Investigation into the effect of cooling conditions on the particle size distribution of titania slag

Hanlie Kotzé

A thesis submitted in partial fulfilment of the requirements for the degree

PhD (Metallurgical Engineering)

In the Department of Materials Science and Metallurgical Engineering, Faculty of Engineering, University of Pretoria

Promoter: Professor P.C. Pistorius

June 2007

© University of Pretoria
Acknowledgements

Several people over the years contributed to this work. It was, and still is, a privilege to work with all of you.

My appreciation goes to the staff of Exxaro R&D and Exxaro KZN Sands. The block cooling trials during campaigns 9 and 10 and the subsequent plant trials were characterised by intensive preparations, sampling and monitoring. My gratitude to all those involved in these activities for their unselfish contributions and time. My sincere appreciation to Exxaro KZN Sands for financially supporting this work.

My gratitude goes to all official and unofficial mentors who guided my growing process over the years: Dr. Willem van Niekerk, Matie von Wieligh, Geoff Randall, Johan Meyer, Gerrit van Zyl, Jeremy Bosman and Rob Hattingh. I learned immensely from you. May I bless others with the same dedication you have afforded me.

My deep gratitude to the staff of the University of Pretoria - Professor Chris Pistorius, Professor Johan de Villiers and Jeremy Bosman: thank you for your dedicated time, patience, contributions and support. Thank you Dr. Johan Zietsman for coding the block cooling model!

To my parents who somehow, through loving me unconditionally, taught me tenacity: thank you. May I be a mirror of your values.

To Manie and Willemien: thank you for showing me the balance in life. It seems appropriate that I had to understand this, before I could complete this work. Thank you for your motivation during the completion stages (which seemed never ending) of this thesis.

Thank You for the opportunities You are giving to me throughout my whole life. Thank You for your immensely beautiful and interesting creation. May I never cease to wonder at it’s intricate, yet unadorned, interactions.
Abstract

Titania slag is a feedstock to the pigment industry, which in turn provides titania pigment to producers of everyday products like paper, cosmetics and toothpaste. Titania slag is the primary product of the pyrometallurgical process of ilmenite smelting – the other products being iron and CO gas. Titania slag is typically tapped from the furnace into blocks of approximately 20 tons. After cooling these blocks are crushed and milled to size fractions suitable for the processes of the pigment producers. These processes are broadly grouped into two types of technology: the chloride route (during which titania slag is reacted with chlorine and subsequently re-oxidised thereby removing the impurities) and the sulphate route (in this process the titania slag is purified after dissolving the slag in sulphuric acid). Due to the nature of these two processes, several specifications are imposed on the quality of the titania slags.

The fluidised-bed technology used in the chloride process limits the size distribution of the slag to between 106 µm and 850 µm. Ilmenite smelting industries consequently crush and mill the titania slag to below 850 µm. The fraction below 106 µm is then sold to the sulphate market. Since the coarser chloride grade product is the more valuable product, slag producers continuously strive to improve the ratio between the coarser and finer fractions.

This study reports on parameters which influence the particle size distribution of titania slags and therefore the split between the coarser (more valuable) and finer (less valuable) products. Pilot-scale slag ingots were used to identify chemical and process variables which influence the yield of coarser material. The microstructure of as-cast and milled slag was examined, and indicated a role of silicate phases in the crushing behaviour. Industrial-scale slag ingots were used to test whether the roles of tapping rate and water cooling (as identified from the pilot-scale ingots) also applied under industrial conditions. A numerical method was applied to estimate the thermal conductivity of the solidified slag (from measurements on pilot-scale ingots), and to predict the cooling and solidification behaviour of industrial-scale ingots.

The study concludes that the chemical composition and cooling conditions of the slag block play central roles in the final particle size distribution of the slag.

Key words: titania slag; pseudobrookite; solidification; ilmenite smelting
Table of Contents

1 Introduction 15
 1.1 TiO₂ pigment feedstock 16
 1.2 The origin of Exxaro KZN Sands 16
 1.3 Ilmenite smelting and slag processing 17
 1.4 Problem statement 19
 1.5 Research approach 22

2 Part 1: Pilot Plant Trials 23
 2.1.1 Background 24
 2.2 Slag block cooling 25
 2.2.1 Experimental procedure 25
 2.2.2 Results 26
 2.2.3 Conclusions 30
 2.3 Crushing and Milling 33
 2.3.1 Experimental procedure 33
 2.3.2 Results 36
 2.3.3 Conclusions 45

