{m} s_j
\]

(7.3)

where \(m \) is the number of samples in cluster \(i \). The global silhouette value \(V_s \) as defined by (7.4) is an effective index.

\[
V_s = \frac{1}{c} \sum_{i=1}^{c} S_i
\]

(7.4)

The Partition Coefficient index is defined by (7.5)

\[
V_{PC} = \frac{1}{n} \left(\sum_{i=1}^{c} \sum_{j=1}^{n} u_{ij}^2 \right)
\]

(7.5)
Figure 7.1: Clustering the C1-2-1 problem set
where u_{ij} is the fuzzy membership for node j belonging to cluster i, and n the number of nodes in the input data, excluding the depot. The value of V_{PC} is in the range $[1/c, 1]$. An index close to 1 indicates good cluster separation, while a low index value indicates fuzzier clustering. An index of $V_{PC} = 1/c$ indicates that there is no clustering tendency. The disadvantages of V_{PC} are the lack of direct connection to a geometrical property, and the monotonic decreasing tendency with c.

The Partition Entropy index is defined by (7.6)

$$V_{PE} = -\frac{1}{n} \left(\sum_{i=1}^{c} \sum_{j=1}^{n} u_{ij} \log(u_{ij}) \right)$$ (7.6)

The value of V_{PE} is in the range $[0, \log c]$. In contrast to PC, a low value of V_{PE} indicates good cluster separation. Unfortunately the same disadvantages as for V_{PC} hold for V_{PE} in that there is not direct connection to a geometrical property, and the index has a monotonic decreasing tendency with c. The following indices involve not only the membership value, but also the actual data set.

In the following indices the numerical taxonomy of Bezdek (1974) is used. Xie and Beni (1991) introduced an index that give weight to both compactness, and separation. First the fuzzy deviation of node j from cluster i, denoted by d_{ij} is determined as the Euclidean distance between node j and cluster i, weighted by the fuzzy membership of node j belonging to cluster i. The sum of the squares of the fuzzy deviations of each node j is referred to as the variance of cluster i, denoted by σ_i. The total variation of the data set with respect to the given fuzzy c-partition is referred to as σ. The compactness of the partition is the ratio between the total variation of the data set to the size of the data set, expressed as $\frac{\sigma}{n}$. The centers between all cluster center combinations $i, r \in \{1, \ldots, c\}, i \neq r$ is calculated, and the minimum inter-center distance is denoted by d_{min}. The separation of clusters is then determined by $s = d_{\text{min}}^2$. A high value of s indicates well-separated clusters. The index is the minimum value for $\frac{\sigma}{n} \cdot s$, or more explicitly written in (7.7).

$$V_{XB} = \frac{\sum_{i=1}^{c} \sum_{j=1}^{n} u_{ij}^2 \|x_j - v_i\|^2}{n \left(\min_{i, r \in \{1, \ldots, c\}, i \neq r} \left\{ \|v_i - v_r\|^2 \right\} \right)}$$ (7.7)

Pal and Bezdek (1995) extend the Xie-Beni index for cases where the fuzzy factor $m \neq 2$, ...
and the extended index \(V_{XB}^+\) is defined in (7.8)

\[
V_{XB}^+ = \frac{\sum_{i=1}^{c} \sum_{j=1}^{n} u_{ij}^m \|x_j - v_i\|^2}{n \left(\min_{i,r \in \{1,\ldots,c\}, i \neq r} \left\{ \|v_i - v_r\|^2 \right\} \right)} \quad (7.8)
\]

Kwon (1998) also investigates the Xie-Beni index, and proposes an index that eliminates the monotonically decreasing tendency as the number of clusters increases and approaches \(n\), the number of nodes in the data set. The index is denoted by \(V_K\) and is defined in (7.9).

\[
V_K = \frac{\sum_{i=1}^{c} \sum_{j=1}^{n} u_{ij}^2 \|x_j - v_i\|^2 + \frac{1}{c} \sum_{i=1}^{c} \|v_i - \overline{v}\|^2}{n \left(\min_{i,r \in \{1,\ldots,c\}, i \neq r} \left\{ \|v_i - v_r\|^2 \right\} \right)} \quad (7.9)
\]

The second term in the numerator is an ad hoc punishing function used to eliminate the decreasing tendency when \(c\) becomes large and close to \(n\). The center of the data set is denoted by \(\overline{v}\).

The Fukuyama-Sugeno index (as cited by Kim et al. (2003); Rao and Srinivas (2006); Xu and Brereton (2005)) is defined by (7.10)

\[
V_{FS} = \sum_{i=1}^{c} \sum_{j=1}^{n} u_{ij}^m \left(\|x_j - v_i\|^2 - \|v_i - \overline{v}\|^2 \right) \quad (7.10)
\]

The weighted membership value is multiplied by the difference between the distance between nodes and its cluster centers, and the distance between cluster centers and the data center. A small value represents a well-separated and compact cluster.

The Compose Within and Between Scattering index was introduced by Rezaee et al. (1998) and is defined by (7.11).

\[
V_{CWB} = \alpha \text{Scat}(c) + \text{Dis}(c) \quad (7.11)
\]

where

\[
\text{Scat}(c) = \frac{\frac{1}{c} \sum_{i=1}^{c} \left[\sigma(v_i)^T \cdot \sigma(v_i) \right]^{\frac{1}{2}}}{\left[\sigma(X)^T \cdot \sigma(X) \right]^{\frac{1}{2}}} \quad (7.12)
\]

\[
\text{Dis}(c) = \frac{D_{\text{max}}}{D_{\text{min}}} \sum_{i=1}^{c} \left(\sum_{r=1}^{c} \left\| v_i - v_r \right\| \right)^{-1} \quad (7.13)
\]

\[
\sigma(X) = \frac{1}{n} \sum_{j=1}^{n} \left\| x_j - \overline{v} \right\|^2 \quad (7.14)
\]

\[
\sigma(v_i) = \frac{1}{n} \sum_{j=1}^{n} u_{ij} \left\| x_j - v_i \right\|^2 \quad \forall i \in \{1, \ldots, c\} \quad (7.15)
\]
\[D_{\text{max}} = \max_{i,r \in \{1, \ldots, r\}, i \neq r} \{v_i - v_r\} \]
\[D_{\text{min}} = \min_{i,r \in \{1, \ldots, r\}, i \neq r} \{v_i - v_r\} \]
\[\alpha = \text{Dis}(c_{\text{max}}) \] (7.16)
\[(7.17) \]
\[(7.18) \]

The \(V_{CW B} \) tends to find an optimum between compactness and separation. \(\text{Scat}(c) \) denotes the average scattering (compactness) for the \(c \) clusters, while \(\text{Dis}(c) \) denotes the distance between cluster centers (separation). With \(\text{Scat}(c) \) taking on much smaller values than \(\text{Dis}(c) \), a scaling factor \(\alpha \) is introduced to balance the two terms’ opposite trends. \(D_{\text{max}} \) and \(D_{\text{min}} \) are the maximum and minimum distances between clusters. The authors perform the validation over cluster partitions with values \(2 \leq c \leq c_{\text{max}} \). In the application of this thesis a cluster is considered to be more than 5 nodes, hence \(c_{\text{max}} = \frac{n}{5} \).

7.2 Evaluating fuzzy membership parameters

Three test sets for clusters have been found in literature, and one set is proposed in this thesis. Test sets are used to determine the effectiveness of a clustering algorithm as a function of the fuzzy factor \(m \).

Kwon (1998) suggests the data sets illustrated in Figures 7.2(a) through 7.2(c) with two, three, and four clusters, respectively. A fourth data set, having five clusters, is proposed in this thesis and is illustrated in Figure 7.2(d).

All data sets are validated with an iteration limit of \(k = 10000 \) and a convergence threshold of \(\varepsilon = 1 \times 10^{-12} \). The first three data sets provided by Kwon (1998) were tested for \(c = \{2, 3, \ldots, 10\} \) clusters, while the fourth data set is tested for \(c = \{2, 3, \ldots, 30\} \) clusters. Results of the cluster validation is provided in Appendix D in Tables D.1 through D.4.

Incorrect predictions for the number of clusters in a data set are boxed. Through observation it can be seen that the best results are obtained with the fuzzy factor in the region \(1.5 \leq m \leq 2.0 \). The best performing validation indices are the Xi-Beni index, \(V_{XB} \), and the enhanced Xi-Beni index, \(V_{XB}^{+} \). As expected, these two indices perform very similar in close proximity of \(m = 2.0 \), and become identical in the value \(m = 2.0 \).

It is therefore proposed that either \(V_{XB} \) or \(V_{XB}^{+} \) be used when benchmark data sets’ clustering is validated. Furthermore, a fuzzy factor of \(m \in M = \{1.5, 1.6, 1.7, 1.8, 1.9, 2.0\} \) is proposed.
7.3 Validation of benchmark data

Cluster validation is performed for each of the ten problems of each of the six benchmark sets. Although somewhat expected, it is interesting to report that the results for all problems in a given data set are *exactly* the same. Table E.1 therefore does not report the results for each problem, but rather for each class.

Each sub-table shows the optimal number of clusters for a specific fuzzy factor, m, as well as the corresponding validation index value for both the Xi-Beni index, V_{XB}, and the extended Xi-Beni index, V_{XB}^+. It is noticeable that the optimal number of clusters is much lower than expected, especially for data sets $C1$ (4 clusters) and $C2$ (2 clusters). One might have expected a number in the region of 20 when referring to Figure 7.1.

The index values for the problem sets $R1$ and $R2$ are also lower than expected, indicating good clusteredness and separation. The index values are significantly (approximately double) higher than the values for clustered problem sets, but one might have expected values indicating much worse clusteredness.
7.4 Conclusion

In this chapter, fuzzy c-means clustering is introduced as a mechanism to establish the level of geographical clusteredness of vehicle routing benchmark problem sets. The two values of interest in the cluster validation is the optimal number of clusters identified, and the validation index value. The latter provides insight to the level of clusteredness of a data set, for example the index values for the set $RC1$ (semi-clustered) is between that of the set $C1$ (clustered), and set $R1$ (random).

In the next chapter, these values will be used, along with a time window width analysis, to train a neural network so that new data sets could be tested to determine which problem set it resembles best.
Chapter 8

Dynamic intelligence through Artificial Neural Networks (ANNs)

The concept of Artificial Neural Networks (ANNs) is derived from research into the working of the brain. The models of ANNs are algorithms for cognitive tasks such as learning and optimization (Müller et al. 1995). The use of neural networks in the broader field of operations research is reviewed by Burke and Ignizio (1992).

Potvin and Smith (2003) provide a brief historic review of the first introduction of Artificial Neural Network (ANN) in the late 1940s. After a devastating blow by counter-proving research in the 1960s, the field only reemerged in the early 1980s, with successes in the field of pattern recognition. The first attempt to solve combinatorial optimization problems using neural networks was made by Hopfield and Tank (1985) — solving only small instances of the TSP. Potvin (1993) later solved problems with 200 nodes. One of the first attempts to solve a VRP using an ANN was made by Matsuyama (1991).

The objective of employing ANNs in this thesis is not to compete with existing meta-heuristics to solve a variation of the VRP. The emphasis is on employing ANNs to predict the best solution algorithm to use, given a new and unknown data set. Also, to learn from experience so that better predictions can be made in future. The candidate proceeds in this chapter to use a learning structure for predicting the best solution algorithm, and the approach can easily be extended to include parametric variations of an algorithm.

8.1 Learning structures

Russell and Norvig (2003) comprehensively address a number of learning structures. The
first, and simplest form of learning, is done from observation alone. A decision tree is established from known results, and can be employed in making future decisions. The task of learning a function from example inputs and outputs is referred to as inductive learning, or supervised learning.

8.1.1 Bayesian networks

A hypothesis, in the learning context, is a probabilistic theory describing the problem domain. To use an example from the vehicle routing domain, a hypotheses would be to solve the given problem using the TS. On the other hand, data is the available evidence used to sustain a specific hypothesis. Again, using the vehicle routing example, evidence would be the fact that customer input data is classified as a c1 problem — geographically clustered with tight time windows.

Acid et al. (2004) used Bayesian networks to predict patient stays in an emergency medical service, and answer related management questions with regards to staff redistribution and possible reinforcement of both staff and equipment. Bayesian learning simply calculates the probability of each hypothesis, given the input data, and makes predictions on that basis (Russell and Norvig, 2003). Predictions are therefore made by using all the probabilities, albeit in a weighted manner, instead of just the single best hypothesis.

8.1.2 Artificial Neural Networks (ANNs)

According to Potvin and Smith (2003) the original objective of artificial neural networks were to provide a fundamentally new and different approach to information processing, especially when an algorithmic procedure for solving the problem was not known. But it is the ability that ANNs have to learn arithmetic or logical functions, due to McCulloch and Pitts (1943), that is of value to this thesis. Russell and Norvig (2003) confirm that ANNs are mostly used for classification, in the case of discrete hypotheses, or regression for continuous hypotheses. ANNs are powerful at finding nonlinear hypotheses in data without known structure, but require a lot of data to find such relationships.

This thesis attempts to algorithmically implement the ability of human decision makers to choose an appropriate solution algorithm when solving scheduling problems. The desire to understand the principles on which the human brain work is one of the motivating factors why researchers became interested in neural networks. Another motivation is the wish to build machines that are capable of performing complex, parallel processing of tasks for which the
sequentially operating computers are not well-suited. Technology has changed dramatically and consequently made the motivating factors for ANNs a possibility.

8.2 Basic mechanisms of an ANN

Müller et al. (1995) defines a neural network in mathematical terms as a directed graph with the following properties:

- A state variable n_i associated with each node i in the graph. Nodes are also referred to as neurons.
- A real-valued weight w_{ik} associated with each edge between nodes i and k. Links are also referred to as synapses. The weight w_{ik} is interpreted as the influence that node k’s output will have on node i.
- A real-valued bias ν_i associated with each node i, also referred to as the activation threshold.
- A transfer function $f_i(n_k, w_{ik}, \nu_i, (k \neq 1))$ is defined for each node i. The function determines the state of the node as a function of its bias, the weights of incoming links, as well as the states of the nodes connected to it by the links. The transfer function usually takes the form $f(\sum_k w_{ik}n_k - \nu_i)$ and is either a discontinuous step function, or a smoothly increasing generalization known as a sigmoidal function. Examples of these shapes are illustrated in Figure 8.1.

The concept of binary switching was first proposed in the decision element theory of McCulloch and Pitts (1943). Each one of the decision elements (neurons) $i = 1, \ldots, n$ can only take the output values $n_i \in \{0, 1\}$, where $n_i = 0$ represents the resting state, and $n_i = 1$ the active state of the neuron. The new input state of a neuron i, denoted by $h_i(t)$ at time t, is influenced by all other neurons. The initial combination was originally expressed linearly as

$$h_i(t) = \sum_j w_{ij}n_j(t)$$

using the same notation presented earlier with the exception of a time-dependent $n_j(t)$ denoting the state of neuron j at time t. If $n_i(t)$ denotes the output state of a neuron, the properties of the neural network is governed by the functional relation between $h_i(t)$ and $n_i(t + 1)$. The simplest case sees a neuron become active if its input exceeds a certain
threshold \(\nu_i \) which may be unique to each neuron \(i \). The law

\[
n_i(t + 1) = \theta (h_i(t) - \nu_i)
\]

governs the network with \(\theta (x) \) being the step function indicated in Figure 8.1(a), i.e. \(\theta(x < 1) = 0 \), and \(\theta(x \geq 1) = 1 \).

But it was Caianello (1961) that addressed learning through an algorithm that allow the determination of the synaptic strengths, \(w_{ij} \), of the neural network. Rosenblatt (1962) introduced the perceptron, a layered neural network. The neurons of the output layer receives synaptic signals from the input layer, as illustrated in Figure 8.2.

Whereas the clustering of input data discussed in Chapter 7 was unsupervised, learning is supervised in the ANN suggested here. Dermuth et al. (2005) state that the event of training a neural network can be illustrated using Figure 8.3. The network is trained, or adjusted, until a particular input leads to a specific target output. This iterative process is referred to as error back-propagation, and minimizes the Mean Square Error (MSE), where
the error is the difference between the actual output and the target output. If t_k denotes
the target output of an input element p_k, and a_k denotes the actual output of the network,
then, for a training session with K input elements, the MSE is calculated as

$$
MSE = \frac{1}{K} \sum_{k=1}^{K} (t_k - a_k)^2.
$$

Karayannis and Venetsanopoulos (1993) divide ANN architectures into three basic catego-
ries, of which the first is the category most widely researched, and henceforth adopted in
this thesis:

Feed-forward One of the earliest architectures consisting of one or more layers of pro-
cessing units. Units belonging to neighboring layers are connected by sets of synaptic
weights. The name *feed-forward* is illustrative of output layers of the network feeds the
next layer of units in the network. Networks of this type can be trained to provide a
desired response (solution algorithm) to a given input (customer data set).
Feed-back In this type of ANN the input information defines the initial activity state of a feed-back system.

Self-organizing Humans’ ability to use their past experience in order to adapt to unpredictable changes in their environment has lead to self-organizing — an adaption to the environment without the involvement of an external teacher.

8.3 Representation conventions

The notation used to express the ANN is due to Dermuth et al. (2005), and requires a brief introduction.

8.3.1 Network architectures

The architecture of a network describes how many layers a network has, the number of neurons in each layer, each layer’s transfer function, and how layers are connected to each other (Dermuth et al., 2005). The challenge is to find the most appropriate architecture for the problem of identifying the most appropriate routing algorithm, and predicting the objective function value. As a general rule, the more neurons in a hidden layer, the more powerful the network.

Consider Figure 8.4 to be a simple neuron i with vector input

\[p = \{p_1, p_2, \ldots, p_j, \ldots, p_R\} \] where R is number of input elements. Associated with each edge between input element j and neuron i is the real-valued weight \[w = \{w_{i1}, w_{i2}, \ldots, w_{ij}, \ldots, w_{iR}\} \].

The summing junction indicated by \[\sum \] has as its input the dot product of the single row matrix w and the input vector p, wp, as well as the scalar bias, b. In this thesis the bias is
initially set to zero, and is adapted during training. The net input to the transfer function, \(n \), is calculated as

\[
n_i = \sum_j w_{ij} p_j + b.
\]

The transfer function is indicated by \(f \), and may be either a discontinuous step function, pure linear function, or the sigmoidal function indicated in Figure 8.1. An abbreviated notation is suggested for a single neuron by Dermuth et al. (2005), and is provided in Figure 8.5.

![Figure 8.5: A basic neuron using the abbreviated notation](image)

The benefit of the abbreviated notation becomes apparent when \(s \) neurons are combined in a single layer. The layer is illustrated in its basic form by Figure 8.6 and in its abbreviated form by Figure 8.7.

A class of problems, referred to as linearly inseparable problems, for example the exclusive-or (XOR) function, cannot be represented by a single perceptron. It was the identification of such inseparable problems that halted neural network research during the 1960s. The introduction of multiple layers of neurons avoids nonrepresentable problems. Hence, the last notational introduction is the existence of multiple layers. To distinguish between the weight matrices, output vectors, etc., for each layer, the layer’s number is indicated as a superscript to the variable of interest. Figures 8.8 and 8.9 provides the basic, and abbreviated notation for a three-layered network. The weight \(w_{2,1}^{1} \) is interpreted as being the weight of the 3\(^{rd}\) output neuron from layer 1 to the 4\(^{th}\) neuron from layer 2. In Figure 8.9 the layer between the input layer 1 and the output layer 3 is referred to as the hidden layer. Russell and Norvig (2003) state the advantage of hidden layers as the ability to enlarge the hypothesis space that the network can represent.
Figure 8.6: A layer of neurons

Figure 8.7: A layer of neurons using the abbreviated notation
The concept of back-propagation determines which hidden layer is responsible for the error. Each hidden node j is believed to be responsible for some fraction of the error, denoted by Δ_i, in each of the output nodes to which it connects. Thus, the Δ_i values are divided according the the strength of the connection between the hidden node and the output node. The error portions are propagated back to provide the Δ_j for the hidden layer. The back-propagation is repeated until the first (earliest) hidden layer is reached.

8.3.2 Data structures

The first type of input vector, denoted by p, occurs concurrently without a particular sequence of the elements of the vector, as is the case in this thesis. All inputs (geographical dispersion, time windows, and demand characteristics) occur concurrently, and need not be presented to the network in a specific order. On the other hand, a network for sequentially
input vectors contains delays to ensure that input vectors are received in a specific order by the network.

8.4 Proposed network structure

The proposed network is illustrated in its abbreviated form in Figure 8.10. The network consists of an input layer with six input elements, each depicting a specific characteristic of the problem set:

Number of clusters The optimal number of clusters when using fuzzy c-means clustering and the Xie-Beni index. The index value is the same as the extended Xie-Beni index, V_{XB}^+, with a fuzzy factor of $m = 2$.

Validation index The Xie-Beni validation index value, V_{XB}, calculated using (7.7).

Time window width (mean) The arithmetic mean width of customer time windows expressed as a fraction of the time window width of the depot.

Time window width (stdev) The standard deviation of the customer time window widths when expressed as a fraction of the depot’s time window width.

Demand (mean) The mean customer demand.

Demand (stdev) The standard deviation in the data set containing all customer demands.
The network boasts a single hidden layer with arbitrary quantity of 50 neurons and a tan-sigmoid transfer function as indicated in Figure 8.1(d) generating outputs in the range \((-1, 1)\). The output layer has two elements and a pure linear transfer function as indicated in Figure 8.1(b). The linear transfer function in the output layer allows outputs to take on any value. The first output element is equal to 1 if the TS is the proposed solution algorithm to be used, and 2 if the GA is proposed. The second output element is the predicted objective function value when using the proposed solution algorithm. The actual training set is provided in Appendix F.

8.5 Training the neural network

One of two training styles can be used. In *batch* training, weights and biases are only updated once all inputs have been presented to the network. In this thesis all training data is presented to the network before weights are adjusted. The second *incremental* training style sees weights and biases of the network updated each time an input is presented to the network.

The convergence of the error during training is illustrated with Figure 8.11. As the training progresses, the network’s ability to accurately predict the objective function value increases. It can be seen in the figure that the error converges towards zero.

Properly trained backpropagation networks tend to give reasonable answers when represented with inputs that they have never seen. Typically when an input is presented that is similar to an input on which the network was trained, the output will be similar to the correct output provided during training. This generalization makes it possible to train a neural
network on a representative set of input/target pairs and get good results without training the network on all possible input/output pairs, as this will not be possible in practice. All possible customer location and demand configurations in the vehicle routing context cannot be solved in reasonable time to train the network.

According to Dermuth et al. (2005), an epoch is the time allowed to present the set of training data to the network and the calculation of new weights and biases. The regression analysis result after training the network for 500 epochs is indicated in Figure 8.12. Even with training data that is not very rich, i.e. only a single instance occurs suggesting the use of GA as a solution algorithm, the network’s ability to attain the target is fair, with a correlation coefficient of $R = 0.9245$.

8.6 Integrating the neural network

Neural networks require rich training sets to ensure a well-trained network with accurate prediction rates. A structure for the integrated intelligent agent is proposed in Algorithm 8.1.

Due to the computational burden being in excess of 1500 seconds, a problem set is only evaluated every ϑ instance. During the evaluation, a problem is solved using both the TS and the GA solution approaches. The problem is analyzed as per the original training of the network. The target for the problem is established as the best of either the TS or GA result. While the target is reported as the problem set’s solution, the problem set’s analysis, as well as the target, is added to the training set, and the network is retrained on the newly adapted training set.
Algorithm 8.1: The intelligent agent

Input: Network update frequency function, \(f(\theta) \)

Input: Problem set, \(P \)

1. \textbf{load} global iteration number, \(\theta \)
2. \(\theta \leftarrow f(\theta) = \max \{1, \lfloor \ln \left(\frac{\theta}{10} \right) \rfloor\} \)
3. \textbf{if} \(\frac{\theta}{\theta} = \lfloor \frac{\theta}{\theta} \rfloor \) \textbf{then}
 4. \(x_1 \leftarrow \text{Solve } P \text{ using } \text{TS} \)
 5. \(x_2 \leftarrow \text{Solve } P \text{ using } \text{GA} \)
 6. \(x^* \leftarrow \min_{i=\{1,2\}} \{x_i\} \)
 7. \textbf{report solution } \(x^* \)
 8. \textbf{load} training set
 9. \(\text{training set} \leftarrow \text{training set} \cup \{P \oplus x^*\} \)
10. \textbf{retrain} neural network with updated training set
11. \textbf{save} neural network
12. \textbf{save} training set
13. \textbf{else}
14. \textbf{load} neural network
15. \(\hat{x} \leftarrow \text{simulated output from neural network with input } P \)
16. \textbf{Report solution } \(\hat{x} \)
17. \textbf{endif}
18. \(\theta \leftarrow \theta + 1 \)
19. \textbf{save } \(\theta \)
The network update frequency, \(\vartheta \), is a parameter that is dynamically adjusted as a function of the global iteration number, \(\theta \). This ensures that the network is initially retrained after every iteration, and the update frequency is decreased as the network becomes more adapted to the environment. In this thesis the candidate assumes that an intelligent routing agent is implemented in an environment in which customer demand characteristics are fairly stable. A network update frequency function, denoted by \(f(\theta) \), is proposed in (8.1):

\[
\vartheta = \max \left\{ 1, \left\lfloor \ln \left(\frac{\theta}{10} \right) \right\rfloor \right\}
\]

(8.1)

The update frequency, \(\vartheta \), is illustrated in Figure 8.13 as a function of the global iteration number, \(\theta \).

![Update frequency function](image)

Figure 8.13: Update frequency function

8.7 Conclusion

Planning, according to Russell and Norvig (2003), is the task of coming up with a sequence of actions that will achieve a goal. In the context of this thesis, the goal is to solve any given real life vehicle routing and scheduling problem as best possible. In this chapter, an intelligent agent is proposed in the form of an algorithm that utilizes an Artificial Neural Network (ANN) to predict the best solution algorithm to use to solve a given routing problem. Strategies and results from previous chapters in this thesis, i.e. the Tabu Search (TS) and Genetic Algorithm (GA) metaheuristics, fuzzy c-means clustering, and the current neural network were all integrated within the proposed agent. A conclusive discussion on the value of this contribution, as well as suggested future endeavors are indicated in the next chapter.
Intelligent routing agents: birth or burial?

The primary research question, as stated in Section 1.3, that this thesis intends to answer is whether it is feasible to develop a rational and intelligent agent to schedule a predefined variant of the Vehicle Routing Problem (VRP).

9.1 Answering the research questions

In answering the question affirmatively, research highlights will be reviewed according to a number of secondary research questions stated in terms of the concept of an intelligent agent.

9.1.1 Sensory perception

In order to be classified as intelligent, an agent must have the ability to perceive its environment. This thesis postulates that benchmark data sets are skewed in the sense that they do not represent reality appropriately. Solution algorithms presented in literature are inherently problem specific, and are therefore lauded to be successful in solving selected benchmark problems.

In reality, however, decision makers do not have a reference to whether a problem’s customers are clustered, semi-clustered, or randomly distributed. Fuzzy c-means clustering is used in this thesis to establish the level of clusteredness and level of cluster separation of a given data set, and thus providing the agent with an ability to recognize its environment.

Results of test sets indicated the Xie-Beni validation index to be best suited for measuring and provided noticeably different clustering results for the various problem sets.
9.1.2 Behavior generation

Two prominent metaheuristics, the Tabu Search (TS) and the Genetic Algorithm (GA), was developed to solve a complex variant of the VRP. Soft time windows, a heterogeneous fleet and multiple scheduling was incorporated in an environment with time-dependent travel times imposed on the network.

To ensure good performance by the TS, a good initial solution was required. A sequential route construction heuristic was developed for the complex environment. To ease the computational burden, the novel concept referred to as Time Window Compatibility (TWC) was introduced to eliminate obviously infeasible insertions, and to generate good seed customers. The TS itself incorporated an Adaptive Memory Procedure (AMP) that allowed the algorithm to benefit from the successes of evolutionary metaheuristics. A self-organizational component is introduced to ensure the algorithm is adaptable to changing environments.

During the development of the GA, two new precedence lists were proposed for the Merged Crossover (MX) operator. Results compared favorably in a thorough evaluation of various operators. However, the GA was competitive in neither the quality of the solution, nor the computational time required when measured against the TS.

9.1.3 Value judgement

A fairly standard set of costs, risks, benefits, and or penalties was employed to indicate to the intelligent agent which metaheuristic algorithm yielded solutions of higher quality. The objective function (or fitness function) minimized total time. Time was considered more important than a monetary value as it directly relates to both the time-dependent travel time that resulted in quickest routes, and the expected lateness at customers. The objective function heavily penalized both the number of vehicles in an attempt to improve utilization, and orphaned customers not included in the final solution.

9.1.4 World modeling

To update the agent’s knowledge base, a neural network is trained to predict the best solution algorithm to use, given a problem set for which geographic dispersion, time window ratios, and demand characteristics are known.

The overall structure of the intelligent agent is provided in Algorithm 8.1. Once implemented in a real problem environment, the agent will be given an unknown data set with customer locations, time window requirements for each customer, as well as product de-
mands. The customer characteristics are analyzed using the fuzzy c-means clustering, and the cluster results are simulated in the neural network, suggesting the best solution algorithm to use, as well as a predicted objective function value.

The agent uses the suggested solution algorithm to solve the problem at hand, and provide the user with the incumbent routes and schedules. The agent frequently retrains the neural network according to a dynamic update frequency parameter to ensure that the knowledge base is updated, and allowing the agent to adapt to the specific environment.

9.2 Critical observations and recommendations

Although the results from the initial solution algorithm, metaheuristics, as well as the cluster validation proved very successful and useful, some critical observations are valid.

Neural networks require rich data sets to allow the network to identify intricate non-linear relationships between inputs and outputs. The candidate expected the two metaheuristics, TS and GA, to be more competitive with each other. The contrary was however observed with the GA only competing in a single instance. It should be noted that the GA was not tested on all 60 problems due to the computational burden being in excess of 20 times that of the TS algorithm. The candidate therefor reverted to training the network with a data set not representative of both solution algorithms.

Fleischmann et al. (2004) used the rich data available to them through the Intelligent Transportation System (ITS) in Berlin. The ITS provide real-time data on the congestion and travel speeds of roads, remotely-observed, in the city for different times of the day. Other contributions using real-time data readily available to them include Ghiani et al. (2003) and Giaglis et al. (2004). In the absence of such accurate real-time data, this thesis reverted to benchmark data sets and simulated network congestion, as did Ichoua et al. (2003). On the candidate’s research agenda is the integration of the proposed routing agent with current South African initiatives to establish an ITS in selected metropolitan areas.

As the field of metaheuristics is well-researched, the majority of research opportunities sprouting from this thesis is on the topic of learning of an intelligent routing agent.

Learning structure As opposed to employing a neural network to represent the agent’s world modeling ability, a Bayesian network could be investigated. Similar to neural networks, the Bayesian tree requires substantial data to be created.

Recurrent network The candidate proposed and tested a feed-forward neural network
with back propagation. As an alternative, the recurrent network, or feed-back network, could be considered. It is unfortunately a network structure that is not well-understood and well researched due to its computational complexity. The benefit of the feed-back network structure is the short-term memory inherent in the network. Such an approach may resemble the thought processes of a human decision maker more accurately.

Update frequency Once the network is employed in the problem environment, it re-trains itself according to an update frequency function. The function proposed in [8.1] initially re-trains itself after every iteration to ensure the algorithm adapts rapidly to the new environment. As the network becomes more stable, the frequency decreases. A more complex update frequency function may be considered in environments that is *not* stable, as assumed in this thesis. The improved update frequency function may either reset the global iteration number, based on some criteria, to again update the network at every iteration. Alternatively, a completely new function may be proposed that dynamically adjusts based on environmental changes to reflect an ad hoc or short-term change in the environment.

Although the computational burden of the algorithms proposed in this thesis is not excessive, with exception of the GA results, significant improvement can be made through parallelization of the solution algorithm across multiple processors. The University of Pretoria has recently invested in *Velocity*: a computer cluster consisting of a master and 24 high specification processor nodes. Similar cluster configurations are becoming more readily available in industry as well, and are often shared by companies. [Rochat and Taillard (1995)] provide guidelines to extend the TS with AMP across multiple processors. Even the basic GA structure lends itself to parallel processing, and should be investigated for a speed-up in computational time.

A multi-processor environment will also benefit the neural network as one or more processors may be dedicated to actually solving the problem with the solution algorithm suggested by the agent, while other processors are dedicated to constantly retrain the neural network as new problem sets and targets become available.
9.3 Conclusion

The *not-so-artificially-intelligent-vehicle-routing-agent*\(^{TM}\) has been proved both feasible and viable through the careful integration of multiple Operations Research techniques, including cluster analysis, optimization and neural networks. With computational capacity becoming more accessible, the agent may become a generally accepted means to intelligently adapt routing algorithms to various, even unique, problem environments.

In establishing the agent’s ability to execute solution algorithms, only two prominent metaheuristics were considered. The agent’s structure lends itself to be generalized to include a multitude of solution algorithms, and even various similar solution algorithms with different parameter configurations.
Bibliography

the vehicle routing problem with time window constraints. In Congress on Evolutionary

Taniguchi, E. and Thompson, R. G., editors, Logistics Systems for Sustainable Cities,
pages 1–16, Oxford, UK. Institute for City Logistics, Elsevier Ltd.

lems with time windows. In IEEE International Conference on Developing and Managing
Intelligent System Projects, pages 146–153. IEEE.

system for vehicle routing with time windows. In Seventh IEEE Conference on Artificial
Intelligence for Applications, volume 1, pages 322–328. IEEE.

