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Abstract

A mobile ad hoc network (MANET) is an infrastructure-less multi-hop network where

each node communicates with other nodes directly or indirectly through intermediate

nodes. Thus, all nodes in a MANET basically function as mobile routers participating in

some routing protocol required for deciding and maintaining the routes. Since MANETs

are infrastructure-less, self-organizing, rapidly deployable wireless networks, they are

highly suitable for applications such as military tactical operations, search and rescue

missions, disaster relief operations, and target tracking.

Building such ad-hoc networks poses a significant technical challenge because of en-

ergy constraints and specifically in relation to the application of wireless network proto-

cols.

As a result of its highly dynamic and distributed nature, the routing layer within the

wireless network protocol stack, presents one of the key technical challenges in MANETs.

In particular, energy efficient routing may be the most important design criterion for

MANETs since mobile nodes are powered by batteries with limited capacity and variable

recharge frequency, according to application demand. In order to conserve power it is

essential that a routing protocol be designed to guarantee data delivery even should most

of the nodes be asleep and not forwarding packets to other nodes. Load distribution

constitutes another important approach to the optimisation of active communication

energy. Load distribution enables the maximisation of the network lifetime by facilitating

the avoidance of over-utilised nodes when a route is in the process of being selected.

Routing algorithms for mobile networks that attempt to optimise routes while at-

tempting to retain a small message overhead and maximise the network lifetime has

been put forward. However certain of these routing protocols have proved to have a

 
 
 



negative impact on node and network lives by inadvertently over-utilising the energy

resources of a small set of nodes in favour of others. The conservation of power and

careful sharing of the cost of routing packets would ensure an increase in both node and

network lifetimes.

This thesis proposes simultaneously, by using an ant colony optimisation (ACO)

approach, to optimise five power-aware metrics that do result in energy-efficient routes

and also to maximise the MANET’s lifetime while taking into consideration a realistic

mobility model. By using ACO algorithms a set of optimal solutions – the Pareto-optimal

set – is found.

This thesis proposes five algorithms to solve the multi-objective problem in the rout-

ing domain.

The first two algorithms, namely, the energy efficiency for a mobile network us-

ing a multi-objective, ant colony optimisation, multi-pheromone (EEMACOMP) algo-

rithm and the energy efficiency for a mobile network using a multi-objective, ant colony

optimisation, multi-heuristic (EEMACOMH) algorithm are both adaptations of multi-

objective, ant colony optimisation algorithms (MOACO) which are based on the ant

colony system (ACS) algorithm. The new algorithms are constructive which means that

in every iteration, every ant builds a complete solution. In order to guide the transition

from one state to another, the algorithms use pheromone and heuristic information.

The next two algorithms, namely, the energy efficiency for a mobile network using a

multi-objective, MAX-MIN ant system optimisation, multi-pheromone (EEMMASMP)

algorithm and the energy efficiency for a mobile network using a multi-objective, MAX-

MIN ant system optimisation, multi-heuristic (EEMMASMH) algorithm, both solve the

above multi-objective problem by using an adaptation of the MAX-MIN ant system

optimisation algorithm.

The last algorithm implemented, namely, the energy efficiency for a mobile network

using a multi-objective, ant colony optimisation, multi-colony (EEMACOMC) algorithm

uses a multiple colony ACO algorithm.

From the experimental results the final conclusions may be summarised as follows:

• Ant colony, multi-objective optimisation algorithms are suitable for mobile ad hoc

networks. These algorithms allow for high adaptation to frequent changes in the

topology of the network.

 
 
 



• All five algorithms yielded substantially better results than the non-dominated

sorting genetic algorithm (NSGA-II) in terms of the quality of the solution.

• All the results prove that the EEMACOMP outperforms the other four ACO al-

gorithms as well as the NSGA-II algorithm in terms of the number of solutions,

closeness to the true Pareto front and diversity.

Thesis supervisor: Prof. AP Engelbrecht
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Chapter 1

Introduction

This thesis proposes to simultaneously optimise five power-aware metrics for energy

efficiency in maximising mobile ad-hoc network (MANET) lifetime, taking in consid-

eration a realistic mobility model, using an ant colony optimisation (ACO) approach.

The ACO approach addresses a hardware independent routing protocol implementa-

tion within MANETs. Using the proposed algorithms, a set of optimal solutions, the

Pareto-optimal set, is found based on ACO. Section 1.1 introduces MANETs. Section 1.2

emphasizes the importance of reducing energy consumption for MANETs. Section 1.3

briefly describes how this thesis solves the energy consumption problem for MANETs.

Section 1.4 states the primary objectives of this thesis. Section 1.5 explains the contri-

bution of this thesis, and Section 1.6 gives the thesis outline.

1.1 Mobile Ad Hoc Network

Mobile devices coupled with wireless network interfaces will become an essential part

of future computing environments consisting of infrastructured and infrastructure-less

mobile networks. Wireless local area networks based on IEEE 802.11 technology are

the most prevalent infrastructured mobile networks, where a mobile node communicates

with a fixed base station, and thus a wireless link is limited to one hop between the

node and the base station. A MANET is an infrastructure-less multi-hop network where

each node communicates with other nodes directly or indirectly through intermediate

nodes [35, 117]. Thus, all nodes in a MANET basically function as mobile routers partic-

ipating in some routing protocol required for deciding and maintaining the (potentially)

dynamically changing routes. Since MANETs are infrastructure-less, self-organizing,

rapidly deployable wireless networks, they are highly suitable for applications such as:

• Military tactical operations [86, 100] for fast and possibly short term establishment

of military communications for troop deployments in hostile and/or unknown en-
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vironments.

• Search and rescue missions [114] for communication in areas with little or no wire-

less infrastructure support.

• Disaster relief operations [162] for communication in environments where the ex-

isting infrastructure is destroyed or left inoperable.

• Law enforcement [201] for secure and fast communication during law enforcement

operations.

• Commercial use [26] for creating communications in exhibitions, conferences, and

large gatherings.

Building such ad hoc networks poses a significant technical challenge due to multiple

constraints imposed by the environment [36, 82]. As a result, the device used in the

field must weigh as little as possible. Furthermore, since mobile devices are battery op-

erated, they need to be energy conserving in order to maximise battery lifetime. Several

technologies are in the process of being developed with the aim of achieving energy con-

servation by targeting specific components of the computer and optimising the energy

consumption of these components. For example, low-power displays, algorithms to re-

duce the power consumption of disk drives, low-power I/0 devices, and low-power central

processing units (CPUs) all contribute to overall energy savings.

As a result of the highly dynamic and distributed nature of MANETs, routing tends

to be one of the key issues in MANETs [48, 174]. In particular, energy efficient routing

may constitute the most important design criterion for MANETs since mobile nodes are

powered by batteries with limited capacity. Power failure of a mobile node not only

affects the node itself, but also the ability of the node to forward packets on behalf of

other nodes and, thus, the overall network lifetime.

A mobile node not only consumes its battery energy when it is actively sending or

receiving packets, but it also consumes battery energy when idle and listening to the

wireless medium for any possible communication requests from other nodes. Thus, en-

ergy efficient routing protocols minimise either the active communication energy which

is required to transmit and receive data packets or the energy consumed during inactive

periods. In terms of protocols that belong to the former category, the active communi-

cation energy may be reduced by adjusting the radio power of each node just enough
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to reach the receiving node, and no more. This transmission power control approach

may be extended to determine the optimal routing path that will minimise the total

transmission energy required to deliver data packets to their destinations. In terms of

those protocols that minimise the energy consumed for data transfer during inactive

periods, each node may save the inactivity energy by switching its mode of operation to

sleep/power-down mode or by simply turning the mode of operation off when there is no

data to be either transmitted or received. This will result in substantial energy savings,

especially in cases where the network environment is characterised by a low duty cycle

of communication activities. However, a well-designed routing protocol is required to

guarantee data delivery even if most of the nodes sleep and do not forward packets to

other nodes.

Another important approach to the optimisation of active communication energy is

the load distribution approach [111]. While the primary focus of the above two ap-

proaches is to minimise the energy consumption of individual nodes, the main goal of

the load distribution method is to balance the energy usage amongst the nodes and to

maximise the network lifetime by avoiding over-utilised nodes when selecting a routing

path. While it is not clear whether any particular algorithm or class of algorithms is the

best for all scenarios, there are definite advantages and disadvantages to each protocol,

and each protocol is suited for certain situations. However, it is possible to combine and

integrate the existing solutions and metrics for energy efficiency in order to offer a more

energy efficient routing mechanism.

1.2 Reducing Energy Consumption for MANETs

The research focus in MANETs, in the past years, has been on developing strategies for

reducing the energy consumption of the communication subsystem and increasing the

lifetime of the nodes. Recent studies have stressed the need for designing medium access

control (MAC) and routing protocols to ensure longer battery life. Much research has

been done on designing protocols that increase the lifetime of nodes and the network [33,

109]. The research and developed algorithms were done with reference to the MAC,

network and transport layers. Power-aware MAC protocols such as the power-aware

multi-access protocol (PAMAS) [185] have been designed for battery energy savings that

intelligently turn off radios when they can not transmit or can not receive packets.
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The mobile ad-hoc network routing problem is difficult because of node mobility [7,

105, 206, 215]. With mobility, physically available routes may become invalid due to

the topology change by node movement or link failure (i.e. may not be found by the

routing algorithm), causing packets to be dropped and leading to throughput degradation

and increasing control overhead. When two nodes previously within the transmission

range move far away, the connection is lost. Vice versa, when two nodes move into the

transmission range, a connection is gained. Thus, two conflicting goals are encountered:

on the one hand, in order to optimise routes, frequent topology updates are required,

while on the other hand, frequent topology updates result in higher message overhead.

