Diclofenac in Gyps vultures: A molecular mechanism of toxicity

Vinny Naidoo
2007

Department of Paraclinical Sciences
Faculty of Veterinary Science
University of Pretoria
South Africa
Diclofenac in Gyps vultures: A molecular mechanism of toxicity

A thesis submitted in fulfilment of the requirements
for the degree of

Doctor in Philosophy

in
Veterinary Pharmacology

by

VINASAN NAIDOO

Department of Paraclinical Sciences
Section of Pharmacology and Toxicology
Faculty of Veterinary Science
University of Pretoria

2007

Promoter: Professor GE Swan
Dean: Faculty of Veterinary Science
University of Pretoria
Declaration

The experimental work described in this thesis was conducted in the department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Section of Pharmacology and Toxicology under the supervision of Prof GE Swan.

These studies are the result of my own investigations, except where the inputs of others are acknowledged. This thesis has not been submitted to another university for consideration.

I, Dr Vinasan Naidoo, declare the above statement to be correct

Dr V Naidoo

Prof. GE Swan
Acknowledgements

I would like to express my sincere appreciation to the following people:

- Prof Gerry Swan, for taking on a project of such high significance both scientifically and ecologically. More importantly for allowing me to tackle the toxicodynamics in my own manner. As always working under your guidance has been very stimulating.
- Prof Christo Botha, for allowing me sufficient latitude and time to complete specific projects, ensuring that the laboratories were available for studies and for being my sounding board. Your insights into toxicology and pharmacology were of great help in interpreting the data.
- Dr Richard Cuthbert for your assistance in obtaining generous financial support from the RSPB as well as your editorial assistance in putting together some the articles that make up this thesis.
- Ms Kerri Wolter: Many thanks for all your help in managing the vulture studies and for your insights into vulture culture. More importantly, thank you for putting up with my single mindedness during the years it took to undertake this project.
- Dr Lyndy McGaw for sharing her knowledge on in vitro cell toxicity testing.
- The Rare and Endangered Species Trust (REST), De Wildt Cheetah and Wildlife Trust (De Wildt), the National Zoological Gardens of South Africa (Pretoria Zoo), Aberdeen University, The Liver laboratory (BALSS), The Royal Society for the Protection of Birds (RSPB), the Skye Foundation and the National Research Foundation (NRF) for all your assistance, in making this project a success.
- To my parents, for your never ending support.
Abstract

Diclofenac in Gyps vultures: A molecular mechanism of toxicity

By

Vinasan Naidoo

Promoter: Prof GE Swan
Department: Paraclinical Sciences
Degree: PhD

Over the last decade, three species of Gyps vultures on the Asian subcontinent have declined dramatically in population numbers, some as much as 97 to 99%. Although the initial cause was believed to be infectious, it was later shown to be due to an inadvertent exposure to diclofenac via the food chain. In order to protect the remaining wild vultures, diclofenac needed to be removed from the food chain. Unfortunately the Indian government was reluctant to ban diclofenac until an alternate veterinary non-steroidal anti-inflammatory drug (NSAID) that was both safe in vultures and effective in cattle could be identified. Although meloxicam was tentatively identified as this drug, toxicity testing still needed to be undertaken.

Using a previously validated model, two studies were undertaken to determine the acute toxic effect of diclofenac in vulture as well as to ascertain if the drug had the potential to accumulate. In the first study, meloxicam in formulation was shown to be safe as a single oral dose up to 2mg/kg in African White Backed-Vultures (Gyps africanus). To further demonstrate the safety of food borne meloxicam, vultures were exposed to meat rich in meloxicam residues, with once again no signs of toxicity being evident. In the second study the drugs ability to accumulate was evaluated pharmacokinetically in Cape Griffon Vultures (Gyps corprotheres). From this study meloxicam was shown to have a very short half-life of elimination, making it unlikely that the drug could be a cumulative toxin. This was subsequently confirmed clinically by the absence of toxicity in birds receiving repeated doses of meloxicam.
Although meloxicam was shown to be adequately safe, the safety of other veterinary NSAIDs still required elucidation. While further testing in vultures would have been possible, the small population size of the various vulture species made this unethical. Therefore a surrogate species needed to be identified. With the domestic chicken (*Gallus domesticus*) being commonly available, attempts were made to validate the chicken as a model. Although the dosed chickens did show similar toxicity patterns from clinical pathology to histopathology, a major problem was their higher tolerance making it impossible to use them as a surrogate. It was, however, concluded that the domestic chicken may be used in mechanistic studies in an attempt to establish an *in vitro* model.

