IMPLEMENTING A PROBLEM-BASED LEARNING MODEL IN THE TRAINING OF TEACHERS FOR AN OUTCOMES-BASED TECHNOLOGY CURRICULUM

by

ANNEMARIE VAN LOGGERENBERG

BSc, HED, B Ed, M Ed

submitted in accordance with the requirements for the degree of

PHILOSOPHIAE DOCTOR

(Curriculum Studies)

in the

DEPARTMENT OF TEACHING AND TRAINING STUDIES
FACULTY OF EDUCATION
UNIVERSITY OF PRETORIA
Pretoria

SUPERVISOR: PROF DR R KILLEN
(University of Newcastle, Australia)
CO-SUPERVISOR: PROF DR NJS BASSON
(University of Pretoria)

JUNE 2000
This thesis is dedicated to the memory of my father, whose standards shaped my own.

ACKNOWLEDGEMENTS ARE MOST GRATEFULLY EXTENDED TO:

- My supervisor, Professor Roy Killen from the University of Newcastle in Australia, who is appointed as a professor extraordinary at Pretoria University's Faculty of Education. It was a great privilege to complete this study under his academic mastership. It was an exceptional learning experience to be the scholar of a person who is internationally acclaimed in the field of education.

- My co-supervisor, Professor Nic Basson for his major contribution to my sense of professional identity and for his competent guidance and encouragement throughout all my years of study.

- André Swanepoel and Rina Owen of the University of Pretoria for the statistical analysis of empirical data.

- The National Research Foundation and the University of Pretoria for financial assistance which made this study possible. The knowledge claims made in this research are not necessarily representative of those institutions.

- Marté Smit for all her effort with the graphics and editing.

- My mother for consistent and selfless support and love through the many years of study.

- Gerrit for precious love and being there for me.

- SOLI DEO GLORIA – My Lord who gives my life purpose and vision.

Our underlying frames, gestalts, paradigms, big pictures are everywhere in doubt. The task is to understand how we acquire frames, how we communicate them, and how we change them in ourselves and others - Peter Vail.

The significant problems we face cannot be solved at the same level of thinking we were at when we created them - Albert Einstein.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of tables</td>
<td>viii</td>
</tr>
<tr>
<td>List of figures</td>
<td>ix</td>
</tr>
<tr>
<td>List of appendixes</td>
<td>x</td>
</tr>
<tr>
<td>List of acronyms and abbreviations</td>
<td>xi</td>
</tr>
<tr>
<td>Glossary of working terms</td>
<td>xiii</td>
</tr>
<tr>
<td>Summary</td>
<td>xvi</td>
</tr>
<tr>
<td>Opsomming</td>
<td>xvii</td>
</tr>
</tbody>
</table>

CHAPTER 1

GENERAL INTRODUCTION, STATEMENT OF THE PROBLEM AND OVERVIEW OF THE STUDY

1.1 Introduction .. 1

1.2 The importance and impact of technology on the global and local society 4

1.3 International and national perspectives on technology education 6
 1.3.1 International perspectives on technology education .. 7
 1.3.2 National perspectives on science, technology and mathematics education 13
 1.3.2.1 Problems and difficulties facing mathematics, science and technology education in South Africa .. 13
 1.3.2.2 The history of technology education in South Africa 19
 1.3.2.3 The Technology 2005 project and Curriculum 2005 21
 1.3.2.4 Who will teach technology education in South Africa? 23

1.4 Problem formulation and research questions ... 30

1.5 Research methodology and design .. 31

1.6 Significance of this research ... 33
CHAPTER 2

A REVIEW OF THE LITERATURE ON CURRICULUM DEVELOPMENT AND REFORM, WITH PARTICULAR REFERENCE TO SOUTH AFRICA

2.1 Introduction ... 37

2.2 Defining curriculum: Key dimensions and concepts .. 38

2.3 Philosophical foundations of curriculum ... 40
 2.3.1 Perennialism ... 42
 2.3.2 Essentialism ... 43
 2.3.3 Progressivism ... 44
 2.3.4 Reconstructionism .. 47
 2.3.5 Post-modernism ... 48
 2.3.6 An eclectic approach to educational philosophy 51