Thompson, P. M. and Psaraftis, H. N. (1993). Cyclic transfer algorithms for multivehicle

http://www.sintef.no/static/am/opti/projects/top/vrp/bibliography.html,
January.

D., editors, The Vehicle Routing Problem, SIAM Monographs on Discrete Mathematics
(SIAM), Philadelphia.

Toth, P. and Vigo, D. (2003). The granular tabu search and its application to the vehicle-

Chapter 1

Introduction

South Africa’s level of urbanization closely follows international trends in developed countries, with the highest level of economic activity focused in a few metropolitan areas; attracting both people and investment. The good functioning of these metropolitan areas is of strategic importance to the country, as these areas are the main focus for economic and social development. The level of transport services provided impacts directly on the efficiency and the quality of the development in the metropolitan areas. South African metropolitan areas are experiencing rapid growth, and are having difficulties in controlling the physical urban expansion. Both public and freight transport costs are negatively impacted by these phenomena. As demand for transport increases faster than the supply of these services, commuting and freight transportation costs increase at a higher than inflation rate. The community at large experiences the demands for more extensive infrastructure and services.

Customers, both businesses and private consumers, demands products and services at the point of utilization. The geographically dispersed point of supply and point of utilization are bridged through transport. The majority of urban freight is carried by means of road transport, and the definition of the Organization for Economic Co-operation and Development (OECD) for urban freight transport applies:

“The delivery of consumer goods (not only retail, but also by other sectors such as manufacturing) in city and suburban areas, including the reverse flow of used goods in terms of clean waste.” — [OECD] (2003)

Goods transport has a major impact on the economic power, quality of life, accessibility and attractiveness of local communities, especially in city and metropolitan areas, but receives much less attention in comparison to passenger movement. According to the first State of
Logistics Survey for South Africa prepared by [CSIR Transportek (2004)], 83% of the total tonnage transport bill of ZAR 134 billion is transported via road, while 22% of the total tonnage is transported within metropolitan areas. Freight transport within metropolitan and urban areas have different characteristics from long haulage, and the main attributes include (Taniguchi et al., 2004):

- Frequent deliveries of smaller quantities
- Low utilisation of the capacity of trucks
- Time windows

Efficiently transporting goods within urban areas facilitates the establishment of sustainable cities. [OECD (2003)] acknowledges the contribution that freight vehicles make to traffic congestion, energy consumption and negative environmental impacts. Yamada and Taniguchi (2005) conclude that the majority of benefits for freight carriers can be achieved by implementing advanced vehicle routing and scheduling systems, hence addressing congestion, energy consumption, and indirectly environmental impacts. The problem concerned with allocating customer deliveries (or collections) to vehicles, and determining the visiting order of those customers on each vehicle route, is classified as the Vehicle Routing Problem (VRP), and has as its main objective to minimize some measurable function, such as distance traveled, time traveled, or total fleet cost.

1.1 Modeling as research motivation

South Africa provides a fascinating interface between the developed and the developing world. In a critical review, [Leinbach and Stansfield (2002)] have emphasized that Industrial Engineers should re-adopt a systematic view. They argue that the perception of Industrial Engineers has been negatively impacted by their ability to model the obvious, and in the oversimplification of their models, to the extent that reality is not represented comprehensively. Industrial engineers should therefore appreciate the complex and intertwined relationships between social, political, and economic factors influencing urban freight transport systems.

A systematic approach in addressing a problem is illustrated in the lower cycle of Figure 1.1 where a problem is modeled, the model is solved, and the solution is interpreted so as to change the original problem through decisions (Rardin 1998). Identifying and scoping a problem is not a trivial matter, and is important in ensuring that the final solution that a decision is based upon, will in fact represent, and ultimately address the core problem. [Taha]
Figure 1.1: Operations Research cycle

expands the action of *modeling* in Figure 1.1 and illustrates how representations of the real world can easily be over-simplified. Interrelationships within the *real* world are so complex and abundant, that no one person can comprehend it in its entirety. We refer to the *problem in the real world* as the first level of abstraction. The human is a contextual being: the cultural, social and emotional context of an individual forms the individual’s perception of the reality in which he or she exist. The second level of abstraction thereafter represents the contextually sensitive view, referred here to as the *assumed reality*, that an individual has of the real problem. But even the abstract and fragmented view is often too complex to solve in its entirety. Through the actions of analyzing, and applying a methodology of *divide-and-conquer*, the individual scopes the problem in a structured way through simplifying assumptions. These assumptions may be justified in the absence of complete and accurate data about the assumed reality. The third level of abstraction is referred to as a *model*. The verb *modeling* therefore requires the problem solver to not only scope the problem, but also justify the endeavors to ensure that the assumed reality has been challenged to represent the real problem more comprehensively. This is illustrated through the arrows stretching the boundaries of the assumed reality towards the real world. Although
the model can be any representation of a real problem, from scraps of paper with notes on them, a functional flow block diagram or process maps, in this thesis the term is used as a structured and mathematical model with an optimization intent.

Once the model is a true representation of the problem at hand, the decision maker can proceed to solve the model. It should be emphasized that only the model is solved, and not the problem itself. The availability and the ease of use of new generation optimization software have facilitated the process of solving models representing complex operational problems. The rapidly increasing processing power of computers brings the optimization opportunities right to the desk of the practitioner. The solution, however, is often but a list of numerical results.

The numerical solution, and its sensitivity to changes in parameters, requires careful consideration before recommendations and decisions are made, and is only considered as decision support. Implementation impacts, and possible change factors are considered before a final decision is made and implemented. The impact of the decision is then assessed so as to close the problem solving-cycle. Implemented changes may either address the original problem adequately, or may elicit new problems that require modeling, solving, and decision making.

1.2 Intelligence as the research driver

Freight carriers are sharing the road network with various modes of public transport. The use of private vehicles have rapidly increased. The increase can be attributed to both an increase in the number of trips undertaken, and increased journey lengths [Banister, 1995; Spence, 1998]. Road network performance is negatively impacted by the higher usage of private vehicles and results in higher levels of congestion, and a significant reduction in operating speeds. Public transport performance is impacted negatively when operating speeds decrease, resulting in increased operating costs for the carriers, and thus impacting negatively on its attractiveness. As a result, the economically able part of the population turn to their private vehicles for a reliable source of transport, and unknowingly contributes to the hyper-congestion phenomenon.

Congestion does not only increase the stress levels of road users from a commuting point of view, but it also increases the complexity for vehicle and fleet managers overseeing the scheduling, routing, and optimization of their fleet concerns.

Carrier companies represent both public and private entities executing the logistic and
distribution functions of freight. This thesis addresses the complexities of freight transport. Freight carriers are continuously expected to provide higher levels of service at lower rates, and therefore try to minimize their logistic costs, and maximize their profit. Sharing the road infrastructure with other vehicles such as private cars and public transport forces carriers to plan their freight routes more carefully. Enhanced vehicle routing and scheduling takes the congestion constraint into account and attempts to improve the vehicular utility through shorter routes and higher load factors. Software applications often do not provide adequate functionality by not being able to address complex business requirements such as companies having a fleet of vehicles that differ in capacity and/or running costs, and multiple scheduling where vehicles are allowed to complete a trip, return to the depot to renew its capacity, i.e. offload goods collected, or loading goods to be delivered. The reason for software deficiencies are related to the extreme computational complexity when solving routing models. Human intervention is required to, for instance, split the fleet into vehicle categories that represent similar or the same capacity and/or costs. Each category is then solved independently, adjusting demand as customers are serviced by other categories. Human operators can also intervene by evaluating vehicular routes, and identifying vehicles that may be used for a second trip, and then schedule such vehicles accordingly. Although such interventions are mechanistic in nature, they require the time and effort of experienced individuals having a thorough understanding of vehicle routing so as to intervene wisely.

We refer to ourselves (in a more formal way) as *homo sapiens* — man the wise — and value our mental abilities to *think* and *reason* to assist us in improving our surroundings. We require our *thought processes* and *intelligence* to make decisions that will maximize the utility that we obtain from logistics — moving goods from points of manufacture to points of consumption that are geographically dispersed.

“What is mind? What is the relationship between mind and the brain? What is thought? What are the mechanisms that give rise to imagination? What is perception and how is it related to the object perceived? What are emotions and why do we have them? What is will and how do we choose what we intend to do? How do we convert intentions into action? How do we plan and how do we know what to expect from the future?”— *Albus* (1999)

It seems clear from the quote by *Albus* (1999) that before one toss terms such as *thinking* and *planning* around, one should carefully consider how such actions take place, and how one intends to employ such actions to improve, for example, urban freight congestion.
1.2.1 Intelligence

In their leading text, Russell and Norvig (2003) introduces Artificial Intelligence (AI) as not only understanding the human intellect, but also building entities (or agents) that are intelligent. Although it encompasses a huge variety of subfields of study, with many varying definitions, the authors have categorized AI approaches in a two-dimensional framework represented in Figure 1.2.

![Diagram](https://example.com/diagram.png)

Figure 1.2: Categories of artificial intelligence (Adapted from ?)

The top half of the framework is concerned with thought processes and reasoning, as opposed to the lower half that is concerned with the behavioral element of intelligence. The left side of the framework measures the success of an agent’s intelligence against the fidelity of human performance. The right half establishes an **ideal** concept of intelligence as a benchmark, referred to as **rationality**. This is analogous to effectiveness — *doing the right things*. However, the *right* within rationality is only relative to what is known at the time of the *doing*.

An **agent** is something that acts. This thesis is concerned with the development of a computer agent that could intelligently intervene in the routing and scheduling of distribution vehicles. But how is it to be distinguished from mere **programming**? It should be able to operate autonomously, perceive the environment, persist over a period of time, and be able to adopt the goals and objectives of another entity. As an improvement on a basic agent, this thesis propose a **rational agent** that has a strategy to achieve the best possible outcome.
for a given objective, either known, or the expected outcome should some of the parameters be uncertain. The focus of the thesis is therefore not on understanding the human thought processes, but on creating a system that can think, and act rationally.

1.2.2 Complexity

Perfect rationality in modeling is often too difficult to attain due to too high computational demands when looking for exact solutions. Problems such as the routing and scheduling of vehicles can often not be solved exactly, and require the use of solution algorithms that provided approximate solutions where the optimality of the solution can neither be proved in advance, nor confirmed once a solution is found. The different opinions with regards to either finding an exact optimal solution versus settling for a *good enough* solution given a specific environment have led to the split that occurred between *Decision Theory* and *Artificial Intelligence* in the latter half of the twentieth century.

Decision Theory is the field of study where probability theory and utility theory are combined to present a formal framework for decision making under uncertainty. The field of operations research addresses complex management decisions rationally. The intention of the pure branch of decision theory is to obtain a rational decision, or a global optimum.

On the contrary, the complexity in finding a single optimum value led the pioneers of AI such as Herbert Simon (1916–2001) to prove that being able to find a *good enough* answer describes human behavior more accurately — and earned him the Nobel prize in economics in 1978. And although the computational ability of computers have increased dramatically over the past decade, the intention is still to assist mere mortal logistics decision makers to improve their ability to manage distribution fleets.

1.3 Formulating the research question

The primary research question that this thesis intends to answer is *whether it is feasible to develop a rational and intelligent agent to schedule a predefined variant of the VRP*. In order to answer the question, a number of secondary research questions will be stated in terms of the concept of an *intelligent agent*.

In his paper on the engineering of mind, Albus (1999) identifies four functional elements of an intelligent system.

Sensory perception — accepting input data from both outside and from within the system. The data is then transformed through classification and clustering into meaningful
representations of the real world. The first secondary research question addresses the analysis of input data and is stated as follows:

How should customer parameters be clustered so that meaningful classification can be done prior to executing the solution process?

Behavior generation — planning and controlling actions so that goals are achieved. An intelligent agent accepts task with goals, objects and priorities. The tasks are then broken up into jobs and, along with resources, are assigned to agents. Hypothetical plans are created and simulated to predict the outcome of the plans. The simulated results are evaluated, and the agent selects the best expected hypothesized plan. In terms of this thesis an agent refers to computational elements that plan and control the execution of a routing algorithm, correcting for errors and perturbations along the way. The planning processes of the agent are heuristics and metaheuristics that attempt to converge to optimal vehicle routes and schedules. This lead to another secondary research question:

How can heuristics and metaheuristics be used to establish vehicle routes and schedules in a complex and constrained environment?

Value judgement — the computation of a predefined set of costs, risks, benefits, and or penalties related to the vehicle routes. In operations research terms these computational expressions are referred to as the objective function(s). The third secondary research question is derived from value judgement:

What should constitute the objective function of the model so that the real problem is adequately represented?

World modeling — an overall strategy that uses input parameters and variables to update a knowledge database. Data is used to query the behavior generation of plans regarding current routes and schedules. The strategy further simulates possible results of future plans after analyzing the current plans. Simulated results are evaluated, using the value judgement, so the best expected plan for execution can be selected. After execution, the strategy allows for sensory expectations to be created regarding future actions — analogous to bumping your feet against an obstacle in the dark. After stumbling, and reacting to the pain, you lift your feet unnaturally high so as to avoid the next obstacle. The fourth and fifth, probably the most challenging secondary research questions addresses the agents ability to learn from the past and improve in future:
What critical parameters influence the agent’s learning, and should therefore be included in creating future expectations?

How are future expectations created from the past performance?

1.4 Research design and methodology

The process diagram in Figure 1.3 provides an overview of an intelligent agent’s decision process. The agent in this thesis will be a hybrid computerized solution algorithm that has the following inputs:

- Fleet structure
- Customer structure, i.e. demand quantity, geographical location, time windows
- Network structure, derived from customers’ geographical locations

The algorithm will analyze the clustering characteristics of the geographical distribution of customers. Based on the randomness (or clusteredness) of the distribution and the time window characteristics of the customers, the algorithm will select an appropriate solution strategy — a combination of a metaheuristic solution algorithm, along with its appropriate parameter values. The problem instance is solved, and the solution is interpreted and

Figure 1.3: Overview of the intelligent agent’s decision process
presented in a useful loading instruction and route sheet. Behind the scenes the algorithm will initiate comparative analysis of the proposed solution strategy by solving the provided problem instance with various metaheuristics and various parameter values for each metaheuristic. The algorithm will then learn from these analysis through a neural network, and update the intelligence database by recommending new solution strategies for the given problem instance, or reiterating current solution strategies.

The algorithm will be coded using the MATLAB® development environment. The analysis and solution components, and the comparative analysis components will run on separate computer processors to optimize for speed and in doing so, address the computational complexity of the hybrid algorithm.

1.5 The structure of the thesis

To elaborate on the exact nature of the research problem, Chapter 2 reviews literature on the VRP and its variants. The chapter concludes with the mathematical formulation of the Capacitated Heterogeneous Fleet Vehicle Routing Problem with Multiple Soft Time Windows and Probabilistic Travel and Service Time as addressed in this thesis. The review of solution algorithms, both exact and approximate, are conducted in Chapter 3 concluding with the recommendation of two metaheuristic solution algorithms, each covered in more detail in later chapters. The analysis of the customer structure is reviewed in Chapter 7, and the chapter proposes an algorithm to determine the level of clusteredness of a customer network. The algorithm is tested by analyzing benchmark data sets provided for pre-defined problem instances in literature.

Chapters 4 through 6 is dedicated to the development of various metaheuristic solution algorithms. Chapter 4 develops an improved initial solution algorithm to enhance the computational performance of the Tabu Search solution algorithm, developed in Chapter 5. The Genetic Algorithm is less sensitive to the quality of an initial solution, and is treated independently in Chapter 6. For each metaheuristic the various parameters are discussed, and default values proposed. The respective algorithms are discussed at high level, followed by detailed discussions of algorithmic particularities, and concluded by testing and validating the algorithm through benchmark data sets.

The integration of the algorithms, as well as the agent’s ability to learn from repetitive decision making is covered in Chapter 8. The thesis is concluded in Chapter 9 with a critical analysis of the research contribution, and setting a research agenda.
The *Vehicle Routing Problem*: origins and variants

Rardin (1998) states that the organizing of a collection of customer locations, jobs, cities, or points, into sequences and routes are among the most common discrete optimization problems. The first of the two review chapters focus on the origins and the mathematical formulation of the **VRP** and its variants.

2.1 The origins of the basic **VRP**

2.1.1 The Traveling Salesman Problem (**TSP**)

The simplest, and probably most famous of routing problems known to researchers is the **TSP** that seeks a minimum-total-length route visiting every one of N points in a given set $V = \{1, 2, \ldots, N\}$ exactly once across an arc set A. The distance between all point combinations in A, (i, j), where $(i, j) \in V|i \neq j$, is known. In the notation introduced by Rardin (1998), the symbol ‘≜’ denotes *defined to be*. With the decision variable x_{ij} defined as:

$$
\begin{align*}
x_{ij} &\triangleq \\
&\begin{cases}
1 & \text{if a salesman travels from node } i \text{ to node } j, \text{ where } i, j = \{1, 2, \ldots, N\} \\
0 & \text{otherwise}
\end{cases}
\end{align*}
$$

(2.1)

we formulate the problem as

$$
\min z = \sum_{(i,j) \in A} c_{ij}x_{ij}
$$

(2.2)
subject to

\[\sum_{i=1}^{N} x_{ij} = 1 \quad \forall j \in \{2, \ldots, N\} \quad (2.3) \]

\[\sum_{j=1}^{N} x_{ij} = 1 \quad \forall i \in \{2, \ldots, N\} \quad (2.4) \]

\[\sum_{i \in S} \sum_{j \in S} x_{ij} \leq |S| - 1 \quad \forall S \subset V \quad (2.5) \]

\[x_{ij} \in \{0, 1\} \quad \forall i, j \in \{2, \ldots, N\} \quad (2.6) \]

The objective of the problem minimizes the total distance traveled in (2.2). Each node must be visited exactly once according to (2.3) and (2.4), also referred to as degree constraints. Subtours are eliminated through the introduction of (2.5). The \(|S|\) denotes the number of elements in the subset \(S\). Schrage (2002) states that there are of the order \(2^n\) constraints of type (2.5), as opposed to the alternative in (2.7)

\[u_j \geq u_i + 1 - (1 - x_{ij})n \quad \forall j \in \{2, \ldots, N\}|j \neq i \quad (2.7) \]

of which there are of the order \(N - 1\) constraints. Only a few of the former type constraints will be binding in the optimum. Padberg and Rinaldi (1987) therefore propose an efficient and effective iterative process of adding violated constraints of type (2.5) as needed.

Although a number of TSP variations exist, our interest is in the variant where multiple salesmen are routed simultaneously.

2.1.2 The Multiple Traveling Salesman Problem (MTSP)

The MTSP is similar to the notoriously difficult TSP that seeks an optimal tour of \(N\) cities, visiting each city exactly once with no sub-tours. In the MTSP, the \(N\) cities must be partitioned into \(M\) tours, with each tour resulting in a TSP for one salesperson. The MTSP is more difficult than the TSP because it requires determining which cites to assign to each salesperson, as well as the optimal ordering of the cities within each salesperson’s tour (Carter and Ragsdale 2005, Kara and Bektas 2005). Consider a complete directed graph \(G = (V, A)\) where \(V\) is the set of \(N\) nodes (or cities to be visited), \(A\) is the set of arcs and \(C = (c_{ij})\) is the cost (distance) matrix associated with each arc \((i, j) \in A\). The cost matrix can be symmetric, asymmetric, or Euclidean. The latter refers to the straight-line distance measured between the two geographically dispersed nodes. There are \(M\) salesmen based at the depot, denoted as node 1. The single depot MTSP consists of finding tours
for the M salesmen subject to each salesman starting and ending at the depot, each node is located in exactly one tour, and the number of nodes visited by a salesman lies within a predetermined time (or distance) interval. The objective is to minimize the cost of visiting all the nodes. We define the decision variable, x_{ij}, in (2.1). For any salesman, u_i denotes the number of nodes visited on that salesman’s route up to node i, with corresponding parameters K and L denoting the minimum and maximum number of nodes visited by any one salesman, respectively. We can therefore state that $1 \leq u_i \leq L$ when $i \geq 2$, and when $x_{i1} = 1$, then $K \leq u_i \leq L$. The following Integer Linear Program (ILP) formulation is proposed by Kara and Bektas (2005).

$$\min z = \sum_{(i,j) \in A} c_{ij}x_{ij}$$

subject to

$$\sum_{j=2}^{N} x_{i1} = M$$ \hspace{1cm} (2.9)

$$\sum_{i=2}^{N} x_{i1} = M$$ \hspace{1cm} (2.10)

$$\sum_{i=1}^{N} x_{ij} = 1 \quad \forall j \in \{2, \ldots, N\}$$ \hspace{1cm} (2.11)

$$\sum_{j=1}^{N} x_{ij} = 1 \quad \forall i \in \{2, \ldots, N\}$$ \hspace{1cm} (2.12)

$$u_i + (L - 2)x_{i1} - x_{i1} \leq L - 1 \quad \forall i \in \{2, \ldots, N\}$$ \hspace{1cm} (2.13)

$$u_i + x_{i1} + (2 - K)x_{i1} \geq 2 \quad \forall i \in \{2, \ldots, N\}$$ \hspace{1cm} (2.14)

$$x_{i1} + x_{i1} \leq 1 \quad \forall i \in \{2, \ldots, N\}$$ \hspace{1cm} (2.15)

$$u_i - u_j + Lx_{ij} + (L - 2)x_{ji} \leq L - 1 \quad \forall i, j \in \{2, \ldots, N\} | i \neq j$$ \hspace{1cm} (2.16)

$$x_{ij} \in \{0, 1\} \quad \forall i, j \in \{2, \ldots, N\}$$ \hspace{1cm} (2.17)

The objective in (2.8) minimizes the total cost of traveling to all nodes, while constraints (2.9) and (2.10) ensures that all M salesmen are allocated routes. Degree constraints are imposed by (2.11) and (2.12). The MTSP-specific constraints (2.13) and (2.14) are referred to as bounding constraints and Kara and Bektas (2005) introduce these as the upper and lower bound constraints on the number of nodes visited by each salesman. The value of u_i is initialized to 1 if and only if node i is the first node on the tour of any salesman. Inequality (2.15) forbids a salesman to only visit a single node on its tour. The formation of subtours between all nodes in $V \setminus \{1\}$ (all nodes except the depot) are eliminated by (2.16) as it ensures
that \(u_j = u_i + 1 \) if and only if \(x_{ij} = 1 \). They are also referred to as Subtour Elimination Constraints (SEC).

Next we consider a variant where each of the \(M \) salespeople has a predefined, yet similar, capacity. An analogy is having salespeople traveling with samples in their vehicles. Not only do their cars have limited space for the samples, but each customer visited may require a different number of the samples. As a variant of the MTSP it is referred to as the Capacitated Multiple Traveling Salesman Problem (CMTSP), but in the context of this thesis the vehicular related name, Vehicle Routing Problem (VRP), is preferred.

2.1.3 The Vehicle Routing Problem (VRP)

The distribution problem in which vehicles based at a central facility (depot) are required to visit — during a given time period — geographically dispersed customers in order to fulfill known customer requirements are referred to as the VRP (Christofides, 1985). The main objective of the VRP is to minimize the distribution costs for individual carriers, and can be described as the problem of assigning optimal delivery or collection routes from a depot to a number of geographically distributed customers, subject to constraints (\(?\)). The most basic version of the VRP have also been called vehicle scheduling, truck dispatching, or simply the delivery problem. A number of different formulations appear in the authoritative work of Christofides (1985). The basic problem can be defined with \(G = (V, A) \) being a directed graph where \(V = \{v_1, \ldots, v_N\} \) is a set of vertices representing \(N \) customers, and with \(v_1 \) representing the depot where \(M \) identical vehicles, each with capacity \(Q \), are located (\(?\)). \(E = \{(v_i, v_j)|v_i, v_j \in V, i \neq j\} \) is the edge set connecting the vertices. Each vertex, except for the depot \((V\setminus\{v_1\})\), has a non-negative demand \(q_i \) and a non-negative service time \(s_i \).

A matrix \(C = (c_{ij}) \) is defined on \(A \). In some contexts, \(c_{ij} \) can be interpreted as travel cost, travel time, or travel distance for any of the identical vehicles. Hence, the terms cost, time, and distance are used interchangeably, although \(t_{ij} \) denotes the travel time between nodes \(i \) and \(j \) in the formulation provided below. The basic VRP is to route the vehicles one route per vehicle, each starting and finishing at the depot, so that all customers are supplied with their demands and the total travel cost is minimized. Although Christofides (1985) presents three different formulations from the early 1980s, the following mathematical formulation of the VRP is adapted from Bodin et al. (1983) and Filipec et al. (1998). During this period little changes were made to the formulation of the problem. The decision variable, \(x_{ij}^k \) is
defined as

\[x_{ij}^k \triangleq \begin{cases}
1 & \text{if vehicle } k \text{ travels from node } i \text{ to } j, \text{ where} \\
& i, j \in \{1, 2, \ldots, N\} | i \neq j, \text{ and } k \in \{1, 2, \ldots, K\} \\
0 & \text{otherwise}
\end{cases} \tag{2.18} \]

\[\min z = \sum_{i=0}^{N} \sum_{j=0}^{N} \sum_{k=1}^{K} c_{ij} x_{ij}^k \quad \tag{2.19} \]

subject to

\[\sum_{i=0}^{N} \sum_{j=0}^{N} \sum_{k=1}^{K} x_{ij}^k = 1 \quad \forall j \in \{1, \ldots, N\} \tag{2.20} \]

\[\sum_{j=0}^{N} \sum_{k=1}^{K} x_{ij}^k = 1 \quad \forall i \in \{1, \ldots, N\} \tag{2.21} \]

\[\sum_{i=0}^{N} x_{ip}^k - \sum_{j=0}^{N} x_{pj}^k = 0 \quad \forall p \in \{1, \ldots, N\}, k \in \{1, \ldots, K\} \tag{2.22} \]

\[\sum_{j=0}^{N} q_j \left(\sum_{i=0}^{N} x_{ij}^k \right) \leq Q \quad \forall k \in \{1, \ldots, K\} \tag{2.23} \]

\[\sum_{i=0}^{N} \sum_{j=0}^{N} t_{ij} x_{ij}^k \leq D \quad \forall k \in \{1, \ldots, K\} \tag{2.24} \]

\[\sum_{j=1}^{N} x_{0j}^k \leq 1 \quad \forall k \in \{1, \ldots, K\} \tag{2.25} \]

\[\sum_{i=1}^{N} x_{i0}^k \leq 1 \quad \forall k \in \{1, \ldots, K\} \tag{2.26} \]

\[x_{ij}^k \in \{0, 1\} \quad \forall i, j \in \{1, \ldots, N\}, k \in \{1, \ldots, K\} \tag{2.27} \]

The degree constraints are represented by (2.20) and (2.21). Route continuity is enforced by (2.22) as once a vehicle arrived at a node, it must also leave that node. No one vehicle can service customer demands that exceeds the vehicle capacity in (2.23). A maximum route length is limited by (2.24). Constraints (2.25) and (2.26) ensures that each vehicle is scheduled no more than once.

\section*{2.2 Variants of the VRP}

The basic VRP makes a number of assumptions, including utilizing a homogeneous fleet, a single depot, one route per vehicle, etc. These assumptions can be eliminated by introducing
additional constraints to the problem. This implies increasing the complexity of the problem, and, by restriction, classifies the extended problem as an \textit{np}-hard problem. It should be noted that most of these additional constraints are often implemented in isolation, without integration, due to the increased complexity of solving such problems. In the next few sections, these variants are introduced in isolation, before proposing an integrated formulation in Section 2.3.

2.2.1 The concept of time windows

A \textit{time window} can be described as a window of opportunity for deliveries. It is an extension of the VRP that has been researched extensively \cite{Ibaraki2005, Taillard1999, Taillard1997, Tan2001a}. A time window is the period of time during which deliveries can be made to a specific customer i, and has three main characteristics:

- Earliest allowed arrival time, e_i, also referred to as the \textit{opening time}
- Latest allowed arrival time, l_i, also referred to as the \textit{closing time}
- Whether the time window is considered \textit{soft} or \textit{hard}

Consider the example, illustrated in Figure 2.1 where customer i requests delivery between 07:30 and 17:00. To distinguish between the actual and the specified times of arrival, the variable a_i denotes the actual time of arrival at node i. Should the actual arrival time at node i, denoted by a_i, be earlier than the earliest allowed arrival at the node, e_i, then the vehicle will incur a waiting time, w_i, which can be calculated as $w_i = \max\{0, e_i - a_i\}$. The

\begin{figure}[h!]
\centering
\includegraphics[width=\textwidth]{figure2.1.png}
\caption{Double sided hard time window}
\end{figure}
introduction of time windows to the basic VRP sees the introduction of three new constraints.

\begin{equation}
a_0 = w_0 = s_0 = 0
\end{equation}

\begin{equation}
\sum_{k=1}^{K} \sum_{i=0; i \neq j}^{N} x_{ij}^k (a_i + w_i + s_i + t_{ij}) \leq a_j \quad \forall j \in \{1, 2, \ldots, N\}
\end{equation}

\begin{equation}
e_i \leq (a_i + w_i) \leq l_i \quad \forall i \in \{1, 2, \ldots, N\}
\end{equation}

Constraint (2.28) assumes that vehicles are ready and loaded by the time the depot opens, which is indicated as time 0 (zero). Constraint (2.29) calculates the actual arrival time, while (2.30) ensures that each customer \(i\) is serviced within its time window.

When both an earliest and latest allowed arrival is stipulated, the time window is referred to as double sided. If no arrivals are allowed outside of the given parameters, the time window is said to be hard, as is the case in Figure 2.1. When delivery is allowed outside the specified time window, the time window is said to be soft, and customer \(i\) may penalize lateness at a cost of \(\alpha_i\) (Koskosidis et al., 1992). Customer \(i\) may specify a maximum lateness, \(L_i^{\text{max}}\). The example illustrated in Figure 2.2 sees customer \(i\) specifying a time window between 07:30 and 15:30. The customer will, however, allow late deliveries until 17:00. A hard time window

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{figure2.2.png}
\caption{Soft time window}
\end{figure}

is therefore a special type of soft time window where \(L_i^{\text{max}} = 0\). Should a vehicle arrive after the latest allowed arrival time, \(l_i\), but prior to the maximum lateness, \(L_i^{\text{max}}\), the lateness at node \(i\), \(L_i\), can be calculated as \(L_i = \max(0, a_i - l_i)\). The lateness is penalized by introducing a penalty term to the VRP objective function (2.19), resulting in (2.31).

\[\min z = \sum_{i=0}^{N} \sum_{j=0, \ j \neq i}^{N} \sum_{k=1}^{K} c_{ij} x_{ij}^k + \sum_{i=1}^{N} \alpha_i \times \max\{0, L_i\}\]

The time window for the depot, node 0, can be specified. The case illustrated in Figure 2.3 sees the depot specifying operating hours (time window) from 06:00 to 18:00, while the first customer on the route, customer 1, specifies a time window between 07:00 and 09:00, and the last customer, customer \(N\), requests delivery between 15:00 and 17:00.
Should a customer specify multiple time windows, an indexing symbol, \(a \), is introduced as superscript to the earliest and latest allowed arrival times, respectively, where \(a \in \{1, 2, \ldots, A\} \) in which \(A \) indicates the maximum number of time windows allowed for each customer. Consider the example where customer \(n \) requests delivery either between 06:30 and 09:00, or between 16:00 and 17:30 as illustrated in Figure 2.4. This example is typical of residents requesting home shopping deliveries outside business hours. The formulation changes with the introduction of the decision variable

\[
\psi_i^a = \begin{cases}
1 & \text{if the } a^{th} \text{ time window of customer } i \text{ is used, where } i \in \{1, 2, \ldots, N\}, \\
0 & \text{otherwise.}
\end{cases} \quad a \in \{1, 2, \ldots, A\}
\]

To ensure that the decision variable is appropriately enforced in the formulation, we change constraint (2.30) to distinguish between different time windows, as proposed in (2.32)

\[
e_i^a - (1 - \psi_i^a) M \leq (a_i + w_i) \leq l_i^a + (1 - \psi_i^a) M \quad \forall i \in \{1, 2, \ldots, n\}, a \in \{1, 2, \ldots, A\}
\]

where \(M \) is a sufficiently large number, typically greater than the scheduling horizon. An enforcement of a single time window for each customer is required, and is subsequently introduced in (2.33).

\[
\sum_{a=1}^{A} \psi_i^a = 1 \quad \forall i \in \{1, 2, \ldots, N\}
\]
2.2.2 Capacity constraints and vehicle characteristics

Gendreau et al. (1999) propose a solution methodology for cases where the fleet is heterogeneous, that is, where the fleet is composed of vehicles with different capacities and costs. Their objective is to determine what the optimal fleet composition should be, and is referred to as either a Heterogeneous Fleet Vehicle Routing Problem (HVRP) or a Fleet Size and Mix Vehicle Routing Problem (FSMVRP). Liu and Shen (1999b) adds time windows in their problem application and refer to the problem as a Fleet Size and Mix Vehicle Routing Problem with Time Windows (FSMVRPTW). In yet another paper, Liu and Shen (1999a) refers to the heterogeneous fleet variant as the Vehicle Routing Problem with Multiple Vehicle Types and Time Windows (VRPMVTTW). Taillard (1999) formulates the Vehicle Routing Problem with a Heterogeneous fleet of vehicles (VRPHE) where the number of vehicles of type \(t \) in the fleet is limited; the objective being to optimize the utilization of the given fleet. Salhi and Rand (1993) incorporate vehicle routing into the vehicle composition problem, and refer to it as the Vehicle Fleet Mix problem (VFM).