From the mechanistic studies both diclofenac and meloxicam were directly toxic to chicken and vulture renal tubular epithelial cells following 48h of incubation. It was later shown that this toxicity was associated with an increased production of reactive oxygen species (ROS), which could be temporarily ameliorated by pre-incubation with uric acid due to its anti-oxidant activity. When cultures were incubated with either drug for only two hours, meloxicam showed no toxicity in contrast to the cellular toxicity present for diclofenac. In both cases no increase in ROS production was evident. In addition diclofenac influenced the excretion of uric acid by interfering with p-amino-hippuric acid channels. The effect on uric acid excretion persisted after the removal of the diclofenac. It was therefore concluded that vulture susceptibility to diclofenac results from a combination of an increase in cellular ROS, a depletion of intracellular uric acid concentration and most importantly the drug’s long half-life in the vulture. Unfortunately the importance of the drug’s half-life in the toxicodynamics makes it unlikely that *in vitro* testing will be possible.
Table of Contents

DECLARATION .. III

ACKNOWLEDGEMENTS .. IV

ABSTRACT ... V

TABLE OF CONTENTS ... VII

FIGURES ... XIII

TABLES ... XVI

ABBREVIATION ... XVII

ABBREVIATION ... XVII

CHAPTER 1: INTRODUCTION ... 1

1.1 The Vulture Crisis ... 1

1.2 Hypotheses ... 2

1.3 Objectives .. 2

CHAPTER 2: LITERATURE REVIEW .. 3

2.1 Vultures: Twenty-first century outcasts ... 3

2.2 A crash in the Indian Vulture Population .. 7
 2.2.1 No longer the world’s most prominent birds 7
 2.2.2 Why were the birds exposed to diclofenac? 10

2.3 Impact of a Declining Vulture Population ... 12
 2.3.1 Aesthetic value .. 12

vii
2.3.2 Importance to the Parsi Community ... 13
2.3.3 Increase in the dog population ... 14
2.3.4 Loss of income to the bone collectors ... 14
2.3.5 Air travel ... 14

2.4 NSAIDs: An Overview ... 15
2.4.1 Chemistry ... 15
2.4.2 Mechanism of Action ... 16
2.4.3 Pharmacological Activity .. 20
2.4.4 Adverse Drug Reactions ... 22
2.4.5 Duration of Effect ... 24
2.4.6 Non-steroidal anti-inflammatory drugs in birds .. 24

2.5 Diclofenac .. 25
2.5.1 Properties .. 25
2.5.2 Possible mechanisms of toxicity in vultures .. 26

2.6 Towards the protection of a disappearing species .. 37
2.6.1 Steps necessary to protect the species .. 37
2.6.2 Conservation Efforts: Establishment of a captive population 37
2.6.3 Removal of diclofenac from the food chain .. 38
2.6.4 The safety of other NSAIDs .. 40

2.7 Conclusion .. 40

2.8 References .. 41

CHAPTER 3: REMOVING THE THREAT OF DICLOFENAC TO CRITICALLY
ENDANGERED ASIAN VULTURES .. 53

3.1 Abstract .. 54

3.2 Introduction ... 55

3.3 Results and Discussion .. 58
3.3.1 Phases I-III: Safety testing using captive G. africanus 58
Diclofenac in Gyps vultures: A molecular mechanism of toxicity

3.3.2 Phase IV: Safety testing using larger numbers of captive and wild-caught G. africanus .. 59
3.3.3 Phase V: Safety testing by feeding G. africanus on tissues of meloxicam-treated cattle .. 61
3.3.4 Phase VI: Safety testing of meloxicam on Endangered Asian Gyps.................. 62