2.4 A new paradigm for the restructuring of education in South Africa 51
 2.4.1 Introduction of the new paradigm evolving in South African education and training .. 51
 2.4.2 The shaping of the National Qualifications Framework 57
 2.4.2.1 The vision of the NQF and key principles underpinning the NQF 58
 2.4.2.2 The structure of the National Qualifications Framework 60
 2.4.2.3 Organising fields and Learning Areas .. 69
 2.4.3 The outcomes-based approach: Intentions and implications for curriculum development ... 76
 2.4.3.1 What are the outcomes in an outcomes-based curriculum approach? An exploration and definition .. 76
 2.4.3.2 Critical cross-field outcomes and the vision of lifelong learning 84
 2.4.3.3 Specific outcomes ... 91
 2.4.3.4 Using of outcomes in the curriculum design process 95
 2.5.4 Curriculum management and development structures envisaged for South Africa ... 103
CHAPTER 3

INVESTIGATING PROBLEM-BASED LEARNING AS A STRATEGY TO OPERATIONALISE OUTCOMES-BASED EDUCATION IN THE TRAINING OF PRE-SERVICE TECHNOLOGY TEACHERS: DESIGNING AN OBE-PBL MODEL

3.1 Introduction ... 115

3.2 Outcomes-based education: From theory to practice 116
3.2.1 Purpose and premises of OBE to be operationalised in practice 116
3.2.2 Norms and Standards for South African Educators who need to facilitate OBE 127

3.3 Problem-based learning: A teaching strategy with the potential to operationalise OBE in practice 132
3.3.1 Defining teaching strategies and methods 132
3.3.2 Defining problem-based learning 133
3.3.3 A problem-based curriculum framework and problem-based learning models 136
3.3.4 Characteristic features of problem-based learning 140
3.3.4.1 Learner collaboration and co-operative work 140
3.3.5 Conceptual dimensions of PBL 141
3.3.5.1 Information processing and constructivist theory 141
3.3.5.2 Recall and transferability of knowledge 142
3.3.5.3 Meta-cognitive processes associated with PBL 142
3.3.6 PBL and its effects on learner attitudes and motivation 144
3.3.7 PBL and knowledge acquisition: Depth versus breath 146
3.3.8 Designing a problem-based learning task 149
3.3.8.1 The nature and criteria for problems in problem-based learning 149
3.3.9 Problem-solving in problem-based learning 156

3.4 What is technology education? Perceptions and definitions 161
3.4.1 Defining technology ... 161
Chapter 3: Technology Education

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4.2</td>
<td>Defining technology education in the curriculum</td>
<td>162</td>
</tr>
<tr>
<td>3.5</td>
<td>The nature and structure of technology education</td>
<td>172</td>
</tr>
<tr>
<td>3.5.1</td>
<td>The synergy between mathematics, science and technology – a cross-disciplinary nature</td>
<td>172</td>
</tr>
<tr>
<td>3.5.2</td>
<td>The problem-based nature of technology education</td>
<td>177</td>
</tr>
<tr>
<td>3.5.2.1</td>
<td>The technological process used in South African curricula</td>
<td>187</td>
</tr>
<tr>
<td>3.6</td>
<td>Appropriate methodology for facilitating learning in technology education</td>
<td>189</td>
</tr>
<tr>
<td>3.7</td>
<td>The OBE-PBL model</td>
<td>194</td>
</tr>
<tr>
<td>3.8</td>
<td>Summary</td>
<td>196</td>
</tr>
</tbody>
</table>

