The potential role of antibacterial, antioxidant and antiparasitic activity of *Peltophorum africanum* Sond. (Fabaceae) extracts in ethnoveterinary medicine

Edmund S Bizimenyera

B.V.M (Makerere University, Uganda); M.Sc (University of Nairobi, Kenya)

Submitted in fulfilment of the requirements for the degree of Philosophiae Doctor (PhD)

Phytomedicine Programme, Department of Paraclinical Sciences,
Faculty of Veterinary Sciences,
University of Pretoria.

Promoter: Prof Gerald E Swan
Co-promoter: Prof Jacobus N Eloff

November 2007
Peltophorum africanum (From Venter & Venter (2002), Making the most of Indigenous Trees)
Declaration

The experimental material and results described in this thesis is my original work (except where the input of others is acknowledged), conducted in the Phytomedicine Programme, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, and has not been submitted in any other form to any other University or academic institution. I declare the above statement to be true.

Signed: ..

Edmund S Bizimenyera

Date:
Acknowledgements

This study at the Programme for Phytomedicine, Faculty of Veterinary Sciences, University of Pretoria, was made possible by Makerere University that gave me study leave, and the Makerere University Staff Development Programme (currently Makerere University Human Resources Department) that provided the funding. Additional funding came from National Research Foundation, South Africa and the Faculty of Veterinary Science, University of Pretoria.

This study would not have been possible without the personal role of Prof. John Ssebuwufu, the then (2002) Vice Chancellor of Makerere University who, not only provided me with the University of Pretoria contacts for application for study, but also facilitated my getting the funds from the Staff Development Programme (against a background of many applicants) and my getting the generous study leave. My coming for full time study in South Africa for such long time would not have been pleasant without the consent, support and encouragement from my wife Elios Bizimenyera and the seven children (Eve Araduha, Edwin Nshuti, Elisha Bavakure, Erastus Ndakize, Enoch Ruhumuriza, Esther Mahoro and Eunice Mutoni). My daughter, Eve Araduha, bought me a good pair of bifocal tinted lens spectacles.

I would like to express my special thanks to my promoters Prof Gerald E Swan and Prof Jacobus N Eloff for their invaluable support, guidance and encouragement during the course of the study. Their financial and logistic support enabled my wife to visit and comfort me at Onderstepoort campus (of the University of Pretoria) each year (2003-2005). They also supported me financially to present papers at various scientific conferences, in addition to numerous dinners they organized for the entire Phytomedicine students group. Certainly, God will bless them abundantly.

In addition I wish to express my gratitude to many friends and colleagues who in one way or the other helped me over the course of my study. The advice, support and encouragement by Prof. Frank Bakunzi and Dr. Dibungi Luseba were helpful in the drawing up of the study protocol. Dr. John Githiori assisted in the in vitro, whereas Ms Santa Meyer, Drs Jan van Wyk and Adriano Vatta assisted in the in vivo anthelmintic work. Drs Lyndy McGaw, Irene Kamara and Faga Samdumu assisted technically in the course of extraction, biological assays, isolation and structural identification of compounds from Peltophorum africanum. Not to forget (and their acknowledgements appear in the articles published) Drs Vinny Naidoo, Havana Chikoto, Peter Masoko, Felix Nchu and Mutalib Aderogba who helped in the statistical or technical aspects. Ms Jenny Seagreen assisted in formatting the final draft.
My spiritual life was kept buoyant by my Pastors David Barbour and Lee Hobday and their congregations at Pretoria North Methodist and Hatfield Acts Fellowship Churches respectively. Thanks to Dr. James Oguttu and the Onderstepoort ladies led by Dr. Mandi Leibbrandt for the fellowship and for the transportation to and fro now O R Tembo (formerly Johannesburg) International Airport. Ms Denise Marais not only made our student life at Onderstepoort pleasant, but she also greatly facilitated my getting on the graduation programme November 2007.