3.4 Conclusions ... 63

3.5 Materials and Methods ... 64

3.6 Acknowledgements .. 68

3.7 References.. 69

3.8 Electronic Addendum ... 77
3.8.1 Protocol S2 .. 77

CHAPTER 4: THE PHARMACOKINETICS OF MELOXICAM IN VULTURES ... 79

4.1 Abstract .. 80

4.2 Introduction .. 81

4.3 Material and Methods ... 83
4.3.1 Pharmacokinetic Study ... 83
4.3.2 Liquid chromatography tandem mass spectrometry ... 84
4.3.3 Meloxicam Clinical and Therapeutic Monitoring .. 85

4.4 Results.. 86
4.4.1 Pharmacokinetics ... 86
4.4.2 Biotransformation Pathways .. 86
4.4.3 Meloxicam Clinical and Therapeutic Monitoring .. 87

4.5 Discussion .. 87
4.5.1 Pharmacokinetics ... 87
4.5.2 Biotransformation Pathway .. 89
4.5.3 Meloxicam Clinical and Therapeutic Monitoring .. 89
CHAPTER 5: VALIDATING THE DOMESTIC FOWL AS A MODEL TO INVESTIGATE THE PATHOPHYSIOLOGY OF DICLOFENAC IN GYPSE VULTURES .. 100

5.1 Abstract .. 101

5.2 Introduction ... 102

5.3 Material and Methods ... 103
 5.3.1 Animals... 103
 5.3.2 Clinical Pathology ... 104
 5.3.3 Pathology and Histopathology ... 105
 5.3.4 Residue Analysis .. 105
 5.3.5 Pharmacokinetic Analysis .. 105
 5.3.6 G. africanus results .. 107

5.4 Results... 107
 5.4.1 Clinical Signs ... 107
 5.4.2 Clinical Pathology ... 108
 5.4.3 Necropsy .. 108
 5.4.4 Histopathology .. 109
 5.4.5 Pharmacokinetic (PK) Analysis ... 110

5.5 Discussion ... 110
 5.5.1 Comparison Between Fowls and G. Africanus Vultures 110
 5.5.2 Comparison of Results to That Presented by Reddy et al. (2006) 113
 5.5.3 Suggestive Pathophysiology of the Clinical Signs .. 113

5.6 Conclusion .. 114

5.7 Acknowledgements .. 115
CHAPTER 6: ESTABLISHMENT OF SELECTED BASELINE BLOOD CHEMISTRY AND HEMATOLOGICAL PARAMETERS IN CAPTIVE AND WILD-CAUGHT AFRICAN WHITE-BACKED VULTURES (GYPS AFRICANUS) ... 124

6.1 Abstract .. 125

6.2 Introduction .. 126

6.3 Materials and Method .. 127

6.3.1 Collection of blood samples .. 127

6.3.2 Hematology .. 128

6.3.3 Serum Chemistry ... 128

6.3.4 Statistical Analysis ... 129

6.4 Results ... 129

6.5 Discussion ... 130

6.5.1 Erythron .. 130

6.5.2 Leukon ... 131

6.5.3 Plasma proteins .. 131

6.5.4 Plasma Electrolytes ... 131

6.5.5 Enzymes ... 132

6.5.6 Urea and Uric acid ... 132

6.6 Conclusion .. 133

6.7 Acknowledgements ... 133

6.8 References... 133

CHAPTER 7: DICLOFENAC IN GYPS VULTURES: A MOLECULAR MECHANISM OF TOXICITY ... 139

Methods Summary .. 144

7.1 Acknowledgements .. 145
7.2 Electronic Addendum ... 145
 7.2.1 Methods .. 145
 7.2.2 In vitro RTE assay ... 147
 7.2.3 ROS studies ... 148
 7.2.4 Transporter Assay ... 148
 7.2.5 Statistics and Repeatability ... 149

7.3 References .. 149

CHAPTER 8: GENERAL DISCUSSION ... 156

 8.1 Hypothesis 1: Meloxicam as a vulture safe alternate ... 156
 8.2 Hypothesis 2: The influence of diclofenac on uric acid excretion 157
 8.3 Further studies .. 161
Figures

