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Abstract

Much of our interaction with the environment is physical. We use our bodies for
nonverbal expression or to augment or emphasize verbal communication. In other cases
we use our bodies to execute tasks such as walking or picking up an object. A human
observer can easily recognise these activities. For example, it is the job of a security
officer in a supermarket to observe people and check that articles are not stolen. If a
person does steal, the security officer recognises the act and takes appropriate action.

The problem addressed in this study is the automatic recognition of human gestures
by means of video image analysis. For this purpose a computer-based system with
similar recognition capabilities as a human observer is investigated. The system uses
cameras that correspond to the eyes and algorithms that resemble abilities of the human
visual system. Automatic gesture recognition is a complex problem and the focus here
is to develop algorithms that will solve a subset of the problem. This involves the
recognition of simple gestures such as walking and waving of arms.

The approach taken in this dissertation is to represent body shape in camera images
with a simple model called a bounding box. This model has the appearance of a rect-
angle that encapsulates the extremities of the human body and resembles the coarse
structure of body shape. From a representation point of view, the model is an abstrac-
tion of body pose. A gesture consists of a sequence of poses. By employing pattern
recognition techniques, a sequence of pose abstractions is recognised as a gesture.

Various aspects of the bounding box model are explored in this study. Perception
experiments are conducted to gain a conceptual understanding of the behaviour of
the model. Other aspects include investigation of two- and three- dimensional spatial
representations of the model with a neural network classifier as well as the model’s
temporal properties through the use of hidden Markov models. These aspects are
tested using gesture recognition systems implemented for this purpose. The gesture
vocabularies of these systems range from four to ten gestures, while recognition rates
vary from 84.7% to 96.3%.

Keywords: human gesture recognition, computer vision, smart room, pattern



recognition, neural network, hidden Markov model.
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Uittreksel

Baie van ons interaksie met die omgewing is fisies. Ons gebuik ons liggame onder
andere vir nie-verbale kommunikasie of om verbale kommunikasie te beklemtoon. In
ander gevalle gebruik ons ons liggame om sekere bewegings mee uit te voer soos om
te loop of om 'n voorwerp op te tel. Vir 'n mens is dit maklik om sulke aktiwiteite te
herken. Byvoorbeeld, 'n sekuriteitsbeampte in 'n winkel hou mense dop om te kyk dat
items nie gesteel word nie. Indien iemand wel iets steel, herken die sekuriteitsbeampte
dit en neem die nodige aksie.

Die probleem wat in die studie ondersoek word, is die automatiese herkenning van
menslike gedrag of aksies. Vir hierdie doeleinde word 'n rekenaar gesteunde stelsel
ondersoek wat soortgelyke vermoéns het as dié van 'n mens. So ’n stelsel gebruik
kameras wat die funksie van 0é naboots en algoritmes wat die menslike visuele stelsel
naboots. Outomatiese aksie herkenning is 'n komplekse probleem en daarom word net
'n substel daarvan hier ondersoek. Dit behels die herkenning van eenvoudige aksies
soos loop and arms waali.

Die benadering wat hier gevolg word, is om die liggaamsvorm in kamerabeelde te
modelleer met 'n eenvoudige model wat 'n omtrekreghoek genoem word. Die model is
'n reghoek wat die hele liggaam van die mens omsluit. So 'n model stel rofweg die vorm
van 'n mens se liggaam voor en is dus 'n abstrakte voorstelling van liggaamshouding.
'n Aksie is 'n aantal opeenvolgende liggaamshoudings. Deur gebruik te maak van
patroonherkenningstegnieke word die sekwensie van die abstrakte voorstellings herken
as 'n aksie.

Verskillende aspekte van die omtrekreghoek model word in die studie ondersoek.
Dit sluit persepsie eksperimente in wat die konsepsionele werking van die model beskryf.
Ander aspekte wat ondersoek word is na twee- en drie- dimensionele ruimtelike voorstellings
van die model met 'n neurale netwerk as klassifiseerder, sowel as die tyd aspekte van
die model deur middel van verskuilde Markov modelle. Dié aspekte word ondersoek
deur gebruik te maak van verskeie gedrags herkenning stelsels wat geimplementeer was

vir die doeleinde. Aksie woordeskatte van hierdie stelsels wissel van vier tot tien aksies,
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terwyl herkennigsvermoéns wissel van 84.7% tot 96.3%.

Sleutelwoorde: menslike aksie herkenning, rekenaar visie, intelligente omgewing,

patroonherkenning, neurale netwerk, verskuilde Markov model.
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2D Two dimensions or two dimensional
3D Three dimensions or three dimensional
CCD  Charge coupled device

CD Compact disc

Cv Computer vision

DOF  Degrees of freedom
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3D bounding box true centroid height (scalar, meters)

3D bounding box true centroid position (3-element vector, meters)

2D and 3D bounding box height (pixels) and (scalar, meters) respectively
Image frame number

3D bounding box perimeter (scalar, meters)

2D bounding box width (pixels)
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Chapter 1
Introduction

“George is blissfully unaware that a crime is about to be committed
right under his nose. Partially obscured by a bag of doughnuts and a half-
read newspaper is one of the dozens of security monitors he is employed
to watch constantly for thieves and vandals. On the screen in question, a
solitary figure furtively makes his way through a car park towards his target.
The miscreant knows that if the coast is clear it will take him maybe 10
seconds to get into the car, 15 to bypass the engine immobiliser and 10 to
start the engine. Easy. But before he has even chosen which car to steal,
an alarm sounds in the control room, waking George from his daydream.
A light blinking above the screen alerts him to the figure circling in the car
park and he picks up his radio. If his colleagues get there quickly enough,
they will not only catch a villain but also prevent a crime.

The unnatural prophetic powers of the security team would not exist
but for some smart technology. The alarm that so rudely disturbed George
is part of a sophisticated visual security system that predicts when a crime
is about to be committed.” - Warning! Strange behaviour - New Scientist,
11 December 1999.

The above extract describes a surveillance system that automatically detects sus-
picious human behaviour in a security context. Although the system is a fictitious
one, advances in computer technology and pattern recognition during the past three
decades have brought it closer to reality. The research field that studies this and related
technologies is known as computer vision. In this dissertation computer vision is inves-
tigated for the purpose of automatically recognising human gestures such as walking,

waving and crouching in camera images. A system capable of detecting gestures can



Chapter 1 Introduction

be used as a building block for the scenario sketched above.

1.1 Motivation

Research in the automatic recognition of gestures can be motivated by its diverse

applications. Example applications are:

e Safety and security: The introductory paragraph described a security applica-
tion. A related application is safety, where the system detects human activities
that might have health and safety implications. The system can even attempt to

predict such activities and initiate preventative actions.

e Sports training: The performance of athletes can be improved by means of
gesture analysis. In such an application the motion of an athlete’s body is re-
constructed and presented as a computer graphic model. The athlete’s trainer
analyses the reconstruction and recommends improvements in technique if neces-
sary. An example is javelin throwing, where body motion is analysed to optimise

the javelin’s angle of attack and velocity.

e Natural man-machine interfaces: The original man-machine interface to a
computer is the keyboard. This was later augmented with pointing devices such
as the mouse and tracker ball. Pointing devices provided a more natural interface
than a keyboard and simplify navigation in graphical user interface environments.
During the 1990’s speech technology matured. Commercial software packages
appeared on the market and offer the best natural interface to computers so far.
A great deal of interaction with our world is by means of vision. A truly natural

man-machine interface should therefore integrate visual information as well.

e Medical applications: By analysing the gait of a patient, location and move-
ment of joints are tracked and analysed for abnormalities. From this analysis

corrective procedures (e.g. physiotherapy) can be recommended.

The above examples are only a few potential applications, but are sufficient to
warrant research in this field.
1.2 What is computer vision?

Computer vision plays an important role in the previously discussed examples. These

Systems use computer vision techniques to function and is also central to the work

Electrical, Electronics and Computer Engineering 2



Chapter 1 Introduction

conducted in this study. A definition of computer vision is therefore appropriate.
Trucco and Verri [1, p. 2] define computer vision as a set of computational techniques
aimed at estimating or making explicit the geometric and dynamic properties of the
3D world from digital images. Wechsler [2, p. 19] calls it the process of seeking to
produce useful descriptions of visual input to allow an artificial or natural system to
safely negotiate its environment. Schalkoff (3, p. 2] simply calls it the science (or art?)
of making robots ‘see’.

A typical computer vision setup consists of one or more cameras interfaced to a
computer. Images are captured and digitized by the cameras and suitable hardware
and processed by the computer. The computer outputs a description of the scene -
the content of which depends on the application. In this study the captured images
contain humans executing gestures and the computer outputs the gesture type or class.

The process of achieving this is the focus of this dissertation.

1.3 Objectives

Machine-based gesture recognition is a difficult problem. In this study a novel and
simple model is proposed as an approach to the problem. This model is dubbed the
“bounding box” model. Its purpose is to abstract gesture information in the form of
body pose, which is one of the first steps required for gesture recognition. Within this

framework the objectives are:

e To investigate the bounding box model by means of visual perception experi-
ments. The outcomes of these experiments provide a conceptual understanding

of the capabilities of the bounding box model.

e To investigate the performance of the proposed model in a machine-based ges-
ture recognition scenario by employing computer vision and pattern recognition
techniques. This includes:

— Two dimensional (2D) representation: The human body is modeled
as a 2D spatial representation. This is the simplest form of the proposed
bounding box model and makes a number of assumptions. It is, however, a

good starting point to test the concept.

— Three dimensional (3D) representation: Here the 2D model is ex-
tended to a 3D spatial representation. This is a better approximation of the

human body and therefore has more practical value.

Electrical, Electronics and Computer Engineering 3
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— Temporal properties. A temporal model is investigated capable of mod-
eling the temporal properties of the bounding box.

1.4 Contributions

Contributions made in this study are in the field of computer vision and automatic

gesture recognition. They are:

e Bounding box model: In this study the bounding box model is proposed,
investigated, implemented and tested in a gesture recognition system. It is a
simple model that can be applied in a scenario where the aim is to recognise
coarse human gestures. The parameters of this model are simple to determine
and it offers an alternative to complex models often encountered in the literature.
It was found that the model works well in a 2D and 3D environment. The
strength of the model lies in the extension from a 2D to 3D representation. The
parameters of many 3D models are difficult to calculate. In contrast, calculation
of the 3D bounding box parameters are of a comparable complexity to that of
the 2D bounding box.

e Recognition strategy: A simple recognition strategy based on first principle
component approximation is used to classify gestures. This technique is used in
the 2D and 3D recognition systems and permits real-time and continuous recog-
nition of gestures. A second technique that uses hidden Markov models (HMMs)
is also used for recognition. It is more complex than the first principle compo-
nent approximation scheme, but makes better use of the temporal information

contained in the gesture signatures.

1.5 Overview

To conclude this chapter, an overview of the subsequent chapters is given. Chapter 2
gives a review of the literature applicable to machine-based gesture recognition. This
is followed by an introduction of the bounding box model in Chapter 3. A conceptual
discussion of the model is given and its usefulness investigated by means of a visual
perception experiment. Given the insight gained from this investigation, the proposed
model is tested in a machine-based system in Chapter 4. A simple scenario is chosen,
namely a 2D system and a vocabulary of only four gestures. The 2D system limits

motion to a plane and is of limited practical value. The aim is, however, to obtain an

Electrical, Electronics and Computer Engineering 4



Chapter 1 Introduction

initial estimate of the proposed model’s performance in a machine-based application.
Chapter 5 extends the recognition system from 2D to 3D and therefore removes the
plane motion constraint. In addition the gesture vocabulary is extended to a total of
eight gestures. Chapter 6 improves further on recognition capabilities by introducing an
alternative temporal model. The bounding box model is rich in temporal information,
which has up to this point not been properly exploited. The alternative temporal
model is a hidden Markov model and it is tested for ten gestures using the 3D bounding
box model. This dissertation is concluded with Chapter 7, which puts this work into
perspective and recommends future research.

Accompanied with this dissertation is a CD that contains computer viewable video
sequences (see inside of front cover). The videos are in the AVI video file format and
contain demonstrations of the various recognition systems developed during the course
of this study.

To conclude, a note on the meaning of the words “gesture” and “pose” used in
this dissertation: A gesture is the execution of body motion to accomplish a task
(e.g. walking and waving of hands). It requires the movement of the body and limbs.
When reference is made to “gesture”, it is implied that the gesture contains motion. A
gesture is made up of a sequence of “poses”, which are motionless or static. A gesture
itself can also be static, for example standing still, and this is referred to as a “pose”.
Depending on the context of a sentence, “gesture” can be a collective noun for both
moving and static gestures (that is géstures and poses). Since this can be confusing the
phrase “dynamic gesture” is sometimes used to emphasize that only gestures containing

motion are implied.

Electrical, Electronics and Computer Engineering 5



Chapter 2

Literature overview and

background

In Section 1.2 of the previous chapter the computer vision problem was formulated as
follows: Given one or more camera images, the aim is to describe the content of the
images within the context of a particular problem. Images are presented as a sequence
of digitised pixel values. In its raw form an image is unsuitable for computer vision
interpretation. The question is: How does one proceed to make sense of raw image
data to produce a meaningful interpretation? This chapter reviews the literature that
addresses this question in the context of machine-based gesture recognition.

The application scope of computer vision is large. The introductory section dis-
cusses the current paradigm that deals with the general computer vision problem (Sec-
tion 2.1). This is followed by a discussion of motion recognition, where the aim is to
recognise the movement type of an arbitrary object in an image sequence (Section 2.2).
The main body of this chapter overviews a special case of motion recognition, namely

gesture recognition (Section 2.3).

2.1 The current computer vision paradigm

Vision is of interest to two gfoups of scientists: Neuropsychologists and psychophysicists
study biological vision with the aim of understanding how it works. The second group,
engineers and computer scientists, study vision in order to develop vision systems [4].
It is hoped that if biological vision is understood, the problem of computer vision can
also be solved. Despite decades of research, understanding biological vision is still in its
infancy (2, p. 493]. The same is true for computer vision [4, 5]. This can be illustrated

by the classical problem of invariant object recognition - a requirement for a robust
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motion or object type) is recognised or interpreted. This usually means that the
target is classified as one of many known classes and this is achieved by means
of standard pattern recognition techniques. Not all machine vision applications
require a recognition phase. The sports training example given in Section 1.1
does not require recognition. In that case it serves as an analysis tool and inter-

pretation is done by the athlete’s trainer.

Much of computer vision research focuses on the representation phase of the problem
and the infrastructure to facilitate it {1, 3]. It is regarded as a complex problem that
depends on a number of properties such as the target, it’s environment, the application’s

objectives and the model chosen.

2.2 Motion recognition

A subset of computer vision problems is concerned with the analysis and recognition
of objects in motion. For example, a meteorological vision system tracking a tropical
cyclone from satellite images might calculate its speed and rate of expansion.

Motion recognition has been influenced by visual perception experiments such as the
work of Johansson [8, 9]. Johansson attempted to uncover the mechanisms used by the
human visual system to recognise motion. His discoveries were based on experiments he
dubbed the Moving Lights Display (MLD). In these experiments, an actor was dressed
in black and light bulbs attached to his joints. He was then placed in a dark room to
ensure his body shape was invisible. The actor was then asked to perform a number
of gestures such as walking and dancing. An audience unfamiliar with the experiment
was asked to identify the gestures or motion. They managed to easily identify moving
or dynamic gestures, even if the gestures were complex (e.g. dancing). However,
stationary gestures (resulting in a stationary lights display) or upside-down gestures
were perceived as meaningless [10]. Johansson concluded that motion information
directly contributes to its recognition.

