Untagged southern elephant seals at Marion Island: origin and demographic consequences

Wessel Christiaan Oosthuizen

University of Pretoria
Pretoria
South Africa
2010
Declaration:

I, …..Wessel Christiaan Oosthuizen…… declare that the thesis/dissertation, which I hereby submit for the degreeMSc Zoology......... at the University of Pretoria, is my own work and has not previously been submitted by me for a degree at this or any other tertiary institution.

SIGNATURE: ..

DATE: ..
“Young bulls come up at the same time and are called Christmas Bulls. These leave the island at the latter end of January. The next season is March, when a few bulls come up and are called March Bulls. As the sea elephant has never been observed at any considerable distance from land, it is the opinion of the sealers that they lie in the root of the island, and it is imagined that they take in ballast for this purpose, as they have been observed on coming up to vomit a quantity of pebbles”.

UNTAGGED SOUTHERN ELEPHANT SEALS AT MARION ISLAND: ORIGIN AND DEMOGRAPHIC CONSEQUENCES

Student: W.C. Oosthuizen
Supervisor: Prof. M.N. Bester
Supervisor: Dr. P.J.N. de Bruyn
Department: Zoology and Entomology, University of Pretoria
Degree: MSc Zoology

At Marion Island in the southern Indian Ocean, nearly all southern elephant seal *Mirounga leonina* pups born annually (1983 - 2008) were marked with durable hind flipper tags in an ongoing mark-resight experiment. However, large numbers of untagged seals, either migrants from other sub-Antarctic islands where seals are not marked, or previously tagged Marion Island seals which suffered tag-loss, haul out at this locality.

The composition of the elephant seal population, expressed as numbers of tagged and untagged seals hauling out at Marion Island, correlates to different haulout phases and varies between age classes. Unmarked seals are most common (relative abundance) during the winter/mid-year haulout, followed by the moult and lastly the breeding season. The youngest age classes have the lowest proportion of tagged seals, and adult females the highest. These patterns suggest that the majority of unmarked seals hauling out at Marion Island are migrant seals, rather than seals native to Marion Island. The presence of large numbers of untagged seals during non-breeding haulouts may indicate that these seals forage in the region of Marion Island (rather than near their native island).

Although untagged seals are less abundant during the breeding season in comparison to the winter and moult haulouts, untagged adult female seals represent approximately half of the breeding population. As breeding dispersal of female elephant seals is considered to be a rare event, we calculated tag-loss rates for seals marked as weaned pups at Marion Island. Although tag-loss rates have been estimated before for seals double tagged in the inner interdigital webbing of the hind flippers (1983 - 1999), tag-loss rates were unknown for seals tagged in the outer interdigital webbing of the hind flippers (2000 - 2005). The slight alteration in tag-site had important consequences for tag-loss. Under the tag-loss independence assumption, double tag-loss of inner interdigital webbing tags remained below 1% in the first 5 years and increased monotonically as seals aged, with higher tag-loss in males. Changing the
tag-site to the outer interdigital webbing of the hind flippers resulted in increased and cohort dependent tag-loss, although the variation between cohorts was relatively low for any given age.

The higher relative abundance of juvenile untagged seals and investigation into tag-loss together suggested that the majority of unmarked seals at Marion Island must be non-native seals. Survey expeditions to Prince Edward Island, 19 km to the northeast of Marion Island and the only other island in the Prince Edward Islands archipelago allowed us to investigate movements of tagged elephant seals between Marion Island and Prince Edward Island. During the early moult season, in the summers of 2001, 2004 and 2008, 416 elephant seals were inspected for identification tags at Prince Edward Island. In total, 42 seals (10%) encountered had been tagged as weaned pups at Marion Island. The majority of the Marion Island-tagged seals were yearlings or subadults hauled out at Prince Edward Island for the annual moult. Marion Island individuals resighted at Prince Edward Island had lower overall capture probabilities (at Marion Island) than a random population sample, violating the ‘homogeneity of capture’ assumption. Part of a cohort of pups born at Prince Edward Island was tagged in 2004, and although some of these seals hauled out at Marion Island during the winter and moult, none of the surviving females bred at Marion Island in 2007 or 2008 (males had not reached maturity at this time).

