OCCURRENCE, MEASUREMENT AND ORIGINS
OF GELATINE COLOUR AS DETERMINED BY
FLUORESCENCE AND ELECTROPHORESIS.

by

Charles George Bernard Cole

Submitted to the Faculty of Biological and Agricultural Sciences.
(Department of Food Science)
University of Pretoria

In partial fulfilment of the requirements for the
Degree of Ph.D (Food Science).

PRETORIA

1995
© University of Pretoria
ACKNOWLEDGEMENTS.
The author wishes to thank the following:

○ Ann my wife without whose tolerance and encouragement this would not have seen the light of day.

○ Leiner Davis Gelatin (South Africa), Krugersdorp, for partial sponsorship of this study and for allowing the author time in which to complete the work.

○ My coworkers at DGI, Krugersdorp, who helped with laboratory analyses and who accepted my absences without complaint.

○ The Wheat Board, Pretoria, for the generous use of their laboratory facilities and equipment.

○ The Department of Agriculture, Plant Protection Research Institute, Pretoria, for making their fluorospectrophotometer available for use.

○ The Department of Microbiology and Plant Pathology for making equipment available to the author.

○ The Animal and Dairy Sciences Research Institute for the provision of hides from animals of known age.

○ Prof JJ Roberts for his advice and direction as supervisor during the course of this investigation.
I declare that the thesis herewith submitted for the degree of Ph.D (Food Science) at the University of Pretoria, has not been submitted previously by me for a degree at any other University.

[Signature]

[Name]
OCCURRENCE, MEASUREMENT AND ORIGINS OF GELATINE COLOUR AS DETERMINED BY FLUORESCENCE AND ELECTROPHORESIS.

by

CHARLES GEORGE BERNARD COLE

Promotor: Prof J.J. Roberts.
Department of Food Science, Faculty of Biological & Agricultural Sciences.
University of Pretoria, 0002.
Thesis for the degree: Doctor of Philosophy (Food Science).

Summary.

It was known that gelatine produced from bovine hide was darker in colour than that produced from competitive raw materials like pigskin or ossein (demineralised bone). It was also known that the spectrophotometric measurement of the colour of gelatine solutions gave results that were in poor agreement with the subjective visual assessments of colour. The objectives of this study were to define or identify the parameters responsible for the production of unwanted dark colour. It was then necessary:

(i) to elucidate why there was a poor correlation between the spectrophotometric absorbance and visual colour and
(ii) to develop a method that would allow the objective instrumental measurement of gelatine colour which would be in good agreement with the visual assessment of colour.

Variations in the lime-sulphide conditioning process and breed were found to have little or no effect on the colour of gelatines produced from bovine hide raw material. Colour was found to be mainly a function of animal age with good correlations between animal age and overall colour and animal age and first extract colour.

The problem of gelatine colour measurement was found to be one of variable light scatter due to molecular mass and imperfect filtration. The initial solution of the problem was sought in the enzymic proteolysis of the gelatine to a constant low molecular weight profile followed by filtration to standard clarity using membrane filtration. Good correlation between visual and instrumental colours was achieved when the origin of the absorbance curve was taken as the 700 nm absorbance instead of as the solvent blank. A
prerequisite of the method was that at least two enzymes were necessary to achieve hydrolysis of all normal gelatines with pHs in the range of 4 to 8. Extension of the study to the BYK-Gardner Tristimulus Reflectance Spectrophotometer showed that gelatine solution colour could be measured by this instrument with even better reliability than with the single beam spectrophotometer. Intrinsic to the BYK-Gardner instrument’s operation was a large amount of light scatter. It was found that as long as the scatter by the gelatine solution was small in comparison to the intrinsic scatter, the response of the instrument was proportional to colour. Hence, the colour of 6.67% gelatine solutions (from the Bloom gel strength determination) with a clarity of better than 80 NTU could be measured satisfactorily over a range of colours from almost colourless to dark amber. The correlation coefficient between visual and instrumental colour was 0.96.

