Handi-Capable

Albert Willem Olivier
21069396

Submitted in fulfilment of the requirements of the degree of Master of Architecture (Professional) in the Faculty of Engineering, Built Environment and Information Technology, University of Pretoria.
Mentor-Rudolf van Rensburg
I wish to thank my Lord God number one for being my guide and for extraordinary blessings, Rudolf my mentor, Gus Germeke and all the other people in Boukunde, Srib, the office syndicate, Dorothy Howitson, the authors of the theses I read, Jan and Erna van Wijk for inspiration, “Die Dokter”, Marthinus Bekker and PW Hattingh, Tanja.

Special and loving thanks to Marilize for holding out with an aspiring architect. “Dankie Liza”

Another special thanks to my parents for giving me the opportunity to study, standing by me and not losing hope to bad results and near failures.
Handi-Capable

A Psychosocial Adjustment Centre For People With Spinal Cord Injuries

Index:

1. Design brief and introduction
 1.1 Introduction: 11
 1.2 Terminology: 11
 1.3 The real world problem and the background thereof: 12
 1.4 Clients and stakeholders: 13
 1.4.1 The site 13
 1.4.2 Stakeholders 13
 1.5 Keywords 14
 1.5.1 Keyword identification: 14
 1.6 Grouping keywords: 14
 1.6.1 Social 14
 1.6.2 Location 14
 1.6.3 Design Baseline 14
 1.7 Objectives and requirements for the study 15
 1.7.1 Who? 15
 1.7.2 Where? 15
 1.7.3 What? 15
 1.7.4 How? 15
 1.8 Design investigation (Generators of the design) 16
 1.8.1 Physical Design 16
 1.8.2 Theory base 16
 1.8.3 When? 16
 1.8.4 Why? 17
 1.9 The working of the facility 17
 1.10 Research methods to be used 17
 1.10.1 Data collection 17
 1.10.2 Data analysis and interpretation 17
 1.10.3 Correlation research 17
 1.10.4 Simulation research 18
 1.10.5 Logical argument 18
 1.10.6 Literature 18
 1.11 Validity of material and research 18
 1.12 Accomodation 19
 1.12.1 Training facilities 19
 1.12.2 Counseling 19
 1.12.3 Trial housing 19
 1.12.4 Teaching 19
 1.12.5 Therapy 19
 1.12.6 recreational facilities 19
 1.12.7 Details 19
 1.13 Context 20
 1.14 Precedents 20
 1.15 Conclusion 20

2. Design philosophy
 2.1 Design philosophy 21
 2.2 Response 21
 2.3 Context 21
 2.4 Physical translation 21
 2.5 Context importance 22
 2.6 Atypical physiques 22
 2.7 A stranger’s view 23
3. Normative position
3.1 Context recognition. 24
3.2 The design problem statement 24
3.3 The problem with design 24
3.4 The focus of the problem in short 24
3.5 Further reference 24

4. Perceiving disabled people and acting for them
4 Barriers to inclusion 25
4.1 The physical condition of disabled people 25
4.2 Social barriers 25
4.3 Two prominent models 25
4.3.1 Social model 25
4.3.2 Medical model 25
4.4 Bio-sociological approach 25
4.5 Conclusion 25

5. Physical context
5.1 History of the area 27
5.1.1 History of places 27
5.2 Preamble to the site 28
5.3 Sustainable or not 28
5.4 Approach to the site 28
5.5 Interpreting the city 29
5.6 Frameworks 28
5.7 Rationalising the choice of site 29
5.8 Spatial framework 30
5.8.1 Legibility 30
5.8.2 Accessibility 30
5.8.3 Vitality 31
5.8.4 Mass to space relation 31
5.8.5 Robustness 31
5.9 Geological information 32
5.9.1 Meintjeskop fault 32
5.9.2 Hekpoort Andesite 32
5.9.3 Groundwater 32
5.10 Climatic information 32
5.11 Expanded movement mapped 33
5.12 The nature of movement 35
5.13 Levels of perception 35
5.14 Trees 37
5.15 Conclusion 37

6. Mandela Development Corridor crit
6.1 Introduction 39
6.2 Aims of the framework 39
6.2.1 Links 39
6.2.2 Historic elements and destinations 40
6.2.3 Current challenges 40
6.3 Architectural spatial vision 41
6.4 A balanced movement network 41
6.5 A local district network 42
6.6 Investment in the public realm 42
6.7 Connecting precincts 44
7. The South African context
7.1 Social exclusion during the property development process 46
7.2 Determinants of a developer’s reaction 47
7.3 Defining disability 48
7.4 Human rights 48
7.5 The nature of spinal cord injuries 49
7.6 Employment equity 50