Routing algorithms for mobile networks have been presented that attempt to optimise

routes while attempting to keep message overhead small [33, 78, 97, 107, 116, 125, 138,

139, 157, 160, 182, 204]. Different routing protocols use one or more of a small set of

metrics to determine optimal paths. Some of these metrics, however, have a negative

impact on node and network life by inadvertently overusing the energy resources of a

small set of nodes in favour of others.

Conserving power and carefully sharing the cost of routing packets will ensure that

node and network life are increased. Singh et al. [184] presented several power-aware

metrics that do result in energy-efficient routes. These metrics are

1. to minimise energy consumed per packet,

2. to maximise time to network partition,

3. to minimise variance in node power levels,

4. to minimise cost per packet, and

5. to minimise maximum node cost.

Many real-world problems require the simultaneous optimisation of a number of ob-

jective functions, referred to as multi-objective optimisation problems (MOP) [37, 147].

Some of these objectives may be in conflict with one another. A typical MOP simulta-

neously involves some competing objectives. The solution to a MOP requires a suitable

definition of optimality (usually called Pareto optimality). MOPs normally have not

one, but an infinite set of solutions, which represent possible trade-offs among the ob-

jectives (such solutions constitute the so-called Pareto-optimal set [155]). For MOPs
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the main task is to optimise a vector function, say f(x) = (f1(x), f2(x), ..., fn(x)). A

typical way to approach these problems is to transform the MOPs into single-objective

(or scalar) problems (e.g. by using a linear aggregating function). This approach does,

indeed, make sense if the functions f1, f2, ..., fn are of the same type and expressed in

the same units, but otherwise (for instance, if f1 denotes distance, f2 denotes time, and

so on) the scalarised problem might be meaningless. Also transforming the MOPs into

a single-objective problem might not be feasible when there are trade-offs among the

sub-objectives.

1.3 Solving Multi-Objective Power-Aware Metrics

with Ant Colony Optimisation Algorithms

This research presents five multi-objective algorithms for simultaneously optimising the

five power-aware metrics used for determining routes in wireless ad hoc networks, whilst,

at the same time, taking into account the reference point group mobility (RPGM)

model [29].

The proposed algorithms constitute new versions of the multi-objective ant colony

system [53], the max-min ant system [195], and the multiple colony ant system [76].

1.4 Objectives

The primary objectives of this thesis can be summarised as follows:

• To develop and test multi-objective ant optimisation algorithms, in order to simul-

taneously optimise the five power-aware routing metrics described in Section 1.2

while taking in consideration a realistic mobility model.

• To obtain empirical results to support the predictions offered by the proposed

algorithms.

1.5 Contributions

The main contributions of this work are:

5

 
 
 



• Development of the first dynamic multi-objective ant optimisation algorithms to

simultaneously optimise five power-aware objectives for energy efficiency and the

MANET’s lifetime, taking in consideration a realistic mobility model.

• The evaluation of the scalability of the five dynamic multi-objective ant optimisa-

tion algorithms with different network sizes.

• The experimental evaluation of the response of the five algorithms to varying node

mobility.

1.6 Thesis Outline

Chapter 2 contains an introduction to MANETs which is, in turn, followed by a compre-

hensive review of recent work conducted which addresses energy efficient and low-power

design within the network layer. The chapter also examines different mobility models.

Chapter 3 starts with an introduction to combinatorial optimisation. An overview of

the foraging behaviour of real ants is then presented, and this is, in turn, followed by a

discussion on ant colony optimisation algorithms.

Chapter 4 commences with a theoretical overview of the multi-objective problem

(MOP), which is followed by a discussion of the concepts of Pareto-optimal set and

Pareto-optimal front. In view of the fact that ACO methods for MOO problems form

the basis of the work presented in this thesis the focus then shifts to the application of

ACO algorithms to MOO problems. A brief introduction of the evolutionary algorithms

for solving multi-objective optimisation problems is then presented, and the NSGA-II

algorithm is described in detail. Performance metrics used to compare multi-objective

algorithms are discussed.

Chapter 5 discusses the concept of optimisation within dynamic environments since

the optimisation problem considered in this thesis is within the context of a dynamic

environment. A formal definition of a dynamic optimisation problem (DOP) is presented,

followed by an overview of the main characteristics of DOPs. The ant algorithms for

DOP are discussed, the performance metrics for DOP are described, and dynamic multi-

objective optimisation examined.

Chapter 6 describes in detail the five metrics for power-aware routing, and the multi-

objective optimisation problem is reformulated. This is followed by a description of the
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new multi-objective ant colony optimisation algorithms for simultaneously optimising

the five power-aware routing metrics. These new algorithms are adaptations of multi-

objective ant colony optimisation algorithms.

Chapter 7 presents an empirical analysis of the behaviour of the multi-objective ant

colony optimisation algorithms which were introduced in Chapter 6. The results are

presented and evaluated.

Chapter 8 presents a summary of the findings of this thesis. Topics for future research

are also discussed.

Appendix A and appendix B respectively list abbreviations and symbols used in this

thesis along with their explanations.

Appendix C displays symbols used in this thesis to formulate the multi-objective

optimisation problem for power-aware routing metrics.

Appendix D and appendix E respectively contain tables and graphs to visualise the

results of the empirical analysis of the ant-based algorithm control parameters.

Appendix F displays the algorithms results for different scenarios.

Appendix G presents a three dimensional graphs to illustrate the influence of change

frequency and change severity on the performance metrics.

Appendix H contains the results of the Mann-Whitney U test for each pair of algo-

rithms to be compared.

Appendix I summarises the optimisation criteria results.

Appendix J presents FluxViz graphs to illustrate the influence of change frequency

and change severity on the optimisation criteria for different number of nodes.

7

 
 
 



Chapter 2

Energy Efficient Network Protocols

for Mobile Ad Hoc Networks

This chapter provides a review of mobile ad hoc networks (MANETs) and their main

components. A discussion of multi-hop MANETs is also presented. An overview of

the different mobility models is given. This is followed by a survey of different energy

efficient protocols within the network layer.

2.1 Introduction

A mobile ad hoc network (MANET) refers to a collection of wireless mobile nodes which

form a self-configuring network without using any existing, fixed infrastructure [35, 117].

As wireless networks become an integral component of the modern communication in-

frastructure, energy efficiency becomes an important design consideration in view of the

limited battery life of mobile terminals. Power conservation techniques are commonly

used in the hardware design of such systems. Since the network interface is a significant

consumer of power, there has been much research conducted into low-power design of

the entire network protocol stack of wireless networks in an effort to enhance energy ef-

ficiency. This chapter presents a comprehensive summary of recent work done on energy

efficient and low-power design within the network layer. Table 2.1 illustrates the open

systems interconnection (OSI) based protocol stack for a generic wireless network.

The mobility model plays a very important role in determining the protocol perfor-

mance in MANETs [47, 123, 174]. Thus, it is essential to study and analyse various

mobility models and their effect on MANET protocols. This chapter surveys and exam-

ines different mobility models which have been proposed in recent research literature.

A great body of knowledge about MANETs has been produced and many researchers

in the field are now trying to apply this knowledge to the field of wireless sensor networks
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Table 2.1: Protocol stack for a generic wireless network

Application and Services
OS and Middleware

Transport
Network

Data link (LLC, MAC)
Physical

(WSNs) because MANETs and WSNs are very similar. Both are distributed wireless

networks and routing between two nodes may involve the use of intermediate relay nodes.

Both networks are usually battery-powered and therefore there is a big concern on mini-

mizing power consumption. Both MANETs and WSNs use a wireless channel and finally,

self-management is necessary because of the distributed nature of both networks.

The remainder of this chapter is organised as follows. Section 2.2 provides a descrip-

tion of MANETs and their main components. Section 2.3 discusses multi-hop MANETs.

Section 2.4 surveys and examines different mobility models. Section 2.5 discusses power-

aware protocols within the network layer. Section 2.6 discusses bio-inspired routing for

MANETs and, finally, Section 2.7 summarises and concludes the chapter.

2.2 Power Consumption and Communication for MANETs

In ad hoc mobile wireless networks, energy consumption is an important issue as most

mobile hosts operate on limited battery resources. Conservation of energy is, therefore,

critical in order to prolong the lifetime of the network. Instruction level modelling mobile

systems run on the limited energy which is available within a battery. Thus the energy

consumed by the system, or by the software running on the system, determines the

duration of battery life.

There are two main consumers of energy on a MANET node, namely, the central pro-

cessing unit and the radio (transmitter/receiver). These energy consumers are described

in the following subsections.
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2.2.1 Central Processing Unit

The microprocessor draws a current each time a program is executed. The average power

consumed by a microprocessor while running a certain program is given by Po = Ic ∗ Vs,

where Po is the average power, Ic is the average current, and Vs the supply voltage [202].

Since power is the rate at which energy is consumed, the energy consumed by a program

is given by E = Po ∗ Te where Te is the execution time of the program. Te, in turn, is

given by Te = Nc ∗ cp where Nc is the number of clock cycles utilised by the program

and cp is the clock period.

Thus, together with the power cost of the hardware component it is important to also

estimate the power cost of the software component. In order to systematically analyse

the power cost of the software component it is necessary to estimate the power cost of

the individual instructions.

Power Cost Measurement Method

It is obvious that a good instruction-level energy model is essential in order to eval-

uate software in terms of the power metric and also to help search the design space

for low power software implementations. The instruction-level power analysis technique

was first developed at Princeton University [128, 202, 203]. The technique is based on

measurements of the current drawn by the processor as it executes certain instructions

repeatedly. Power models for the Intel 486DX2, the Fujitsu SPARClite 934, and the

Fujitsu DSP processor have been developed using this method. In order to model the

energy consumption of the microprocessor, individual instructions must be considered.