The implication of a heterogeneous fleet on the standard VRP is that \(T \) type of vehicles are introduced, with \(t \in \{1, 2, \ldots, T\} \). The vehicle capacity parameter \(p \) is changed. The new parameter, \(p_t \), represents the capacity of vehicles of type \(t \), resulting in each vehicle \(k \) having a unique capacity, \(p_k \). The use of one vehicle of type \(t \) implies a fixed cost \(f_t \). A unique fixed cost, \(f_k \), is introduced for each vehicle \(k \), based on its vehicle type. The objective function changes to

\[
\min z = \sum_{i=0}^{n} \sum_{j=0}^{n} \sum_{k=1}^{K} c_{ij} x_{ij}^k + \sum_{k=1}^{K} \sum_{j=1}^{n} f_k x_{0j}^k
\]

(2.34)

while (2.23) changes to indicate the new capacity parameter

\[
\sum_{i=1}^{n} q_i \left(\sum_{j=0}^{n} x_{ij}^k \right) \leq p_k \quad \forall k = \{1, 2, \ldots, K\}
\]

(2.35)

Taillard (1999) introduces a variable \(c_{ijt} \) to represent the cost of traveling between nodes \(i \) and \(j \), using a vehicle of type \(t \). It is possible to introduce the variable portion of the vehicle cost into the objective function proposed in (2.34). The introduction will lead to (2.36)

\[
\min \sum_{i=0}^{n} \sum_{j=0}^{n} \sum_{k=1}^{K} \sum_{t=1}^{T} c_{ijt} x_{ij}^k \xi_{lt}^k + \sum_{k=1}^{K} \sum_{j=1}^{n} f_k x_{0j}^k
\]

(2.36)
where
\[
\xi^k_t \triangleq \begin{cases}
1 & \text{if vehicle } k \text{ is of type } t, \text{ where } k = \{1, 2, \ldots, K\}, \text{ and } t = \{1, 2, \ldots, T\} \\
0 & \text{otherwise}
\end{cases}
\]

2.2.3 Uncertainty in vehicle routing

The statements in Section 2.1.3 do not adequately describe a variety of practical situations where one or several parameters are uncertain. Powell (2003) confirms that research into routing and scheduling algorithms, which explicitly captures the uncertainty of future decisions made now, is extremely young. Laporte et al. (1992), Lambert et al. (1993), and Ong et al. (1997) provide examples including vehicles collecting random quantities at various customers; and customers being visited on a random basis. A vehicle incurs a penalty proportional to the duration of its route in excess of a predetermined constant \(B\) — typical of applications where drivers are paid overtime for work done after normal hours. Laporte et al. (1992) propose an attractive and relatively simple chance constrained model (from a computational point of view). However, as the expected cost related to excess route duration needs to be taken into account, this thesis reverts to proposing a stochastic programming model with recourse.

First stage decisions made are the number of vehicles required, as well as their respective routes. Once the random travel time and service time variables are realized in the second stage, penalties are incurred for the excess duration. The following variables are defined.

\[
x^k_{ij} \triangleq \begin{cases}
1 & \text{if vehicle } k \text{ travels from node } i \text{ to } j, \text{ where } i, j = \{1, 2, \ldots, n\}|i \neq j, \text{ and } k = \{1, 2, \ldots, K\} \\
0 & \text{otherwise}
\end{cases}
\]

\[
z^k_i \triangleq \begin{cases}
1 & \text{if node } i \text{ is visited by vehicle } k, \text{ where } i = \{1, \ldots, n\}, k = \{1, \ldots, m\} \\
0 & \text{otherwise}
\end{cases}
\]

\(\tilde{\xi}\) a vector of random variables corresponding to travel and service times.

Each realization \(r\) of \(\tilde{\xi}\), denoted by \(\xi^r\), is referred to as a state of the world (Kall and Wallace 1994).

\(\Xi\) the finite support of \(\tilde{\xi}\) such that \(\Xi = \{1, 2, \ldots, \xi^r, \ldots, \xi^R\}\) where \(R\) is the total number of states in the problem world.

\(y^k(\tilde{\xi})\) the excess duration of route \(k\) as a function of the realization of \(\tilde{\xi}\).
\(c_{ij}^k \triangleq \) the travel cost from node \(i \) to \(j \) with vehicle \(k \), where \(i, j = \{1, \ldots, n\}, k = \{1, \ldots, K\} \)

\(t_{ij}^k(\xi) \triangleq \) the travel time from node \(i \) to \(j \) with vehicle \(k \), where \(i, j = \{1, \ldots, n\}, k = \{1, \ldots, K\} \) expressed as a function of the realization of \(\xi \)

\(\tau_i^k(\xi) \triangleq \) the service time at node \(i \) with vehicle \(k \), where \(i = \{1, \ldots, n\}, k = \{1, \ldots, K\} \), expressed as function of the realization of \(\xi \)

\(\beta^k \triangleq \) the positive unit penalty cost for excess duration traveled by vehicle \(k \), where \(k = \{1, \ldots, m\} \)

\(f^k \triangleq \) the fixed cost of vehicle \(k \), where \(k = \{1, \ldots, K\} \)

\(B^k \triangleq \) the maximum time for route \(k \) over which a penalty is incurred, where \(k = \{1, \ldots, K\} \)

The model is then

\[
\min z = \sum_{k=1}^{K} f^k z_0^k + \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{K} c_{ij}^k x_{ij}^k + E(\tilde{\xi}) \left(\sum_{k=1}^{K} \beta^k y_k^k(\tilde{\xi}) \right) \tag{2.37}
\]

subject to

\[
\sum_{k=1}^{K} z_i^k = 1 \quad \forall i \in \{1, \ldots, n\} \tag{2.38}
\]

\[
\sum_{j=1}^{n} \left(x_{0j}^k + x_{j0}^k \right) = 2z_0^k \quad k \in \{1, \ldots, K\} \tag{2.39}
\]

\[
\sum_{j=1}^{n} \left(x_{ij}^k + x_{ji}^k \right) = 2z_i^k \quad \forall i \in \{1, \ldots, n\}, k \in \{1, \ldots, K\} \tag{2.40}
\]

\[
\sum_{i \in S} \sum_{j \in S, j \neq i} x_{ij}^k \leq |S| - 1 \quad S \subset V, 3 \leq |S| \leq n - 3, k = \{1, \ldots, K\} \tag{2.41}
\]

\[
B^k - \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j \neq i} t_{ij}^k(\xi) x_{ij}^k - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j \neq i} \left(\tau_i^k(\xi) + \tau_j^k(\xi) \right) x_{ij}^k + y_k^k(\tilde{\xi}) \geq 0 \tag{2.42}
\]

\[
\forall k \in \{1, \ldots, K\}, \tilde{\xi} \in \Xi
\]

\(x_{ij}^k \in \{0, 1\} \quad \forall i, j \in \{1, \ldots, n\}, k \in \{1, \ldots, K\} \tag{2.43} \]

\(z_i^k \in \{0, 1\} \quad \forall i \in \{1, \ldots, n\}, k \in \{1, \ldots, K\} \tag{2.44} \]

\(y_k^k(\tilde{\xi}) \geq 0 \quad \forall k \in \{1, \ldots, K\}, \tilde{\xi} \in \Xi \tag{2.45} \)
The objective function minimizes total cost in (2.37) that includes fixed vehicle costs, travel costs, as well as the expected penalty costs as a result of exceeded route duration. All vehicles must be routed according to (2.38), while (2.39) calculates the number of routed vehicles. Degree constraints are introduced in (2.40). Subtours are eliminated through (2.41) where the reader may infer that \(n > 6 \). Constraint (2.42) combined with (2.45) implies a penalty to be calculated for vehicle \(k \), but only if the total route length including service times exceed \(B^k \).

\[\text{2.2.4 Time-dependent travel time} \]

Although unpredictable events such as accidents and vehicle breakdowns render travel times as stochastic, the candidate postulates that the subtle, yet partially predictable event of congestion during peak hours of the day requires more attention. The assumption is made that by addressing the time-dependent nature of travel times, a modeling approach that is a stronger approximation of the actual real-world conditions of vehicle routing and scheduling than by catering for stochastic travel times, will be achieved.

Hill and Benton (1992) review the two main approaches in estimating travel distance between two nodes \(i \) and \(j \), denoted by \(d_{ij} \), namely Minkowski distance and Pythagorean distance. The former is presented in (2.46).

\[
d_{ij} = \left[|x_i - x_j|^\omega + |y_i - y_j|^\omega \right]^{\frac{1}{\omega}}
\]

(2.46)

When \(\omega = 2 \), the Minowski distance, denoted by \(d_{ij} \), is the Pythagorean distance. When \(\omega = 1 \), the Minowski distance is the \textit{city-block} right-angled distance. In (2.46) the coordinate pair \((x_i, y_i)\) of each node \(i \) is required. A similar approach can be followed if only latitude and longitude data is available, i.e. from a Geographical Information System (GIS) database. The problem, however, is that researchers often reduce vehicle travel speed to an approximate speed, denoted by \(r_c \), and simply apply the scalar transformation of distance in (2.47) to find the travel time between the two nodes,

\[
t_{ij} = \frac{d_{ij}}{r_c}
\]

(2.47)

without cognisance of an acceleration stage to get onto the road, the cruising stage, and the deceleration stage at the destination node (Assad, 1988). If the three stages were to be acknowledged, \(d_c \) denotes the distance required for the vehicle to reach its cruising speed, and \(\alpha \) denotes the acceleration, a more appropriate way of calculating the travel time is given.
in (2.48).

\[
 t_{ij} = \begin{cases}
 2 \left(\frac{d_{ij}}{\alpha} \right)^{\frac{1}{2}} & \text{if } d_{ij} \leq 2d_c \\
 \frac{d_{ij}}{\alpha} + \frac{r_c}{\alpha} & \text{if } d_{ij} > 2d_c
 \end{cases} \tag{2.48}
\]

In most metropolitan areas, travel times are much longer during the start and end of workday rush hours, especially on main arterial routes. If one were to inflate all route times equally during peak periods, one would be able to route and schedule vehicles without taking time-dependent travel times into consideration, and not compromise optimality of routes. However, road networks are unevenly congested, i.e. traveling from A to B during the morning rush hour traffic might be more congested than when traveling from B to A at the same time.

Malandraki and Daskin (1992) state that the travel time is not only a function of the distance, but should take the time of day into account as well. Ichoua et al. (2003) state that research on time-dependent problems started towards the end of the 1950s with references to the time-dependent shortest path problem, the time-dependent path choice problem, and the Time Dependent Traveling Salesman Problem (TDTSP). Of the earliest research found on the Time Dependent Vehicle Routing Problem (TDVRP) is Hill et al. (1988), followed by Hill and Benton (1992). In their papers customer nodes were assigned time-dependent piecewise constant speeds — these speeds reflect the traveling speed surrounding the nodes.

The edge travel time between two nodes were derived as the average speed of the two nodes concerned. At the time Hill and Benton (1992) attribute the lack of time-dependent travel time research to:

- Immense efforts to estimate travel time parameters
- Prohibitive data storage requirements
- Inefficient solution algorithms

Malandraki and Daskin (1992) formulate an elegant variant of the Vehicle Routing Problem with Time Windows (VRPTW) with the introduction of piecewise constant travel times on the edges. Approaches to accommodate time-dependent travel times mentioned so far all allow passing: the event where one vehicle may pass another vehicle on the same edge although it started later than the vehicle it passed, but in a different time period with shorter traveling time.

Ahn and Shin (1991) use similar notation as used in the introduction of the VRPTW and also introduce:
\[\tau_{ij}(x) \triangleq \text{travel time from node } i \text{ to node } j \text{ via arc } (i,j) \in A, \text{ given that the trip starts from node } i \text{ at time } x \]

\[s_i \triangleq \text{the constant service time at node } i \]

\[t_i \triangleq \text{the time at which service begins at node } i \]

\[A_{ij}(t_i) \triangleq \text{arrival time at node } j \text{ through arc } (i,j) \in A \text{ given } t_i, \text{ that is } A_{ij}(y) = y + s_i + \tau_{ij}(t_i + s_i) \]

\[d_i \triangleq \text{the effective latest service start time at node } i \text{ that allows us to maintain the feasibility of a current route} \]

Each customer \(i \) is to be serviced within its time window \([e_i, l_i]\). The internode travel time \(\tau_{ij}(\cdot) \) and the arrival time \(A_{ij}(\cdot) \) are functions of the departure time representing time-dependent congestion levels. In this thesis multiple links are not considered. The non-passing property can be expressed as:

For any two nodes \(i \) and \(j \), and any two service start times \(x \) and \(y \) at node \(i \) such that \(x < y \), \(A_{ij}(x) < A_{ij}(y) \) must hold, that is, earlier departure from node \(i \) guarantees earlier arrival at node \(j \).

Raw travel time data in the form of a step function is not appropriate for use in the routing of vehicles, as it only provides average travel time data for specific time periods. In such data sources, let:

\[\tau_{ijk} \triangleq \text{the shortest travel time from node } i \text{ to node } j \text{ if the start time at node } i \text{ is in time slot } Z_k, \text{ where } i,j \in A, \text{ and } k \in \{1,2,\ldots,K\}, \]

where the day (planning horizon) is divided into time slots such that

\[Z_k = [z_{k-1}, z_k] \quad \forall k \in \{1,2,\ldots,K\}, \]

where the interval \([z_0, z_K]\) reflects the full day, or planning horizon under consideration. Figure 2.5 is used for illustrative purposes. The travel time, being a function of the time of day, is not continuous in the point \(z_k \) and may lead to passing if travel time decrease for the \(k + 1^{th} \) segment. To obtain a smoothed travel time function, let:

\[\tau_{ij}(t) \triangleq \text{the travel time from node } i \text{ to node } j \text{ given that the travel started at time } t \text{ from node } i \]
A parameter δ_{ijk} is introduced for each breakpoint z_k, where $k \in \{1, 2, \ldots, K\}$, between two consecutive time slots Z_{k-1} and Z_k. The values of $\delta_{ij0} = \delta_{ijK} = 0$. The jump between two consecutive travel times segments Z_{k-1} and Z_k is linearized in the interval $[z_k - \delta_{ijk}, z_k + \delta_{ijk}]$ provided the parameter δ_{ijk} and determining the slope

$$s_{ijk} = \frac{\tau_{ijk+1} - \tau_{ijk}}{2\delta_{ijk}}$$

The travel time function, as illustrated by Figure 2.5(b), is expressed as

$$\tau_{ij}(t) = \begin{cases}
\tau_{ijk} & \text{for } z_{k-1} + \delta_{ij,k-1} \leq t \leq z_k - \delta_{ijk} \\
\tau_{ijk} + (t - z_k + \delta_{ijk}) s_{ijk} & \text{for } z_k - \delta_{ijk} < t < z_k + \delta_{ijk}
\end{cases}$$

The travel time function holds for all $k \in \{1, 2, \ldots, K\}$. Fleischmann et al. (2004) prove that if $\delta_{ijk} > 0$ for all intermediate breakpoints and the slope $s_{ijk} > -1$, that the arrival time function

$$A_{ij}(t) = t + \tau_{ij}(t)$$

is continuous and monotonic, i.e. adheres to the non-passing property. The papers by Ichoua et al. (2003) and Potvin et al. (2006) also refer to the non-passing property as the First-In-First-Out (FIFO) property. As $A_{ij}(\cdot)$ is a strictly increasing function, it possesses

1There is a designated sequence such that successive members are either consistently increasing or decreasing with no oscillation in relative value, i.e. each member of a monotone increasing sequence is greater than or equal to the preceding member; each member of a monotone decreasing sequence is less than or equal to the preceding member.
the inverse function $A_{ij}^{-1} (\cdot)$. $A_{ij}^{-1} (x)$ is interpreted as the departure time at node i so that node j can be reached at time x. Let $(i_0, i_1, i_2, \ldots, i_m, i_0)$ denote a partially constructed feasible route with m customer nodes where i_0 denotes the depot. The partial route could be simplified for illustration purposes to $(0, 1, 2, \ldots, m, 0)$.

In the presence of the non-passing property, the effective latest service start time at node i on the partial feasible route, denoted by d_i, could then be given by the backward recursive relation given in (2.52).

$$d_i = \begin{cases} \min \{ t_i, A_{i0}^{-1} (l_0) \} & \text{for } i = m \\ \min \{ t_i, A_{i,i+1}^{-1} (d_{i+1}) \} & \text{for } 0 \leq i \leq m - 1 \end{cases}$$

The actual service start time for each node i can be determined by the forward recursion given in (2.53).

$$t_i = \begin{cases} \max \{ e_i, A_{01} (t_0) \} & \text{for } i = 1 \\ \max \{ e_i, A_{i-1,i} (t_{i-1}) \} & \text{for } 2 \leq i \leq m \end{cases}$$

The computation of both d_i and t_i is fairly elementary. The advantage is only apparent when route improvements are made, and subsequent feasibility check routines are eased.

The formulation used in this thesis refers to both travel and service times as uncertain and dependent on the realization of uncertain events. A principle distinction, however, is made between stochastic service times and time-dependent travel times. The implications of such a distinction will become apparent in the calculations and feasibility checks when solution algorithms are developed in later chapters, as only time-dependent travel time is considered. In the majority of applications, demand is assumed to be known at the time of establishing the actual route.

2.2.5 Multiple scheduling

It is often not viable to assume that each vehicle will only complete a single route. Multiple scheduling is concerned with the case where a vehicle could complete deliveries on a scheduled route, return to the depot where its capacity is renewed, after which a second, or consecutive trip is executed with the renewed capacity. [Taillard et al. (1996)](1996) refer to this type of problem as the Vehicle Routing Problem with Multiple use of vehicles (VRPM). [Butt and Ryan (1999)](1999) consider the Multiple Tour Maximum Collection Problem (MTMCP) and assumes that the routes are constrained in such a way that all of the customers cannot be visited. Their approach aims to maximize the number of customers serviced. [Brandão and Mercer (1997)](1997)
introduce the Multi-Trip Vehicle Routing Problem (MTVRP) and address the combination of multiple trips with time windows. The special case of multiple scheduling where only trips are considered is referred to as Double Scheduling.

This thesis considers a vehicle that starts and ends its tour at the depot. A tour consists of one or more routes, each starting and ending at the depot. The same vehicle can only be used for two or more routes if the routes do not overlap. As opposed to (2.28) multiple routes require a service time to be specified for the depot. Consider the example illustrated in Figure 2.6. The depot has a time window from 06:00 to 18:00. A vehicle fills its capacity at the depot for a time period of \(s_0 = 0.5 \) hours. It leaves the depot at 06:30, services the first route, and returns to the depot at 11:00, where its capacity is renewed. A second route, of five hours, is serviced before the vehicle returns to the depot.

Taillard et al. (1996) state that the multiple scheduling type of problem has received very little attention in literature. This thesis proposes a way to deal with multiple routes. The proposed solution involves a time verification process. If a vehicle arrives back at the depot at time \(a_m \), and the service time is specified as \(s_0 \), then the vehicle is considered for an additional route on its current tour if, after the capacity has been renewed, the depot’s time window is still open. The case is presented in (2.54).

\[
a_m + s_0 \leq l_0
\]

(2.54)

The mathematical formulation of the VRPM requires a redefinition of the decision variables, as well as the constraints. The VRPM is addressed in the next section where the complete problem is defined and formulated.
2.3 The integrated problem at hand

An extended variant of the [VRP](#) where multiple soft time windows, a heterogeneous fleet, and multiple scheduling are considered in an environment with uncertain travel and service times, is presented. Due to the complexity associated when concatenating elements from various variant acronyms, we revert to using a simple reference, the Thesis Problem (TP). To formulate the complex problem, we will redefine some of the variables and parameters used earlier, and introduce a few additional variables. We define the following basic parameters.

\[
\begin{align*}
N & \triangleq \text{total number of customers to be serviced} \\
q_i & \triangleq \text{deterministic demand for customer } i, \text{ where } i = \{1, 2, \ldots, N\} \\
K & \triangleq \text{total number of vehicles available} \\
z_{ik}^k & \triangleq \begin{cases}
1 & \text{if node } i \text{ is visited by vehicle } k, \text{ where } i = \{1, \ldots, N\}, k = \{1, \ldots, K\} \\
0 & \text{otherwise}
\end{cases} \\
\tilde{\xi} & \triangleq \text{a vector of uncertain variables corresponding to travel and service times.} \\
\Xi & \triangleq \text{the finite support of } \tilde{\xi} \text{ such that } \Xi = \{1, 2, \ldots, \xi^\gamma, \ldots, \xi^\Gamma\} \text{ where } \Gamma \text{ is the total number of states in the problem world} \\
t_{ij}^k(\tilde{\xi}) & \triangleq \text{the travel time from node } i \text{ to } j \text{ with vehicle } k, \text{ where } i, j = \{1, \ldots, N\}, k = \{1, \ldots, K\} \text{ expressed as a function of the realization of } \tilde{\xi} \\
\tau_{ik}^k(\tilde{\xi}) & \triangleq \text{the service time at node } i \text{ with vehicle } k, \text{ where } i = \{1, \ldots, N\}, k = \{1, \ldots, K\}, \text{ expressed as function of the realization of } \tilde{\xi}
\end{align*}
\]

To expand the formulation and to include a heterogeneous fleet, we let:

\[
\begin{align*}
T & \triangleq \text{number of different types of vehicles available} \\
c_{ijt} & \triangleq \text{travel cost if a vehicle of type } t \text{ travels from customer } i \text{ to customer } j, \text{ where } t = \{1, 2, \ldots, T\}, \text{ and } i, j = \{0, 1, 2, \ldots, N\} \\
p_t & \triangleq \text{capacity of a vehicle of type } t, \text{ where } t = \{1, 2, \ldots, T\} \\
f_t & \triangleq \text{fixed cost of a vehicle of type } t, \text{ where } t = \{1, 2, \ldots, T\} \\
\phi_t^k & \triangleq \begin{cases}
1 & \text{if vehicle } k \text{ is of type } t, \text{ where } k = \{1, 2, \ldots, K\}, \text{ and } t = \{1, 2, \ldots, T\} \\
0 & \text{otherwise}
\end{cases}
\end{align*}
\]
Multiple soft windows will be addressed by introducing the following parameters:

- \(A_i \triangleq \) number of time windows for customer \(i \), where \(i = \{0, 1, 2, \ldots, N\} \)
- \(a_i(\tilde{\xi}) \triangleq \) the actual arrival time at customer \(i \), where \(i = \{0, 1, 2, \ldots, N\} \), expressed as a function of the realization of \(\tilde{\xi} \)
- \(e^a_i \triangleq \) earliest allowed arrival time for customer \(i \)'s \(a \)th time window, where \(i = \{0, 1, 2, \ldots, N\} \) and \(a = \{1, 2, \ldots, A_i\} \)
- \(l^a_i \triangleq \) latest allowed arrival time for customer \(i \)'s \(a \)th time window, where \(i = \{0, 1, 2, \ldots, N\} \) and \(a = \{1, 2, \ldots, A_i\} \)
- \(L^\text{max}_i \triangleq \) maximum lateness allowed by customer \(i \), where \(i = \{0, 1, 2, \ldots, N\} \)
- \(\alpha_i \triangleq \) lateness penalty at customer \(i \) in cost per time unit, where \(i = \{0, 1, 2, \ldots, N\} \)
- \(\lambda_i(\tilde{\xi}) \triangleq \) actual lateness at customer \(i \), where \(i = \{0, 1, 2, \ldots, N\} \), expressed as a function of the realization of \(\tilde{\xi} \)
- \(w_i(\tilde{\xi}) \triangleq \) waiting time at customer \(i \), where \(i = \{0, 1, 2, \ldots, N\} \), expressed as a function of the realization of \(\tilde{\xi} \)

To ensure that multiple scheduling is considered, we let:

- \(R^k \triangleq \) number of routes scheduled for vehicle \(k \), where \(k = \{1, 2, \ldots, K\} \)
- \(Q \triangleq \) maximum number for routes allowed for any one vehicle
- \(M^k \triangleq \) maximum tour time (all routes) allowed for vehicle \(k \), where \(k = \{1, 2, \ldots, K\} \)
- \(d^{kr}(\tilde{\xi}) \triangleq \) vehicle \(k \)'s departure time from the depot as it embarks on servicing its \(r \)th route, where \(k = \{1, 2, \ldots, K\} \) and \(r = \{1, 2, \ldots, R_k\} \), expressed as a function of the realization of \(\tilde{\xi} \)
- \(g^{kr}(\tilde{\xi}) \triangleq \) vehicle \(k \)'s return time at the depot after servicing its \(r \)th route, where \(k = \{1, 2, \ldots, K\} \) and \(r = \{1, 2, \ldots, R^k\} \), expressed as a function of the realization of \(\tilde{\xi} \)
- \(\delta^k(\tilde{\xi}) \triangleq \) the amount by which vehicle \(k \) exceed its allowable tour time, where \(k = \{1, 2, \ldots, K\} \), expressed as a function of the realization of \(\tilde{\xi} \)
- \(\beta^k \triangleq \) the positive unit penalty cost for vehicle \(k \) when exceeding its allowable tour time, where \(k = \{1, \ldots, K\} \)

With the notation established the decision variables for the IPP are defined as:
\[x^k_{ij} \triangleq \begin{cases}
1 & \text{if vehicle } k \text{ travels from customer } i \text{ to customer } j \text{ on its } r^{th} \text{ route,} \\
& \text{where } i, j = \{1, 2, \ldots, N\}, k = \{1, 2, \ldots, K\}, r = \{1, 2, \ldots, R_k\} \\
0 & \text{otherwise}
\end{cases} \]

\[\psi^a_i \triangleq \begin{cases}
1 & \text{if the } a^{th} \text{ time window of customer } i \text{ is used, where } i \in \{1, 2, \ldots, N\}, \\
& a \in \{1, 2, \ldots, A\} \\
0 & \text{otherwise}.
\end{cases} \]

The mathematical formulation of the TP is provided.

\[
\min z = \sum_{i=0}^{N} \sum_{j=0}^{N} \sum_{k=1}^{K} \sum_{t=1}^{T} \sum_{r=1}^{R_k} c_{ijt} x^k_{ij} \phi^k_t + \sum_{j=1}^{N} \sum_{k=1}^{K} \sum_{r=1}^{R_k} f^k_{x^{kr}_{0j}} \\
+ E_{\xi} \left[\sum_{i=1}^{N} \alpha_i \lambda_i (\xi) + \sum_{k=1}^{K} \beta^k \delta^k (\xi) \right] \tag{2.55}
\]

subject to

\[
\sum_{j=1}^{N} \sum_{r=1}^{Q} x^k_{0jr} = R^k \quad \forall k \in \{1, 2, \ldots, K\} \tag{2.56}
\]

\[
\sum_{j=1}^{N} \sum_{r=1}^{Q} x^k_{j0r} = R^k \quad \forall k \in \{1, 2, \ldots, K\} \tag{2.57}
\]

\[
\sum_{i=1}^{N} \sum_{k=1}^{K} \sum_{r=1}^{R_k} x^k_{ijr} = 1 \quad \forall j \in \{1, 2, \ldots, N\} \tag{2.58}
\]
\[
\sum_{j=1}^{N} \sum_{k=1}^{K} \sum_{r=1}^{R_k} x_{ij}^{kr} = 1 \quad \forall i \in \{1, 2, \ldots, N\} \tag{2.59}
\]

\[
\sum_{q=1}^{N} q_i \sum_{j=0}^{N} x_{ij}^{kr} \leq p^k \quad \forall k \in \{1, 2, \ldots, K\},
\]

\[
e^a_i - (1 - \psi^a_i) M \leq a_i(\hat{\xi}) + w_i(\hat{\xi}) \quad \forall i \in \{1, 2, \ldots, N\},
\]

\[
L_i^{\max} + (1 - \psi^a_i) M \geq a_i(\hat{\xi}) + w_i(\hat{\xi}) \quad \forall i \in \{1, 2, \ldots, N\},
\]

\[
\sum_{a=1}^{A_i} \psi^a_i = 1 \quad \forall i \in \{1, 2, \ldots, N\} \tag{2.63}
\]

\[
\max \left\{ 0, e_j - \left(d^{kr}(\hat{\xi}) + t_{0j} \right) \sum_{k=1}^{K} \sum_{r=1}^{R_k} x_{0j}^{kr} \right\} = w_j(\hat{\xi}) \quad \forall j \in \{1, 2, \ldots, N\} \tag{2.64}
\]

\[
\max \left\{ 0, \left(a_i(\hat{\xi}) - l^a_i \right) \right\} = \lambda^a_i(\hat{\xi}) \quad \forall i \in \{1, 2, \ldots, N\},
\]

\[
d^{k1} \geq e_0 + s_0 \quad \forall k \in \{1, 2, \ldots, K\} \tag{2.66}
\]

\[
\sum_{k=1}^{K} \sum_{r=1}^{R_k} x_{0j}^{kr} \left(d^{kr}(\hat{\xi}) + t_{0j} \right) \leq a_j(\hat{\xi}) \quad \forall j \in \{1, 2, \ldots, N\} \tag{2.67}
\]

\[
\sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{k=1}^{K} \sum_{r=1}^{R_k} x_{ij}^{kr} \left(a_i(\hat{\xi}) + w_i(\hat{\xi}) + \tau^k_i(\hat{\xi}) + t^r_{ij}(\hat{\xi}) \right) \leq a_j(\hat{\xi}) \quad \forall j \in \{1, 2, \ldots, N\}
\]

\[
\sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{r=1}^{R_k} x_{0j}^{kr} \left(a_i(\hat{\xi}) + \tau^k_i(\hat{\xi}) + w_i(\hat{\xi}) + t_{00} \right) \leq g^{kr}(\hat{\xi}) \quad \forall k \in \{1, 2, \ldots, K\},
\]

\[
g^{kr-1}(\hat{\xi}) + s_0 = d^{kr}(\hat{\xi}) \quad \forall k \in \{1, 2, \ldots, K\}, r \in \{2, 3, \ldots, R_k\} \tag{2.69}
\]
\[g^{kr}(\hat{\xi}) + s_0 \leq l_0 \quad \forall k \in \{1, 2, \ldots, K\}, \]

\[g^{kr^k}(\hat{\xi}) \leq M_k + \delta_k(\hat{\xi}) \quad \forall k \in \{1, 2, \ldots, K\}, \]

\[R^k \leq Q \quad \forall k \in \{1, 2, \ldots, K\} \]

\[\sum_{r=R^k+1}^{Q} \sum_{i=1}^{N} \sum_{j=1}^{N} x^{kr}_{ij} = 0 \quad \forall k \in \{1, 2, \ldots, K\} \]

\[x^{kr}_{ij} \in \{0, 1\} \quad \forall i, j \in \{1, 2, \ldots, N\}, \]

\[k \in \{1, 2, \ldots, K\}, \quad r \in \{1, 2, \ldots, R^k\} \]

\[\psi^a_i \in \{0, 1\} \quad \forall i \in \{1, 2, \ldots, N\}, \]

\[\forall a \in \{1, 2, \ldots, A_i\} \quad \forall k \in \{1, 2, \ldots, K\}, \quad r \in \{2, 3, \ldots, R_{k-1}\} \]

\[(2.71) \]

\[(2.72) \]

\[(2.73) \]

\[(2.74) \]

\[(2.75) \]

\[(2.76) \]

The objective function in (2.55) minimizes a combination of deterministic and stochastic cost components. The first expression represents the total variable traveling cost, followed by the total fixed fleet cost. The third expression represents the expected lateness penalties and constitutes firstly the lateness at each customer, and secondly the lateness for each vehicle.

The combination of (2.56) and (2.57) calculates the total number of routes and ensures that the same number of routes that starts for each vehicle, also finishes. Each customer is visited exactly once according to the constraint combination (2.58) and (2.59). Vehicular capacity is enforced through (2.60) by ensuring that the sum of the demands of all customers assigned to a specific route of a given vehicle do not exceed the vehicle’s capacity, which may either by represented as weight or volumetric capacity, or both if additional constraints are added.

Constraints (2.61) and (2.62) ensure that the multiple soft time windows are adhered to where the parameter \(M \) represents a sufficiently large number, as discussed when multiple soft time windows were introduced. Actual arrival times and waiting times at any given customer is a function of the stochastic travel and service times of all customers preceding that specific customer, hence the stochastic notation. As each customer is visited only once, (2.63) ensures that only one time window for each customer is considered. The waiting time and lateness at each customer, both expressed as a stochastic variable, are determined in (2.64) and (2.65), respectively.

The departure time for each vehicle’s first route is determined by (2.66), while the actual
arrival time at the first customer on each route is determined by (2.67). Arrival times for subsequent customers are determined by (2.68).