Interpretation of the MLD experiments can lead to two motion recognition ap-
proaches |7, p. 129):

¢ Configuration-based recognition: First, the object’s structure is recovered
and used to recognise what the object is. Once this is achieved, motion is recog-
nised by how it moves.

¢ Motion-based recognition: Here the object type and its motion are recognised

by the characteristics in its motion. Structure plays little or no role in this process

Electrical, Electronics and Computer Engineering 8
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orientation of a static cube.

Gesture recognition systems are usually biased towards one of the above two ap-
proaches. The bounding box model that is investigated in subsequent chapters can be
considered to fall in the configuration-based category: It recovers the coarse structure
of the human body and recognition is then based on the recognition of the signatures
of the model parameters. Details of gesture recognition systems that can be found in

the literature are given in the next chapter.

2.3 Gesture recognition

The framework discussed in the previous section is generic and applicable to motion
recognition of any object. Gestures are performed by humans and to recognise them,
properties of the human body have to be taken into account. Two important properties
are that the human body is nonrigid and body parts can be occluded. This excludes
direct application of motion recognition theory that assumes rigidness. Fortunately
the human body has unique properties that are often used to aid in object modeling
[11]. One such property is that limbs are constrained in movement or that they have to
adhere to certain kinematics [12, 13]. For example, the elbow can only bend approxi-
mately 180° and in one degree of freedom (DOF), which in turn constrains movement
of the hand. By taking such properties into account the state space® is decreased,
making the problem easier to solve [14].

In Section 2.1 it was pointed out that a machine vision system requires two steps,
namely representation and recognition. Section 2.2 revealed that to recognise motion
two techniques can be used, namely a configuration-based or motion-based approach.
This section investigates gesture recognition within this framework. Configuration-
based and motion-based representations applicable to gesture recognition are discussed
first. This is followed by techniques that recognise gestures given one of these two

representations.

2.3.1 Configuration-based models

This model type represents the structure or configuration of the human body (see
Gravila[11] for an overview). Representation is based on either explicit shape informa-
tion (appearance models) or low level features such as points or lines (feature models).

An appearance model resembles the human body in appearance and the objective is

3This is the space that defines all possible configurations of the object.

Electrical, Electronics and Computer Engineering 10



Chapter 2 Literature overview and background

to register the model to the person in the image. Feature models ignore high level
shape information and instead seek out low level features and track these from frame
to frame. It requires solving for feature correspondence between successive frames.
Correspondence is implicit for appearance models, since it is implied by registration®.

The first step of configuration-based modeling is segmentation. Here, the person is
masked from the background in the camera images. Strategies to accomplish this vary
widely in the literature. Often, the problem is simplified by using a special chroma-
keying background to enforce a high foreground/background contrast [16, 17, 18]. An-
other approach is to use special markers on the clothing to simplify location of features
[19]. Sophisticated segmentation techniques are also used to improve segmentation. For
example, the Pfinder system of Wren et al. [20] exploits the spatio-temporal properties
of the human body in order to track and segment it.

The bounding box model presented in this study also requires a segmentation pro-
cedure before it can be constructed. A background substraction segmentation scheme
that utilises chroma-keying is chosen for this purpose. Details of the algorithm are
given in Chapter 4.

Appearance models

Appearance models use atomic components to build a representation that resembles
the human body. These components are typically sticks, contours or volumes and are
related to the human body [21]: Sticks resemble the skeleton, contours the body projec-
tion in camera images and volumes the 3D detail of the human body. The complexity
of model to image registration is determined by the number of model parameters - a
high DOF model is usually more difficult to register. The remainder of this section
overviews some literature published in this regard.

Chen and Lee [13] used a 17 segment stick figure model shown in Figure 2.3. The
objective of their work was to recover 3D pose of a simulated stick figure, given a
sequence of perspective projected images of the stick figure. They formulated the
problem using a graph, where the optimal graph is the solution to the pose at a given
time instant. The graph is pruned by using knowledge of gestures. A first phase
eliminates candidate graphs that do not comply to instantaneous poses. For instance,
two arms can not be both in front or behind the torso simultaneously. The second phase
pruned the graph to a single one by requiring that the movement of joints should be

4Correspondence is the process of locating the same feature of an object in successive images or
locating the same feature in images shown from different viewpoints. Registration is the process of
computing the transformations which bring those corresponding features into alignment [15].

Electrical, Electronics and Computer Engineering 11
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Figure 2.3: A appearance stick figure model. This model was used by Chen
and Lee [13] to recover 3D gestures of a simulated figure.

smooth from one frame to the next. This approach requires the length of the line
segments and the location of the neck to be known.

Rohr [22] used a 14 object volumetric model to represent the human body. A sim-
ilarity measure is defined based on the geometric properties of the volumetric model’s
contours and the detected edges of the person in the camera image. The measure takes
edge length, projection angle and the distance between the model’s contour and image
edge into account. Matching is accomplished by maximising the similarity measure.
To minimise the search space, model pose in future frames is predicted by means of
Kalman filtering. Gavrila and Davis [23] used a 22 DOF super-quadrics model and a
similar measure for matching. However, their system required the person to wear a
tight-fitting suit. The suit had colour coded limbs to aid in model registration.

Rehg and Kanade [14] used kinematic constraints to simplify matching of a 27 DOF
human hand model to a hand observed in two stereo camera views. Their system,
DigitEyes, requires the hand to be in a known initial pose. Once this condition is
satisfied hand gestures are tracked by using local features on the hand and applying
the above constraint. This system has applications in sign language recognition.

As stated earlier the appearance models resemble the actual appearance of the

Electrical, Electronics and Computer Engineering 12
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Darrell and Pentland [25] and Darrell, Essa and Pentland [26] describe a method
where a gesture is defined as a predetermined number of key frames. Key frames are
camera images of the actual gesture that serve as templates for the gestures. The idea
is that a full gesture is represented by interpolating between key frames. In essence
a gesture in a test sequence is recognised by determining the similarity between the
test sequence and the template sequence. Similarity is measured using a normalised
correlation-based metric.

Instead of using the camera images directly, Murase [27] extracted image variation
by means of principle component analysis. Pose is then represented by the lower order
eigenvectors obtained from this method. Image features can also be derived using
wavelets [28] and splines [29).

The above models model body pose using shape, location, colour or a combination
of these features. The proposed bounding box model is closely related to this group
of models - it attempts to describe shape by enclosing the body of the person in a
camera image in the smallest possible rectangle or bounding box. The result is a coarse
representation of body shape. The bounding box is calculated for every frame and is
static with respect to time for poses, but active for dynamic gestures. To recognise a
gesture a system that uses this type of model should therefore recognise the sequence

of bounding box representations.

2.3.2 Motion-based models

In Section 2.2 it was mentioned that motion is a prerequisite for motion-based recogni-
tion. Gesture types that can be represented by this model therefore need to be dynamic.
This is the case for many gesture recognition systems, for example human activity
surveillance, lip reading recognition and sign language recognition. Although motion-
based recognition is not directly applicable to the proposed bounding box model, it
is often discussed in the gesture recognition literature and therefore worthwhile to
mention.

A motion-based representation transforms temporal events into a spatial repre-
sentation. A good example is the binary motion region images by Davis [30]. This
approach monitors consecutive image frames for change. Any pixel that deviates from
its previous value is flagged and represented as a white pixel as shown in Figure 2.5
for a person sitting. The final image (bottom right figure of Figure 2.5) shows the
accumulated change of the gesture sequence and is the abstraction of the gesture.

A problem with motion-based approaches is that it is difficult to segment the rep-
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The above two recognition techniques collapse temporal information observed over
a fixed period into a single feature vector. Configuration-based models often produce
a sequence of features over a period of time, which correspond to snapshots of gestures
or poses. Recognition can therefore be achieved by detecting a sequence of snapshots
or features. A property of gestures is that they can be executed at various rates.
This can be a problem and the recognition method must deal with it. Two popular
techniques that address this problem are dynamic time warping (DTW) and hidden
Markov models (HMM).

DTW is a matching technique commonly encountered in earlier speech recognition
literature [37, 38]. It matches an unknown pattern to a prototype or reference pattern
by warping the unknown pattern to fit the reference pattern (asymmetric warping) or
by warping both the unknown and reference pattern (symmetric warping). Darrell,
Essa and Pentland [26] used DTW to temporally align the correlation scores of a novel
sequence to that of a known template sequence. The endpoints of the feature sequence
were kept fixed while starting points were elastically matched. The gesture belonging
to the template model with the shortest accumulated distance is chosen to be the
executed gesture. Other work where DTW was applied for gesture recognition is by
Takahashi et al. [39] and Bobick and Wilson [40)].

Another recognition method that has become popular in gesture recognition is the
use of hidden Markov models [41, 42]. An HMM represents the stochastic properties of
an observation sequence by means of a Markov random process. The Markov random
process is hidden and is indirectly observed through features of the process. Yam-
ato, Ohya and Ishii [24] were the first to employ HMMs for the purpose of gesture
recognition. As discussed earlier, they used a feature vector constructed based on the
foreground pixel ratio obtained from a fixed grid. A gesture consists of a sequence of
feature vectors calculated from the camera images. For each gesture an HMM is gener-
ated by a training procedure that requires a number of example gesture sequences. To
determine the class of an unknown sequence, the probability of the sequence belonging
to each of the models is calculated. The assigned gesture is the one with the largest
probability. HMMs have also been used for gesture recognition by Pentland and Liu
[43], Starner and Pentland [44], Wilson and Bobick [45] and Vogler and Metaxas [46].

A bounding box based gesture recognition system also requires a recognition phase.
Features are derived from the bounding box model, which serves as input to the clas-

sifier. Two types of classifiers are used for this purpose namely neural networks and
HMMs.
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2.4 Conclusion

This chapter highlighted the various elements required for a gesture recognition system.
Section 2.1 stated that the system should have a representation and recognition stage.
According to Section 2.2 gesture abstraction models can be based on the configuration
of the object or its motion. Configuration-based models can again be divided into
appearance and feature based models. The next chapter discusses the bounding box
model, which is the key element of the gesture recognition system discussed in this
study. This model can be categorised as a configuration-based model, specifically a
feature-based model. It will be shown in the next chapter that the bounding box
model represents the coarse structure of the human body. The second ingredient of a
gesture recognition system is the recognition phase. In this study two techniques are
investigated, namely recognition based on a neural network (Chapters 4 and 5) and a
more advanced HMM based classifier (Chapter 6).
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The literature survey of the previous chapter revealed two important paradigms used for
machine-based gesture recognition, namely motion-based [7, 30, 31, 32, 33, 34, 35, 36]
and configuration-based [11, 13, 22, 23, 14, 20, 24, 26, 27, 29, 28] approaches. This
chapter describes a very simple configuration-based model that forms the basis of the
remainder of this study.

The chapter starts by introducing this model and relating it to existing models
(Section 3.1). Being simple, it has limitations. These are then investigated by a
visual perception experiment (Section 3.2). From the results of this experiment insight
can be gained into the capabilities of the proposed model (Section 3.3). Once these
are understood, subsequent chapters use the model to abstract gesture information in

various machine-based gesture recognition systems.

3.1 Bounding box model overview

Configuration-based approaches use models that represent the structure of the actual
object and therefore have the same physical appearance as the object. Figure 3.1(a)
shows a typical model of the human body. This model consists of a number of geomet-
rical shapes (circles and rectangles) configured such that it looks like a human. The
objective is to register the model, in other words relating the elements or shapes of
the model to their counterparts in the body of the person (see Figure 3.1(b)). This is
usually not a simple problem: Registration algorithms do not always converge to the
correct solution, typically due to image noise, occlusion of body parts and the fact that
the model is only an approximation of the real body shape [47, 48, 17].

In this dissertation a very simple configuration-based model is proposed - the bound-
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Exp. dims. | Wk Wv Cr Hd In Nd | Total gestures
2D 1 1 1 2 1 2 8
3D 1 1 1 2 2 1 8

Table 3.1: Account of the gestures in the 2D and 3D test sets. Legend is Wk
—walking, Wv — arms waving, Cr — crouching, Hd — hand waving, In —

wnactive, Nd — nodding.

to be recognisable by a machine-based system using a high DOF model. These are
walking, arms waving, hand waving, crouching, inactivity and nodding. The gestures
are presented as two primary sets: A 2D bounding box set and a 3D bounding box
set. The 2D set is applicable to a 2D gesture recognition system (later implemented
in Chapter 4) and the 3D set applicable to a 3D gesture recognition system (Chapter
5). For the 2D set, motion is limited to a plane perpendicular to the camera’s optical
axis. For example, arms waving was recorded by waving at the camera. Doing this,
one forces the problem (modeling of human body) to take on the same dimensionality
as the representation (the 2D bounding box) [22]. No movement restrictions apply to
the 3D set.

Researchers often investigate only 2D models, since it is simpler than the equivalent
3D representation. We are living in 3D space and therefore a practical model should
consider 3D representations as well. Fortunately, it is easy to extend a 2D bounding
box model to a 3D one and for this experiment both are investigated.

3.2.2 Experimental protocol

Eleven participants took part in the experiment, all of whom had no prior knowledge
of the project. Participants were in the age group 21 to 61. The experiment was
conducted on three levels - each level gives more information about the gestures than
the previous level.

Four sets of computer viewable videos were compiled of the experiment’s six ges-

tures. The video sets are supplied on the accompanying CD and they are:

e A test set consisting of eight videos representing gestures with a 2D bounding
box. This is referred to as the 2D test set and can be viewed in chap8\ 2d\ test\.
The key of this test set are given in file 2d_key.trt located in chap3\ 2d\test\.

® A test set consisting of eight videos representing gestures with a 3D bounding
box. This is referred to as the 3D test set and can be viewed in chap3\ 3d\ test\.
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The key of this test set are given in file 8d_key.tzt located in chap8\3d\test\.

e An example set consisting of six videos showing a person executing one of the six
gestures as well as its 2D bounding box representation. This is referred to as the

2D example set and can be viewed in chap8\ 2d\ example\.

e An example set consisting of six videos showing a person executing one of the six
gestures as well as its 3D bounding box representation. This is referred to as the

3D example set and can be viewed in chap8\ 3d\ example\.

All videos are approximately 20 seconds long. Some gestures are repeated in the test
sets to prevent participants from consciously or subconsciously determining answers by
a process of elimination. An account of the test sets are given in Table 3.1.

The experimental procedure is as follows:

e The participant is given a basic overview of machine-based gesture recognition

and its objective. This is done without revealing any details about the gesture

types.

e An explanation about 2D and 3D bounding box models is given and how it is
being used in machine-based recognition. To familiarise the participant with the
concepts and presentation, he or she is shown a few of the 2D and 3D test set

videos.

e The following information is then given to the participant:

— A single person is in the video.

~ Only one gesture is performed for the duration of a particular video.
~ The person in the video does not interact with any object.

~ A gesture can be repeated in another video of the same set.

— Unknown is also a valid answer.
e The following three experiments are then conducted:

— Experiment 1: The participant is asked to classify the 2D test set and his
or her answers are noted. The participant does not know the gesture set at
this point. This is repeated for the 3D test set.
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— Experiment 2: The participant is told that there are six gestures and
what they are. These gestures are also visually demonstrated by acting
the gestures (the videos are not shown). The participant is asked again to
classify the 2D and 3D test sets and his or her answers are noted.

— Experiment 3: The participant is shown the 2D and 3D example sets. The
participant is asked for a third time to classify the 2D and 3D test sets and

his or her answers are noted.