Chapter 4: Research Design, Methodology and Interventions

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>198</td>
</tr>
<tr>
<td>4.2</td>
<td>Research design</td>
<td>198</td>
</tr>
<tr>
<td>4.3</td>
<td>Research methodology</td>
<td>201</td>
</tr>
<tr>
<td>4.4</td>
<td>Instrumentation</td>
<td>202</td>
</tr>
<tr>
<td>4.4.1</td>
<td>The pre- and post-test written by experimental and control groups</td>
<td>202</td>
</tr>
<tr>
<td>4.4.2</td>
<td>The attitude questionnaire</td>
<td>203</td>
</tr>
<tr>
<td>4.4.3</td>
<td>The Learning and Motivation Strategy Questionnaire in Science (LEMOSS)</td>
<td>204</td>
</tr>
<tr>
<td>4.4.4</td>
<td>Written reports on the pre-service teachers' perceptions on technology and technology education</td>
<td>205</td>
</tr>
<tr>
<td>4.4.5</td>
<td>The semi-structured interview schedule for pre-service teachers</td>
<td>206</td>
</tr>
<tr>
<td>4.4.6</td>
<td>The log-books kept by the pre-service teachers of their one month practice experience</td>
<td>207</td>
</tr>
<tr>
<td>4.5</td>
<td>Background information on data resources</td>
<td>208</td>
</tr>
<tr>
<td>4.5.1</td>
<td>The pre-service teachers</td>
<td>208</td>
</tr>
<tr>
<td>4.5.2</td>
<td>The experimental and control groups</td>
<td>211</td>
</tr>
<tr>
<td>4.5.2.1</td>
<td>Selection of participating high schools</td>
<td>211</td>
</tr>
</tbody>
</table>
4.5.2.2 Selection of experimental and control groups ... 212

4.6 Research interventions ... 216
 4.6.1 Research interventions with the pre-service technology educators 217
 4.6.2 Research interventions with the experimental and control groups in the authentic context ... 228

4.7 Summary .. 234

CHAPTER 5

ANALYSIS AND PRESENTATION OF QUANTITATIVE AND QUALITATIVE RESULTS

5.1 Introduction... 236

5.2 Quantitative results .. 236
 5.2.1 Pre-test results comparison between the experimental and control groups 237
 5.2.2 Post-test results comparison between the experimental and control groups 241
 5.2.3 Pre- and post-test results comparison per group .. 247
 5.2.4 Results from the attitude questionnaire .. 248
 5.2.5 The relation between LEMOSS, achievement and the attitude questionnaire 252
 5.2.6 General conclusion: Quantitative results .. 268

5.3 Qualitative results ... 281
 5.3.1 Method of qualitative data analysis .. 281
 5.3.2 Results: Perceptions of pre-service teachers prior to the PBL training intervention ... 284
 5.3.3 Results from the interviews with the pre-service teachers and their log-books ... 288
 5.3.4 General conclusion: Qualitative results ... 308