Each instruction involves specific processing demands across various units of the CPU.

In terms of this model each instruction in the instruction set is assigned a fixed energy

cost which is termed the base energy cost. The variation in the base costs of a given in-

struction is then quantified as a result of different operands and address values. The base

energy cost of a program is based on the sum of the base energy costs of each instruction

executed. However, during the execution of a program, certain inter-instruction effects

occur of which the energy contribution is not accounted for if only the base costs are

taken into account. The circuit state constitutes the first type of inter-instruction effect,

while the second type is related to the resource constraints that may lead to stalls and

cache misses. The energy cost of these effects is also modelled and used to obtain the
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Table 2.2: Subset of the base cost table for the 486DX2

Number Instruction Base Cost(mA) Cycles
1 NOP 275.7 1
2 MOV DX,BX 302.4 1
3 MOV DX,[BX] 428.3 1
4 MOV DX,[BX][DI] 409.0 2
5 MOV [BX],DX 521.7 1
6 MOV [BX][DI],DX 451.7 2
7 ADD DX,BX 313.6 1
8 ADD DX,[BX] 400.1 2
9 ADD [BX],DX 415.7 3
10 SAL BX,1 300.8 3
11 SAL BX,CL 306.5 3
12 LEA DX,[BX] 364.4 1
13 LEA DX,[BX][DI] 345.2 2
14 JMP label 373.0 3
15 JZ label 375.7 3
16 JZ label 355.9 1
17 CMP BX,DX 298.2 1
18 CMP [BX],DX 388.0 2

total energy cost of a program.

Certain instructions involve multiple cycles within a given pipeline stage. The base

energy cost of the instruction is merely the observed average current value multiplied

by the number of cycles taken by the instruction in that specific stage. Table 2.2 [203]

summarises the CPU base costs for certain 486DX2 instructions.

Methodologies for analysing the energy consumption of embedded software help to

verify whether an embedded design meets the energy constraints. These methodologies

may also be used to guide the design of embedded software in such a way that the design

meets these constraints.

Operating Modes

The CPU has four operating modes, namely, power down, power save, active, and idle.

Power down shuts down the processor while the external interrupts (switch, button)

remain on. Power save shuts down the processor while external interrupts and an asyn-

chronous timer (external oscillator) remain on. The active mode leaves everything on,
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while the idle mode shuts down the processor while the peripheral universal asynchronous

receiver transmitter (UART), serial peripheral interface (SPI), and analogue to digital

converter (ADC) remain on.

2.2.2 Radio

Radios have three operating modes, namely, transmit, receive, and power off. Thus,

the total power consumption at a node is dependent on the operating modes of the two

subsystems, i.e. the CPU and radio. All two subsystems must be used sparingly in

order to prolong the lifetime of the network. As has been proved by several wireless

network researchers [12, 50, 164, 187] the radio consumes the most energy of these

two subsystems. At the communication distances which are typical in MANETs, the

receiving and transmitting data involve similar costs [166]. Therefore, it is essential that

protocols that account explicitly for receive power be developed. The primary cost of

radio power consumption does not come from the number of packets transmitted but

from the time spent by the nodes in a state of idle listening.

Idle listening is the time spent listening while waiting to receive packets. Stemm and

Katz [189] observed that idle listening dominates the energy costs of network interfaces in

hand-held devices. Overhearing constitutes a secondary cost of radio power consumption.

Since radios are broadcast mediums, nodes receive all communications, including those

destined for other nodes. Clearly, in order to reduce power consumption in radios, the

radio must be switched off during idle times.

An important challenge for the communication block unit is the design of a wakeup

radio – a low-power radio that is able to receive very simple communication and, in

particular, is able to detect whether communication with its own node is desired. In

such a case the wakeup radio may power up the main radio that receives the actual

communication. Unfortunately, switching the radio off means that a neighbouring node

that detects an interesting event is not able to wake up the radio’s node. This may lead to

missed events and packets, thus both increasing latency and wasting energy. Accordingly,

a challenge to radio technology is to develop an ultra low power communication channel

which is able to wake up neighbouring nodes on demand. Currently, such wakeup radios

still constitute an area of active research in chip design and communications research [131,

209].

Researchers are investigating protocols across software layers for controlling radio
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on/off times. Current approaches, which have been designed and implemented for

real-world TinyOS applications, have focused on MAC-layer and application-layer tech-

niques. Great Duck Island (GDI) for habitat monitoring [137] uses MAC-layer low-

power-listening [197], while TinyDB [136] uses application-layer duty cycling [28] when

deployed.

2.3 Multi-Hop MANETs

Multi-hop topologies play a significant role in MANETs. There are two main reasons

for the importance of multi-hops. Firstly, the MANET itself has no wired or power-rich

infrastructure. Therefore, in order to connect to the outside world, data must travel hop

by hop to the nearest access point. Secondly, in terms of wireless communication, it is

more energy efficient to transmit over several short distances than over a few long dis-

tances. Short distances also have better signal-to-noise ratios (because the environment

is more homogenous), and this results in fewer retransmissions per hop due to packet

loss [164].

However, there are inherent problems in multi-hop MANETs. Asynchronous events

may trigger sudden bursts of traffic that could lead to collisions, congestion, and channel

capture [214]. The problems that arise for wireless multi-hop networks are as a result of

hidden nodes and exposed nodes. A hidden node refers to a node within the interfering

range of the intended destination but out of the sensing range of the sender. Hidden nodes

cause collisions at the destination when they transmit during the destination’s reception.

An exposed node refers to a node which is within the sensing range of the sender but

out of the interfering range of the destination. Exposed nodes cease transmitting despite

the fact that no collisions will take place at the destination.

In view of the fact that the MAC is a shared and scarce resource in a wireless multi-

hop ad hoc network, efficient control of access to this shared media tends to become

complicated. There has been considerable effort expended in designing MAC layer pro-

tocols, and several possible MAC layer protocols have been proposed [3, 217, 221]. The

widely adopted IEEE 802.11 distributed coordination function (DCF) MAC protocol

does not work well in wireless multi-hop networks primarily because DCF was designed

for single communication cell networks [217]. The basic DCF access mechanism is carrier

sense multiple access/collision avoidance (CSMA/CA) which uses physical carrier sense
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and the request-to-send/clear-to-send (RTS/CTS) handshake for collision avoidance [99].

The latter is extremely effective in avoiding hidden nodes in single communication cells.

However, the hidden node problem still exists in multi-hop networks. There is no scheme

which addresses the exposed node problem which is far more harmful in multi-hop net-

works. In order to understand the reason why this is the case, it must be stated that in

a carrier sense wireless network,

• the communication (transmitting) range and sensing (receiving) range are not sym-

metric,

• the interfering range and sensing range are much larger than the communication

range, and

• collisions occur at the receiver and not the transmitter.

The larger interfering and sensing ranges are the cause of severe unfairness while

end-to-end packets yield problems in multi-hop networks. While larger interfering ranges

exacerbate the hidden node problem, larger sensing ranges exacerbate the exposed node

problem.

2.4 Mobility Models

Performance evaluation of a protocol for a MANET should test the protocol under

realistic conditions including, but not limited to, a sensible transmission range, limited

buffer space for the storage of messages, representative data traffic models, and realistic

movements of the mobile users (i.e. a mobility model).

A mobility model should attempt to mimic the movements of real mobile nodes

(MNs). Changes in the speed and direction of MNs must occur and within reasonable

time slots; for example, it is not desirable for MNs to travel in straight lines at constant

speeds throughout the course of the entire simulation because real MNs generally do not

travel in such a restricted manner. Different entity and group mobility models for ad

hoc networks have been developed [13, 29, 124]. This research uses the reference point

group mobility model (RPGM) [29].

In the remainder of this section the reference point group mobility model is described.

Reference point group mobility model (RPGM) is a group mobility model, where group

movements are based upon the path traveled by a logical centre.
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At the beginning of a simulation, the RPGM model divides mobile nodes into groups.

Each group has a logical centre whose movement defines the entire group’s motion be-

havior including location, speed, direction and acceleration.

Each individual node has one reference point which movement is determined by that

of the group. The motion of each node is determined by two vectors, a group motion

vector and an individual motion vector with respect to the node’s reference point. The

net motion vector of each node is the sum of the two vectors. The group motion is

defined by specifying a sequence of check points along the path corresponding to given

time intervals. As time goes by, a group moves from one check point to the next on

a continuing basis. By proper selection of check points, many realistic situations can

easily be modeled, where a group must reach predefined destinations within given time

intervals to accomplish the group’s task. There are different ways to create various

moving scenarios by changing the pattern of check points [101].

This thesis generates group motion patterns using the random waypoint model. Every

time the group reaches its destination, all nodes inside the group pause for a certain time

and then restart the moving process.

The group motion vector maps out the location of the reference centre, while the

node-dependent random motion vectors, added to the group motion vector, give the

positions of the node. The RPGM model describes the group membership of a mobile

node by its physical displacement from the group reference center. For example, at time

t the location of the i-th node in the j-th group is given by

xj,i(t) = yj,i(t) + zj,i(t) (2.1)

where yj,i(t) is the reference location and zj,i(t) is the local displacement.

The node-dependent local displacement or random motion vector, zj,i(t), denotes

the effect of the mobile nodes having their own localised movements while following the

general group motion defined by the reference centre. RPGM is illustrated in Figure 2.1.