3.2.3 Results

In the case of Experiment 1 the gestures of the test set were unknown to participants.
Answers can therefore be any gesture type and not necessarily from the test set. To
be able to compare the results of the three experiments, answers were interpreted as
belonging to one of the six classes in the case of Experiment 1. The criteria used for
this classification was: Is the answer given by a participant for a particular gesture a
reasonable description of the actual gesture? If the answer is yes, then it was assumed
that the perceived gesture was recognised as the actual gesture.

"The experimental results of the three experiments are given in the form of confusion
matrices (Tables 3.2 to 3.7) and the overall recognition rate is then summarised in Table
3.8. Abbreviations used in these tables are Wk — walking, Wv — arms waving, Cr
— crouching, Hd — hand waving, In — inactive, Nd — nodding, Un — unknown, Or
— other (none of the above). Detailed answers of each participant are also given in
Appendix A.

A number of observations were also made while conducting the experiments. The
observations were independent of the representation dimensionality (2D or 3D) and

are:

e Participant response time for Experiment 1 was usually more than 10 seconds

irrespective of the gesture type,

e Response times for Experiment 2 and 3 were:
— Walking, arms waving and crouching response times were around 2 to 5
seconds,

— Nodding, hand waving and inactive response times were usually more than

10 seconds,
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Particpant True Gesture Class
Answers (%) | Wk Wv Cr Hd In Nd
Wk 818 00 00 00 00 00
Wv 00 273 00 00 0.0 0.0
Cr 00 00 909 00 00 0.0
Hd 00 00 00 00 91 00
In 00 00 0.0 409 455 636
Nd 00 00 00 00 00 4.6
Un 00 00 00 182 91 136
Or 182 727 9.1 409 36.3 18.2

Table 3.2: Confusion matrix of the 2D test set of Experiment 1.

Participant True Gesture Class

Answer (%) | Wk Wv Cr Hd In Nd
Wk 100.0 0.0 0.0 00 0.0 0.0
Wv 00 18.2 0.0 00 0.0 0.0
Cr 0.0 0.0 1000 00 0.0 0.0
Hd 0.0 0.0 00 0.0 0.0 0.0
In 0.0 9.1 0.0 682 59.1 63.6
Nd 0.0 0.0 0.0 00 00 0.0
Un 0.0 0.0 0.0 136 182 9.1
Or 0.0 727 00 182 22.7 273

Table 3.3: Confusion matrix of the 3D test set of Experiment 1.

e Participants often remarked that nodding, hand waving and inactive, looked alike

and were difficult to recognise.

3.2.4 Discussion

A glance at Table 3.8 reveals that walking, arms waving and crouching were easily
recognised given that the gesture vocabulary is known (Experiments 2 and 3). The
remaining three gestures have low recognition rates. For these particular gestures,
the question is whether the participants guessed the answer or actually recognised the

gesture. Guessing means that the bounding box model does not contain the required
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Participant True Gesture Class

Answer (%) | Wk Wv Cr Hd In Nd
Wk 100.0 0.0 0.0 00 00 0.0
Wv 00 100.0 0.0 46 00 0.0
Cr 0.0 00 100.0 00 0.0 0.0
Hd 0.0 0.0 0.0 31.8 636 409
In 0.0 0.0 00 318 27.3 364
Nd 0.0 0.0 0.0 227 00 18.2
Un 0.0 0.0 0.0 91 91 45

Table 3.4: Confusion matrix of the 2D test set of Experiment 2.

Participant True Gesture Class

Answer (%) | Wk Wv Cr Hd In Nd
Wk 100.0 0.0 0.0 0.0 0.0 0.0
Wv 0.0 100.0 0.0 0.0 0.0 0.0
Cr 0.0 0.0 1000 00 0.0 0.0
Hd 0.0 0.0 0.0 54.5 454 9.1
In 0.0 0.0 0.0 273 36.4 364
Nd 0.0 0.0 0.0 18.2 182 54.5
Un 0.0 0.0 0.0 0.0 0.0 0.0

Table 3.5: Confusion matrix of the 3D test set of Experiment 2.

Participant True Gesture Class

Answer (%) | Wk Wv Cr Hd In Nd
Wk 100.0 0.0 0.0 00 00 00
Wv 0.0 100.0 0.0 00 00 00
Cr 0.0 0.0 1000 00 00 0.0
Hd 0.0 0.0 0.0 273 545 273
In 0.0 0.0 0.0 227 273 454
Nd 0.0 0.0 00 409 182 18.2
Un 0.0 0.0 0.0 91 00 9.1

Table 3.6: Confusion matrix of the 2D test set of Experiment 3.
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Participant True Gesture Class

Answer (%) | Wk Wv Cr Hd In Nd
Wk 100.0 0.0 0.0 00 0.0 0.0
Wv 0.0 909 0.0 00 00 0.0
Cr 0.0 91 1000 00 00 0.0
Hd 0.0 0.0 0.0 409 273 181
In 0.0 0.0 0.0 227 40.9 364
Nd 0.0 0.0 00 364 318 36.4
Un 0.0 0.0 0.0 00 00 91

Table 3.7: Confusion matrix of the 3D set of Experiment 3.

Exp. # Dims. Gesture Recognition Rate(%)

Wk Wv Cr Hd In Nd
2D 81.8 273 909 0.0 455 4.6
2D 100.0 100.0 100.0 31.8 27.3 18.2
2D 100.0 100.0 100.0 27.3 27.3 18.2
3D 100.0 18.2 1000 0.0 59.1 0.0
3D 100.0 100.0 100.0 54.5 36.4 54.5
3D 100.0 90.9 100.0 40.9 409 364

W N = W N -

Table 3.8: Gesture recognition rate for the set of MBB perception experiments.
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information to abstract the particular gesture and is of little or no use in a machine-
based recognition system.

For the above reason the possibility that a participant guessed the answer for hand
waving, inactive or nodding is explored. This is determined by inspecting the confusion
matrices of Experiments 2 and 3 (Tables 3.4 to 3.7). It seems that if any of these three
gestures are presented to the participant, the chosen answer is also from this set. In
a few cases unknown was also given as an answer, but this is ignored for the purpose
of the following discussion. Therefore, if a participant was guessing, his or her chances
of guessing correct is % assuming equal probability. In the 2D case of Experiments
2 and 3 the recognition rate is below % and one can infer that the participants have
guessed the answers. Results are slightly better for the 3D case. Recognition rates
for Experiments 2 and 3 are above % suggesting that a 3D bounding box does contain
some information about these gestures. One should, however, also keep in mind that
the participant sample is small, which causes noise in the results. The recognition rate
is, however, still too low for many practical computer vision applications. The low
recognition rate (2D and 3D cases) is also supported by participant remarks that these
gestures are difficult to recognise as well as their long response times to these gestures.

The results of Experiment 1 are also very interesting. Many participants recognised
walking and crouching in the 2D and 3D cases without any prior knowledge of the
gestures. Arms waving was, however, often mistaken as star jumps. Inactive has a
fairly high recognition rate, because many participants classified hand waving, inactive
and nodding as inactive. Once participants were informed about the gesture types,
its recognition rate fell. This again illustrates that participants cannot distinguish
between these three gestures.

Of more importance for Experiment 1 is the fact that participants were able to
distinguish between some of the gestures. Walking, arms waving and crouching were
always described as different gestures. In other words, they are distinctive. They are
also distinctive from hand waving, inactive and nodding as a group. The significance
of this is discussed in the next section.

A final remark about the trends in the results. The recognition results are the worst
for Experiment 1 where the participant has the least information. This is the case
for the 2D and 3D bounding box representations. For this experiment the confusion
matrices show that participants are often unsure what the gesture type is (see Tables
3.2 and 3.3): A significant percentage of gestures are classified as unknown or other.
Coarse gestures do however have a higher recognition rate than the fine gestures. Once

the participant was informed about the gesture types as required for Experiment 2, the
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coarse gestures have a 100% overall recognition rate. The fine gesture recognition rate
still under performs and gestures are mostly confused with each other (see Tables 3.4
and 3.5). Even when the maximum information about the gestures is given by showing
example videos (Experiment 3), participants cannot recognise the fine gestures. Again

these gestures are confused for each other as shown in Tables 3.6 and 3.7.

3.3 Conclusion
Given the results and from the above discussion the following conclusions are drawn:

e Walking, arms waving and crouching are modeled well by the bounding box
as opposed to hand waving, inactive and nodding. The first set of gestures all
have large movements in common as opposed to the latter set, which have little
or no movement. We refer to large movement gestures as coarse gestures and
small movement gestures as fine gestures. Given the results, it seems that coarse
gestures are better recognised within the context of a bounding box model. One
should, however, be careful not to generalise since this was only investigated for
three gestures. For example, in Experiment 1 participants have often mistaken
arms waving for star jumps. Both of these gestures fall into the coarse gesture

category.

e The results of Experiment 1 have shown that coarse gestures are distinctive.
Although a participant did not always recognise the actual coarse gesture, (s)he
has never confused different coarse gestures. Also, coarse gestures are distinct
from fine gestures. This observation can be used by a computer vision system to
do unsupervised labeling of unknown gestures. Such a system, might for example,
group all the fine gestures in a cluster and different types of coarse gestures in

separate clusters.

e Experiment 3 suggests that the proposed model can also be used in a supervised
labeling environment. In this experiment the human participant is first “trained”
by presenting him or her with example gestures. The participant is then “tested”
by being asked to classify an unknown gesture. This is the same procedure used

in many pattern recognition systems.

e Experiment 2 also falls within the supervised labeling category. Of more impor-
tance here is that it indicates whether participants correctly interpreted the videos

and the appearance of the bounding box. We as humans are familiar with the six
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gestures from experience and can visualise these gestures. The fact that most of
the gestures can be recognised in the videos from historical training implies that
the representation is adequate for the purpose of the experiment. Reference is
made to most of the gestures, since the recognition rate of Experiment 2 should
be viewed within the context of the results of Experiment 3. Experiment 3 has
already shown that fine gestures cannot be recognised except in classifying them
as a fine gesture. The fact that the fine gestures also have a low recognition rate
in Experiment 2 can therefore be ignored when motivating the adequateness of

the representation.

e The 2D and 3D bounding box representations relate respectively to 2D and 3D
recognition systems. A 3D system extends the dimensionality of the event space,
thereby removing some of the limitations of a 2D system. In this experiment
both representations have similar recognition rates suggesting that one should

expect similar performance of the two systems.

This chapter introduced the bounding box to abstract gestures. The quality of
this model was explored by means of a perception experiment. An analysis of the
experiment’s results revealed that the proposed model has promise in automatic gesture
recognition. In particular its strength is in the recognition of coarse gestures in a 2D
or 3D environment. In the subsequent chapters the model is applied in various gesture
recognition systems. The simplest case - the 2D representation - is invesfigated in the
next chapter. A 3D system is then explored in Chapter 5. The systems developed in
Chapters 4 and 5 use a simple temporal model to represent the temporal characteristics
of gestures. In Chapter 6 a more advanced model is investigated that better utilises

the temporal information offered by a sequence of bounding boxes.

Electrical, Electronics and Computer Engineering 31



Chapter 4
Coarse 2D gesture recognition

The Moving Bounding Box (MBB) experiment of the previous chapter suggested that
humans find coarse gestures fairly distinctive in a bounding box framework. It also
suggested that given this model, fine gestures are hard to recognise. Based on this
observation, a computer vision system is described in this chapter that aims to auto-
matically recognise gestures by utilising the bounding box model.

The objectives of the proposed machine-based gesture recognition system are given
in Section 4.1. An outline of the approach to the problem is given in Section 4.2. Due
to the complexity of the problem a number of assumptions have to be made. These are
given in Section 4.3. This is followed by a discussion of the proposed system in Section
4.4. The system was tested by classifying gestures of a number of participating people.
Results of the tests are given in Section 4.5 and discussed in Section 4.6. The chapter
is concluded with Section 4.7 by putting the results into perspective.

4.1 Objectives

The aim of this chapter is to explore the bounding box model for abstracting gestures as
required for automatic gesture recognition (see Section 2.2). From an implementation
point of view, the 2D bounding box is simpler than the 3D bounding box. For this
reason it is chosen as model for the first machine-based gesture recognition system of
this study. A small gesture vocabulary set is also chosen, in particular the gestures
that were identified by the MBB experiment to be easily recognisable. These gestures

are walking, waving, crouching and fine gesture.
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Figure 4.1 shows the setup of the system. A camera is mounted halfway between
the ceiling and floor in one side of the room. It faces an activity area covered mostly
by green chroma-keying material®>. The camera is connected to a frame grabber in a
computer. An algorithm is executed on the computer designed to recognise certain

gestures performed by the person in the activity area.

4.3 Assumptions

The objective of many computer vision systems are ambitious, since they aim at mim-
icking the human visual system. Currently, computer vision capabilities are not nearly
as advanced and generalised in application as the human visual system. It is therefore
imperative to make assumptions in order to make such systems viable. This system is

no exception and the following assumptions are made or constraints imposed:

e 2D motion: Motion is limited to a plane perpendicular to the optical axis of
the camera. This is the same restriction that was applied to the 2D bounding

box of the MBB experiment.

e Gesture vocabulary: Gestures are limited to walking, arms waving and crouch-
ing. A fourth gesture class called fine gesture is a collective class for all fine

gestures. All other gestures should be classified as unknown.

e Single foreground object: Only a single foreground object® is allowed within
the field of view of the camera. It is assumed that this object is a person. A
single foreground object also implies that the person does not interact with any

other objects, e.g. picking something up.

e Environment: To simplify image segmentation, the physical environment is
carefully controlled. The room is well lit and kept at a constant light level.
Care is also taken to ensure that surfaces are nonspecular and excessive cast
shadowing is minimised. Good colour contrast between the person in the scene
and background is ensured by using chroma-keying material and paint that covers

the walls and floor. Finally, the person is never occluded by any object.

2Chroma-keying is a technique used in the motion picture industry to segment people or objects
from the background in camera images. Once segmented, the people or objects are merged with
another background, creating the impression that they are at the location of the background. Usually

the chroma-keying colour is green or blue.
3This is also called an object of interest (OI). All other objects or surfaces are called background
objects.
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Figure 4.2: The gesture recognition algorithm is shown here as a high level flow
diagram. It receives a sequence of images, processes these images and displays

a gesture according to the algorithm.

Enforcing the above allows one to focus on the problem at hand - the machine
recognition of gestures. This is, however, only a starting point for a more practical
system and the aim is to gradually eliminate the above constraints by means of further
research. Also considering the status quo of systems with similar objectives, the above
constraints are not unreasonable. Some machine-based recognition systems found in

literature often implicitly assume these constraints [19, 48].

4.4 Gesture recognition in 2D

In the following sections a machine-based 2D gesture recognition algorithm is discussed.
Figure 4.2 shows a high level description of the algorithm. A person is first located
in the activity area by segmenting the camera image. Next, a 2D bounding box is
constructed that approximates the person’s body pose. The third step is to select and
condition features from the bounding box. Classification is then based on the value of

the feature vector.
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4.4.2 Bounding box construction

The 2D bounding box is calculated such that it encloses the segmented person in the
smallest possible rectangle. For this purpose the following simple procedure is used:
Start at the left most column of the segmented image and search column by column
from left to right for the first white pixel. Once found, the left line of the bounding
box is denoted by this pixel’s z-value less one. Continue searching until all pixels in
the column are black. This column denotes the right line of the bounding box. The
same procedure applies for the top and bottom bounding box lines, but the rows are
searched instead of the columns.

Despite a carefully controlled environment, it sometimes happens that the seg-
menter detects multiple objects. Objects in the scene might move or the light level
might change slightly. As already discussed, this can cause some background pixels to
be misclassified making it appear as if an object is detected. The algorithm described
above cannot cope with multiple objects. Instead it encapsulates all objects in a single
bounding box or only detects a single object which might not be the object of interest.