8. Universal design
8.1 The popularisation of Universal design 52

9. Inclusive design
9.1 Comparing non-inclusive to inclusive design 54

10. Design discussion
10.1 Specific design measures 56
10.2 Physical context 62
10.2.1 Views to influence the design 62
10.2.2 Movement routes 63
10.2.3 Site scale and hierarchy 64
10.2.4 Climatic context 66
10.2.5 Inter-site connectedness 68
10.2.6 Conclusion 69
10.3 Handi-capable factors 70

11. Precedents
11.1 Physical precedents 72
11.2 Non-physical precedents 72
11.2.1 Systems 72
11.2.2 Psychological 72
11.3 North Toronto community centre 75
11.4 Newcastle town hall 75
11.5 Jerusalem city hall 77
11.6 York University student centre 77
11.7 Goggenheim museum 78
11.8 The modular 78
11.9 Symbolistic art 78
11.10 Personal interviews 80
11.10.1 Therapists interviewed 80
11.10.2 Dorothy-Ann Howitson 81
(president of The National Association for The Disabled) interviewed 81
11.11 Wheelchair experience (an experiment) 81

12. Technical investigation
12.1 Movement, access and security 85
12.2 Materials used 87
12.3 The working of the facades 88
12.4 Lighting 89
12.5 Acoustics between segments 93
12.5.1 Classroom acoustics 93
12.6 Airconditioning 94
12.7 Solar panels and heating 97
12.8 Water movement 98
13. Technical documentation

14. Appendices

Chapter 12 appendix:
14.1 Materials
14.1.1 Pretoria regionalism
14.1.2 Materials of the vernacular
14.1.3 Economic context
14.1.4 Climatic context
14.1.5 Physical context

Chapter 3 appendix:
14.2.1 Who am I?
14.2.2 Why inclusive design?
14.2.3 Dualistic mindset
14.2.4 Influence on normative position
14.2.5 Modern philosophy
14.2.6 Influences on normative position
14.2.7 Modern movement
14.2.8 Nietzsche
14.2.9 Influence on normative position
14.2.10 Design culture

14.3 Pragmatic constraints
14.3.1 Occupation
14.3.2 Influence on design
14.3.3 Sanitary
14.3.4 Facilities for disabled people
14.3.5 Fire regulations

15. References and conclusion
A psychosocial Adjustment Centre For People With Spinal Cord Injuries

Fig.1 The drawingboard. The starting place of any project.

Fig.2 Disabled person in Kimberley

Fig.3 Divided access at the Big Hole in Kimberley-a positive experience for the person using the scenic ramp

Fig.4 Disabled person in Kimberley struggling to move

Fig.5 Disabled access in Kimberley

Fig.6 Disabled person in Kimberley in a negative context

Fig.7 Disabled access in Kimberley-a negative experience.

Fig.8 A stumbling block

Fig.9 Uneven pavement

Fig.10 Historic building with poor access

Fig.11 First concept model.

Fig.12 Previous project by the author Salvokop shed-context responsive

Fig.13 Previous project by the author Parking garage-Movement context

Fig.14 Permeable design goes hand-in-hand with providing for movement in a building. (a contextual response)

Fig.15 The main barrier to inclusion is movement. Movement thus formed the base from which barriers were addressed in the design of the centre.

Fig.16 Showing a site that was designed with a singular function, parking.

Fig.17 Ramp configurations-Probably the main concern in terms of physical context due to the parameters set by SABS and the connection needs of the site itself.

Fig.18 Marthinus Pretorius, founder of Pretoria. from http://www.museumpark.co.za/burgerspark.htm

Fig.19 Church square. from http://www.museumpark.co.za/burgerspark.htm

Fig.20 both from http://www.museumpark.co.za/burgerspark.htm

Fig.21 Site description

Fig.22 Sustainable technology Dubai

Fig.23 Precinct Pretoria CBD (Government archive)

Fig.24 Ground-figure

Fig.25 Figure-ground

Fig.26 Movement along the central axis next to the Apies River

Fig.27 Bridge crossing the Apies River culvert

Fig.28 Movement towards the CBD

Fig.29 Movement along the Apies River

Fig.30 Hospital Precinct Defined

Fig.31 Movement towards the Union Buildings

Fig.32 Moving towards the Psychosocial Adjustment Centre

Fig.33 Relations to the MDC in movement terms

Fig.34 Movement into the MDC

Fig.35 Movement precedent: wooden pathways to provide easy access. The right balance of focus upon disability.