The elephant seal population at Prince Edward Island numbers approximately 130 breeding females and is probably too small to contribute significant numbers of untagged seals to Marion Island. However, large(r) populations of unmarked elephant seals occur within the southern Indian Ocean, at Îles Kerguelen and Heard Island in particular, but also at Îles Crozet. From 1987 to 2002, 199 Îles Crozet individuals, or 11.63% of the tagged population there, were resighted at Marion Island. Resights of Îles Crozet seals at Marion Island peaked during the juvenile moult (45% of all haulouts) and autumn/winter mid-year haulout. Equal numbers of male and female seals were identified. The age frequency distribution of tagged Îles Crozet seals was strongly juvenile biased and seals aged 0 to 2 represent 66% of all resights of Îles Crozet individuals made. Îles Crozet females bred at Marion Island after initially immigrating to the population as juvenile seals (natal dispersal). Dispersing breeding females \((n = 22, \text{ in 33 seasons})\) outnumbered dispersing breeding males \((n = 6, \text{ in 16 seasons})\), but greater male-mediated gene flow was ultimately attained due to the polygynous mating system and some extremely successful males.
Insufficient marking of seals at Îles Kerguelen and Heard Island prevented quantitative assessment of intra-island movement from these islands to Marion Island using mark-resight techniques. However, satellite-relay data loggers deployed at Marion Island provided evidence of movement between Marion Island, Îles Crozet \((n = 6) \) and Îles Kerguelen \((n = 3) \). Two of the seals which migrated to Îles Crozet were born at Marion Island and returned to Marion Island subsequent to their haulout at Îles Crozet (temporary emigration). All other satellite-tracked seals were untagged subadult or adult males that are presumed to be non-native to Marion Island and probably hauled out there in the course of foraging migrations from Îles Crozet and Îles Kerguelen. A few of these adult males hauled out during the breeding season at Îles Crozet \((n = 2) \) or Îles Kerguelen \((n = 2) \), some returning to Marion Island afterwards for the moult haulout.

Realistic, long-term population models allow for additions or deletions to the population representing immigration, emigration and marker-loss, together with recruitment and mortality. Untagged seals hauling out at Marion Island appear to be primarily of foreign origin. Tag-loss for seals marked at Marion Island is low, but should be monitored as the time-series for outer-interdigital tags improve. Southern elephant seals in the southern Indian Ocean move between islands within the Kerguelen province despite the high site fidelity characteristic of this species. Immigration sufficiently modifies the population growth rate for the small southern elephant seal population at Marion Island and dispersal should ideally be considered when assessing vital rates for this and other southern Indian Ocean populations.

Keywords: demography, dispersal, inter-island movement, Kerguelen, long-term, Marion Island, marking, mark-recapture, migration, *Mirounga leonina*, movement, phocids, population, Prince Edward Islands, site fidelity, southern elephant seal, Southern Ocean, tag-loss, unmarked
ACKNOWLEDGEMENTS

Logistical support and research permits towards field work at the Prince Edward Islands were provided by the South African Department of Environmental Affairs and Tourism (DEA&T) within the South African National Antarctic Programme (SANAP). The Department of Science and Technology, through the National Research Foundation (NRF, South Africa), provided financial support. The Branch Marine and Coastal Management, under the leadership of Robert Crawford, facilitated the summer surveys at Prince Edward Island with the permission of the Prince Edward Islands Management Committee. I received financial support from a NRF Grantholder-linked Masters bursary within the project “Conservation of Seabirds, Shorebirds and Seals” led by L. Underhill of the Animal Demography Unit, Department of Zoology, University of Cape Town.