To cope with the possibility of multiple objects, the above algorithm is extended
[564]: By alternating the search along horizontal and vertical directions, all objects can
eventually be detected. An example containing four circular objects is shown in Figure
4.4(a). The algorithm first searches the image columns from left to right. The first
iteration detects two object groups that are marked by the light grey blocks. Next,
it independently searches the image rows of each object group from top to bottom
but only within the previously determined vertical bounds. This search results in the
location of three object groups (medium grey blocks). The process continues until no
new object group is detected. Each object group then contains a single object. Objects
A, B and C of Figure 4.4(a) were located after three iterations and object D after two.
This algorithm was used by Wohlberg and Cox [54] to track multiple people. If the
original algorithm described earlier is to be used in the scenario presented in Figure
4.4(a), it will detect only two objects, namely A, B and C as the first object and D
as the second object.

In some cases multiple objects are grouped as a single object even if they are
spatially separated. An example is shown in Figure 4.4(b). To distinguish between
the objects more advanced techniques than the simple horizontal and vertical search
algorithm described above are required to check for object connectivity [55]. Since the
pixel area of the person in a scene is usually much larger than any other possible falsely
detected object, this is ignored. The reason for this will be apparent soon.

When multiple objects are detected in an image one needs to determine which
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The above procedure is summarised as follows: The last ¢ observations of (z, w, h) of
a gesture sequence is saved in a first-in-first-out (FIFO) buffer. These observations are
treated as a distribution and its principle components are calculated. The first principle
component’s eigenvector and eigenvalue are measures of the gesture performed during
the last ¢ image frames. By repeating this process one should be able to classify gestures
as time progresses.

Calculating the principle components can be simplified considerably by noting that
the ” derivative vector” (vectors with component-wise derivatives) of the curve in Figure
4.6(a) points approximately in the same direction as the first principle component.
This is illustrated in Figure 4.7(a) for walking where the derivative is being calculated
at three different time instances. In each case the vectors have large components in
walking’s first principle component direction. Figure 4.7(b) shows the derivative of the
gesture sequences of Figure 4.6(b). From this figure one can see that the derivatives
of the curve indeed have large components along their respective gesture’s principle
components. Of greater importance from a classification point of view is that the
classes are fairly well separated, the exception being at the origin of the graph. The
fine gesture class is distributed around the origin, resulting in a low recognition rate
for this class. This can be improved by considering the derivatives for the last ¢
observations. If one visually averages the three derivative vectors of Figure 4.7(a),
the resulting vector better approximates the first principle component of walking. The
following three simple equations can therefore be used to approximate the principle

direction of a gesture and hence serve as feature vector:

c—1 m—1
1 1
v (n) = — Tpi — Tpei with p, = — Wp—; and n > 1 (4.1)
=53] | 7 2

1 c—1 1 m—1
v(n) = —— |hni—hnia|  Withp, == h,_jandn>1 (4.2)

Pr€ 330 m i

1 c—1
v3(n) = — Wpi — Wni forn>1 (4.3)
™=y ] |

where n is the frame number and p,, and p, are scaling factors introduced to provide
some measure of invariance with respect to distance from camera. The perspective
projection property of a camera causes the apparent size of a person to change as he
or she moves away or closer to the camera. Both pu,, and p, are calculated over a one

second period and therefore m is set equal to the frame rate.
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4.5 Results

The system was trained on five participants, a subset of the nine participants on which it
was tested. Physical profiles of these participants are given in Table 4.1. Training data
was generated of the first five participants (A to E in the table) and separate testing
data generated of all nine participants. Figure 4.8 shows the feature distribution of
the training data. It was generated from the five people who participated in training:
Four video sequences were captured of each participant. Each video sequence contains
a single gesture. A video sequence is approximately 30 seconds and captured at a rate
of 10 frames per second. Therefore, in total 150 seconds of video was used to generate
the data for each class. This corresponds to 1500 data points per gesture. To capture
gesture variability as well as possible within the discussed constraints of Section 4.3,
the five participants were asked to perform the gestures at different rates and at various
distances from the camera.

The test set was generated by capturing a video sequence of each of the nine par-
ticipants who took part in testing. Each sequence is approximately 50 seconds and
captured at a frame rate of 10 frames per second. All four gestures of a particular
participant are contained in the sequence, where each gesture varies between 10 to 15
seconds.

To test the system a ground truth of the test sequences was first obtained. This was
done by hand classifying the test sequences frame by frame. The recognition system
was then used to classify the same set of sequences. The ground truth and machine
classified verdicts were then compared. A frame is correctly classified if the system
and ground truth have the same verdict®. The results are shown in Table 4.2. Average
system performance is 96.3%.

Two gesture recognition systems were implemented, namely an online and offline
system. The offline system performs recognition on recorded video data and is primarily
used for training and testing of the recognition system. The online system performs
recognition of live video data in real-time at approximately 14 frames per second on a
Pentium III-600 PC. Two example videos of the online gesture recognition system can

be viewed at chap4\recognition\ on the CD.

6The classification verdict of the system is given by the output of the voting system (see Section
4.4.4)
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Person Gesture recognition rate (%) Avg(%)
Walking Arms Waving Crouching Fine gest.

A 96.8 95.2 93.3 95.8 95.3
B 974 95.9 94.9 974 96.4
C 98.0 95.8 914 95.5 95.2
D 97.9 97.2 91.1 99.1 96.3
E 98.7 94.1 94.0 99.2 96.5
F 96.1 93.9 96.5 97.6 96.0
G 98.4 97.0 93.8 100 97.3
H 98.3 92.3 96.7 98.2 96.4
| 94.7 96.2 95.7 100 96.7

Avg(%) 974 95.3 94.2 98.1 96.3

Table 4.2: Gesture recognition rate results of the 2D gesture classifier tested

on 9 participants

4.6 Discussion

Given the little class overlap of the class distributions, one expects a good recognition
rate. This is reflected in the results summarised in Table 4.2. False positive classi-
fications mostly occur during the initial period of a new gesture. During this period
the new gesture is classified as the previous gesture. This phenomenon is attributed
to a delay in the response of the classifier. The implication of this delay is shown in
classification confusion matrix (see Table 4.3). For the purpose of acquiring test data,
participants were asked to perform gestures in the sequence walking, waving, crouching
and then fine gesture. During system testing, the initial 1 to 2 seconds of the respective
gestures were classified as unknown, walking, waving and crouching.

The classification delay is caused by the classifier voting system and filtering op-
erations in Equations 4.1 to 4.3. The filtering operations are required to construct a
feature vector, since the system uses the last ¢ (where ¢ = 10) observations to calculate
the vector. ¢ impacts the delay and the choice for its value is described next: A larger
¢ means that more observations are used to approximate the first principle component.
This causes the class separation in Figure 4.8 to be better and leads to an improved
recognition rate. The drawback of a larger c is that the system has a longer response
time, or lag. The lag can be so large that the system might miss detection of gestures
if, for example, the person moves rapidly from one gesture to the next. The opposite

of this explanation is true for too small values of ¢. A value of ¢ = 10 (equals the video
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System True Class (%)
Classified | Walking Waving Crouching Fine gesture
Walking 97.4 4.4 0.0 0.0
Waving 0.0 95.3 5.8 0.0
Crouching 0.0 0.0 94.2 1.9
Fine gesture 0.4 0.33 0.0 98.1
Unknown 2.5 0.0 0.0 0.0

Table 4.3: Classification confusion matrix of the 2D gesture classifier.

frame rate), seems to be a good trade-off. Practically this means that the system has

a response of around 1 to 2 seconds to an input.

4.7 Conclusion

It is clear from the results that a bounding box can be used as basis of an automatic
gesture recognition system for the given gesture vocabulary. The system was able to
discriminate between the four gestures 96.3% of the time and false positive classification
is a result of classification dynamics. The current system is however limited to the
recognition of coarse gestures, has a small vocabulary of four gestures and has to
comply to the plane motion constraints. As gathered from the MBB experiment results,
coarse gesture recognition is a property of the bounding box representation. The
gesture vocabulary can however still be extended and the 2D constraints can possibly
be removed by a 3D bounding box representation. These possibilities are investigated

in the next chapter.
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In the previous chapter it was demonstrated that coarse gestures can be recognised by
modeling the human body with a simple 2D bounding box. A single camera was used
and gestures executed by a person were recognised under certain restrictions. Specif-
ically, the person had to face the camera or some gestures were incorrectly classified.
For example, walking had to be executed in a plane perpendicular to the camera’s opti-
cal axis. If this was not the case, the system’s classification alternated between walking
and crouching. In a larger gesture vocabulary, one would probably find that recognition
of other gestures have similar undesirable results. This is due to the representation - a
3D spatial problem is represented by a 2D spatial model.

The 2D motion restriction severely limits the practical application of the system,
since we are living in 3D space. In this chapter a system is presented that extends the
2D bounding box concept to a 3D one. The objectives of the proposed 3D system are
given in Section 5.1 and the approach to the problem in Section 5.2. As was the case for
2D system, a number of assumptions are made here in order to make the system viable.
These are given in Section 5.3. This is followed by the main body of the chapter, which
describes the operation of the 3D system in Section 5.4. The test results of the 3D

system are given in Section 5.5, which is followed by a discussion in Section 5.6.

5.1 Objectives

The objective here is to investigate a 3D bounding box model for the purpose of
gesture abstraction in an automatic gesture recognition system. It is expected that
such a model will remove the plane motion constraint imposed by a 2D system (see
assumptions for the 2D system in Section 4.3). In addition, recognition invariance to
facing direction is investigated. If invariance is achieved, the system will be totally
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body is nonrigid SFM cannot directly be applied to gesture recovery problems. By
including a priori information of the nonrigid object (e.g. body shape of the person)
into the model, it is possible to recover object pose. For example, Chen and Lee [13]
were able to track the joints of an animated stick figure in 3D from a single camera.
Their system requires that the dimensions of the stick figure are known, that the figure
is walking and that a complete gesture sequence is acquired.

SFM makes too many assumptions about the behaviour of the object to be of use
here. For this reason it was decided to use stereopsis in this system to recover body
pose. This requires an extension to the setup of the existing 2D system camera. A
second camera was added to the experimental area and is located at a wide base-line
relative to the first camera. For practical reasons, the cameras were installed in the
corners of the room near the ceiling (see Figure 5.1).

The primary difference between the 2D gesture recognition algorithm and the 3D
extension discussed here is the construction of a 3D bounding box. Given images from
the cameras, two 2D bounding boxes are independently calculated for each image. A
3D bounding box is then constructed from the two 2D bounding boxes. Once this is

achieved, a procedure similar to that of the 2D system is used to recognise the gestures.

5.3 Assumptions

The same assumptions and constraints are imposed on this system as for the 2D one (see
Section 4.3). The exception is that motion is unconstrained (not restricted to a plane)
and the gesture vocabulary consists of only the following: walking, waving, crouching,
standing-stretch, standing-star, standing-normal, sitting and lying down. Any other

gestures presented to the system should be classified as unknown.

5.4 Gesture recognition in 3D

Figure 5.2 shows a diagram describing the 3D gesture recognition algorithm. It consists
of steps similar to the 2D recognition algorithm. The primary addition to this algorithm
is to relate the bounding boxes of the two camera views. This is achieved by a camera
calibration procedure (see Appendix B). An advantage of using stereopsis is that the
person’s location in space can easily be determined, i.e. it is possible to track the
person. This part of the algorithm is performed by the Person Tracker module of
Figure 5.2.
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Left View Right View
Image Sequence Image Sequence

Person Tracker

Person Location

3D Bounding Box
Construction

3D Bounding Box
Parameters

Feature Selection and
Conditioning

Features

Classification

Gesture Class

Figure 5.2: A high level flow diagram of the algorithm used to recognise gestures
and track people in 3D. The inputs to the algorithm are two camera image

sequences. The output of the system is the person’s location and the gesture

class.
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Left camera Right camera
D

Figure 5.3: This figure illustrates how a point object (A) is tracked in space
using stereopsis. The projected locations of the point object (A’ and A”) on
the camera’s image planes are known. Given this, the object’s location in space

can be determined by means of triangulation.

5.4.1 Person tracking

This section starts by explaining how to track a point object in space using two wide-
baseline cameras. Once this is accomplished it is easy to extend the concept to track
a person in 3D or construct a 3D bounding box from two 2D bounding boxes.

Figure 5.3 shows a point object denoted by A in 3D space. The aim is to follow or
track this object as it moves in space. A’ and A” represent the perspective projection of
A onto the image planes of the left and right cameras respectively. Given the projection
of the point object on a camera view, say the left camera, we know that the object
is located somewhere on a line (dashed line AA" in the figure) in space. To uniquely
determine the object’s location, a line is traced from a second camera through the
object. In other words the object’s location is determined by means of triangulation.
The equations of the two trace lines are given relative to the respective reference axes
of the cameras. These reference axes are, however, unrelated making triangulation
impossible. For this reason the cameras need to be calibrated. This essentially means
that their location (described by a translation vector (t)), orientation (described by a
rotation matrix (R)) and focal length (f) have to be known relative to some common

reference axis. The common reference axis is chosen to be a corner of the room (world
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c—1
1
vi(n) = - Z [|Xn—i — Xn—i—1| forn>1 (5.1)
=0
1 c—-1
’1)2(711) = E Z |hn—i — hn——i-—1| forn Z 1 (52)
i=0
1 c—1
vs(n) = - Z [Sn_i — Sn_i-1] forn>1 (5.3)
=0

where x,,, h, and s, are the person’s lower centroid (position), height and bounding box
perimeter at frame n respectively. ¢ is the number of observations used to approximate
the principle components and is chosen to be equal to the frame rate (¢ = 10). The
major differences between these features and that of the 2D recognition system are
that bounding box perimeter is used in Equation 5.3 instead of width as in the case
of Equation 4.1 and that the features are not normalised for depth. A property of
stereopsis is that the true dimensions of the bounding box are recovered directly. The
depth problem caused by the perspective projection property of a camera does not
occur here and it is therefore not necessary to accommodate for it.

To derive pose features, we notice that the bounding box model parameters are
constant over time if noise is ignored. Features can therefore be derived by considering
the ratio of one parameter to another. A number of features were evaluated by means

of inspection and those with the best class separability were chosen:

va(n) = - forn>1 (5.4)
and
bn
vs(n) = B for > 1 (5.5)
avg

vy is an aspect ratio measure of a particular gesture and vs a measure of how “stretched
out” the gesture is. b, is the height of the person’s true centroid and b,,, is the person’s
average centroid height. By normalising b,, using b,,, some invariance with respect to
the height of the person is achieved. b4, is a constant that depends on a person’s
height and is determined by the system when the person is in an upright position.
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When walking is executed the person is in an upright position and it was therefore
decided to calculate b,,, when the system detects walking. This can, however, lead
to unstable classification, since this approach requires the output of the classifier to
be passed to its input. The problem is solved by using two separate classifiers for the
dynamic gestures and poses. Walking is detected by the dynamic gesture classifier and

whenever this is the case, b,y is also updated by averaging b, over the last ¢ frames.

5.4.4 Classification

The final stage of the algorithm classifies an unknown feature vector as belonging to
one of the eight gesture classes. The classifier has a similar architecture to that of the
2D recognition system (see Section 4.4.4). A two stage classifier consisting of a neural
network and a voting system is used (see Figure 5.7). The neural network classifies the
features on a frame by frame basis. The result is binarised by a threshold of 0.5 and
passed to a FIFO queue that comprises the voting system. The gesture class with the
most votes is selected by the system as the performed gesture.