In Figure 2.1, five MNs are initially placed in the lower left-hand corner of the simu-

lation area. A black square represents the group centre while the circles near the group

centre represent the MNs in the group. One circle in Figure 2.1 is grey in order to

distinguish it from the other MNs in the group. The movement of the grey circle will be

examined. RPGM first calculates the reference point of each MN using the group motion
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Figure 2.1: Movements of MNs using RPGM

vector, GM(t). GM(t) may be randomly chosen or predefined. The current reference

point of the grey MN, y(t), moves towards the right-hand corner of the simulation area

alongside the group centre. This location becomes the new reference point, y(t + 1),

for the grey MN. Finally, the new position of the grey MN is calculated by summing a

random motion vector, z(t + 1), with the new reference point, y(t + 1). The length of

z(t + 1) is uniformly distributed within a specified radius centred at y(t + 1) while its

direction is uniformly distributed between 0 and 2π. This process is repeated for each

MN in the group.

The RPGM model is a very good approach for realizing group mobility in tactical

scenarios, because relative positions of nodes inside the groups can be modeled explicitly

using an appropriate choice of parameters.

2.5 Network and Power Saving Routing Protocols

Routing of packets and congestion control are the main functions of the network layer [133].

In wireless mobile networks the network layer has the added functionality of routing un-

der mobility constraints and mobility management including user location update. This

section discusses energy efficient routing algorithms which were developed for wireless

networks.
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A switch is a device with several inputs and outputs that acts like a traffic junction

to forward messages. Switches consist of a fabric and a set of ports which allow packets

to flow from one link to another. Switches act as intersections as they forward messages

arriving from one input link to a different output link. The advantage of a packet

switched data network is its ability to scale beyond single hop communication. By

connecting switches the network may be expanded to allow messages to be sent over

multiple hops to non-adjacent nodes. Packet switched networks contain many pathways

and this creates the problem of how to find a route from one node to another. A

route connects nodes via one or more intermediate switches. Routes are discovered by

exchanging information about links in order to construct route tables which contain

directions to each node in the network. A packet switched network may be represented

as a graph of nodes which are connected by links or edges. Each edge is assigned a cost

which is derived from the characteristics of the link. The aim of a routing algorithm is

to find the least cost path between two non-adjacent nodes in the network and to create

a table which maps each destination to one of the output ports of the switches.

Ad hoc routing algorithms may be categorised into two types: table driven and on-

demand [168]. Table driven algorithms send periodical broadcasts in order to maintain

a route table. Algorithms classified as on-demand construct routes only when the routes

are needed. Both types of algorithms use controlled flooding to find routes. The differ-

ence between these two approaches is the frequency with which flooding takes place. In

terms of an on-demand protocol, flooding takes place only when a node desires a route

to a new destination. On the other hand, because routing information is constantly

propagated and maintained in table driven routing protocols, a route to every other

node in the ad hoc network is always available, regardless of whether or not it is needed.

This feature, although useful for datagram traffic, incurs substantial flooding traffic and

power consumption.

Ad hoc routing algorithms may also be classified as active or reactive routing al-

gorithms [216]. Routing algorithms that attempt to determine routes in advance are

classified as active routing algorithms. Routing algorithms which take action only when

a link is broken are classified as reactive.

Subsections 2.5.1 to 2.5.7 respectively discuss power efficient data gathering and

aggregation protocols, dynamic source routing, distance vector routing, routing for max-

imum system lifetime, temporally ordered routing algorithms, volcano routing schemes,
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and destination sequenced distance vector, power-aware protocols. Subsection 2.5.8

presents a routing algorithm for network capacity maximisation (CMAX) in a wire-

less network. Subsection 2.5.9 presents the online maximum lifetime (OML) routing

algorithm to maximise lifetime in a wireless network. Subsection 2.5.10 discusses other

power-aware routing algorithms with respect to different metrics while Subsection 2.5.11

discusses power-aware routing algorithms for networks with frequent topological changes.

These routing protocols employ power efficient methods for data gathering, aggregation

and sending in order to achieve long network lifetimes.

2.5.1 Power Efficient Data Gathering and Aggregation

Protocol

Tan and Korpeoglu [200] proposed two algorithms for enhancing network lifetime, namely,

the power efficient data gathering and aggregation protocol (PEDAP) and the power ef-

ficient data gathering and aggregation protocol power-aware (PEDAP-PA). Both are

routing protocols based on optimal minimum spanning trees (MST) [34]:

Definition 2.5.1. Minimum spanning tree:

Given a connected, undirected, graph G = (V, L) a spanning tree, Ts, denotes an

acyclic subset of edges, Ts ⊆ L, that connects all the vertices together.

Assuming G is weighted, the cost of a spanning tree, Ts, is the sum of edge weights,

Cs, in the spanning tree, given as

Cs(Ts) =
∑

(u,w) ∈ Ts

cs,uw (2.2)

where (u,w) ∈ Ts is an edge and cs,uw is the weight of edge (u,w). A MST is a spanning

tree of minimum weight.

PEDAP minimises the total energy expended in the system in a round of communi-

cation in which each round corresponds to an aggregation of data which is transmitted

from different MANET nodes to the sink by computing a minimum spanning tree over

the MANET. The data packets are then routed to the base station over the edges of

the computed minimum spanning tree. PEDAP prolongs a satisfactory lifetime for the

first node while providing a satisfactory lifetime for the last node. PEDAP constructs

minimum energy consuming routing tables for each round of communication.
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PEDAP-PA extends PEDAP by balancing the energy consumption among the nodes.

PEDAP-PA provides a near optimal lifetime for the first node although the lifetime of

the last node is slightly decreased.

Both algorithms consider that locations of wireless nodes are fixed and that the

base station knows all the locations of the nodes a priori. The nodes are in direct

communication range of each other and are able to transmit to and receive from the

base station. The nodes aggregate or fuse the data received (via the minimum spanning

tree) from the other nodes with their own data, and produce one packet only regardless

of the number of packets received. In each round a special node is randomly selected to

assume the responsibility for sending the fused data to the base station. Both algorithms

assume that the quality of the system dramatically decreases after the first node dies.

However, this is not always the case if the redundancy of a wireless network is considered.

2.5.2 Dynamic Source Routing

Dynamic source routing (DSR) [107] uses one or more of a small set of metrics to deter-

mine optimal paths. The most common metric used is shortest-hop routing [173]. DSR

is a routing protocol for ad hoc networks that uses dynamic source routing of packets

between hosts that wish to communicate. Source routing is a routing technique in which

the sender of a packet determines the complete sequence of nodes through which to for-

ward the packet. The sender lists this route explicitly in the header of the packet and

identifies each forwarding hop by the address of the next node to which it must trans-

mit the packet on its way to the destination host. The sender uses a route discovery

algorithm to discover a route to the destination host dynamically. A route maintenance

procedure is used to inform the sender of any routing errors. DSR uses no periodic rout-

ing advertisement messages, thereby reducing network bandwidth overhead, particularly

during periods when little or no significant host movement is taking place. Battery power

is also conserved on the mobile hosts – both by not sending the advertisements and by

having no need to receive the advertisements. DSR adapts quickly to routing changes

when host movement is frequent, yet requires little or no overhead during periods in

which hosts move less frequently.
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2.5.3 Distance Vector Routing

Distance vector routing (DVR) [97] refers to a decentralised algorithm which applies a

distance vector to each route. A distance vector has two components – magnitude and

direction. The magnitude represents the cost or distance of the route while the direction

identifies the output port which leads to the destination. Switches which use the distance

vector algorithm maintain local route tables containing a cost and next hop address for

each destination in the network. Messages are forwarded by consulting the route table

for the correct destination. Routes are selected by competing for the lowest cost path

until a stable state is reached. Occasionally, routes do not stabilise and this causes loops

to be formed.

2.5.4 Routing for Maximum System Lifetime

Chang and Tassiulas [33] presented several proposals on ways in which to model the

system lifetime of ad hoc networks when the total energy in the network limits lifetime.

They proposed routing algorithms with which to select routes and the corresponding

power levels so as to maximise the elapsed time until the batteries of the nodes are

depleted. Instead of minimising the energy consumed, the focus of the routing algorithms

is on maximising the lifetime of the system. In order to achieve this, instead of minimising

the absolute power consumed, traffic is routed in such a way that the energy consumption

is balanced among the nodes in proportion to the available energy of the nodes. The

proposals of Chang and Tassiulas are applicable to networks which are either static or

else to networks with slowly changing topology to the extent that there is enough time

to balance the traffic optimally during the periods between successive topology changes.

2.5.5 Temporally Ordered Routing Algorithm

Park and Corson [156, 157] presented a new distributed routing protocol for mobile multi-

hop wireless networks known as temporally ordered routing algorithm (TORA). TORA is

extremely quick in creating and maintaining loop-free multi-path routing to destinations

for which routing is required while simultaneously minimising communication overhead.

TORA adapts speedily to topological changes and has the ability to detect network

partitions and to erase all invalid routes within a finite time. TORA is a link reversal

algorithm which routes messages by assigning a height value to each node. Heights
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impose a temporary order on the set of nodes from highest to lowest. Messages may flow

only via nodes in descending height order. Heights are negotiated between immediate

neighbours on demand by sending a query message, and, thus, triggering further queries

which elevate the height of the originator. Intermediate nodes are assigned heights in

descending order toward the destination. A query packet consists of a quintuplet which

contains the time of a link request, the identifier address of the originator, the reference

height of the originator, and the forwarding node height. A sequence number orders

the queries, thus reducing the chances of a loop being created by older requests. At any

given time the same quintuplet with node identifier i is associated with each node i. This

quintuplet represents the height of the node. Route maintenance is performed when a

broken link is detected. The height of a node at the point of failure is lowered, thus

causing a link reversal. If it is not possible to reach a destination, then routes toward

the destination are flushed from the network.