The return time for each route is determined by (2.69). Consecutive route start times is determined by (2.70) by taking the service time of the depot into account where vehicles’ capacities are renewed as proposed in (2.54). Constraint (2.71) enforces all routes to finish within the operating hours of the depot, while (2.72) determines the lateness for each vehicle when exceeding its allowed tour time. Each vehicle may not execute more than a predetermined number of routes as provided for in (2.73). Should it be determined in equations (2.56) and (2.57) that the required number of routes is less than the preset limit Q, then all allowed routes not required are eliminated through the introduction of (2.74). Binary decision variables are provided for with the introduction of (2.75) and (2.76).

2.4 Conclusion

This chapter deals with the background of the VRP as well as the integration of multiple variants into a single problem instance — each contributing to the already complex nature of the problem. Although the model formulation is the first step in describing the problem comprehensively, only very small instances of the problem is currently solvable to optimality.

The following chapter introduces the complexity of the problem at hand, and reviews solution approaches for solving the problem. Exact, heuristic, as well as metaheuristic solution algorithms are considered.
Chapter 3

Intelligence in solution algorithms

Once a model of the perceived reality is formulated, a process is required to obtain a solution to the model which, in turn, could be implemented to solve the problem in reality. It should always be noted that models are solved, not real problems. Rardin [1998] refers to numerical search as the process of systematically trying different choices for decision variables so that the best feasible solution could be found. This chapter is dedicated to review the three primary search strategies used to solve mathematical programming models.

The first of these are exact solution algorithms where one can prove that the best feasible solution found is in fact the global optimum for the problem. The first section of the chapter introduces some of the fundamental exact solution algorithms, with reference to further review articles for interested readers.

Exact solution algorithms are unfortunately not always viable when the size of a problem increases. To compensate for the time-consuming computational burden, solution seekers opt for approximate solutions, also referred to as heuristics, where the best solution may, or may not, be the true optimum for the problem. Yet, heuristics offer solutions that are often better than the typical industrial solutions obtained through intuition and common sense. The second section introduces a number of heuristics dating back from the 1950’s, and follows a few variations of these heuristics.

Heuristics have evolved during the 1990’s to what is referred to as metaheuristics — intelligent strategies governing the execution of various heuristics in order to find even better solutions. The third section introduces a number of metaheuristics and its variations, from where a conclusion is drawn and a motivation is provided for the choice of solution algorithms for this thesis.
3.1 Exact solution algorithms

It might at first seem counterintuitive that integer (discrete) linear and combinatorial problems are more difficult to solve than their continuous counterparts, seeing that the algebra for Linear Programming Problem (LP) algorithms can be quite daunting. A discrete model with a finite number of possible decision variable values, on the other hand, seems much easier. This reasoning holds only for small instances of discrete problems, and Rardin (1998) confirms that total enumeration of all possible combinations is the most effective method to find the best solution. Consider a problem with only two binary variables, \(x_1\) and \(x_2\). There are only \(2^2 = 4\) possible cases. Although ten binary variables will require \(2^{10} = 1024\) cases to be enumerated, it is still viable using computers. The exponential growth in the number of case evaluations when enumerating requires alternative algorithms for problems of practical size.

This thesis follows the classification proposed by Laporte and Nobert (1987) and Laporte (1992) whereby exact algorithms are grouped into three primary categories, each covered in the following subsections.

3.1.1 Direct tree search methods

The analogy of a tree in search methods represents the primary stem being some initial solution, from where the stem is split into branches, or secondary stems that are related to the primary stem. These secondary stems, in turn, branch into tertiary stems, etc.

The first step in direct tree search methods is to find the primary, or initial solution. Because discrete optimization models are typically hard to solve, it is natural to find related, yet easier formulations of the problem. Auxiliary models are referred to as relaxations of the original discrete problem and are easier to solve as some of the constraints, or objective function(s) of the discrete problem are weakened. Solving the relaxations can lead the modeler to make solution interpretations of the original problems. Various relaxation techniques vary in strength. Rardin (1998) defines a relaxation as strong or sharp if the relaxation’s optimal value closely bounds that of the original model, and the relaxation’s solution closely approximates an optimum in the original problem. Various relaxation methods exist in introductory Operations Research textbooks and include LP relaxations, stronger Big-M constants and the introduction of valid inequalities (for example the Cutting Plane algorithm (Jeroslow, 1979)) (Hillier and Lieberman 2005; Rardin 1998; Taha 2003; Winston and Venkataramanan 2003). An even stronger relaxation, referred to as Lagrangian
relaxation, do not weaken integrality constraints, but rather relax some of the main linear constraints after which they are dualised (or weighed) in the objective function with Lagrangian multipliers (Fisher and Jaikumar 1981). Desrosiers et al. (1988) use Lagrangian relaxation methods to solve a variant of the MTSP with time windows.

Once a relaxation is solved to optimality, and the solution also conforms to all constraints in the original problem, the solution is also the optimal solution for the original problem. If not, various strategies and algorithms are employed to systematically work towards a relaxation of which the optimal solution is also optimal for the original problem.

The branch-and-bound search algorithms combine relaxations with an enumeration strategy to find optimal candidate solutions, while bounding the search by previous solutions. Laporte et al. (1989) adapt the branch-and-bound algorithm in solving a class of stochastic location routing problems with networks of 20 and 30 nodes. Laporte et al. (1986) solve the asymmetrical Capacitated Vehicle Routing Problem (CVRP) for 260 nodes. The structure of the VRP and its relationship with one of its relaxations, the MTSP, is exploited by Laporte (1992) in a similar manner.

The branch-and-bound algorithm has been modified with the introduction of stronger relaxations prior to the branching of a partial solution. The modified algorithm is referred to as branch-and-cut as the stronger relaxations are obtained with the inclusion of new inequalities. The inequalities should hold for all feasible solutions of the original discrete problem, but should render the last relaxation’s optimum as infeasible, hence the term cut. Padberg and Rinaldi (1987) illustrate the generation of cuts in a symmetrical TSP with 532 nodes. Laporte et al. (1992) describe a general branch and cut algorithm for the VRP with stochastic travel times. The authors introduce cuts in the form of subtour elimination constraints, and introduce lower bounds on penalties if a route exceeds its predetermined route duration limit.

Van Slyke and Wets (1969) introduce the L-shaped method as a variant of the cutting plane algorithm for specific linear programs. Birge and Louveaux (1988) acknowledge that the method holds opportunity for stochastic programming applications and modify the method to create multiple cuts in each major iteration. Laporte and Louveaux (1993) further expand the method and refer to their general branch-and-cut procedure as the integer L-shaped method and apply it to stochastic integer programs and note that fathoming rules are different than in branch-and-bound trees. In another variation on branching, Christofides et al. (1979) propose a depth-first tree search in which single feasible routes are generated as and when required in their VRP formulation based on the TSP.
In their recent review of exact algorithms based on branch-and-bound, Toth and Vigo (2002a) state that these types of algorithms remain the state of the art with respect to exact solutions, especially in the case where asymmetric cost matrices exist. Giaglis et al. (2004) confirm that exact approaches are applicable to problems of practical size only if they have low complexity.

3.1.2 Dynamic Programming (DP)

DP determines the optimum solutions of an n-variable problem by decomposing it into n stages each consisting of a single-variable subproblem (Taha, 2003). The objective is to divide-and-conquer real-life problems by enumerating in an intelligent way through a state space of solutions (Brucker, 2004). In solving shortest path problems, Rardin (1998) claims that DP methods exploit the fact that it is sometimes easiest to solve one optimization problem by taking on an entire family of shortest path models. DP was first proposed for solving VRP by Eilon et al. (as cited by Laporte, 1992).

Hamacher et al. (2000) faced the requirement that the nodes to be routed in a tour must be chosen from a small region of the map, and motivate their choice by the fact that the truck drivers have a local knowledge of the environment and is subjected to business constraints. Although the most natural DP formulation results in a DP with infinite state and action spaces, an optimality-invariance condition recently introduced by Lee et al. (2006) establishes leads to an equivalent problem with finite state and action spaces. Their formulation leads to a new exact algorithm for solving the Multi-Vehicle Routing Problem with Split Pick-ups (MVRPSP), based on a shortest path search algorithm, which they claim to be conceptually simple and easy to implement.

Although in a different problem context, Beaulieu and Gamache (2006) present an enumeration algorithm based on DP for optimally solving the fleet management problem in underground mines. Their problem consists of routing and scheduling bidirectional vehicles on a haulage network composed of one-lane bidirectional road segments.

Li et al. (2005) integrate the machine scheduling problem with a delivery routing problem and formulate a DP recursion since there are a finite number of time points for the start time of a trip of the vehicle. They conclude, however, that the problem can be simplified by limiting deliveries to direct shipments, a situation that is inappropriate if there is a large number of customers and small shipments across a geographically dispersed network.
3.1.3 Integer linear programming

The set partitioning formulation is a method that starts by assuming that the totality of routes which a single vehicle can operate feasibly, can be generated (Christofides et al., 1979). Let A denote the set of nodes representing customers. Then if $S \subseteq A$ is the subset of nodes which can be feasibly supplied on a single route by a vehicle v_k, it is assumed that the total variable cost associated with the optimal routing of nodes in S can be calculated. This is not trivial if $|S|$ is large as it relates to a TSP (one vehicle with a single route). For each vehicle v_k a family S_k of all feasible single routes for that specific vehicle is generated. A matrix $G = [g_{ij}]$ is produced with row i representing customer x_i and M blocks of columns where the k^{th} block of columns corresponds to vehicle v_k and column j_k of the block corresponds to a feasible single route S_{jk} of vehicle v_k. The VRP now becomes the problem of choosing at most one column from each block of G so that each row of G has an entry when

\[g_{ijk} \triangleq \begin{cases}
1 & \text{if customer } x_i \text{ is an element of the single route } S_{jk} \\
0 & \text{otherwise}
\end{cases} \]

Balinski and Quandt (as cited by Laporte (1992)) were among the first to propose such a set partitioning formulation for VRPs. But combinatorial problems often result in extremely large arrays of possibilities too complex to be modeled concisely (Rardin, 1998). Column generation adopt a two-part strategy for such problems. It first enumerates a sequence of columns representing viable solutions to parts of the problem, often employing DP. Part two of the strategy solves a set partitioning model to select an optimal collection of these alternatives fulfilling all problem requirements. It results in a flexible and convenient approach employing a multitude of schemes to generate columns which are complex. In this approach it becomes possible to address constraints that are often difficult to model. It suffers, however, from the shortcoming that the number of columns in G can be enormous.

A variant of the VRPTW is solved by Desrochers et al. (1992) who admit that exact solution algorithms have lagged considerably behind the development of heuristics. Their algorithm attempts to use best of breed by solving various subproblems using a branch and bound scheme, DP, and column generation. The drawback remains that the set partitioning problem stops being competitive when a large number of customers are to be serviced on a single route, for example when demands are small in relation to the vehicle capacity. This results in the LP relaxation to become more dense — leading to possible degeneracy.

The MTMCP is closely related to both the TSP and the VRP with the major difference that it is not possible to service all nodes in the graph in the allocated time on a given set.
of tours. Hence the objective to maximize the earned reward of those nodes visited. In their paper [Butt and Ryan (1999)] combine column generation and constraint branching to achieve an optimal solution algorithm that solves problems with 100 nodes.

In more recent work [Righini and Salani (2004)] note that a trade-off remains between the time spent on the column generation, and the quality of the lower bound achieved, indicating that research into effective exact algorithms remain active. [Choi and Tcha (2006)] use a column generation approach in solving the [HVRP] with a maximum of 100 nodes in the test problems used. Column generation, however, is not easily adapted to the stochastic variant of a routing problem [Lambert et al. (1993)].

3.2 A case for heuristics

[Maffioli (1979)] indicates that real life combinatorial problems have a number of unpleasant features: problems are usually dimensionally large; problems have integrated constraints; and problems can not always be decomposed or generalized to simpler subproblems. It is noteworthy that although researchers attempt to solve real-world problems, complex problems are already solved in industry where decision makers often settle for good enough solutions [Russell and Norvig (2003)].

3.2.1 Route construction

Savings-based heuristics

[Christofides et al. (1979)] indicate that the majority of heuristics are constructive in nature in the sense that at any given stage one or more incomplete routes exist. Incomplete routes are extended to consecutive stages until a final route exists. The construction of routes may be either sequential if one route is completed prior to another being started, or parallel where more than one incomplete route may exist at a particular stage. After routes are created, a number of local improvements may be initiated to refine a route.

The savings algorithm established by [Clarke and Wright (1964)] is without doubt the most widely known heuristic in VRP and has formed the basis of a substantial number of heuristic variations. The Clarke-Wright algorithm remains a computationally efficient algorithm, and deserves attention ([Lenstra and Rinnooy Kan, 1981]). The algorithm is defined as follows:

Step 1 Calculate the savings for all pairs of customers i and j, denoted by s_{ij}, where both customers are serviced on one route, as opposed to customer i being serviced on a new
dedicated route from the depot, using (3.1)

\[s_{ij} = c_{0i} - c_{ij} + c_{j0} \quad \forall i, j \in \{1, 2, \ldots, N\} \]

(3.1)

where \(N \) is the total number of customers in the network, and \(c_{ij} \) denotes the cost of traveling from node \(i \) to node \(j \), and where \(i = j = 0 \) represents the depot.

Step 2 Arrange the savings in descending order of magnitude.

Step 3 Starting from the top, use one of the following approaches:

Sequential approach

1. Find the first feasible link in the list which can be used to extend one of the two ends of the currently constructed route.
2. If the route cannot be expanded, or no route exist, choose the first feasible link in the list to start a new route.
3. Repeat (1) and (2) until no more links can be chosen.

Parallel approach

1. If making a given link results in a feasible route according to the constraints of the VRP add the given link to the solution. If not, reject the link.
2. Try the next link in the list and repeat (1) until no more links can be chosen.

Step 4 The links form the solution to the VRP.

Christofides et al. (1979) suggest that in the parallel approach a maximum number of routes, \(M \), be introduced to ensure that vehicle feasibility constraints are adhered to. **Mole and Jameson (1976)** motivate why a sequential approach yields more benefit and adapt the savings procedure to calculate the best insertion position on edge \((i, j)\) of the partially constructed route \(C\) for customer \(u\), denoted by \(s(i, u^*, j)\), using the expression in (3.2)

\[s(i, u^*, j) = \min_{i, j \in C} \{s(i, u, j)\} \quad \forall u \in \{1, 2, \ldots, N\} | u \ni C \]

(3.2)

where \(C\) is the subset of the \(N\) nodes already routed, with

\[s(i, u, j) = 2d_{0u} + (d_{ij} - d_{iu} - d_{uj}) \]

(3.3)

The criteria used to determine the best edge to insert a specific customer is referred to as the *insertion criteria*. Once the best edge for insertion has been identified for each customer, the customer with the highest saving will be selected and inserted in its best position. The criteria used to select the best customer is referred to as the *selection criteria*.

40
Although a number of schemes have been suggested by Christofides et al. (1979) to identify the first customer on a new route, termed the *seed customer*, such as customer with earliest time window deadline; unrouted customer furthest from depot; or customer with largest demand, this thesis will propose a new method for identifying seed customers in Chapter 4.

Nelson et al. (1985) review and test a number of data structures to employ when implementing the Clarke-Wright algorithm. The authors establish methods of choice for VRPs with given characteristics of the network topology.

The savings heuristic has since its inception been adapted in quite a number of research contributions. Golden et al. (1984) refer to the basic savings algorithm as Clarke-Wright (CW), and introduced minor changes through their Combined Savings (CS) algorithm. They proceeded to introduce both the Optimistic Opportunity Savings (OOS) and Realistic Opportunity Savings (ROS). The latter was extended to the ROS- that included variety into the algorithm. Solomon (1987) not only applied the savings technique in solving the VRPTW but also established benchmark problems which have since been used extensively. Paessens (1988), Salhi and Rand (1993) and Tung and Pinnoi (2000) propose various adaptations to the savings heuristic and apply the algorithms to generate feasible routes prior to an improvement stage. In a banking application Lambert et al. (1993) use the savings algorithm on both a deterministic and stochastic variant of the VRPTW Dullaert et al. (2001) continue the development and adapt the original criteria for sequential insertion, referred to as the Adapted Combined Savings (ACS), Adapted Optimistic Opportunity Savings (AOOS), and the Adapted Realistic Opportunity Savings (AROS).

Liu and Shen (1999b) challenge the prior research by stating that a parallel approach to route construction actually yields superior results, and use the savings algorithm in solving the VRPMVTTW.

Ong et al. (1997) introduce new selection criteria and use the sequential approach on a variant of the Multi Period Vehicle Routing Problem (MPVRP) with time windows, specific vehicle type constraints, multiple depots and stochastic demand constraints. Liu and Shen (1999a) considered the FSMVRPTW and introduced some modifications on the savings expressions with added route shape parameters.

The basic Clarke-Wright algorithm is adapted by Hill et al. (1988), Ahn and Shin (1991), Hill and Benton (1992) and Malandraki and Daskin (1992) to accommodate forward scheduling where time-dependent travel times are modeled. Fleischmann et al. (2004) test three saving algorithms on a time-dependent travel time variant of the VRPTW.
Sweep algorithm

A different approach was introduced by Gillett and Miller (1974). Their proposed algorithm divides the locations into a number of routes. The following notation is introduced to explain the algorithm. Let:

\[N \triangleq \text{number of locations including the depot (where the depot is always referred to as location 1)} \]
\[q_i \triangleq \text{the demand at location } i, \text{ where } i \in \{2, 3, \ldots, N\} \]
\[(x_i, y_i) \triangleq \text{rectangular coordinates of the } i^{th} \text{ location, where } i \in \{1, 2, \ldots, N\} \]
\[C \triangleq \text{the capacity of each vehicle} \]
\[d_{ij} \triangleq \text{the distance between locations } i \text{ and } j, \text{ where } i, j \in \{1, 2, \ldots, N\} \]
\[\angle_i \triangleq \text{the polar coordinate angle (measured from the depot) of the } i^{th} \text{ location, where } i \in \{2, 3, \ldots, N\} \]
\[r_i \triangleq \text{the radius from the depot to location } i, \text{ where } i \in \{2, 3, \ldots, N\} \]

The polar coordinate angle is calculated through (3.4).

\[\angle_i = \arctan \left(\frac{y_i - y_1}{x_i - x_1} \right) \quad (3.4) \]

This results in \(-\pi < \angle_i < 0\) if \(y_i - y_1 < 0\), and \(0 \leq \angle_i \leq \pi\) if \(y_i - y_1 \geq 0\). The locations are renumbered in ascending order according to the size of their polar coordinate angle such that

\[\angle_i < \angle_{i+1} \quad \forall i \in \{2, 3, \ldots, N - 1\} \]

The forward sweep portion of the algorithm partitions locations into routes beginning with the location with the smallest angle. Locations are added until the vehicle’s capacity is reached, or a preset distance constraint on a route is reached. Subsequent routes are generated in a similar manner until all locations are routed. Each route is then optimised using either exact or heuristic algorithms for the TSP. The minimum distance traveled is then the sum of the distances of each optimised route.

The forward sweep portion of the algorithm partitions locations into routes beginning with the location with the smallest angle. Locations are added until the vehicle’s capacity is reached, or a preset distance constraint on a route is reached. Subsequent routes are generated in a similar manner until all locations are routed. Each route is then optimised using either exact or heuristic algorithms for the TSP. The minimum distance traveled is then the sum of the distances of each optimised route.

The forward sweep portion of the algorithm partitions locations into routes beginning with the location with the smallest angle. Locations are added until the vehicle’s capacity is reached, or a preset distance constraint on a route is reached. Subsequent routes are generated in a similar manner until all locations are routed. Each route is then optimised using either exact or heuristic algorithms for the TSP. The minimum distance traveled is then the sum of the distances of each optimised route.

The \(x\)-\(y\) axis is then rotated counterclockwise so the first location becomes the last, the second becomes the first, the third the second, etc. The minimum distance is calculated again. The rotation of the \(x\)-\(y\) axis and the calculation of the distance traveled is repeated for all possible axis configurations. The minimum forward sweep distance is the least total distance traveled taken from all axis configurations that was calculated.
The backward sweep portion is similar to the forward portion except that it forms the routes in reverse order, i.e. it start with the last reordered entry based on the polar coordinate angle.

Gillett and Miller (1974) state that the two portions often produce different routes and minimum distances traveled, hence the sweep algorithm’s result is the route with the lowest distance traveled of the two portions.

Generalized assignment

Where assignment problems involve the optimal pairing of objects of two distinct types, for example exactly one job order to exactly one machine, or exactly one customer to exactly one sales representative, the generalized assignment problem allows for each object \(i \) to be assigned to some \(j \), and each \(j \) being allowed to receive a number of \(i \) (Rardin, 1998). Fisher and Jaikumar (1981) reformulate the VRP in a two-stage approach. First customers are assigned to vehicles, hence the relation to generalized assignment problems. Secondly, for each vehicle the customers assigned to that vehicle is sequenced using the TSP formulation or some other route construction algorithm. The approach is heuristic as the assignment problem’s objective function is a linear approximation of the second stage’s distance traveled.

A number of methodological variants are provided in Nygard et al. (1988). Koskosidis et al. (1992) extend the approach to solve a time window variant of the routing problem.

Giant tours

In the VRP version, a giant tour, including the depot, is first created. A giant tour is a single tour that starts from the depot, passes through all customer sites and returns to the depot. A directed cost network is then constructed. Define the tour \(T_{ab} \) as a tour beginning with an arc from the depot to customer \(a \), then following the giant tour between customers \(a \) and \(b \) (which might include other nodes), finishing with an arc from customer \(b \) to the depot. There exist a directed edge in the cost network from \(a \) to \(b \) if and only if the tour \(T_{ab} \) is feasible in terms of vehicle capacity and distance restriction. The length of the edge \(ab \) in the cost network is the length of \(T_{ab} \). The shortest path problem is subsequently solved using Dijkstra’s (1959) algorithm, providing a partitioning of the giant tour.

The procedure is repeated starting from different giant tours and the overall least cost solution is chosen. In their experiments Nagy and Salhi (2005) constructed 5 giant tours; one using the nearest neighbor, another using the least insertion cost rule, and the remaining
three tours are generated randomly. A detailed description on how to generate these giant tours and how to construct the associated cost networks can be found in Salhi et al. (1992).

3.2.2 Route improvement

Numerical search is the process of systematically trying different values for the decision variables in an attempt to find a better solution. The process keeps track of the feasible solution with the best objective function value found thus far, referred to as the incumbent solution. Rardin (1998) states that most optimization procedures can be thought of as variations of a single theme: improving search. Synonyms of the theme include local improvement, hill climbing, local search, and neighborhood search.

An improving search heuristic for vehicle routing and scheduling usually starts with a feasible solution created through the route construction heuristics suggested in Section 3.2.1. A characteristic, and unfortunately a drawback of an improving search heuristic is that it advances along its search path of feasible solutions only while the objective function value improves. The search space in which new solutions are investigated is best explained through the analogy of a neighborhood: nearby points of the current solution, each within a small distance from the current solution.

Slight modifications to the current route are referred to as perturbations, and are accepted if they yield feasible solutions with an improved objective function value. Although the discussion in this section is by no means exhaustive, it introduces some of the basic mechanisms for creating perturbations. Authors such as Nagy and Salhi (2005) apply combinations of these perturbations sequentially to obtain improved solutions. For purposes of this discussion nodes will be denoted by \(a, b, c \), etc., and routes by bolded characters \(x, y, z \), etc.

Route reversal

A procedure introduced by Nagy and Salhi (2005) in their Vehicle Routing Problem with Pickups and Deliveries (VRPPD). They observed that changing the direction of a route does not lead to an increase in the route length, and may lead to increased feasibility. In their application the objective is to minimize the infeasibilities when integrating both pickups and deliveries simultaneously, as opposed to sequentially.
2-Opt

A routine introduced by Lin (1965) based on interchanging two edges, say \(ab \) and \(cd \), to form two new edges \(ac \) and \(bd \).

3-Opt

A modification of the 2-Opt routine. In this case three arcs are exchanged with three other edges.

Shifting node

Similar to the 3-Opt routine involving two routes. A single node \(a \) is removed from a route \(x \) and inserted into another route \(y \).

Exchanging nodes

An extension of the Shifting node routine. A node \(a \) is identified on route \(x \), and node \(b \) on route \(y \). The two nodes \(a \) and \(b \) are exchanged in their respective positions.

\(\lambda \)-Interchange

When an equal number of nodes, \(\lambda \), are exchanged between two routes, the perturbation is referred to as \(\lambda \)-Interchange (Tan et al., 2001c; Thompson and Psaraftis, 1993). The Exchanging nodes perturbation is therefor a special case where \(\lambda = 1 \).

Double shift

A more complex extension of the Shifting node routine where two nodes, \(a \) and \(b \), and three routes, \(x \), \(y \), and \(z \), are considered. Node \(a \) is removed from route \(x \) and inserted into route \(y \), while node \(b \) is removed from route \(y \) and inserted into route \(z \). This is different from performing the Shifting routine twice, as after the first Shift the resulting route may be infeasible. It should be noted that this routine is computationally more complex as the possible combinations to consider increases substantially.

Splitting a route

According to Mosheiov (as cited by Nagy and Salhi (2005)) a route can be improved if the depot is reinserted into the route, resulting in two routes being created from the original one route considered.
Combining routes

If feasible, two routes x and y are combined, considering both orders xy and yx.

3.3 Metaheuristics

The improving search heuristics discussed in the previous section are applied until there are no solutions in the immediate neighborhood that include a solution that is both feasible and improving. The incumbent solution is then referred to as a *local optimum*. The advantage of heuristics is that good feasible solutions can still be found even though optimality can not be guaranteed; the disadvantage is that uncertainty exists about how close the solutions actually came to the optimal. Herein lies the drawback of heuristics, as the initial solution may negatively influence the optimality of the local optimum found. Refer to the overly simplified illustration in Figure 3.1 and note that if the heuristic starts with a solution at a, it can only improve until it reaches the local optimum at A. If the same heuristic starts with a solution at b it can reach the local optimum at B which also happens to be the *global optimum*: a feasible solution such that no other solution has a superior objective function value.

The interested reader is referred to the [TOP Program](2006) research group within the *Foundation for Scientific and Industrial Research at the Norwegian Institute of Technology* (SINTEF). The group has an extensive bibliography of research contributions in the field of vehicle routing, with the majority being on metaheuristics and future research opportunities.

![Figure 3.1: Local vs. global optimum](image-url)

46
Metaheuristics are master strategies which uses intelligent decision making techniques to guide algorithms to find global optimal solutions by temporarily allowing moves in the neighborhood that result in solutions with inferior objective function values compared to the incumbent solution. Such a deteriorating move is illustrated in Figure 3.1 with a solution starting at a, and deteriorating towards b along the dotted line before improving towards B. A problem arises with accepting temporarily deterioration moves. Consider a and b to be neighbor solutions. Each solution can thus be reached from the other with a single perturbation. A move from a to b may be accepted as a temporarily deteriorating move. However, a move from b to a will always be accepted as it improves the objective function. This may lead to indefinite cycling around a single solution. All metaheuristics follow a similar process, although their specific naming conventions, analogies and detailed routines may vary.

Initialization The process of finding an initial solution. Some metaheuristics, such as the *Genetic Algorithm* performs well with randomly generated initial solutions that need not be feasible, while the *Tabu Search* is highly sensitive to the quality of the initial solution.

Diversification The mechanism that ensures that the underlying heuristics are searching a diversified neighborhood, and thus not getting trapped within local optima.

Intensification A mechanism that ensures the heuristic starts *zooming in* towards a single solution. The most promising neighborhoods are identified and those areas of the solution space are searched more thoroughly.

The diversification and intensification can repeat indefinitely, and hence requires a stopping criteria to terminate the metaheuristic [van Breeden, 2001]. The longer the metaheuristic is run, the higher the probability of converging to the global optimum.

An elementary metaheuristic would entail running the improving search heuristic with multiple initial solutions, each yielding a single local optimum. The best of these local optima is the incumbent solution, denoted by \hat{x}. Such a process would be highly reliant on the choice of initial solutions and may yield inferior local optima if initial solutions are not selected and generated carefully.

Four promising metaheuristics are introduced, and interested readers can refer to Gendreau et al. (1998) for a general review of metaheuristics for the VRP.
3.3.1 Tabu Search (TS)

The TS is a memory-based local search metaheuristic introduced by Glover (1986) that searches the neighboring solution space (neighborhood) in search of an improving solution, updating the incumbent solution when improving moves are made. Deteriorating moves are allowed and the metaheuristic deals with cycling by declaring moves to recently visited solutions as tabu, hence the name. A thorough and recent review of the TS can be found in Bräysy and Gendreau (2001), where the authors focus on time window variants of the VRP.

A general TS approach is presented in Algorithm 3.1. An initial solution x^0 and a stopping criteria is required. In this case the stopping criteria is determined to be a preset maximum iteration count t^{max}. The algorithm is initialized by setting the iteration count to zero, setting the initial solution to be the incumbent solution, and clearing the tabu list. The objective function value $c(x)$ is expressed as a function of the solution x. A feasible move set M^x that represents the neighborhood around the current solution x^t is generated. The neighborhood is established through any of the perturbations discussed in Section 3.2.2. If either no non-tabu move $\Delta x \in M$ leads to a feasible neighbor of the current solution x^t within the preset iteration limit, or some aspiration criteria\footnote{The aspiration criteria may override the tabu list, or the iteration limit criteria.} is met, the metaheuristic

\begin{algorithm}
\caption{Tabu Search}
\begin{algorithmic}[1]
\STATE Input: Initial feasible solution x^0; Iteration limit t^{max}
\STATE \hspace{1em} $t \leftarrow 0$
\STATE \hspace{1em} $\hat{x} \leftarrow x^t$
\STATE \hspace{1em} Clear Tabu-list, $T = \{\cdot\}$
\STATE \hspace{1em} Generate feasible move set M^x
\WHILE{either (\(\Delta x \in M \text{ and } \Delta x \not\in T \text{ and } t < t^{\text{max}}\)) or (\(\Delta x \text{ satisfies aspiration}\))
\STATE \hspace{1em} $x^{t+1} \leftarrow x^t + \Delta x$
\STATE \hspace{1em} $T \leftarrow T \cup \{x^{t+1}\}$
\STATE \hspace{1em} \text{if } c(x^{t+1}) < c(\hat{x}) \text{ then}
\STATE \hspace{1em} \hspace{1em} $\hat{x} \leftarrow x^{t+1}$
\STATE \hspace{1em} \text{endif}
\STATE \hspace{1em} $t \leftarrow t + 1$
\STATE \hspace{1em} Generate feasible move set M^x
\ENDWHILE
\end{algorithmic}
\end{algorithm}
terminates and the incumbent solution \(\hat{x} \) is the approximate optimum. If not, the new neighbor becomes the current solution and is added to the tabu list. The current solution replaces the incumbent if it has a superior objective function value \(c(x^{t+1}) \). The iteration count is incremented, a move set is generated for the new current solution, and the process is repeated.

In a comparison of heuristics and metaheuristics, Van Breedam (2001) identifies TS as a dominant improvement heuristic with the certainty of achieving at least a local optimum. Their observation is confirmed by Lee et al. (2006). Ichoua et al. (2003) implement the TS in both a static and dynamic setting, and claim that the model provides substantial improvements over a model based on fixed travel times. Recent developments include drastically reducing the size of the search neighborhood, so called granular neighborhoods (Toth and Vigo, 2003). Results obtained when using promising moves, as proposed by granular neighborhoods, yielded good solutions within short computing times.

3.3.2 Simulated Annealing (SA)

As opposed to a local search method, SA is a randomized search method (Brucker, 2004). To understand the concept of simulated annealing in optimization, one has to look at its analogy to the physical annealing system as first introduced by Kirkpatrick et al. (1983). The ground state of a solid, for example steel, is that state in which its atoms or particles are arranged into a minimum energy configuration – the most stable state of the solid. The ground state of a metal can be obtained through the process of physical annealing. The metal is first heated to a high temperature to induce its transformation from a solid to a liquid. This temperature is called the melting point of the metal. In its liquid state the metal is unstable, the particles move about freely, exhibiting high energy, since they are not arranged in any set configuration. The temperature is then carefully reduced to allow the particles to gradually settle into the arrangement of minimum energy and the ground state is obtained.

Similarly, SA is aimed at obtaining the minimum value of the objective function of an optimization problem which corresponds to the ground state of the solid (Tan et al., 2001c). Any other state of the solid corresponds to a feasible solution for the optimization problem, and the energy of a state of the solid is equivalent to the objective function value of a solution. A control parameter \(q \), analogous to the temperature of the physical system, is used to control the gradual convergence of the SA algorithm towards the global optimum by
regulating the acceptance of moves that deteriorates the objective function value. Similar to a small displacement of the atoms of the solid, the current solution at stage t, x^t, undergoes small perturbations Δx as it converges towards the optimum solution.

The general SA metaheuristic provided in Algorithm 3.2 requires an initial solution x^0, and a stopping criteria. Alfa et al. (1991) indicate that the computational time required for finding good solutions are sensitive to the quality of initial solutions. As for the TS algorithm, an iteration limit count t_{max} is used. The algorithm also requires an initial temperature q^0 and a cooling parameter δ that reduces the temperature of the system after a sufficient number of iterations, denoted by q_{max}.

Initializing the SA algorithm entails setting both the iteration count and the temperature control count to zero, setting the temperature to the initial temperature, and assigning the initial solution as the incumbent \hat{x}. The neighborhood is established through any of the perturbations discussed in Section 3.2.2.