Gestures and poses are mutually exclusive and classification can therefore be based
on two separate neural networks - one for each gesture group. The gesture network has
an inactive class trained on all the poses (see Figure 5.7). When this class is detected
by the system, it knows that the gesture is a pose and subsequently the pose classifier
is used for classification. The feature b,,, (person’s centroid height) is used by the pose
network and is only updated when walking is performed. Since two separate classifiers
are used, the potentially unstable feedback condition discussed earlier is avoided.

Both neural networks are RBF neural networks, each with 10 Gaussian basis func-
tions. The number of basis functions was determined by visual inspection using the
same rationale as for the 2D system (see Section 4.4.4). The networks were trained

using various gesture training sequences as discussed in the next section.

5.5 Results

The system was trained on six people and tested on eleven people. Physical profiles
of these people are given in Table 5.1. Training data was generated for person A to F
and separate testing data of all eleven people. The distribution of the training data is
shown in Figures 5.8(a) and 5.8(b) for the dynamic gestures and poses respectively. It
was generated by using the six people who participated in training by capturing eight

video sequences of each participant. Each video sequence contains a single gesture. A
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Figure 5.7: Classification consists of a RBF neural network and voting system.
The class with the most votes in its queue is the selected class. Dynamic

gestures and poses are classified by two separate classifiers.
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Person | A B C D E F G H I J K
Height(m) | 1.22 1.40 189 1.50 170 1.91 1.85 177 1.70 1.80 1.95
Weight(kg) | 21 35 94 52 73 95 80 68 8 82 120

Table 5.1: Physical profiles of the people used as training and testing subjects

video sequence is approximately 30 seconds and captured at a rate of 10 frames per
second. Therefore, in total 180 seconds of video was used to generate the training data
for each class. This corresponds to 1800 data points per gesture. During acquisition of
training and testing data, participants were asked to execute gestures and poses while
facing various directions and in the case of the dynamic gestures they were requested
to execute the gestures at different rates.

The test set was generated by capturing two video sequences of each of the eleven
participants - one sequence contained the gestures and the second sequence contained
the poses®. Each sequence is approximately 50 seconds and captured at a frame rate
of 10 frames per second. The gestures and poses were executed for approximately 10
to 15 seconds by participants in the respective video sequences.

To test the system a ground truth for each test sequence was first obtained by
classifying them by hand. The recognition system was then used to classify the same
set of sequences. The ground truth and machine classified verdicts were then compared.
A frame is correctly classified if the system and ground truth have the same verdict.
The results are summarised in Table 5.2 with an average recognition rate of 84.7%.

Two gesture recognition systems were implemented, namely an online and offline
system. The offline system performs recognition on recorded video data and is primarily
used for training and testing of the system. The online system performs recognition of
live video data in real-time at approximately 9 frames per second on a Pentium III-600

PC. Example videos demonstrating the 3D system are located in chap5\recognition\
on the CD.

5.6 Discussion

The system has a fairly large performance range over gesture class, ranging from 67.8%
for sitting to 95.1% for walking. There is a clear distinction between the performance

associated with dynamic gestures and poses. Dynamic gestures have an average recog-

21t is easier to manage smaller video sequences and for this reason they were split into two sequences
per person.
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Person Gesture recognition rate (%) Avg(%)
Wk Wv Cr Sl Sr Sh Sit Ly
944 44.8 987 825 886 898 929 89.6 85.2
819 804 89.8 923 894 759 00 756 73.2
99.0 100.0 924 937 767 820 792 818 88.1
994 8386 91.8 895 920 100.0 80.0 84.8 90.8
95.1 716 92.5 834 763 89.6 851 76.1 83.7
98.4 994 92,5 892 852 98.8 946 83.7 92.7
86.8 947 86.5 850 84.7 712 86.3 80.6 84.5
980 739 941 794 776 839 764 72.0 82.0
99.3 983 893 844 842 769 64.9 782 84.4
100.0 96.4 947 949 1000 83.1 0.0 78.0 80.9

K 93.3 877 840 865 100.0 688 868 N/A 75.9
Avg(%) | 95.1 85.1 91.5 87.7 86.8 83.6 67.8 80.0 84.7

“ -~ m QM UQwm >

Table 5.2: Recognition rate results of the 3D gesture classifier. Cases that
performed poor (below 70%) are printed in italics (Abreviations are: Wk —
walking, Wv — waving, Cr — crouching, Sl — standing-normal, Sr — standing-
star, Sh — standing-stretched, Sit — sitting, Ly — lying down )

nition rate of 90.5%, while that of the poses is 81.2%. Reasons for the lower performance
figures are discussed in the remainder of this section.

As in the case of the 2D system, the delayed response of the classifier is one of
the factors that impacts on the performance of the 3D system. This is a result of
the averaging operations required for feature processing (Equations 5.1 to 5.3) and
the classifier’s voting system. It causes a gesture to be classified as the previous class
during the initial period of the new gesture. During acquisition of testing data, gestures
were executed in the sequence walking, waving and crouching. The delayed response
phenomenon causes the first 1 to 2 seconds of each of these respective gestures to be
classified as unknown, walking and waving as is evident in the classification confusion
matrix of Table 5.3. From this table it is also clear that waving is at times confused
with crouching. This occurs if the person does not face any camera and waves in an
arms-over-head manner.

Poses are always preceded by one of the dynamic gestures during testing data
acquisition. For example, standing-normal is preceded by walking and standing-star
by waving (to get from standing-normal to standing-star a wave is performed). As a

result of the classifier’s delayed response poses are being classified as one of the dynamic
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System True Class (%)

Classified | Wk Wv Cr S1 Sr Sh Sit Ly

Wk 95.1 16 09 108 1.7 1.3 3.9 3.1

Wv 0.0 85.1 5.3 0.0 9.8 9.3 4.1 9.1

Cr 24 9.2 91.5 0.0 0.7 1.5 7.3 5.9

Sl 1.1 0.5 1.0 87.7 1.0 4.1 0.0 0.0

Sr 04 22 05 00 868 02 00 00

Sh 0.4 1.4 0.1 0.6 0.0 83.6 0.0 0.0

Sit 00 00 00 00 00 00 678 1.0
Ly 0.0 0.0 0.0 0.0 0.0 0.0 15.7 80.0

Un 08 01 09 09 00 01 13 09

Table 5.3: Classification confusion matrix of the 3D gesture classifier.

gestures (see confusion matrix). The upright poses (standing-normal, standing-star and
standing-stretch) are seldom confused with each other and make up less than 1% of
the false positive classifications.

Sitting and lying down have the worst performance of all classes. Table 5.2 shows
that for person B and J the system did not recognise sitting at all. For the particular
case sitting was classified as lying down 15.7% of the time as shown in the confu-
sion matrix. This is caused by the overlap in class distributions (see Figure 5.8(b)).
Execution of crouching precedes sitting and contributed to 7.3% of the false positive
classifications of sitting. The major cause of false positive classification for lying down
is the dynamic gesture that precedes it. During test data capturing, sitting is the pose
that precedes lying down. The dynamic gesture that precedes lying down - the activity
of lying down - is not defined here and the system should classify it as unknown. Most
of the false positive classifications in this situation are, however, waving, crouching and

walking (in order of contribution).

5.7 Conclusions

This chapter investigated a 3D gesture recognition system that extends the previous
2D system in spatial representation. The results showed that by doing this, the plane
motion constraint of the previous system has been removed. The average recognition
rate of walking, waving and crouching is 95.6% for the 2D system and 90.5% for the 3D
system. If one considers that the extra spatial dimension adds additional complexity

to the problem in the case of the 3D system, then 5.1% loss in performance can be

Electrical, Electronics and Computer Engineering 61



Chapter 5 Coarse 3D gesture recognition

tolerated. The pose classes that extend the 2D system’s gesture vocabulary also have an
acceptable average recognition rate at 81.2%. Facing direction invariance was achieved,
making the system truly spatially unconstrained within the limitation of the system
itself.

Although the 3D system is more advanced than the 2D system, recognition of
dynamic gestures suffers from the same problem experienced by the 2D system, namely
delayed response. This is an attribute of the recognition scheme and can cause gestures
executed at a high rate to be ignored (see also Section 4.7). This problem is addressed

in the next chapter.
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Up to now recognition of gestures has been based on the scheme described in Section
4.4.3. In essence, this technique uses the last ten bounding box derived features and
approximates the first principle component of a gesture from its feature distribution.
Each gesture has a prominent first principle component that is used to uniquely identify
that gesture. This scheme is simple, allows for real-time implementation and has an
acceptable recognition rate for the chosen gestures. Unfortunately, it also discards
information as a result of averaging operations during feature processing (see Equations
4.1 to 4.3 for the 2D system and Equations 5.1 to 5.3 for the 3D system). This
information might be useful for classification purposes, especially if a larger gesture
vocabulary is considered. In addition, the recognition scheme also suffers from the
delayed classification response pointed out in Sections 4.7 and 5.7.

This chapter investigates an alternative temporal model with the aim of improving
the recognition capabilities of the previous system. It starts by stating the chapter ob-
jectives in Section 6.1. In Section 6.2 the problem is analysed and alternative approach
motivated. The major part of this chapter focuses on the application of the alternative
temporal model to the gesture recognition problem, which is discussed in Section 6.3.
Section 6.4 looks at the results achieved by the alternative model and the chapter is
then concluded with Section 6.5.

6.1 Objectives

The objective here is to improve on the temporal model used previously for recognition.
The word improve refers to an extended and more practical gesture vocabulary com-
pared to the original system and achieving an acceptable recognition rate. The gesture

vocabulary is to be extended from the three dynamic gestures of the original system
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(walking, waving and crouching) to ten. These are crouching, standing up, waving one
arm up, waving one arm down, waving two arms up, waving two arms down, extending
single arm, retracting single arm, extending two arms and retracting two arms. Figure
6.1 shows selected frames of each gesture. In this chapter, pose recognition (static
gestures) is not considered.

The recognition scheme used previously required that gestures should be executed
for 1 to 2 seconds before being recognised (see Section 4.6). Therefore, gestures exe-
cuted over a period less than that stand a chance of not being detected at all. A more
practical gesture set is therefore chosen for testing the alternative recognition scheme.
The set listed above can be executed in a period as short as 0.5 seconds and is therefore
not constrained in a temporal sense.

It was decided to test the alternative temporal model using the 3D bounding box
representation, since it has more practical value than the 2D system. As in the case
of the previous 3D system, the aim is also to achieve gesture recognition invariant to

facing direction.

6.2 Problem analysis and approach

Section 4.4.3 briefly introduced the problems of recognising the signatures obtained
from the bounding box models. To understand the nature of these signatures, an
example is used: Figure 6.2(b) shows s, the 3D bounding box perimeter, as a function
of time for four example sequences of the single upwards waving gesture shown in
Figure 6.2(a). The four signatures are representative of this gesture being executed at

various rates. Inspection of the signatures reveals the following:

e Variable length: The length of each signature depends on the gesture’s execu-
tion rate. A high execution rate results in the gesture being completed sooner as
compared to a lower execution rate. For example, signature A in Figure 6.2(b)
represents waving being executed at a higher rate than the representation of

signature B.

e Warping: Execution rate can also vary as it is being executed. Signature C
of Figure 6.2(b) represents waving initially being executed at a low rate, while
the last part of the gesture is executed at a high rate. Signature D represents
the opposite case. Due to this inter-execution rate variability a signature can

therefore also be warped.
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Despite the above properties, all signatures in Figure 6.2(b) have a consistent char-
acteristic: s starts at a low value, increases to an upper value and then decreases again
to a lower value. The question is: How can one recognise this characteristic, without
being affected by variable length and warping? There are two common techniques to
handle this sort of problem, namely hidden Markov models (HMM) and dynamic time
warping (DTW). Both were briefly reviewed in Section 2.3.3. Currently HMMs is the
preferred way to solve this type of problem - it has a probabilistic framework, can more
easily handle continuous data streams and can learn from training data [11]. For these
reasons it was decided to pursue HMMs here rather than DTW.

Although HMMs lend themselves to continuous recognition of gestures, only the
simpler isolated gesture recognition is considered here. This requires a pause of ap-
proximately one second between successive gestures. The pause acts as a cue for the

temporal segmentation of gesture data.

6.3 Gesture recognition using HMMs

From a high level processing point of view, the system proposed in this chapter has the
same flow diagram as the original 3D system (see Figure 5.2). The differences lie in
feature selection and classification. Person tracking and 3D bounding box construction
remain the same as discussed in Sections 5.4.1 and 5.4.2 respectively. Feature selection
and classification for the alternative temporal model is discussed in the remainder of

this section.

6.3.1 Feature selection and conditioning

As in the case of the previous 2D and 3D recognition systems, a feature vector is
derived from the bounding box parameters. The parameters of the 3D system are:
height (h), perimeter (s), the true centroid (b) and lower centroid (x) as discussed in
Section 5.4.2. A gesture can be considered as a sequence of poses. The approach used
here to derive a feature vector is similar to that of pose recognition in Section 5.4.3: A
feature is based on the ratio of selected model parameters. By using ratios, a degree
of invariance to the physical profiles of people are built into the feature. The following

three features were chosen:

nn)=— forn>1 (6.1)
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sS=8+§5 +5 +5

Figure 6.3: This figure shows the bounding box parameters used to construct
a feature vector. The bounding box parameters are: height (h), perimeter (s),

the true centroid (b), lower centroid (x) and lower vertices intersection (y).

vo(n) ==  forn>1 (6.2)

IYn _xn'
To

v3(n) = forn>1 (6.3)

where b, and h, are the true centroid height and bounding box height respectively
at frame n. y, is the intersection of lines joining the four lower vertices of the 3D

bounding box (p; to p4) shown in Figure 6.3. r, is given by:

4
1
=72 Ipi =] (64)
i=1 .

Tn 18 the radius of a cylinder that approximates the bounding box. v; is a measure
of the height of the pose, v2 a measure of the width of the pose and v3 a measure of
how off-center the pose is. The purpose of v is to discriminate between gestures that

involve the use of a single arm and those that involve the use of two arms. Single arm
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Figure 6.4: (a) and (b) show the plan view of the bounding box of a person
extending a single arm and two arms respectively. In (a) the distance between
x (lower centroid) and y (intersection of lower vertices) is significant, while in
(b) it is approximately zero. This property is used to discriminate between

gestures that make use of a single arm and those that use two arms.

gestures have larger values of v3, since x is biased away from the center of the bounding
box (y). This is illustrated in Figure 6.4(a) for a person extending a single arm and
Figure 6.4(b) where two arms are extended.

Figure 6.5 shows example v; and v, curves, parameterised by the frame number n
for four gestures (wave single arm up, wave single arm down, extend single arm and
retract single arm). These gestures involve the use of a single arm and v3 is therefore
similar and not shown. Gestures start at n = 0 and end at n = n., where n, is the last
frame of the gesture. It is clear from the figure that a gesture starts in a particular
region in the feature space and then moves along a path towards an end region. It is

this property that an HMM can learn from training examples.