This protocol is best-suited for use in large, dense mobile networks in which the

reaction of the protocol to link failures typically involves a localised single pass of the

distributed algorithm only. This capability is unique among protocols which are stable

in the face of network partitions, and results in the high degree of adaptability of the

protocol. In order to verify convergence in a MANET protocol it is necessary to consider

states which are reachable not only in terms of the events of the protocol itself but also

in terms of changes of topology [219, 220].

The TORA protocol guarantees that no loops will occur, provides multiple routes and

minimal communication overhead even in highly dynamic environments. TORA aims to

minimise routing discovery overhead, and, in doing so, prefers instant routes to optimal

routes. The protocol supports source-initiated, on-demand routing for networks with a

high rate of mobility as well as destination oriented, proactive routing for networks with

lesser mobility.

2.5.6 Volcano Routing Scheme

Ganjali and McKeown [78] proposed the volcano routing scheme (VRS) algorithm which

routes packets successfully even if the topology changes extremely rapidly. VRS does

not need to discover routes, or exchange routing information. It merely balances the

load locally between adjacent pairs of nodes. Ganjali and McKeown demonstrated that

VRS keeps the system stable for various models of mobility, different communication
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patterns, and different volumes of flow in the network. The VRS is a potential-based

routing scheme. The key principle in potential-based routing is to define K scalar fields

on the network one for each destination node. More formally, a single-valued potential,

denoted by P f
u , is associated with any flow f at a given node u. At each node u of

the network, packets destined to Df , the destination of the f -th flow, are routed in the

direction (i.e. the next hop) that the potential field decreases the most for flow f .

Normally, the potential function depends on the topology of the network and it is

chosen in such a way that each packet is directed toward its destination. In VRS, the

potential function is totally different, and is simply based on the number of packets

buffered at each node of the network and not on the connectivity of the network. At a

given node, u, and for a given flow, f , the potential function, P f
u , is equal to the number

of packets of flow that reside at node u. VRS forwards packets from nodes which have

more buffered packets to those nodes which have fewer buffered packets.

The performance of VRS is based on several metrics, namely, packet loss, distribu-

tion of queue size, and the length of the path taken by packets. Simulations suggest

that, when the network is not highly loaded, the average and maximum queue sizes do

not change with the communication range, the number of nodes, and the mobility pro-

cess [78]. However, when the network becomes highly loaded as a result of reducing the

communication range or decreasing the number of nodes, the queue sizes increase. For a

fixed number of nodes in the network expansion of the communication range of each node

increases the average degree of each node, and this, in turn, enhances the connectivity of

the network and reduces the packet loss ratio. If the communication range of each node

is fixed then increasing the number of nodes in the network will reduce the packet loss.

2.5.7 Destination Sequenced Distance Vector

Destination sequenced distance vector (DSDV) [160] is a proactive protocol which models

mobile computers as routers. The mobile computers cooperate to forward packets as

needed to each other. Packets are transmitted between the stations (mobile computers)

of the network by using routing tables which are stored at each station of the network.

Each routing table, at each of the stations, lists all the available destinations as well as the

number of hops to each destination. Each route table entry is tagged with a sequence

number. This sequence number is generated by the destination station. In order to

maintain the consistency of the routing tables in a dynamically varying topology, each
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station periodically transmits routing table updates and transmits updates immediately

when significant new information becomes available. Older routes will be discarded in

favour of newer or cheaper routes (with fewer hop counts). The routing table updates

may be sent in two ways:

1. a full dump which sends the full routing table to the neighbours and is able to span

several packets, or

2. an incremental update which sends only those entries with a metric (hop count)

change since the last update.

Route updates must be sent sufficiently frequently in order to locate all the nodes in

the network, thus creating a high communication overhead when the topology is dynamic.

Temporary routing loops may be caused by a delay in the propagation of accurate route

information. The aim of DSDV is to prevent the propagation of false or out of date

information by appending a sequence number to distance vector routing. DSDV has a

moderate memory requirement of O(n), where n is the number of nodes. No simulation

studies have yet been performed in order to examine the convergence of the algorithm.

2.5.8 Routing for Network Capacity Maximisation in Energy-

Constrained Ad Hoc Networks

Kar et al. [115] developed a capacity-competitive algorithm known as CMAX. CMAX

carries out admission control, i.e. the algorithm may occasionally reject messages that

are deemed to be too detrimental to the residual capacity of the network. Network

capacity is defined as the total volume of message data that is successfully carried by

the network.

Before describing the CMAX algorithm, the following terminology will be defined:

The wireless network is modelled as a directed graph, G = (V, L). V is the set of nodes

in the network with n = |V | the number of nodes. L is the edge set. There is a directed

edge, (u,w) ∈ L, from node u to node w if and only if a single-hop transmission from u

to w is possible. Let Eu > 0 be the initial energy of node u and let ec
u ≥ 0 denote the

current energy of node u. For each (u,w) ∈ L let Euw > 0 denote the energy required

to do a single-hop transmission from node u to node w. Following a single-hop message
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transmission from u to w the current energy in node u becomes ec
u−Euw. Note that this

single-hop transmission is possible only if ec
u ≥ Euw.

To calculate Euw, the most common model for power attenuation is used. In this

model signal power attenuates at the rate ca

dhd
, where ca is a media dependent constant,

d is the distance from the signal source, and hd is another constant between 2 and 4 [170].

Therefore, Euw = Ewu = c ∗ dhd
uw, where duw is the Euclidean distance between nodes u

and w, and c is a constant.

Let κ(u) = 1− ec
u/Eu be the fraction of initial energy of node u that has been used

so far, where Eu is the initial energy of node u. Let ζ and σ represent two constants.

CMAX changes the weight of every edge (u,w) from Euw to Euw ∗ (ζκ(u) − 1). The

shortest source-to-destination path, P , in the resulting graph is determined using the

new weight. If the length of this path is more than σ, then the routing request is rejected

(admission control); otherwise, path P is accepted as the route. Algorithm 1 summarises

the CMAX algorithm.

Algorithm 1 CMAX Algorithm

Step 1: {Initialize}
Eliminate from G every edge (u,w) for which ec

u < Euw;
Change the weight of every remaining edge (u,w) to Euw ∗ (ζκ(u) − 1);

Step 2: {Shortest Path}
Let P be the shortest source-to-destination path in the modified graph.

Step 3: {Wrap Up}
If no path is found in Step 2, the route is not possible;
If the length of P is more than σ, reject the route;
Otherwise, use P for the route;

2.5.9 The Online Maximum Lifetime Heuristic

In order to maximise lifetime, it is necessary to delay the depletion of the energy of a

node to a level below that needed to transmit to its closest neighbour for as long as

possible [94]. This objective may be attained by using a two-step algorithm, namely, the

online maximum lifetime (OML) heuristic algorithm. The OML is used to find a path for

each routing request, ri = (si, di), where si is the source node and di is the destination

node. In the first step, OML removes from G all edges (u,w) such that ec
u < Euw as

these edges require more energy than is available for a transmit. Let the resulting graph
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be G
′
= (V, L

′
). In the next step OML determines the minimum energy path, P

′
i , from

si to di in the pruned graph G
′
. This may be done by using Dijkstra’s shortest path

algorithm [175]. In cases in which there is no si to di path in the pruned graph G
′
then

the routing request ri will fail. Assume that such a Pi
′ exists. Using Pi

′, OML computes

the residual energy, er
u as er

u = ec
u−Euw, for all edges (u, w) ∈ P

′
i . The minimum residual

energy, er
min, is then calculated as

er
min = min{er

u|u ∈ Pi
′ AND u 6= di} (2.3)

Let G
′′

= (V, L
′′
) be obtained from G

′
by removing all edges (u,w) ∈ L

′
with ec

u−Euw <

er
min. That is, all edges whose use would result in a residual energy below er

min are pruned

from L
′
. This pruning is an attempt to prevent the depletion of energy from nodes that

are low on energy.

The second step finds the path to be used to route request ri. In order to find the

path, OML begins with G
′′

as above and assigns weights to each (u,w) ∈ L
′′
. The weight

assignment is done to balance the desire to minimise total energy consumption as well

as the desire to prevent the depletion of node energy. Let em
u = min{Euw|(u,w) ∈ L

′′}
be the energy needed by node u to transmit a message to its nearest neighbour in G

′′
.

Let φ(u,w) a function whose use prevent the depletion of the energy of node u, below

that needed to transmit to the closest neighbour of u; φ(u,w) is defined as

φ(u,w) =





0 if ec
u − Euw > em

u

c otherwise
(2.4)

where c is a non-negative constant. For each u ∈ V , define

κ(u) =
er

min

ec
u

(2.5)

where κ(u) is the fraction of u’s initial energy that has been used so far.

The weight, E
′′
uw, assigned to edge (u, w) ∈ L

′′
is

E
′′
uw = (Euw + φ(u,w))(ζκ(u) − 1) (2.6)

where ζ is another non-negative constant.
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From equation (2.6), the weighting function, through φ, assigns a high weight to edges

whose use on a routing path causes a node’s residual energy to become low. Also, all

edges emanating from a node whose current energy is small relative to er
min are assigned

a high weight because of the ζκ(u) term. Thus the weighting function discourages the use

of edges whose use on a routing path is likely to result in the failure of a future route.

Algorithm 2 gives the OML algorithm to select a path for request ri.

