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Appendix I: Images that illustrate mining and rehabilitation of coastal dunes along 

the northeast coast of KwaZulu-Natal, South Africa. 

Plate 1. Heavy machinery is used to clear vegetation from the coastal dunes prior to the 

extraction minerals from the sand. 

Plate 2. The mine works as an open-cast dredging system whereby dune sand is taken up by a 

bucket wheel and separated from the heavy minerals (~4% of the sand) by means of a cyclonic 

system on the mining plant. This heavy mineral concentrate is taken to the smelt er site for 

further processing where the rutile, zircon and ilmenite are further separated and prepared.  
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Plate 3. Once separated from the heavy minerals, the sand is stacked into shapes that mimic the 

pre-mining topographic profile. 

Plate 4. Topsoil collected from cleared areas ahead of the mine is brought and spread over the 

newly stacked dunes. This is then sown with annuals and indigenous to stabilize the dune as 

soon as possible with a cover crop. Shade-netting is erected to prevent wind erosion, as well as 

shade and protect seedlings.   
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Seral stage 1 

Plate 5. The cover crop grows up within months and between these annuals and grasses, Acacia 

karroo seedlings begin to germinate (insert picture).  

Plate 6. Within three years an impenetrable Acacia karroo shrubland has formed (at three years 

there are 20724±2143 trees/ha (van Dyk 1996)).  
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Seral stage 2 

Plate 7. Within 11 years the Acacia karroo still dominates but has thinned to 737±35 trees/ha 

by the age of 14 (van Dyk 1996). Forest canopy species are beginning to emerge, although the 

understory is not well-developed 

Plate 8. After about 20 years of age the Acacia karroo trees begin to senesce and fall over or 

die standing (inset), forming canopy gaps of varying sizes. Although A. karroo remain 

dominant, the understory has become more developed and forest canopy species are more 

common.  
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Seral stage 3 

 

Plate 9. After 30 years gaps of all sizes have formed as Acacia karroo continue to fall down. 

The forest is multi-layered and forest canopy trees are in excess of 8m tall.  

 
Plate 10. In these oldest stands (35 years) Acacia karroo has thinned to 141±11 trees/ha (van 

Dyk 1998), larger gaps comprise grassy patches and clumps of forest tree species . Importantly, 

these gaps are not recolonized by A. karroo (Grainger 2012).  

 
 
 



Appendices 

 143 | 

Appendix II: List of species from three taxa recorded in the study area  

Table A-1. List of woody plant species identified in the regenerating and unmined forests, third 

column indicates species associated with forest habitats ().  

Species Family Forest-associated species 

Acalypha glabrata Euphorbiaceae 

Acacia karroo Mimosaceae 

Acacia kraussiana Mimosaceae 

Acokanthera oppositifolia Apocynaceae 

Albizia adianthifolia Mimosaceae 

Allophylus africanus Sapindaceae 

Allophylus natalensis Sapindaceae 

Annona senegalensis Annonaceae 

Antidesma venosum Euphorbiaceae 

Apodytes dimidiata Icacinaceae 

Artabotrys monteiroae Annonaceae 

Barringtonia racemosa Lecythidaceae 

Bauhinia tomentosa Caesalpiniaceae 

Bersama lucens Melianthaceae 

Brachylaena discolor Asteraceae 

Bridelia cathartica Euphorbiaceae 

Bridelia micrantha Euphorbiaceae 

Canthium inerme Rubiaceae 

Capparis sepiaria Capparaceae 

Capparis tomentosa Capparaceae 

Carissa bispinosa Apocynaceae 

Carissa macrocarpa Apocynaceae 

Casuarina equisetifolia Casuarinaceae 

Cassine eucleiformis Celastraceae 

Cassipourea gummiflua Rhizophoraceae 

Cassipourea malosana Rhizophoraceae 

Cassine tetragona Celastraceae 

Cassinopsis tinifolia Icacinaceae 

Catunaregam spinosa Rubiaceae 

Celtis africana Ulmaceae 

Cestrum laevigatum Solanaceae 

Chaetacme aristata Ulmaceae 

Chionanthus battiscombei Oleaceae 

Chionanthus foveolatus Oleaceae 

Chionanthus peglerae Oleaceae 

Chrysanthemoides monilifera Asteraceae 

Citrus lemon Rutaceae 

Clausena anisata Rutaceae 
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Clerodendrum glabrum Verbenaceae 

Clerodendrum myricoides Verbenaceae 

Cola natalensis Sterculiaceae 

Commiphora neglecta Burseraceae 

Cordia caffra Boraginaceae 

Croton sylvaticus Euphorbiaceae 

Cussonia sphaerocephala Araliaceae 

Dalbergia armata Fabaceae 

Deinbollia oblongifolia Sapindaceae 

Dichrostachys cinerea Mimosaceae 

Diospyros inhacaensis Ebenaceae 

Diospyros lycioides Ebenaceae 

Diospyros natalensis Ebenaceae 

Dodonaea angustifolia Sapindaceae 

Dovyalis longispina Flacourtiaceae 

Dovyalis rhamnoides Flacourtiaceae 

Dracaena aletriformis Dracaenaceae 

Drypetes natalensis Euphorbiaceae 

Drypetes reticulata Euphorbiaceae 

Ekebergia capensis Meliaceae 

Elaeodendron croceum Celastraceae 

Englerophytum natalense Sapotaceae 

Ephippiocarpa orientalis Apocynaceae 

Erythrococca berberidea Euphorbiaceae 

Erythroxylum emarginatum Erythroxylaceae 

Erythrina lysistemon Fabaceae 

Euclea natalensis Ebenaceae 

Euclea racemosa subsp. sinuata Ebenaceae 

Eugenia capensis Myrtaceae 

Eugenia natalitia Myrtaceae 

Ficus burtt-davyi Moraceae 

Ficus craterostoma Moraceae 

Ficus lutea Moraceae 

Ficus natalensis Moraceae 

Ficus polita Moraceae 

Ficus sur Moraceae 

Ficus sycomorus Moraceae 

Ficus trichopoda Moraceae 

Garcinia livingstonei Clusiaceae 

Gardenia thunbergia Rubiaceae 

Grewia caffra Tiliaceae 

Grewia occidentalis Tiliaceae 

Halleria lucida Scrophulariaceae 

Harpephyllum caffrum Anacardiaceae 

Hibiscus tiliaceus Malvaceae 
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Hymenocardia ulmoides Euphorbiaceae 

Inhambanella henriquesii Sapotaceae 

Keetia gueinzii Rubiaceae 

Kiggelaria africana Flacourtiaceae 

Kraussia floribunda Rubiaceae 

Lagynias lasiantha Rubiaceae 

Lantana camara Verbenaceae 

Macaranga capensis Euphorbiaceae 

Maesa lanceolata Myrsinaceae 

Maerua nervosa Capparaceae 

Manilkara concolor Sapotaceae 

Manilkara discolor Sapotaceae 

Maytenus cordata Celastraceae 

Maytenus heterophylla Celastraceae 

Gymnosporia mossambicensis Celastraceae 

Gymnosporia nemorosa Celastraceae 

Maytenus procumbens Celastraceae 

Gymnosporia senegalensis Celastraceae 

Maytenus undata Celastraceae 

Melia azedarach Meliaceae 

Mimusops caffra Sapotaceae 

Mimusops obovata Sapotaceae 

Monanthotaxis caffra Annonaceae 

Myrica serrata Myricaceae 

Mystroxylon aethiopicum Celastraceae 

Ochna arborea Ochnaceae 

Ochna natalitia Ochnaceae 

Olea capensis Oleaceae 

Olea woodiana Oleaceae 

Osyris compressa Santalaceae 

Oxyanthus speciosus Rubiaceae 

Ozoroa obovata Anacardiaceae 

Pancovia golungensis Sapindaceae 

Parinari capensis subsp. incohata Chrysobalanaceae 

Passerina rigida Thymelaeaceae 

Pavetta lanceolata Rubiaceae 

Pavetta natalensis Rubiaceae 

Pavetta revoluta Rubiaceae 

Pavetta Sp01 Rubiaceae 

Peddiea africana Thymelaeaceae 

Persea americana Lauraceae 

Phoenix reclinata Arecaceae 

Pinus elliotti Pinaceae 

Pisonia aculeata Nyctaginaceae 

Protorhus longifolia Anacardiaceae 
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Psidium guajava Myrtaceae 