If either the iteration count limit t_{max} is reached, or there are no more feasible moves Δx in the neighborhood move set $M x^t$ for the current solution x^t, the algorithm terminates. Otherwise the move is tested for acceptance. If the move is improving the objective function value, it is accepted with a probability of 1. If the move is deteriorating, it will still be accepted with probability

$$P[\text{accept}] = e^{\frac{c(x^t) - c(x')}{q}}$$

Returning to the analogy between the physical annealing of a solid and the simulated annealing algorithm, the acceptance criterion for the SA algorithm is deducted from the Metropolis criterion. The Metropolis algorithm, as introduced by Metropolis et al. (as cited by Aarts and Korst (1989)) is a simple algorithm for simulating the physical annealing of a solid. It states that, given a current state i of the solid with energy E_i, a subsequent state j, with energy E_j is generated via a small displacement of the atoms of the solid. If the resulting energy difference, $E_j - E_i$, is less than or equal to zero, j is accepted as the new current state. If, however, the energy difference should be greater than zero, the state j will only be accepted with probability

$$P[\text{accept}] = e^{\frac{E_i - E_j}{kT}}$$

where T is the current absolute temperature of the solid and k_B is known as the physical Boltzmann constant. Kirkpatrick et al. (1983) noted that since the temperature is merely a control parameter, the Boltzmanns constant can be omitted. The control parameter is
Algorithm 3.2: Simulated Annealing

Input: Initial feasible solution x^0; Iteration limit t^{max}

Input: Initial temperature $q^0 \gg 0$; Temperature limit q^{max}; Cooling factor $0 < \delta \leq 1$

1. $t \leftarrow 0$
2. $q^{\text{count}} \leftarrow 0$
3. $q \leftarrow q^0$
4. $\hat{x} \leftarrow x^t$
5. Generate feasible move set M^{x^t}
6. while $\triangledown x \in M^{x^t}$ and $t < t^{\text{max}}$ do
7. \hspace{1em} $x' \leftarrow x^t + \triangledown x$
8. \hspace{1em} if $q^{\text{count}} = q^{\text{max}}$ then
9. \hspace{2em} $q \leftarrow \delta q$
10. \hspace{2em} $q^{\text{count}} \leftarrow 0$
11. \hspace{1em} else
12. \hspace{2em} $q^{\text{count}} \leftarrow q^{\text{count}} + 1$
13. \hspace{1em} endif
14. \hspace{1em} if either $c(x') < c(\hat{x})$ or $\text{Probability} \left(e^{\frac{c(\hat{x}) - c(x')}{q}} \right)$ then
15. \hspace{2em} $x^{t+1} \leftarrow x'$
16. \hspace{2em} if $c(x^{t+1}) < c(\hat{x})$ then
17. \hspace{3em} $\hat{x} \leftarrow x^{t+1}$
18. \hspace{2em} endif
19. \hspace{2em} else
20. \hspace{3em} $x^{t+1} \leftarrow x^t$
21. \hspace{2em} endif
22. \hspace{1em} $t \leftarrow t + 1$
23. \hspace{1em} Generate feasible move set M^{x^t}
24. endw
formulated so as to allow virtually all deteriorating moves during the initial stages of the algorithm. As the control parameter is gradually decreased, the probability of accepting deteriorating moves also decreases, and the algorithm converges to the global optimum.

Robusté et al. (1990) indicate in their application of SA that a human can actually outperform the algorithm for large problems in terms of the quality of the solution. Development of the SA have since continued with Van Breedam (1995) reviewing and comparing variants of the SA. Tan et al. (2001c) attribute a number of advantages to the SA metaheuristic:

- Deals with arbitrary systems and cost functions.
- Statistically guarantees an optimal solution (provided sufficient processing time).
- Relatively easy to code, even for complex problems.
- Generally gives a good solution within reasonable processing time.

The latter point has been supported by Van Breedam (2001) stating that the difference in solution quality between TS and SA never exceeded 4% in his evaluation. In their comparative analysis of three metaheuristics, Tan et al. (2001c) conclude that SA is a good compromise between computational effort and quality of solution.

3.3.3 Genetic Algorithm (GA)

GAs were developed and published by John Holland in 1975. GAs are algorithms that search for global optimal solutions by intelligently exploiting random search methods, emulating biological evolution (Rardin, 1998). The relationships between genetic evolution and optimization are:

- Populations are represented by groups, each representing a feasible solution.
- In a population, parents mate according to natural selection. This is analogous to randomly selected feasible parent solutions.
- Offspring are produced by the mating of the selected parents and represent newly created solutions.
- In nature, offspring exhibit some characteristics of each parent since chromosomes are exchanged to form new chromosome strings. The algorithm draws on the analogy by creating two new offspring solutions using perturbations such as swapping, on parts of the parent solutions. In GAs, the perturbations are often referred to as crossovers.
• *Survival of the fittest* is also incorporated as the fitness of a solution can be related to its objective function value. The fittest solutions will typically reproduce to ensure the survival of the fittest solution in the next generation.

• *Mutation* for diversity is represented in the metaheuristic by the random modification of chromosomes, i.e., possible solutions.

Goldberg (1989) reviews GA applications in search strategies an optimization. The general GA metaheuristic provided in Algorithm 3.3 indicates p unique feasible initial solutions

Algorithm 3.3: Genetic Algorithm

Input: Generation limit t_{max}

Input: Population size p; Initial feasible solutions x_1^0, \ldots, x_p^0

Input: Population subdivisions p_e, p_i, and p_c such that $p_e + p_i + p_c = p$

1. $t \leftarrow 0$
2. while $t < t_{\text{max}}$ do
3. begin elite
4. Copy p_e best solutions from generation t to generation $t+1$
5. end
6. begin immigrant
7. Include p_i new solutions in generation $t+1$
8. end
9. begin crossover
10. Choose $\frac{p}{2}$ non-overlapping pairs of solutions from generation t
11. Perform crossover perturbations
12. Include new solutions in generation $t+1$
13. end
14. $t \leftarrow t + 1$
15. endw
16. $x^* \leftarrow \min_{i \in \{1, \ldots, p\}} \{x_i^t\}$
17. $\hat{x} \leftarrow$ locally optimized x^*

required to constitute generation 0. Filipec et al. (1998) test their GA with various population sizes and conclude that too small a population may terminate the algorithm prematurely as diversification is compromised, while too large populations slows down the convergence rate as more generations are required (increased computational effort) to initiate dominance of
quality solutions. Initial solutions are created either randomly or using route construction heuristics as discussed in Section 3.2.1 (Vas, 1999). Skrlec et al. (1997) and Tan et al. (2001c) suggest using only heuristics so as to improve the rate of convergence.

The algorithm only terminates when a sufficient number of generations have existed. Survival of the fittest is ensured as the p_e best solutions of generation t is cloned exactly into generation $t + 1$. A number, p_i, of new immigrant solutions are generated and included in generation $t + 1$. The balance of generation $t + 1$ is made up by performing various crossover perturbations on a random selection of $\frac{p_c}{2}$ solutions from generation t.

Two distinct approaches are found in literature to solve constrained VRPs with GAs.

Cluster first, route second

This approach was popular in early writings. Thangiah et al. (1991) developed GIDEON, a GA program used to solve the VRPTW. At the time it was the best algorithm available for the VRPTW as it produced the best known solutions for 41 of the 56 benchmark problems introduced by Solomon (1987). GIDEON has two distinct modules:

Clustering This module assigns customers to specific vehicles in a process called genetic clustering. It uses a GA to sector customers into clusters, with each cluster serviced by one vehicle. Figure 3.2 shows the sweeping motion that is is used together with seed angles to create clusters. Each vehicles cluster is routed to minimize route cost, not taking into account vehicle capacities or time windows. The first customer per route, referred to as the seed customer, is randomly selected out of the cluster, the rest of the route is formed by determining which customer, when inserted in the route, will produce the lowest route cost, i.e. using a savings heuristic. The best set of clusters obtained by this module is transferred to the next module.

Local route optimization Customers are exchanged between clusters to ensure the feasibility of the solution — taking into account time windows and vehicle capacities. To change a customers cluster, its angle is artificially altered. When a cluster is changed, a cheapest insertion algorithm is used to improve the cluster route.

Nygard and Kadaba (1991), Thangiah and Gubbi (1993), Malmborg (1996), Filipec et al. (1997), Skrlec et al., (1997) and Karanta et al. (1999) were among the contributors using the cluster first, route second approach. Nygard and Kadaba (1991) found that GAs for VRPs tend not to perform well when customers are geographically clustered and a small fleet is
used. For all other problem instances the GA performs well. Tan et al. (2001c) claims that the approach “is only a hybrid heuristic that constitutes some GA element”.

Route first, cluster second

Recently, path representations are implemented more often for all VRP variations (Filipec et al., 1998, Hwang, 2002, Maeda et al., 1999, Ochi et al., 1998, Prins, 2004, Tan et al., 2001b, c, Zhu, 2003). To indicate separate routes in a chromosome, extra partitioning characters need to be inserted into the chromosome. These extra characters may render the GA useless. GAs use two phases to solve VRP variations, with each chromosome representing a specific path through all the customers. In the first *routing* phase, the GA improves the long chromosome string by solving a TSP for all customers. The second *clustering* phase creates a route for each vehicle out of the long route. This is done by another algorithm that adds customers to a vehicle only if time windows are not violated, until the vehicle is full. The
following customer in the single route chromosome is then assigned to the next vehicle. Tan et al. (2001c) were the first to compare three popular metaheuristics, TS, SA and GA for VRP variants. They conclude that GAs were successful in solving the VRPTW but deduce that there is still no single metaheuristic generic enough to solve all routing problems.

3.3.4 Ant Colony Optimization (ACO)

ACO algorithms are classified as iterative, probabilistic metaheuristics for finding solutions to combinatorial optimization problems. ACO is a general term proposed by Dorigo and Stützle (2002) that includes all ant algorithms. The ant algorithm is an evolutionary approach where several generations of artificial ants search for good solutions. Every ant of a generation builds a solution in a step by step manner, going through several decisions. Ants that found good solution(s) mark their paths through the decision space by placing pheromone on the edges of the path. The ants of the next generation are attracted to pheromone and they are more likely to search the solution space near good solutions (Middendorf et al., 2002).

Ant algorithms are inspired by the foraging mechanism employed by real ants attempting to find a shortest path from their nests to food sources. A foraging ant will mark its path by distributing an amount of pheromone on the trail, thus encouraging, but not forcing, other foraging ants to follow the same path (Dorigo et al., 1999). Pheromone is the generic name for any endogenous chemical substance secreted by an organism to incite reaction in other organisms of the same specie. This principle of modifying the environment to induce a change in the ants’ behavior via communication is known as stigmergy. The effect of stigmergy provides the basis for the ant foraging behavior and artificial ant metaheuristics. Dorigo et al. (1999) discuss the experiments conducted that suggest that the social structure of ant colonies can determine shortest paths between the nest and food sources. A formal proof, however, is absent.

There are a number of direct relationships between real foraging ants and artificial ants used in the ACO metaheuristic.

Colony of cooperating individuals Similar to real ants, artificial ants are composed of a population (or colony) of concurrent and asynchronous entities cooperating to find food timeously. The artificial food are good solutions to the optimization problem under consideration. Although the complexity of each artificial ant is such that it can build a feasible solution, high quality solutions are the result of the cooperation among
the individuals of the whole colony. This is analogous to a real ant that can by chance find a path between the nest and the food. But only the cooperation of the whole colony can ensure that sufficient food sources are located as close as possible to the nest. Ants cooperate by means of the information they concurrently read and write on the problems states.

Pheromone trail and stigmergy Artificial ants modify some aspects of their environment as real ants do. While real ants deposit a chemical substance, pheromone, on the world state they visit, artificial ants change some numeric information locally stored in the problem state they visit. This information takes into account the ants current history or performance and can be read and written by any ant accessing the state. By analogy, this numeric information is called the artificial pheromone trail, *pheromone trail* for short. In ACO algorithms local pheromone trails are the only communication channels among the ants. This stigmergetic form of communication plays a major role in the utilization of collective knowledge. Its main effect is to change the way the environment (the problem landscape) is locally perceived by the ants as a function of all the past history of the whole ant colony.

Usually, in ACO algorithms an evaporation mechanism is employed, similar to real pheromone evaporation, that modifies pheromone information over time. Pheromone evaporation allows the ant colony slowly to forget its past history so that it can direct its search toward new directions without being over-constrained by past decisions, hence addressing the diversification issue raised for metaheuristics in general.

Shortest path searching and local moves Artificial and real ants share the common task of finding a shortest (minimum cost) path joining an origin (nest) and destination (food). Real ants systematically walk through adjacent terrains’ states. Similarly, artificial ants move step-by-step through the neighborhood of solutions of the problem. The exact definitions of state and neighborhood are problem specific.

Stochastic and myopic state transition policy Artificial ants, as does real ants, build solutions applying a probabilistic decision policy to move through adjacent states. As for real ants, the artificial ants’ decision policy makes use of local information only and it does not make use of lookahead to predict future states. Therefore, the applied policy is completely local, in space and time. The policy is a function of both the *a priori* information represented by the problem specifications (equivalent to the terrains
structure for real ants), and of the local modifications in the environment (pheromone trails) induced by past ants.

Artificial ants also have some characteristics that do not have counterparts in real ants. Artificial ants live in a discrete world and their moves consist of transitions from discrete states to discrete states. Artificial ants have an internal state. This private state contains the memory of the ants’ past actions. Artificial ants deposit an amount of pheromone that is a function of the quality of the solution found. Timing in pheromone laying is problem dependent and often does not reflect real ants behavior. For example, in many cases artificial ants update pheromone trails only after having generated a solution. To improve overall system efficiency, ACO algorithms can be enriched with extra capabilities such as the ability to forecast, local optimization, and backtracking that cannot be found in real ants.

An ant is a simple computational agent, which iteratively constructs a solution for the instance to solve. Partial problem solutions are seen as states. At the core of the ACO algorithm lies a loop, where at each iteration, each ant moves (performs a step) from a state \(i\) to another one \(j\), corresponding to a more complete partial solution.

Algorithm 3.4 is based on Maniezzo et al. (2004) and requires an a priori desirability
of the route referred to as the attractiveness, η_{ij}, for each origin-destination pair (i,j). The attractiveness is often also referred to as the heuristic information (Meuleau and Dorigo 2002). The trail level τ_{ij} of the move from i to j is required and indicates how beneficial it has been in the past to make that particular move. The trail level therefore represents an a posteriori indication of the desirability of the move. As in previous metaheuristics discussed, an iteration limit t_{max} terminates the ACO.

For each ant k a solution is incrementally built using both the attractiveness and the trail level, weighted with preset parameters. Each ant’s memory of tabu moves are updated accordingly to ensure only feasible solutions are created. Once all ants have their solutions, the pheromone trail matrix is updated by determining how many ants (solutions) traversed specific edges (i,j). The iteration number is incremented, and the process repeated until the maximum number of iterations have been reached.

Although Bullnheimer et al. (1999) could not improve on the best solutions found for sets of benchmark problems, the competitiveness of ACO is applaudable, given the immaturity of the approach to VRP variants compared to established, and well-researched metaheuristics. Detailed algorithmic approaches are provided by Dorigo and Gambardella (1997a,b), and Meuleau and Dorigo (2002) for the TSP and Gambardella et al. (1999) for the VRPTW which should stimulate and accelerate research in the respective fields and its variants. A robust algorithm presented by Reimann et al. (2004) is able to solve a number of VRP variants.

3.4 Conclusion

In the first review article of ACO theory, Dorigo and Blum (2005) comprehensively state that research contributions using metaheuristics as new as the ACO focus on proof-of-concept. This, however, is still true for the majority of theoretical papers on heuristics and metaheuristics. Solution quality and computational burden of various algorithm contributions are compared using benchmark problems (Van Breedam 2001). The state-of-the-art for generic variants of the VRP are often implemented in commercial software applications. In such applications the parameter values for the specific metaheuristic are usually fixed, and are based on experiments with the benchmark data.

The majority of literature reviewed in this chapter either suggest parameter values that perform well in the majority of cases, or confirm that parameter settings are inherently problem specific. This review concludes with the observation that an intelligent routing
system is required that will be able to observe the problem environment in which it is implemented, and dynamically adjust parameter settings in order to improve future solutions.
Chapter 4

An improved initial solution algorithm

Although Ichoua et al. (2003) employ a random insertion heuristic to create initial solutions, Van Breedam (2001) introduces an initial solution parameter in his evaluation of improvement algorithms, and finds that, in most cases, a good initial solution results in significantly better final results. This thesis proposes the use of a savings route construction heuristic based on Joubert (2003). Solomon (1987) concludes that, from the five initial solution heuristics evaluated, the Sequential Insertion Heuristic (SIH) proved to be very successful, both in terms of the quality of the solution, as well as the computational time required to find the solution. Section 3.2.1 reviews a number of route construction heuristics.

4.1 A route construction heuristic

An overview of the initial solution algorithm proposed in this thesis is provided in Algorithm 4.1. Initializing the algorithm requires a distance matrix. When using benchmark data sets only customer coordinates are provided, and the Minkowski distances are calculated using (2.46). If a Geographical Information System (GIS) is used, the travel distances can be determined through a process referred to as geocoding and route calibration. The initial solution algorithm also requires a travel time matrix for all node pairs \((i, j)\).

4.1.1 Time-dependent travel times

Congestion effects become critical when time windows are imposed by customers, because in routing the temporal issue is of greater concern than the spatial issue. Three valuable contributions that incorporate both time dependent travel time and time windows are Ahn.
Algorithm 4.1: Initial solution heuristic

Input: Customer data

Input: Fleet data

1 Initialize algorithm

2 repeat Initialize tour

3 Establish tour starting time

4 Assign vehicle

5 repeat Build tour

6 Establish route start time

7 Identify seed customer

8 repeat Expand partial route

9 Determine insertion criteria

10 Determine selection criteria

11 Insert node

12 until either all nodes are routed or no node identified for insertion

13 Determine multi route feasibility

14 until either all nodes are routed or route expansion infeasible

15 until either all nodes are routed or vehicles are depleted

16 Establish orphans

17 Report initial solution s
Fleischmann et al. (2004) implement their routing algorithm when dynamic travel data is available through the Berlin traffic management system. Let:

$$\tau_{ijk} \triangleq \text{shortest travel time from node } i \text{ to node } j \text{ when the start time is in the time slot } Z_k$$

with the day divided into K time slots $Z_k = [z_{k-1}, z_k], k \in \{1, 2, \ldots, K\}$. The planning horizon is denoted by the time interval $[z_0, z_K]$ which may coincide with the time window for the depot, becoming the time interval $[e_0, L_0^{\text{max}}]$. The authors propose a smoothing of the travel time function with the introduction of

$$\tau_{ij}(t) \triangleq \text{travel time from node } i \text{ to node } j \text{ for the start time } t \text{ at node } i.$$

This is similar to the travel time proposed by Ichoua et al. (2003) where real traffic data is not accessible. A computationally efficient routine is introduced to acquire the travel time. A distance matrix $D = (d_{ij})$ is created for all $i, j \in \{1, 2, \ldots, n\}$ nodes. The planning horizon is also divided into K planning periods, while the edges are partitioned into C subsets $A = (A_c)_{1 \leq c \leq C}$ based on, for example, road type. To limit the number of speed values stored for each edge (i, j) for each time slot t, a travel speed v_{ct} is associated with each edge partition c for each time slot t. The dynamic travel time between nodes i and j can consequently be determined through Algorithm 4.2 if the travel start time at node i is denoted by $t_0 \in Z_k = [z_{k-1}, z_k]$.

Calculating the travel time matrix, however, is computationally expensive. Instead of calculating a travel time between each (i, j) pair for each time unit k in the scheduling period, Algorithm 4.3 introduces Time Window Compatibility (TWC) to only calculate travel time values for node pairs that have compatible time windows.

4.1.2 Time window compatibility

The introduction of the TWC concept assists in identifying, and eliminating, obvious infeasible nodes. This results in a more effective and robust route construction heuristic. The purpose of TWC is to determine the time overlap of all edges, or node combinations, (i, j), where $i, j \in \{0, 1, 2, \ldots, N\}$, and N the total number of nodes in the network. During the route construction phase, time window compatibility can be checked, and obvious infeasible nodes can be eliminated from the set of considered nodes. The Time Window Compatibility
Algorithm 4.2: Travel time calculation procedure

Input: Distance matrix $D = (d_{ij})$

Input: Travel speed matrix $V = (v_{ct})$

1. $t \leftarrow t_0$
2. $d \leftarrow d_{ij}$
3. $t' \leftarrow t + \frac{d}{v_{ct}}$
4. **while** $t' > z_k$ **do**
 5. $d \leftarrow d - v_{ct} (z_k - t)$
 6. $t \leftarrow z_k$
 7. $t' \leftarrow t + \frac{d}{v_{ct}}$
 8. $k \leftarrow k + 1$
9. **endw**
10. $t_{ijt} = t' - t_0$

Algorithm 4.3: Incorporating time window compatibility with time dependent travel time

1. **foreach** node pair (i, j) **do**
2. calculate TWC_{ij}
3. **if** $TWC_{ij} \neq -\infty$ **then**
4. **foreach** time period $k \in \{1, \ldots, K\}$ **do**
5. calculate τ_{ijk} using Algorithm 4.2
6. **endfch**
7. **else**
8. **foreach** time period $k \in \{1, \ldots, K\}$ **do**
9. $\tau_{ijk} \leftarrow \infty$
10. **endfch**
11. **endif**
12. **endfch**
Matrix TWCM is a non-symmetrical matrix as the sequence of two consecutive nodes, i and j, is critical. Let:

$N \triangleq$ be the total number of nodes
$e_i \triangleq$ be the earliest allowed arrival time at customer i, where $i = \{0, 1, \ldots, N\}$
$l_i \triangleq$ be the latest allowed arrival time at customer i, where $i = \{0, 1, \ldots, N\}$
$s_i \triangleq$ be the service time at node i, where $i = \{0, 1, \ldots, N\}$
$t_{ij} \triangleq$ be the travel time from node i to node j, where $i,j = \{0, 1, \ldots, N\}$
$a_j^e \triangleq$ be the actual arrival time at node j, given that node j is visited directly after node i, and that the actual arrival time at node i was e_i, where $i,j = \{0, 1, \ldots, N\}$
$a_j^l \triangleq$ be the actual arrival time at node j, given that node j is visited directly after node i, and that the actual arrival time at node i was l_i, where $i,j = \{0, 1, \ldots, N\}$
$TWC_{ij} \triangleq$ be the time window compatibility when node i is directly followed by node j

TWC_{ij} indicates the entry in row i, column j of the TWCM. Consider the following five scenarios that illustrate the calculation of time window compatibility. Each scenario assume customer j to be serviced directly after customer i, a service time of one hour, and a travel time of two hours from node i to node j.

Scenario 1: if $a_j^e > e_j$ and $a_j^l < l_j$, illustrated in Figure 4.1. Customer i specifies a time window $[e_i, l_i] = [08:00, 12:00]$, while customer j requires service during the time window $[e_j, l_j] = [09:00, 16:00]$. If service at customer i starts at the earliest allowed time, e_i,
then the actual arrival time at customer \(j \) would be calculated as

\[
a^{ei}_j = e_i + s_i + t_{ij}
\] \hspace{1cm} (4.1)

In this scenario \(a^{ei}_j = 11:00 \). Similarly, \(a^{lj}_j \) would be the actual arrival time at customer \(j \), given that the actual arrival time at customer \(i \) was \(l_i \), and is calculated as

\[
a^{lj}_j = l_i + s_i + t_{ij}
\] \hspace{1cm} (4.2)

The difference between \(a^{ei}_j \) and \(a^{lj}_j \) indicates the time window overlap between the two nodes. The time window compatibility is calculated as

\[
TW C_{ij} = a^{lj}_j - a^{ei}_j
\] \hspace{1cm} (4.3)

For this example, the time window compatibility is four hours (04:00).

Scenario 2: if \(a^{ei}_j > e_j \) and \(a^{lj}_j > l_j \), illustrated in Figure 4.2. Customer \(i \) specifies a time window \([e_i, l_i] = [08:00,12:00]\), while customer \(j \) requires service during the time window \([e_j, l_j] = [09:00,13:00]\). The calculations for \(a^{ei}_j \) and \(a^{lj}_j \) are similar to (4.1) and (4.2), respectively. The time windows of customer \(i \) and customer \(j \) only partly overlap, and the time window compatibility is calculated as

\[
TW C_{ij} = l_j - a^{ei}_j
\] \hspace{1cm} (4.4)

For this example, the time window compatibility is two hours (02:00).

Scenario 3: if \(a^{ei}_j < e_j \) and \(a^{lj}_j < l_j \), illustrated in Figure 4.3. Customer \(i \) specifies a time window \([e_i, l_i] = [08:00,12:00]\), while customer \(j \) requires service during the time window \([e_j, l_j] = [12:00,16:00]\). The calculations for \(a^{ei}_j \) and \(a^{lj}_j \) are similar to (4.1) and (4.2).
respectively. The time windows of customer i and customer j only partly overlap, and the time window compatibility is calculated as

$$TW C_{ij} = a_j^l - e_j$$ (4.5)

For this example, the time window compatibility is three hours (03:00).

Scenario 4: if $a_j^{e_i}$ and $a_j^{l_i} < e_j$, illustrated in Figure 4.4. Customer i specifies a time window $[e_i, l_i] = [08:00, 12:00]$, while customer j requires service during the time window $[e_j, l_j] = [17:00, 18:00]$. The calculations for $a_j^{e_i}$ and $a_j^{l_i}$ are similar to (4.1) and (4.2), respectively. The time windows of customer i and customer j do not overlap. Even if customer i is serviced as late as possible, l_i, a waiting time is incurred at customer j.

The time window compatibility is calculated as

$$TW C_{ij} = a_j^{l_i} - e_j$$ (4.6)

For this example, the time window compatibility is negative two hours (-02:00). The significance of the negative time is that it is possible, in this case, to service customer j after customer i, although the waiting time is penalized.
Scenario 5: if a_j^{ei} and $a_j^{lj} > l_j$, illustrated in Figure 4.5. Customer i specifies a time window $[e_i, l_i] = [08:00, 12:00]$, while customer j requires service during the time window $[e_j, l_j] = [07:00, 11:00]$. The calculations for a_j^{ei} and a_j^{lj} are similar to (4.1) and (4.2), respectively. Although the time windows of customer i and customer j partly overlap, it is impossible to service customer j, even if customer i is serviced as early as possible, e_i. Therefore, no time window compatibility exist.

A generalized equation is proposed that will address all five scenarios illustrated, and is given by (4.7).

$$TWC_{ij} = \begin{cases} \min\{a_j^{lj}, l_j\} - \max\{a_j^{ei}, e_j\} & \text{if } l_j - a_j^{ei} > 0 \\ -\infty & \text{otherwise} \end{cases}$$ \hspace{1cm} (4.7)

The higher the value, the better the compatibility of the two time windows considered. Therefore an incompatible time window is defined to have a compatibility of negative infinity.

Example. Consider the following example with five nodes geographical distributed around a depot in Figure 4.6. In the example, node c has indicated two possible time windows. To accommodate multiple time windows, the customer is artificially split and treated as two separate nodes, c^1 and c^2, respectively, each having a single time windows. The time windows for each customer, including the depot, as well as the service time at each node, are given in Table 4.2. The distance matrix, \bar{D}, is calculated using the rectangular distance between nodes. With the grid provided in Figure 4.6, the
Figure 4.6: Geographical distribution of nodes around a depot

Table 4.2: Time windows and service times

<table>
<thead>
<tr>
<th>Node</th>
<th>Time window</th>
<th>Service time (in hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i)</td>
<td>((e_i; l_i))</td>
<td>(s_i)</td>
</tr>
<tr>
<td>Depot</td>
<td>07:00 – 18:00</td>
<td>0.00</td>
</tr>
<tr>
<td>a</td>
<td>08:00 – 12:00</td>
<td>0.50</td>
</tr>
<tr>
<td>b</td>
<td>11:00 – 13:00</td>
<td>0.25</td>
</tr>
<tr>
<td>c¹</td>
<td>08:00 – 09:00</td>
<td>0.25</td>
</tr>
<tr>
<td>c²</td>
<td>15:00 – 17:00</td>
<td>0.25</td>
</tr>
<tr>
<td>d</td>
<td>08:00 – 12:00</td>
<td>0.50</td>
</tr>
<tr>
<td>e</td>
<td>10:00 – 15:00</td>
<td>0.25</td>
</tr>
</tbody>
</table>
distances can be obtained through inspection.

\[
D = \begin{bmatrix}
0 & 60 & 60 & 50 & 50 & 70 & 60 \\
60 & 0 & 20 & 70 & 70 & 110 & 120 \\
60 & 20 & 0 & 50 & 50 & 110 & 120 \\
50 & 70 & 50 & 0 & 0 & 80 & 90 \\
50 & 70 & 50 & 0 & 0 & 80 & 90 \\
70 & 110 & 110 & 80 & 80 & 0 & 70 \\
60 & 120 & 120 & 90 & 90 & 70 & 0
\end{bmatrix}
\]

If the average speed is known, the time matrix, \(T \), can be calculated, but in the presence of time dependent travel time, the travel times are calculated using Algorithm 4.2. For illustrative purposes in this example only, \(T \) is given. Values are in hours.

\[
T = \begin{bmatrix}
0 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 0.5 & 1 & 1 & 2 & 2 \\
1 & 0.5 & 0 & 1 & 1 & 2 & 2 \\
1 & 1 & 1 & 0 & 0 & 1.5 & 1.5 \\
1 & 1 & 1 & 0 & 0 & 1.5 & 1.5 \\
1 & 2 & 2 & 1.5 & 1.5 & 0 & 1 \\
1 & 2 & 2 & 1.5 & 1.5 & 1 & 0
\end{bmatrix}
\]

With the information at hand, the time window compatibility matrix can be calculated. For the given example,

\[
TWCM = \begin{bmatrix}
11 & 4 & 2 & 1 & 2 & 4 & 5 \\
4 & 3.5 & 2 & -\infty & -1.5 & 1.5 & 4 \\
2 & 0.25 & 1.75 & -\infty & -0.75 & -\infty & 1.75 \\
1 & 1 & -0.75 & 0.75 & -5.75 & 1 & 0.75 \\
1.75 & -\infty & -\infty & -\infty & 1.75 & -\infty & -\infty \\
1.75 & 1.5 & 2 & -\infty & -1 & 3.5 & 3.5 \\
5 & -\infty & 0.75 & -\infty & 1.75 & 0.75 & 4.75
\end{bmatrix}
\]

4.2 Improving the initial solution heuristic

Initialization criteria in Algorithm 4.1 refer to the process of finding the *seed customer*: the first customer to be inserted into a new route. Joubert (2003) proposes the use of the TWC concept to identify seed customers. When looking at the TWCM example, it is clear that the
Table 4.3: Number of infeasible time window instances

<table>
<thead>
<tr>
<th>Node</th>
<th>as origin</th>
<th>as destination</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depot</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>b</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>c^1</td>
<td>0</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>c^2</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>d</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>e</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

incompatibility is distinct for specific nodes. It is therefor possible to identify incompati-
ble nodes. As opposed to the two most common initialization criteria, namely customer with
earliest deadline, and furthest customer, as suggested by [Dullaert et al., 2001], the author of
this thesis proposes the use of the TWCM to identify seed nodes based on their time window
compatibility. Table 4.3 indicates the number of instances where a node has an infeasible
time window with another node, either as origin, or as destination. Both nodes c^1 and c^2
have five infeasible instances. The two artificial nodes are representing the same customer
c. It can be concluded that customer c is the most incompatible node, and is identified as
the seed customer. Ties are broken arbitrarily. Should two nodes have the same number
of infeasible time window instances, either of the two customers could be selected as seed
customer.

It may be possible to not have any infeasible time window instances. In such a scenario,
a total compatibility value, denoted by C^total_a, can be determined for each node a, and is
calculated using either (4.8) or (4.9),

$$C^\text{total}_a = \sum_{i=1, i \neq a}^{M} TW C_{ia} + \sum_{j=1, j \neq a}^{M} TW C_{aj} + TW C_{aa} \quad \forall a \quad (4.8)$$

$$C^\text{total}_a = \sum_{i=1}^{M} TW C_{ia} + \sum_{j=1}^{M} TW C_{aj} - TW C_{aa} \quad \forall a \quad (4.9)$$

where M refers to all the unrouted nodes, including all instances of those nodes that are split
artificially. The customer with the lowest total compatibility is selected as seed customer.