Long-term mark-resight data on southern elephant seals at Marion Island was collected by the following field personnel, to whom I am grateful: Craig Saunders†, Steve Atkinson, Anton Hunt, Peter Bartlett, Ian Wilkinson, Charlie Pascoe, Jaco Swart, Rory Heather-Clarke, Sampie Ferreira, Andre La Cock, Hendrik Pansegrouw, Francois Roux, Johan Fourie, Johannes de Lange, Greg Hofmeyr, Johannes Kloppers, Frans Jonker, Steve Kirkman, Pierre Pistorius, Derrick Shingwenyana, Michael de Maine, Tendamutzimu Mathagu, Bianca Harck, Azwianewi Makhado, Tambudzani Mulaudzi, Takalani Maswime, Lucas Chauke, Fhatuwani Munyai, Justice Ramunasi, Hendrick Tshithabane, Trevor McIntyre, Phatu Radzilani, Nico de Bruyn, Cheryl Tosh, Mashudu Phalanndwa, Ryan Reisinger and Thomas Mufanadzo. The project has ethics clearance from the Animal Use and Care Committee (AUCC 040827-024) of the Faculty of Veterinary Science, University of Pretoria.

I express my sincere thanks to the following collaborators and colleagues for their unfailing assistance, valuable suggestions and critical comments which helped to improve this dissertation: Peter Boveng, Iain Field, Marc Girondot, Christophe Guinet, Mark Hindell, Greg Hofmeyr, Steve Kirkman, Cheryl Tosh and John van den Hoff. Christophe Guinet contributed southern elephant seal tag data from Possession Island, Îles Crozet. Harry Burton, John van den Hoff, Joachim Plötz, Horst Bornemann, Sven Ramdohr and Brent Stewart contributed SLDRs and funded ARGOS satellite time in support of the SANAP project entitled ‘Southern Elephant Seals as Oceanographic Platforms’. We use some basic tracking results here in support of the mark-resight data.
My supervisors, Marthán Bester and Nico de Bruyn, always professional and great companions, provided ample advice and motivation. Marthán Bester is specially thanked for creating wonderful opportunities to explore and discover.

I would like to thank my parents and sister for all of their loving support. I spent a magnificent year on Marion Island with the 64th team. Mashudu Phalanndwa, my constant companion and friend, is thanked for all his superb field efforts. Paul Visser, Henk Louw, Jacqueline Davis and Johann Jamneck† were an infinite source of joy and strength. Jammies, you were a man to walk the mountains with. Yes, from the fullness of His grace we have all received one blessing after another. *Glória in excélsis Deo, et in terra pax homínibus bonae voluntátis.*
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMMARY</td>
<td></td>
<td>i</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xii</td>
</tr>
<tr>
<td>PUBLISHED MANUSCRIPTS</td>
<td></td>
<td>xvii</td>
</tr>
</tbody>
</table>

CHAPTER 1
GENERAL INTRODUCTION
- Introduction | 1 |
- Southern elephant seals (*Mirounga leonina*) | 2 |
- Southern elephant seal distribution and status | 4 |
- Southern elephant seal biology | 4 |
- Foraging and pelagic distribution | 5 |
- Southern elephant seals at Marion Island | 6 |
- Objectives of this study | 6 |
- References | 8 |

CHAPTER 2
STUDY AREA
- Southern Ocean | 15 |
- The Prince Edward Islands in the Southern Ocean | 15 |
- The Prince Edward Islands terrestrial environment | 16 |
- Climate and climate change | 19 |
- Conservation Status | 19 |
- References | 20 |
CHAPTER 3
RELATIVE ABUNDANCE AND HAULOUT PATTERNS OF UNTAGGED SOUTHERN ELEPHANT SEALS AT MARION ISLAND

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>24</td>
</tr>
<tr>
<td>Introduction</td>
<td>25</td>
</tr>
<tr>
<td>Methods</td>
<td>27</td>
</tr>
<tr>
<td>Study area</td>
<td>27</td>
</tr>
<tr>
<td>Field methods</td>
<td>27</td>
</tr>
<tr>
<td>Analyses</td>
<td>29</td>
</tr>
<tr>
<td>Results</td>
<td>30</td>
</tr>
<tr>
<td>GLM model</td>
<td>30</td>
</tr>
<tr>
<td>Spatial analyses</td>
<td>35</td>
</tr>
<tr>
<td>Discussion</td>
<td>37</td>
</tr>
<tr>
<td>References</td>
<td>41</td>
</tr>
</tbody>
</table>

CHAPTER 4
COHORT AND TAG-SITE SPECIFIC TAG-LOSS RATES IN MARK-RECAPTURE STUDIES: A SOUTHERN ELEPHANT SEAL CAUTIONARY CASE