Figure 2-1: The two major branches of the vulture family... 4
Figure 2-2: The importance of the vulture to early civilisations 5
Figure 2-3: Vulture being shown as evil creatures, interested in only death, by popular
press and cartoons ... 5
Figure 2-4: Vulture heads and feet being sold for use as muti at a Malay market (Picture
from Science magazine) .. 6
Figure 2-5: Pictures taken in the early 1980’s showing the prominence of the Oriental
White-back vulture in India (Courtesy of the RSPB) .. 8
Figure 2-6: Illustration of the catastrophic decline in the vulture numbers (Courtesy of the
RSPB) .. 8
Figure 2-7: Typical necropsy and histopathological lesions seen in the poisoned birds... 9
Figure 2-8: Metabolic pathways of the arachidonic acid cascade. NSAIDs: Non-steroidal
anti-inflammatory drugs; EETs: epoxyeicosatrienoic acid; HETEs: hydroxyeicosatetraenoic acids; PG: prostaglandin; TX: thromboxane 17
Figure 2-9: Comparison of gastric damage and COX selectivity of various NSAIDs used in
people. ... 23
Figure 2-10: Molecular structure of diclofenac .. 25
Figure 2-11: Illustration of the two different types of nephrons present in the avian kidney.
.. 27
Figure 2-12: Illustration of the dual blood supply to the avian kidney 28
Figure 2-13: Illustration of the conical renal portal valve anchored to the mucosa by cordae
tendinae ... 29
Figure 2-14: Illustration of the prostaglandin linked release following the stimulation of
angiotensin receptors by AT2 .. 30
Figure 2-15: An overview of the molecular channels involved in the tubular excretion and
reabsorption of uric acid in the nephron of man ... 31
Figure 2-16: Illustration on how the metabolic activation of diclofenac leads to
mitochondrial damage and apoptosis (Modified) ... 34
Figure 2-17: The pathways and enzymes involved in the activation of the caspase pathway and cellular apoptosis. Toxicity starts with the release of cytochrome C by the mitochondria with subsequent activation of the caspase pro-enzymes present in the cytoplasm..35

Figure 2-18: Cell viability dose response curve for renal tubular epithelial cell incubated with diclofenac for 8 and 24 hours. Also included are the curves discussing co-incubation with cysteine Cystein (CYS) and DL-buthionine-(S,R)-sulfoximine (BSO) ..36

Figure 3-1: Effect of Administration of Meloxicam and Diclofenac by Gavage on Uric Acid in the Serum of Vultures...75

Figure 3-2: Relationship between Uric Acid in Serum the Dose of Meloxicam and Diclofenac Administered and Administration Method ...76

Figure 4-1: Mean plasma concentration versus time curve following oral and intramuscular meloxicam administration in adult G. corprotheres vultures...97

Figure 4-2: Identified meloxicam metabolites as determined by LCMSMS. a) Glucuronide metabolite, b) hydroxyl metabolite 1 c) the unknown metabolite indentified as potential second hydroxyl metabolite, d) meloxicam...98

Figure 4-3: Change in the average area under curve over time for each metabolite following the oral administration of meloxicam, using diode-array detection. The initial increase over time corresponded to a decrease in plasma meloxicam concentrations (M: Meloxicam parent, M-OH1- Hydroxy metabolite 1, G-glucuronide metabolite, M-OH2- Hydroxy metabolite 2)..99

Figure 5-1: Kidney. A: HE x100 B: HE x 300 from a fowl dosed at 10 mg/kg. Marked tubular damage with complete destruction of the tubular structure (a), tubule with minimal damage (b) and normal tubule (c). Heterophil infiltration varied (white arrow). Unaffected mammalian glomerulus (black arrow). ..118

Figure 5-2: Mean diclofenac plasma concentration versus time profile for the oral and intramuscular route of administration ..119

Figure 5-3: Mean uric acid levels for the bird that died (CS), treated birds that survived (NCS) and the two G. africanus vultures (V)..121

Figure 5-4: Semi-logarithmic plasma profiles for diclofenac from the two treated vultures (courtesy of Swan et al., 2006)..122
Figure 7-1: Contractile response of chicken cranial renal portal veins to norepinephrine (NE) alone (control) or the response to NE following co-incubated with either diclofenac (DF) or meloxicam (MLX) as a single dose of drug. Dose 1 to Dose 3 illustrates the additive inhibitory effect of the NSAIDs in an irreversible manner, as the chambers were thoroughly flushed prior to each dose. Results are presented as mean ± SEM.