Fig.36 Building mass to create a certain feeling when crossing between.

Fig.37 Perception levels

Fig.38 Perception levels

Fig.39 Trees (original picture gathered from National Archive)

Fig.40 Names

Fig.41 Access and squares

Fig.42 Building importance and Links

Fig.43 Proposed development

Fig.44 400m radius

Fig.46 Pedestrian movement

Fig.47 Local districts

Fig.48 Zones

Fig.49 Important social areas

Fig.50 Views

Fig.51 Building levels

Fig.52 Edge relation

Fig.53 Transport nodes

Fig.54 Role in the city

Fig.55 Precinct relation

Fig.56 South Africans tend to disregard the needs of disabled people and cut them from society. The centre reacts by creating opportunity for interaction like the area in front of the workshops.
Unequal employment leaves some people without the basics needed in order to survive.

People might surprise their employers upon a mere opportunity to work.

Blind people especially need a sense of safety, hence the enclosed areas for example.

Avoiding stark contrasts between outside and inside benefits all users.

Proper access is universally necessary.

Design elements like lifts can be used by all of the users of the centre irrespective of their physical state.

Differing needs for different disabilities.

Physical states differ from person to person.

Certain "unknown" needs of disabled people like the strategic use of natural lighting can only be realised if they are directly included in the design process.

Working in a group has the advantage of a wide variety of inputs being given.

Final computer model.

Detail 1 shading zones.

Detail 2 movement texture.

Detail 3 ramp detail.

Detail 4 bump rail and texture strip.

Detail 5 ramp movement.

Detail 6 door detail.

Detail 7 window cleaning and louvre movement.

Detail 9 chair and desk detail.

Detail 8 ramp shielded from glare.

Detail 10 retractable shading.

View connection to Nursing College.

Fig. 57 Scenario 1-pure commercial construction. Mostly disregards context.

Fig. 58 Scenario 2- Rural or constrained construction. A context responsive approach.

Fig. 59 Discriminatory regulations.

Fig. 60 Access being denied to people in wheelchairs to the use of steps as the only means of rising.

Fig. 61 The actions one does may one day lead to injuries that can cause disability.

Fig. 62 The actions one does may one day lead to injuries that can cause disability.

Fig. 63 Unequal employment leaves some people without the basics needed in order to survive.

Fig. 64 People might surprise their employers upon a mere opportunity to work.

Fig. 65 Blind people especially need a sense of safety, hence the enclosed areas for example.

Fig. 66 Avoiding stark contrasts between outside and inside benefits all users.

Fig. 67 Proper access is universally necessary.

Fig. 68 Design elements like lifts can be used by all of the users of the centre irrespective of their physical state.

Fig. 69 Differing needs for different disabilities.

Fig. 70 Imrie, Hall (2001:15) The basics of universal design.

Fig. 71 Physical states differ from person to person.

Fig. 72 Imrie, Hall (2001:19)

Fig. 73 Certain "unknown" needs of disabled people like the strategic use of natural lighting can only be realised if they are directly included in the design process.

Fig. 74 Working in a group has the advantage of a wide variety of inputs being given.

Fig. 75 Final computer model.

Fig. 76 Detail 1 shading zones.

Fig. 77 Detail 2 movement texture.

Fig. 78 Detail 3 ramp detail.

Fig. 79 Detail 4 bump rail and texture strip.

Fig. 80 Detail 5 ramp movement.

Fig. 81 Detail 6 door detail.

Fig. 82 Detail 7 window cleaning and louvre movement.

Fig. 83 Detail 9 chair and desk detail.

Fig. 84 Detail 8 ramp shielded from glare.

Fig. 85 Detail 10 retractable shading.

Fig. 86 View connection to Nursing College.

Fig. 87 View connection to bypass.

Fig. 88 View connection to PTA central.

Fig. 89 View connection to Apies River.

Fig. 90 Movement patterns to form primary design generator.

Fig. 91 Movement working as design generator.

Fig. 92 View and scale connection to PTA central.

Fig. 93 Important buildings in terms of scale.

Fig. 94 Views from the Psychosocial Adjustment Centre.

Fig. 95 Moedersbond scale.

Fig. 96 Trial housing scale.

Fig. 97 Heatstack working.

Fig. 98 Trees on site.

Fig. 99 Trees on site.

Fig. 100 Northern exposure.

Fig. 102 Trees on site.

Fig. 103 Trees on site.

Fig. 104 Trees on site.

Fig. 105 TUKS occupational therapy dept. north of site.

Fig. 106 TUT ladies residence to south-west of site.

Fig. 107 SA Womens Organisation to south-east.