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>46</td>
</tr>
<tr>
<td>Introduction</td>
<td>46</td>
</tr>
<tr>
<td>Methods</td>
<td>49</td>
</tr>
<tr>
<td>Mark-resight framework</td>
<td>49</td>
</tr>
<tr>
<td>Estimation of tag-loss</td>
<td>50</td>
</tr>
<tr>
<td>Results</td>
<td>52</td>
</tr>
<tr>
<td>Discussion</td>
<td>59</td>
</tr>
<tr>
<td>Assumption of independent tag-loss</td>
<td>64</td>
</tr>
<tr>
<td>Conclusion</td>
<td>67</td>
</tr>
<tr>
<td>References</td>
<td>68</td>
</tr>
</tbody>
</table>

CHAPTER 5
INTRA-ARCHIPELAGO MOULT DISPERSION OF SOUTHERN ELEPHANT SEALS AT THE PRINCE EDWARD ISLANDS, SOUTHERN INDIAN OCEAN

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>73</td>
</tr>
<tr>
<td>Introduction</td>
<td>73</td>
</tr>
</tbody>
</table>
CHAPTER 6
DISPERSAL AND DISPERSION OF SOUTHERN ELEPHANT SEALS IN THE
KERGUELEN PROVINCE, SOUTHERN OCEAN

Abstract ... 86
Introduction .. 87
Methods ... 90
 Study area ... 90
 Marion Island (MI) .. 90
 Îles Crozet (IC) - Possession Island (PI) ... 91
 Îles Kerguelen (IK) .. 91
 Analyses: Tag resights ... 91
 Analyses: Satellite telemetry .. 92
 Analyses: Simulation model ... 93
Results .. 93
 PI tag resights at MI ... 93
 Natal or breeding dispersal .. 95
 Transient and immigrant movement .. 96
 Proportion of PI tagged seals at MI ... 97
 Other tag resights at MI ... 99
 Satellite telemetry .. 99
Table of contents

Population projection ... 103
Discussion .. 104
Future research ... 107
References ... 108

CHAPTER 7
GENERAL CONCLUSION
Synthesis .. 113
References ... 114
LIST OF TABLES

Table Page
4.1 Model selection results for tests of southern elephant seal tag-loss 52
 trend over time, at Marion Island. For each sex, model parameterizations
 specify one of three different trends in daily tag-loss over time: constant
 rate, monotonic increase/decrease or a two-step function. For monotonic
 functions, ‘direction’ indicates a positive or negative slope of the daily tag-loss
 function over time.
4.2 Model performance based on AIC for cohort dependent and independent
 tag-loss rates in southern elephant seals at Marion Island.
4.3 Model selection for a sex-effect, dependent on tag-site, for southern
 elephant seal tag-loss from Marion Island. Males in cohorts 1-17 showed
 higher tag-loss rates than females.
4.4 Estimated cumulative age specific tag retention probabilities for southern
 elephant seals at Marion Island. Cohort independent, sex specific
 probabilities are given for inner interdigital tags (IIT; cohorts 1 to 17),
 while outer interdigital tags are separated by cohort (OIT; cohorts 18 to 23).
5.1 Age class distribution of southern elephant seals (marked and unmarked)
 encountered at Prince Edward Island during three summer surveys.
5.2 Number of tagged southern elephant seals encountered during three
 summer surveys at Prince Edward Island. MI and PEI tags indicate seals
 tagged at Marion Island and Prince Edward Island respectively.
6.1 Numbers of southern elephant seals tagged from 1984 to 1991 at Possession
 Island, Îles Crozet (C. Guinet, unpublished data) and numbers of individuals
 belonging to each cohort resighted at Marion Island from 1987 – 2002. Resights
 at Marion Island from the 1984 and
1985 cohorts is biased low as observations for this study only commenced in 1987. The number of seals predicted to disperse to Marion Island (Table 6.2) is derived from birth cohorts 1986 - 1991 \((n = 173 \text{ resights}). \)