Figure 7-2: Direct cell toxicity of DF and MLX following variable periods of incubation and/or concentrations using the MTT assay. Results are presented as mean ± SEM.

Figure 7-3: In vivo change in serum UA concentration for *G. corprotheres* over the first two hours following the administration of MLX (n=4) or DF (n=4) (p=0.037). Results are presented as mean ± SEM.

Figure 7-4: Influence of DF or MLX on UA or PAH clearance in cell cultures established in double chambered well. Results are presented as mean ± SEM.
Tables

Table 2-1: Survey results from the RSPB study indicating the number of animals and safety of NSAIDs in various vulture species ... 39

Table 3-1: Summary of results and experimental schedule for the testing of the NSAIDs diclofenac and meloxicam on Gyps bengalensis and G. indicus vultures, and on the non-threatened G. africanus. There was no mortality in any of the control birds. 74

Table 3-2: Blood serum constituents summary statistics .. 78

Table 4-1: A list of the different birds included in this study. All the listed birds were in captivity following attempted rehabilitation ... 94

Table 4-2: The analytical and mass spectrometer parameters used in identifying the metabolites of meloxicam in G. corprotheres plasma samples 95

Table 4-3: Pharmacokinetics parameters for meloxicam following intramuscular and oral administration in G. corprotheres using a one compartmental analysis 96

Table 5-1: Pharmacokinetic parameters following oral and intramuscular administration of diclofenac at 0.8mg/kg to fowls ... 120

Table 5-2: Estimated PK parameters of two dosed vultures. Values were calculated on the assumption of Cmax being achieved at 5h ... 123

Table 6-1: Reference hematology intervals for the captive White backed vultures (n=21) ... 136

Table 6-2: Reference intervals for selected blood chemistry parameters in Wild (n=14) and Captive (n=25) African White-backed vultures .. 137

Table 6-3: Parameters from wild birds for which normality could not be established 138
Abbreviation