I wish to express my appreciation to God for keeping my family healthy; all of us enjoyed good health throughout the period of study. May other members of my family also be encouraged, and succeed in their studies and lives. To God (who has put recipes for many diseases of man and animals in plants) be the Glory and Honour! Amen.
List of abbreviations

AOX Antioxidants
TAA Total antibacterial activity
MIC Minimum inhibitory concentration
DPPH 1,1-diphenyl-2-picryl hydrazyl
ANOVA Analysis of variance
WAAVP World Association for the Advancement of Veterinary Parasitology
TLC Thin layer chromatography
FAWE Formic acid: acetic acid: water: ethyl acetate (3:2:30:70)
BEA Benzene: ethanol: ammonium hydroxide (18:2:0.2)
CEF Chloroform: ethyl acetate: formic acid (18:8:2)
EMW Ethyl acetate: methanol : water (10:1.35:1)
INT p-iodonitrotetrazolium
NCCLS National Committee for Clinical Laboratory Standards
DMSO Dimethyl sulfoxide
UPBRC University of Pretoria Biomedical Research Centre
MTT 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide
TEAC Trolox equivalent antioxidant capacity
SEM Standard error of mean
EPA Environment Protection Agency
ABTS 2,2’-azinobis (3-ethylbenzothiazoline-6-sulfonic acid)
Publications

Full articles prepared from the thesis:

a) Published:

Bizimenyera, E. S., Swan, G. E., Chikoto, H., Eloff, J. N., 2005. There is a rationale for using *Peltophorum africanum* (Fabaceae) extracts in veterinary medicine. *Journal of South African Veterinary Association*, **76**: 54-58

b) Submitted:

Bizimenyera, E. S., Meyer, S., Naidoo, N., Eloff, J. N., Swan, G. E.
Efficacy of *Peltophorum africanum* Sond. (Fabaceae) extracts on *Haemonchus contortus* and *Trichostrongylus colubriformis* in sheep. *Veterinary Parasitology*.

Bizimenyera, E. S., Swan, G. E., Samdumu, F., McGaw, L. J., Eloff, J. N.

Bizimenyera, E. S., Swan, G. E., Samdumu, F., Kamara, I. B., Eloff, J. N.
Isolation and bioassay characterization of bergenin from the root extract of *Peltophorum africanum* Sond. (Fabaceae). *South African Journal of Science*.
Published conference abstracts from the thesis:

Conference presentations from thesis

a) Local

b) National and regional

Bizimenyera, E. S., Githiori, J. B., Eloff, J. N., Swan, G. E., 2005. *In vitro* ovicidal and larvicidal activity of *Peltophorum africanum* (Fabaceae) extracts against parasitic
nematodes of ruminants. 34th Congress of the Parasitological Society of Southern Africa, pg.16. **Magoebaskloof Hotel** (25-28th Sept 2005), Limpopo, South Africa.

c) **International**

Bizimenyera, E. S., Eloff, J. N., Swan, G. E., 2006. The potential of antioxidant-based therapeutics from *Peltophorum africanum* Sond. (Fabaceae) in treatment of

Summary

There is an increasing interest in ethnomedical and ethnoveterinary practices, especially as it relates to the use of medicinal plants for treating various ailments. As a result, the current trend in government health authorities is to integrate herbal medicine with primary heath care. This arises because nearly 80% of people in the developing world, particularly those from rural communities where modern drugs are unaffordable, inaccessible or, unavailable, depend on phytomedicine for primary healthcare. Despite this, however, most medical and veterinary professionals distrust herbal medicines due to concerns of scientific evidence of efficacy and safety. Hence, there is need for their validation, before herbal medicines gain wider acceptance and use. Traditional healers and rural farmers use extracts of *Peltophorum africanum* (a medicinal plant wide-spread in southern Africa and other tropical regions), to treat diarrhoea, helminths and abdominal parasites, dysentery, HIV-AIDS, acute and chronic pain, anxiety and depression, infertility, and to promote well-being and resistance to diseases.

To evaluate these ethnobotanical leads, dried leaves, bark and root from mature *P. africanum* (Fabaceae) trees were extracted with acetone, ethanol, dichloromethane and hexane. Chromatograms were made on silica gel plates. Thin layer chromatograms (TLC) were sprayed with 0.2% 2, 2-diphenyl-1-picryl hydrazyl (DPPH) for qualitative screening for antioxidants. Quantification of antioxidant activity was done in comparison with L-ascorbic acid and Trolox (6-hydroxy-2, 5, 7, 8-tetranethylchromane-2-carboxylic acid). With regard to the extracts, minimum inhibitory concentrations (MIC) were determined for *Staphylococcus aureus*, *Escherichia coli*, *Pseudomonas aeruginosa* and *Enterococcus faecalis*. The total antibacterial activity (TAA), signifying the volume to which active compounds present in 1 g of plant material can be diluted and still inhibit bacterial growth, was also determined. *In vitro* anthelmintic activity was evaluated by effects of acetone extracts on the egg hatching and larval development of parasitic nematodes *Haemonchus contortus* and *Trichostrongylus colubriformis*. The eggs and larvae of the two parasites were incubated in various concentrations of the leaf, bark and root extracts for two and five days respectively. Furthermore the efficacies of the acetone extracts were tested on lambs artificially induced with *H. contortus* and *T. colubriformis* infections. Toxicity was performed in brine shrimp and MTT assay on Vero monkey kidney cells.