6.3.2 Classification

The next step is to classify unknown sequences. In Section 6.2 it was argued that
an HMM might be suitable for this purpose and it was subsequently decided to use
HMMs for classification. This is pursued in this section by setting up an HMM for
each gesture class. The architecture of an HMM requires some thought, since it is
critical for performance and also might have implementation implications. The choice

of architecture is based on the following considerations:
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[41, pp. 250-255][59]. In gesture recognition applications no direct comparisons
could be found in the literature, although both discrete [24, 60] and continuous

representations [45, 43, 46] are in use.

e State density: The state density type chosen is a Gaussian distribution function.
So far there is no evidence that state distributions are Gaussian, but a Gaussian
distribution is often assumed in the literature due to its simple mathematical
framework to handle multivariate distributions [45, 43, 46]. An extension to the
single Gaussian distribution is a mixture of Gaussians [56, pp. 59-73]. Mixture
models allow for the modeling of an arbitrary distribution by linearly combining
a number of unimodal distributions (for example by combining Gaussian distri-
butions). This technique is often used in speech recognition [41, pp. 175-184].
However, for the current problem a single Gaussian distribution is deemed suffi-

cient.

e Number of states (V): Another important model parameter is the number of
states. An empirical approach is taken to determine this parameter: Recognition
rate is calculated as a function of N for a training set of gestures (training data
generation is described in the next section). The optimal N is then the case where
the recognition rate is the highest. Figure 6.6 shows the average recognition rate
as a function of N for the training data. The graph peaks at 94.3% with N =7

and is therefore the N chosen for all models.

A basic framework for classification using HMMs is now established. The next step
is to train the ten HMMs, one for each gesture class. The training procedure used is the
segmental k-means algorithm [61]. Given the trained models, an unknown observation
sequence is classified by calculating the likelihood that the sequence belongs to each
model. The gesture type with the largest likelihood is then selected as the recognised
gesture. Likelihood calculation is done by means of the forward procedure [58].

As in the case of the original 2D and 3D systems, unknown is not recognised ex-
plicitly, but as the absence of the known gestures. The RBF neural network used in
the previous systems allows a threshold on its output to be set. Unknown is selected
if all outputs of the neural network is less than the threshold (see Sections 4.4.4 and
5.4.4). An HMM has two outputs, namely a likelihood of an observation sequence
belonging to the model and the state sequence of the observation sequence. Likelihood
depends, amongst other factors, on the length of the observation sequence. A fixed
likelihood threshold can therefore not be used to qualify unknown as in the case of

the other classifiers, since observation sequences usually have variable lengths. On the
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Recognition rate (%)
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Figure 6.6: This graph shows the average recognition rate of the training data
as a function of the number of HMM states (N).

other hand, the state sequence has a consistent behaviour for the purpose of detecting
unknown. As discussed earlier in this section, the state sequence in a left-right model
follows a characteristic sequence if the model and observation sequence is of the same
class. This is illustrated in Figure 6.8 for crouch. In this figure each state is represented
by a mean and a constant likelihood contour?.

A gesture observation sequence steps from one state to the next as decoded by
the Viterbi algorithm [62]. A left-right HMM state sequence always starts at the first
state (j = 0 in Figure 6.8) and ends at j = e, where e < N. e depends on the state
density parameters and the location of the end point of the observation sequence in
the feature space. Therefore, for an observation sequence to belong to a model, it
should conform to the following: It should have the highest likelihood value compared
to other models and it should step through a minimum of M states as decoded by

the Viterbi algorithm. If these conditions are not met, the sequence is classified as

1Gince a Gaussian density is used to model each state, the mean corresponds to the mean of the
Gaussian density. The constant likelihood contour corresponds to a constant Mahalanobis distance
from the mean [56, p. 35]. In the case of a Gaussian density this is represented as an ellipse in
2D space. If all three features were to be shown in Figure 6.8, a constant likelihood contour would
correspond to an ellipsoid in 3D space. The contour gives an indication of the distribution of the data
modeled by the density.
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Gesture class
Cr St WU1 WDl WU2 WD2 Exl Rtl Ex2 Rt2
Min. states (M) | 4 4 6 4 6 4 3 4 3 5
Rejection rate (%) { 0.0 0.0 0.0 3.3 0.0 32 00 08 00 25

Table 6.1: The minimum state steps and the resulting classification rejection
rate chosen to qualify the unknown class. Abreviations are: Cr — crouching,
St — standing up, WUl — waving one arm up, WD1 — waving one arm
down, WU2 — waving two arms up, WD2 — waving two arms down, Ex1l —
extending one arm, Rtl — retracting one arm, Ex2 — extending two arms,

Rt2 — retracting two arms.

Participant | A B C D E F G H I
Height(m) |1.60 1.70 1.85 1.60 1.8 174 177 1.89 150
Weight(kg) | 59 74 80 72 73 73 68 94 52

Table 6.2: Physical profiles of the participants used for training and testing the

systern.

Two gesture recognition systems were implemented: The first system performs
offine recognition on manually segmented gestures and is primarily used for training
and testing. Manual segmentation is done by an operator who identifies the start
and stop frames of each gesture. The second system is an online system that does
recognition of live video data in real-time. This system requires the person in the video
to pause for about one second before starting with the next gesture. By detecting this
pause, it can automatically segment gestures. The online system is demonstrated in
videos located on the CD in chap6\recognition\.

Testing data consists of a total of 180 observation sequences per gesture class.
This was compiled by acquiring 20 observation sequences per gesture for each of the
nine participants. To test the system, observation sequences were classified by the
system and the verdict compared to the ground truth. The classification results are
summarised in Table 6.3 with an average recognition rate of 87.9%.

Another test conducted was to compare the performance of the original system
presented in Chapter 5 to that of the alternative system presented in this chapter. As
discussed earlier, the original system uses a principle component approximation based
technique that discards information as a result of feature processing. By using an
HMMS-based classifier, better utilisation can be made of the available information in

the feature signatures, which should improve performance. To determine if this is the
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Person Gesture recognition rate (%) Avg.
Cr St WUl WD1 WU2 WD2 Exl Rtl Ex2 Rt2
100 95 95 100 85 95 90 90 95 90 | 93.5
100 100 90 80 100 75 90 95 100 90 | 92.0
100 100 95 90 100 95 90 100 100 85 | 955
100 100 90 75 85 85 70 75 95 85 | 86.0
100 95 75 60 100 90 90 65 100 75 | 85.0
75 100 70 80 90 90 75 70 100 100 | 85.0
100 95 60 85 80 100 85 95 95 100 | 89.5
100 80 70 80 75 100 65 85 60 100 | 81.5
100 95 80 90 90 70 65 65 100 75 | 83.0

- T Q"D O QW e

Avg. | 972 955 80.5 822 894 888 800 82.2 93.8 88.8| 87.9

Table 6.3: Recognition rate (%) results of the alternative 3D gesture classifier.

See the caption of Table 6.1 for gesture name abbreviations.

case the two classifiers were compared by testing the original system with the test data
generated for the alternative system. The original system was designed to recognise
waving where both arms were being used and therefore only the test gesture sequences
of the alternative system that use two arms were tested on the original system. The
gestures of the alternative system corresponds to the following gestures of the original
system: Crouching and standing up of the alternative system corresponds to crouching
of the original system. Also, waving two arms up, waving two arms down, extending
two arms and retracting two arms corresponds to waving of the original system. The
original system classifies gestures frame for frame. In order to compare the classification
results of the two systems, the last classification verdict of the last frame in a gesture
sequence is chosen as the selected class in the case of the original system. When a new
gesture sequence is tested, the classifier is re-intialised, which clears the “memory” of
the previous gesture. Running the gesture test sequences on the original 3D system
revealed the following results: The recognition rate of crouching is 100% and that of
waving 65.0%. The recognition rate for the alternative system is 96.4% for crouching
(the average of crouching and standing up) and 86.3% for waving (the average of waving
two arms up, waving two arms down, extending two arms and retracting two arms). A

discussion of the results is given in the next section.
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6.5 Discussion

The average recognition rate of 87.9% indicates that the use of HMMSs as a recognition
scheme has promise. Recognition rates for the individual gestures varies from 80.0%
to 97.2%. Four gestures are at the lower end of this range, namely waving one arm up,
waving one arm down, extending one arm and retracting one arm. All of these gestures
involve the use of a single arm. To determine the reason for the lower classification
rates, a confusion matrix was compiled and is shown in Table 6.4. According to the
matrix, these four gestures are usually confused with one of two gestures: The first
confusion is with the same gesture, but involves the use of two arms and the second
is a mirror-like gesture (e.g. extending one arm has a top-down arm motion and its
mirror gesture is waving one arm down which has a bottom-up motion). Both these
observations account for most of the false classifications and vary from 5.0% to 11.1%
per false classification class. The fact that the “one arm” and “two arm” gestures are
confused suggests that the feature used to discriminate between them (v3 of Equation
6.3) does not perfectly separate the classes. False classification as a result of mirror
gestures is interpreted as the system not always being able to distinguish between
arms moving up and arms moving down. By visually inspecting the 3D bounding box
during such gestures it is also hard to recognise the motion direction of the arms. It
can therefore not be expected of a machine-based recognition system to recognise this
faultlessly, since the information has been lost during feature extraction.

Another observation concerns the recognition rates of the participants: Those that
generated the training data have an average recognition rate of 94.3% on the training
set. The average rate for the test data of the same group is 90.4% and the average
rate of the participants that only took part in testing is 84.8%. This indicates that
classification has a dependance on the manner in which gestures are performed and the
physical profiles of the participants. This dependence can be reduced by training the
system on many more people and perhaps choosing more features.

Invariance with respect to facing direction is one of the objectives of this system.
The system performed well under such conditions, the exception being when the person
did not face either of the cameras. This covers approximately 15% of all possible facing
directions. Under these conditions the bounding box motion of gestures involving the
arms is at a minimum and gestures are sometimes incorrectly classified. Crouching
and standing up are not included in this phenomenon and perform well for all facing
directions. Another desirable property of the system is that it can tolerate warping

and variation in the observation sequence length.
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System True Class (%)

Classified | Cr St WUl WDl WU2 WD2 Exl Rtl Ex2 Rt2
Cr 97.2 0.0 0.0 0.0 0.0 0.5 0.0 00 00 0.0

St 00 955 00 0.0 0.0 0.0 00 0.0 00 00
WU1 0.0 0.0 805 00 3.8 0.0 0.0 9.0 0.0 0.0
WD1 0.0 0.0 00 822 00 6.1 5.0 0.0 0.0 0.0
Wu2 0.0 0.0 8.3 00 894 00 0.0 0.5 0.0 7.2
WD2 0.0 0.0 0.0 7.2 00 888 00 00 2.2 0.0

Exl 0.0 0.0 0.0 7.2 0.0 0.5 80.0 00 1.6 0.0
Rtl 0.0 0.0 7.7 0.5 0.0 0.0 0.0 822 00 27
Ex2 00 0.0 0.0 2.2 0.0 27 11.1 0.0 93.8 0.0
Rt2 1.1 0.0 2.2 0.0 5.5 0.0 0.0 88 0.0 88.8
Un 1.6 44 0.5 0.9 1.1 1.1 38 33 22 1.1

Table 6.4: Confusion matrix of the alternative 3D gesture classifier. The most
confusing classes are in italics. See the caption of Table 6.1 for gesture abrevi-

ations.

The unknown class (abbreviated as Un in Table 6.4) accounts for an average of
2.0% of overall classifications. An interesting point to note is that the strategy used to
recognise unknown (discussed in Section 6.3.2) rather classifies a false positive gesture
as unknown than the incorrect gesture. In other words, observation sequences classified
as unknown in Table 6.4 are sequences that would have been false positives if the
unknown recognition strategy was not used. This is the case for all classes except
standing up, where the 4.4% sequences classified as unknown would have belonged to
standing up if the unknown recognition strategy was not used.

It is also interesting to compare the performance of a single state HMM to that
of multi-state HMMs (e.g. the seven state model used here). A Markov process is
embedded in an HMM, which means that a future observation has a probabilistic
dependance on its immediately preceding observation. A single state HMM does not
possess this property and is instead analogous to a minimum error classifier with all
classes having equal a priori probabilities. By comparing the performance of a multi-
state HMM to that of a single state, one can get an idea of whether the observation
sequences are generated from Markov sources. Inspection of Figure 6.6 reveals that
this is indeed the case. The single state HMM system has an average recognition rate
of 70.0%, while all multi-state HMMs have rates above 90%.

To conclude, a few remarks about the performance of the original and alternative
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recognition schemes: The original system slightly outperforms the alternative system
in the case of crouching (100% versus 96.4%). However, the original system performs
poorly for waving with an average recognition rate of 65.0% versus the 86.3% of the
alternative system. This is explained as follows: It was stated in Section 4.6 that the
principle component estimation scheme requires a period of 1 to 2 seconds before it
recognises a gesture. Each gesture sequence in the test set generated for the alternative
system (also the test set used for the comparison test) is between 0.5 to 2.5 seconds
in length. In the case of crouching and standing up, the average gesture period is 1.6
seconds, while for waving two arms up, waving two arms down, ertending two arms
and retracting two arms, it is about 1.1 seconds. The reason for the longer time periods
for crouching related gestures is due to more mass being displaced when these types of
gestures are executed. The longer time allows for the principle component estimation
recognition scheme to correctly classify the crouching related gestures. However, the

waving related gestures are too short and are often not recognised.

6.6 Conclusion

The primary focus of this chapter was to investigate an alternative recognition strategy
to the simple technique used for the original 3D system. The scheme chosen for this
purpose is the hidden Markov model, which exploits the temporal information in the
observation sequences. By utilising the temporal information, the gesture vocabulary
is extended to ten gestures, while maintaining an acceptable recognition rate of 87.9%.
In addition, gestures of variable length are recognised in the case of the HMM-based
classifier. As pointed out in the previous section, short gestures are often not recognised
in the case of the original system.

In this chapter progress has been made in improving gesture recognition capabilities.
However, the system can still only recognise coarse gestures - a result of the limitations
of the bounding box. Also, the system here can only recognise isolated gestures. For a
system to be of true practical use, both these issues need to be resolved. Suggestions

to achieve this are made in Chapter 7.
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Conclusion

This chapter concludes the study undertaken in this dissertation. First, the work of
this study is reviewed in Section 7.1. Research conclusions are made in Section 7.2 and

Section 7.3 suggests future work that might enhance current performance.

7.1 Research review

The focus of this study is automatic human gesture recognition by utilising computer
vision techniques. Two main paradigms exist in the literature to achieve this, namely
configuration-based and motion-based methods. Configuration-based methods repre-
sent the human body with a model that resemble the appearance of the real body. In
contrast, motion-based methods use motion directly for representation. In this disser-
tation a novel configuration-based model, the bounding box model, was used to model
the human body for the purpose of gesture recognition. The following aspects of this

model were investigated:

e Conceptual behaviour: The bounding box model has a simple structure and it
is expected to have some limitations. These were investigated by means of visual
perception experiments in Chapter 3. Human participants were asked to identify
one of six gestures while being shown only the bounding box representation of
the gesture. It was concluded from the experiments that the model has potential

to represent coarse or large movement gestures.

e 2D machine-based operation: Given a conceptual understanding of the model,
it was applied to a computer vision system that automatically recognised gestures
in Chapter 4. The simplest possible scenario was chosen: the vocabulary con-

sisted of only four dynamic gestures and a 2D bounding box was used. The 2D
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bounding box required that motion be constrained to a particular plane and is
therefore limited in application. A simple principle component approximation
technique was used to recognise gesture signatures derived from the bounding
box model. Within this simple framework the system achieved an average recog-
nition rate of 96.3%. This suggests that a bounding box can indeed be used to

recognise certain classes of coarse gestures.

e 3D machine-based operation: We are living in a 3D world. A practical
gesture recognition system should be capable of operating in a 3D environment.
The bounding box concept lends itself to extension from 2D to 3D. This was the
purpose of the 3D gesture recognition system discussed in Chapter 5. It allowed
unconstrained body motion as opposed to the plane motion of the 2D system. A
person could also execute gestures facing any direction. The gesture vocabulary
was extended to eight gestures of which five were poses (static gestures). The
system used the same principle component approximation recognition scheme
used by the 2D system. The 3D system had an average recognition rate of 84.7%
of which the dynamic gesture’s recognition rate was 90.5%.

e Alternative temporal model: The principle component approximation tech-
nique used for recognition in the 2D and 3D systems discarded temporal infor-
mation in its operation. Chapter 6 explored an alternative recognition scheme
that utilised HMMs and explicitly modeled the temporal behaviour. This scheme
was integrated with the 3D bounding box model and was able to recognise ten
dynamic gestures at an average rate of 87.9%. Gestures could be of variable
length and could be executed at a variable rate. In this respect it is better than
the 3D system that uses the principle component approximation technique, since
rate variability is implicit to the HMM. This is opposed to the neural network
classifiers of the original 3D system that learnt the rate variability.

