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SUMMARY 
The banana weevil, Cosmopolites sordidus, is an economical pest of Musa, distributed 

to most areas where the crop is grown. The beetle larvae produce feeding tunnels in 

the pseudostem and rhizome, reducing bunch weight and causing toppling or snapping 

of plants. In developing an integrated pest management system for South Africa, 

specific aims of the study were to quantify the genetic diversity of the species around 

the world, investigate the population dynamics of the insect, determine the potential 

of semiochemical mass trapping, elucidate the efficacy of cultural and chemical 

control methods and establish economic thresholds for the banana weevil on 

Cavendish bananas in South Africa. 

Pest status of the insect is variable around the world, and may be influenced by 

genetically distinct populations of the weevil. Six populations from four countries 

were sampled: Australia, Costa Rica, South Africa (South Coast, North Coast and 

Tzaneen) and Uganda. DNA was isolated from 12 individuals per population and 

subjected to amplified fragment length polymorphism (AFLP) analysis. The AFLP 

analysis involved DNA restriction with EcoRI and PstI enzymes, ligation of adapters, 

and a pre-selective and five selective PCR amplifications. Empirical analysis of the 

AFLP fingerprints showed that, within populations, genetic diversity varied from 16-

53%, with the South Coast and Tzaneen/Australian populations the least and most 

variable, respectively. The coefficient of gene differentiation showed that the Tzaneen 

population were the most differentiated from the South Coast population, while the 

South and North Coast populations were the most similar. All the populations showed 

statistically distinct marker frequencies, except for the Costa Rican and South and 

North Coast populations, which were similar. Based on the simple mismatch 

coefficient, a neighbour-joining tree showed the Australian, Ugandan and South 
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African coastal populations produced monophyletic groups, while the South African 

Tzaneen population were removed from the other populations and presented an 

ancestral state. 

The population dynamics of the insect was investigated over two seasons and 

at three locations in the South Coast of KwaZulu-Natal. Adult activity was monitored 

with semiochemical (Cosmolure®) baited pitfall traps. Traps were moved monthly to a 

random independent location, or left in situ for the duration of the experiment. The 

ontogeny was determined by dissecting felled plants and toppled plants (up to 2-

week-old fresh residues), and harvested plants visually classified as an early and a late 

rotting stage (decayed residues). Replicated, randomised block designs were used in 

the experiments. The adult beetles were sexed and the percentage females with eggs 

and the number of eggs per female were recorded. Larval head capsule widths were 

measured with an electronic caliper. Ambient temperature and precipitation (rainfall + 

irrigation) were measured on site. Weevils were active throughout the year and mainly 

collected in stationary traps, with a collection peak in May and high numbers in early 

spring and late autumn/early winter. The activity was usually a negative and a positive 

function of ambient temperature and corrected rainfall, respectively. Eggs per female 

and percentage females with eggs were reduced during winter and a positive function 

of ambient temperature. The beetles sampled from plant material represented an equal 

sex ratio, while the pheromone traps collected a female biased sex ratio during spring 

and autumn/early winter. The beetle had overlapping generations with a peak of adults 

and larvae in autumn and late summer, respectively. Adults were mainly associated 

with decayed residues while larvae were mostly found in freshly toppled plants. 

Adults were the main over-wintering stage. The earliest larval instars were usually 

sampled during autumn. The data suggested that the beetle is multivoltine in the study 

areas and provided valuable information for the optimal management of the insect 

pest. 

Semiochemical adult trapping methods were compared in field trials using a 

randomised block design. Pseudostem traps, pitfall traps containing a pheromone 

(either Cosmolure® (Pheromone A) or Cosmolure+® (Pheromone B)), and unbaited 

pitfall traps (control), were compared over 5 weeks during all seasons along the 

Southeast coast of South Africa. Pseudostem traps treated with an insecticide, and 

rhizome traps were included as additional treatments in autumn. In summer two 

treatments were also added: individual suspension of both pheromones above a pitfall 
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trap either in combination with or without a pseudostem trap. The adult beetles were 

sexed, and the number of internal eggs noted. Pheromone A proved to be the most 

effective of the different traps. Grouping of the pheromones resulted in a synergistic 

response, while combining the pseudostem did not enhance trap efficacy. The 

different plant material traps and the control were usually equally effective in catching 

weevils. Plant material traps caught greater numbers of fecund females, but 

pheromone traps captured a higher proportion of females. Treatment effects were 

much less pronounced in summer, and compared to a pseudostem trap, pitfall traps 

were the most efficacious during spring. Compared to conventional pseudostem 

trapping, Pheromone A pitfall traps should be optimally applied during spring in 

South Africa. 