5.4 Summary .. 309
Table 1.1: Qualifications of teachers in science across the provinces in South Africa.. 15
Table 1.2: Qualifications of teachers in mathematics across the provinces in South Africa ... 16
Table 2.1: Principles underpinning the National Qualifications Framework .. 59
Table 2.2: The organizing fields and sub-fields .. 70
Table 2.3: The learning areas for the General and Further Education and Training bands.. 71
Table 2.4: Credits and Learning Areas for the category of fundamental learning .. 73
Table 2.5: Credits, Learning Areas and sub-fields for the category of core learning ... 75
Table 2.6: Credits, Learning Areas and Subfields for the category of elective learning ... 76
Table 2.7: The difference between aims, goals, objectives and learning outcomes ... 78
Table 2.8: Definitions and descriptions of the term “outcome” ... 78
Table 2.9: The twenty most common competencies in Spencers & Spencers’ (1993) Competency Dictionary 81
Table 2.10: Comparison of generic competencies ... 88
Table 2.11: An example of a specific outcome with assessment criteria ... 93
Table 2.12: The relationship between Tyler’s questions and elements of the curriculum definition 99
Table 3.1: Selected roles to be performed by prospective teachers ... 131
Table 3.2: Models of the design/problem-solving process ... 180
Table 3.3: The technological process as conceptualized in South African curricula ... 187
Table 4.1: Data sources, instruments and methodology used .. 201
Table 4.2: Fields in the LEMOSS questionnaire .. 204
Table 4.3: Demographic data of the sic pre-service teachers ... 209
Table 4.4: Faculty of Education: Time table for the Higher Education Diploma (Post Graduate) .. 210
Table 4.5: Number of learners in the experimental and control classes in each school ... 212
Table 4.6: Number of learners in the experimental and control classes in each school without school E 213
Table 4.7: Pre-test results before pairing off ... 214
Table 4.8: Pre-test results after pairing off .. 216
Table 4.9: Comparative summary between the experimental and control group interventions .. 223
Table 5.1: Pre-test: An energy and energy efficiency technology-science test .. 238
Table 5.2: Pre-test results comparison per group .. 241
Table 5.3: Post-test: An energy and energy efficiency technology-science test ... 242
Table 5.4: Post-test comparison between experimental and control group ... 246
Table 5.5: Pre- and post-test results comparison per group ... 247
Table 5.6: Attitude questionnaire for the experimental group ... 248
Table 5.7: Meaningful differences in achievement: This methods has helped me to learn how to solve problems .. 254
Table 5.8: Meaningful differences in achievement: Do you enjoy this new method in the teaching of a subject? .. 255
Table 5.9: Code 1: Perceptions of technology and technology education prior to the training intervention .. 284
Table 5.10: Code 2: Perceptions of technology and technology education after the training intervention .. 289
Table 5.11: Code 3: Pre-service teachers’ experience of PBL training .. 291
Table 5.12: Code 4: Pre-service teachers’ experience with PBL in practice .. 296
Table 5.13: Code 5: Pre-service teachers’ perceptions of outcomes-based education after the PBL training and practice experience... 305