Psychotria capensis Rubiaceae 

Psydrax obovata Rubiaceae 

Rapanea melanophloeos Myrsinaceae 

Rauvolfia caffra Apocynaceae 

Rhoicissus digitata Vitaceae 

Rhoicissus revoilii Vitaceae 

Rhoicissus rhomboidea Vitaceae 

Rhoicissus tomentosa Vitaceae 

Rhoicissus tridentata Vitaceae 

Rhus natalensis Anacardiaceae 

Rhus nebulosa Anacardiaceae 

Ricinus communis Euphorbiaceae 

Rothmannia globosa Rubiaceae 

Salacia gerrardii Celastraceae 

Sapium integerrimum Euphorbiaceae 

Schinus terebinthifolius Anacardiaceae 

Schefflera umbellifera Araliaceae 

Sclerocarya birrea Anacardiaceae 

Scolopia zeyheri Flacourtiaceae 

Scutia myrtina Rhamnaceae 

Senna pendula Caesalpiniaceae 

Sideroxylon inerme Sapotaceae 

Solanum mauritianum Solanaceae 

Strychnos gerrardii Loganiaceae 

Strychnos henningsii Loganiaceae 

Strychnos madagascariensis Loganiaceae 

Strychnos mitis Loganiaceae 

Strelitzia nicolai Strelitziaceae 

Strychnos spinosa Loganiaceae 

Strychnos usambarensis Loganiaceae 

Syzygium cordatum Myrtaceae 

Syzygium cumini Myrtaceae 

Tarenna junodii Rubiaceae 

Tarenna littoralis Rubiaceae 

Tarenna pavettoides Rubiaceae 

Tecomaria capensis Bignoniaceae 

Teclea gerrardii Rutaceae 

Thespesia acutiloba Malvaceae 

Trema orientalis Ulmaceae 

Tricalysia delagoensis Rubiaceae 

Trichilia dregeana Meliaceae 

Trichilia emetica Meliaceae 

Tricalysia lanceolata Rubiaceae 

Tricalysia sonderiana Rubiaceae 
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Turraea floribunda Meliaceae 

Turraea obtusifolia Meliaceae 

Uvaria caffra Annonaceae 

Vangueria cyanescens Rubiaceae 

Vangueria infausta Rubiaceae 

Vangueria randii Rubiaceae 

Vepris lanceolata Rutaceae 

Voacanga thouarsii Apocynaceae 

Xylotheca kraussiana Flacourtiaceae 

Zanthoxylum capense Rutaceae 

Ziziphus mucronata Rhamnaceae 
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Table A-2. List of millipede species identified in the regenerating and unmined forests, third 

column indicates species associated with forest habitats (). 

Species Family Forest-

associated 

species 

Doratogonus sp. Spirostreptidae 

Centrobolus fulgidus Spirobolidae 

Centrobolus richardii Spirobolidae 

Centrobolus rugulosus Spirobolidae 

Gnomeskelus tuberosus Dalodesmidae 

Orthroporoides sp.* Spirostreptidae 

Orthroporoides pyrocephalus Spirostreptidae 

Sphaerotherium giganteum Sphaerotheridae 

Sphaerotherium punctulatum Sphaerotheridae 

Sphaerotherium rotundatum Sphaerotheridae 

Sphaerotherium sp. B Sphaerotheridae 

Sphaerotherium sp. C Sphaerotheridae 

Sphaerotherium sp. D Sphaerotheridae 

Sphaerotherium sp. E Sphaerotheridae 

Sphaerotherium sp. F Sphaerotheridae 

Spinotarsus anguliferus Odontopygidae 

Spirostreptidae sp. Imm. Spirostreptidae 

Spirostreptidae sp. Imm. 2 Spirostreptidae 

Ulodesmus micramma zuluensis Dalodesmidae 
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Table A-3. List of dung beetle species identified in the regenerating and unmined forests, third 

column indicates species associated with forest habitats (). 

Species Forest-

associated 

species 

Allogymnopleurus thalassinus  

Anachalcos convexus  

Caccobius nigritulus  

Caccobius obtusus  

Caccobius sp. 1  

Caccobius sp. 2  

Caccobius sp. 3  

Caccobius sp. 4  

Caccobius sp. 5 = Caccobius cavatus  

Catharsius sp  1 (endemic)  

Catharsius mossambicanus  

Catharsius tricornutus 

Cleptocaccobius viridicollis 

Copris inhalatus ssp santaluciae 

Copris puncticollis 

Copris urus 

Digitonthophagus gazella 

Drepanocerus impressicollis (now Afrodrepanus impressicollis) 

Drepanocerus kirbyi 

Euoniticellus intermedius 

Garreta azureus 

Garreta unicolor 

Gyronotus carinatus 

Heliocopris hamadryas 

Hyalonthophagus alcyonides 

Kheper lamarcki 

Liatongus militaris 

Metacatharsius sp. 1 (=zuluanus) 

Milichus sp. 1 

Neosisyphus confrater 

Neosisyphus mirabilis 

Neosisyphus spinipes 

Odontoloma sp. 

Oniticellus formosus 

Oniticellus planatus 

Onthophagus aeruginosus 

Onthophagus ambiguus (now Mimonthophagus ambiguus) 

Onthophagus bicavifrons 

Onthophagus depressus 

Onthophagus fimetarius (coastal var.) possibly new 

Onthophagus flavolimbatus 

Onthophagus lacustris 

Onthophagus nanus 

Onthophagus obtusicornis 

Onthophagus pugionatus 

Onthophagus quadrinodosus 

Onthophagus signatus 

Onthophagus sp 1 (=horned pullus) 

Onthophagus sp. 2 (v. small endemic) 
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Onthophagus sp 3 (=sp. e George) 

Onthophagus sp 4 

Onthophagus sp nr bicavifrons 

Onthophagus sp. nr sugillatus (coastal var.) possibly new 

Onthophagus ursinus 

Onthophagus vinctus 

Onthophagus stellio or variegatus gp?? 

Onthophagus sp - mottled tail 

Onthophagus sp A 

Pachylomerus femoralis 

Pedaria sp. IV 

Pedaria sp. III 

Proagoderus aciculatus 

Proagoderus aureiceps 

Proagoderus brucei (now P. chalcostolus) 

Scarabaeus bornemisszai 

Scarabaeus goryi 

Sisyphus natalensis (cited as the syn. S. bornemisszanus) 

Sisyphus seminulum 

Sisyphus sordidus 

Sisyphus sp nr gazanus 

Sisyphus sp y 

Stiptopodius sp. 1 
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Table A-4. List of bird species identified in the regenerating and unmined forests, third column 

indicates species associated with forest habitats (). 