A by-product of the 3D recognition system was the ability to track people. The
tracker determined the location of a single person in 3D space relative to a reference.
A typical application of tracking is to determine if a person is in the proximity of

dangerous equipment that can cause bodily harm.

7.2 Research conclusions

This study investigated various aspects of the bounding box model for the purpose
of gesture abstraction and ultimately gesture recognition. Results of the various ges-
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ture recognition tests showed that the model has promise in this application. When

compared to other models it has the following advantages:

e Simplicity: The parameters of the bounding box model are extremely easy to
calculate. Given a segmented person, the box is drawn to encapsulate the extrem-
ities of the person. This is in contrast to high DOF models which are generally

very complex to register and often require nonlinear optimisation techniques.

e Dimensionality: The model is easily extended from 2D to 3D. To construct
a 3D model, the 2D model of each view is determined independently. The 3D
model is then constructed by means of stereopsis. Other techniques often rely on a

simultaneous solution by using information of all the camera views [23, 63, 17, 47).

e Startup: In some systems registration of high DOF models requires the initial
pose of the person to be known [14, 17, 47]. Given a known pose, subsequent
registration is easier and quicker to determine, since a previous pose is not very
different to the succeeding pose. The bounding box model does not suffer from
this problem, since it is easy and quick to recalculate the model parameters and

this can be done independently of previous calculations.

The bounding box model is not a silver bullet for the gesture abstraction problem.

It has the following disadvantages:

e Coarse gestures: The price paid for its simplicity is that it only abstracts
coarse gestures. High DOF models can represent finer gestures (e.g. nodding
of the head), although this capability depends on the complexity and detail of
the model. The bounding box model has significantly fewer parameters than
high DOF models and it is to be expected that it is limited in its representa-
tion capabilities. Depending on the application, this might not necessarily be a
problem. For example, it is ideally suited for a system that aims to recognise the
hand signals of a traffic pointsman. In such an application the hand movements
are coarse, since motorists need to recognise the signals from a distance. Other
applications might include recognition of the hand signals of officers who direct
taxying aeroplanes or the recognition of sports gestures such as tennis strokes

and coarse ballet movements.

e Segmentation: The model relies heavily on proper segmentation. In this study
the environment was controlled to comply with this requirement through chroma-

keying. Informal experimentation yielded unreliable results if this requirement
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is not satisfied. This is not a problem faced only by the bounding box model,
however, but by most configuration-based approaches.

e Occlusion: A person that is partially or fully occluded is also a cause of unreli-
able behaviour. Again, this is a general problem faced by all gesture recognition
systems and is one that is seldom addressed in the literature. A system capable
of handling occlusion on a representation level, but not on a recognition level, is
the Pfinder system of MIT [20].

An important aspect of a gesture recognition system is system performance. Pop-
ular criteria used in the literature to qualify system performance are recognition rate,
gesture vocabulary and execution rate. These criteria are also used to qualify the

systems discussed in this dissertation:

e Recognition rate: The 2D system, original 3D system and alternative 3D sys-
tem achieved average recognition rates of 96.3%, 90.5% and 87.9% respectively.
The more complex the system and the larger the gesture vocabulary, the lower the
recognition rate. The minimum acceptable recognition rate is typically governed

by the application.

e Gesture vocabulary and type: The vocabulary of the 2D system is perhaps
not that practical, but was chosen to test the bounding box model. The gesture
vocabulary of the subsequent systems were extended to more meaningful gestures
with the alternative 3D system having the largest and perhaps most practical
vocabulary. As stated earlier gestures are limited to coarse types and suggestions

to address this are given in the next section.

e Execution rate: All the systems were implemented as software applications
capable of recognising gestures in real-time live video. Frame rate for the 2D
system was 14 frames per second and for both the original and alternative 3D
systems it was 9 frames per second. These frame rates were achieved on a dual
Pentuim ITI-600 computer running Windows NT. In the case of the 3D systems
both processors were utilised - one for each video stream - by employing multi-
threading techniques. The image size of the video stream was 192 by 144 pixels.
Frame rates of all three systems are sufficient for real-time application, although
the frame rates of the 3D systems are perhaps on the lower limit of the real-time

definition.
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The first choice to qualify system performance is to compare it to other systems in
the literature based on the above criteria. This is, however, difficult since researchers
usually generate test sequences applicable to their particular problem. To compare
various systems reference gesture test sequence sets are required similar to what the

Lena image is for the image processing community.

7.3 Future research

Future work includes improving on current system performance, extending the ges-
ture vocabulary and working towards a system that can operate in a more practical

environment. Suggestions are:

e Scale space representation: To improve the spatial representation capability
of a bounding box, a scale space representation can be used [2, pp. 31-45]. This
fits well with the bounding box paradigm. A 2D bounding box can be seen as the
coarsest resolution (highest level) of a scale space representation. The next level
of such a representation contains more information about the shape of the object
to modeled, or in this case the human body. For example, the next level of a
quad tree scale space is a 2 by 2 array. This is the equivalent of dividing the 2D
bounding box into a 2 by 2 array, which should lead to a better representation of
body structure compared to the bounding box alone. By considering the motion
of each cell in the array relative to the level above (that is the bounding box), a
better abstraction of gestures might be obtained. Lower levels of the scale space
can also be explored, with the lowest level being the pixels of the image.

e Continuous gesture recognition: The HMM-based recognition system of
Chapter 6 can only recognise isolated gestures. To recognise a continuous stream
of gesture data, the system has to automatically segment the stream into separate
gestures. A procedure to achieve this is known as level building [42)].

The above suggestions are related to the improvement of gesture recognition capa-
bilities. Other work can also be done to make the system more practical. This includes
work on segmentation where the aim is to robustly segment people in a realistic en-
vironment. Most environments also contain objects such as furniture and often more
than one person is present. A practical gesture recognition system has to cope with

occlusions caused by these objects and at the safme time track multiple people.
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Appendix A

Moving bounding box experiment

answers

This appendix gives the detailed answers of the eleven people that participated in the
Moving Bounding Box experiment. The purpose of this experiment was to qualify the
bounding box model as a shape descriptor of the human body and a representation of
human gestures. The approach used was to conduct a visual perception experiment on
a number of participants. Details of the experiment were given in Chapter 3.

This appendix is organised as follows: Section A.1 gives the answers of Experiment 1
to 3. In the case of Experiment 1 the answers are interpreted as discussed in the section.

This is followed by Section A.2 that gives the uninterpreted answers of Experiment 1.

A.1 Answers of Experiments 1 to 3

Tables A.1 to A.6 show the answers of the participants for the 2D and 3D sets of
Experiments 1 to 3. The answers of Experiment 1 (Tables A.1 and A.2) are interpreted,
since the participant had no prior knowledge of the gesture set. The criteria used for
the interpretation was: Is the answer given by a participant for a particular gesture a
reasonable description of the actual gesture? If the answer is yes, then it was assumed
that the perceived gesture was recognised as the actual gesture. The abbreviations
applicable to the tables in this section are: Wk — walking, Wv — arms waving, Cr —
crouching, Hd — hand waving, In — inactive, Nd — nodding, Un — unknown, Or —

other (none of the above).
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Appendix A Moving bounding box experiment answers
Person Video sequence

Wk Nd In Hd Cr Hd Nd Wy
A Or In In Un Cr Im In Or
B Wk Inm Or Or Ctr Or Or Or
C Wk Un Hd Un Cr Or In Or
D Wk Nd Or Or Cr Or Or Wy
E Wk In Un Un Cr Un Un Or
F Wk In In Im Cr In In Wy
G Wk In In In Cr In In Wy
H Wk In In In Ct In In Or
I Or Or Or Or Or Or Un Or
J Wk Or Or Or Cr Or Or Or
K Wk In In In Ct In In Or

Table A.1: Participant answers for the 2D representation of Experiment 1.

Person Video sequence

In Wk Hd Nd Wv In Cr Hd
A In Wk In Im Or In Cr In
B In Wk In In Or In Cr In
C Un Wk Un In Im Or Cr In
D In Wk In Imnm Or Or Cr Or
E In Wk Un Un Or Un Cr In
F In Wk Inm In Wv In Cr In
G In Wk In In Wv In Cr In
H In Wk In In Or Un Cr Un
I Un Wk Or Or Or Or Cr Or
J Or Wk Or Or Or Or Cr In
K In Wk Inm In Or In Cr In

Table A.2: Participant answers for the 3D representation of Experiment 1.
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Person Video sequence

Wk Nd In Hd Cr Hd Nd Wv
A Wk In Un Nd Cr Hd In Wy
B Wk Hd Hd Hd Cr Nd Hd Wy
C Wk Hd Hd Un Cr In Nd Wy
D Wk Hd Hd Nd Cr In Hd Wy
E Wk In In Un Cr In Nd Wy
F Wk Hd Hd In Cr Nd Hd Wy
G Wk In In In Cr In In Wy
H Wk In In Hd Cr In Hd Wy
I Wk In Hd Hd Cr Nd Hd Wy
J Wk Un Hd Wv Cr Hd Nd Wy
K Wk In Hd Hd Cr Hd Nd Wy

Table A.3: Participant answers for the 2D representation of Experiment 2.

Person

In

Wk

Video sequence

Hd Nd

Wv

In

Cr

Hd

In
In
In
In
In
Hd
In
Hd
Nd
Nd
Nd

“ =D O"m-g O aOw e

=~

Table A.4: Participant answers for the 3D representation of Experiment 2.

Hd
Hd
Hd
Hd
Hd
Hd
In
Hd
Hd
Hd
Hd

Nd
In
Nd
In
Nd
Nd
In
In
Hd
Nd
Nd

Wv
Wv
Wv
Wv
Wv
Wv
Wv
Wv
Wv
Wv
Wv

Hd
Nd
Hd
Hd
Hd
In
In
Hd
Hd
Hd
Hd

Cr
Cr
Cr
Cr
Cr
Cr
Cr
Cr
Cr
Cr
Cr

Nd
In
In

Nd
Nd
Nd
In

Hd
Cr
Hd

In
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Person
Wk

Video sequence
Nd In Hd

Cr

Hd

Nd

Wk
Wk
Wk
Wk
Wk
Wk
Wk
Wk
Wk
Wk
Wk

-~ TmDoQmEmUaQw e

~

Table A.5: Participant answers for the 2D representation of Experiment 3.

Person

In

Un Hd
Hd Nd
Hd In

Hd In

Hd Hd
In Hd
In Hd
In Hd
Nd In

In Hd
In Nd

Un
In
Nd
Nd
Nd
Nd
In
Hd
Hd
Nd
Nd

Cr
Cr
Cr
Cr
Cr
Cr
Cr
Cr
Cr
Cr
Cr

Un
Nd
Hd
In
Nd
Hd
Nd
In
Hd
Hd

In

Video sequence

Wk Hd

Nd

Wv

In

Un
In
Nd
Hd
Hd
Nd
In
In
Nd
In

In

Hd

In
Nd
Nd
In
In
Hd
In
Hd
Nd
Nd
Hd

N a~=D oo mgaw >

Table A.6: Participant answers for the 3D representation of Experiment 3.

Wk Hd
Wk Hd
Wk Hd
Wk Hd
Wk Hd
Wk Nd
Wk Hd
Wk In
Wk In
Wk Hd
Wk Hd

Un
In
In
In
Nd
In
Nd
Hd
Hd
Nd
Nd

Hd
Nd
Nd
In
Nd
In
In
Hd
In
Hd

In

Nd
In
In

Nd
Nd
Nd

Nd
In
Hd

Nd
Nd
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A.2 Uninterpreted answers of Experiment 1

This section gives the uninterpreted answers of participants for Experiment 1:

e Answers of participant A for the 2D test set:

Actual Gesture Participant Answer

Walking
Nodding
Inactive
Hand waving
Crouching
Hand waving
Nodding

Arms waving

Walking in circle
Standing still
Standing still
Unknown
Crouching
Standing still
Standing still

Turning around on the spot.

e Answers of participant A for the 3D test set:

Actual Gesture Participant Answer

Inactive
Walking
Hand waving
Nodding
Arms waving
Inactive
Crouching

Hand waving

Standing still
Walking
Standing still
Standing still
Jumping
Inactive
Crouching

Inactive

e Answers of participant B for the 2D test set:

Actual Gesture Participant Answer

Walking
Nodding
Inactive
Hand waving
Crouching
Hand waving
Nodding

Arms waving

Walking

Standing Still

Jumping

Jumping

Crouching

Moving one step left and right
Lifting leg up and down

Star jumps
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e Answers of participant B for the 3D test set:

Actual Gesture Participant Answer

Inactive Standing still

Walking Walking

Hand waving Standing still

Nodding Standing still

Arms waving Star jumps

Inactive Standing still with slight movement
Crouching Crouching

Hand waving Standing still

e Answers of participant C for the 2D test set:

Actual Gesture Participant Answer

Walking Walking
Nodding Unknown
Inactive Hands waving
Hand waving Unknown
Crouching Crouching
Hand waving Looking around
Nodding Standing still
Arms waving Star jumps

e Answers of participant C for the 3D test set:

Actual Gesture Participant Answer

Inactive Unknown

Walking Walking

Hand waving Unknown

Nodding Standing still with hand movement
Arms waving Standing still with foot movement
Inactive Standing still while lifting foot
Crouching Crouching

Hand waving Standing still with slight movement

e Answers of participant D for the 2D test set:

Electrical, Electronic and Computer Engineering 90



Appendix A Moving bounding box experiment answers

Actual Gesture Participant Answer

Walking Walking

Nodding Nodding head

Inactive Standing still while moving hand outwards
Hand waving Turning on the spot

Crouching Crouching

Hand waving Tapping foot

Nodding Slight kicking

Arms waving Arms waving

e Answers of participant D for the 3D test set:

Actual Gesture Participant Answer

Inactive Inactive

Walking Walking

Hand waving Inactive

Nodding Slight swaying body movement
Arms waving Large kicking movement

Inactive Moving arms slightly outwards
Crouching Crouching

Hand waving Standing on toes and then relaxing

e Answers of participant E for the 2D test set:

Actual Gesture Participant Answer

Walking Walking
Nodding Standing still
Inactive Unknown
Hand waving Unknown
Crouching Crouching
Hand waving Unknown
Nodding Unknown
Arms waving Star Jumps

e Answers of participant E for the 3D test set:
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Actual Gesture
Inactive

Walking

Hand waving
Nodding

Arms waving
Inactive
Crouching

Hand waving

Participant Answer
Standing still
Walking

Unknown

Unknown

Star Jumps

Unknown

Crouching

Standing Still

e Answers of participant F for the 2D test set:

Actual Gesture
Walking

Nodding

Inactive

Hand waving
Crouching

Hand waving
Nodding

Arms waving

Participant Answer

Walking

Standing still

Standing still

Standing still with slight body movement
Crouching

Standing still with slight movement of arms
Standing still with slight movement of arms