Gelatine overall colour was found to be well correlated with animal age and it was proposed that the origin of the colour was probably the Maillard reaction in vivo. It was known from the literature that there was a senescence related (335/385 nm) fluorescent cross-link "pentosidine" that was formed in collagen. The hypothesis was that if this cross-link survived the gelatine manufacturing process then it could well be responsible for the colour of gelatine. A range of gelatines from the study of the origins of colour were subjected to analysis in a fluorospectrophotometer and it was found that gelatine did exhibit the pentosidine fluorescence. Furthermore, the fluorescence intensity was well correlated with gelatine colour and animal age for the paler top quality gelatines but not well correlated with the colour of low quality (darkest) gelatines. From this it was concluded that there were at least two causes of gelatine colour only one of which was related to the Maillard reaction. In addition, it was found that anion exchange resin absorbed a marked amount of the non-Maillard colour. The Maillard reaction with gelatine was further studied by reacting gelatine with glucose and ribose at pH 6 and pH 9 and measuring the development of colour and fluorescence and the change in pH with time. It was ascertained that the colour produced with glucose was identical to the natural colour of gelatine whereas the colour produced by ribose was markedly redder than the natural colour of gelatine. This indicated that in vivo the source of aldose for the Maillard reaction formation of pentosidine was in fact glucose and not ribose although this meant that one carbon atom from glucose had to be removed in the process. The fluorescent pyridinoline collagen cross-link was found only in gelatine derived from calf skin by the "acid conditioning process". This lead to the conclusion that this cross-link was labile in alkali thus explaining the extractability phenomena encountered during the investigation of the
occurrence of dark gelatine.

The gelatines from the hides of animals of various ages were subjected to SDS-
PAGE electrophoresis from which it was shown that gelatines containing the
most intact collagen α chain subunits were the palest, in line with the
conclusion that the most easily converted (denatured) collagen gave gelatine
of the best colour. This also confirmed that collagen cross-links were a
source of colour. Furthermore, this study demonstrated that the role of sodium
sulphide in lime-sulphide conditioning was to accelerate the hydrolysis of the
alkali labile cross-links in collagen but it did not have any additional
conditioning effect nor was there any evidence of sulphide having any effect
on the colour of the gelatine produced.
VOORKOMS, METING EN HERKOMS VAN DIE KLEUR VAN GELATIEN
SOOS BEPAAL MET FLUORESSENSIE EN ELEKTROFORESE.

deur

CHARLES GEORGE BERNARD COLE

Promotor: Prof J.J. Roberts.
Departement Voedselwetenskap, Fakulteit Biologiese en Landbouwetenskappe,
Universiteit van Pretoria, Pretoria 0002.
Proefskrif vir die graad Philosophiae Doctor (Voedselwetenskap).

Opsomming.

Dit is bekend dat gelatien geproduceer vanaf beesvelle donkerder van kleur is
as die wat vanaf kompeteterende rou materiaal soos varkvel of osseien
(gedemineraliseerde been) geproduceer is. Dit is ook bekend dat die
spektrofotometriese meting van die kleur van gelatienoplossings resultate
lewer wat swak vergelyk met die subjektiewe visuele beoordeling van kleur. Die
doelwitte van hierdie studie was om die parameters verantwoordelik vir die
ongewenste donker kleur te definieer of te identificeer. Dit was voorts nodig
om:

(i) te verduidelik waarom daar 'n swak korrelasie was tussen die
spektrofotometriese absorbansie en sigbare kleur, en
(ii) 'n metode te ontwikkel wat die objektiewe instrumentele meting
van die kleur van gelatien moontlik sou maak en wat goed sou
ooreenstem met die visuele beoordeling van kleur.

Variasies in die kalksulfiedkondisioneringsproses en beeras het baie min of
geen effek gehad op die kleur van gelatien wat vanaf beesvel geproduceer is
nie. Dis gevind dat kleur hoofsaaklik 'n funksie van die ouderdom van die dier
was met goeie korrelasies tussen die ouderdom van die dier en globale kleur,
en tussen ouderdom van die dier en kleur van die eerste ekstrak.