Once the seed customer has been identified and inserted, the SIH algorithm considers, for
all unrouted nodes, the insertion position that minimizes a weighted average of the additional
distance and time needed to include a customer in the current partially constructed route.
This second step is referred to as the *insertion criteria*. Note that the terms *nodes* and
customers are used interchangeably. The insertion and selection criteria can be simplified
using the example illustrated in Figure 4.7. The partially constructed route in the example

![Figure 4.7: Sequential insertion of customers](image)

consists of the depot and three routed nodes, namely B, C, and E. The route can be
expressed as *Depot-B-C-E-Depot*. Nodes A and D are unrouted. The insertion criteria,
denoted by $c_1(i, u, j)$, calculates the best position and associated cost, between two adjacent
nodes i and j on the partial route, to insert a customer u, and is calculated for each of the
unrouted nodes. Consider node A in the example. There are four edges where the node can
be inserted, namely *Depot-B*, B-C, C-E, or E-Depot, as illustrated in Figure 4.8. Dullaert
et al. [2001] extend Solomon’s heuristic and determines $c_1(i, A, j)$ for the unrouted node A as

$$c_1(i, A, j) = \min_{p=1,2,...,m} \left[c_1(i_{p-1}, A, i_p) \right]$$

(4.10)

in which m represents the routed nodes in the partially constructed route. If the expressions
are generalized for all unrouted nodes u, the insertion criteria is calculated as

$$c_1(i, u, j) = \alpha_1 c_{11}(i, u, j) + \alpha_2 c_{12}(i, u, j) + \alpha_3 c_{13}(i, u, j)$$

(4.11)
Figure 4.8: Selection criteria

with

\[
c_{11}(i,u,j) = d_{iu} + d_{uj} - \mu d_{ij}, \mu \geq 0 \tag{4.12}
\]
\[
c_{12}(i,u,j) = a_j^{new} - a_j \tag{4.13}
\]
\[
c_{13}(i,u,j) = ACS, \ AOOS, \ or \ AROS \tag{4.14}
\]

With the extension to Solomon’s heuristic, the weighting factors \(\alpha_i\) need not add up to 1. The additional distance, and the additional time needed to serve customer \(u\) after customer \(i\), but before customer \(j\) is denoted by \(c_{11}(i,u,j)\) and \(c_{12}(i,u,j)\), respectively. The new actual arrival time at node \(j\) is denoted by \(b_j^{new}\) in (4.13). The vehicle savings criteria, denoted by \(c_{13}(i,u,j)\), considers any one of three parallel approaches to vehicle cost, where the savings concepts introduced by Golden et al. (1984) are adapted. Let:

\[
F(z) \triangleq \text{the fixed cost of the smallest vehicle that can service a cumulative route demand of } z
\]
\[
F'(z) \triangleq \text{the fixed cost of the largest vehicle whose capacity is less than or equal to } z
\]
\[
P(z) \triangleq \text{the capacity of the smallest vehicle that can service a demand of } z
\]
\[
Q \triangleq \text{be the load of the vehicle currently servicing the route}
\]
\[
\overline{Q} \triangleq \text{be the maximum capacity of the vehicle currently servicing the route}
\]
\(Q^{\text{new}} \triangleq \) be the new load of the vehicle after the customer has been inserted into the route
\(\overline{Q}^{\text{new}} \triangleq \) be the (new) capacity of the vehicle after the customer has been inserted into the route

The Adapted Combined Savings (ACS) is defined as the difference between the fixed costs of the vehicles capable of transporting the load of the route after, and before, inserting customer \(u \), and is calculated by (4.15).

\[
ACS = F(Q^{\text{new}}) - F(Q)
\] (4.15)

The Adapted Optimistic Opportunity Savings (AOOS) extends the ACS by subtracting the fixed cost of the vehicle that can service the unused capacity, and is calculated by (4.16).

\[
AOOS = [F(Q^{\text{new}}) - F(Q)] - F(\overline{Q}^{\text{new}} - Q^{\text{new}})
\] (4.16)

The Adapted Realistic Opportunity Savings (AROS) takes the fixed cost of the largest vehicle smaller than or equal to the unused capacity, \(F'(\overline{Q}^{\text{new}} - Q^{\text{new}}) \), into account as an opportunity saving. It only does so if a larger vehicle is required to service the current route after a new customer has been inserted. AROS is calculated by (4.17).

\[
AROS = [F(Q^{\text{new}}) - F(Q)] - \delta(\omega)F'(\overline{Q}^{\text{new}} - Q^{\text{new}})
\] (4.17)

where

\[
\delta(\omega) = \begin{cases}
1 & \text{if } Q + q_u > \overline{Q} \\
0 & \text{otherwise.}
\end{cases}
\]

Any one of these savings criteria can be used as all three outperformed previous best published results for the initial solution (Dullaert et al., 2001). Once the best position for each unrouted node has been determined, as illustrated in Figure 4.9, the customer that is best according to the selection criteria, is selected — the third step in the SIH algorithm. The procedure can be expressed mathematically as

\[
c_2(i, u^\star, j) = \max_u[c_2(i, u, j)], u \text{ unrouted and feasible} \quad (4.18)
\]

\[
c_2(i, u, j) = \lambda(d_{iu} + t_{ou}) + s_u + F(q_u) - c_1(i, u, j), \lambda \geq 0 \quad (4.19)
\]

The best customer, \(u^\star \), is then inserted into the partially created route between its specific nodes \(i \) and \(j \). From Figure 4.9, consider node \(D \) to be the best node. After inserting \(D \) into
Figure 4.9: Best insertion position determined for each unrouted node

the current route, node A remains the only unrouted node, and the new route is illustrated in Figure 4.10, and can be expressed as Depot-B-D-C-E-Depot. The insertion process is repeated until no remaining unrouted nodes have a feasible insertion place. A new route is then initialized and identified as the current route.

A shortcoming of Solomon’s SIH 1987 is that it considers all unrouted nodes when calculating the insertion and selection criteria for each iteration. The fact that all unrouted nodes are considered makes it computationally expensive. The occurrence of obvious infeasible nodes in a partially constructed route becomes significant in the extended problem considered in this thesis. In each iteration, these criteria are calculated for each edge on the partially constructed route, irrespective of the compatibility of the time window of the node considered for insertion with the time windows of the two nodes forming the edge. For an
improved case, consider the example where node \(u \) is considered for insertion between nodes \(i \) and \(j \). As the TWCM is already calculated, it is possible to check the compatibility of node \(u \) with the routed nodes \(i \) and \(j \). If either \(TWC_{iu} \) or \(TWC_{uj} \) is negative infinity \((-\infty)\), indicating an incompatible time window, the insertion heuristic moves on and considers the next edge, without wasting computational effort on calculating the insertion and selection criteria. In the earlier example, eleven instances of infeasible time windows occur. If these instances are identified and eliminated, a computational saving in excess of 22% is achieved. The saving is calculated as the percentage of instances with time window incompatibilities of the total number of travel time instances.

4.3 Initial solutions

Solomon (1987) introduced 54 benchmark problems contained in six distinctive sets for the VRPTW denoted by \(c1, c2, r1, r2, rc1, \) and \(rc2 \), each with 100 customer nodes. Each set highlights several factors that can affect the behavior of routing and scheduling heuristics. These factors include the geographical dispersion; the number of customers serviced by a vehicle, i.e. the relation between customer demand and vehicle capacity; and time window characteristics such as percentage of time-constrained customers, as well as the tightness and positioning of time windows.

The geographical data for the first group of problem sets are randomly generated using a uniform distribution (denote the corresponding problem sets by \(r1 \) and \(r2 \)). The second group of sets are clustered (denote the corresponding problems sets by \(c1 \) and \(c2 \)). A third semi-clustered group of sets have a combination of randomly distributed and clustered points (denote the corresponding problem sets by \(rc1 \) and \(rc2 \)). Problem sets \(r1, c1, \) and \(rc1 \) have short scheduling horizons and along with vehicular capacities only allow a few customers to be serviced by a single vehicle. Problem sets \(r2, c2, \) and \(rc2 \) have long scheduling horizons, and when combined with large vehicular capacities, allows for a much higher number of customers being serviced by a single vehicle.

Homberger and Gehring (1999) extend the original problems to include problem sets having 200, 400, 600, and 1000 customer nodes. For illustrative purposes, Figure 4.11 shows the header of one of the Homberger and Gehring (1999) problem sets, as well as the first few customers. The depot is represented by customer ‘0’. The attributes for each customer include a customer number, coordinates, the demand, the earliest and latest allowed arrival, as well as the service time at each customer. The problem sets do unfortunately not accom-
Figure 4.11: An excerpt of a problem set (Homberger 2003)

moderate a heterogeneous fleet, and the fleet structure proposed by Liu and Shen (1999b) is therefor used in this thesis — presented in Table 4.4 for each of the problem classes.

Time windows provided in the problem sets are hard, i.e. they allow neither early nor late arrivals. To create problem sets that will test the initial solution algorithm with soft time windows, a maximum lateness of $L_{\text{max}} = 30$ time units is associated with each node, including the depot. Such time windows incur waiting time if arriving early, but allow late arrivals penalized at a unit cost of α.

Multiple scheduling is achieved through an elementary routine testing whether there is at least ρ time units between the return time of the current route and the end of the depot’s time window. In this thesis the author uses an arbitrary value of $\rho = 60$ minutes.

Tables 4.5a through 4.5f show the results for 60 problem instances executed on an Intel® Pentium® 4 computer with a 3.6GHz processor (64Bit) and 3.25GB RAM.

Each table indicates the specific Homberger and Gehring (1999) problem instance from which the 100 customer data set as taken, the numbers of tours (vehicles) used in the initial solution, the total number of routes, the average time required to generate the initial solution, and the number of orphans. Orphans are customers from the data set that could not
Table 4.4: Heterogeneous fleet data (Liu and Shen, 1999a)

(a) Set r_1

<table>
<thead>
<tr>
<th>Type</th>
<th>Capacity</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>80</td>
</tr>
<tr>
<td>3</td>
<td>80</td>
<td>140</td>
</tr>
<tr>
<td>4</td>
<td>120</td>
<td>250</td>
</tr>
<tr>
<td>5</td>
<td>200</td>
<td>500</td>
</tr>
</tbody>
</table>

(b) Set r_2

<table>
<thead>
<tr>
<th>Type</th>
<th>Capacity</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>300</td>
<td>450</td>
</tr>
<tr>
<td>2</td>
<td>400</td>
<td>700</td>
</tr>
<tr>
<td>3</td>
<td>600</td>
<td>1200</td>
</tr>
<tr>
<td>4</td>
<td>1000</td>
<td>2500</td>
</tr>
</tbody>
</table>

(c) Set c_1

<table>
<thead>
<tr>
<th>Type</th>
<th>Capacity</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>300</td>
</tr>
<tr>
<td>2</td>
<td>200</td>
<td>800</td>
</tr>
<tr>
<td>3</td>
<td>300</td>
<td>1350</td>
</tr>
</tbody>
</table>

(d) Set c_2

<table>
<thead>
<tr>
<th>Type</th>
<th>Capacity</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>400</td>
<td>1000</td>
</tr>
<tr>
<td>2</td>
<td>500</td>
<td>1400</td>
</tr>
<tr>
<td>3</td>
<td>600</td>
<td>2000</td>
</tr>
<tr>
<td>4</td>
<td>700</td>
<td>2700</td>
</tr>
</tbody>
</table>

(e) Set rc_1

<table>
<thead>
<tr>
<th>Type</th>
<th>Capacity</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>2</td>
<td>80</td>
<td>150</td>
</tr>
<tr>
<td>3</td>
<td>150</td>
<td>300</td>
</tr>
<tr>
<td>4</td>
<td>200</td>
<td>450</td>
</tr>
</tbody>
</table>

(f) Set rc_2

<table>
<thead>
<tr>
<th>Type</th>
<th>Capacity</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>2</td>
<td>200</td>
<td>350</td>
</tr>
<tr>
<td>3</td>
<td>300</td>
<td>550</td>
</tr>
<tr>
<td>4</td>
<td>400</td>
<td>800</td>
</tr>
<tr>
<td>5</td>
<td>500</td>
<td>1100</td>
</tr>
<tr>
<td>6</td>
<td>1000</td>
<td>2500</td>
</tr>
</tbody>
</table>
Table 4.5a: Initial solution summary for the c_1 problem class

<table>
<thead>
<tr>
<th>Problem</th>
<th>Tours</th>
<th>Routes</th>
<th>Time (sec)</th>
<th>Orphans</th>
</tr>
</thead>
<tbody>
<tr>
<td>$c_{1.2.1}$</td>
<td>33</td>
<td>40</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>$c_{1.2.2}$</td>
<td>27</td>
<td>30</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>$c_{1.2.3}$</td>
<td>29</td>
<td>44</td>
<td>22</td>
<td>2</td>
</tr>
<tr>
<td>$c_{1.2.4}$</td>
<td>19</td>
<td>19</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>$c_{1.2.5}$</td>
<td>27</td>
<td>28</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>$c_{1.2.6}$</td>
<td>28</td>
<td>37</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>$c_{1.2.7}$</td>
<td>23</td>
<td>24</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>$c_{1.2.8}$</td>
<td>23</td>
<td>23</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>$c_{1.2.9}$</td>
<td>21</td>
<td>21</td>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td>$c_{1.2.10}$</td>
<td>19</td>
<td>20</td>
<td>22</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 4.5b: Initial solution summary for the c_2 problem class

<table>
<thead>
<tr>
<th>Problem</th>
<th>Tours</th>
<th>Routes</th>
<th>Time (sec)</th>
<th>Orphans</th>
</tr>
</thead>
<tbody>
<tr>
<td>$c_{2.2.1}$</td>
<td>39</td>
<td>50</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>$c_{2.2.2}$</td>
<td>29</td>
<td>39</td>
<td>15</td>
<td>8</td>
</tr>
<tr>
<td>$c_{2.2.3}$</td>
<td>27</td>
<td>46</td>
<td>20</td>
<td>7</td>
</tr>
<tr>
<td>$c_{2.2.4}$</td>
<td>17</td>
<td>17</td>
<td>34</td>
<td>6</td>
</tr>
<tr>
<td>$c_{2.2.5}$</td>
<td>24</td>
<td>24</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>$c_{2.2.6}$</td>
<td>25</td>
<td>25</td>
<td>14</td>
<td>2</td>
</tr>
<tr>
<td>$c_{2.2.7}$</td>
<td>27</td>
<td>30</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>$c_{2.2.8}$</td>
<td>25</td>
<td>25</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>$c_{2.2.9}$</td>
<td>28</td>
<td>35</td>
<td>19</td>
<td>2</td>
</tr>
<tr>
<td>$c_{2.2.10}$</td>
<td>23</td>
<td>24</td>
<td>20</td>
<td>0</td>
</tr>
</tbody>
</table>
Table 4.5c: Initial solution summary for the r_1 problem class

<table>
<thead>
<tr>
<th>Problem</th>
<th>Tours</th>
<th>Routes</th>
<th>Time (sec)</th>
<th>Orphans</th>
</tr>
</thead>
<tbody>
<tr>
<td>$r_{1,2,1}$</td>
<td>34</td>
<td>76</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>$r_{1,2,2}$</td>
<td>37</td>
<td>71</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>$r_{1,2,3}$</td>
<td>40</td>
<td>67</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>$r_{1,2,4}$</td>
<td>59</td>
<td>70</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>$r_{1,2,5}$</td>
<td>39</td>
<td>74</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>$r_{1,2,6}$</td>
<td>42</td>
<td>69</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>$r_{1,2,7}$</td>
<td>42</td>
<td>68</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>$r_{1,2,8}$</td>
<td>57</td>
<td>70</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>$r_{1,2,9}$</td>
<td>36</td>
<td>70</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>$r_{1,2,10}$</td>
<td>39</td>
<td>68</td>
<td>6</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 4.5d: Initial solution summary for the r_2 problem class

<table>
<thead>
<tr>
<th>Problem</th>
<th>Tours</th>
<th>Routes</th>
<th>Time (sec)</th>
<th>Orphans</th>
</tr>
</thead>
<tbody>
<tr>
<td>$r_{2,2,1}$</td>
<td>13</td>
<td>21</td>
<td>21</td>
<td>1</td>
</tr>
<tr>
<td>$r_{2,2,2}$</td>
<td>9</td>
<td>17</td>
<td>34</td>
<td>1</td>
</tr>
<tr>
<td>$r_{2,2,3}$</td>
<td>6</td>
<td>7</td>
<td>64</td>
<td>0</td>
</tr>
<tr>
<td>$r_{2,2,4}$</td>
<td>6</td>
<td>9</td>
<td>84</td>
<td>0</td>
</tr>
<tr>
<td>$r_{2,2,5}$</td>
<td>9</td>
<td>12</td>
<td>28</td>
<td>0</td>
</tr>
<tr>
<td>$r_{2,2,6}$</td>
<td>9</td>
<td>9</td>
<td>57</td>
<td>0</td>
</tr>
<tr>
<td>$r_{2,2,7}$</td>
<td>8</td>
<td>10</td>
<td>74</td>
<td>0</td>
</tr>
<tr>
<td>$r_{2,2,8}$</td>
<td>6</td>
<td>7</td>
<td>94</td>
<td>0</td>
</tr>
<tr>
<td>$r_{2,2,9}$</td>
<td>9</td>
<td>11</td>
<td>41</td>
<td>0</td>
</tr>
<tr>
<td>$r_{2,2,10}$</td>
<td>10</td>
<td>11</td>
<td>41</td>
<td>0</td>
</tr>
</tbody>
</table>
Table 4.5e: Initial solution summary for the $rc1$ problem class

<table>
<thead>
<tr>
<th>Problem</th>
<th>Tours</th>
<th>Routes</th>
<th>Time (sec)</th>
<th>Orphans</th>
</tr>
</thead>
<tbody>
<tr>
<td>$rc1_2_1$</td>
<td>30</td>
<td>51</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>$rc1_2_2$</td>
<td>26</td>
<td>48</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>$rc1_2_3$</td>
<td>27</td>
<td>46</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>$rc1_2_4$</td>
<td>34</td>
<td>46</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>$rc1_2_5$</td>
<td>26</td>
<td>47</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>$rc1_2_6$</td>
<td>29</td>
<td>49</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>$rc1_2_7$</td>
<td>30</td>
<td>48</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>$rc1_2_8$</td>
<td>25</td>
<td>47</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>$rc1_2_9$</td>
<td>27</td>
<td>47</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>$rc1_2_10$</td>
<td>35</td>
<td>48</td>
<td>11</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 4.5f: Initial solution summary for the $rc2$ problem class

<table>
<thead>
<tr>
<th>Problem</th>
<th>Tours</th>
<th>Routes</th>
<th>Time (sec)</th>
<th>Orphans</th>
</tr>
</thead>
<tbody>
<tr>
<td>$rc2_2_1$</td>
<td>13</td>
<td>26</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>$rc2_2_2$</td>
<td>11</td>
<td>26</td>
<td>23</td>
<td>0</td>
</tr>
<tr>
<td>$rc2_2_3$</td>
<td>11</td>
<td>24</td>
<td>31</td>
<td>1</td>
</tr>
<tr>
<td>$rc2_2_4$</td>
<td>11</td>
<td>18</td>
<td>31</td>
<td>0</td>
</tr>
<tr>
<td>$rc2_2_5$</td>
<td>12</td>
<td>20</td>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td>$rc2_2_6$</td>
<td>12</td>
<td>18</td>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>$rc2_2_7$</td>
<td>9</td>
<td>18</td>
<td>21</td>
<td>0</td>
</tr>
<tr>
<td>$rc2_2_8$</td>
<td>11</td>
<td>18</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>$rc2_2_9$</td>
<td>13</td>
<td>18</td>
<td>21</td>
<td>0</td>
</tr>
<tr>
<td>$rc2_2_10$</td>
<td>13</td>
<td>19</td>
<td>25</td>
<td>0</td>
</tr>
</tbody>
</table>
feasibly be included in the initial solution. Ten iterations were used to calculate the average
time values. Orphans are a result of the specific problem instance. The time dependent
travel times that were calculated using randomly generated edge types, \(v_{cT} \), may result in
a situation whereby a customer can not be serviced within the time window of the depot,
even if such customers are serviced by a dedicated vehicle.

A sample of an initial solution output file for the \(r_{2.2.3} \) problem set (see Table 4.5d) is
provided in Appendix A. The initial solution indicates the algorithm’s ability to generate
more than one route per vehicle, and indicates the vehicle type assigned to the specific route.
Each line represents a route, with each route starting and ending at the depot. Sequential
numbers in each route represent the customers and the sequence in which customers are
serviced. In the solution for the \(r_{2.2.3} \) problem all nodes are routed, and no orphans exist.

4.4 Conclusion

To establish an initial solution that addresses not only time windows, but also time dependent
travel times and a heterogeneous fleet, requires a computational expensive routine. In this
chapter the author introduced the concept of Time Window Compatibility \((TWC)\) to ease
the computational burden. The concept of \(TWC \) is also employed to identify seed customers
as the most incompatible customer nodes.

Data sets from literature were adapted to create test problems for which the initial
solution algorithm found solutions within seconds. The initial solutions generated in this
chapter is used as inputs to the route improvement metaheuristics that are developed in
Chapters 5 through 6.
Chapter 5

A Tabu Search solution algorithm

The TS examines a trajectory sequence of solutions and moves to the best neighbor of the current solution. To avoid cycling, solutions that were recently examined are forbidden, or tabu, for a number of iterations (Gendreau et al., 2002). Section 3.3.1 reviews the basic structure of the TS.

Taillard (1993) introduces a feature whereby the main problem is decomposed into independent subproblems so that the algorithm can be parallelized on multiple processors. Each subproblem is solved on a different processor before the tours are grouped together to construct a solution to the original problem. The new solution is then decomposed, and the process repeats itself for a given number of times. A random selection of components in the decomposition process ensures the algorithm produces different solutions from one execution to the next. In this thesis an approach similar to that of Taillard (1993) and Rochat and Taillard (1995) is followed, albeit on a single processor. The approach can be parallelized through the coding structure in future research, but recent software technology, i.e. cluster scheduling such as the MATLAB Distributed Computing system, provides the software the ability to automatically determine which segment of an algorithm can be parallelized on multiple clustered processors without adapting the code.

The chapter starts with a brief discussion of the main elements of a TS algorithm, followed by the TS proposed in this thesis, and a detailed discussion of each phase of the TS. The chapter concludes with an analysis of the algorithm’s results for problems based on integrated data sets of Solomon (1987), Homberger and Gehring (1999), and Liu and Shen (1999a,b).
5.1 Elements of the tabu algorithm

Tabu list A list of the last few moves (or solutions). The memory of moves can be recency or frequency-based. Short-term recency-based memory forbids cycling around a local neighborhood in the solution space through setting the last T moves as Tabu. Recently made moves are stored in a mechanism that is referred to as the Tabu-Move list. The number of moves in the list is determined by the tabu list size, denoted by T. The list operates on a first-in-first-out principle. Other recency information that is stored in the Tabu list is the solution configurations. The larger the value of T, the longer the moves and solutions stay tabu. The Tabu-Solution list is a set of solutions that have been created recently by exchanging segments between routes. The solutions are coded into an integer string. The total cost of the solution is also attached to the string.

Long-term frequency-based memory allows searches to be conducted in the most promising neighborhoods. The frequency-based memory provides additional information of how many times a tabu move have been attempted. To alleviate time and memory requirements, it is customary to record an attribute of a tabu solution, and not the solution itself.

Candidate list TS makes use of a candidate list that provides a list of moves to evaluate. One move of the candidate list is chosen to proceed with the search. The candidate list plays an important role in the performance of TS.

Intensification and diversification Two memory-based strategies that form a fundamental principle of TS. Gendreau (2003) claims diversification to be the single-most important issue in designing a TS. With the use of the intensification strategy regions around attractive solutions are more thoroughly searched, and typically operates by restarting a search from a solution previously found to yield good results. The restart is achieved through the candidate list representing attractive regions. Diversification, on the other hand, encourages the search process to examine unvisited regions and to generate solutions that differ in various significant ways from previous solutions. The probabilistic diversification and intensification introduced by Rochat and Taillard (1995) is also referred to as the Adaptive Memory Procedure (AMP).

Penalized objective function The objective function of a solution s is denoted by $f_1(s)$ and is calculated by (5.1) as the sum of the travel times of all routes and tours, and
the total lateness at all customers \cite{ichoua2003}.

\[f_1(s) = \sum_{\text{Tours}} \sum_{\text{Routes}} t + \sum_{\text{Customers}} \alpha_i y_i \]

(5.1)

In the calculation \(\alpha_i \) denotes the lateness penalty for customer \(i \), while \(y_i = \max \{ 0, a_i - l_i \} \).

The actual arrival time at customer \(i \) is denoted by \(a_i \), while \(l_i \) denotes the latest allowed arrival time at customer \(i \). The design of the algorithm ensures that \(a_i \leq l_i + L_{i}^{\text{max}} \), where \(L_{i}^{\text{max}} \) is the maximum allowed lateness at customer \(i \). The objective function is artificially adapted to incorporate a significant penalty for any unrouted customers, referred to as orphans. The artificial objective function, \(f_2(s) \), is expressed in (5.2),

\[f_2(s) = f_1(s) + \beta o \]

(5.2)

where \(\beta \) is a nonnegative penalty factor, and \(o \) the number of orphans in the final solution. Orphans are only created if the time window of the customer is completely incompatible with that of the depot, even if it is serviced by a dedicated vehicle.

Stopping criteria The search is terminated once a preset maximum number of iterations of the main TS algorithm have been reached. An alternative stopping criteria could be a predetermined number of attempts being made to set the same solution in the Tabu-Solution list as the new current solution. This indicates that the search has been caught in a local optimum, hence terminating the search.

5.2 Tabu algorithm

The phased approach of the TS algorithm, similar to the implementation of \cite{taillard1997} and \cite{gendreau1999}, is illustrated in Algorithm 5.1. Data structures are indicated with *sans serif font*, while functional routines are indicated with *typewriter font*.

5.2.1 Initialization

The initial solution algorithm proposed in Chapter 4 forms the basis of the initialization phase, but generates only a single initial solution, \(s \). As \(I \), preferably different, initial solutions are required, the routine in Algorithm 5.2 is proposed. For each initial solution required, a random node \(I_i^* \) is identified and removed from the problem set \(P \). The remaining nodes in \(P' \) are used to create an initial solution using the improved initial solution algorithm proposed in Chapter 4. After the nodes in \(P' \) have been routed, the identified node \(I_i^* \) is reinserted into the first feasible position. The result is a set of initial solutions
Algorithm 5.1: Tabu Search (TS) Overview

Input: stopping criteria

Input: Adaptive Memory size, M

1. begin Initialization (Section 5.2.1)
 2. construct I unique initial solutions $s = \{s_1, s_2, \ldots, s_I\}$
 3. $\hat{x} \leftarrow \min_{i \in \{1, \ldots, I\}} \{s_i\}$
 4. decompose s into independent tour set T
 5. store M best tours of $T \cup ($Adaptive Memory$)$ in the Adaptive Memory

6. end

7. begin Optimization (Section 5.2.2)
 8. while stopping criteria is not met do
 9. construct a biased solution, x from the tours in Adaptive Memory
 10. $x^{\text{current}} \leftarrow x$
 11. for W iterations do
 12. $x^* \leftarrow$ locally optimized x^{current}
 13. $x^{\text{current}} \leftarrow x^*$
 14. if $x^{\text{current}} < \hat{x}$ then
 15. $\hat{x} \leftarrow x^{\text{current}}$
 16. endif
 17. endfor
 18. endw
 19. decompose x^{current} into independent tour set T
 20. store M best tours of $T \cup ($Adaptive Memory$)$ in the Adaptive Memory

21. end

22. report incumbent \hat{x}
Algorithm 5.2: Tabu Search (TS) Initialization

Input: Problem set \(P \), with \(|P| = n\) nodes

Input: Number of initial solutions required, \(I \)

1. identify \(I^* \subset P \), a randomly identified subset with \(I \) nodes from problem set ;
2. foreach \(I^*_i \in I^* \) do
 3. \(P' \leftarrow P \setminus \{I^*_i\} \);
 4. find initial solution \(s \) by executing Initial solution heuristic with \(P' \);
 5. re-insert \(I^*_i \) into initial solution to create \(s_i \)
3. \(s = \{s_1, s_2, \ldots, s_I\} \). Each initial solution’s tours are stored in the adaptive memory, and associated with it the objective function value of the initial solution from which the tour originates. All tours consisting of only a single node are removed from the adaptive memory.

5.2.2 Optimization

The TS optimization routine listed in Algorithm 5.3 terminates after executing a predefined number of local optimization iterations, denoted by \(I^{\text{max}} \). A partially constructed tour is created through iteratively selecting tours from the adaptive memory, and removing all tours from the adaptive memory that share nodes with the selected tour. The probability of selecting any tour is based on the objective function associated with the tour, which in turn is taken from the solution from which the tour originates. Glover (1990) notes that the use of probabilities, based on past performance, as an underlying measure of randomization yields efficient and effective means of diversification. The better a solution, the higher the probability of selecting a tour from that solution. Once a tour is selected from the adaptive memory, all tours sharing nodes with the selected tour are removed from memory. Removing tours from the adaptive memory ensures each node is represented only once in the partially constructed tour. The selection of tours from the adaptive memory, and the removal of tours with common nodes, is repeated until no more tours remain in the adaptive memory. As not all nodes are represented, the partially constructed tour denoted by \(s \), is completed by inserting the remaining unrouted nodes into feasible positions of \(s \). The resulting tour, denoted by \(s^* \), is achieved through either identifying positions on a current route, creating a new route on a current tour, or creating a new tour with its associated vehicle.
Algorithm 5.3: Tabu Search (TS) Optimization

Input: Incumbent solution, \hat{x}

Input: Iteration limit for local optimization, I_{max}

Input: Frequency parameter, ζ

1. $s = \{\cdot\}$
2. assign set of tours, $A \leftarrow$ Adaptive Memory
3. repeat
 4. select $a \in A$
 5. $s \leftarrow s \cup a$
 6. $A \leftarrow A \ominus (a \cap A)$
 7. until $A = \{\cdot\}$
8. $s^* \leftarrow s \oplus (\{1, 2, \ldots, N\} \ominus s)$
9. $i \leftarrow 0$
10. repeat
11. $i \leftarrow i + 1$
12. if $\left\lfloor \frac{i}{\zeta} \right\rfloor = \frac{i}{\zeta}$ then
13. exchange heuristic $j = \{1, 2\}$
14. else
15. select exchange heuristic $j \in \{1, 2\}$ with probability p_j
16. endif
17. $s'_j \leftarrow e_j(s^*)$
18. $s' \leftarrow \min_j \{s'_j\}$
19. $x' \leftarrow f(s')$
20. if $x' < \hat{x}$ then
21. $s \leftarrow s'$
22. $s^* \leftarrow s'$
23. endif
24. until $i > I_{\text{max}}$
Two exchange operators are considered. The first operator removes a randomly selected node from one tour and inserts the node into the best possible position in another tour that has the same vehicle type. The second operator also removes a randomly selected node from an origin tour, but selects the best insertion position for the node on a tour having a different vehicle type than the origin tour.

Initially the probability of selecting either of the operators is equal. A frequency parameter, ζ, ensures that every ζ iterations both operators are used to create perturbations. The probability of the operator producing the best solution is then increased relative to its current probability. Consider, during a general iteration, the first operator having a weight of $\alpha = 30$ and the second operator having a weight of $\beta = 60$. If both operators are executed, and the first operator yields a better solution, its weight will be increased by a factor γ. In this thesis γ is arbitrarily set to 2. The new probability of selecting the first operator is

$$p_1 = \frac{\gamma \alpha}{\gamma \alpha + \beta} = \frac{2 \times 30}{2 \times 30 + 60} = 0.50,$$

and the probability of selecting the second operator is calculated as

$$p_2 = 1 - p_1.$$

5.3 Results and analysis

The TS algorithm proposed in this thesis contains a random component similar to the algorithm proposed by Rochat and Taillard (1995). This means that two runs of the algorithm will generally produce two different solutions. Figure 5.1 provides graphs for a random selection of problems. Each graph indicates the iteration number on the x-axis, while the objective function value is represented on the y-axis. The thinner of the two lines on each graph represent the actual objective function value of the solution for the given iteration, while the thick line represents the incumbent — the best solution found thus far, at that iteration.

It is noticeable that the incumbent for the first iteration is frequently lower than the actual iteration value. This is the result of the incumbent being represented by one of the ten initial solutions created for the TS, whereas the first iteration’s solution is created through the solution-building mechanism that selects tours from the adaptive memory. The incumbent,
furthermore, is never improved by more than 10% over the 100 iterations, reflecting on the high quality initial solution proposed in Chapter 4.

Because of the randomness inherent in the structure of the proposed TS, the results presented in Appendix B sees four independent runs executed, with Tables B.1(a) through B.1(f) providing the objective function values for each of the runs, as well as the average objective function value obtained. The last column of the result tables provide the average time (in seconds) required to obtain a solution. The average time is provided under the assumption that time-dependent travel time matrices are not available, and that such matrices have to be established once, and adhere to the triangular inequality

\[t_{ik} + t_{kj} \geq t_{ij} \quad \forall i, j, k \in \{1, 2, \ldots, N\}. \] \hspace{1cm} (5.3)

Although Toth and Vigo (2002b) interpret the triangular inequality as being inconvenient to deviate from the direct link between nodes \(i\) and \(j\), it may be practical to adjust the link
from i to j to rather pass via node k without actually visiting node k. This occurs when the direct link is heavily congested during peak times. Adjusting the route selection in combination with time-dependent travel times are highly dependent on an accurate GIS.

5.4 Conclusion

A Tabu Search (TS) algorithm is proposed that generates a number of initial solutions as input, from where tours are added to an Adaptive Memory Procedure (AMP). During each consecutive iteration, tours are selected from the AMP in a biassed manner to construct a new solution. Non-tabu, feasible solutions are generated in an attempt to escape local minima.