3 Part 2: Plant Trials 48
 3.1 Background 49
 3.2 Block selection 49
 3.3 Tumbling tests 52
 3.3.1 Method 53
 3.3.2 Results 54
 3.4 Compression tests 59
 3.4.1 Method 59
 3.4.2 Results 62
List of Figures

Figure 1 Block diagram depicting the process flow of the Exxaro KZN Sands Slag Processing Plant. .. 18

Figure 2 Aerial photograph of the furnace and metal treatment building (upper left hand corner) and slag processing building (lower right hand corner). The block yard is located between these two buildings. ... 19

Figure 3 Calculated partial pseudobinary section through the FeO-TiO₂-TiO₂ system, at an FeO mole fraction of 0.13. ... 21

Figure 4 Slag pot with 1.5 t capacity used during the Campaign 9 slag block cooling trials. ... 24

Figure 5 Grid and tray stand on which slag blocks were placed to cool ... 27

Figure 6 Slag block under water cooling during Campaign 9 ... 27

Figure 7 Average surface temperature of slag blocks cooled in air .. 27

Figure 8 Average surface and subsurface temperatures of tap 59 (isolating block). 28

Figure 9 Example of decrepitated material showing the flake-like structure which captures air to form an isolating layer round the block when left to accumulate. ... 28

Figure 10 Average surface temperature of blocks cooled continuously with water 29

Figure 11 Average surface temperature of blocks cooled intermittently with water 29

Figure 12 Average surface temperature of blocks after submersion in water 30

Figure 13 Block diagram showing the breaking and crushing procedure of the Campaign 9 blocks. ... 34

Figure 14 Correlation between FeO and TiO₂ as analysed during the Campaign 9 trials. . 36

Figure 15 Particle size distributions of the screen series in the crushing & milling trials: (a) air cooled block; (b) intermittent water cooling, and (c) continuous water cooling. Tap numbers are indicated in brackets in graph headings. Numbers 1 to 4 indicate the change in size distribution following initial crushing (nr 1), and three subsequent steps of recirculating oversize (nr 2 to 4). ... 36

Figure 16 -106µm vs. +850µm mass percentages of the Campaign 9 crushed blocks.............. 37

Figure 17 Mass percentage fines generated (-106 µm fraction) per milling step 1 to 4, shown per cooling method (tap numbers are shown in brackets), arranged from worst to least fines generation... 38

Figure 18 Mass percentage fines generated (-106 µm) ordered with increasing (%SiO₂+Al₂O₃(glass)+CaO). ... 39
Figure 19 Mass percentage -106µm generated shown against increasing tapping rate......39
Figure 20 Mass percentage residual coarse fraction (+850µm) ordered from worst to best. ..
..41
Figure 21 Residual coarse fractions arranged in order of increasing specific surface area of
the blocks – after cooling...42
Figure 22 Residual +850 µm with increasing block mass yield..43
Figure 23 Residual coarse fraction arranged in order of increasing (SiO2+Al2O3(glass)+CaO)...
..43
Figure 24 Residual coarse fraction arranged in order of increasing tapping rate.................44
Figure 25 Residual coarse fraction arranged in order of increasing equivalent Ti2O3.........44
Figure 26 Correlation between %FeO and %TiO3 for pilot plant slags (solid squares and
line; equation on right hand side) and plant slags (open circles and dotted line; equation on left
hand side). ..50
Figure 27 Average surface temperature of blocks L1R9 and L1R11 after closure of
the cooling water...51
Figure 28 Photograph of a plant size block showing fine decrepitated material and large
chunks breaking off from the block corners. As an indication of scale, the bottom diameter of
the block is approximately 1.8 to 2 m. ..51
Figure 29 Particle size distribution of the block yard remains – decrepitated material and
coarser sections...52
Figure 30 Particle size distribution of the feed to and product material from the tumbling
testwork done on block L1R11 (slow, 10 days). ..53
Figure 31 Average particle size distribution of the four blocks (90% confidence intervals
shown). Triangles represent higher tapping rates, while circles represent lower tapping rates.
Open symbols of 3 days water cooling; solid symbols for 10 days water cooling......................54
Figure 32 Particle size distributions of the tumble test feed and products.55
Figure 33 -106µm fraction (fines) generated with each tumbling test (solid markers). The
fines present in the feed are shown by the open markers...56
Figure 34 Ratio of -106 µm in the product to that in the feed of the tumbling tests. Circles
denote low tapping rates and triangles high tapping rates. Solid symbols denote 10 days of
water cooling while open symbols represent 3 days of water cooling.56
Figure 35 The +850 µm fraction (residual coarse) remaining after each tumbling test (solid
symbols). The coarse material present in the feed is shown by the open symbols.................57
Figure 36 Ratio of the +850 μm in the product to that in the feed of the tumbling tests. Circles denote low tapping rates and triangles high tapping rates. Solid symbols denote 10 days of water cooling while open symbols represent 3 days of water cooling...........................58