Die probleem van die meting van die kleur van gelatien was toe te skryf aan
die variërende ligverstrooiing as gevolg van molekuliêre massa en onvoldoende
filtrasie. Die aanvanklike oplossing vir die probleem is gesoek by die
ensimatiese proteolise van die gelatien na 'n konstante lae molmassaprofiel
gevolg deur filtrasie tot 'n standaard helderheid deur middel van
membraanfiltrasie. Goeie korrelasie is verkry tussen visuele en instrumentele
kleure as die oorsprong van die absorbansiekromme as 700 nm geneem is pleks
van om die oplosmiddel as blanko te neem. 'n Voorvereiste van die metode was dat minstens twee ensieme nodig was vir die hidrolise van alle normale gelatine met pH-waardes in die strek van 4 tot 8. Uitbreiding van die studie na die BYK-Gardner Tristimulus Refleksiespektrofotometer het getoon dat die kleur van gelatienoplossings met hierdie instrument gemeet kon word met selfs beter betroubaarheid as met die enkelstraalspektrofotometer. 'n Intrinsieke kenmerk van die BYK-Gardner-instrument se werking is 'n groot mate van ligverstrooiing. Dis gevind dat, solank die verstrooiing deur die gelatienoplossing klein was as die intrinsieke verstrooiing, die responsie van die instrument proporsioneel was met die kleur. Gevolglik kon die kleur van 6.67% gelatienoplossings (van die gel sterkte bepaling) met 'n helderheid beter as 80 NTE bevredigend gemeet word oor 'n bestek van kleure van feitlik kleurloos tot donker amberkleurig. Die korrelasiekoëffisiet tussen visuele en instrumentele kleur was 0.96.

Die globale kleur van gelatien het goed gekorreleer met die ouderdom van die dier en dis voorgestel dat die oorsprong van die kleur waarskynlik die Maillard-reaksie in vivo is. Uit die literatuur is dit bekend dat daar 'n verouderingsverwante fluoresserende (335/385 nm) kruisbinding-"pentosidien" in die kollageen gevorm word. Die hipotese was dat as hierdie kruisbinding die gelatienvervaardigingsproses sou oorleef, dit waarskynlik vir die kleur van die gelatien verantwoordelijk kon wees. 'n Reeks gelatine van die studie oor die oorsprong van die kleur, is ontleed met 'n fluorospektrofotometer en dis gevind dat gelatien wel die pentosidien-fluoressensie toon. Daarbenewens het die intensiteit van die fluoressensie sterk gekorreleer met die kleur van die gelatien en ouderdom van die dier in die geval van die bleker topgehalte gelatine, maar met die kleur van die swak gehalte (donkerste) gelatine was die korrelasie maar swak. Hieruit is afgelei dat daar minstens twee oorsake vir die kleur van gelatien is en dat slegs een daarvan verbandhou met die Maillard-reaksie. Daarbenewens is gevind dat aniononuitvluihars 'n aansienlike hoeveelheid van die nie-Maillardkleur geabsorbeer het. Die Maillard-reaksie met gelatien is verder bestudeer deur gelatien te laat reageer met glukose en ribose by pH 6 en pH 9 en die ontwikkeling van kleur en fluoressensie, en ook pH-verandering met tydsverloop, te meet. Dis vangestel dat die kleur wat deur glukose geproduceer is, identies was aan die natuurlike kleur van gelatien terwyl die kleur wat deur ribose geproduceer is, opvallend rooier was as die natuurlike kleur van gelatien. Dit dui daarop dat die in vivo bron van aldose vir die Maillard-reaksiegevormde pentosidien inderdaad glukose was en nie ribose nie. Alhoewel dit beteken dat een koolstofatoom van glukose in die proses verwyder moes word. Die fluoresserende piridinolien-kollageenkruisbinding is slegs in gelatien gevind wat met die
“suurkondisioneringsproses” uit kalfsvel verkry is. Dit het gelei tot die gevolgtrekking dat hierdie kruisbinding labiel was in alkali en dat dit die ekstraheerbaarheidsverskynsels, wat tydens die ondersoek na die voorkoms van donkerkleurige gelatien teegekom is, verklaar.