LIST OF FIGURES

Figure 2.1: Educational philosophies underpinning curricula .. 42
Figure 2.2: A proposed structure for National Qualifications Framework .. 63
Figure 2.3: The relationship between qualifications, unit standards and outcomes .. 68
Figure 2.4: Fundamental life performance roles .. 86
Figure 2.5: The subject-based curriculum development process .. 96
Figure 2.6: The outcomes-based curriculum design process .. 98
Figure 2.7: A cyclic curriculum development model .. 101
Figure 2.8: Interactive relationships between curriculum development functions and relevant bodies in service of the NQF .. 109
Figure 3.1: Models for problem- and inquiry-based learning used in medical training .. 139
Figure 3.2: The APU model of interaction between mind and hand .. 168
Figure 3.3: Eisenberg (1992) model representing the characteristic features of technology education .. 171
Figure 3.4: An example of a technological design model .. 184
Figure 3.5: An example of a technological design model .. 185
Figure 3.6: Project work in technology education .. 193
Figure 3.7: The OBE-PBL pre-service technology teachers’ training model .. 195
Figure 4.1: A conceptual framework for the research design .. 199
Figure 4.2: Process of creating statistically equivalent experimental and control groups in each school .. 215
Figure 6.1: The refined OBE-PBL model .. 334
Figure 6.2: The Situational Learning Facilitation Model .. 339
LIST OF APPENDIXES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix 1</td>
<td>The 66 specific outcomes for the eight Learning Areas.</td>
<td>368</td>
</tr>
<tr>
<td>Appendix 2</td>
<td>The breakdown of competencies for each of the seven educator roles.</td>
<td>371</td>
</tr>
<tr>
<td>Appendix 3</td>
<td>The specific outcomes, assessment criteria and range statements for technology education in Curriculum 2005 for the senior phase</td>
<td>373</td>
</tr>
<tr>
<td>Appendix 4</td>
<td>Attitude questionnaire for the experimental group</td>
<td>380</td>
</tr>
<tr>
<td>Appendix 5</td>
<td>Meta-learning checklist and format of the resource kit</td>
<td>381</td>
</tr>
<tr>
<td>Appendix 6</td>
<td>Perceptions on technology, technology education and appropriate teaching methodologies to facilitate learning in technology education prior to their PBL training: typed copies of the pre-service teachers' written comments</td>
<td>389</td>
</tr>
<tr>
<td>Appendix 7</td>
<td>Semi-structured interviews with pre-service teachers after their PBL training and classroom interventions: Transcripts</td>
<td>393</td>
</tr>
<tr>
<td>Appendix 8</td>
<td>The Learning and Motivation Strategy Questionnaire in Science (LEMOSS)</td>
<td>400</td>
</tr>
<tr>
<td>Appendix 9</td>
<td>Specific outcomes, assessment criteria and range statements for selected outcomes in the natural science Learning Area</td>
<td>404</td>
</tr>
</tbody>
</table>
LIST OF ACRONYMS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABET</td>
<td>Adult Basic Education and Training</td>
</tr>
<tr>
<td>ANC</td>
<td>African National Congress</td>
</tr>
<tr>
<td>C2005</td>
<td>Curriculum 2005</td>
</tr>
<tr>
<td>CEPD</td>
<td>Centre for Education Policy Development</td>
</tr>
<tr>
<td>CERI</td>
<td>Centre for Educational Research and Innovation</td>
</tr>
<tr>
<td>CFC</td>
<td>Consultative Forum on Curriculum</td>
</tr>
<tr>
<td>CUMSA</td>
<td>Curriculum Committee for South Africa</td>
</tr>
<tr>
<td>ECD</td>
<td>Early Childhood Development</td>
</tr>
<tr>
<td>ETDP</td>
<td>Education, Training and Development Practitioners</td>
</tr>
<tr>
<td>ETQAs</td>
<td>Education and Training Quality Assurers</td>
</tr>
<tr>
<td>FET</td>
<td>Further Education and Training</td>
</tr>
<tr>
<td>FETC</td>
<td>Further Education and Training Certificate</td>
</tr>
<tr>
<td>FRD</td>
<td>Foundation for Research Development (South African)</td>
</tr>
<tr>
<td>GET</td>
<td>General Education and Training</td>
</tr>
<tr>
<td>GETC</td>
<td>General Education and Training Certificate</td>
</tr>
<tr>
<td>HEDCOM</td>
<td>Heads of Education Department Committee</td>
</tr>
<tr>
<td>HETC</td>
<td>Higher Education and Training Council</td>
</tr>
<tr>
<td>HSRC</td>
<td>Human Sciences Research Council</td>
</tr>
<tr>
<td>IEA</td>
<td>International Association for the Evaluation of Educational Achievement</td>
</tr>
<tr>
<td>IEB</td>
<td>Independent Examinations Board</td>
</tr>
<tr>
<td>INSET</td>
<td>In-service Education and Training</td>
</tr>
<tr>
<td>LSEN</td>
<td>Learners with Special Education Needs</td>
</tr>
<tr>
<td>NEPI</td>
<td>National Education Policy Investigation</td>
</tr>
<tr>
<td>NGOs</td>
<td>Non-governmental Organisations</td>
</tr>
<tr>
<td>NICD</td>
<td>National Institute for Curriculum Development</td>
</tr>
<tr>
<td>NILLD</td>
<td>National Institute for Lifelong Learning Development</td>
</tr>
<tr>
<td>NQF</td>
<td>National Qualifications Framework</td>
</tr>
<tr>
<td>NSBs</td>
<td>National Standards Bodies</td>
</tr>
<tr>
<td>NSF</td>
<td>National Science Foundation (American)</td>
</tr>
<tr>
<td>NTB</td>
<td>National Training Board</td>
</tr>
<tr>
<td>NTT</td>
<td>National Task Team</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>OBE</td>
<td>Outcomes-Based Education</td>
</tr>
<tr>
<td>OECD</td>
<td>Organisation for Economic Co-operation and Development</td>
</tr>
<tr>
<td>PBL</td>
<td>Problem-based Learning</td>
</tr>
<tr>
<td>PRESET</td>
<td>Pre-service Education and Training</td>
</tr>
<tr>
<td>PTT</td>
<td>Provincial Task Team</td>
</tr>
<tr>
<td>RDP</td>
<td>Reconstruction and Development Programme</td>
</tr>
<tr>
<td>RPL</td>
<td>Recognition of Prior Learning</td>
</tr>
<tr>
<td>SACATE</td>
<td>South African Council for the Accreditation of Teacher Education</td>
</tr>
<tr>
<td>SAQA</td>
<td>South African Qualifications Authority</td>
</tr>
<tr>
<td>SGBs</td>
<td>Standards Generating Bodies</td>
</tr>
<tr>
<td>STS</td>
<td>Science Technology Society</td>
</tr>
<tr>
<td>TIMSS</td>
<td>Third International Mathematics and Science Survey</td>
</tr>
</tbody>
</table>
GLOSSARY OF WORKING TERMS

