Ground water resource development in hard crystalline rock aquifers on the Nebo Plateau, South Africa.

By

F.S. Botha

Submitted in partial fulfilment of the requirements for the degree Master of Science in the Faculty Natural and Agricultural Sciences, University of Pretoria.

July 2000
“He opened a rock,
and water gushed out,
flowing through the desert like a river”

Psalm 105:41
Acknowledgements

1. I would like to thank the Lord Jesus Christ for giving me the strength and the will to work hard and honour His name.

2. My loving wife for supporting me and for believing in the man I can become.

3. My family for the love and understanding they gave me through the years.

4. Dr. Louis van Rooy who made this possible with his positive guidance and his believe in me.

5. The Geological Department of the University of Pretoria and those who helped me through the years.

6. The National Research Foundation (NRF) for supporting the project.

7. The Department of Water Affairs and Forestry for making this project achievable. Special thanks to Mr Willem du Toit who supported this programme and gave valuable inputs.
ABSTRACT

In some regions of the Northern Province difficulties have risen concerning the provision and management of water resources. This research project attempted to find some solutions to the problems encountered and the principal aims were to understand the water regime and to develop new ground water resources. A research area of approximately 100 km² was chosen in the Jane Furse district Northern Province.

The study area is underlain by granite of the Lebowa Granite Suite, Bushveld Igneous Complex, with Dolerite/Diabase intrusions prominent in the north. Linear structures were identified through field mapping, existing satellite images and geophysical data.

A first phase geohydrological investigation was conducted. The initial results indicated good blow yields, but from pump tests it was deduced that the aquifers have a low storage capacity. The results further indicated that the ground water may have a high fluoride content which must be addressed.
Table of contents

ABSTRACT ... I
Table of Contents .. II
List of Tables ... IV
List of Figures ... IV
List of Frames .. V
List of Appendixes ... V

1 INTRODUCTION .. 1
 1.1 AIM ... 1
 1.2 DESCRIPTION OF RESEARCH AREA 1
 1.3 DRAINAGE REGIONS AND CATCHMENT AREA 3
 1.4 METEOROLOGICAL CONDITIONS 4
 1.6 PHYTOGEOGRAPHY ... 4
 1.7 SOCIOECONOMIC DEVELOPMENT 5

2 LITERATURE REVIEW .. 6
 2.1 GIS AND GROUND WATER ... 6
 2.2 GROUND WATER EXPLORATION METHODS IN HARD CRYSTALLINE ROCK AQUIFERS 8
 2.2.1 Siting ... 8
 2.2.2 Drilling ... 10
 2.3 GROUND WATER ASSESSMENT 10
 2.3.1 Pump testing ... 10
 2.3.2 Pump test analysis .. 12
 2.4 GROUND WATER CHEMISTRY IN HARD CRYSTALLINE ROCK 14
 2.4.1 Inorganic assessment 14
 2.4.2 Sanitation and microbial assessment 15
 2.4.3 Health classification 16
 2.4.4 Age classification .. 16
 2.5 COMMUNITY WATER SUPPLY 16

3 METHOD OF INVESTIGATION ... 18
 3.1 GENERAL APPROACH .. 18
 3.2 IDENTIFYING POTENTIALLY HIGH YIELDING SITES (PHYS) 18
 3.3 GEOPHYSICAL METHODS .. 19
 3.3.1 Air-borne methods .. 19
 3.3.2 Magnetics .. 20
 3.3.3 Frequency domain electromagnetic (EM) method 20
 3.4 CONSTRUCTION OF NEW BOREHOLES 20
 3.4.1 Rotary air percussion drilling 20
3.4.2 Core drilling ... 20
3.5 PUMP TEST EVALUATION 20
3.5.1 Rule of thumb method 20
3.5.2 Recovery method ... 21
3.5.3 F.C. method ... 21
3.6 WATER BALANCE MODEL 23