Species Common Name Forest-associated 

species 

Acrocephalus palustris Eurasian Marsh Warbler 

Alcedo cristata Malachite Kingfisher 

Amblyospiza albifrons Thick-billed Weaver 

Andropadus importunus Sombre Greenbul 

Anthus cinnamomeus African Pipit 

Apalis flavida Yellow-breasted Apalis 

Apalis ruddi Rudd's Apalis 

Apalis thoracica Bar-throated Apalis 

Apalpderma narina Narina Trogon 

Aplopelia larvata Lemon Dove 

Ardea melanocephala Black-headed Heron 

Batis capensis Cape Batis 

Batis fratrum Woodwards' Batis 

Bostrychia hagedash Hadeda Ibis 

Bradornis pallidus Pale Flycatcher 

Bycanistes bucinator Trumpeter Hornbill 

Calendulauda sabota Sabota Lark 

Camaroptera brachyura Green-backed Camaroptera 

Campephaga flava Black Cuckooshrike 

Campethera abingoni Golden-tailed Woodpecker 

Caprimulgus europaeus European Nightjar 

Centropus burchellii Burchell's Coucal 

Cercotrichas leucophrys White-browed Scrub-Robin 

Cercotrichas quadrivirgata Bearded Scrub-Robin 

Cercotrichas signata Brown Scrub-Robin 

Ceuthmochares aereus Green Malkoha 

Chalcomitra amethystina Amethyst Sunbird 

Chalcomitra senegalensis Scarlet-chested Sunbird 

Chlorocichla falviventris Yellow-bellied Greenbul 

Chrysococcyx caprius Diederik Cuckoo 

Chrysococcyx cupreus African Emerald Cuckoo 

Chrysococcyx klaas Klaas's Cuckoo 

Cinnyris bifasciata Purple-banded Sunbird 

Cisticola chinianus Rattling Cisticola 

Cisticola cinnamomeus Pale-crowned Cisticola 

Cisticola fulvicapilla Neddicky 

Cisticola juncidis Zitting Cisticola 

Cisticola natelensis Croaking Cisticola 

Clamator jacobinus Jacobin Cuckoo 

Coccopygia melanotis Swee Waxbill 

 
 
 



Appendices 

 152 | 

Colius striatus Speckled Mousebird 

Columba delegorguei Eastern Bronze-naped Pigeon 

Coracias caudata Lilac-breasted Roller 

Coracias garrulus Eurasian Roller 

Coracina caesia Grey Cuckooshrike 

Corvus albus Pied Crow 

Cossypha caffra Cape Robin-Chat 

Cossypha dichroa Chorister Robin-Chat 

Cossypha natalensis Red-capped Robin-Chat 

Coturnix coturnix Common Quail 

Cuculus canorus Common Cuckoo 

Cuculus gularis African Cuckoo 

Cuculus solitarius Red-chested Cuckoo 

Cyanomitra olivacea Eastern Olive Sunbird 

Cyanomitra veroxii Grey Sunbird 

Dendropicos fuscescens Cardinal Woodpecker 

Dendropicos griseocephalus Olive Woodpecker 

Dicrurus adsimilis Fork-tailed Drongo 

Dicrurus ludwigii Square-tailed Drongo 

Dryoscopus cubla Black-backed Puffback 

Estrilda astrild Common Waxbill 

Estrilda perreini Grey Waxbill 

Euplectes axillaris Fan-tailed Widowbird 

Euplectes orix Southern Red Bishop 

Eurystomus glaucurus Broad-billed Roller 

Guttera edouardi Crested Guineafowl 

Halcyon albiventris Brown-hooded Kingfisher 

Hedydipna collaris Collared Sunbird 

Hippolais icterina Icterine Warbler 

Indicator minor Lesser Honeyguide 

Indicator variegatus Scaly-throated Honeyguide 

Ispidina picta African Pygmy-Kingfisher 

Lagonosticta rubricata African Firefinch 

Lamprotornis corruscus Black-bellied Starling 

Laniarius ferrugineus Southern Boubou 

Lanius collaris Common Fiscal 

Lanius collurio Red-backed Shrike 

Lanius minor Lesser Grey Shrike 

Lonchura cucllata Bronze Mannikin 

Lonchura nigriceps Red-backed Mannikin 

Lybius torquatus Black-collared Barbet 

Macronyx croceus Yellow-throated Longclaw 

Malaconotus blanchoti Grey-headed Bush-Shrike 

Mandingoa nitidula Green Twinspot 
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Megaceryle maxima Giant Kingfisher 

Melaenornis pammelaina Southern Black Flycatcher 

Merops pusillus Little Bee-eater 

Mirafra africana Rufous-naped Lark 

Monticola rupestris Cape Rock-Thrush 

Motacilla aguimp African Pied Wagtail 

Motacilla capensis Cape Wagtail 

Muscicapa adusta African Dusky Flycatcher 

Muscicapa caerulescens Ashy Flycatcher 

Muscicapa striata Spotted Flycatcher 

Musophaga porphyreolopha Purple-crested Turaco 

Myioparus plumbeus Grey Tit-Flycatcher 

Nicator gularis Eastern Nicator 

Oriolus larvatus Black-headed Oriole 

Oriolus oriolus Eurasian Golden Oriole 

Passer domesticus House Sparrow 

Phyllastrephus terrestris Terrestrial Brownbul 

Phylloscopus trochilus Willow Warbler 

Platysteira peltata Black-throated Wattle-eye 

Plectropterus gambensis Spur-winged Goose 

Ploceus Weavers 

Ploceus bicolor Dark-backed Weaver 

Ploceus cucullatus Village Weaver 

Ploceus intermedius Lesser Masked-Weaver 

Ploceus ocularis Spectacled Weaver 

Ploceus subaureus Yellow Weaver 

Pogoniulus bilineatus Yellow-rumped Tinkerbird 

Pogoniulus pusillus Red-fronted Tinkerbird 

Pogonocichla stellata White-starred Robin 

Prinia subflava Tawny-flanked Prinia 

Pycnonotus tricolor Dark-capped Bulbul 

Rhinopomastus cyanomelas Common Scimitarbill 

Sarothrura elegans Buff-Spotted Flufftail 

Saxicola torquata African Stonechat 

Serinus canicollis Cape Canary 

Serinus mozambicus Yellow-fronted Canary 

Serinus sulphuratus Brimstone Canary 

Sigelus silens Fiscal Flycatcher 

Smithornis capensis African Broadbill 

Stactolaema leucotis White-eared Barbet 

Streptopelia capicola Cape Turtle Dove 

Streptopelia semitorquata Red-eyed Dove 

Sylvia borin Garden Warbler 

Sylvietta rufescens Long-billed Crombec 
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Tauraco corythsix Knysna Turaco 