In this thesis, the following meanings are assigned to key terms, consistent with their current use in South Africa.

Accreditation
A procedure by which an authoritative body gives formal recognition that an institute, body or person is competent in terms of a specific purpose.

Applied competence
Is the combination of a learner’s demonstrated ability, in an authentic context, to consider a range of possibilities for action (practical), and based on an understanding of the underpinning knowledge and thinking (foundational), to adapt to changing unforeseen circumstances (reflexive).

Assessment
The process of collecting and interpreting evidence of learner achievement.

Assessment criteria
The criteria included in a unit standard to determine the achievement of specific and critical outcomes.

Competence
The capacity for continuing performance within specified ranges and contexts, resulting from the integration of a number of specific outcomes.

Core learning
The specific core knowledge, skills and attitudes required for the completion of a particular qualification i.e. the required specialism for the purpose of the qualification.

Credit
The recognition by an accredited body that a learner has satisfied the outcomes of a unit of learning expressed as a credit value at a specific level. Credits may be accumulated until conditions for a qualification have been met.

Curriculum framework
The philosophical and organisational framework for a specific curriculum.

Curriculum 2005
The renewed curriculum framework for compulsory school years (Grade 1 through 9) and which was said to be based on transformation OBE principles. Curriculum 2005 specifies the 66 specific outcomes for the eight Learning Areas, together with the assessment criteria and range statement for each specific outcome. The 2005 is a time frame label indicating that the new curriculum framework had to be phased in all
Elective learning
Optional credits within a formal learning programme that may be of personal interest or professional relevance, or that open the door to a range of possible career and vocational choices.

Evaluation
The process whereby the information obtained through assessment is interpreted to make judgements about a learner's competence.

Integration of education and training
The human resource development policy rejects the rigid division between "academic" and "applied", between "theory" and "practice" and between "knowledge" and "skills" in order to avoid the past perception that education possessed higher academic status than training. Both have equal status and importance.

Learning Area
It represents a broader knowledge field which is informed by the commonalities it shares with other areas of learning which ensure that fragmented views of learning are counteracted. Learning programmes will be developed which integrate learning experiences from various Learning Areas.

Lifelong learning
Ongoing learning through a continuous supportive process that stimulates and empowers individuals to acquire and apply knowledge, values, skills and critical understanding, required to respond confidently and creatively and to rise to the challenges of a changing social, political and economical environment.

Outcomes-based education
A learner-centred, result-orientated approach based on the belief that all learners can learn and succeed. It implies that learning institutions control the conditions for success. Curriculum design starts from a clear definition of the significant learning that learners have to achieve - all decisions about instructional strategies, learner assessment and organisation of the learning environment are linked directly to the outcomes that learners have to demonstrate.