Die gelatine van die velle van diere van verskillende ouderdomme is onderwerp aan SDS-PAGE-elektrofoorse waarmee aangetoon is dat gelatine wat meeste ongeskonde kollageen-α-ketting subeenhede bevat, die bleekste was. Dit wil sê in lyn met die gevolgtrekking dat die kollageen wat maklikste verander (gedenatureer) word, gelatien met die beste kleur gee. Dit bevestig ook dat kollageenkruisbindings in bron van kleur was. Hierdie studie het verder getoon dat natriumsulfied se rol in kalksulfiedkondisioneringsprosesse die versnelling van die hidrolise van die alkali-labiele kruisbindings in die kollageen was maar dat dit nie enige verdere kondisioneringseffek gehad het nie en dat daar geen getuienis was dat sulfied enige effek op die kleur van die gelatien gehad het nie.
TABLE OF CONTENTS.

CHAPTER ONE. Introduction and literature review. ... 1
 GELATINE AND ITS USES. ... 1
 RAW MATERIAL FOR GELATINE MANUFACTURE. 2
 COLLAGEN. ... 3
 RAW MATERIAL COMPOSITION. ... 5
 THE MANUFACTURE OF GELATINE. ... 7
 THE COLOUR OF GELATINE. ... 8

 OBJECTIVES. ... 11
 1. The origins of gelatine colour. .. 12
 1.1. Fluorescence and Electrophoresis. .. 12
 2. Gelatine colour measurement. .. 13
 REFERENCES. ... 13

CHAPTER TWO. The Occurrence of Dark Coloured Gelatine. 19
 INTRODUCTION. ... 19
 Heavy metals as a source of colour. .. 21
 The effect of colour on amino acid analysis. 22
 METHODS. .. 22
 Lime slaking and conditioning liquor preparation. 22
 Preparation of hide for conditioning. .. 23
 Hide washing. ... 23
 Hide conditioning. ... 23
 Acidulation. ... 24
 Extraction. .. 24
 LIQUOR PROCESSING. .. 25
 Evaporation. .. 25
 Heavy liquor filtration. .. 26
 Heavy liquor SO₂ & pH adjustment. ... 27
 Heavy liquor drying. .. 27
 ANALYSES. ... 28
 Spent conditioning liquor analysis. ... 28
 LIRI method for sulphide analysis. .. 28
 Light liquor concentration determination. 29
 Determination of gelatine colour (DGI Method). 29
 Determination of gelatine clarity (DGI Method). 30
 Processing of analytical results: ... 31
Iron analysis.

Effect of iron on gelatine colour.

Amino acid analysis.

EXPERIMENTAL CODES.

EXPERIMENT CT. - The effect of conditioning time.

EXPERIMENT CTO. - Old animal hide and conditioning time.

EXPERIMENT ST1. - The effect time and sulphide.

EXPERIMENT ST2 (or WT). The effect of temperature.

EXPERIMENT YS. The effects of animal age - 10 month.

EXPERIMENT KTO. Gelatine quality from various layers.

EXPERIMENT CALF-A. Type A gelatine from calf skin.

EXPERIMENT 3Y & 6Y. The effect of 3 & 6 years old.

EXPERIMENT 5Y. Effect of age and breed.

EXPERIMENT INO. A 12 year old Ingumi cow’s hide.

RESULTS and DISCUSSION.

EXPERIMENT GR.

EXPERIMENT CT.

EXPERIMENT CTO.

EXPERIMENT ST1.

EXPERIMENT ST2 / WT.

EXPERIMENT YS.

EXPERIMENT KTO.

EXPERIMENT CALF-A.

EXPERIMENT 3Y & 6Y.

EXPERIMENTS 5Y and INO.

THE EFFECT OF ANIMAL AGE AND PROCESSING ON GELATINE COLOUR.

THE EFFECT OF ANIMAL AGE ON GELATINE EXTRACTABILITY.

THE COMPOSITION OF HIDE.

GELATINE IRON CONTENT.

GELATINE AMINO ACID ANALYSIS.

CONCLUSIONS.

REFERENCES.

ADDENDA.

ADDENDUM C1. The effect of position of the hide.

ADDENDUM C3. Old animal hide & conditioning time.

ADDENDUM C4. Time & sodium sulphide concentration.

