REFERENCES

BROWN, R. 1814. General remarks, geographical and systematical, on the Botany of Terra australis. In M. FLINDERS. A Voyage to Terra Australs.: 2: 576.

DOLD, A.P. & COCKS, M.L. 2002. The trade in medicinal plants in the Eastern Cape province,

RILEY, H.P. 1963. Families of Flowering Plants of southern Africa. University of Kentucky Press,
Kentucky.

SIBANDA, S., NTABENI, O., NICOLETTI, M. & GALEFFI, C. 1990. Nyasol and 1,3(5)-Diphenyl-1-pentene related glycosides from *Hypoxis angustifolia*. *Biochemical Systematics and

SUMMARY

Systematics of Hypoxis (Hypoxidaceae) in southern Africa
by Yashica Singh

Promoter: Prof. Dr. A.E. van Wyk
Faculty of Natural & Agricultural Sciences
Department of Plant Science, University of Pretoria, Pretoria

PHILOSOPHIAE DOCTOR
March 2009

Hypoxis is a genus of about 70 species found in the warmer parts of all continents except Europe. About 50 species occur in Africa, with the core diversity in the eastern region of South Africa. It is difficult to draw up a practical key to species due to the high level of polymorphism in the genus caused by hybridization and apomixis that give rise to polyploids. The forms derived through these genetic mechanisms end up with characters that do correspond with the parent species, and this affects species limits. Further, the appearance of plants changes when the leaves develop. This work presents a systematic account of Hypoxis in the Flora of southern Africa region (South Africa, Swaziland, Lesotho, Namibia and Botswana). It focuses on providing a revision of the genus based on morphological data accumulated from extensive field and herbarium studies. Growth form, leaf shape, distribution and type of hairs on leaves, inflorescence type, flower colour and ratio of floral dimensions were found to be important diagnostic characters for the genus. By applying these characters, 28 species and 5 varieties are recognised in southern Africa, all with yellow flowers except for two species and one variety in which the flower colour is white. The revision includes notes on diagnostic characters and relationships, distribution and ecology, etymology and common English, Afrikaans, Zulu and Xhosa names, for each taxon. In being data deficient, eight species remain unresolved.

Also, in this work, leaf anatomy, seed micromorphology and preliminary phytochemistry of Hypoxis were investigated and data from these disciplines were used to augment the species relationships inferred from morphology. Further, an assessment of the phytogeography of the genus is presented. Within southern Africa, three species occur in Namibia and two species in Botswana. The rest of the species are concentrated in South Africa, Swaziland and Lesotho and species richness is greatest in grasslands of the summer rainfall region. Species have either a wide or narrow range of distribution. Distribution ranges are integrated into the key especially for species with very a narrow range, to assist with identification.
A few members of the southern African *Hypoxis* are of economic importance. One species in particular, *H. hemerocallidea* (earlier name *H. rooperi*) commonly known as the ‘African potato’ has become a popular medicinal plant in South Africa. The rhizomes of the species are a rich source of hypoxoside, a phenolic glycoside that hydrolyses to form its aglycone called rooperol which has been shown to be active in destroying some cancer cells. *H. hemerocallidea* is also the plant from which the properties of sterols and sterolins were correlated with enhancing the human immune system. The genus therefore has potential for treating patients with auto-immune diseases such as rheumatoid arthritis, cancer and possibly HIV and AIDS.

The main output of this study is the taxonomic treatment that enables users to determine accurate names of species, their relationships and distribution in the Flora of southern Africa region. It should be useful to botanists, pharmacologists, chemists and horticulturalists.
ACKNOWLEDGEMENTS

My inspiration to research the genus came from my promoter, Professor Braam (Abraham) E. van Wyk, who suggested the group. I thank him for the tremendous guidance and support on the project. His contributions and constructive comments are woven in the pages of this thesis.

I thank the South African National Biodiversity Institute (SANBI) and the University of Pretoria, Department of Botany for funding the project. I extend my appreciation to Professor Gideon Smith, Chief Director: Biosystematics Research and Biodiversity Collections at SANBI and Ms Rosemary Williams, past Curator of the KwaZulu-Natal Herbarium for supporting the project.