The algorithm is coded in MATLAB, and tested on 60 benchmark data sets adapted from literature. The sets are adapted to accommodate multiple routes per tour, as well as a heterogeneous fleet in an environment where time dependent travel times occur. The results are promising, yielding solutions between 670 and 4762 seconds on a standard Intel Pentium Centrino laptop computer with a 1.5GHz processor and 512MB of RAM. Four independent runs are executed for each of the 60 problems. The Absolute Mean Deviation (AMD) of the solution quality between the 240 runs is 3.6%, indicating an algorithm that produces consistent solutions between runs.

In the next chapter, the GA is investigated as an alternative to the TS.
Chapter 6

A Genetic Algorithm

In this thesis the approach by Tan et al. (2001c) is followed whereby a Genetic Algorithm (GA) uses a path representation to code chromosomes (routes). For example, the chromosome string 4-5-2-3-1 represents a route that starts at node 4, followed by node 5, then 2, 3, and 1 before returning to node 4. Each element in the chromosome is referred to as an allele.

For a problem with \(n \) customers, each chromosome will be an integer string with \(n \) elements. Although elementary crossover routines often destroy the validity of tours and routes, specific crossover routines have been developed to ensure that tours and routes remain valid, and keeps improving.

A slightly adapted version of the GA discussed in Algorithm 3.3 is provided in Algorithm 6.1. The GA requires a generation limit similar to the iteration limit for TS and SA. The population size determines the number of solutions in a single generation. The population subdivision parameters establishes the fraction of the population that will undergo specific genetic manipulation. To ensure the natural phenomena of survival of the fittest, the elitist parameter \(p_e \) ensures that the \(p_e \) fittest solutions in a given generation \(g \) is exactly copied to the next generation \(g + 1 \). The mutation parameter \(p_m \) determines the number of chromosomes that will undergo random changes, or mutation. The crossover parameter, \(p_c \), determines the number of solutions that will produce offspring by sharing elements of its chromosomes.

The algorithm is initialized with the generation of \(p \) solutions, each containing a single TSP string of nodes. Vns (1999) states that initial solutions can be generated either randomly or heuristically, while Tan et al. (2001c) suggest a combination of solutions: some generated using an efficient Push Forward Insertion Heuristic (PFIH), and the balance generated randomly.
Algorithm 6.1: Genetic Algorithm (GA) overview

Input: Generation limit g^{max}

Input: Population size p

Input: Population subdivisions p_e, p_m, and p_c such that $p_e + p_m + p_c = p$

1. $g \leftarrow 0$
2. **begin initialization**
 3. generate feasible TSP solutions x^0_1, \ldots, x^0_p
3. **end**

4. **repeat**
 5. $g \leftarrow g + 1$
 6. **cluster TSP solutions**
 7. determine fitness of TSP solutions
 8. **begin elite**
 9. Copy p_e best solutions from generation g to generation $g + 1$
 10. **end**
 11. **begin mutation**
 12. Include p_m mutated solutions in generation $g + 1$
 13. **end**
 14. **begin crossover**
 15. Choose p_c non-overlapping pairs of solutions from generation g
 16. **execute** crossover perturbations
 17. Include new solutions in generation $g + 1$
 18. **end**
6. **until** $g = g^{\text{max}}$
7. $x^* \leftarrow \min_{i \in \{1, \ldots, p\}} \{x^g_i\}$
8. $\hat{x} \leftarrow$ locally optimized x^*
The GA proceeds for g^{max} generations. During each generation, the single string solution, also referred to as a TSP solution, is clustered and assigned to vehicles. Each solution’s fitness is calculated as the objective function of the specific solution. Based on the fitness, the algorithm reproduces the next generation through a combination of cloning the p_c fittest solutions exactly to the next generation, mutating p_m solutions through small changes referred to as perturbations, and creating p_c new offspring by performing crossover perturbations on a selection of generation g solutions.

The following sections discuss some of the elements of the GA in more detail.

6.1 Initialization

The simplest and computationally most efficient way of generating p initial solutions, each containing n customers, is to create p random permutations of integers between 1 and n. Each integer value represents a specific customer. To generate a population of 200 solutions (chromosomes), each with 200 nodes takes MATLAB on average 0.014 seconds (average obtained from 10,000 independent runs) on a standard Intel Pentium Centrino laptop computer with a 1.5GHz processor and 512MB of RAM.

As an alternative, initial solutions can be generated using the algorithm presented in Chapter 4 and adapted for the TS in Algorithm 5.2.

6.2 Clustering

Each chromosome represents a solution in the form of a single integer string, similar to the TSP strings proposed by Michalewicz (1992). The difficulty with having a single string to represent multiple tours and routes is that the chromosome needs to be clustered, and assigned to vehicles.

Although Tan et al. (2001c) simply adds the first allele of the chromosome to the end of the current tour until vehicle capacity is met, the author of this thesis propose the clustering routine presented in Algorithm 6.2 to address multiple scheduling. The first allele of the chromosome is considered for insertion on each edge of each route of the current tour, and not only at the end of the route. If no position is found for the customer, a new route on the current tour is considered. If an additional route leads to infeasibilities, a new tour is initialized, and the customer is inserted. A customer is only orphaned if it can not be serviced by a dedicated tour.
Algorithm 6.2: [GA] clustering

Input: population

1 foreach chromosome in population do
2 repeat
3 found ← 0
4 forall the routes of current tour do
5 forall the edges on current route do
6 if feasible insertion then
7 found ← 1
8 endif
9 endfall
10 endfall
11 if found = 1 then
12 insert customer
13 else if multiple routes are feasible then
14 insert customer into new route
15 else
16 create new current tour
17 create new first route
18 endif
19 until all customers are routed, or vehicles are depleted
20 report orphans
21 endfch
6.3 Mutation

A proportion, \(p_m \), of all chromosomes in a given generation is mutated to ensure that the GA does not get stuck in a local optimum \([\text{Vas}, 1999]\). The proportion is typically very low to ensure that good chromosomes remain intact. \([\text{Michalewicz}, 1992]\) introduces a non-uniform mutation rate whereby the number of chromosomes mutated decreases to ensure that the solution space is searched widely during early generations, and only searched locally in later generations.

In the majority of applications binary representation is used and mutation involves changing a 0 value to 1, and vice versa. In this thesis the approach of \([\text{Tan et al.}, 2001a]\) is followed whereby randomly selected customers are swapped in an integer string representation of a chromosome.

6.4 Crossover

Crossover operators are concerned with producing offspring solutions for the next generation from two parent solutions from the current generation. Parents are selected using a biased roulette wheel. A number of the operators produce only a single offspring from the two parents, while others produce two offspring. To illustrate the various crossover operators, the first ten nodes of the C2-2-2 problem set is used.

6.4.1 Enhanced Edge Recombination (EER)

Whitley, Starkweather & Fuquay (as cited by \([\text{Michalewicz}, 1992]\)) developed the Edge Recombination (ER) crossover technique which they claim transfer more than 95% of the edges from the parents to a single offspring. To illustrate the ER, consider two single string TSP solutions, \(A \) and \(B \), illustrated in Figures 6.1(a) and 6.1(b) respectively. The edge table created in Table 6.1(a) lists for each node all the neighbouring nodes from both parent solutions. The single offspring, denoted by \(C \), starts by selecting a starting element. \([\text{Starkweather et al.}, 1991]\) state that the starting element can be either chosen randomly from the set of elements which has the fewest entries in the edge table, or a random choice between the starting element from either parent \(A \) or \(B \). The latter option is used in this thesis. Of the elements that have links to the last element in \(C \), choose the element which has the fewest number of unassigned links in the edge table entry, breaking ties randomly. The process is repeated until the new offspring chromosome is complete.
Figure 6.1: Two parent solutions illustrating the ER crossover

Table 6.1: Edge lists

<table>
<thead>
<tr>
<th>City</th>
<th>Links</th>
<th>City</th>
<th>Links</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>ER edge list</td>
<td>b</td>
<td>EER edge list</td>
</tr>
<tr>
<td>1</td>
<td>2, 4, 9, 10</td>
<td>1</td>
<td>2, 4, 9, 10</td>
</tr>
<tr>
<td>2</td>
<td>1, 3, 4, 10</td>
<td>2</td>
<td>1, 3, 4, 10</td>
</tr>
<tr>
<td>3</td>
<td>2, 4, 5, 8</td>
<td>3</td>
<td>2, 4, 5, 8</td>
</tr>
<tr>
<td>4</td>
<td>1, 2, 3, 5</td>
<td>4</td>
<td>1, 2, 3, 5</td>
</tr>
<tr>
<td>5</td>
<td>3, 4, 6</td>
<td>5</td>
<td>3, 4, -6</td>
</tr>
<tr>
<td>6</td>
<td>5, 7</td>
<td>6</td>
<td>-5, -7</td>
</tr>
<tr>
<td>7</td>
<td>6, 8, 9</td>
<td>7</td>
<td>-6, 8, 9</td>
</tr>
<tr>
<td>8</td>
<td>3, 7, 9, 10</td>
<td>8</td>
<td>3, 7, 9, 10</td>
</tr>
<tr>
<td>9</td>
<td>1, 7, 8, 10</td>
<td>9</td>
<td>1, 7, 8, 10</td>
</tr>
<tr>
<td>10</td>
<td>1, 2, 8, 9</td>
<td>10</td>
<td>1, 2, 8, 9</td>
</tr>
</tbody>
</table>
Suppose element 1 is selected from A as starting element in C. Since 1 has been assigned to C, all occurrences of 1 is removed from the edge list. Element 1 has links to 2, 4, 9 and 10, each having 3 remaining links in the edge table. Element 2 is randomly chosen as next element in C and all element 2’s occurrences are removed from the edge table. Element 2 has links with 3, 4 and 10, of which 4 and 10 have only 2 remaining links in the edge table. Element 10 is chosen randomly as the next element in C, having links to elements 8 and 9. Element 9 has the least (2) number of remaining links in the edge list, and chosen as the next element in C. The process continues until \(C = [1 \ 2 \ 10 \ 9 \ 7 \ 8 \ 3 \ 4 \ 5 \ 6] \).

To enhance the random breaking of ties when selecting among elements, Starkweather et al. (1991) changed the edge list to indicate common edges. This is achieved by flagging a common edge by inverting, for example, 3 to \(-3\) if an element has a common edge to element 3 in both parents. Table 6.1(b) indicates the edge list with flagged common edges. When a tie exist between elements, preference is given to the element with the highest number of remaining flagged elements. If a tie still exists, it may be broken randomly. Following the same procedure as for the ER example above, a slightly different offspring \(C' = [1 \ 2 \ 10 \ 9 \ 7 \ 6 \ 5 \ 3 \ 4 \ 8] \) is obtained. The offspring chromosome is illustrated in Figure 6.1(c). The only new edge in the offspring is the edge connecting elements 6 and 1. Hence, 90% of the edges are transferred from the parents to the offspring solution.

6.4.2 Merged Crossover (MX)

The MX was first introduced by Blanton and Wainwright (1993) and is based on the notion of a global precedence among genes of any chromosome, rather than defining a precedence among genes specific to parents in a local crossover such as the EER. A number of precedence vectors have been established in literature.

Latest allowed arrival time

Chen et al. (1998) state that there is a natural precedence relationship among all customers based on the upper limit of their time windows. The precedence list, denoted by \(P \), for the example problem is \(P = [2 \ 8 \ 3 \ 5 \ 7 \ 1 \ 10 \ 6 \ 9 \ 4] \), based on the time window details provided in Table 6.2.

To illustrate the crossover, we consider parents A and B from Figure 6.1. The first elements from both parents are considered: element 5 from B appears before element 1 from A in the precedence list \(P \), and is selected as first element in offspring \(C \). To maintain
Table 6.2: Time window details for customers from the C2-2-2 problem set

<table>
<thead>
<tr>
<th>Customer, i</th>
<th>Earliest allowed arrival, (e_i)</th>
<th>Latest allowed arrival, (l_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2808</td>
<td>2968</td>
</tr>
<tr>
<td>2</td>
<td>668</td>
<td>828</td>
</tr>
<tr>
<td>3</td>
<td>1021</td>
<td>1181</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>3481</td>
</tr>
<tr>
<td>5</td>
<td>1922</td>
<td>2082</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>3451</td>
</tr>
<tr>
<td>7</td>
<td>2597</td>
<td>2757</td>
</tr>
<tr>
<td>8</td>
<td>906</td>
<td>1066</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>3475</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>3445</td>
</tr>
</tbody>
</table>

validity, elements 1 and 5 are swapped in parent \(A \).

\[
A = [5 \ 2 \ 3 \ 4 \ 1 \ 6 \ 7 \ 8 \ 9 \ 10]
\]

\[
B = [5 \ 6 \ 9 \ 1 \ 4 \ 2 \ 10 \ 8 \ 3 \ 7]
\]

\[
C = [5 \ ♦ \ ♦ \ ♦ \ ♦ \ ♦ \ ♦ \ ♦ \ ♦ \ ♦ \ ♦ \ ♦]
\]

Next, the second elements of each parent is considered. As element 2 from \(A \) appears before element 6 from \(B \) in the precedence list, element 2 is placed in the offspring, and elements 2 and 6 are swapped in parent \(B \).

\[
A = [5 \ 2 \ 3 \ 4 \ 1 \ 6 \ 7 \ 8 \ 9 \ 10]
\]

\[
B = [5 \ 2 \ 9 \ 1 \ 4 \ 6 \ 10 \ 8 \ 3 \ 7]
\]

\[
C = [5 \ ♦ \ ♦ \ ♦ \ ♦ \ ♦ \ ♦ \ ♦ \ ♦ \ ♦ \ ♦ \ ♦]
\]

The process is repeated until the offspring chromosome is completed with \(C = [5 \ 2 \ 3 \ 1 \ 4 \ 6 \ 7 \ 8 \ 9 \ 10] \). The \(\text{MX} \) approach is denoted by \(MX_{e_i} \).

Earliest allowed arrival time

Louis et al. (1999) suggest using the earliest allowed arrival time, given by \(e_i \) in Table 6.2 to establish the precedence list, denoted by \(MX_{e_i} \). Executing their recommendation results in a precedence list \(P = [4 \ 6 \ 9 \ 10 \ 2 \ 8 \ 3 \ 5 \ 7 \ 1] \). When using the precedence list on parents \(A \) and \(B \) from Figure 6.1 an offspring chromosome \(C = [5 \ 6 \ 9 \ 4 \ 1 \ 2 \ 10 \ 8 \ 3 \ 7 \] \) results.
Time window compatibility

Two novel ways of establishing a precedence list are suggested in this thesis. In the first novel approach denoted by MX\textsubscript{twc}, the total compatibility for each customer is calculated using either (4.8) or (4.9), sorted in ascending order to create the precedence list. Ties are broken arbitrarily. The resulting precedence list sees incompatible nodes placed earlier in the chromosome. More compatible nodes are subsequently inserted to fill routes and tours.

Angles

The second novel way to establish the precedence list is to reconsider the fundamental way in which the the crossover operator is used. The simplicity, yet success of the sweep algorithm proposed by Gillett and Miller (1974) is incorporated in this MX approach denoted by \(MX_{\angle} \). The angle for each customer is calculated, and the angles are sorted in ascending order to determine the precedence list. The resulting crossover ensures that customers that are located close to one another are assigned to the same route, time windows permitting.

With the depot’s location indicated by an open circle in Figure 6.2, the precedence list

\[P = [1\ 8\ 2\ 10\ 6\ 9\ 4\ 7\ 5\ 3] \]

is established.

6.4.3 Partially Matched Crossover (PMX)

PMX is a genetic operator often used with TSP problems using integer string representation (Goldberg and Lingle 1985). The operator selects two parent chromosomes using the biased roulette wheel, and produces two offspring chromosomes, as opposed to the previous operators producing only a single offspring. Consider again the two parent chromosomes \(A \) and \(B \) given in Figure 6.1. Two crossing positions \(a \) and \(b \) are randomly selected such that
$1 \leq a < b \leq \|A\| + 1$, where $\|A\|$ denotes the number of elements (alleles) in chromosome A. For illustrative purposes let $a = 3$ and $b = 7$. To create offspring 1, denoted by C_1, the strings between the crossing positions from parent 2 is copied to C_1.

$$C_1 = [\star \star 9 1 4 2 \star \star \star]$$

For each element in A between a and b, starting from position a, look for elements in A that have not been copied to C_1. In the example element 3 is identified. Element 3’s position in A is occupied by element 9 in C_1, and hence element 9 in A’s position is filled in C_1 with 3 such that

$$C_1 = [\star \star 9 1 4 2 \star \star 3 \star].$$

Next, element 5 in A is identified, as element 4 has already been copied to offspring C_1. Element 5’s position in A is occupied by 4 in C_1, but since element 4 in A’s position is already occupied in C_1 by element 1, element 1’s position in A is identified for element 5 in C_1 such that

$$C_1 = [5 \star 9 1 4 2 \star \star 3 \star].$$

Element 6 in A is identified next. Element 6’s position in C_1 is occupied by element 2, which in turn, is located in position 2 in A. Hence, element 6 is placed in position 2 in C_1 such that

$$C_1 = [5 6 9 1 4 2 \star \star 3 \star].$$

As all elements in A between positions a and b have been considered, C_1 is completed by duplicating the remaining elements from A such that

$$C_1 = [5 6 9 1 4 2 7 8 3 10].$$

The second offspring, denoted by C_2, is created in a similar fashion with the resulting offspring being $C_2 = [1 2 3 4 5 6 10 8 9 7]$.

6.5 Evaluating crossover operators

The proposed GA algorithm is executed to identify appropriate crossover operators for the varying problem sets. Due to computational time complexity, a single problem is randomly selected from each problem set. Each crossover operator is then tested using 4 independent iterations. The fitness is calculated using an objective function which considers total
travel time, number of vehicles used, and total lateness at customers. The GA is executed for a maximum of 200 generations, each having 100 chromosomes. Of every new generation, 80% of chromosomes were generated through crossover operators. Initially 10% of a newly created generation is established through mutation to ensure that the solution space is widely searched. A non-uniform mutation rate introduced by Michalewicz (1992) reduces the number of mutated chromosomes as the number of generations increases. Hence the solution space is only locally searched towards the end of the algorithm. The balance of a new generation is created by cloning (copying exactly) the best chromosomes from the previous generation.

Figure 6.3 illustrates the performance of the various crossover mechanisms for each problem set. The performances are expressed and calibrated according to the best crossover operators for the specific problem set. Actual results are provided in Tables 6.3a and 6.3b, providing the best fitness (objective function value) obtained over the four independent runs, as well as the average time required (in seconds) to find a solution.

Contrary to Blanton and Wainwright (1993) claiming that most of their MX operators outperform the PMX operator, the results in this thesis indicates six instances in which the PMX is either significantly better in terms of fitness, or significantly faster than any of the other crossover operators. In only two instances, $c2_2.3$ and $rc2.3.8$, did MX prove significantly faster than the other crossover operators, of which one instance is the newly proposed MX_{twc}.

Using a standard statistical t-test, the EER crossover operators proved to be consistently worse and slower than other mechanisms, and is consequently omitted from further analysis. The remaining operators are again subjected to a t-test, resulting in some operators to be identified as significant, hence labels (e) and (f) in Tables 6.3a and 6.3b.

Self regulation can be achieved through a biased selection of operators based on past performance. Initially each operator (except EER) is assigned equal probability of being selected. A parameter λ indicates the frequency (in terms of generations) of testing all operators, and the probabilities are consequently adjusted based on the relative performance of each operator, similar to the self organizing mechanism proposed for exchange operators of the TS algorithm in Chapter 5.
Table 6.3a: Analysis of random problems for each data set

<table>
<thead>
<tr>
<th>Problem</th>
<th>EER Value</th>
<th>MX₁ Value</th>
<th>MX₃ Value</th>
<th>MX₅ Value</th>
<th>MX₆ Value</th>
<th>PMX Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fitness</td>
<td>90026</td>
<td>88895</td>
<td>88510</td>
<td>85272</td>
<td>85043</td>
<td>84607</td>
</tr>
<tr>
<td>Relative</td>
<td>1.064</td>
<td>1.051</td>
<td>1.046</td>
<td>1.008</td>
<td>1.005</td>
<td>1.000</td>
</tr>
<tr>
<td>t-Value</td>
<td>-3.096ᵃ</td>
<td>-1.916ᵃ</td>
<td>-1.514ᵃ</td>
<td>1.865</td>
<td>2.104</td>
<td>2.559</td>
</tr>
<tr>
<td>Time</td>
<td>26478</td>
<td>25708</td>
<td>25747</td>
<td>25776</td>
<td>25560</td>
<td>25361</td>
</tr>
<tr>
<td>Relative</td>
<td>1.044</td>
<td>1.014</td>
<td>1.015</td>
<td>1.016</td>
<td>1.008</td>
<td>1.000</td>
</tr>
<tr>
<td>t-Value</td>
<td>-4.56ᵇ</td>
<td>0.412ᵇ</td>
<td>0.160ᵇ</td>
<td>-0.028ᵇ</td>
<td>1.369ᵇ</td>
<td>2.656ᶜ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Problem</th>
<th>EER Value</th>
<th>MX₁ Value</th>
<th>MX₃ Value</th>
<th>MX₅ Value</th>
<th>MX₆ Value</th>
<th>PMX Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fitness</td>
<td>213070</td>
<td>212736</td>
<td>212572</td>
<td>212318</td>
<td>212261</td>
<td>212078</td>
</tr>
<tr>
<td>Relative</td>
<td>1.005</td>
<td>1.003</td>
<td>1.002</td>
<td>1.001</td>
<td>1.001</td>
<td>1.000</td>
</tr>
<tr>
<td>t-Value</td>
<td>-3.82ᵇ</td>
<td>-1.55⁹ᶜ</td>
<td>-0.44⁴ᶜ</td>
<td>1.27ᵇ</td>
<td>1.65ᵇ</td>
<td>2.89⁸ᶜ</td>
</tr>
<tr>
<td>Time</td>
<td>24498</td>
<td>23783</td>
<td>23695</td>
<td>23416</td>
<td>23595</td>
<td>23657</td>
</tr>
<tr>
<td>Relative</td>
<td>1.046</td>
<td>1.016</td>
<td>1.012</td>
<td>1.000</td>
<td>1.008</td>
<td>1.010</td>
</tr>
<tr>
<td>t-Value</td>
<td>-4.72ᵇ</td>
<td>-0.05ᵇ</td>
<td>0.5ᵇ</td>
<td>2.33⁶ᶠ</td>
<td>1.16ᵇ</td>
<td>0.76ᵇ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Problem</th>
<th>EER Value</th>
<th>MX₁ Value</th>
<th>MX₃ Value</th>
<th>MX₅ Value</th>
<th>MX₆ Value</th>
<th>PMX Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fitness</td>
<td>37147</td>
<td>36779</td>
<td>36358</td>
<td>36144</td>
<td>35610</td>
<td>34350</td>
</tr>
<tr>
<td>Relative</td>
<td>1.081</td>
<td>1.071</td>
<td>1.058</td>
<td>1.052</td>
<td>1.037</td>
<td>1.000</td>
</tr>
<tr>
<td>t-Value</td>
<td>-2.67ᵃ</td>
<td>-1.76ᵃ</td>
<td>-0.72ᵃ</td>
<td>-0.19ᵇ</td>
<td>1.12ᵇ</td>
<td>4.23⁴ᵈ</td>
</tr>
<tr>
<td>Time</td>
<td>20348</td>
<td>19746</td>
<td>19736</td>
<td>19697</td>
<td>19658</td>
<td>19441</td>
</tr>
<tr>
<td>Relative</td>
<td>1.047</td>
<td>1.016</td>
<td>1.015</td>
<td>1.013</td>
<td>1.011</td>
<td>1.000</td>
</tr>
<tr>
<td>t-Value</td>
<td>-4.65ᵇ</td>
<td>0.20ᵇ</td>
<td>0.28ᵇ</td>
<td>0.59ᵇ</td>
<td>0.91ᵇ</td>
<td>2.65ᵇᶜ</td>
</tr>
</tbody>
</table>

ᵃ Rejected with 97.5% certainty
ᵇ Rejected with 99.0% certainty
ᶜ Accepted with 97.5% certainty
ᵈ Accepted with 99.0% certainty
ᵉ Rejected with 97.5% certainty, EER omitted
ᶠ Accepted with 97.5% certainty, EER omitted
Table 6.3b: Analysis of random problems for each data set

<table>
<thead>
<tr>
<th>Problem</th>
<th>EER</th>
<th>MX\textsubscript{t1}</th>
<th>MX\textsubscript{c1}</th>
<th>MX\textsubscript{twe}</th>
<th>MX\textsubscript{c}</th>
<th>PMX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fitness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r2_2_5</td>
<td>Value</td>
<td>51472</td>
<td>50715</td>
<td>50392</td>
<td>50147</td>
<td>49975</td>
</tr>
<tr>
<td></td>
<td>Relative</td>
<td>1.030</td>
<td>1.015</td>
<td>1.008</td>
<td>1.003</td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td>t-Value</td>
<td>-4.434b</td>
<td>-0.994c</td>
<td>0.474</td>
<td>1.588</td>
<td>2.369</td>
</tr>
<tr>
<td>Time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r2_2_5</td>
<td>Value</td>
<td>17685</td>
<td>17160</td>
<td>17279</td>
<td>17374</td>
<td>17612</td>
</tr>
<tr>
<td></td>
<td>Relative</td>
<td>1.040</td>
<td>1.009</td>
<td>1.016</td>
<td>1.022</td>
<td>1.036</td>
</tr>
<tr>
<td></td>
<td>t-Value</td>
<td>-3.113a</td>
<td>1.797</td>
<td>0.684</td>
<td>-0.204</td>
<td>-2.430</td>
</tr>
<tr>
<td>Fitness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rc1_2_8</td>
<td>Value</td>
<td>42833</td>
<td>42310</td>
<td>41693</td>
<td>41327</td>
<td>41257</td>
</tr>
<tr>
<td></td>
<td>Relative</td>
<td>1.051</td>
<td>1.038</td>
<td>1.023</td>
<td>1.014</td>
<td>1.012</td>
</tr>
<tr>
<td></td>
<td>t-Value</td>
<td>-3.679b</td>
<td>-1.983c</td>
<td>0.018</td>
<td>1.205</td>
<td>1.432</td>
</tr>
<tr>
<td>Time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rc1_2_8</td>
<td>Value</td>
<td>61481</td>
<td>60192</td>
<td>60236</td>
<td>60007</td>
<td>59988</td>
</tr>
<tr>
<td></td>
<td>Relative</td>
<td>1.025</td>
<td>1.003</td>
<td>1.004</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td>t-Value</td>
<td>-4.908b</td>
<td>0.701</td>
<td>0.510</td>
<td>1.507</td>
<td>1.589</td>
</tr>
<tr>
<td>Fitness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rc2_2_8</td>
<td>Value</td>
<td>37348</td>
<td>34763</td>
<td>34433</td>
<td>34294</td>
<td>34271</td>
</tr>
<tr>
<td></td>
<td>Relative</td>
<td>1.097</td>
<td>1.021</td>
<td>1.011</td>
<td>1.007</td>
<td>1.007</td>
</tr>
<tr>
<td></td>
<td>t-Value</td>
<td>-4.909b</td>
<td>0.189c</td>
<td>0.840</td>
<td>1.114</td>
<td>1.160</td>
</tr>
<tr>
<td>Time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rc2_2_8</td>
<td>Value</td>
<td>46954</td>
<td>46193</td>
<td>46561</td>
<td>46686</td>
<td>46605</td>
</tr>
<tr>
<td></td>
<td>Relative</td>
<td>1.016</td>
<td>1.000</td>
<td>1.008</td>
<td>1.011</td>
<td>1.009</td>
</tr>
<tr>
<td></td>
<td>t-Value</td>
<td>-0.803</td>
<td>2.813c</td>
<td>1.064</td>
<td>0.470</td>
<td>0.855</td>
</tr>
</tbody>
</table>

a Rejected with 97.5\% certainty
b Rejected with 99.0\% certainty
c Accepted with 97.5\% certainty
d Accepted with 99.0\% certainty
e Rejected with 97.5\% certainty, EER omitted
f Accepted with 97.5\% certainty, EER omitted
Figure 6.3: Results for a random problem from each set, expressed relative to the best crossover mechanism for each set.
6.6 Conclusion

In this chapter a GA with integer string representation is developed to test a variant of the VRP that uses time-dependent travel time and that accommodates time windows, a heterogenous fleet, and multiple scheduling. Six crossover mechanisms are tested, two of which are newly proposed in this thesis.

The results suggest that although there are performance differences among the crossover operators, few prove to be significant. Therefore, it is suggested that when integrating the multiple optimization algorithms, namely GA and TS, into the intelligent routing agent, internal learning or self regulation should be considered.
Clustering input data

In this chapter the concept of pattern identification on input data is investigated. What is peculiar about the benchmark problem sets proposed by both Solomon (1987) and Homberger and Gehring (1999) are the fact that they are preempting specific theoretical characteristics, unlike problems found in real applications. This is clearly illustrated when the assignment of time windows is discussed. For the problem sets R_1, R_2, RC_1, and RC_2 a percentage of customers are selected to receive time windows, say $0 < f \leq 1$. Next n random numbers from the random uniform distributions is generated on the interval $(0, 1)$, and sorted. Customers $i_1, i_2, \ldots, i_{n_1}$ are then assigned time windows, where the number of customers requiring time windows can then be approximated by $n_1 \approx f.n$. The center of the time window for customer $i_j \in \{i_1, i_2, \ldots, i_{n_1}\}$ is a uniformly distributed, randomly generated number on the interval $(e_0 + t_{oi_j}, l_0 - t_{i_j0})$, where e_0 and l_0 denotes the opening and closing times of the depot, respectively, and t_{oi_j} and t_{i_j0} denotes the travel distance from the depot to customer i_j, and back, respectively.

For clustered problem sets C_1 and C_2 the process becomes questionable. Customers in each cluster are first routed using a 3-opt routine as described in the previous chapter. An orientation is chosen for the route, and time windows are then assigned with the center being the arrival time at the customer. The width and density are derived in a similar fashion as for random and semi-clustered data. Although Solomon (1987) states that “this approach permits the identification of a very good, possibly optimal, cluster-by-cluster solution which, in turn, provides an additional means of evaluating heuristic performance”, it does not provide a credible means to evaluate real life problems where customers do not negotiate their sequence prior to stating a preferred time window.

