GROWTH ANALYSES AND SOIL WATER BALANCE OF
SELECTED VEGETABLE CROPS

by

NTUTHUZELO COLUMBUS MHLAULI

Submitted in partial fulfilment of the requirements for the degree
Magister Institutionis Agrariae: Horticultural Science
in the Faculty of Natural and Agricultural Sciences
University of Pretoria
PRETORIA

JUNE 2000
TABLE OF CONTENTS

ACKNOWLEDGEMENTS

Abstract

1. **INTRODUCTION**

2. **LITERATURE REVIEW**
 - 2.1 The field water balance
 - 2.2 Irrigation and vegetable crop production
 - 2.2.1 Vegetable crop growth and development
 - 2.2.2 Irrigation management for specific vegetable crops
 - 2.2.2.1 Greens
 - 2.2.2.2 Salad crops
 - 2.2.2.3 Crucifers
 - 2.2.2.4 Root crops
 - 2.2.2.5 Bulbous crops
 - 2.2.2.6 Sweet corn
 - 2.2.2.7 Beans
 - 2.2.2.8 Solanaceous crops

3. **OVERVIEW OF THE SWB MODEL**
 - 3.1 Model description
 - 3.1.1 The weather unit
 - 3.1.1.1 Extraterrestrial radiation
 - 3.1.1.2 Vapour pressure deficit
 - 3.1.1.3 Net radiation
 - 3.1.1.4 FAO reference evapotranspiration
 - 3.1.1.5 Potential evapotranspiration
 - 3.1.1.6 The Weather day step
 - 3.1.2 The soil unit
 - 3.1.2.1 Interception
 - 3.1.2.2 Runoff
 - 3.1.2.3 Infiltration and redistribution
7. SUMMARY 60
8. REFERENCES 62
9. APPENDICES 67
 APPENDIX A: Canopy radiation extinction coefficient 68
 APPENDIX B: Radiation conversion efficiency 74
 APPENDIX C: Model simulations and statistical analysis 80
 APPENDIX D: Climatic data 106
 APPENDIX E: Growth analyses data 120
ACKNOWLEDGEMENTS

I am greatly indebted to my supervisors, Dr. N. Z. Jovanovic, Prof. J. G. Annandale and Prof. D. I. Ferreira for their guidance and support, Mr W. van Wyk (Department of Agriculture) who made available his field trial at Roodeplaat, and was responsible for crop management, to the Water Research Commission for funding the project, and to all who have contributed in many ways to this work and to the compilation of this manuscript. My appreciation also goes to Dr. J. M. Steyn of the Agricultural Research Council – Vegetable and Ornamental Crop Institute, Roodeplaat, for providing the weather data.
GROWTH ANALYSES AND SOIL WATER BALANCE
OF SELECTED VEGETABLE CROPS

by

NTUTHUZELO COLUMBUS MHLAULI

SUPERVISOR : Dr N. Z. Jovanovic
CO-SUPERVISOR : Dr J. G. Annandale
DEPARTMENT : Plant Production and Soil Science
DEGREE : M.Inst.Agrar. (Horticultural Science)

ABSTRACT
Two trials were set up at Roodeplaat (Gauteng Province, South Africa) on a clay loam soil, during the 1996 and 1996/97 growing seasons. The 1996 dry winter trial involved six winter vegetable species (Allium cepa, Brassica oleracea, Beta vulgaris, Daucus carota, Beta vulgaris spp. cicia, and Lactuca sativa), whilst the 1996/97 summer trial involved 19 cultivars covering 9 crop species (Lycopersicon esculentum, Zea mays saccharata, Cucurbita pepo, Cucurbita maxima, Cucurbita moschata, Phaseolus vulgaris, Phaseolus multiflorus, Solanum melongena, and Capsicum annum). The objective was to determine crop water requirements and create a database of specific crop growth coefficients to be included in the Soil Water Balance (SWB) generic crop, irrigation scheduling model. The crops were irrigated with overhead sprinklers and irrigations were scheduled with a neutron probe. Soil water depletion was measured weekly with a neutron water meter, whilst growth analyses were carried out fortnightly. Fractional interception of photosynthetically active radiation was measured weekly with a sunfleck ceptometer. Weather data were recorded with an automatic weather station located close to the experimental site. Seasonal crop water requirements of these vegetables grown in Gauteng were successfully estimated. Crop water use of winter vegetables varied from around 280 mm for lettuce to 390 mm for carrots and swisschard. Seasonal crop water use of summer vegetables was estimated to be around 200 mm for both peppers, and between 350 and 400 mm for cucurbits. The following crop specific coefficients were determined: dry matter-transpiration ratio corrected for vapour pressure deficit, radiation
conversion efficiency, specific leaf area, and dry matter partitioning parameters. Simulated values obtained with the SWB model were compared to measured data. The model provided good predictions of crop water use and harvestable dry matter under well-watered conditions. The application of the SWB model for irrigation scheduling of vegetables is recommended.