Figure 37 Sketch of a typical Loesche mill. ...59

Figure 38 Schematic depiction of the experimental set-up for the compression testwork. ..60

Figure 39 Example of distance and force against (a) time and (b) compression energy as recorded and calculated respectively during the compression tests..61

Figure 40. Distance (a) and maximum force (b) per test as recorded during the compression tests. ..61

Figure 41. Specific energy exerted on the samples during the compression tests.62

Figure 42 (a) Amount of fines generated with the 1st to 6th run of the compression test series for the four blocks. (b) Specific energy (kJ per mass% -106 μm) per compression run for the four blocks. ..62

Figure 43 (a) Residual +850 μm mass% from the 1st to 6th test of the compression test series for the four blocks; (b) Specific energy (kJ per mass% +850 μm) per compression run for the four blocks..63

Figure 44 Average % -106 μm and specific energy in kJ/% -106 μm per compression test for each of the four blocks. (Error bars showing a 95% confidence interval)...............................64

Figure 45 Average % +850 μm per compression test for each of the four blocks. (Error bars showing a 95% confidence interval)..64

Figure 46 Cross section of block 60 showing the horizontal groove where the drill core was removed. The block surface is apparent from the rusty coloured area in the upper left hand corner of the photo. ...66

Figure 47 Microstructure of the chill zone in the pilot-plant slag block, next to the mould. The outer surface is at the bottom of both images. The higher-magnification image at right shows that this region largely consists of two phases; the darker phase (marked "R") was found to be TiO₂ (rutile or anatase). ..67

Figure 48 Typical microstructures found within the pilot-plant slag block, near the surface of the slag block, but outside the oxidised zone (top two images), halfway between the surface and the centre (middle two images), and at the centre (bottom two images). The light-gray matrix phase is karrooite (M₃O₅), the black lines are cracks, larger black areas are pores, dark grey areas are silicate phases (S₁ and S₂), and the phase with intermediate brightness is TiO₂ (likely rutile; indicated with R). ..68

Figure 49 Typical microstructures found within the industrial-plant slag block, near the surface of the slag block, (top two images), within the body of the slag block (middle two images), and at the centre (bottom two images). Phase identification is as for the images of the pilot-plant slag block..69
Figure 50 Pairs of images of the same particles of chloride-grade crushed slag. Arrowed black patches in the back-scattered electron images (BEI) at left indicate silicates. The secondary electron images (SEI) at right show the particle morphologies.72

Figure 51 Pairs of images of the same particles of fine-grade crushed slag. Arrowed darker particles in the back-scattered electron images (BEI) at left indicate silicates. The secondary electron images (SEI) at right show the particle morphologies..73

Figure 52 %Oxide per average particle size fraction (a) SiO₂, Al₂O₃ and CaO, and (b) Cr₂O₃, MgO, MnO and V₂O₃..74

Figure 53 Relationship between equivalent %FeO, equivalent %Ti₂O₃ and %TiO₂ of slags produced at the pilot facility during campaign 9 and at the industrial scale plant.75

Figure 54 Sketch of the tapping system layout..76

Figure 55 Photographs of the tapstream of (a) fast and (b) slow flowing tapstreams.76

Figure 56 Tapping rate vs. %Ti₂O₃. ..77

Figure 57 Tapping rate vs. superheat..77

Figure 58 Superheat vs. %Ti₂O₃. ..77

Figure 59 Equivalent %FeO vs. equivalent %Ti₂O₃ grouped for high, medium and low tapping rates. Also shown is the ratio for samples taken from the blocks following cooling in the block yard. The order of the correlations in the upper right corner corresponds with the order of the legend. ..78

Figure 60 Calculated section through the TiO₂-Ti₂O₃-FeO phase diagram, at a constant FeO mole fraction of 0.13 (assuming that Magnéli phases are absent). Phases are identified as follows: "sl" is the molten oxide (slag), "psb" is the M₃O₅ phase, "rut" is the rutile-based solid solution (TiO₂ with some Ti₂O₃ in solution), and "Fe" is metallic iron4.79