ADDENDUM C5. Conditioning temperature & sulphide concentration.
ADDENDUM C6. Young (10.5 month old) animal hide 111
ADDENDUM C7. Gelatine from various layers of a hide 119
ADDENDUM C8. Type A calf skin gelatine .. 124
ADDENDUM C9. Three & six year old Friesland’s 126
ADDENDUM C10. Five year old Chianina hide ex ADSRI 141
ADDENDUM C11. 12 year old Inguni’s hide ex ADSRI 147
ADDENDUM C12. The effect of animal age and processing on gelatine 149
ADDENDUM C13. Amino acid analysis of 6 samples 151
ADDENDUM C14. Transformation of amino acid data 153
ADDENDUM C15. Mean molar % amino acids in gelatine 155

CHAPTER THREE. The Instrumental Measurement of Gelatine Colour 156
INTRODUCTION .. 156
LITERATURE REVIEW ... 157
EXPERIMENTAL MATERIALS and METHODS 158
Solution of gelatine .. 158
Visual measurement of gelatine colour .. 158
Instrumental measurement of gelatine colour 159
Appraisal of the problem of gelatine colour measurement 159
Beckman DU70 Spectrophotometer ... 160
 Procedures ... 161
Aqueous Solvents .. 162
 Enzyme solution No. 1. (ES1) .. 162
 Trypsin solution ... 162
 Enzyme solution No. 2 (ES2) .. 162
 Enzyme solution No. 3 (ES3) .. 163
 Acid hydrolysis .. 163
Gelatine Filtration .. 163
The BYK-Gardner Color-View Reflectance Spectrophotometer 164
 Experimental procedure .. 165
RESULTS and DISCUSSION ... 166
Gelatine spectra ... 166
Introduction to the problem of gelatine colour measurement 168
Verification of the problems of colour determination 169
The use of enzymic hydrolysis and filtration 169
 Analysis of the use of ES1 solvent & filtration (GF/A) 172
 The inclusion of Type A (pigsin) gelatines 175
Summary of data using solvent system ES1. 176
The use of solvent ES3 on Gelatines with a pH of 4 to 5. 179
The effect of ES1 and ES2 on solution pH. 181
Repeatability of the area under the absorbance curve. 182
The use of an alternative enzyme. 183
The Effect of acid hydrolysis of gelatine. 184
The BYK-Gardner Color-View Reflectance Spectrophotometer. 185
CONCLUSIONS. 187
REFERENCES. 189
ADDENDA. 190
ADDENDUM 1. DU70 Absorbance data on gelatines.
Solvent = Water.
Filtration. Nil. 190
ADDENDUM 2. Solvent = ES1 (1 ml Alcalase 0.6L/l)
Filtration = Whatman papers (GF/A).
BASE LINE = ABS. 700nm for area calculation. 193
Filtration = membrane (0.45 μm). 194
ADDENDUM 4. Solvent = ES2. (Contained ammonia).
Filtration. = membrane (0.45 μm). 197
ADDENDUM 5. Pigskin gelatines.
Solvent = ES3. (Contained papain).
Filtration = membrane (0.45μm). 198
ADDENDUM 6. Gelatine analytical data. 199
ADDENDUM 7. BYK-Gardner Color-View Reflectance Spectrophotometer. 201
ADDENDUM 8. Gardner Tri-stimulus data. 205

CHAPTER FOUR. Fluorescence in gelatine. 209
INTRODUCTION. 209
METHODS AND MATERIALS. 212
Choice of solution concentration. 212
Instrumentation. 212
Fluorescence determination. 213
The effect of incubating gelatine with glucose. 213
1. Outline. 213
2. Controls. 214
Electrophoresis. .. 329
Difference between Types A and B gelatine. 330
The amount of α-chain material in first extraction gelatines. ... 331
Third extraction gelatines. 331
The 82 kD component of gelatine. 331
Other known causes of colour in gelatine. 332
Conclusions and Recommendations. 332
References. .. 335
INDEX OF TABLES.

CHAPTER TWO.