Algorithm 2 General Procedure of OML

Step 1: Compute G
′′
;

G
′
= (V, L

′
) where L

′
= L− {(u,w)|ec

u < Euw};
Let P

′
i be a shortest path from si to di in G

′
using Dijkstra’s algorithm;

If there is no such P
′
i , the route request fails and the algorithm terminates;

Compute the minimum residual energy er
min for all nodes other than di on P

′
i

using equation (2.3);
Let G

′′
= (V, L

′′
) where L

′′
= L

′ − {(u,w)|ec
u − Euw < er

min};
Step 2: Find route path

Compute the weight E
′′
uw for each edge of L

′′
using equation (2.6);

Let P
′′
i be a shortest path from si to di in G

′′
;

Use P
′′
i to route from si to di;

2.5.10 Other Power-Aware Routing Algorithms and Metrics

Energy conservation is a critical issue in wireless networks for node and network lifetime,

as the nodes are powered by batteries [211]. This subsection surveys recent routing

protocols for wireless networks in which energy awareness is an essential consideration.

The most interesting research issue in respect of these power-aware routing protocols

consists of ways in which to optimise different metrics.

Singh et al. [186] addressed routing of unicast traffic (unicast refers to the sending of

information packets to a single destination) with respect to battery power consumption.

Their research focused on the design of protocols to reduce energy consumption and to

increase the lifetime of each mobile node, thus also increasing network lifetime. This

goal may be attained by minimising the energy of mobile nodes, not only during active

communication, but also when the mobile nodes are inactive.

Transmission power control and load distribution are two approaches to minimising

the active communication energy. Sleep/power-down mode is used to minimise energy
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during inactivity. In order to minimise the active communication energy, five different

metrics are defined from which to study the performance of power-aware routing pro-

tocols. These energy-related metrics have been used to determine an energy efficient

routing path instead of finding the shortest paths. The metrics are [186]:

• Energy consumed per packet:

This metric is useful in order to provide the minimum power path through which the

overall energy consumption for delivering a packet is minimised. Each wireless link

is annotated with the link cost in terms of transmission energy over the link. The

minimum power path is that path which minimises the sum of the link costs along

the path. However, a routing algorithm using this metric may result in unbalanced

energy spending among mobile nodes. Nodes that are unfairly burdened in order

to support several packet-relaying functions consume more battery energy and run

out of energy earlier than other nodes, thus disrupting the overall functionality of

the ad hoc network.

• Time to network partition:

This metric maximises the network lifetime. Given a network topology, a minimal

set of MNs exists so that the removal of these MNs would cause the network to

partition. The traffic in these MNs should be divided in such a way that their power

is depleted at equal rates. Given alternative routing paths, this metric favours the

selection of that path which will result in the longest network operation time.

• Variance in node power levels:

This metric is based on the premise that all MNs in the network operate at the

same priority level, thus ensuring that all mobile nodes are equal and that no single

mobile node is penalised or advantaged over any other. All mobile nodes in the

network remain powered on for as long as possible.

• Cost per packet:

Metrics other than energy consumed per packet need to be adopted in order to

maximise the lifetime of all the mobile nodes in the network. The cost per packet

metric creates routes in such a way that mobile nodes with depleted energy reserves

do not form part of many routes.
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• Maximum node cost:

This metric attempts to minimise the cost experienced by a mobile when routing

a packet. By minimising the cost per mobile node significant reductions in the

maximum mobile cost are obtained. Also, the maximum node cost metric delays

mobile failure, and reduces variance in mobile power level.

In order to conserve energy all metrics need to be minimised, except the time to net-

work partition metric which needs to be maximised. As a result, a minimal cost routing

protocol with respect to the five energy efficient metrics is more appropriate instead of

a shortest hop routing protocol. Thus, although packets may be routed through longer

paths, the paths contain mobile nodes that have greater energy reserves. Also, rout-

ing traffic through lightly loaded mobile nodes conserves energy because contention and

retransmission are minimised.

The above approach to routing in wireless ad hoc networks requires that every mobile

node has knowledge of the locations of every other mobile node and the links between

them. This creates significant communication overhead and increases delays. Stojmen-

ovic and Lin [191] addressed this issue by proposing a power, cost, and power-cost global

positioning system (GPS) which is based on a localised routing algorithm, where nodes

make routing decisions based solely on the location of their neighbours and on the loca-

tion of the destination.

The power-aware localised routing algorithm attempts to minimise the total power

needed to route a message between a source and a destination. The loop-free localised

power efficient routing algorithm may be described as follows: The source (or an in-

termediate node), S, should select one of its neighbours, A, to forward packets toward

destination, D, with the goal of reducing the total power needed for the packet trans-

mission. Only those neighbours that are closer to the destination than S are considered.

Node A becomes the source and the algorithm proceeds recursively until the destination

is reached – if possible.

The cost-aware localised routing algorithm is aimed at extending the worst case life-

time of batteries. The loop-free localised cost aware routing algorithm may be described

as follows: The cost, c(A), of a route from S to D via neighbouring node A is the sum

of the cost, f(A), of node A and the estimated cost of the route from A to D. If the

destination is one of the neighbours of node S, which currently holds the packet, then

the packet will be delivered to D. Otherwise, S will select that neighbour, A, which
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minimises c(A). The algorithm proceeds until the destination is reached, if possible, or

until a node has no neighbouring node to the destination other than itself.

Combined power-cost algorithms both minimise the total power needed and maximise

remaining battery lifetime.

Stojmenovic and Lin [191] proved empirically that these localised power, cost, and

power-cost efficient routing algorithms are loop-free. These routing algorithms achieve

very high delivery rates for dense networks, but low delivery rates for sparse networks.

Control messages are used to update the positions of all nodes in order to maintain the

efficiency of the routing algorithms. These control messages also consume power which

means that the most advantageous trade-off for moving nodes must be established.

These routing algorithms were tested on static networks with high connectivity [191].

Power efficient methods tend to select well positioned neighbouring nodes in forwarding

messages while cost efficient methods favour nodes with more power remaining.

Shah and Rabaey [181] presented an energy aware routing algorithm for low energy

wireless networks. Network survivability was considered as the primary metric. They

demonstrated that network lifetimes may be increased up to 40% as against comparable

schemes such as directed diffusion routing. Energy aware routing builds per-sink cost

fields to direct data delivery. A sender probabilistically picks a receiver to which each

packet has to be forwarded. The basic principle is that, in order to occasionally increase

the survival of networks, it may be necessary to use sub-optimal paths. This will ensure

that the power of the optimal path is not depleted, and that the network degrades

as a whole rather than being partitioned. To prevent energy depletion of the optimal

path, multiple paths are found between the source and the destination, and each path

is assigned a certain probability of being selected, depending on the energy metric. In

order for each packet to be sent from the source to the destination one of the paths is

randomly chosen, depending on the probabilities. This means that none of the paths

is used all the time, thus preventing energy depletion. Also, different paths are tried

continuously, hence improving tolerance to nodes moving around in the network.

Energy aware routing is also a reactive routing protocol. It is also a destination-

initiated protocol in terms of which the data consumer initiates the route request and

subsequently maintains the route.
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2.5.11 Power-Aware Routing Algorithms for Networks with

Frequent Topological Changes

Routing in mobile ad hoc networks is difficult because the topology may change rapidly [105,

215]. By the time new paths have been discovered the network could change again. In

extreme cases packets may circulate endlessly, thus causing the system to become unsta-

ble. It is difficult to describe and to constrain mobility for frequently changing networks.

There will not be enough time to balance traffic optimally between successive topology

changes. For this reason existing routing algorithms are of little use. However, exist-

ing algorithms such as the distance vector routing [160] have proved to be effective in

situations in which topology changes slowly.

Gafni and Bertsekas [71] considered the problem of maintaining communication be-

tween the nodes of a data network and a central station in the presence of frequent

topological changes as, for example, in mobile packet radio (PR) networks. They pro-

posed distributed algorithms for generating loop-free routes, and thus forming the basis

for the development of contingency routing algorithms.

These distributed algorithms have the following properties:

1. They work on unknown communication topologies.

2. They implement a directed acyclic graph (DAG) over the network topology, where

all directed paths lead to the destination.

3. In the event of changes to the topology of the network, a new DAG is created using

an iterative method.

In such distributed algorithms each PR is assigned a generalised number (i.e. an

element of a suitable totally ordered set). Link directions will always be oriented from

higher to lower numbers. This prevents loops from forming and provides reliable sec-

ondary routes that may be used for transmitting connectivity information and data to

the station when the primary routes fail. When a PR loses all its routes to the station,

a reversal process is executed whereby, on the basis of the numbers of its neighbours,

the PR selects a number according to the rules of one of the algorithms proposed. This

number is broadcast to all the PR’s neighbours informing them of any reversals in the

direction of communications that affect them.
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There is a possibility that some numbers may become too large, for example, if the

network becomes disconnected. Accordingly, an error detection scheme is required to

ensure that each PR operates on the basis of correct numbers for all its neighbours.

These distributed algorithms – referred to as Gafni-Bertsekas (GB) algorithms – are

designed for operation in connected networks. GB algorithms do exhibit instability in

parts of the network which have become partitioned from the destination.

Stergaard [190] presented a distributed algorithm for a network with dynamic chang-

ing topology. This distributed algorithm is termed the efficient distributed hormone

graph gradient (EDHGG). EDHGG provides information on topological distance in com-

munication networks with dynamic changing topologies. From a functional point of view

this algorithm is an improved version of the algorithm which was presented by Gafni and

Bertsekas [71], with two additional features:

1. From a given node, the length of any directed path to the destination is equal to

the shortest undirected path to the destination.

2. Each node knows its topological distance from the destination.

EDHGG is based on topological distance (i.e. the number of hops between two nodes)

and is capable of dealing with changing topologies in the connectivity graph using only

local information, without global synchronisation. The algorithm generates messages

only when the topology of the graph changes.