Literature provides good references to what type of metaheuristics, or metaheuristic
Bibliography

Appendix A

Initial solution sample

Output for the data set: r2_2_3

Tour: 1, v-type: 1, v-cap: 300

Tour: 2, v-type: 1, v-cap: 300
34-74-33-62-36-63-3-12-4-87-25-73-57-5-45-78
56-65-9-49-81-51-37-1-72-39

Tour: 3, v-type: 1, v-cap: 300

Tour: 4, v-type: 1, v-cap: 300

Tour: 5, v-type: 1, v-cap: 300
42-31-15-71-44-48-69-7-55-22-54-52

Tour: 6, v-type: 1, v-cap: 300
29-76-20-24-86-53

Orphans:
Appendix B

TS results for benchmark data sets
Table B.1: TS results for benchmark data sets

(a) Problem set c1

<table>
<thead>
<tr>
<th>Problem</th>
<th>Run</th>
<th></th>
<th></th>
<th>Average</th>
<th>Average time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>c1_2.1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>287526</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1630</td>
</tr>
<tr>
<td>c1_2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2022</td>
</tr>
<tr>
<td>c1_2.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2543</td>
</tr>
<tr>
<td>c1_2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3167</td>
</tr>
<tr>
<td>c1_2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1644</td>
</tr>
<tr>
<td>c1_2.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1610</td>
</tr>
<tr>
<td>c1_2.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1697</td>
</tr>
<tr>
<td>c1_2.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1842</td>
</tr>
<tr>
<td>c1_2.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2252</td>
</tr>
<tr>
<td>c1_2.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2871</td>
</tr>
</tbody>
</table>

(b) Problem set c2

<table>
<thead>
<tr>
<th>Problem</th>
<th>Run</th>
<th></th>
<th></th>
<th>Average</th>
<th>Average time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>c2_2.1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>918625</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1559</td>
</tr>
<tr>
<td>c2_2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1980</td>
</tr>
<tr>
<td>c2_2.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2457</td>
</tr>
<tr>
<td>c2_2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3072</td>
</tr>
<tr>
<td>c2_2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1576</td>
</tr>
<tr>
<td>c2_2.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1706</td>
</tr>
<tr>
<td>c2_2.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1775</td>
</tr>
<tr>
<td>c2_2.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1823</td>
</tr>
<tr>
<td>c2_2.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1960</td>
</tr>
<tr>
<td>c2_2.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2102</td>
</tr>
</tbody>
</table>
Table B.1: TS results for benchmark data sets (continued)

(c) Problem set r1

<table>
<thead>
<tr>
<th>Problem</th>
<th>Run 1</th>
<th>Run 2</th>
<th>Run 3</th>
<th>Run 4</th>
<th>Average</th>
<th>Average time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>r1_2.1</td>
<td>26151</td>
<td>26426</td>
<td>26412</td>
<td>26032</td>
<td>26255</td>
<td>1284</td>
</tr>
<tr>
<td>r1_2.2</td>
<td>23877</td>
<td>23526</td>
<td>22399</td>
<td>22581</td>
<td>23095</td>
<td>1609</td>
</tr>
<tr>
<td>r1_2.3</td>
<td>21496</td>
<td>21152</td>
<td>22026</td>
<td>21549</td>
<td>21555</td>
<td>1909</td>
</tr>
<tr>
<td>r1_2.4</td>
<td>20592</td>
<td>20334</td>
<td>20603</td>
<td>20724</td>
<td>20563</td>
<td>2392</td>
</tr>
<tr>
<td>r1_2.5</td>
<td>26200</td>
<td>24840</td>
<td>25698</td>
<td>25621</td>
<td>25589</td>
<td>1333</td>
</tr>
<tr>
<td>r1_2.6</td>
<td>23569</td>
<td>22398</td>
<td>22877</td>
<td>23272</td>
<td>23029</td>
<td>1630</td>
</tr>
<tr>
<td>r1_2.7</td>
<td>22182</td>
<td>21690</td>
<td>20577</td>
<td>22390</td>
<td>21709</td>
<td>1983</td>
</tr>
<tr>
<td>r1_2.8</td>
<td>19778</td>
<td>20256</td>
<td>20011</td>
<td>19646</td>
<td>19922</td>
<td>2524</td>
</tr>
<tr>
<td>r1_2.9</td>
<td>26807</td>
<td>25207</td>
<td>27937</td>
<td>25603</td>
<td>26388</td>
<td>1646</td>
</tr>
<tr>
<td>r1_2.10</td>
<td>27977</td>
<td>29090</td>
<td>28277</td>
<td>28287</td>
<td>28407</td>
<td>1659</td>
</tr>
</tbody>
</table>

(d) Problem set r2

<table>
<thead>
<tr>
<th>Problem</th>
<th>Run 1</th>
<th>Run 2</th>
<th>Run 3</th>
<th>Run 4</th>
<th>Average</th>
<th>Average time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>r2_2.1</td>
<td>45730</td>
<td>41216</td>
<td>41307</td>
<td>41216</td>
<td>42367</td>
<td>670</td>
</tr>
<tr>
<td>r2_2.2</td>
<td>40831</td>
<td>40808</td>
<td>41089</td>
<td>40920</td>
<td>40912</td>
<td>1106</td>
</tr>
<tr>
<td>r2_2.3</td>
<td>36260</td>
<td>36284</td>
<td>36370</td>
<td>36216</td>
<td>36282</td>
<td>1680</td>
</tr>
<tr>
<td>r2_2.4</td>
<td>30522</td>
<td>30531</td>
<td>30605</td>
<td>30629</td>
<td>30571</td>
<td>2142</td>
</tr>
<tr>
<td>r2_2.5</td>
<td>40858</td>
<td>36465</td>
<td>36540</td>
<td>36465</td>
<td>37582</td>
<td>766</td>
</tr>
<tr>
<td>r2_2.6</td>
<td>31367</td>
<td>36359</td>
<td>36178</td>
<td>36324</td>
<td>35057</td>
<td>1219</td>
</tr>
<tr>
<td>r2_2.7</td>
<td>31097</td>
<td>31143</td>
<td>35720</td>
<td>35880</td>
<td>33460</td>
<td>1536</td>
</tr>
<tr>
<td>r2_2.8</td>
<td>30468</td>
<td>30634</td>
<td>30359</td>
<td>30466</td>
<td>30481</td>
<td>2010</td>
</tr>
<tr>
<td>r2_2.9</td>
<td>35981</td>
<td>35929</td>
<td>36033</td>
<td>36000</td>
<td>35985</td>
<td>880</td>
</tr>
<tr>
<td>r2_2.10</td>
<td>33511</td>
<td>35765</td>
<td>35864</td>
<td>35773</td>
<td>35228</td>
<td>1047</td>
</tr>
</tbody>
</table>
Table B.1: TS results for benchmark data sets (continued)

(e) Problem set rc1

<table>
<thead>
<tr>
<th>Problem</th>
<th>Run 1</th>
<th>Run 2</th>
<th>Run 3</th>
<th>Run 4</th>
<th>Average time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>rc1_2_1</td>
<td>23671</td>
<td>23352</td>
<td>23579</td>
<td>23447</td>
<td>23512</td>
</tr>
<tr>
<td>rc1_2_2</td>
<td>21786</td>
<td>21932</td>
<td>21610</td>
<td>21641</td>
<td>21742</td>
</tr>
<tr>
<td>rc1_2_3</td>
<td>18613</td>
<td>19753</td>
<td>19827</td>
<td>19414</td>
<td>19401</td>
</tr>
<tr>
<td>rc1_2_4</td>
<td>16317</td>
<td>16151</td>
<td>16250</td>
<td>16314</td>
<td>16258</td>
</tr>
<tr>
<td>rc1_2_5</td>
<td>24564</td>
<td>24887</td>
<td>23695</td>
<td>26082</td>
<td>24807</td>
</tr>
<tr>
<td>rc1_2_6</td>
<td>26466</td>
<td>26122</td>
<td>27462</td>
<td>26680</td>
<td>26682</td>
</tr>
<tr>
<td>rc1_2_7</td>
<td>25750</td>
<td>26178</td>
<td>25615</td>
<td>24741</td>
<td>25571</td>
</tr>
<tr>
<td>rc1_2_8</td>
<td>26063</td>
<td>26354</td>
<td>26619</td>
<td>25451</td>
<td>26121</td>
</tr>
<tr>
<td>rc1_2_9</td>
<td>25769</td>
<td>24579</td>
<td>23043</td>
<td>25931</td>
<td>24830</td>
</tr>
<tr>
<td>rc1_2_10</td>
<td>23398</td>
<td>23541</td>
<td>25508</td>
<td>24306</td>
<td>24188</td>
</tr>
</tbody>
</table>

(f) Problem set rc2

<table>
<thead>
<tr>
<th>Problem</th>
<th>Run 1</th>
<th>Run 2</th>
<th>Run 3</th>
<th>Run 4</th>
<th>Average time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>rc2_2_1</td>
<td>23912</td>
<td>24225</td>
<td>24349</td>
<td>23949</td>
<td>24108</td>
</tr>
<tr>
<td>rc2_2_2</td>
<td>20480</td>
<td>20641</td>
<td>20712</td>
<td>20544</td>
<td>20594</td>
</tr>
<tr>
<td>rc2_2_3</td>
<td>18644</td>
<td>18846</td>
<td>18610</td>
<td>18799</td>
<td>18724</td>
</tr>
<tr>
<td>rc2_2_4</td>
<td>17039</td>
<td>17181</td>
<td>17279</td>
<td>17026</td>
<td>17131</td>
</tr>
<tr>
<td>rc2_2_5</td>
<td>23916</td>
<td>23577</td>
<td>23622</td>
<td>23601</td>
<td>23679</td>
</tr>
<tr>
<td>rc2_2_6</td>
<td>24000</td>
<td>24054</td>
<td>23998</td>
<td>23782</td>
<td>23958</td>
</tr>
<tr>
<td>rc2_2_7</td>
<td>25284</td>
<td>23595</td>
<td>25133</td>
<td>24284</td>
<td>24574</td>
</tr>
<tr>
<td>rc2_2_8</td>
<td>28422</td>
<td>26886</td>
<td>26769</td>
<td>27451</td>
<td>27382</td>
</tr>
<tr>
<td>rc2_2_9</td>
<td>29097</td>
<td>28729</td>
<td>28206</td>
<td>28478</td>
<td>28627</td>
</tr>
<tr>
<td>rc2_2_10</td>
<td>26818</td>
<td>25362</td>
<td>26627</td>
<td>25273</td>
<td>26020</td>
</tr>
</tbody>
</table>
Appendix C

GA crossover performance

Table C.1a: Summary of GA results

<table>
<thead>
<tr>
<th>Set</th>
<th>EER</th>
<th>MX on L_i</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Mean</td>
</tr>
<tr>
<td>$c_{1.2.8}$</td>
<td>90026</td>
<td>92803</td>
</tr>
<tr>
<td>$c_{2.2.3}$</td>
<td>213070</td>
<td>215864</td>
</tr>
<tr>
<td>$r_{1.2.1}$</td>
<td>37147</td>
<td>37441</td>
</tr>
<tr>
<td>$r_{2.2.5}$</td>
<td>51472</td>
<td>57614</td>
</tr>
<tr>
<td>$rc_{1.2.8}$</td>
<td>42833</td>
<td>43066</td>
</tr>
<tr>
<td>$rc_{2.2.8}$</td>
<td>37348</td>
<td>37766</td>
</tr>
</tbody>
</table>

Table C.1b: Summary of GA results (continued)

<table>
<thead>
<tr>
<th>Set</th>
<th>MX on e_i</th>
<th>MX on TWC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Mean</td>
</tr>
<tr>
<td>$c_{1.2.8}$</td>
<td>88510</td>
<td>88715</td>
</tr>
<tr>
<td>$c_{2.2.3}$</td>
<td>212572</td>
<td>212663</td>
</tr>
<tr>
<td>$r_{1.2.1}$</td>
<td>36358</td>
<td>36493</td>
</tr>
<tr>
<td>$r_{2.2.5}$</td>
<td>50392</td>
<td>50528</td>
</tr>
<tr>
<td>$rc_{1.2.8}$</td>
<td>41693</td>
<td>41972</td>
</tr>
<tr>
<td>$rc_{2.2.8}$</td>
<td>34433</td>
<td>34477</td>
</tr>
<tr>
<td>Set</td>
<td>MX on angles</td>
<td>PMX</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>Min</td>
<td>Mean</td>
</tr>
<tr>
<td>c1_2_8</td>
<td>85043</td>
<td>85146</td>
</tr>
<tr>
<td>c2_2_3</td>
<td>212261</td>
<td>212272</td>
</tr>
<tr>
<td>r1_2_1</td>
<td>35610</td>
<td>35904</td>
</tr>
<tr>
<td>r2_2_5</td>
<td>49975</td>
<td>50072</td>
</tr>
<tr>
<td>rc1_2_8</td>
<td>41257</td>
<td>41284</td>
</tr>
<tr>
<td>rc2_2_8</td>
<td>34271</td>
<td>34274</td>
</tr>
</tbody>
</table>
Appendix D

Cluster validation results for test sets
Table D.1: Cluster validation results for test set with two clusters

<table>
<thead>
<tr>
<th>m</th>
<th>V_{PC}</th>
<th>V_{PE}</th>
<th>V_{XB}</th>
<th>V_{XB}^+</th>
<th>V_{FS}</th>
<th>K</th>
<th>CWB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>10</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>7</td>
<td>7</td>
<td>2</td>
<td>2</td>
<td>10</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>9</td>
<td>9</td>
<td>2</td>
<td>2</td>
<td>10</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1.4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>10</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1.5</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>9</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1.6</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>10</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1.7</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>10</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1.8</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>10</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1.9</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>10</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2.0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>10</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2.1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>10</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2.2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>10</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2.3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>10</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2.4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>8</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2.5</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>10</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2.6</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>10</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2.7</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>10</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2.8</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>10</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2.9</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>10</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3.0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>10</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5.0</td>
<td>10</td>
<td>2</td>
<td>2</td>
<td>10</td>
<td>10</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>10.0</td>
<td>10</td>
<td>2</td>
<td>2</td>
<td>10</td>
<td>10</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>20.0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>10</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
Table D.2: Cluster validation results for test set with three clusters

<table>
<thead>
<tr>
<th>m</th>
<th>V_{PC}</th>
<th>V_{PE}</th>
<th>V_{XB}</th>
<th>V_{XB}^+</th>
<th>V_{FS}</th>
<th>K</th>
<th>CWB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>7</td>
<td>7</td>
<td>3</td>
<td>3</td>
<td>10</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>8</td>
<td>8</td>
<td>3</td>
<td>3</td>
<td>10</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>10</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>10</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1.4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>10</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1.5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>10</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1.6</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>10</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1.7</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>10</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1.8</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>10</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1.9</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>10</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2.0</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>10</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2.1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>10</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2.2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>9</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2.3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>10</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2.4</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>10</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2.5</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>10</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2.6</td>
<td>10</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>9</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2.7</td>
<td>10</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>9</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2.8</td>
<td>10</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>10</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2.9</td>
<td>10</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>9</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3.0</td>
<td>10</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>9</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5.0</td>
<td>10</td>
<td>2</td>
<td>3</td>
<td>10</td>
<td>10</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>10.0</td>
<td>10</td>
<td>2</td>
<td>3</td>
<td>10</td>
<td>10</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>20.0</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>9</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
Table D.3: Cluster validation results for test set with four clusters

<table>
<thead>
<tr>
<th></th>
<th>V_{PC}</th>
<th>V_{PE}</th>
<th>V_{XB}</th>
<th>V_{XB}^+</th>
<th>V_{FS}</th>
<th>K</th>
<th>CW_{B}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>10</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>10</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>10</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>1.4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>10</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>1.5</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>10</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>1.6</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>10</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>1.7</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>10</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>1.8</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>10</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>1.9</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>10</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2.0</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2.1</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>10</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2.2</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>10</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2.3</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2.4</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2.5</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2.6</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>10</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2.7</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>10</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2.8</td>
<td>10</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>10</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>2.9</td>
<td>10</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>10</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>3.0</td>
<td>10</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>10</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>5.0</td>
<td>10</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>10</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>10.0</td>
<td>10</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>10</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>20.0</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>4</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>
Table D.4: Cluster validation results for test set with five clusters

<table>
<thead>
<tr>
<th></th>
<th>m</th>
<th>V_{PC}</th>
<th>V_{PE}</th>
<th>V_{XB}</th>
<th>V_{XB}^+</th>
<th>V_{FS}</th>
<th>K</th>
<th>CWB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>28</td>
<td>5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>29</td>
<td>5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>30</td>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>29</td>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>30</td>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>1.6</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>1.7</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>1.8</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>1.9</td>
<td>5</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>5</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>5</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>30</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>30</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>30</td>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>30</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>30</td>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>30</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>30</td>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2.6</td>
<td>30</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>30</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2.7</td>
<td>30</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>30</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2.8</td>
<td>30</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>28</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2.9</td>
<td>30</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>29</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td>30</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>30</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td>30</td>
<td>2</td>
<td>4</td>
<td>30</td>
<td>30</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>10.0</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>20</td>
<td>24</td>
<td>5</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>20.0</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>30</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
Appendix E

Cluster validation results for benchmark problem sets
Table E.1: Cluster validation results for benchmark problem sets

(a) Problem set C1

<table>
<thead>
<tr>
<th>Fuzzy factor (m)</th>
<th>Number of clusters (c)</th>
<th>V_{XB} (10^{-5})</th>
<th>Number of clusters (c)</th>
<th>V_{XB}^+ (10^{-5})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>4</td>
<td>1.6</td>
<td>4</td>
<td>1.8</td>
</tr>
<tr>
<td>1.6</td>
<td>4</td>
<td>1.5</td>
<td>4</td>
<td>1.7</td>
</tr>
<tr>
<td>1.7</td>
<td>4</td>
<td>1.4</td>
<td>4</td>
<td>1.6</td>
</tr>
<tr>
<td>1.8</td>
<td>4</td>
<td>1.3</td>
<td>4</td>
<td>1.5</td>
</tr>
<tr>
<td>1.9</td>
<td>4</td>
<td>1.3</td>
<td>4</td>
<td>1.4</td>
</tr>
<tr>
<td>2.0</td>
<td>4</td>
<td>1.3</td>
<td>4</td>
<td>1.3</td>
</tr>
</tbody>
</table>

(b) Problem set C2

<table>
<thead>
<tr>
<th>Fuzzy factor (m)</th>
<th>Number of clusters (c)</th>
<th>V_{XB} (10^{-5})</th>
<th>Number of clusters (c)</th>
<th>V_{XB}^+ (10^{-5})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>2</td>
<td>4.6</td>
<td>2</td>
<td>5.3</td>
</tr>
<tr>
<td>1.6</td>
<td>2</td>
<td>4.5</td>
<td>2</td>
<td>5.1</td>
</tr>
<tr>
<td>1.7</td>
<td>2</td>
<td>4.4</td>
<td>2</td>
<td>4.9</td>
</tr>
<tr>
<td>1.8</td>
<td>2</td>
<td>4.4</td>
<td>2</td>
<td>4.8</td>
</tr>
<tr>
<td>1.9</td>
<td>2</td>
<td>4.4</td>
<td>2</td>
<td>4.6</td>
</tr>
<tr>
<td>2.0</td>
<td>2</td>
<td>4.4</td>
<td>2</td>
<td>4.4</td>
</tr>
</tbody>
</table>

(c) Problem set R1

<table>
<thead>
<tr>
<th>Fuzzy factor (m)</th>
<th>Number of clusters (c)</th>
<th>V_{XB} (10^{-5})</th>
<th>Number of clusters (c)</th>
<th>V_{XB}^+ (10^{-5})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>4</td>
<td>2.4</td>
<td>4</td>
<td>2.8</td>
</tr>
<tr>
<td>1.6</td>
<td>4</td>
<td>2.2</td>
<td>4</td>
<td>2.7</td>
</tr>
<tr>
<td>1.7</td>
<td>4</td>
<td>2.1</td>
<td>4</td>
<td>2.5</td>
</tr>
<tr>
<td>1.8</td>
<td>4</td>
<td>2.1</td>
<td>4</td>
<td>2.4</td>
</tr>
<tr>
<td>1.9</td>
<td>4</td>
<td>2.1</td>
<td>4</td>
<td>2.3</td>
</tr>
<tr>
<td>2.0</td>
<td>4</td>
<td>2.1</td>
<td>4</td>
<td>2.1</td>
</tr>
</tbody>
</table>
Table E.1: Cluster validation results for benchmark problem sets (continued)

(d) Problem set R2

<table>
<thead>
<tr>
<th>Fuzzy factor ((m))</th>
<th>Number of clusters ((c))</th>
<th>(V_{XB}^{+}) ((10^{-5}))</th>
<th>Number of clusters ((c))</th>
<th>(V_{XB}^{+}) ((10^{-5}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>4</td>
<td>2.4</td>
<td>4</td>
<td>2.8</td>
</tr>
<tr>
<td>1.6</td>
<td>4</td>
<td>2.2</td>
<td>4</td>
<td>2.7</td>
</tr>
<tr>
<td>1.7</td>
<td>4</td>
<td>2.1</td>
<td>4</td>
<td>2.5</td>
</tr>
<tr>
<td>1.8</td>
<td>4</td>
<td>2.1</td>
<td>4</td>
<td>2.4</td>
</tr>
<tr>
<td>1.9</td>
<td>4</td>
<td>2.1</td>
<td>4</td>
<td>2.3</td>
</tr>
<tr>
<td>2.0</td>
<td>4</td>
<td>2.1</td>
<td>4</td>
<td>2.1</td>
</tr>
</tbody>
</table>

(e) Problem set RC1

<table>
<thead>
<tr>
<th>Fuzzy factor ((m))</th>
<th>Number of clusters ((c))</th>
<th>(V_{XB}^{+}) ((10^{-5}))</th>
<th>Number of clusters ((c))</th>
<th>(V_{XB}^{+}) ((10^{-5}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>4</td>
<td>2.0</td>
<td>4</td>
<td>2.4</td>
</tr>
<tr>
<td>1.6</td>
<td>4</td>
<td>1.9</td>
<td>4</td>
<td>2.2</td>
</tr>
<tr>
<td>1.7</td>
<td>4</td>
<td>1.8</td>
<td>4</td>
<td>2.1</td>
</tr>
<tr>
<td>1.8</td>
<td>4</td>
<td>1.7</td>
<td>4</td>
<td>1.9</td>
</tr>
<tr>
<td>1.9</td>
<td>4</td>
<td>1.7</td>
<td>4</td>
<td>1.8</td>
</tr>
<tr>
<td>2.0</td>
<td>4</td>
<td>1.7</td>
<td>4</td>
<td>1.7</td>
</tr>
</tbody>
</table>

(f) Problem set RC2

<table>
<thead>
<tr>
<th>Fuzzy factor ((m))</th>
<th>Number of clusters ((c))</th>
<th>(V_{XB}^{+}) ((10^{-5}))</th>
<th>Number of clusters ((c))</th>
<th>(V_{XB}^{+}) ((10^{-5}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>4</td>
<td>2.0</td>
<td>4</td>
<td>2.4</td>
</tr>
<tr>
<td>1.6</td>
<td>4</td>
<td>1.9</td>
<td>4</td>
<td>2.2</td>
</tr>
<tr>
<td>1.7</td>
<td>4</td>
<td>1.8</td>
<td>4</td>
<td>2.1</td>
</tr>
<tr>
<td>1.8</td>
<td>4</td>
<td>1.7</td>
<td>4</td>
<td>1.9</td>
</tr>
<tr>
<td>1.9</td>
<td>4</td>
<td>1.7</td>
<td>4</td>
<td>1.8</td>
</tr>
<tr>
<td>2.0</td>
<td>4</td>
<td>1.7</td>
<td>4</td>
<td>1.7</td>
</tr>
</tbody>
</table>
Training set

<table>
<thead>
<tr>
<th>Problem</th>
<th>Clusters</th>
<th>V_{XB} ($\times 10^{-5}$)</th>
<th>Time window width (mean)</th>
<th>Time window width (stdev)</th>
<th>Demand (mean)</th>
<th>Demand (stdev)</th>
</tr>
</thead>
<tbody>
<tr>
<td>c1.2.1</td>
<td>4</td>
<td>13</td>
<td>0.0442</td>
<td>0.0079</td>
<td>18.00</td>
<td>7.91</td>
</tr>
<tr>
<td>c1.2.2</td>
<td>4</td>
<td>13</td>
<td>0.2648</td>
<td>0.3734</td>
<td>18.00</td>
<td>7.91</td>
</tr>
<tr>
<td>c1.2.3</td>
<td>4</td>
<td>13</td>
<td>0.4855</td>
<td>0.4268</td>
<td>18.00</td>
<td>7.91</td>
</tr>
<tr>
<td>c1.2.4</td>
<td>4</td>
<td>13</td>
<td>0.6803</td>
<td>0.3698</td>
<td>18.00</td>
<td>7.91</td>
</tr>
<tr>
<td>c1.2.5</td>
<td>4</td>
<td>13</td>
<td>0.0894</td>
<td>0.0145</td>
<td>18.00</td>
<td>7.91</td>
</tr>
<tr>
<td>c1.2.6</td>
<td>4</td>
<td>13</td>
<td>0.1144</td>
<td>0.0644</td>
<td>18.00</td>
<td>7.91</td>
</tr>
<tr>
<td>c1.2.7</td>
<td>4</td>
<td>13</td>
<td>0.1333</td>
<td>0.0003</td>
<td>18.00</td>
<td>7.91</td>
</tr>
<tr>
<td>c1.2.8</td>
<td>4</td>
<td>13</td>
<td>0.1791</td>
<td>0.0275</td>
<td>18.00</td>
<td>7.91</td>
</tr>
<tr>
<td>c1.2.9</td>
<td>4</td>
<td>13</td>
<td>0.2665</td>
<td>0.0005</td>
<td>18.00</td>
<td>7.91</td>
</tr>
<tr>
<td>c1.210</td>
<td>4</td>
<td>13</td>
<td>0.3576</td>
<td>0.0639</td>
<td>18.00</td>
<td>7.91</td>
</tr>
<tr>
<td>c2.2.1</td>
<td>2</td>
<td>44</td>
<td>0.0445</td>
<td>0.0001</td>
<td>19.20</td>
<td>8.13</td>
</tr>
<tr>
<td>c2.2.2</td>
<td>2</td>
<td>44</td>
<td>0.2738</td>
<td>0.3992</td>
<td>19.20</td>
<td>8.13</td>
</tr>
<tr>
<td>c2.2.3</td>
<td>2</td>
<td>44</td>
<td>0.4940</td>
<td>0.4610</td>
<td>19.20</td>
<td>8.13</td>
</tr>
<tr>
<td>c2.2.4</td>
<td>2</td>
<td>44</td>
<td>0.7225</td>
<td>0.4040</td>
<td>19.20</td>
<td>8.13</td>
</tr>
<tr>
<td>c2.2.5</td>
<td>2</td>
<td>44</td>
<td>0.0889</td>
<td>0.0002</td>
<td>19.20</td>
<td>8.13</td>
</tr>
<tr>
<td>c2.2.6</td>
<td>2</td>
<td>44</td>
<td>0.1396</td>
<td>0.0236</td>
<td>19.20</td>
<td>8.13</td>
</tr>
<tr>
<td>c2.2.7</td>
<td>2</td>
<td>44</td>
<td>0.1721</td>
<td>0.0777</td>
<td>19.20</td>
<td>8.13</td>
</tr>
<tr>
<td>c2.2.8</td>
<td>2</td>
<td>44</td>
<td>0.1779</td>
<td>0.0003</td>
<td>19.20</td>
<td>8.13</td>
</tr>
<tr>
<td>c2.2.9</td>
<td>2</td>
<td>44</td>
<td>0.2443</td>
<td>0.1002</td>
<td>19.20</td>
<td>8.13</td>
</tr>
<tr>
<td>Problem</td>
<td>Clusters</td>
<td>V_{XB} ($\times 10^{-5}$)</td>
<td>Time window width (mean)</td>
<td>(stdev)</td>
<td>Demand (mean)</td>
<td>(stdev)</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>-----------------------------</td>
<td>---------------------------</td>
<td>---------</td>
<td>--------------</td>
<td>---------</td>
</tr>
<tr>
<td>c2.210</td>
<td>2</td>
<td>44</td>
<td>0.2446</td>
<td>0.0004</td>
<td>19.20</td>
<td>8.13</td>
</tr>
<tr>
<td>r1.2.1</td>
<td>4</td>
<td>21</td>
<td>0.0158</td>
<td>0.0007</td>
<td>19.04</td>
<td>9.66</td>
</tr>
<tr>
<td>r1.2.2</td>
<td>4</td>
<td>21</td>
<td>0.2207</td>
<td>0.3771</td>
<td>19.04</td>
<td>9.66</td>
</tr>
<tr>
<td>r1.2.3</td>
<td>4</td>
<td>21</td>
<td>0.4590</td>
<td>0.4460</td>
<td>19.04</td>
<td>9.66</td>
</tr>
<tr>
<td>r1.2.4</td>
<td>4</td>
<td>21</td>
<td>0.7074</td>
<td>0.3702</td>
<td>19.04</td>
<td>9.66</td>
</tr>
<tr>
<td>r1.2.5</td>
<td>4</td>
<td>21</td>
<td>0.0474</td>
<td>0.0004</td>
<td>19.04</td>
<td>9.66</td>
</tr>
<tr>
<td>r1.2.6</td>
<td>4</td>
<td>21</td>
<td>0.2450</td>
<td>0.3638</td>
<td>19.04</td>
<td>9.66</td>
</tr>
<tr>
<td>r1.2.7</td>
<td>4</td>
<td>21</td>
<td>0.4748</td>
<td>0.4302</td>
<td>19.04</td>
<td>9.66</td>
</tr>
<tr>
<td>r1.2.8</td>
<td>4</td>
<td>21</td>
<td>0.7143</td>
<td>0.3571</td>
<td>19.04</td>
<td>9.66</td>
</tr>
<tr>
<td>r1.2.9</td>
<td>4</td>
<td>21</td>
<td>0.0990</td>
<td>0.0303</td>
<td>19.04</td>
<td>9.66</td>
</tr>
<tr>
<td>r1.2.10</td>
<td>4</td>
<td>21</td>
<td>0.1935</td>
<td>0.0441</td>
<td>19.04</td>
<td>9.66</td>
</tr>
<tr>
<td>r2.2.1</td>
<td>4</td>
<td>21</td>
<td>0.0480</td>
<td>0.0160</td>
<td>17.08</td>
<td>8.48</td>
</tr>
<tr>
<td>r2.2.2</td>
<td>4</td>
<td>21</td>
<td>0.2604</td>
<td>0.3937</td>
<td>17.08</td>
<td>8.48</td>
</tr>
<tr>
<td>r2.2.3</td>
<td>4</td>
<td>21</td>
<td>0.4920</td>
<td>0.4674</td>
<td>17.08</td>
<td>8.48</td>
</tr>
<tr>
<td>r2.2.4</td>
<td>4</td>
<td>21</td>
<td>0.7417</td>
<td>0.4057</td>
<td>17.08</td>
<td>8.48</td>
</tr>
<tr>
<td>r2.2.5</td>
<td>4</td>
<td>21</td>
<td>0.0948</td>
<td>0.0006</td>
<td>17.08</td>
<td>8.48</td>
</tr>
<tr>
<td>r2.2.6</td>
<td>4</td>
<td>21</td>
<td>0.2976</td>
<td>0.3730</td>
<td>17.08</td>
<td>8.48</td>
</tr>
<tr>
<td>r2.2.7</td>
<td>4</td>
<td>21</td>
<td>0.5177</td>
<td>0.4424</td>
<td>17.08</td>
<td>8.48</td>
</tr>
<tr>
<td>r2.2.8</td>
<td>4</td>
<td>21</td>
<td>0.7547</td>
<td>0.3830</td>
<td>17.08</td>
<td>8.48</td>
</tr>
<tr>
<td>r2.2.9</td>
<td>4</td>
<td>21</td>
<td>0.1511</td>
<td>0.0682</td>
<td>17.08</td>
<td>8.48</td>
</tr>
<tr>
<td>r2.2.10</td>
<td>4</td>
<td>21</td>
<td>0.1877</td>
<td>0.0245</td>
<td>17.08</td>
<td>8.48</td>
</tr>
<tr>
<td>r1.2.1</td>
<td>4</td>
<td>17</td>
<td>0.0473</td>
<td>0.0003</td>
<td>17.24</td>
<td>8.50</td>
</tr>
<tr>
<td>r1.2.2</td>
<td>4</td>
<td>17</td>
<td>0.2089</td>
<td>0.3355</td>
<td>17.24</td>
<td>8.50</td>
</tr>
<tr>
<td>r1.2.3</td>
<td>4</td>
<td>17</td>
<td>0.4394</td>
<td>0.4274</td>
<td>17.24</td>
<td>8.50</td>
</tr>
<tr>
<td>r1.2.4</td>
<td>4</td>
<td>17</td>
<td>0.6533</td>
<td>0.3901</td>
<td>17.24</td>
<td>8.50</td>
</tr>
<tr>
<td>r1.2.5</td>
<td>4</td>
<td>17</td>
<td>0.1051</td>
<td>0.0484</td>
<td>17.24</td>
<td>8.50</td>
</tr>
<tr>
<td>r1.2.6</td>
<td>4</td>
<td>17</td>
<td>0.0946</td>
<td>0.0005</td>
<td>17.24</td>
<td>8.50</td>
</tr>
<tr>
<td>r1.2.7</td>
<td>4</td>
<td>17</td>
<td>0.1446</td>
<td>0.0478</td>
<td>17.24</td>
<td>8.50</td>
</tr>
<tr>
<td>Problem</td>
<td>Clusters</td>
<td>V_{XB} ($\times 10^{-5}$)</td>
<td>Time window width (mean)</td>
<td>Time window width (stdev)</td>
<td>Demand (mean)</td>
<td>Demand (stdev)</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>---------------------------</td>
<td>--------------------------</td>
<td>---------------------------</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>rc1_2.8</td>
<td>4</td>
<td>17</td>
<td>0.1875</td>
<td>0.0516</td>
<td>17.24</td>
<td>8.50</td>
</tr>
<tr>
<td>rc1_2.9</td>
<td>4</td>
<td>17</td>
<td>0.1893</td>
<td>0.0006</td>
<td>17.24</td>
<td>8.50</td>
</tr>
<tr>
<td>rc1_210</td>
<td>4</td>
<td>17</td>
<td>0.2366</td>
<td>0.0007</td>
<td>17.24</td>
<td>8.50</td>
</tr>
<tr>
<td>rc2_2.1</td>
<td>4</td>
<td>17</td>
<td>0.0473</td>
<td>0.0003</td>
<td>17.24</td>
<td>8.50</td>
</tr>
<tr>
<td>rc2_2.2</td>
<td>4</td>
<td>17</td>
<td>0.2789</td>
<td>0.4033</td>
<td>17.24</td>
<td>8.50</td>
</tr>
<tr>
<td>rc2_2.3</td>
<td>4</td>
<td>17</td>
<td>0.5108</td>
<td>0.4659</td>
<td>17.24</td>
<td>8.50</td>
</tr>
<tr>
<td>rc2_2.4</td>
<td>4</td>
<td>17</td>
<td>0.7337</td>
<td>0.4090</td>
<td>17.24</td>
<td>8.50</td>
</tr>
<tr>
<td>rc2_2.5</td>
<td>4</td>
<td>17</td>
<td>0.1114</td>
<td>0.0585</td>
<td>17.24</td>
<td>8.50</td>
</tr>
<tr>
<td>rc2_2.6</td>
<td>4</td>
<td>17</td>
<td>0.0947</td>
<td>0.0005</td>
<td>17.24</td>
<td>8.50</td>
</tr>
<tr>
<td>rc2_2.7</td>
<td>4</td>
<td>17</td>
<td>0.1421</td>
<td>0.0658</td>
<td>17.24</td>
<td>8.50</td>
</tr>
<tr>
<td>rc2_2.8</td>
<td>4</td>
<td>17</td>
<td>0.1995</td>
<td>0.0691</td>
<td>17.24</td>
<td>8.50</td>
</tr>
<tr>
<td>rc2_2.9</td>
<td>4</td>
<td>17</td>
<td>0.1893</td>
<td>0.0007</td>
<td>17.24</td>
<td>8.50</td>
</tr>
<tr>
<td>rc2_210</td>
<td>4</td>
<td>17</td>
<td>0.2366</td>
<td>0.0007</td>
<td>17.24</td>
<td>8.50</td>
</tr>
</tbody>
</table>