Problem-based learning
Is the learning that results from the process of working toward understanding or resolution of a problem. The problem
is encountered first in the learning process and serves as a focus or stimulus for the application of problem-solving or reasoning skills, as well as for the search for information or knowledge needed to understand the mechanisms responsible for the problem and how it might be resolved. It also implies a curriculum design approach where the outcomes are organised around problems. PBL also implies a particular strategy for facilitating learning.

A planned combination of learning outcomes, which results in credit accumulation towards the achievement of a qualification.

Concerns the technological knowledge and skills, as well as the technological processes, and involves understanding the impact of technology on both the individual and society. It is ultimately designed to promote the capability of and to stimulate learners to contribute towards problem-solving.
SUMMARY

Since the democratic elections in South Africa in 1994, the socio-political transformation impacted on the paradigms that are evolving in education and training in two important ways – it introduced a new philosophical base for education and training, and it established new systemic structures for organising and managing education and training. These reforms were based on a vision of lifelong learning for all South Africans and both the philosophical base and structures for its implementation were based broadly on the concept of transformational outcomes-based education. Introduction of this new paradigm set in motion a process of curriculum reform across all fields of education and training. For the years of compulsory schooling, the new curriculum framework was known as Curriculum 2005. This structure divided the school curriculum into eight Learning Areas, one of which was called Technology and that was never previously presented in public South African schools.

The realities of a new paradigm and a new Learning Area compelled teacher educators to design new programmes and methodologies to prepare prospective and in-service teachers for the daunting task of teaching. This research focused on preparing pre-service final year high school teachers in the natural sciences to facilitate learning in technology from an outcomes-based perspective. This research explored problem-based learning (PBL) as a curriculum design type where the entire curriculum of a particular course is organised around problems and as a strategy to be used for training the pre-service teachers. The rationale for using PBL is the following:

- It is a strategy which has the potential to operationalise OBE principles in learning environments.
- It is a strategy which enhances the transferability of competence from university classroom to the real workplace, because of its embedded characteristic of authenticity.
- The syntactical nature and structure of PBL and technology education show strong similarities.

The outcome of the literature review was the development of a model called the OBE-PBL model. This model was implemented on two levels. First, it was used during the six month training of the pre-service teachers and second, the pre-service teachers had to
implement this model when they had to facilitate learning in technology education in real schools for one month. Quantitative data were gathered to determine how successful the pre-service teachers were in transferring their competencies gained through the OBE-PBL model in the authentic situation. The pre-service teachers taught the control groups in the schools according to the traditional instructional paradigm, while the experimental groups were taught according to the OBE-PBL model. Pre- and post-test, as well as experimental and control group comparisons were conducted to determine whether statistically significant differences were present and what the nature of these differences were. Data of a qualitative nature were gathered from learners, as well as through interviews with the pre-service teachers about their OBE-PBL training and classroom experience of implementing it.

The results showed that the pre-service teachers transferred their OBE-PBL competencies to such an extent that the post-test results of the experimental group were significantly better than their pre-test results. The post-test results of the experimental group were not significantly better than the post-test results of the control group. However, the experimental group learners performed significantly better in higher cognitive questions that demanded meta-cognitive skills. Pre-service teachers indicated that the complete OBE-PBL experience was challenging but valuable, and one said that she has learnt the most in this course than she had learnt the whole year. The practice experience highlighted that some had a narrow view of their role as an OBE facilitator of learning in a PBL environment. After an in-depth reflection on all the dimensions of the findings, particular recommendations are made on how to develop and refine the OBE-PBL model further to enhance its suitability and impact on the training of pre-service teachers for technology education.