Arms waving

e Answers of participant F for the 3D test set:

Actual Gesture Participant Answer

Inactive
Walking
Hand waving
Nodding
Arms waving
Inactive
Crouching

Hand waving

Standing still

Walking

Standing still with slight arm movement
Standing still with slight arm movement
Arms waving

Standing still with slight body movement
Crouching

Standing still with slight body movement

e Answers of participant G for the 2D test set:
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Actual Gesture
Walking

Nodding

Inactive

Hand waving
Crouching

Hand waving
Nodding

Arms waving

e Answers of participant G for the 3D test set:

Actual Gesture
Inactive

Walking

Hand waving
Nodding

Arms waving
Inactive
Crouching

Hand waving

e Answers of participant H for the 2D test set:

Participant Answer
Walking

Do nothing

Do nothing

Do nothing
Crouching

Do nothing

Do nothing
Extending arms

Participant Answer
Do nothing

Walking

Do nothing

Do nothing
Extending arms

Do nothing
Crouching

Do nothing

Actual Gesture Participant Answer

Walking
Nodding
Inactive
Hand waving
Crouching
Hand waving
Nodding

Arms waving

e Answers of participant H for the 3D test set:

Walking
Inactive
Inactive
Inactive
Crouchning
Inactive
Inactive

Star jumps
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Actual Gesture
Inactive

Walking

Hand waving
Nodding

Arms waving
Inactive
Crouching

Hand waving

Participant Answer
Inactive

Walking

Inactive

Inactive

Star jumps

Unknown

Crouchnig

Unknown

e Answers of participant I for the 2D test set:

Actual Gesture Participant Answer

Walking
Nodding
Inactive
Hand waving
Crouching
Hand waving
Nodding

Arms waving

Jumping to side while moving arms

Jumping up and down

Jumping up and down

Jumping up and down

Bowing up and down

Standing on toes, then relaxing with minimal movement
Unknown

Star jumps

e Answers of participant I for the 3D test set:

Actual Gesture Participant Answer

Inactive
Walking
Hand waving
Nodding
Arms waving
Inactive
Crouching

Hand waving

Unknown

Walking

Jogging on the spot
Jogging on the spot
Star jumps

Jogging on the spot
Crouching

Jogging on the spot

e Answers of participant J for the 2D test set:
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Actual Gesture Participant Answer

Walking
Nodding
Inactive
Hand waving
Crouching
Hand waving
Nodding

Arms waving

Walking

Standing on toes, then relax
Moving arms outwards
Swaying from left to right
Crouching

Moving arms outward
Standing on toes, then relax

Star jumps

e Answers of participant J for the 3D test set:

Actual Gesture Participant Answer

Inactive
Walking
Hand waving
Nodding
Arms waving
Inactive
Crouching

Hand waving

Standing on toes with slight arms movement
Walking

Slight dancing

Slight dancing

Slight jumping with arm movement
Standing on toes, then relax

Crouching

Slight torso movement

e Answers of participant K for the 2D test set:

Actual Gesture Participant Answer

Walking
Nodding
Inactive
Hand waving
Crouching
Hand waving
Nodding

Arms waving

Walking

Standing still

Standing still

Standing still with slight body movement
Crouching

Standing still with slight body movement
Standing still with slight body movement
Star jumps

e Answers of participant K for the 3D test set:
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Actual Gesture Participant Answer

Inactive Standing still with slight body movement
Walking Walking

Hand waving Standing still with slight body movement
Nodding Standing still with slight body movement
Arms waving Star jumping

Inactive Standing still with slight body movement
Crouching Crouching

Hand waving Standing still with slight body movement
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Camera calibration and 3D object

tracking

This appendix discusses the implementation details and theory required to track a
point object and ultimately a person in space. The technique identified in Chapter
5 to achieve this is stereopsis. Stereopsis is concerned with the 3D reconstruction of
an object given two or more different perspective views of the object. It consists of
two main problems, namely correspondence and reconstruction(l, p. 140]. The focus
in this appendix is on reconstruction. As discussed in Chapter 3, correspondence is
implied by registration of the model to the person in the image and is therefore not a
requirement here.

Stereopsis employs a number of cameras' as a measuring or ranging device by
expressing the location of a feature or object in a Cartesian reference frame. To realise
this, the cameras need to be calibrated and this is the first item discussed here. Next,
given that a distinguishable feature or point is visible on the object in the camera
views, the location of the point can be determined. This is the building block required
for 3D object reconstruction.

Also presented here, is an algorithm to correct for the apparent rotation phe-
nomenon observed in images of arbitrary orientated cameras. This phenomenon im-
pacts on the accuracy of the reconstructed 3D bounding box and ultimately causes a

lower recognition rate if ignored.

10nly two cameras are considered here.
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RN PX> 2]

P(XLY, )

7
;
'

\ -¢— Image plane

Figure B.1: Pinhole model of a camera. The object at p(z;, y;, z;) is projected
onto the image plane of the camera located at a focal distance of f 'from the

pinhole.

B.1 Camera calibration

Camera calibration parameters are the rotation matrix (R), translation matrix (t)
and focal length (f). R and t identify a camera’s orientation and position in space
respectively. f is a parameter that scales the object in the image. The following
subsections describe how these parameters can be calculated.

B.1.1 Camera model

First the projection of an object in 3D space onto a 2D plane is described. Figure
B.1 shows a representation of a pinhole model commonly encountered in the computer
vision literature [1, pp. 26-27][57]. A ray can be traced from point i on the object
p(z;,y;,2;) to the representation origin®. At a distance of f ‘it intersects the image
plane at P(X,Y;, f). This is the observed location of the point on the image plane
and is expressed by:

- (B.1)

2A particular view is identified with a ’ symbol. A single ’ represents the left camera and " the
right camera.
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Y. v,
i Ji B.2

A property of these equations is that information is reduced from 3D to 2D. All
points along the line Pp have the same 2D plane projection. It is therefore not possible
to recover the unique location of a point in 3D space given only its projection on a
2D camera plane. One way to solve this problem is by triangulating (see Figure B.2),
which requires at least two cameras. Equations B.1 and B.2 are expressed relative to a
particular camera’s coordinate system. In order to successfully triangulate, the relation
between the coordinate systems of the two cameras, (z;,¥;, z) and (z;,y; , 2; ), need to
be determined. This is achieved by expressing the coordinate systems of the cameras®
relative to a reference point in space such as a corner of the room*. The next section

describes how different reference axes are related.

B.1.2 Transforming between reference axes

A point : is related in two different reference axes by rotating and displacing the one
axis relative to the other [1, pp. 35-36][57]. This is expressed by:

7

.’L‘i .’IJ,'
v, | =R | u |+ t (B.3)
Z; Z;

where R’ is a 3 x 3 matrix known as the rotation matrix and t a 3-element vector
known as the translation vector. Referring to Figure B.2, the relation between the
world or room reference axis and that of the left camera view is expressed by Equation
B.3 for point (z;,y;, 2;). The same relationship is expressed for the right camera view
by using the appropriate notation discussed earlier.

R effectively rotates all points in the original reference coordinate system. This is
achieved by projecting these points on the new reference axis, which is represented by
three orthonormal vectors (rows of R). An orthonormal vector adheres to the following
properties:

Tht T+ =1 (B.4)

3The camera coodinate system is also known as the view coordinate system.
4This is known as the world coordinate system.
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View coordinate reference axis

T

Figure B.2: Reference axis of the room and two views (cameras)
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T3 + T3+ r3s =1 (B.5)

T3+ Tyt =1 (B.6)

The above is required for the vectors to be unit size and the next set of equations

forces the vectors to be normal:

T92T33 — T23732 = T11 (B-7)
T23T31 — T21733 = T12 (B-S)
791732 — T22T31 = T13 (B.9)

R and t have twelve unknowns. This reduces to six if the above orthonormal

property is taken into account.

B.1.3 Calculating the calibration parameters

To calculate the calibration parameters (R, t, f) Equations B.1, B.2 and B.3 are used.
First, Equations B.1 and B.2 are substituted in Equation B.3:

X,
Zr}l =x; =& + T2y + 113z + 4 (B.10)

Y.
Zi7 = Y; = To1T; + T2l + 7232 + L2 (B.11)
Zi = T31%; + T32Y; + T332 + 13 (B.12)

Substituting the third equation into the first two and making X; and Y; the objects
of the respective equations, leaves:
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X, = (rinz; + r2ys + 1132 + t)f (B.13)
T31%; + T3oYi + T332; + 13

and

(ro1; + Tooy; + 1232 + 1) f

Y; —
T31%; + T32Y; + T332; + 13

(B.14)

The above two equations relate the world coordinates (x;, ¥, 2;) and view coordinates
(X;,Y;) for point 7 as a function of the camera’s calibration parameters (R, t and
f). In total there are 7 calibration parameters to be solved given that use is made
of R’s properties as depicted in equations B.4 and B.9. Given four known (s, Ys, 2i)
calibration points and their corresponding (X;,Y;) projections it is possible to solve for
R, t and f using Equations B.13 and B.14. Unfortunately these equations are nonlinear
and require nonlinear techniques to solve. Such techniques is described by Wolf [64]
and Ganapathy [65]. Ganapathy has also noted that these equations can be solved
using linear techniques by increasing the number of calibration markers. Equations

B.13 and B.14 are respectively rewritten as:

_ ]y [ms2] s, o 78]y, _ [ruf] . [m2f]
-X; = lit;;:‘szz_F[t3:|X1y1+|rt3j|X1z [t3:|mz [t3 :|y1
[ [

[Af.] % [ﬁ] (B.16)
ts t3

where the parameters to be solved are written in square brackets. In the equations
there are 11 unknown parameters. To solve the unknowns, six calibration markers are
needed. This results in twelve equations when substituted into the above equations and
their unknowns are determined by linear techniques. Once this is done, the calibration

parameters are determined by substituting the solved unknowns into equations B.4 to
B.9.
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B.2 Object tracking

Once both cameras are calibrated, it is possible to track an object. By tracking it is
meant that the object’s position is calculated relative to a given reference frame in
space (e.g. world reference frame). In other words the aim is to solve for (x5, Ys, 2i) of
Figure B.2 for each video frame pair. The first step is to substitute equation B.1 and
B.2 into equation B.3 and make (z;, ¥, 2;) the object of the equation:

x,
i l l f,' i
yl == R -1 z‘i % — t (B.17)
Z; 1

The above equation is for the left camera. The equivalent equation for the right

camera is:

n

X;
T; . fll
v | =R |z g._ —t (B.18)
23

The unknowns in the equations are z;, z, and (z;, ¥, ). To solve z; and z; the right
sides of Equations B.17 and B.18 are set equal and z; and z; can then be determined
by solving for them simultaneously. (z;, ¥, ) can then be calculated by substituting
z; or z; back into Equation B.17 or B.18 respectively.

The above tracking algorithm is applicable to a point object. In order to track an
object, one has to select a point on the object of each view ( (X;, ¥;) and (X, Y))
that is used as a tracking reference point. In 5.4.1 this point was chosen to be the lower
centroid where the objective was to track people. This can, however be any point as

long as it is consistently the same point from frame to frame.

B.3 Orientation correction

Figure B.3 illustrates the apparent rotation phenomenon described in Section 5.4.2. As
the person moves from right to left, he rotates relative to the view of the camera. The
original bounding box model proposed in Chapter 3 assumes that the person is always
in an upright position in the camera images. For practical reasons the cameras of the

3D system (Chapter 5) were mounted nonlevel and near the ceiling, which is the cause
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of the apparent rotation phenomenon. If not corrected, it causes error in calculating
the person’s world position and construction of the 3D bounding box.
It is possible to correct for this by means of the following algorithm:

1. Determine the lower centroid projections of the person in each camera view (
(X, Yy) and (X, YT) ).

2. Calculate the world coordinates of the lower centroid by using (X, Y;) and
(X;,Y;) as input to the tracking algorithm of the previous section. The world
coordinates of the lower centroid is designated by (1, yr, 21). So far the standard

tracking procedure has been used.

3. Define a point (zy,yv,zv) where zy = zr, yy = yr and 2y = 2 + h. h is any
value larger than 0 and is chosen to be 1 meter. (zy, yu, 2v) is therefore a point

directly above (zr,yr, 21) as shown in Figure B.4.

4. The points (X;;, Y;) and (X, ;) are calculated next by projecting (zv, yu, 2v)
onto each camera’s image plain. This is achieved by using equations B.13 and
B.14. The relative orientations are expressed as the two-element vectors p' and

p’ for the left and right camera view respectively. p' (and similarly p") can be
calculated by: p' = (Xy,,Yy) — (X1, Y7).

5. Given the vectors p’ and p’, the angles of relative rotation (¢ and ¢") for the

person in each view are calculated by:

¢ = arctan (ﬁ) (B.19)

%)
and similarly for ¢ .

This equation gives the angle of rotation relative to the y-axis for the particular
view and is used to counter rotate the bounding box. The bounding box properties
(e.g. width, height, centroid) are then recalculated for the rotated box.

Step 1 uses an uncorrected bounding box to calculate (X}, Y;) and (X7, Y7 ). This
causes an error when calculating qﬁl and qS". To reduce the error, steps 1 to 5 are
repeated iteratively with the latest rotated bounding box used as input to step 1 for
the new iteration. It has been found that the algorithm converges quickly and that

one iteration is sufficient.
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Figure B.4: This figure illustrates the projection of a vertical line onto the two
camera views. The line is vertical in the real world, but appears slanted in
camera views. The angles between the projection and camera view’s vertical

position (¢' and ¢") are used to correct for orientation of the bounding box.

B.4 Results

The calibration and tracking algorithms are used in the 3D gesture recognition and
tracking system of Chapter 5. To ensure that the implementation is fault free, two
experiments were designed to test it. The following sections describe the experiments
and their results.

B.4.1 Verifying R and t

A very simple test can be conducted to verify that R, t and f are correct. The calibra-
tion markers used to calibrate the cameras (see Section B.1.3) have known coordinates
in the world reference frame. By using equation B.3, the markers’ locations in the left
and right camera views can be verified. Figure B.5(a) and (b) show the markers as
seen in the two camera images as well as their calculated locations using equation B.3.
Table B.1 lists numerical values of the true and calculated coordinates and the error.

Error is defined as the difference between calculated and true values and is given in
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Marker True coordinate Calculate coordinate Error (pixels)

la (16,31) (16,32) 1
2a (27,92) (27,92) 0
3a (46,131) (47,92) 1
4a (149,96) (150,96) 1
5a (108,70) (108,70) 0
6a (103,15) (103,17) 2
1b (72,40) (73,40) 1
2b (78,90) (78,90) 0
3b (43,120) (43,120) 0
4b (141.135) (141,135) 0
5b (154,96) (154,96) 0
6b (154,36) (154,36) 0

Table B.1: Observed and calculated values for calibration markers

number of pixels. It is clear from the low error values in the table that the calibration

parameters are accurate.

B.4.2 Tracking a thin pole

In the previous section it was verified that the cameras are properly calibrated. The
next step is to verify that an object can be tracked using the method described earlier.
For this experiment a thin pole is chosen since its location can be determined accurately
in practice. It is also easier to segment as compared to point-like objects such as a
ping-pong ball. The bottom most point of the pole was chosen to be the point to be
tracked. The pole was placed at seven known locations and its position calculated.
Table B.2 summarises the results of this experiment.

Errors in the z-direction are the most profound and contribute mostly to the overall
error. This is to be expected since the cameras are elevated at about 2.5 meters and
looking downwards, resulting in a reduced measurement resolution in the z-direction.
It can safely be assumed that a higher image resolution will result in better tracking

resolution.
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