2.6 Bio-inspired Routing for MANETs

In addition to the classical MANET routing algorithms, the focus of the MANET re-

search community has also been on the application of nature inspired engineering ap-

proaches to solve the MANET routing problem [31]. The term bio-inspired has been

introduced to demonstrate the strong relation between a particular system or algorithm,

which has been proposed to solve a specific problem, and a biological system, which

follows a similar procedure or has similar capabilities.

A number of MANET routing protocols have been designed [2], which deal with

the extremely dynamic nature of MANET networks [69]. These protocols are mainly
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inspired by ant colony behaviours, resulting in distributed, self-organizing, and adap-

tive algorithms. The first ACO routing algorithms developed were the ant based con-

trol (ABC) algorithm [178] for circuit-switched telephone networks and AntNet [31] for

connectionless IP data networks. ACO implementations for different routing protocols

developed since then have based their design on either AntNet [14, 44, 113, 180, 210] or

ABC [196].

ABC is a proactive algorithm designed for load balancing in a circuit switched sys-

tem. ABC is used for call controlling (distributes the calls over multiple switches) and

maintains only one routing table whose rows show the destination. Calls between nodes

are routed as a function of the pheromone distributions at each intermediate node.

AntNet is an adaptive, distributed, mobile agents-based algorithm which was based

on the stigmergic communication found in natural ant colonies. The operation of AntNet

is based on two types of agents:

• forward ants who gather information about the state of the network, and

• backward ants who use the collected information to adapt the routing tables of

nodes on their path.

The routing tables of each visited node are updated based on trip times. AntNet has

been used to simultaneously optimize the throughput (delivered bits/sec), average delay

for data packets (sec), and network’s capacity usage. However, AntNet has a scalability

problem with larger scale networks, because each node has to generate many ants for

updating routing tables. In large networks, both overhead and loss of protocol packets

grow for distant destinations. Furthermore, ants may carry outdated information for

long travel times. Another problem which may arise when implementing AntNet on a

real network is the synchronization of the internal clocks of the nodes in the network.

The popularity of MANETs has lead to an increasing need to address MANETs

security issues. There are a number of proposals for secure MANETs that are based

on artificial immune systems (AISs) [39]. Artificial immune systems (AIS) are algo-

rithms and systems that use the human immune system as inspiration. Sarafijanovic and

Boudec [176] presented an AIS security solution that can detect misbehavior in the dy-

namic source routing (DSR) protocol [107]. Mazhar and Farooq [145] addressed anomaly

detection in MANETs using AIS, while Mazhar [144] proposed two security frameworks

for securing MANET protocols based on the AIS approach, i.e BeeAIS based on self
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non-self discrimination from adaptive immune system and BeeAIS-DC based upon the

danger theory [39]

.

2.7 Summary

As a result of the power constraint characteristics of MANETs, it is vital to enhance the

longevity of the nodes in the network in order to prolong network lifetime. Low power

design as applied to the implementation of all protocols, and in particular (in reference

to this thesis), the routing protocols, remains one of the most important research areas in

terms of MANETs. This chapter provided a survey of existing algorithms at the network

layer that address the energy efficiency of MANETs. The next chapter discusses the

ant colony optimisation meta-heuristic approach for solving combinatorial optimisation

problems. In late chapters, energy aware optimisation algorithms are developed to based

on the ant colony optimisation meta-heuristic.
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Chapter 3

Combinatorial Optimisation and

Ant Colony Optimisation

Meta-Heuristic

This chapter reviews basic definitions of concepts related to optimisation. The ant

colony meta-heuristic, viewed in the general context of combinatorial optimisation, is

then discussed. This is followed by a detailed description as well as a guide to three major

ant colony optimisation algorithms, namely, the ant system, the ant colony system, and

the MAX-MIN ant system.

3.1 Introduction

Ant colony optimisation (ACO) [54, 56] refers to a recent meta-heuristic approach

for solving difficult combinatorial optimisation problems. ACO was inspired by the

pheromone trail laying and following behaviour of real ants which use pheromones as a

communication medium. With reference to this biological example, ACO is based on

the indirect communication of a colony of simple agents, termed artificial ants, which

is mediated by (artificial) pheromone trails. The pheromone trails in ACO algorithms

serve as distributed, numerical information which the ants use to construct probabilis-

tic solutions to the problem under investigation and which the ants adapt during the

algorithm’s execution to reflect their search experience.

The ant system (AS) was the first ACO algorithm [56] developed to solve the trav-

elling salesman problem (TSP) [127]. Despite initial encouraging results, AS was not

able to compete with state-of-the-art algorithms for the TSP [57]. Nevertheless, AS did

play an important role in stimulating further research on algorithmic variants which did

obtain far more improved computational performance [53, 56, 73, 195]. Motivated by
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this success, the ACO meta-heuristic was proposed [54, 56] as a common framework for

the existing applications and algorithmic variants. Algorithms which follow the ACO

meta-heuristic are generically referred to as ACO algorithms for the remainder of this

thesis.

The rest of chapter 3 is organised as follows: Section 3.2 provides an overview of com-

putational complexity, Section 3.3 discusses meta-heuristics in general, Section 3.4 gives

an overview of the ant colony optimisation meta-heuristic, while Section 3.5 provides a

detailed description of three major ant colony optimisation algorithms.

3.2 Computational Complexity

An important criterion for the classification of problems is the time required by algo-

rithms to find a solution to the given problem. This issue is addressed by the theory of

computational complexity [154] and, in particular, by the theory of NP-completeness [80].

The subject of computational complexity theory is dedicated to classifying problems in

terms of their degree of complexity.

The time-complexity of an algorithm is measured by a time-complexity function that

offers, depending on the size of the problem instance, the maximal run-time needed

by the algorithm to solve an instance of that problem. The size of a problem instance

reflects the volume of data required to encode an instance in a compact form. An intuitive

understanding of the size of an instance of the problem often suffices; for example, the size

of TSP [127] instance may be measured by the number of cities to be visited. Typically

the time-complexity is detailed in terms of the number of elementary operations required

to solve the problem, for example, the number of value assignments or comparisons. Time

complexity is formalised by the O(.) notation: Let f : N → N and g : N → N be two

functions. Then, f(n) = O(g(n)) if there are positive integers c and n0 such that for all

n > n0, f(n) ≤ c.g(n).

An algorithm runs in polynomial time if the runtime is bounded by a polynomial. If

it is not possible for the runtime to be bounded by a polynomial then the algorithm is

said to be an exponential time algorithm. In complexity theory a distinction is made

between efficiently solvable problems (easy problems) and inherently intractable prob-

lems (difficult problems). Usually, a problem is considered to be efficiently solvable if it

is possible to find a solution in a number of steps bounded by a polynomial of the input
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size. If the number of steps needed to solve an instance grows super-polynomially then

that problem is considered to be inherently intractable.

The theory of NP-completeness distinguishes between two basic classes of problems:

the class NP of tractable problems and the NP-complete class of problems. The class

NP consists of those problems that may be solved by a nondeterministic polynomial-

time algorithm (composed of a guessing stage and a checking stage). The NP-complete

class is the class comprising the most difficult problems. If it is possible to solve an

NP-complete problem by a polynomial time algorithm, then all problems in NP may be

solved in polynomial time.

Many problems of practical and theoretical importance within the fields of artificial

intelligence and operations research are of a combinatorial nature [9, 32, 127, 135, 205].

Combinatorial optimisation problems involve finding values for discrete variables such

that certain conditions are satisfied. Problems of combinatorial nature may be classified

either as optimisation or constraint satisfaction problems. The goal of combinatorial

optimisation problems is to find an optimal arrangement, grouping, ordering, or selection

of discrete objects.

The TSP [127] is probably the most widely known combinatorial optimisation prob-

lem, where the goal is to find a closed tour through a set of cities. Other examples

of combinatorial optimisation problems are assignment [32], scheduling [9], and vehicle

routing problems [205]. Constraint satisfaction problems (CSP) [135] require a solution

to be found that satisfies a given set of constraints. An important special case of the

CSP is the well-known satisfiability problem in propositional logic [122]. Other CSP

problems are graph coloring [25], temporal and spatial reasoning [5], as well as resource

allocation [151].

Combinatorial optimisation problems are often extremely difficult to solve. For ex-

ample, no algorithm exists for finding the optimal solution to a TSP within polynomial

time [153]. Similarly, no algorithm is guaranteed to decide in polynomial time whether a

given CSP instance is satisfiable or not. These problems are classified as NP-complete.

The class of NP-complete problems has the important distinction that no polynomial

time algorithm for any of its members exists to date and, consequently, these problems

are considered as inherently intractable from a computational point of view. Thus, in

the worst case, any algorithm that endeavours to solve an NP-complete problem will

require exponential execution time. In particular, the TSP and the CSP belong to this
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class and are thus among the most difficult combinatorial problems.

Algorithmic approaches to combinatorial optimisation problems may be classified as

either exact or approximate [96]. Exact algorithms are guaranteed to find an optimal

solution in finite time by systematically searching the solution space. However, due to

the NP-completeness of many combinatorial optimisation problems, the time needed to

solve these problems may grow exponentially in the worst case. As a result of the fact

that there are several problems for which exact algorithms display poor performance,

several types of approximate algorithms have been developed that provide high quality

solutions to combinatorial problems in short computation time [62, 108].

Approximate algorithms may be classified into two main types: construction algo-

rithms and local search algorithms [193]. Construction algorithms generate solutions

from scratch by adding solution components step by step. The best known examples

are greedy construction heuristics [24]. The main advantage of the greedy heuristics is

speed: the algorithms are very quick and return reasonably good solutions. However,

these solutions are not guaranteed to be optimal with respect to small local changes and

solutions may be further improved by a local search.