The Directors and staff of the following herbaria are thanked for loans of herbarium material and/or permission to remove samples of sheets: BLFU, BOL, GRA, J, KEI, NBG, NU, PRE, PRU, UDW, Umtamvuna Herbarium, UNIN; GAB, LMA, MAL, SRGH, WIND; EA; B, BM, BR, K, TCD, Z. Dr Paul Wilkin, Anna Haigh and Odile Weber, K; Dr John Parnell, TCD; Dr Ivan Tatanov, LE and Dr Mats Hjertson, UPS are acknowledged for their prompt responses to requests for scans of type and problem specimens. During the study, I also spent time examining specimens at B, BR, EA, K, NBG, PRE and POZ. The Curators and staff of these herbaria are thanked for accommodating my visits.

Thanks to many individuals who assisted in various ways: Professor Himansu Baijnath of the Ward Herbarium, University of KwaZulu-Natal, for his interest in the group and for discussions on monocots in general; Cuthbert Makgakga (PRE) with GMA methods and sectioning of leaf material; Estelle Potgieter and Anne-Lise Fourie (Mary Gunn Library, PRE) for sourcing literature; Hester Steyn and Sandra Turck (PRE) prepared the distribution maps; Adéla Romanowski (ex PRE) for processing of earlier SEM pictures; Alan Hall and Chris van der Merwe of the Electron Microscopy Unit, University of Pretoria for technical support on the SEM; Elsa van Wyk for arrangements at the University; Desiree Marimuthoo, Luyanda Tuko and Virta Maharaj based at NH for scanning slides and herbarium sheets; Angela Beaumont and Gillian Condy for illustrations, Jo Arkell of Port Edward translated Gert Nel’s treatment of Hypoxis from German to English and Dr Hugh Glen at NH translated a number of Latin descriptions and patiently made problems in nomenclature comprehensible. The following persons brought to my attention plants in the field and kindly accompanied me to sites for collection: Tony Abbott, Elize Cloete, Tony Dold, Dayalan Govender, Rhoda and Cameron McMaster, Wally Menne, Fred Smith and David Styles.

My colleagues at the KwaZulu-Natal Herbarium, Professor Neil Crouch, Dr Hugh Glen and Mkhipheni Ngwenya are thanked for their dependable backing with managing the KwaZulu-Natal Herbarium during my periods of leave to write-up the thesis. Helen Noble and Carol Apollos are also thanked for their support.

I gratefully acknowledge my parents who remain my strength.
Curriculum Vitae

The degree PhD: Yashica Singh

Yashica Singh completed her undergraduate and honours degrees at the University of Durban-Westville (now University of KwaZulu-Natal), and a higher degree in Education through the University of South Africa. She holds an MSc from the University of Pretoria, in which she examined the taxonomy of the economically important, South African endemic genus *Zantedeschia* (Araceae). Yashica is the Curator of the SANBI KwaZulu-Natal Herbarium in Durban. Over the past 14 years her contribution to plant systematics was focussed on the families Araceae and Hypoxidaceae in the Flora of southern Africa region. She has undertaken extensive field studies on *Zantedechia* and *Hypoxis* throughout South Africa, and is the author or co-author of several scientific and popular publications. She is co-editor of the book, ‘Rebirth of Science in Africa: a shared vision for life and environmental sciences’. Yashica served as the secretary of the local Committee for the South African Association of Botanists, and as a member on the South African National Committee of the International Union of Biological Sciences.

In her thesis, *Systematics of Hypoxis (Hypoxidaceae) in southern Africa*, the promovenda re-evaluated the classification of *Hypoxis*, a group of flowering plants mainly confined to grassland. Commonly known as African potatoes or yellow stars, some members are of considerable importance in traditional medicine. Twenty eight species have been identified, making southern Africa the most species rich region for the genus world-wide. Seed micromorphology is shown to be particularly useful for classification purposes. The identities of several previously poorly understood taxa have been clarified, resulting in a considerable improvement of the classification of the group.

Promoter: Prof. Dr. A.E. van Wyk
External examiners: Dr. D.A. Snijman (South African National Biodiversity Institute)
 Prof. Dr. I. Nordal (University of Oslo, Norway)