6.2 The number of southern elephant seals predicted to disperse from Possession Island (PI), Îles Crozet to Marion Island (MI), assuming seals resighted multiple times at MI immigrate into the population.
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>The circumpolar breeding distribution of southern elephant seals Mirounga leonina (Laws 1994, McMahon et al. 2005a). The four major populations (dark squares) of southern elephant seals in each geographical province and sub-populations (designated to a province by alphabetic code) are shown. A South Georgia, A1 Falkland Islands, A2 South Shetland Islands, A3 South Orkney Islands, A4 South Sandwich Islands, A5 Gough Island, A6 Tristan da Cunha, A7 Bouvetøya, A8 Peter 1 Øy; B Îles Kerguelen, B1 Marion and Prince Edward Islands, B2 Îles Crozet, B3 Heard Island, B4 Amsterdam and St. Paul Islands; C Macquarie Island, C1 Auckland Islands, C2 Campbell Island, C3 Antipodes, C4 Bounty Island, C5 Chatham Island, C6 Balleny Islands; D Peninsula Valdés.</td>
<td>3</td>
</tr>
<tr>
<td>2.1</td>
<td>Southern elephant seal females and pups on a breeding beach on the east coast of Marion Island. Suitable haulout beaches are separated from each other by stretches of inaccessible coastline. Photo: R.R. Reisinger.</td>
<td>17</td>
</tr>
<tr>
<td>2.2</td>
<td>Marion Island. The main study area is from Storm Petrel Bay in the north, clockwise to Goodhope Bay in the south.</td>
<td>18</td>
</tr>
<tr>
<td>3.1</td>
<td>The distribution of the major breeding populations of southern elephant seal in the Southern Ocean (squares) and the location of elephant seal sub-populations within the southern Indian Ocean. Inset: Marion Island. The main study area (see above) is from Storm Petrel Bay in the north, clockwise to Goodhope Bay in the south.</td>
<td>28</td>
</tr>
<tr>
<td>3.2</td>
<td>Time series data of southern elephant seal resights at Marion Island. The y-axis corresponds to the total number of seals recorded during regular censuses (dotted line) and the number of tagged seals observed (solid line). Multiple resights of the same individual during a single haulout period are included. Higher numbers in October 1998 are due to an</td>
<td>31</td>
</tr>
</tbody>
</table>
increase in observer effort along a section of the study area coastline (counts conducted on alternate days, see Kirkman et al. 2004 for details), rather than an increase in seals.

3.3 Monthly fluctuation in tag-ratios (proportion of tagged individuals). For the purpose of this figure, a year begins in September (the start of the female breeding haulout) and ends in August. The horizontal line at 0.378 indicates the overall mean annual tag-ratio. Horizontal boxplot lines show the median tag-ratio for each month and boxes represent the 25th and 75th percentiles, respectively. The vertical dashed lines show either the maximum value or 1.5 times the interquartile range of the data (whichever is the smaller). Outliers are plotted individually. Data was collected monthly from May 1997 to April 2009, excluding 2002 (n = 11).

3.4 The distribution of tag-ratios (proportion of tagged individuals) in relation to age class. All haulout phases are considered.

3.5 Southern elephant seal tag-ratios (proportion of individuals tagged) at Marion Island from May 1997 to April 2009 (excluding 2002, n = 11). Mean observed proportions (points) and fitted probabilities (lines, GLM model) for different age groups are shown.

3.6 Spatial variation in tag-ratio for all beaches (sites) where more than 100 elephant seals were recorded during all seasons from 1997 - 2009. The map shows the location of sites with codes corresponding to the “Site” axis in the histogram.

3.7 a. The total number of seals that utilizes a site does not significantly influence the tag-ratio (proportion of tagged individuals) recorded for that site. b. The proportion of seals recorded per age class (relative use of a site by each age class) for sites with tag-ratios above and below 0.378 respectively. Sites with tag-ratios above 0.378 have a higher proportion of adult seals and less juvenile seals that utilize the site, as compared to sites with tag-ratios below 0.378.
4.1 a. Inner interdigital tag (IIT). The tag is applied to the center of the inner section of the interdigital webbing of the hind flipper between digits three and four. b. Outer interdigital tag (OIT). The tag is applied to the center of the upper interdigital webbing of the hind flipper between digits one and two.

4.2 Maximum likelihood functions for age-specific single tag-loss rates over time. Inner interdigital tags (IIT; cohorts 1-17) are represented by two general functions for males and females. Standard errors (tag-loss probability ± 2SE) are presented for IIT tags above age 7. Numbers at the end of each line depict the cohort.