Tauraco livingstonii Livingstone's Turaco 

Tchagra australis Brown-crowned Tchagra 

Tchagra senegala Black-crowned Tchagra 

Telophorus olivaceus Olive Bush-Shrike 

Telophorus quadricolor Gorgeous Bush-Shrike 

Telophorus sulfureopectus Orange-breasted Bush-Shrike 

Terpsiphone viridis African Paradise-Flycatcher 

Tockus alboterminatus Crowned Hornbill 

Trachyphonus vallantii Crested Barbet 

Treron calva African Green-Pigeon 

Trochocercus cyanomelas Blue-mantled Crested Flycatcher 

Turdus libonyanus Kurrichane Thrush 

Turtur chalcospilos Emerald-spotted Wood-Dove 

Turtur tympanistria Tambourine Dove 

Uraeginthus angolensis Blue Waxbill 

Urocolius indicus Red-faced Mousebird 

Vidua macroura Pin-tailed Whydah 

Zoothera guttata Spotted Ground-Thrush 

Zosterops virens Cape White-eye 
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Appendix III: Manuscript accepted for publication at Landscape and Ecological 1 

Engineering (DOI: 10.1007/s11355-013-0211-1). 2 
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Manuscript type: Original paper  4 

 5 

Title: Coastal dune topography as a determinant of abiotic conditions and biological 6 
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 8 
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tel. +2712 420 2535; fax +2786 653 3970 13 

 14 

Keywords: aspect, dune morphology, elevation, gradient, microclimate, soil 15 

Word count: 4,813 (including main text and references)  16 

  17 

 
 
 

mailto:tott@zoology.up.ac.za
mailto:rjvaarde@zoology.up.ac.za


Appendices 

 156 | 

Abstract 18 

Topography is rarely considered as an independent goal of restoration. Yet, topography 19 

determines micro-environmental conditions and hence living conditions for species. 20 

Restoring topography may therefore be an important first step in ecological restoration. We 21 

aimed at establishing the relative importance of topography where coastal dunes destroyed by 22 

mining are rebuilt as part of a rehabilitation programme.  23 

We assessed the response of 1) microclimatic and soil conditions, and 2) woody plant 24 

and millipede species richness and density, to location-specific topographic profiles. We 25 

enumerated the topographic profile using variables of dune morphology (aspect, elevation 26 

and gradient) as well as relative position on a dune (crest, slope, valley).  27 

Temperature, relative humidity and light intensity varied with aspect, elevation, 28 

gradient and position. However, regeneration age was a better predictor of soil nutrient 29 

availability than these topographic variables. Age also interacted with topographic variables 30 

to explain tree canopy density and species richness, as well as millipede species richness. The 31 

density of keeled millipedes (forest specialists) was best explained by topographic variables 32 

alone. The transient nature of these new-growth coastal dune forests likely masks 33 

topography-related effects on communities because age-related succession (increasing 34 

structural complexity) drives the establishment and persistence of biological communities, 35 

not habitat conditions modulated by topography. However, our study has shown that the 36 

microhabitats associated with topographic variability influence specialist species more than 37 

generalists.  38 

 39 

 40 
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Introduction 41 

Ecological restoration is widely recognised as a conservation tool and aims to re-instate 42 

natural processes that sustain biological diversity (Dobson et al. 1997; MacMahon & Holl 43 

2001; Rands 2012). Such diversity is determined by both regional and local forces, the latter 44 

often as a function of topography due to cascadal effects on microclimatic conditions, water 45 

retention, and nutrient availability (Larkin et al. 2006). These relationships are especially 46 

well-documented in mountainous regions (Burnett et al. 1998; Nichols et al. 1998; Tateno & 47 

Takeda 2003; da Silva et al. 2008), but less often for coastal sand dune ecosystems (e.g. 48 

Martínez et al. 2001; Acosta et al. 2007). The restoration of topography may be a priority 49 

(Weiss & Murphy 1990; Palik et al. 2000; Larkin et al. 2006), but difficult or costly to 50 

achieve. However, an approximation of the original topography may be sufficient to maintain 51 

desired ecological processes. This may well be the case in our study areas where succession 52 

drives forest regeneration, but where the full complement of species has not yet been 53 

regained (van Aarde et al. 1996b; Grainger 2012). This may be due to the micro-54 

environmental needs of specialist species not being met due to constraints imposed by 55 

topography. Justification to restore terrain requires an assessment of the relevance of 56 

topography for species and ecological processes. In this study, we assess the influence of 57 

dune topography on abiotic and biotic conditions (Table ) in coastal dune forests regenerating 58 

in response to an ecological restoration program.  59 

The aspect, elevation, and gradient of slopes are collectively referred to as dune 60 

morphology, while the relative position is described as the crest, slope, or valley. These 61 

variables of dune topography can modulate habitat conditions in various ways (Larkin et al. 62 

2006). For example, nutrients leaching from dune crests into valleys where plant-63 

communities are light-limited results in nutrient-limited communities on crests, but greater 64 

nutrient availability in valleys (Tateno & Takeda 2003). Canopy structure changes with 65 
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gradients in soil fertility and light (Nichols et al. 1998; Tateno & Takeda 2003), even with 66 

limited altitudinal variation (da Silva et al. 2008). This may explain patterns in plant species 67 

composition, abundance, and distribution (Chen et al. 1997; Oliviera-Filho et al. 1998). The 68 

aspect and gradient of dune slopes may amplify these differences as they also influence light 69 

availability (Oliviera-Filho et al. 1998; Bennie et al. 2008) and wind exposure (Chen et al. 70 

1997; Acosta et al. 2007). Wind sculpts tree canopies (Kubota et al. 2004), hastens canopy 71 

gap formation (Ritter et al. 2005), and contributes to seed dispersal (Furley & Newey 1979). 72 

The windward slopes of coastal dunes have higher evaporation rates than leeward slopes and 73 

are more exposed to salt spray that increases salt concentrations in the soil, in turn 74 

influencing soil pH and the availability of nutrients (Furley & Newey 1979; Chen et al. 1997; 75 

Acosta et al. 2007). We therefore hypothesized that dune morphology and position would 1) 76 

modulate microclimatic conditions (temperature, relative humidity, and light intensity) and 2) 77 

influence soil nutrient availability (C:N ratio) and soil pH (see Table ). Disturbed or 78 

destroyed topographic profiles could therefore hinder the ecological restoration of plant and 79 

animal communities of new-growth forests, or simply alter heterogeneity and rearrange the 80 

distribution of resources. Thus the structure and composition of biotic communities at 81 

locations with different dune morphologies should be assessed to determine the importance of 82 

restoring the topographic profile.   83 

Topography influences plant growth and species richness in old-growth forests 84 

(Tateno & Takeda 2003; da Silva et al. 2008), which has cascadal effects on biota through the 85 

responses of microclimatic conditions to topography (Larkin et al. 2006). Physiological trade-86 

offs associated with the small size and ectothermy of invertebrates, such as millipedes, 87 

renders them sensitive to microclimatic conditions that dictate habitat preferences (Ashwini 88 

& Sridhar 2008; Loranger-Merciris et al. 2008; David & Gillon 2009). We therefore assessed 89 

the importance of the topographic profile in structuring millipede assemblages. We 90 
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hypothesized that within a seral stage, dune morphology and position would 3) influence 91 

plant community structure and composition, and 4) millipede community structure and 92 

composition in regenerating stands of new-growth coastal dune forest (Table ). If millipedes 93 

respond to topography, changes in the topographic profile should result in changes in 94 

millipede diversity. If this is not the case, topography has a limited role to play, if any, in 95 

explaining millipede community structure. Although this study is based upon coastal dune 96 

forests, it may have implications for any disturbed dune system under restoration. 97 

Methods 98 

Study area 99 

The study area was located north of Richards Bay town (between 28°46' and 28°34' south) on 100 

the sub-tropical north coast of Kwazulu-Natal, South Africa (Fig. 1). The climate is humid 101 

with a mean annual rainfall of 1458 ± 493.5 mm (mean ± SD, n = 34 years between 1976 and 102 