 Cultural control methods were investigated over 2 years at an ongoing trial in 

the Southern KwaZulu Natal, South Africa. Harvesting at ground level and dissection 

of remnants, and covering of the mat with soil and moving debris to the inter-row, 

were compared to a positive control that involved treatment of plants with a registered 

pesticide, and a negative control that involved harvesting at approximately 150 cm 

with no soil or sanitation amendments. Yield, weevil damage and pseudostem girth of 

plants were measured from August to November annually, while adult beetle densities 

were assessed over 4 weeks in October/November and April. Nematode samples were 

analysed in October/November every year. Damage parameters included the 

Coefficient of Infestation, the Percentage Coefficient of Infestation (PCI) at two 

intervals, the summed PCI value, the percentage cross sectional damage of the central 

cylinder (XI) and cortex, and the mean cross sectional damage percentage (X mean). 

A replicated block design was used in the experiment. The parameters were similar 

before the onset of the trial. Fruit yield and plant girth, corrected by nematode 

densities, were not significantly different in any treatment, nor were the nematodes 

controlled. Soil cover and recession of remnants was the only effective treatment, 

significantly reducing the Coefficient of Infestation, but not the adult density or any 

other damage parameter. The former showed promise as a cultural control method 

because it only needs to be applied seasonally and reduced the XI, the damage 

parameter most closely related to yield, by 14.18%. 

 The weevil is difficult to control, and chemical control arguably provides the 

best opportunity to manage the pest. The efficacy of injecting bifenthrin, chlorpyrifos, 

fipronil, imidacloprid, oxamyl and water (control) into residual banana plants was 
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determined. The chemicals were administered every even numbered month over 2 

years at two locations in Southern KwaZulu-Natal, South Africa. Yield, weevil 

damage and pseudostem girth of plants felled from August to October were measured, 

while adult beetle densities were assessed over 4 weeks in October and April. 

Nematode samples were analysed in October every year. Damage parameters included 

were similar to that of the cultural control trial. Replicated block designs were used in 

the experiments. The parameters were similar before the onset of the trial. Fruit yield 

and plant girth, corrected by nematode densities, were not significantly increased after 

chemical applications, nor were the nematodes controlled. Fipronil and imidacloprid 

were highly effective against C. sordidus, minimising damage to the periphery, cortex 

and central cylinder of the rhizome and significantly reduced adult density. Fipronil 

caused a 95% and imidacloprid a 100% reduction in the XI. Injection of fipronil and 

imidacloprid provides an optimal chemical strategy in an integrated pest management 

programme for the banana weevil. 

 Economic thresholds of the insect were investigated on bananas at four 

locations in the South Coast of KwaZulu-Natal. Yield (bunch weights) and larval 

damage to felled plants were measured from August to October in 2003, while adult 

densities were assessed over 4 weeks in October 2003. Nematode samples were 

collected and analysed in October 2003. Damage parameters included were similar to 

that of the cultural control trial. Replicated block designs were used in the 

experiments. The economic-injury level (EIL) for chemical and cultural control was 

calculated. Nematode densities did not influence the yield of plants. The XI was the 

best predictor of yield, but under certain conditions X mean was the most important. 

Chemical control showed the lowest EIL, with more than 1 and 7% damage to the 

central cylinder when applying fipronil and imidacloprid, respectively. The EIL for 

cultural control was more than 11% damage to the central cylinder. A 

recommendation algorithm, considering all the findings of the individual studies, is 

provided for IPM of the banana weevil in the South Africa. The potential use of 

microbial and invertebrate (especially parasitoids) biological control and 

semiochemical mass trapping of the weevil requires further research. Long-term 

research should focus on host resistance, and weevil damage to the central cylinder 

can serve as indicator of susceptibility of Cavendish bananas. 
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common indicate no significant difference (P > 0.05). 