Fig. 109 Derelict pathway to union bldgs.

Fig. 108 Connection to prospective trial housing block.

Fig. 110 Connection over Theodore Hove Street.

Fig. 112 Connection to prospective trial housing block.

Fig. 113 Northern exposure.

Fig. 115 Building chairs.

Fig. 116 Adapting a chair.

Fig. 117 Social interaction.

Fig. 118 Accepting yourself.

Fig. 119 Measuring pressure.

Fig. 120 Accepting yourself.

Fig. 121 Painting.

Fig. 122 Accepting yourself.

Fig. 123 Karate.

Fig. 124 The manner in which spaces are treated during design can be deducted from the end product. Precedents aids in this regard by providing an example as to space treatment.

Fig. 125 Work context - being able to perform everyday tasks

Fig. 126 Outdoor context - being able to perform extraordinary tasks

Fig. 127 Home context - basic difficulties removed

Fig. 128 Toronto Community Centre section

Diamond, Schmitt (1996:67)
Building designed by A.J. Diamond, D. Schmitt and company 1968-1995

Fig. 129 Toronto Community Centre aerial view

Diamond, Schmitt (1996:64)
Building designed by A.J. Diamond, D. Schmitt and company 1968-1995

Fig. 130 Toronto Community Centre ramp

Diamond, Schmitt (1996:64)

Fig. 131 Newcastle Town Hall entry

Diamond, Schmitt (1996:61)

Fig. 132 Newcastle Town Hall facade

Fig. 133 Jerusalem city hall

Diamond, Schmitt (1996:73)

Fig. 134 Jerusalem City Hall portico

Diamond, Schmitt (1996:78)

Fig. 135 Jerusalem City Hall visual link

Diamond, Schmitt (1996:78)

Fig. 136 Jerusalem City Hall social

Diamond, Schmitt (1996:68)

Fig. 137 York Univ. section

Diamond, Schmitt (1996:82)

Fig. 138 Newcastle Town Hall

Diamond, Schmitt (1996:58)

Fig. 139 York Univ. linking colonnades

Diamond, Schmitt (1996:82)

Fig. 140 York University - natural lighting

Diamond, Schmitt (1996:82)

Fig. 141 Guggenheim Museum New York - movement central. Fleming, W (2001:655) Building by Frank Lloyd Wright

Fig. 142 Guggenheim Museum New York - movement central. Fleming, W (2001:655) Building by Frank Lloyd Wright

Fig. 143 Notre-Dame-du-Haut, Ronchamp, France. Modular used. Fleming, W (2001:656) Building by le Corbusier

Fig. 144 Pompidou National Centre for Arts and Culture - movement clear. Fleming, W (2001:660) Building by Renzo Piano and Richard Rogers

Fig. 145 Mont Ste.- Victoire - sensory experience. Fleming, W (2001:574) Painting by Paul Cezanne

Fig. 146 Pompidou National Centre for Arts and Culture - movement clear. Fleming, W (2001:661) Building by Renzo Piano and Richard Rogers

Fig. 147 Final concept model

Fig. 148 Final concept model

Fig. 149 First floor movement

Fig. 150 Sublevel movement

Fig. 151 Materials - gravel

Fig. 152 Materials - glass

Fig. 153 Groundfloor movement

Fig. 154 Vehicular movement

Fig. 155 Materials - galvanized steel

Fig. 156 Materials - brick

Fig. 157 Materials - concrete

Fig. 158 There is a definite limits to the capabilities of passive design. These limits needs to be realised and acted on by artificial means

Fig. 159 Final concept model

Fig. 160 Final concept model

Fig. 161 Counseling block thermal activity

Fig. 162 Final concept model

Fig. 163 Final concept model

Fig. 164 Final concept model

Fig. 165 + 166 Northern facades working

Fig. 167 Lighting of workshops and admin

Fig. 168 Key section for aircon discussion
*Influence on design:

Fig. 177 Permeable design goes hand-in-hand with providing for movement in a building. (A contextual response)

Fig. 178 Concept model no.1 western elevation

Fig. 179 Concept model no.1 southern elevation

Fig. 180 Concept model no.1 main entrance

Fig. 181 Concept model no.1 plan

Fig. 182 Previous project by the author

Fig. 183 Concept model no.1 plan

Fig. 184 Concept model no.1 bridge

Fig. 185 Previous project by the author sustainability

Fig. 186 Previous project by the author housing

Fig. 187 Previous project by the author PIA

Fig. 188 Previous project by the author Des Baker

Fig. 189 Previous project by the author exhibition

Fig. 191 Final computer model