2009), peaking in February. The mean annual temperature was 23.79 ± 3.40°C (n = 3 years 103 

between 2006 and 2009. Winds of between 10 and 40 km.h
-1

 blew from the north-east for 104 

about 20% of the time, as did those from south-south west and south-west combined (data 105 

courtesy of Richards Bay Minerals).  106 

The establishment of forests on the coastal dunes here occurred with the return of 107 

warm interglacial conditions between 6,500 and 4,000 years ago, making them among the 108 

highest vegetated dunes in the world (Weisser & Marques 1979; Lawes 1990). These forests 109 

are therefore relatively young and harbour few endemic species (Lawes 1990; van Wyk & 110 

Smith 2001). Coastal dune forests are sensitive to disturbance but previous work has shown 111 

that they are relatively resilient and are thus able to recover (e.g. Wassenaar et al. 2005; 112 

Grainger et al. 2011).  113 
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Richards Bay Minerals (RBM) has leased this area since 1976 for the extraction of 114 

heavy metals from the coastal sands. Ahead of the dredging pond, all vegetation was cleared 115 

and the dunes were collapsed for mining. After mining, sand tailings were stacked to 116 

resemble pre-mining topography and were covered with topsoil (van Aarde et al. 1996c). A 117 

third of the mined area was set aside for the restoration of indigenous coastal dune forest and 118 

this area comprised known-aged stands that at the time of the study ranged in age from 1 year 119 

(in the northeast) to 33 years (in the southwest) (see Fig. 1). This age-range represented three 120 

seral stages based on those defined by Grainger (2012): seral stage one = 1-10 years, two = 121 

11-25 years, and three >25 years. Adjoined by a coastal strip of unmined vegetation about  122 

200 m wide, the stands were themselves no wider than 2 km, set in a mosaic of active mining 123 

areas, plantations, degraded woodland, and rural villages (Wassenaar et al. 2005).  124 

Microclimatic data  125 

Fifteen HOBO
® 

4-channel data loggers (Onset Computer Corporation, 470 MacArthur Blvd., 126 

Bourne, MA 02532, U.S.A.) were deployed in the 22-year old stand (see Fig. 1) on custom-127 

made platforms placed 10 cm above the ground (five on the crest, five on a slope and five in 128 

the valley). We programmed these loggers to record ground-level temperature, relative 129 

humidity, and light intensity (see Table 2 for definitions) every 10 minutes between 08:00, 28 130 

January and 05:00, 4 February 2011, yielding 14,850 records.  131 

Soil surveys 132 

An auger was used to collect soil samples to 20 cm depth at the corners and centre of each of 133 

the millipede survey transects (see below). These five samples were mixed into a single bag 134 

and consequently 65 bags were analyzed at the Department of Plant Production and Soil 135 

Science at the University of Pretoria using procedures described in van Aarde et al. (1998; 136 

see supplementary information for detailed chemical profile). We used Nitrogen and Carbon 137 
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concentrations to calculate the carbon-to-nitrogen ratio (C:N, Table 2) and included the pH 138 

values of each sample in our analysis.  139 

Woody plant surveys 140 

All woody plants taller than 0.2 m in 106 randomly placed quadrats (16×16–m, at least 100 m 141 

apart) in six stands of known regeneration age (10, 14, 18, 22, 26, and 33 years) were 142 

sampled between July and November 2010. Each plant was identified against reference 143 

material. We calculated six variables of woody plant community structure for each quadrat 144 

(see Table 2).  145 

Millipede surveys 146 

Millipede species occurring on the ground up to 3 m on plants were counted between 13 147 

January and 4 February 2011 in 65 randomly placed transects within a 10, 14, 18, 22, 26, and 148 

33 year-old stand (see Fig. 2). Each transect was 32 × 6–m wide and comprised 48 2 × 2–m 149 

cells. Surveys were conducted by three observers per transect, each responsible for a column 150 

of 16 cells. All millipedes found in a cell during five minutes were identified based on 151 

reference images and descriptions (Porter et al. 2007), counted, and removed to avoid 152 

recounting. We calculated the number of millipede species and the density of cylindrical, 153 

keeled, and pill millipedes (see Table 2) within each location-specific transect.  154 

Topographic data 155 

We used classified topographic data based on eight cardinal directions (aspect), seven 156 

elevation categories, and five gradient categories that had been extracted from a topographic 157 

map (see Fig.1.) based on a Light Detection and Ranging (LIDAR) mission conducted in 158 

2010 (post-mining). We used GIS overlay procedures to relate all of the sampling points and 159 

quadrat locations recorded in the field to location-specific variables of dune morphology 160 

based on the topographic maps.  161 
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Statistical analyses  162 

We used stratified random sampling to extract one microclimate record (including the 163 

temperature, relative humidity, and light intensity readings) per hour, per logger for each 164 

sampling day (29 January – 3 February 2011), rendering 2,475 records to be included in 165 

analyses. We log10-transformed the light intensity data to meet assumptions for analyses of 166 

variance (ANOVA). To determine whether microclimatic conditions were modulated by 167 

topography, we conducted repeated measures ANOVA with hour and day as repeated 168 

measures factors, and categorized variables of dune morphology as between-groups factors.  169 

We assessed the influence of dune morphological variables on soil C:N ratios and pH, 170 

as well as woody plant and millipede community variables in each of the three seral stages. 171 

We assessed these using generalized linear models with age as a covariate (Analyses of 172 

Covariance (ANCOVA) for all seral stages for woody plants and seral stages 2 and 3 for soil 173 

and millipedes. Millipede and soil data for seral stage 1 comprised too few cases and was 174 

therefore not assessed separately. All statistical analyses were conducted using STATISTICA 175 

10 (Statsoft Inc., Tulsa, Oklahoma). 176 

Woody plant and millipede species abundance data were log10-transformed and 177 

calculated the similarity between quadrats, with different dune morphological characteristics 178 

using the Bray-Curtis index. Cluster analyses and non-metric multi-dimensional scaling 179 

(NMDS) were used to detect community clusters based on the four characteristics of dune 180 

morphology. Analyses of similarity (ANOSIM) allowed us to assess the significance of 181 

community groupings based on dune morphology within each successional stage. To identify 182 

the distinguishing species, we conducted similarity percentage (SIMPER) analyses 183 

(SIMPER) for those community groupings that differed significantly based on dune 184 

morphological characteristics. All multivariate techniques were conducted using PRIMER 6 185 

software (Clarke 1993).  186 
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Results 187 

Dune topography and abiotic variables  188 

Temperature was significantly modulated by aspect and gradient when sampling day and time 189 

of day were taken into account (repeated measures ANOVA: F(575, 1035) = 1.33, p < 0.001 and 190 

F(230, 1380) = 1.27, p = 0.007, respectively). Similarly, relative humidity was significantly 191 

modulated by elevation (F(345, 1265) = 1.7632, p < 0.001), gradient (F(230, 1380) = 1.69, p < 0.001) 192 

and position (F(230, 1380)=1.65, p < 0.001), while light intensity was influenced by aspect (F(575, 193 