Table 1. The variation in gelatine colour with Bloom gel strength and viscosity. .. 19
Table 2. The effect of iron contamination on gelatine colour. 21
Table 3. Factorial design of experiment ST. 37
Table 4. The effect of hide conditioning time on the (DGI) colours of the extracted gelatins. .. 45
Table 5. Analysis of variance - Two factor factorial design. First extraction colour. ... 47
Table 6. Analysis of variance - Two factor factorial design. Overall colour .. 47
Table 7. Gelatine colours from various layers of the same hide. 51
Table 8. Gelatine Clarity from various layers of the same hide. 52
Table 9. Gelatine colour response to animal age. 55
Table 10. The changes in the 45°C extractability of hide due to conditioning time and animal age. 57
Table 11. Composition of calf skin ex the acid process. 58
Table 12. Composition of calf skin ex the alkaline process. 59
Table 13. Average crude composition of adult bovine hide. 59
Table 14. The constituents of anhydrous ash-free bovine hide. 61
Table 15. Gelatine iron content and colour. 61
Table 16. The effect of added iron on the colour of gelatine 155/1. 62
Table 17. The molar % amino acid content of gelatins A to F. 64

CHAPTER THREE.

Table 1. The correlation of visual colour and colour value calculated from Σ&T. ... 168
Table 2. The correlation of visual colour and absorbance data for gelatines dissolved in water. 169
Table 3. The area under the absorbance curves between 400 and 700nm for three gelatines. 169
Table 4. The area under the absorbance curves between 400 and 700 nm for three gelatines, calculated with the baseline at the 700 nm absorbance value.

Table 5. The correlation of visual colour and absorbance data for gelatines dissolved in solvent ES1 and then filtered using GF/A paper.

Table 6. A comparison of the daily repeatability of absorbance data on gelatine control sample 183/1.

Table 7. The correlation of visual colour and absorbance data for gelatine dissolved in ES1 and filtered using 0.45 μ membrane filters.

Table 8. The result of the reassessments of the visual colours of some gelatines.

Table 9. The correlation of visual colour and absorbance data for gelatines dissolved in solvent ES2.

Table 10. The correlation of visual colour and absorbance data for both Type A and Type B gelatines dissolved in solvent ES1 and filtered through 0.45μ filters.

Table 11. The correlation of the visual and estimated colours of gelatines based on their absorbance data when dissolved in solvent ES1 and filtered through 0.45μ membrane filters.

Table 12. A comparison of the areas under the absorbance curves between 400 and 700 nm for low pH gelatines using solvents ES1 and ES3.

Table 13. The correlation of visual colour and absorbance data for gelatines with pH <5 dissolved in solvent ES3 and gelatines with pH ≥5 dissolved in solvent ES1.

Table 14. A comparison of gelatine pHS in water and solvents ES1 and ES2.

Table 15. The repeatability of absorbance data from day-to-day.

Table 16. A comparison of the absorbance data obtained with Alcalase and Trypsin hydrolysis of Type B gelatines.

Table 17. A comparison of the absorbance data for gelatines hydrolysed with 1:1 hydrochloric acid and Alcalase solution ES1.

CHAPTER FOUR.

Table 1. Gelatine fluorescence emission peak data for excitation at 335 and 295nm.
Table 2. Colour and fluorescence data for gelatines derived from animals of known age. ... 232
Table 3. A comparison of the area under the absorbance curve between 400 and 700 nm and the absorbance at 400 nm for glucose darkened gelatine 155/1 starting at pH 9. 236
Table 4. The effect of 50°C incubation on a 3.6% glucose solution, at pH 6 and pH 8.75, on the colour and fluorescence intensity of the solutions. .. 241
Table 5. The changes in absorbance of gelatine treated with reducing sugars monitored using a Colorimeter and filter No. 2 (470 nm). ... 242
Table 6. The absorbance characteristics of a pale and a dark gelatine for comparison with the colour of ribose treated gelatine. ... 243
Table 7. The effect of ribose treatment on the physical properties of gelatine at pH 5 and 8. .. 244
Table 8. Fluorescence development in an equimolar mixture of lysine, arginine and ribose at room temperature (± 20°C) and at 37°C. ... 252
Table 9. The spectrophotometric data on two gelatines before and after anion exchange. .. 257
Table 10. Fluorescence intensity data for 1% w/v solutions of two gelatines before and after anion exchange. .. 258
Table 11. The effect of anion exchange on gelatine 178/12. 259
Table 12. The effect of anion exchange on ribose darkened gelatine 877/1. ... 260

CHAPTER FIVE.