4 RESULTS ... 26
4.1 GEOGRAPHICAL INFORMATION SYSTEM (GIS) 26
4.2 GENERAL GEOLOGY .. 27
4.3 GEOLOGICAL STRUCTURES 29
4.3.1 Structural setting 29
4.3.2 Structure census and mapping 30
4.3.3 Genetic growth and age 31
4.3.4 Regional setting .. 34
4.4 EXISTING BOREHOLE INFORMATION 34
4.4.1 Borehole census ... 34
4.4.2 Yields and water levels from existing boreholes 34
4.4.3 Chemical analysis of borehole water 36
4.5 SITING OF NEW BOREHOLES 37
4.5.1 Potential high yielding site no.4 37
4.5.2 Potential high yielding site no.5 37
4.5.3 Potential high yielding site no.7 38
4.5.4 Potential high yielding site no.8 & 9 38
4.5.5 Potential high yielding site no.11 38
4.5.6 Potential high yielding site no.13 38
4.5.7 Potential high yielding site no.16 38
4.5.8 Potential high yielding sites no.19,20 and 21 38
4.5.9 Potential high yielding sites no.22 38
4.6 RADON EMANATION TECHNIQUE 39
4.7 CONSTRUCTION OF NEW BOREHOLES 39
4.7.1 Potential high yielding site no.4 40
4.7.2 Potential high yielding site no.5 40
4.7.3 Potential high yielding site no.7 40
4.7.4 Potential high yielding site no.8 42
4.7.5 Potential high yielding site no.9 42
4.7.6 Potential high yielding site no.11 42
4.7.7 Potential high yielding site no.13 43
4.7.8 Potential high yielding site no.16 43
4.7.9 Potential high yielding site no.19 44
4.7.10 Potential high yielding site no.20 44
4.7.11 Potential high yielding site no.21 44
4.7.12 Potential high yielding site no.22 45
4.8 CORE DRILLING ... 45
4.9 BOREHOLE EVALUATION 46
4.9.1 Pump testing ... 46

-III-
5 CONCLUSION AND RECOMMENDATIONS

5.1 DRILLING OF NEW BOREHOLES .. 53
5.2 PUMP TESTING ... 53
5.3 AQUIFER TYPES IDENTIFIED ... 54
 5.3.1 Fractured aquifers associated with major fractures 55
 5.3.2 Fractured aquifers associated with dyke material 55
 5.3.3 Weathered aquifers resulted from the weathering of major fractures 55
5.4 CHEMICAL ANALYSIS .. 56
5.5 WATER BALANCE .. 56

6 SUMMARY ... 58

7 REFERENCES ... 60

List of Tables

Table 1. General composition of human excreta 15
Table 2. Bacteria and Viruses and their associated illness 16
Table 3. GIS information captured .. 27
Table 4. Fracture strike orientation ... 32
Table 5. Borehole census in the study area ... 35
Table 6. Inorganic analysis of seven existing boreholes 36
Table 7. Organic analysis of existing boreholes 36
Table 8. Boreholes selected for pump testing 46
Table 9. Basic pump test results .. 47
Table 10. Summary of observation boreholes 51
Table 11. Summary of chemical classes and sample dates 52
Table 12. Sustainable Yields .. 54
Table 13. Assumptions made during calculations of the water balance 56

List of Figures

Figure 1. Regional locality map .. 2
Figure 2. Access to study area .. 3
Figure 3. Three different porosity systems described by Kruseman and de Ridder 13
Figure 4. Air-borne magnetic data from Combrinck (1999) 19
Figure 5. Recovery method .. 21
Figure 6. Example of data sheet as step 1 in the FC_Method 22
Figure 7. Step 2 with the FC_Method ... 22
Figure 8. Derivative plot from FC_Method 23
Figure 9. Basic solution for FC_Method ... 23
Figure 10. Single cell water balance based on Bear 23
Figure 11. Schematic presentation of recharge from the river. 24
Figure 12. Digital terrain model created from the contours. 26
Figure 13. General geology and geological structures obtained from the 1: 250 000 Nylstroom geological sheet. 28
Figure 14 Linear features mapped. 31
Figure 15. The major strikes of the most prominent geological structures 33
Figure 16. Potentially high yielding sites identified using structural and geophysical methods. 37
Figure 17. EM-34 and radon data profile with boreholes drilled. 39
Figure 18. PHYS selected during the structural investigation and also indicating successes 40

List of Frames

Frame 1. Granitic tors 1
Frame 2. Marshes and wetlands are common next to roads 3
Frame 3. Little plant cover exists due to exploitation of available resources 4
Frame 4. Typical Nebo Granite Rock 27
Frame 5. The contact between the dolerite and the granite 29
Frame 6. The Malope Dome seen from the north 30
Frame 7. Typical movement along shear axes 30
Frame 8. Linear lineaments can be followed for several kilometres. 32
Frame 9. Linear features at PHYS no. 7 38
Frame 10. Fracturing highly visible at PHYS no. 21 38
Frame 11. Artesian borehole drilled 45

List of Appendices

Appendix 1 - Potentially high yielding sites.
Appendix 2 - Pump test data.