1035) = 1.93, p < 0.001) and position (F(230, 1380)=1.38, p < 0.001). Northern slopes were hotter 194 

and lighter than other slopes, although south-facing slopes were also relatively warm. Low-195 

lying areas were relatively humid compared to higher dunes. Slopes with mid-range steepness 196 

were generally more humid, but cooler than comparatively gentle and steep slopes. Valleys 197 

were generally more humid and darker than crests and slopes. For illustrative purposes, we 198 

presented one day’s data for these significant cases (see Fig. 2). 199 

 Variability in soil pH was best explained by age in seral stage 2, and a model 200 

including aspect, elevation, and position in addition to age in seral stage 3 (ANCOVA and 201 

AIC; Table 3). However, none of the models significantly explained variability in soil C:N 202 

ratios (Table 3).  203 

Dune topography and biotic variables  204 

The 8,833 woody plants sampled in 106 quadrats comprised 7,122 canopy and 1,736 205 

understory plants among 88 species. Variability in all woody plant variables was best 206 

explained by models that included age as a covariate within pooled seral stages, as was the 207 
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case when seral stage 2 was treated separately (ANCOVA and AIC; 208 

 209 

Figure 5-3. Mean ± one standard deviation of the mean of woody plant response variables 210 

presented as a function of those variables that best-explained their variability significantly 211 

despite stand age (see Table 2).   212 
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Table 5-3). The number of tree canopy species in seral stage 1 was best explained by a model 213 

including aspect, elevation, gradient, and position, but not age. There were more species on 214 

west- and northwest-facing slopes compared to south- and southwest-facing slopes (Fig. 3a), 215 

while relatively flat slopes had fewer species than other gradients (Figure 5-3b), as did crests 216 

relative to slopes (Fig. 3c). However, canopy tree species richness varied little with elevation 217 

(Fig. 3d). Tree density in seral stage 3 increased significantly with gradient (ANCOVA and 218 

AIC; Fig. 3e).  219 

 Only 11% of the variability in tree species abundances was explained by gradient in 220 

seral stage 2, although the NMDS plot was unconvincing of this separation (ANOSIM, p < 221 

0.05, Fig. ). Nevertheless, SIMPER analysis revealed consistent dominance by Acacia karroo 222 

Hayne and Celtis africana Burm.f. (contributing more than 80% of the community) across all 223 

gradients (Table 4). However, the number of species increased with gradient so that in 224 

addition to these two species, Allophylus natalensis Sond. (Dune False Currant) characterized 225 

slopes ranging from 0 to 15° and Brachylaena discolor DC. (Coast Silver-oak) those of 11 to 226 

15°. Slopes of more than 15° were characterised by the addition of Grewia occidentalis L. 227 

(Cross-berry), Chaetachme aristata Planch. (Giant Pock Ironwood) and Teclea gerrardii 228 

I.Verd. (Zulu Cherry-orange), though all with less than a 5% contribution to tree communities 229 

on these slopes (Table 4).  230 

Elevation explained 32% of the variability in understory species abundances in seral stage 3 231 

(ANOSIM, p < 0.05, Fig. ). However, this was the result of most cases representing mid-232 

elevations of 41–60 m.a.s.l, with very few cases for other elevation categories. Nevertheless, 233 

these mid-elevations were dominated (61% contribution) by Rhoicissus revoilii Planch. 234 

(Bushveld grape), followed by Scutia myrtina Burm.F (Cat-thorn) that contributed 28%, and 235 

the invasive alien species, Chromolaena odorata L. (Triffid Weed), contributing 11% (Table 236 

5). Elevations of 61–80 m.a.s.l. were dominated by S. myrtina alone (Table 5).  237 
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Millipede assemblages 238 

We recorded 28,987 millipedes (28,351 cylindrical, 513 keeled, and 123 pill millipedes) from 239 

16 species in 65 quadrats. The number of millipede species in the transects of seral stage 2 240 

covaried with dune position (Table 3), whereby valleys had the most species, though that of 241 

slopes and crests did not differ from one another (Fig. 5). Models including age as a covariate 242 

in addition to variables of dune morphology best explained the density of cylindrical 243 

millipedes for pooled and separated seral stages. Pill millipede density was very low and also 244 

driven by rehabilitating stand age in combination with dune morphological variables for 245 

pooled as well as separate seral stages. The density of keeled millipedes for pooled seral 246 

stages was best explained by a model including aspect, elevation, gradient, and position, but 247 

not age (Table 3). These millipedes were most prolific in valleys (Fig. 5b), as well as east-248 

facing slopes (Fig. 5c) with gradients steeper than 10° (Fig. 5d). However, we found little 249 

correlation between millipede communities and elevation (Fig. 5e), and when seral stages 250 

were separated age was included in the best-fit model (Table 3). Based on our ANOSIM 251 

analyses none of the variables of dune morphology significantly influenced species-specific 252 

millipede abundances.  253 

Discussion 254 

In line with our hypotheses, dune morphology modulated microclimatic conditions in a 255 

similar manner as reported for other studies (Tateno & Takeda 2003; Bennie et al. 2008). We 256 

acknowledge though, that the conditions on each dune face are likely the product of 257 

conditions ameliorated or exacerbated by surrounding dunes that have consequences for wind 258 

channelling and shading, thus cumulatively influencing microclimatic conditions. Contrary to 259 

our hypotheses, variability in soil nutrient concentrations was not explained by dune 260 

morphology, but rather by regeneration age. The processing of sand as part of the mining 261 
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operation probably reshuffled soil nutrients and minerals that accumulate through natural 262 

processes. With only a few years of post-mining regeneration of biotic activity and 263 

mechanical processes (e.g. leeching) it is not surprising that soil fertility (C:N ratios) and pH 264 

levels are not yet conforming to expected spatially structured patterns induced by dune 265 

topography. Given the weak associations between topographic and abiotic variables, it is also 266 

not surprising that spatial variability in woody plant and millipede community structure could 267 

not be explained by topographic variables.  268 

Species richness and density, as well as species-specific abundances of canopy trees 269 

and the understory varied with topography, as did millipede species richness, all in support of 270 

our formulated hypotheses, though with the caveat of an overriding influence of regeneration 271 

age. Keeled millipedes, a group of invertebrates associated with forests, also responded to 272 

topography, although cylindrical and pill millipedes did not. This suggests that forest 273 

specialists may be more sensitive to microhabitats induced by topography, but this requires 274 

further investigation.  275 

Increasing slope steepness resulted in more dense woody plant canopies in stands 276 

older than 25 years, a finding similar to that of van Dyk (1996) for earlier stages of 277 

regeneration in the study area. Laurance et al. (1999) also described a decrease in the number 278 

of large trees with increased tree density on steep slopes. Although woody plant communities 279 

of different gradients in stands of 11-25 years were generally dominated by similar sets of 280 

forest tree species, species composition varied with the gradient of slopes. Incidentally, the 281 

majority of these dominant species were identified by Grainger (2012) as species that could 282 

colonize newly formed gaps in the woodland. This was likely due to their wide tolerance to 283 

irradiance, temperatures, and moisture that change along dune slopes with elevation and 284 

gradient (Ritter et al. 2005). Species abundances of canopy and understory communities 285 

responded to different gradients in stands of 11-25 years, and elevation in stands of >25 286 
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years, respectively. The number of canopy species, though not their abundances, was best 287 

explained by aspect, elevation, gradient, and position in stands younger than 11 years, 288 

suggesting that dune morphology may provide habitat conditions that support different 289 

species in the early stages of succession when conditions are likely to be most harsh.  290 

Millipede variables also responded to age and dune morphology. Explanatory models 291 

for cylindrical and pill millipede density included age as a covariate. These relationships are 292 

likely the result of age-related increases in woodland complexity (Kritzinger & van Aarde 293 