The extracts had substantial activity against both Gram-positive and Gram-negative bacteria, with MIC values of 0.08 mg ml\(^{-1}\) for *Staphylococcus aureus* and 0.16 mg ml\(^{-1}\) for *Pseudomonas aeruginosa*; the corresponding TAA values were 1263 and 631 ml g\(^{-1}\). The acetone extracts of
the bark, and root of *P. africanum* had higher antioxidant activity than L-ascorbic acid (Vitamin-C) and Trolox (6-hydroxy-2, 5, 7, 8-tetramethylchromane-2-carboxylic acid), a synthetic vitamin-E analogue, and much higher than *Ginkgo biloba* extract (EGb 761). The standardized extract of *Ginkgo biloba* (EGb 761) is widely employed for its significant benefit in neurological disorders. The respective EC$_{50}$ for the *P. africanum* root, bark and leaf extracts, L-ascorbic acid, and EGb761 were 3.82 µg ml$^{-1}$, 4.37 µg ml$^{-1}$, 6.54 µg ml$^{-1}$, 5.04 µg ml$^{-1}$, and 40.72 µg ml$^{-1}$.

The extracts inhibited egg hatchability and larval development (from L$_1$ to infective stage L$_3$) of both *H. contortus* and *T. colubriformis* (both parasitic nematodes of ruminants) at concentrations of 0.2-1.0 mg ml$^{-1}$. The plant extracts, at concentrations of 5-25 mg ml$^{-1}$ completely lysed larval forms (L$_1$) and eggs of the nematodes. In all assays, the root extracts had higher antibacterial, antioxidant and anthelmintic activity than the bark and leaf. Although the extracts were safe and non-toxic, the reduction in faecal egg and adult worm counts in lambs infected with *H. contortus* and *T. colubriformis* was not statistically significant (P=0.073).

From the acetone extracts of the root, a brownish crystalline compound, bergenin was isolated. Bergenin was also assayed for toxicity with brine shrimp and Vero monkey kidney cells like the extracts, where the compound was found to be not toxic. In a disc diffusion test, the inhibitory activation of bergenin was determined for the bacteria *E. coli*, *P. aeruginosa*, *Mycobacterium vaccae*, and the fungi *Sporobolomyces salmonicolor* and *Penicillium notatum*. Bergenin had reasonable antimicrobial activity against *S. salmonicolor*, moderate activity against *M. vaccae*, *E. coli* and *P. aeruginosa*, but non inhibitory against *P. notatum*.

P. africanum extracts have therefore, potential for treatment of infection-related diseases by either directly inhibiting bacterial growth or by stimulating the immune system of the host. The traditional use of *P. africanum* concoctions against diarrhoea, dysentery and unthriftness, may be also due to anthelmintic activity as these signs are consistent with parasitic gastroenteritis.

Antioxidants are also important in boosting the immunity, critical in the management of helminthosis. There is ample scientific and empirical evidence supporting the use of plant-derived antioxidants in the control of human immunodeficiency virus (HIV) and neurological diseases. Synergistic activity of plant antioxidants has been proposed as a mechanism by which viral replication and immune cell killing in HIV infection can be inhibited. Antioxidants may have neuro-protective (preventing apoptosis), as well as neuro-regenerative roles. Due to the high antioxidant activity of its extracts, *P. africanum* has prospects in the chemotherapy of
HIV and management or control of neurodegenerative diseases. Thus there is great potential of *P. africanum* extracts in medicine.