 

Figure 4.5b. The mean (+ standard error) number of eggs per female and percent of 

females containing eggs of Cosmopolites sordidus attracted per week to all 

seasonally corresponding traps during spring (October/November 2003), summer 

(February/March 2004) and autumn (April 2003). Percentage means are indicated by 

black dots and refer to the secondary y-axis. For each dependent variable, means with 

letters in common indicate no significant difference (P > 0.05). 

 

Figure 5.1. The mean values of the Percentage Coefficient of Infestation (PCI) and 

Coefficient of Infestation (secondary axis) damage parameters of untreated (control) 

plants and plants treated with aldicarb, and the two cultural control treatments, from 

October/November 2003 to October/November 2005 at Ramsgate (KZN, South 

Africa). For each dependent variable, means with letters in common are not 

significantly different (P>0.05) and upper case letters refer to the secondary axis. 05 

= PCI from 0 to 5 cm from the collar, 20 = PCI from > 5 to 20 cm from the collar, To 

= Summed total PCI, Chem = Aldicarb, Harv = Low harvesting and destroying 

remnants, Cover = Soil cover and movement of debris to the inter-row. 

 

Figure 5.2. The mean values of the cross sectional damage parameters of untreated 

(control) plants and plants treated with aldicarb, and the two cultural control 

treatments, from October/November 2003 to October/November 2005 at Ramsgate 

(KZN, South Africa). For each dependent variable, means with letters in common are 

not significantly different (P>0.05). XO = Cross section damage percentage of the 

cortex, XI = Cross section damage percentage of the central cylinder, X mean = 

Average cross sectional damage of the corm, Chem = Aldicarb, Harv = Low 

harvesting and destroying remnants, Cover = Soil cover and movement of debris to 

the inter-row. 

 

Figure 5.3. The mean adult density values of untreated (control) plots and plots 

treated with aldicarb, and the two cultural control treatments, from 

October/November 2003 to October/November 2005 at Ramsgate (KZN, South 

Africa). For each dependent variable, means with letters in common are not 
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significantly different (P>0.05). Chem = Aldicarb, Harv = Low harvesting and 

destroying remnants, Cover = Soil cover and movement of debris to the inter-row. 

 

Figure 6.1. The mean values of the Percentage Coefficient of Infestation (PCI) and 

Coefficient of Infestation (secondary axis) damage parameters of untreated (control) 

plants and plants treated bimonthly with four chemicals at Munster (KZN, South 

Africa) from October 2003 to August 2005. For each dependent variable, means with 

letters in common are not significantly different (P>0.05) and upper case letters refer 

to the secondary axis. 20 = PCI from > 5 to 20 cm from the collar, To = Summed total 

PCI, Bifen = Bifenthrin, Chlor = Chlorpyrifos, Fip = Fipronil and Oxa = Oxamyl. 

 

Figure 6.2. The mean adult banana weevil density values of untreated (control) plots 

and plots treated bimonthly with four chemicals at Munster (KZN, South Africa) from 

October 2003 to August 2005. For each dependent variable, means with letters in 

common are not significantly different (P>0.05). Bifen = Bifenthrin, Chlor = 

Chlorpyrifos, Fip = Fipronil and Oxa = Oxamyl. 

 

Figure 6.3. The mean values of the Percentage Coefficient of Infestation (PCI) and 

Coefficient of Infestation (secondary axis) damage parameters of untreated (control) 

plants and plants treated bimonthly with five chemicals at Ramsgate (KZN, South 

Africa) from October 2003 to August 2005. For each dependent variable, means with 

letters in common are not significantly different (P>0.05) and upper case letters refer 

to the secondary axis. 05 = PCI from 0 to 5 cm from the collar, 20 = PCI from > 5 to 

20 cm from the collar, To = Summed total PCI, Bifen = Bifenthrin, Chlor = 

Chlorpyrifos, Fip = Fipronil, Imi = Imidacloprid and Oxa = Oxamyl. 