Figure 61 Change in phase relationships in high-titani um slag during solid-state oxidation above 550°C4..79

Figure 62 Tapping rate vs. %SiO₂. ..80

Figure 63 %FeO vs. %SiO₂. ..80

Figure 64 %FeO vs. %SiO₂ from campaign 9 data. ..80

Figure 65 Mineralogy of blocks (a) L2R9 and (b) L1R11 when exposed to air at 100 ºC. ...82

Figure 66 Temperature of the one dimensional shape as a function of its distance. Solid lines represent the results of the analytical solution, while broken lines represent the numerical results. The unit of the numbers is in hours...87

Figure 67 The shell thickness of a one dimensional shape cooling from 1550 °C. The solid line represent the solution from the analytical method described above, while the triangles represent that of the numerical model as calculated by FlexPDE.87
Figure 68 Results of an energy balance check conducted over a pilot scale size slag block. ...90

Figure 69 A sketch of the block illustrating the important shape notations.91

Figure 70 Example of the mesh configuration for the slag block (Z and R are in metre). Areas of denser node configurations are shown where FlexPDE reduced the node size to remain within the accuracy tolerance of 0.1%. ...93

Figure 71 Analyses (mass%) of industrial plant slags. ..94

Figure 72 Predicted effect of temperature on (a) the fraction liquid and (b) the enthalpy (relative to that of solid slag at 298 K) of slag no. 4. The broken line gives the linear approximation which was used as model input. ...95

Figure 73 Heat losses from the vertical surface of a 1,365 kg block. The black line represents model results with constant heat capacity of the block; while the brown line represents model results where the pot heat capacity is equivalent to that of pure iron.97

Figure 74 Heat capacity of pure iron ...98

Figure 75 Simplified conical pot and block, which was used to estimate the thermal contact resistance. ...101

Figure 76 Pot surface temperatures as predicted by the cooling model (lines). Symbols indicate surface measurements derived from actual temperature measurements within the pot shell. ...102

Figure 77 Heat losses from the horizontal surface of the block during secondary cooling. The different lines show the sensitivity of heat losses to the assumed height of the air gap between the block surface and ground ..103

Figure 78 Heat transfer coefficients for natural cooling in air.......................................105

Figure 79 Boiling curve associated with quenching of a hot surface in a stagnant pool.17,18106

Figure 80 Heat transfer coefficients for cooling in water with varying (a) volumetric water flows (b) drop speeds and (c) drop diameters. Surface temperatures are in °C.................................107

Figure 81 Model-predicted results for block surface temperatures for different of water volumetric flow rates and drop speeds ..107

Figure 82 Surface temperature and heat transfer coefficients for intermittent water cooling at four positions on the block. “Flat centre” is the centre of the horizontal surface, “corner” is the corner between the horizontal and inclined surfaces of the block, “rt : zt” is the join on the surface of the spherical and conical block volumes, and “round end” is the centre of the round end of the block ..108

Figure 83 Photograph of a slag block and pot directly after thermocouples were inserted into the block. For support the refractory tubes were inserted into the slag through slots in a steel channel which was placed horizontally over the pot edge. ...109
Figure 84 Photograph showing the configuration of the thermocouples which were inserted into the slag blocks.

Figure 85 Thermocouple positions for blocks 37 and 38 tapped during Campaign 10. Alphabetic subscripts denote thermocouple positions inserted into the slag, while numeric subscripts denote positions of thermocouples inserted into the pot shell.

Figure 86 RMS error (in °C) of actual vs. model predictions for slag temperatures within tap 37.

Figure 87 RMS error (in °C) between actual temperature measurements and model predictions for tap 38.

Figure 88 RMS errors (in °C) between the actual and model predicted slag temperatures with $k_{\text{slag}} = 0.00175T + 0.3$. (a) Liquidus and (b) solidus temperatures were varied with ± 2% and ± 5%.

Figure 89 Internal slag temperatures for (a) tap 37 and (b) tap 38. Lines indicate model predictions, while symbols represent actual temperature measurements ($k=0.00175T+0.3$).

Figure 90 Best fit k-values for taps 37 and 38. For modelling purposes the k-value was expressed as given by the solid black line.

Figure 91 Comparison of the fitted thermal conductivity of the solidified slag (heavy line), with literature data on the range of thermal conductivity of natural rocks (broken line), and synthetic karrooite (MgTi_2O_5) and pseudobrookite (Fe_2TiO_5). For the M_2O_5 materials, the arrows indicate the direction of temperature change during the measurements.