Further isolation and bioassay characterization of bioactive compounds from *P. africanum* is recommended as well as refinement of *in vivo* tests in target livestock, or clinical trials. Better methods of plant extraction easily adaptable to rural communities for sustainable exploitation of the tree, may have to be devised especially those using the leaves instead of bark or root.
Table of contents

Title page
Photograph of *Peltophorum africanum* plant
Declaration
Acknowledgements
List of abbreviations
Publications
Conference presentations
Summary

CHAPTER 1 Introduction

1.1 Background
1.2 Hypothesis
1.3 Aim
1.4 Objectives

CHAPTER 2 Literature Review

2.1 Antibacterials
2.2 Antioxidants
2.3 Anthelmintics
2.4 *Peltophorum africanum*
 2.4.1 General aspects
 2.4.2 Ethnomedical and ethnoveterinary use
 2.4.3 Phytochemistry
 2.4.4 Biological activity

CHAPTER 3 Rationale for using *P. africanum* extracts in veterinary medicine

3.1 Introduction
3.2 Materials and Methods
 3.2.1 Collection, preparation and storage of materials
 3.2.2 Extraction
 3.2.3 Chromatography
 3.2.4 Polyphenols
 3.2.5 Antioxidant screening
APPENDICES

Annexure 1 Journal of South African Veterinary Association

Annexure 2 Journal of Animal and Veterinary Advances

Annexure 3 Veterinary Parasitology

Annexure 4 African Journal of Traditional, Complementary and Alternative Medicines
List of Tables

Table 3.1 Minimum inhibitory concentration (MIC) values of bark, root and leaf extracts........... 17
Table 3.2 Total antibacterial activity values of bark, root and leaf extracts.............................. 18
Table 4.1 Percent mean inhibition of egg hatch and larval development of *H. contortus* by *P. africanum* extracts.. 29
Table 4.2 Kruskal-Wallis and ED50 values of extracts of *P. africanum* against *H. contortus*.. 29
Table 4.3 Larvicidal activity of acetone extracts of *P. africanum* against *H. contortus*........... 31
Table 5.1 p-values (Kruskal-Wallis) and ED50 values of *P. africanum* extracts against *T. colubriformis*... 42
Table 6.1 Treatment groups and individual doses... 55
Table 7.1 Cytotoxicity of *P. africanum* extracts... 72
Table 8.1 Cytotoxicity and antioxidant activities of bergenin.. 86
Table 8.2 Antimicrobial activity of bergenin against five microbial species. 87
Table 9.1 Commercial plants effective in control of nervous or chronic conditions.............. 95
Table 9.2 TEAC and Vit.C equivalent values acetone extracts of leaf, bark and root of *P. africanum* ... 99
List of Figures

Figure 3.1 Extraction efficiency of ethanol, acetone, dichloromethane and hexane on *P. africanum* leaf, bark and root ... 15
Figure 3.2 Percentage of polyphenols in bark, root and leaf extracts of *P. africanum* 15
Figure 3.3 Chromatograms of root, bark and leaf extracts of *P. africanum* sprayed with DPPH 16
Figure 3.4 TEAC values of bark, root and leaf extracts of *P. africanum* by various extracts 17
Figure 4.1 Dose-response egg hatch inhibition of *H. contortus* by *P. africanum* leaf, bark and root extracts .. 30
Figure 4.2 Dose-response larval development inhibition of *H. contortus* by *P. africanum* 30
Figure 5.1 Percent mean inhibition of egg hatch of *T. colubriformis* by *P. africanum* leaf, bark and root extracts .. 43
Figure 5.2 Percent mean inhibition of larval development of *T. colubriformis* by extracts of *P. africanum* ... 43
Figure 5.3 Dose-response profile for egg hatch inhibition of *T. colubriformis* by *P. africanum* extracts .. 44
Figure 5.4 Dose response profile for inhibition of larval development of *T. colubriformis* by *P. africanum* extracts .. 44
Figure 6.1 Faecal egg counts .. 57
Figure 6.2 Mean egg per gram (EPG) per day of trial ... 58
Figure 6.3 *H. contortus* adult worm counts .. 58
Figure 6.4 *T. colubriformis* adult worm counts ... 59
Figure 6.5 Daily hay consumption (kg) per group post treatment .. 60
Figure 7.1 Haemoglobin and liver enzyme analysis ... 73
Figure 8.1 NMR of bergenin ... 85
Figure 8.2 MS of bergenin .. 86
Figure 9.1 Chromatogram of 200 µg acetone extracts of leaf, bark and root extracts of *P. africanum* separated by EMW and sprayed with DPPH ... 98