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALT</td>
<td>Alanine transferase</td>
</tr>
<tr>
<td>AST</td>
<td>Aspartate aminotransferase</td>
</tr>
<tr>
<td>AUC</td>
<td>Area under curve/Extent of absorption</td>
</tr>
<tr>
<td>AWBV</td>
<td>African White-backed vultures</td>
</tr>
<tr>
<td>C</td>
<td>Plasma concentration at time t</td>
</tr>
<tr>
<td>Ca$^{2+}$</td>
<td>Calcium</td>
</tr>
<tr>
<td>CINODS</td>
<td>Cyclo-oxygenase inhibiting Nitric Oxide Donors</td>
</tr>
<tr>
<td>CK</td>
<td>Creatine kinase</td>
</tr>
<tr>
<td>COX</td>
<td>Cyclo-oxygenase</td>
</tr>
<tr>
<td>DAD</td>
<td>Diode array detector module</td>
</tr>
<tr>
<td>DF</td>
<td>Diclofenac</td>
</tr>
<tr>
<td>DMEM</td>
<td>Debulco’s modified Eagles’s essential medium with L-glutamine</td>
</tr>
<tr>
<td>DMSO</td>
<td>Di-methyl sulphoxide</td>
</tr>
<tr>
<td>FCS</td>
<td>Foetal calf serum</td>
</tr>
<tr>
<td>$F_{relative}$</td>
<td>Relative bioavailability</td>
</tr>
<tr>
<td>H</td>
<td>Heterophil</td>
</tr>
<tr>
<td>Hb</td>
<td>Hemoglobin concentration</td>
</tr>
<tr>
<td>HBSS</td>
<td>Hanks balanced salt solution</td>
</tr>
<tr>
<td>Hct</td>
<td>Hematocrit</td>
</tr>
<tr>
<td>HPLC</td>
<td>High performance liquid chromatography</td>
</tr>
<tr>
<td>i.m.</td>
<td>Intramuscular</td>
</tr>
<tr>
<td>IUCN</td>
<td>International Union of the Conservation of Nature</td>
</tr>
<tr>
<td>K$^+$</td>
<td>Potassium</td>
</tr>
<tr>
<td>K_a</td>
<td>Absorption constant,</td>
</tr>
<tr>
<td>K_e</td>
<td>Elimination constant</td>
</tr>
<tr>
<td>Ln</td>
<td>Natural logarithmic</td>
</tr>
<tr>
<td>LOD</td>
<td>Limit of detection</td>
</tr>
<tr>
<td>LOQ</td>
<td>Limit of quantitation</td>
</tr>
<tr>
<td>LOX</td>
<td>Lipo-oxygenase</td>
</tr>
<tr>
<td>MCHC</td>
<td>Mean corpuscular hemoglobin concentration</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>MCV</td>
<td>Mean corpuscular volume</td>
</tr>
<tr>
<td>MLE</td>
<td>Maximum level of exposure</td>
</tr>
<tr>
<td>MLX</td>
<td>Meloxicam</td>
</tr>
<tr>
<td>MMP</td>
<td>Mitochondria membrane permeability</td>
</tr>
<tr>
<td>MRP</td>
<td>Multiple Resistance Protein</td>
</tr>
<tr>
<td>MTT</td>
<td>3-4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide</td>
</tr>
<tr>
<td>Na⁺</td>
<td>Sodium</td>
</tr>
<tr>
<td>NE</td>
<td>Norepinephrine</td>
</tr>
<tr>
<td>NO</td>
<td>Nitric oxide</td>
</tr>
<tr>
<td>NRF</td>
<td>National Research Foundation</td>
</tr>
<tr>
<td>NSAID</td>
<td>Non-steroidal anti-inflammatory drug</td>
</tr>
<tr>
<td>OAT</td>
<td>Organic anion transporters</td>
</tr>
<tr>
<td>PAH</td>
<td>p-Amino-hippuric acid</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffered saline</td>
</tr>
<tr>
<td>PCV</td>
<td>Packed cell volume</td>
</tr>
<tr>
<td>PG</td>
<td>Prostaglandins</td>
</tr>
<tr>
<td>PK</td>
<td>Pharmacokinetics</td>
</tr>
<tr>
<td>PSS</td>
<td>Physiological saline solution</td>
</tr>
<tr>
<td>RBC</td>
<td>Total erythrocyte counts</td>
</tr>
<tr>
<td>REST</td>
<td>The Rare and Endangered Species Trust</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species</td>
</tr>
<tr>
<td>RSPB</td>
<td>The Royal Society for the Protection of Birds</td>
</tr>
<tr>
<td>RTE</td>
<td>Renal tubular epithelial</td>
</tr>
<tr>
<td>T₁/₂α</td>
<td>Absorption half life</td>
</tr>
<tr>
<td>T₁/₂β</td>
<td>Elimination half life</td>
</tr>
<tr>
<td>Tmax</td>
<td>Time to maximum concentration</td>
</tr>
<tr>
<td>U:UA</td>
<td>Urea: uric acid ratio</td>
</tr>
<tr>
<td>UA</td>
<td>Uric acid</td>
</tr>
<tr>
<td>UPBRC</td>
<td>University of Pretoria Biomedical Research Centre</td>
</tr>
<tr>
<td>URAT1</td>
<td>Uric Acid Transporter 1</td>
</tr>
<tr>
<td>Vd/F</td>
<td>Apparent volume of distribution</td>
</tr>
<tr>
<td>WBC</td>
<td>Total leukocyte count</td>
</tr>
<tr>
<td>ZSL</td>
<td>Zoological Society of London</td>
</tr>
</tbody>
</table>