OPSOMMING

Sedert die demokratiese verkiesing in Suid-Afrika in 1994 het die sosio-politieke transformasie 'n direkte impak gehad op die paradigmas wat tans besig is om te ontvou in onderwys en opleiding op twee vernare wyse - 'n nuwe filosofiese grondslag is bekendgestel, asook 'n nuwe sistemiese struktuur wat verantwoordelik is vir die organisasie en bestuur van onderwys en opleiding. Die hervormingsinisiatiewe word aangedryf deur 'n visie van lewenslange leer vir alle Suid-Afrikaners en is gebaseer op die beginsels van
transformatiewe uitkomsgebasseerde onderwys (UGO). Vir die verpligte skoolfase het die vernuwingsinisiatiewe gekulmineer in a kurrikulumraamwerk genaamd Kurrikulum 2005. Volgens hierdie raamwerk word die kurrikulum in agt Leerareas verdeel, waarvan Tegnologie een is wat nog nie vantevore amptelik in publieke skole aangebied is nie.

Die realiteite van 'n nuwe paradigma en Leerarea het onderwyseropleiers genoop om voor-en indiensprogramme te herkonseptualiseer en nuwe metodologieë te eksplorere om onderwyser toe te rus vir hul groot opgaaf. Hierdie navorsing het daarop gefokus om voornemende hoërskool onderwysstudente voor te berei om leer te fasiliteer in tegnologie-onderwys vanuit 'n uitkomsgebasseerde perspektief. Probleemgebaseerde leer (PBL) is geëksplorere as 'n kurrikulumontwerpbenadering waar probleemscenario's gebruik word om die kurrikulum te organiseer, asook 'n opleidingstrategie vir die onderwysstudente. Die rasionaal vir die implementering van PBL is die volgende:

- Die strategie het die potensiaal om UGO-praktykbeginsels te oprasionaliseer.
- As gevolg van die outentieke karakter van PBL kan bevoegdhede wat tydens opleiding ontwikkel word effektiewer oorgedra word na die werksplek.
- Die syntaktiese struktuur van PBL en tegnologie-onderwys toon sterk ooreenkomste.

Die uitkoms van die literatuuroorsig was die konstruksie van 'n model genaamd die UGO-PBL model. Hierdie model is op twee vlakke geïmplementeer. Eerstens is dit gebruik vir die ses maande opleiding van die onderwysstudente en tweedens moes hulle die model implementeer tydens die fasilitering van leer in tegnologie vir een maand in skole. Kwantitatiewe data is ingesamel om vas te stel hoe effektief die onderwysstudente hul bevoegdhede kon oordra na die praktysituasie. Die kontrolegroepe is onderrig volgens 'n tradisionale instruksie-transmissiemodel, terwyl die intervensies met die eksperimentele groepe op die UGO-PBL model gebaseer was. Kwalitatiewe data is vanaf leerders verkry, asook vanaf onderrig wat met die onderwysstudente gevoer is oor hul UGO-PBL opleiding en praktykervaringe.

Die resultate het getoon dat die onderwysstudente hul UGO-PBL bevoegdhede sodanig oorgedra het dat die natoets van die eksperimentele groep beduidend beter was as hul voortoets. Die natoets van die eksperimentele groep was egter nie beduidend beter as die natoets van die kontrolegroep nie. Alhoewel, in sekere vrae wat as hoë kognitiewe vrae geklassifiseer was en wat meta-kognitiewe vaardighede vereis het vir beantwoording
daarvan, het die eksperimentele groep beduidend beter presteer. Die onderwysstudente het aangedui dat die omvattende UGO-PBL ervaring uitdagend en waardevol was en een het gemeld dat sy meer in hierdie kursus geleer het as in enige ander kursus gedurende die jaar. Data wat verkry is vanaf die praktikimplementering het egter getoon dat sommige onderwysstudente 'n verskraalde persepsie gehuldig het oor hul rol as UGO leerfasiliteerders in 'n probleemgebaseerde leeromgewing. Na afloop van deeglike refleksie op die veelvuldige dimensies van die bevindinge, word aanbevelings gemaak oor hoe om die model the verfyn sodat die geskiktheid en impak daarvan op die opleiding van tegnologie onderwysstudente kan verhoog.