Table 1. Loading details, Gel No. 1 ... 294
Table 2. Loading details, Gel No. 2 ... 296
Table 3. Loading details, Gel No. 3 ... 296
Table 4. Loading details, Gel No. 4 ... 298
Table 5. Loading details, Gel No. 6 ... 299
Table 6. Loading details, Gel No. 7 ... 300
Table 7. Loading details, Gel No. 8 ... 301
Table 8. Loading details, Gel No. 9 ... 302
Table 10. Data for molecular weight calculation from ASC mobility ... 308
Table 11. Densitometer data measured on gel 13 (D) 309
INDEX OF FIGURES.

CHAPTER THREE.
Figure 1. BYK-Gardner light path. .. 165
Figure 2. Transmission spectra of bovine hide gelatins. 167
Figure 3. The absorbance spectra of 4 gelatins spanning the normal
colour range. ... 171

CHAPTER FOUR
Figure 4. Excitation at 335 nm. Fluorescence emission spectrum
of a 1% aqueous solution of a pale (Colour 4.4) Type B
gelatine from 10 month old calf skin (YSA/2). Excitation
at 335 nm. .. 221
Figure 5. Fluorescence emission spectrum of a 1% aqueous solution
of dark (Colour 16.0) Type B gelatine from 12 year old Inguni
cow skin (INOB/1). Excitation at 335 nm. 222
Figure 6. Emission at 440 nm. Fluorescence excitation spectrum
of a 1% aqueous solution of Type A calf skin gelatine
(Calf Type A/1). Note the excitation maximum at 370 nm. 226
Figure 7. Excitation spectrum of a 1% aqueous solution of a Type A
calf skin gelatine. Note - excitation maxima at 290-295 nm
and at 335 nm. Emission at 385 nm. 227
Figure 8. Excitation at 335 nm. Emission spectrum of a 1% aqueous
solution of Type A calf skin gelatine. Note - emission
maxima at 385 and 440 nm. ... 228
Figure 9. Emission at 420 nm. Excitation spectrum of a 1% aqueous
solution of pigskin gelatine (D1512). Note excitation maximum
at 330 nm. ... 230
Figure 10. Excitation at 335 nm. Emission spectrum of a 1% aqueous
solution of pigskin gelatine. Note shoulder at 385 nm and
maximum at 410 nm. .. 231
Figure 11. Gelatine glucose interaction. (10% w/w gelatine in 0.2M
aqueous glucose solution incubated at 50°C). 235
Figure 12. Absorbance spectra of gelatine in 6.67% w/v aqueous
solution. Glucose darkened by incubating 10% w/w gelatine
in aqueous glucose solution (0.2M) at 50°C. 236
Figure 13. Emission 420 nm. Excitation spectrum of gelatine
(155/1) after darkening with glucose for 56 days at 50°C
(initial pH = 6.0) ... 239
Figure 14. Gelatine ribose interaction. (10% gelatine w/w in 0.2M aqueous ribose solution, incubated at 37°C).

Figure 15. Absorbance spectra of gelatine darkened by incubating 10% w/w gelatine in 0.2 M glucose or ribose aqueous solution at 50°C or 37°C respectively.

Figure 16. Emission 420 nm. Excitation spectrum of ribose darkened gelatine (155/1). A 10% w/w solution of gelatine in 0.2 M ribose at an initial pH of 6.0 incubated at 37°C for 7 days.

Figure 17. The emission spectrum of ribose darkened gelatine (155/1) at 1% concentration. Gelatine 10% w/w in 0.2 M ribose solution after 7 days at 37°C with a starting pH of 6.0. Excitation at 335 nm. Note the shoulder at ca. 385 nm and the peak at 410 nm.

Figure 18. Emission at 385 nm. Excitation spectrum of the "pentosidine" reaction mixture after 10 days at 37°C. Note the 335 nm excitation peak. (Reaction mixture = L-lysine, L-arginine and D-ribose each at 0.02 M concentration and pH 9).

Figure 19. Excitation at 335 nm. Emission spectrum of "pentosidine" reaction mixture after 10 days at 37°C. Note the 385 nm emission maximum and the shoulder at 410 nm. (Reaction mixture = L-lysine, L-arginine and D-ribose each at 0.02 M concentration and pH 9).

Figure 20. Emission at 385 nm. Excitation spectrum of the "pentosidine" reaction mixture after 10 days at ambient temperature (20°C). Note the 340 nm excitation maximum. (Reaction mixture = L-lysine, L-arginine and D-ribose each at 0.02 M concentration and pH 9).