4.3 Identification probabilities of double tagged southern elephant seal cohorts at Marion Island. An individual is rendered unidentifiable when both tags are lost.

4.4 Variation in southern elephant seal tag-loss rates between cohorts 18 - 23, double tagged in the outer interdigital webbing of the hind flipper (OIT). Points represent the mean tag-loss rate over cohorts 18 - 22, with numerical values indicating the available sample size (number of cohorts). Cohort 23 (× at ages 1 and 2) is not included in the calculation of mean cohort differences.

4.5 Age-specific single tag-loss (N_{21}) in southern elephant seals from Macquarie Island (McMahon and White 2009) and Marion Island (data shown for IIT [cohort 1-17 males and females] and OIT cohorts 18 [longest OIT time-series] and 23 [cohort with greatest tag-loss measured]). Tag-transition from two to one tag is accurately measured at both locations, and not influenced by the independence of tag-loss assumption.
5.1 Maps showing (a) the position of the Prince Edward Islands group in the Southern Ocean, (b) the two islands within the archipelago, and (c) the elephant seal survey areas on Prince Edward Island.

5.2 Capture probabilities of southern elephant seals at Marion Island (MI). Grey bars represent capture probabilities (at MI) of the group of MI-tagged seals resighted at Prince Edward Island (PEI) during three summer surveys. The first column show capture probabilities that were calculated during the moult haulout only (MI(PEI) moult) whereas the second column show capture probabilities derived from using all haulout phases within a year (MI(PEI) annual). Dotted bars represent the capture probabilities of a random MI population simulation (10 000 replicates) at MI using resights during the moult only and all annual resights respectively. MI-tagged seals recorded moulting at PEI have significantly lower capture probabilities, even when all haulout phases within a year are considered.

6.1 The four major populations of southern elephant seals in each geographical province (squares) and locations of sub-populations of southern elephant seals within the southern Atlantic and Indian oceans mentioned in the text.

6.2 Monthly distribution of numbers of southern elephant seals from Possession Island hauling out at Marion Island. Only the first observation of an individual (n = 199) during every haulout (n = 510) is included.

6.3 Age frequency distribution of southern elephant seals from Possession Island hauling out at Marion Island. Age signifies the initial age, e.g., age 0 is equivalent to 0 to 364 days. Only the first observation of an individual (n = 199) during every haulout (n = 505) is included.

6.4 The return rate (single or multiple haulouts) of Possession Island southern elephant seals following their first haulout at Marion Island (MI). Seals that haul out at MI for the first time as under-yearlings are likely to
return to MI for subsequent (multiple) haulouts. Seals that haul out at MI for the first time as subadults or adult females have lower return rates. None of the marked PI seals hauled out at Marion Island for the first time as an adult male.

6.5 The total number of southern elephant seals tagged in every cohort on Possession Island from 1986 - 1991 (line) and the percentage of these seals subsequently resighted at Marion Island (bars). The percentage of seals resighted from the 1986 and 1987 cohorts is biased low because no tag resights were made at Marion Island during the winters of 1987 and 1988.

6.6 Movement tracks of southern elephant seals \((n = 9) \) fitted with SRDL devices at Marion Island and migrating to either Îles Crozet or Îles Kerguelen. The upper left corner of each box contains the following information: the individual track identity (e.g, Indiv A), the year of deployment, sex (M = male) and age class (UY = under-yearling, SA = subadult, A = adult).

6.7 Population projection of southern elephant seals at Marion Island over 100 generations based on survival estimates from 1983 to 1998 (de Bruyn 2009) and fecundity estimates from 1993 to 1997 (McMahon et al. 2003). The dotted line represents the deterministic population growth with no immigration; solid lines represent 100 replicates of population growth when six females are added to ages 1 and 2 (±1 SD), and one female to age 3 (±1 SD).
PUBLISHED MANUSCRIPTS

(Emanating from this dissertation)

Disclaimer

Each of the research chapters within this dissertation was structured with scientific journal publication in mind. Chapters are therefore concise and presented so as to be able to stand alone. I apologise for overlap and repetition.