Figure 92 Internal structure of a partially solidified block, as revealed by failure during tipping after primary cooling in the pot.

Figure 93 Temperature contours (scale in thousands of °C) of an 18 t block after 18 hours primary cooling (in pot).

Figure 94 Internal macro structure of solidified blocks showing the shell formation during primary cooling and the ball formation in the centre of the block: (a) and (b) approximate 18 ton blocks; (c) sketch illustrating the ball and dome macro structures which are displayed in (a) and (b).

Figure 95 Surface temperatures of two 18 ton blocks. Symbols represent actual measurements while lines represent model predictions.

Figure 96 Surface temperatures of an 18 ton block; times are expressed relative to the time of closing the taphole.

Figure 97 Remaining liquid core and shell thicknesses of a slag block cooling in a pot up to complete solidification.

Figure 98 Comparison of the remaining liquid and mushy cores, for slag blocks cooled in the pot, in air and with water cooling.

Figure 99 Shell growth of the slag block for the first half hour of cooling in a pot.
Figure 100 Thermal conductance for horizontal and inclined (vertical) surfaces. The units of the values within the above graphs are in seconds, counting from closing of the taphole. Time increments run according to the series 0, 2, 4, 8, 16, 32, 64, 100, 200, 400, 800, 1600, 3200 ..122

Figure 101 Surface temperatures along the inclined surface of the block for (a) cooling in water and (b) cooling in air. 0 denotes the block centre at the round end of the block, with the corner between the horizontal and inclined surface the furthest point. ..123

Figure 102 Photograph of a 17-18 ton slag block showing typical breaking off of the corner between the horizontal and inclined surfaces. To the left of the broken-off corner decrepitated material has formed.124

Figure 103 Average surface temperatures of (a) air and (b) water cooled blocks. Maximum and minimum surface temperatures are shown with dotted lines. ...125

Figure 104 Internal temperature gradient of an air and water cooled block along the line from the centre point of the block to the transition point between the spherical and conical section of the block – points (0;0) and (r_t; z_t) respectively on Figure 93. Solid lines indicate air cooling while dotted lines indicate water cooling. ..126

Figure 105 Surface temperatures of a slag block cooled between 1 and 10 days under water and allowed to re-heat for 1 hour. ..127
List of Tables

Table 1 | Summary of the cooling methods used during the pilot plant trials of Campaign 9...26
Table 2 | Blocks produced during campaign 9 which were used for the crushing trials.33
Table 3 | Correlation coefficients of parameters affecting the fines generation during crushing & milling. ...38
Table 4 | Comparison of the experimental worst to best ranking and that predicted by the regression model including the (SiO₂+Al₂O₃(glass)+CaO), tapping rate, block yield, specific surface area after cooling and equivalent %TiO₂. ...40
Table 5 | Correlation coefficients of independent variables affecting the residual coarse fractions during crushing. The best correlation coefficients were obtained by excluding the blocks named in the right hand column. ...42
Table 6 | Comparison between the actual worst to best order and the predicted order (including the block yield, specific surface area after cooling and glass phase variables).45
Table 7 | Details of the four blocks selected for the plant trials. ..50
Table 8 | Absolute values of the residual coarse fraction (+850 µm) of the tumbling products. ...58
Table 9 | Average numbers for the last 3 compression tests ran for each block, including 95% confidence intervals. ...63
Table 10 | Tap chemistry of block 60 (mass percentages; XRF) ..66
Table 11 | Average compositions (with 95% confidence intervals on average values), as found by EDS. Compositions are in mass percentages. For the karrooite phase, the Ti₂O₃ content was calculated by assuming that M₂O₅ stoichiometry holds. For the area analyses and silicate analyses, all titanium is expressed as TiO₂. ...70
Table 12 | Micro-analyses of dark regions (silicates) identified in crushed slag (mass percentages) ...72
Table 13 | List of shape notations and their meaning used in describing the block shape.91
Table 14 | Average compositions of eight groups of slags from the full plant dataset; each group spans a specific range of FeO contents. ...95
Table 15 | Parameters of linear approximations to thermodynamic properties, and fitted relationships. ...96
Table 16 | Input data used to estimate contact resistance for pilot-scale block, with estimated resistances. ...101
Table 17 | Constants used for calculation of the heat transfer coefficient as per equation (18) ...104
Table 18 Best-fit values for coefficients a and b for each of the thermocouples inserted into the slag blocks (expression: $k_{slag} = aT + b$).