Figure 21. Excitation at 335 nm. Emission spectrum of the "pentosidine" reaction mixture after 10 days at ambient temperature (20°C). Note the 410 nm emission maximum. (Reaction mixture = L-lysine, L-arginine and D-ribose each at 0.02 M concentration and pH 9).

Figure 22. Electrophoretic densitograms of acid soluble collagen (ASC). Pigskin gelatine 147 (PIGSKIN 147), and first extraction gelatines from calf skin. Type A = CA/1 (CALF Ty A/1) and Type B = YSA/1 (CALF Ty B/1). Collagen gamma. β- and α-chains are designated.
Figure 23. Electrophoretic densitograms of Type B gelatines from 10 month old bovine hide. Collagen α- and β-chains designated. YSA/1 first extraction. YSA/2 second extraction and YSA/3 third extraction. .. 315

Figure 24. Electrophoretic densitograms of Type B gelatine from 58 month old bovine's hide. Collagen - and -chains designated. 5Y4/1 first extraction. 5Y4/2 second extraction and 5Y4/3 third extraction. .. 316

Figure 25. Electrophoretic densitograms of Type B gelatine from 144 month old bovine's hide. Collagen - and -chains designated. ST24/1 first extraction, ST24/2 second extraction and ST24/3 third extraction. .. 317

Figure 26. Electrophoretic densitogram of first extraction Type B gelatine from an 18 month old animal. Collagen - and -chains are designated. .. 318

CHAPTER FIVE.

Figure P1. Photograph of Gel No. 1. .. 294
Figure P2. Photograph of Gel No. 2. .. 296
Figure P3. Photograph of Gel No. 3. .. 296
Figure P4. Photograph of Gel No. 4. .. 298
Figure P5. Photograph of Gel No. 6. .. 299
Figure P6. Photograph of Gel No. 7. .. 300
Figure P7. Photograph of Gel No. 8. .. 301
Figure P8. Photograph of Gel No. 9. .. 302
Figure P9. Photographs of Gels 12 & 13. ... 306
List of abbreviations.

3Y, 5Y, 6Y Series of experiments on the hide of 3, 5 and 6 year old animals.
√ square root.
ADSRI Animal and Dairy Sciences Research Institute. (Irene, RSA)
BGGRA British Gelatine and Glue Research Association.
Bloom Bloom gel strength.
BS British Standards.
ca. (circa) approximately.
CRLF-A Calf skin used for making Type A gelatine.
CT Series of experiments to show the effect of conditioning time.
CTO Series of experiments to show the effect of conditioning time on old animal hide.
DGI Davis Gelatine Industries (Pty) Ltd. Later known as Leiner Davis Gelatin (South Africa).
Da. Dalton - unit of molecular mass.
et al. et alia - and others.
Exp. Experiment.
GAG Glucoseaminoglycan.
GGRA Gelatine and Glue Research Association.
GF/GR Green face pieces and green hide from the rest of the animal.
IAPI Irene Animal Production Institute. (Irene, RSA) (Same as ADSRI)
INO Experiments on the hide of an old inguni animal.
JSLTC Journal of the society of leather technologists and chemists.
KTO Series of experiments on an old animal hide after dehairing at Krugersdorp Tannery.
loc. cit. loco citado - Here in.
RSA Republic of South Africa.
SDS Sodium dodecyl sulphate.
SDS-PAGE Sodium dodecyl sulphate polyacrylamide gel electrophoresis.
SEM Scanning electron microscopy.
Sig. Significance.
SF/SR Salted face pieces and salted hide from the rest of the animal.
Soln. Solution.
SPA A process for the conversion of chrome tanned leather into gelatine.

ST Series of experiments to show the effects of sodium sulphide concentration and time of conditioning.

Str. Strength.

TEMED N,N,N',N'-Tetramethylethylene diamine.

Tris Tris-(hydroxymethyl) methylamine.

VS Volatile solids.

WT Series of experiments conducted during winter to investigate the effect of temperature on the conditioning of hide.

YS Series of experiments to show the effect of sulphide concentration and time of conditioning on young animal hide.