1998), moisture-retention and nutrient accumulation associated with litter accumulation (van 294 

Aarde et al. 1998) and the modulation of microclimate by topography as discussed above. As 295 

in Greyling et al. (2001), two closely related cylindrical millipedes (Centrobolidae) 296 

dominated these new-growth forests. This may have obscured patterns in species-specific 297 

abundances related to topography. However, the number of millipede species covaried with 298 

position on the dune face in stands of 11-25 years, whereby valleys supported more millipede 299 

species than slopes and crests. When considering the microclimatic data, this likely relates to 300 

the moderate temperature and light intensities but relatively humid conditions that existed in 301 

the valleys in comparison with ambient conditions such as wind and high temperatures. 302 

Keeled millipedes responded to topographic variables independent of age and this likely 303 

relates to the provision of microhabitats for this relatively small, forest-associated species and 304 

justifies further study.  305 

Despite the idiosyncratic responses by woody plants and millipedes, position on the 306 

dune, as well as aspect, elevation and gradient of the dune face contributed to age-related 307 

changes in community structure. Our study also suggests that due to its modulation of 308 

microclimatic conditions, dune topography provides habitats conducive to forest-associated 309 

species that have narrow climatic habitat tolerances. This suggests that even though these 310 

new-growth forests are in transition, topography may influence the structure and composition 311 
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of biological communities of new-growth forests, especially when acting in concert with 312 

other site-level factors. Such factors are likely to include those previously identified as 313 

determinants of community structure and composition, such as landscape composition 314 

(Grainger et al. 2011), and age (Wassenaar et al. 2005; Grainger & van Aarde 2012a).  315 

The role of dune morphology seems more obvious in well-established ecosystems (Chen et 316 

al. 1997; Oliviera-Filho et al. 1998; Tateno & Takeda 2003; Larkin et al. 2006), than the new-317 

growth forests that we studied, where age explained changes in assemblages better than 318 

topography. Dune topography shaped as part of the rehabilitation procedure provides for the 319 

topography that influences local conditions and therefore possibly for ecosystem patterns and 320 

processes in a set manner according to prevailing climatic conditions. Topographically, these 321 

dunes may differ from those shaped by natural forces (wind, water) which will probably 322 

affect patterns and processes. However, these differences may be negligible and therefore not 323 

be reflected in biological patterns, especially during the early stages of succession-driven 324 

forest regeneration where most community variables vary with regeneration age.  325 

For instance, age-related increases in habitat complexity provide an increasing variety 326 

of conditions that accommodate more animal species and associated ecological processes 327 

(Kritzinger & van Aarde 1998; Wassenaar et al. 2005). For example, increased plant 328 

diversity, tree senescence and the associated development of a litter layer, increased soil 329 

water retention, and nutrient accumulation would presumably benefit millipede communities 330 

(e.g. Scheu & Schaefer 1998; Greyling et al. 2001; Berg & Hemerik 2004). In conclusion, 331 

topography matters, more so for specialists than generalists. Response to topographic 332 

variability is clearly species-specific and not necessarily reflected at the community level.  333 

 334 

 335 
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Tables 463 

Table 1 Key questions and hypotheses of this study 464 

Key 

question 

General 

assumptions 

Hypotheses Examples from 

the literature 

1. Does dune 

topography 

influence 

abiotic 

conditions? 

Dune topography 

modulates 

microclimatic 

conditions 

Irradiation, temperature and humidity may 

increase or decrease, depending exposure to 

wind and sun that is facilitated or eased by dune 

aspect, elevation, and position  

(Tateno & 

Takeda 2003; 

Bennie et al. 

2008) 

Dune topography 

influences soil 

nutrient 

availability 

Soil carbon-to-nitrogen ratio and soil pH will be 

greater in valleys and at low elevations  

(Chen et al. 

1997; Tateno & 

Takeda 2003) 

2. Does dune 

topography 

influence 

biotic 

conditions? 

Dune topography 

influences woody 

plant community 

structure and 

distribution 

 Woody plant richness will depend on aspect, 

elevation and position depending on their 

exposure to wind  

 Woody plant canopy structure will depend on 

gradient and position 

 Species-specific woody plant abundances will 

differ based on dune morphology and position 

(van Dyk 1996; 

Oliviera-Filho et 

al. 1998; da 

Silva et al. 

2008; Laurance 

et al. 2010)  

Dune topography 

influences 

millipede 

community 

structure and 

distribution 

 Millipede richness, as well as taxon-specific 

density may be influenced by aspect, 

elevation, and position depending on their 

exposure to wind and sunlight 

 Species-specific millipede abundances will 

differ based on dune morphology and position 

(Weiss & 

Murphy 1990; 

Moir et al. 

2009)  

  465 
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Table 2 Definitions of response variables 466 

Variable  Definition and units 

R
es

p
o

n
se

 v
ar

ia
b

le
s 

M
ic

ro
cl

im
at

e 

Temperature Ambient temperature measured in degrees Celsius (°C) 

Relative humidity The partial pressure of water vapor measured as a percentage (%) of 

the saturated vapor pressure 

Light intensity Incident sunlight, measured as luminous power per area (illuminance) 

in lumens (lux) 

S
o

il
  

Soil pH Soil acidity 

Soil C:N Carbon and nitrogen percentage content in soil samples presented as a 

ratio of carbon-to-nitrogen 

W
o

o
d

y
 p

la
n

ts
 

Canopy tree species Total number of species forming the canopy (height class 2-5, 

referred to as trees) per quadrat 

TH Mean tree height (TH) class ( 2 [ >2–4 m], 3 [ >4–6 m], 4 [>6–8 m], 

and 5[ >8 m]) of each quadrat 

CBH Per-quadrat mean circumference at breast height (CBH), 

measurement carried out on all trees (height class 2-5) at ~1.4 m 

above ground 

Canopy tree density Number of trees per100 m
2
, calculated for each quadrat 

Understory species Total number of species making up the understory (height class 1 [0-

2m], referred to as understory plants) per quadrat 

Understory density Number of understory plants per100 m
2
 calculated for each quadrat 

M
il

li
p

ed
es

 

Millipede species Total number of millipede species per quadrat 

Cylindrical density Number of Centrobolus spp., Doratagonus sp., Spinotarsus 

anguiliferus, and Spirostreptidae spp. per 100 m
2
 calculated for each 

quadrat 

Keeled density  Number of Gnomeskelus tuberosus individuals per 100 m
2
 calculated 

for each quadrat 

Pill density Number of Sphaerotheridae spp. individuals per 100 m
2
 calculated 

for each quadrat 

  467 
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Table 3 Dune morphological variables included in the most parsimonious models (based on Akaike 468 

Information Criteria (AIC) scores) explaining variance in abiotic and biotic variables for each of 469 

three seral stages and pooled stages, as well as the significance of the model (p < 0.05). Those 470 

response variables that were explained by dune morphological  variables in the absence of age are 471 

highlighted in boldface text.  472 

  

Explanatory variables 

 

Response variables 

Seral 

stage 

Dune morphology 

A
g

e 

ANCOVA results 

A
sp

ec
t 

E
le

v
at

io
n

 

G
ra

d
ie

n
t 

P
o

si
ti

o
n

 

df AIC P 

S
o

il
 

Soil pH 

1 Insufficient cases 

2 

    

X 1 54.35 0.0005 

3 X X 

 

X X 12 13.73 < 0.0001 

Pooled 

    