 

Figure 6.4. The mean values of the cross sectional damage parameters of untreated 

(control) plants and plants treated bimonthly with five chemicals at Ramsgate (KZN, 

South Africa) from October 2003 to August 2005. For each dependent variable, 

means with letters in common are not significantly different (P>0.05). XO = Cross 

section damage percentage of the cortex, XI = Cross section damage percentage of the 

central cylinder, X mean = Average cross sectional damage of the corm, Bifen = 

Bifenthrin, Chlor = Chlorpyrifos, Fip = Fipronil, Imi = Imidacloprid and Oxa = 

Oxamyl. 
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Figure 6.5. The mean adult banana weevil density values of untreated (control) plots 

and plots treated bimonthly with five chemicals at Ramsgate (KZN, South Africa) 

from October 2003 to August 2005. For each dependent variable, means with letters 

in common are not significantly different (P>0.05). Bifen = Bifenthrin, Chlor = 

Chlorpyrifos, Fip = Fipronil, Imi = Imidacloprid and Oxa = Oxamyl. 

 

Figure 7.1. Recommendation algorithm for the integrated pest management of 

Cosmopolites sordidus in South Africa. 
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AIMS 
The aims of the study were to: 

1. Evaluate and review literature of Musa and Cosmopolites sordidus from a 

South African perspective. 

2. Investigate the molecular phylogeny of C. sordidus from South Africa, 

Australia, Uganda and Costa Rica, using the amplified fragment length 

polymorphism technique.  

3. Determine the population dynamics of C. sordidus under field conditions in 

South Africa. 

4. Ascertain the relative efficacy of pheromone compared to conventional traps 

for C. sordidus during different seasons in South Africa.  

5. Investigate the field efficacy of cultural control methods compared to 

registered chemicals in providing a curative control for C. sordidus in South 

Africa. 

6. Quantify the field efficacy of chemical plant injections in providing a curative 

control for C. sordidus in South Africa. 

7. Formulate an integrated pest management programme for C. sordidus in 

South Africa. 

 

HYPOTHESIS 
Null (H0) and alternative (HA) hypothesis included the following: 

1. H0: There is no genetical disparity between C. sordidus from South Africa 

(Lowveld, North-east and Southeast Coast), Australia, Uganda and Costa 

Rica. 

 HA: There is a genetical disparity between C. sordidus from South Africa 

(Lowveld, North-east and Southeast Coast), Australia, Uganda and Costa 

Rica. 

2. H0: There is no significant difference in the density of C. sordidus larvae or 

adults in the field throughout the year. 

 HA: There is a significant difference in the density of C. sordidus larvae or 

adults in the field throughout the year. 

3. H0: No significant relationship exists between C. sordidus incidence (in 

plants and traps) and temperature and/or rainfall. 
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HA: A significant relationship exists between C. sordidus incidence (in plants 

and traps) and temperature and/or rainfall. 

4. H0: There is no difference between pheromone and split-pseudostem-trap 

efficacy relative to season, adult, female and male catches, sex ratios, 

proportion of females with eggs and/or fecundity. 

HA: There is a difference between pheromone and split-pseudostem-trap 

efficacy relative to season, adult, female and male catches, sex ratios, 

proportion of females with eggs and/or fecundity. 

5. H0: Cultural control over two years has no significant influence on adult 

densities, different plant damage assessments, plant girth and/or bunch 

weight. 

HA: Cultural control over two years has a significant influence on adult 

densities, different plant damage assessments, plant girth and/or bunch 

weight. 

6. H0: Chemical injection of plants every second month over two years has no 

significant influence on adult densities, different plant damage assessments, 

plant girth and/or bunch weight. 

HA: Chemical injection of plants every second month over two years has a 

significant influence on adult densities, different plant damage assessments, 

plant girth and/or bunch weight. 

 

STATISTICAL ANALYSIS 
The statistical analysis of all the data were conducted on the software program 

STATISTICA Version: 7 (Statsoft Inc. 2004). All data conformed to the assumptions 

of the specific statistic analysis applied (Sokal & Rohlf 1997). Where applicable, the 

specifics of the analysis are elaborated. Significance level was set at the biological 

standard 5% level. 
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