X 1 157.54 < 0.0001 

Soil C:N 

1 Insufficient cases 

2 

  

X 

  

4 284.46 0.119 

3 

    

X 1 186.59 0.745 

Pooled         X 1 542.26 0.778 

W
o

o
d

y
 p

la
n

ts
 

Mean canopy height 

1 X X 

  

X 9 23.03 < 0.0001 

2 

 

X 

  

X 5 23.77 < 0.001 

3 X 

 

X X X 12 46.27 < 0.001 

Pooled 

 

X 

  

X 5 236.79 0.024 

Mean canopy tree CBH 

1 X X 

 

X X 10 158.23 < 0.0001 

2 

    

X 1 280.81 < 0.001 

3 X 

 

X 

 

X 10 229.17 < 0.001 

Pooled X X X 

 

X 16 787.49 < 0.001 

Number of species in 

canopy 

1 X X X X 

 

13 125.49 0.002 

2 

 

X 

  

X 5 195.20 < 0.001 

3 

  

X 

 

X 3 169.77 0.015 

Pooled 

 

X 

 

X X 7 528.67 < 0.001 
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Mean canopy tree 

density 

1 

    

X 1 -10.80 0.009 

2 X X X 

 

X 15 -120.87 < 0.001 

3 

  

X 

  

2 -120.89 0.0004 

Pooled X X 

 

X X 14 -155.73 < 0.001 

Number of species in 

understory 

1 X X X X X 14 97.78 0.009 

2 

  

X 

 

X 5 105.12 < 0.001 

3 

  

X X X 5 57.26 0.0006 

Pooled X 

 

X 

 

X 12 289.13 0.0008 

Mean understory density 

1 

    

X 1 74.66 0.679 

2 X X X 

 

X 15 -171.69 < 0.001 

3 

    

X 1 -113.38 0.0005 

Pooled         X 1 -305.24 0.003 

  
         

M
il

li
p

ed
es

 

Number of species 

1 Insufficient cases 

2 

   

X 

 

2 126.00 0.016 

3 X X X X X 14 83.35 < 0.001 

Pooled 

   

X X 3 271.23 < 0.001 

Cylindrical millipede 

density 

1 Insufficient cases 

2 

 

X 

  

X 6 92.18 < 0.0001 

3 X X 

 

X X 13 -18.05 < 0.001 

Pooled X X X X X 20 183.63 <0.001 

Keeled millipede density 

1 Insufficient cases 

2 X X X X X 15 -114.18 < 0.0001 

3 X X 

 

X X 12 -96.33 0.0004 

Pooled X X X X 

 

9 -235.50 < 0.001 

Pill millipede density 

1 Insufficient cases 

2 X X X 

 

X 14 -221.88 0.004 

3 X 

 

X X X 12 -110.06 0.0001 

Pooled X X X   X 18 -400.40 < 0.001 

  473 
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Table 4 Characteristic tree species (taller than 2 m) forming the canopies on slopes of different 474 

gradients in seral stage two based on similarity percentage analysis (SIMPER).  475 

Species Family Average 

abundance 

Average 

similarity 

Similarity 

SD 

Percentage 

contribution 

Cumulative 

percentage 

0-5 degree slope 

Average similarity: 54.91 

Acacia karroo Hayne Mimosaceae 3.26 39.44 6.11 71.83 71.83 

Celtis africana Burm.f. Celtidaceae 0.92 7.70 1.12 14.02 85.85 

Allophylus natalensis 

Sond. 

Sapindaceae 0.76 4.90 0.88 8.93 94.78 

6-10 degree slope 

Average similarity: 48.96 

Acacia karroo Mimosaceae 3.39 35.83 2.44 73.18 73.18 

Allophylus natalensis 

Sond. 

Sapindaceae 0.70 4.41 0.98 9.01 82.19 

Celtis Africana Burm.f. Celtidaceae 0.99 3.32 0.78 6.78 88.97 

Cestrum laevigatum 

Schltdl. 

Solanaceae 0.52 1.19 0.41 2.42 91.39 

11-15 degree slope 

Average similarity: 52.42 

Acacia karroo Hayne Mimosaceae 3.44 40.69 4.33 77.62 77.62 

Celtis Africana Burm.f. Celtidaceae 0.70 3.71 0.72 7.07 84.70 

Brachylaena discolour 

(DC.) 

Asteraceae 0.35 1.67 0.45 3.19 87.89 

Allophylus natalensis 

Sond. 

Sapindaceae 0.47 1.54 0.37 2.94 90.82 

16-20 degree slope 
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Average similarity: 50.52 

Acacia karroo Hayne Mimosaceae 3.49 26.86 4.48 53.17 53.17 

Celtis Africana Burm.f. Celtidaceae 2.08 14.93 5.77 29.55 82.72 

Grewia occidentalis L. Tiliaceae 0.87 2.47 0.56 4.89 87.61 

Chaetachme aristata 

Planch. 

Ulmaceae 0.55 1.03 0.37 2.04 89.66 

Teclea gerrardii 

I.Verd. 

Rutaceae 0.30 0.87 0.39 1.72 91.38 

>20 degree slope 

Less than two samples in a group 

 476 

  477 
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Table 5 Characteristic species occurring in the understory of each elevation category within seral 478 

stage three based on similarity percentage analysis (SIMPER).  479 

Species Family Average 

abundance 

Average 

similarity 

Similarity 

SD 

Percentage 

contribution 

Cumulative 

percentage 

21-40 m.a.s.l. 

Less than 2 samples in group 

41-60 m.a.s.l. 

Average similarity: 44.51 

Rhoicissus revoilii 

Planch. 

Vitaceae 1.49 27.25 1.10 61.23 61.23 

Scutia myrtina 

Burm.F. 

Rhamnaceae 0.95 12.50 0.69 28.09 89.32 

Chromolaena odorata 

L. 

Asteraceae 0.57 4.75 0.46 10.68 100.00 

61-80 m.a.s.l. 

Average similarity: 30.00 

Scutia myrtina 

Burm.F. 

Rhamnaceae 0.87 30.00 0.76 100.00 100.00 

 480 
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Figures 

 

Fig. 1 Digital elevation model of the study area also showing the delineation of rehabilitating stands according to age, and the sites where data 

loggers were deployed (a). The locations of woody plant quadrats and millipede transect surveys were conducted are shown in relation to stand 

age (b). Inset maps provide geographical context (c & d).   
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Fig. 2 Mean ± one standard deviation of the mean of three microclimatic variables (relative humidity, temperature, and light intensity, from top to bottom, 

respectively) that showed significant responses to variables of dune morphology according to the repeated measures ANOVA,  as recorded between 01h00 and 

24h00 on the 29
th
 of January 2011.
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 1 

Fig. 3 Mean ± one standard deviation of the mean of woody plant response variables 2 

presented as a function of those variables that best -explained their variability significantly 3 

despite stand age (see Table 2).  4 
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  5 

Fig. 4 Non-metric multi-dimensional scaling (NMDS) plots of woody plant abundances in the canopy 

(top) and understory (bottom) where analysis of similarity revealed significant ( p < 0.05) community 

separation attributable to dune morphological characteristics  (elevation, gradient, position) according 

to seral stages two (11-25) and three (>25 years), respectively. 
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 6 

Fig. 5 Mean ± one standard deviation of the mean of millipede response variables presented 7 

as a function of those variables that best -explained their variability significantly despite 8 

stand age (see Table 2).  9 
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