Local search algorithms start from some given solution and try to find a better

solution within an appropriately defined neighbourhood of the current solution. Should

a better solution be found, this solution then replaces the current solution and the local

search is continued from this point. The most basic local search algorithm, termed

iterative improvement [59], applies these steps repeatedly until it is no longer possible to

find a better solution in the neighbourhood of the current solution and stops in a local

optimum. A disadvantage of this algorithm is that it may stop at poor quality local

minima. In order to avoid these disadvantages, many generally applicable extensions of

local search algorithms have been proposed [81, 118, 192, 193]. Local search algorithms

may be improved by either accepting worse solutions and, thus, allowing the local search

to escape from local optima, or by generating good starting solutions for local search

algorithms which guide towards better solutions. In the latter case, the experience gained

during the run of the algorithm is often used to guide the search in subsequent iterations.

General-purpose techniques have been designed to allow for a further improvement

in solution quality. These methods are termed meta-heuristics [152]. A meta-heuristic is

defined as a general heuristic method which is used to guide an underlying construction

or local search algorithm towards promising regions of the search space containing high
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quality solutions. In other words, a meta-heuristic may be seen as a general algorithmic

framework which may be applied to different combinatorial optimisation problems with

relatively few modifications if given some underlying, problem specific method. The

problem considered in this thesis is a combinatorial optimisation problem.

The next section describes meta-heuristics in more detail.

3.3 Meta-Heuristics

Meta-heuristics are high-level strategies which guide an underlying, more problem spe-

cific heuristic, in enhancing the performance of this heuristic. Meta-heuristics are appli-

cable to a wide range of different combinatorial optimisation problems [20]. The main

goal is to avoid the disadvantages of iterative improvement and, in particular, multiple

descent by allowing the local search to escape from local optima. Many of the meta-

heuristic methods may be interpreted as introducing a bias so that high quality solutions

are produced quickly. This bias may take various forms and it may be cast as descent bias

(based on the objective function), memory bias (based on previous decisions), or experi-

ence bias (based on prior performance) [193]. Many of the meta-heuristic approaches rely

on probabilistic decisions which were made during the search [193]. However, the main

difference in terms of pure random search is that meta-heuristics do not use randomness

blindly, but in an intelligent, biased form.

When applied to combinatorial optimisation problems, the main aim of meta-heuristic

algorithms is to provide efficient solution techniques in order to yield high quality solu-

tions within a reasonable amount of time.

The next section discusses one of the most popular and efficient meta-heuristics,

namely, the ant colony optimisation (ACO) meta-heuristic. The algorithms proposed in

this thesis are using an ACO approach.

3.4 Ant Colony Optimisation Meta-Heuristic

Ant colony optimisation (ACO) is a meta-heuristic proposed by Dorigo [51].

The inspiring source of ACO is the foraging behaviour of real ants. The foraging

behaviour [45] enables the ants to find shortest paths between food sources and their

nests. While walking from food sources to the nest and vice versa, ants deposit a
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substance called pheromone on the ground. In this way a pheromone trail is formed.

When they decide about a direction to go they choose, in probability, paths marked by

strong pheromone concentrations. This basic behaviour is the basis for a cooperation

interaction which leads to the emergence of shortest paths.

One of the basic principles of ACO is the use of an algorithmic counterpart of the

pheromone trail as a medium for cooperation and communication among a colony of

artificial ants. This medium of communication is guided by positive feedback.

Artificial ants posses characteristics of the real ants foraging behaviour. Artificial ants

are also enriched with additional capabilities to make them more effective and efficient.

The rest of the section is organised as follows. Subsection 3.4.1 discusses ant algo-

rithms and the foraging behaviour of real ants. Subsection 3.4.2 describes the relation

between natural and artificial ants. Subsection 3.4.3 discusses a general framework for

the ant colony optimisation meta-heuristic.

3.4.1 Ant Algorithms and Foraging Behaviour of Real Ants

Ant algorithms were first proposed by Dorigo et al. [51, 55] as a multi-agent approach to

difficult combinatorial optimisation problems, e.g. the travelling salesman problem and

the quadratic assignment problem (QAP). There is currently much ongoing research in

the scientific community with the aim of extending and applying ant-based algorithms

to the many different discrete optimisation problems [21, 38]. Recent applications of ant-

based algorithms cover problems such as vehicle routing [27, 205], sequential ordering [66,

75], graph colouring [4], routing in communications networks [98], amongst others.

Ant algorithms were inspired by observations of real ant colonies [45, 141]. Ants are

social insects, that is, insects that live in colonies and whose behaviour is directed more

to the survival of the colony as a whole than to that of a single individual component of

the colony. Social insects have captured the attention of many scientists [54, 58] because

of the high structuration level such colonies are capable of, especially when compared to

the relative simplicity of the individuals within the colony.

An important and interesting form of behaviour on the parts of ants is their foraging

behaviour [56], and, in particular, the way in which ants find the shortest paths between

food sources and their nest. Ants are able to detect pheromone and probabilistically

choose the next path to follow based on pheromone concentrations. Pheromone trails

enable ants to find their way back to the food source (or to the nest). Also, pheromone
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trails may be used by other ants to find the location of food sources which have been dis-

covered by other ants. It has been demonstrated experimentally [45] that this pheromone

trail following behaviour may give rise to the emergence of shortest paths. In other words,

when more paths are available from the nest to a food source, a colony of ants may be

able to exploit the pheromone trails left by the individual ants in order to discover the

shortest path from the nest to the food source and back again.

In order to study the foraging behaviour of ants under controlled conditions, Deneubourg

et al. [45] set up the binary bridge experiment. In this laboratory experiment, as illus-

trated in Figure 3.1, the nest was separated from the food source by a bridge with two

equally long branches. Initially, both branches were free of any pheromones. After a

finite time period, one of the branches was selected, with most of the ants following the

path, despite the fact that both branches were of the same length. This selection of one

of the branches is as a result of random fluctuations in path selection which cause higher

concentrations on the one path.

Nest Food

Upper Branch

Lower Branch

Figure 3.1: Binary bridge experiment

From this experiment, referred to as the binary bridge experiment, a simple, formal

model was developed to characterise the path selection process [45, 159]. This proba-

bilistic model makes the assumption that ants deposit the same amount of pheromone.

This assumption implies that pheromone evaporation is not taken into account. It is

also assumed that the amount of pheromone on a branch is proportional to the number

of ants that used the branch in the past. The probability of choosing a branch at a

certain time depends on the total amount of pheromone on the branch, which is, in turn,

proportional to the number of ants that have used the branch until that time. More pre-

cisely, if Um and Lm respectively denote the numbers of ants that have used the upper
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and lower branches after m ants have crossed the bridge, then Um + Lm = m. Pasteels

et al. [159] found empirically that the probability, PU(m), with which the (m+1)-th ant

chooses the upper branch is given as

PU(m) =
(Um + z)h

(Um + z)h + (Lm + z)h
(3.1)

where z quantifies the degree of attraction of an unexplored branch, and h is the bias to

using pheromone deposits in the decision process. The probability, PL(m), that an ant

chooses the lower branch is PL(m) = 1− PU(m).

Nest

Food

..
.
.

.
.

. .
.

.

..

.

.

Figure 3.2: Ants start exploring the dou-
ble bridge
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Figure 3.3: Shortest path selection by
forager ants

Goss et al. [83] extended the binary bridge experiment such that one of the branches

of the bridge is longer than the other, as illustrated in Figures 3.2 and 3.3. Dots in

these figures indicate ants. Initially, paths are chosen randomly with approximately the

same number of ants following both paths. However, over time, more and more ants

follow the shorter path, since ants that follow the shortest path return to the nest earlier

than those ants on the longer path. The pheromone on the shorter path is, therefore,

reinforced sooner than that on the longer path.

The above process represents a form of distributed optimisation mechanism to which

each single ant makes a very small contribution. It is interesting to note that, although

a single ant is, in principle, capable of constructing a solution (i.e. of finding a path
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between the nest and food reservoir), it is only the ensemble of ants, that is the ant

colony, which presents the shortest path finding behaviour. In a sense, this behaviour

may be viewed as an emergent property of the ant colony. It is also interesting to note

that ants are able to perform this specific behaviour using a simple form of indirect

communication mediated by pheromone laying which is known as stigmergy [84].

Stigmergetic communication is at work via the pheromone that ants deposit on the

ground while walking. Correspondingly, artificial ants simulate pheromone laying by

modifying appropriate pheromone variables associated to problem states visited, while

building solutions to the optimisation problem under consideration. Also, according to

the stigmergetic communication model, artificial ants have local access only to these

pheromone variables.

Another important aspect of the foraging behaviour of real ants, that is exploited

by artificial ants, is the coupling between the autocatalytic (positive feedback) mecha-

nism [55] and the implicit evaluation of solutions. Implicit solution evaluation is the fact

that shorter paths (which correspond to lower cost solutions) will be completed earlier

than longer paths and therefore, shorter paths will receive pheromone reinforcement more

quickly. Implicit solution evaluation coupled with autocatalysis may be very effective:

the shorter the path, the sooner the pheromone is deposited by the ants and the greater

the number of ants that use the shorter path. As a result of the stronger attraction

of ants via the high pheromone concentrations, autocatalysis causes the shortest paths

to be favoured. This may cause premature convergence (stagnation) [51, 56], where

ants converge too quickly on the same path. Consequently, ants barely explore, and

exploit too much. The result of stagnation is that a suboptimal solution may be found.

Pheromone trail evaporation and stochastic (based on random choice) state transitions

are used to address these autocatalysis drawbacks. Evaporation causes pheromone con-

centrations on paths to decrease, thereby increasing the probability of selecting longer

paths.

3.4.2 Relation Between Natural and Artificial Ants

The artificial ant is a simple, computational agent that builds feasible solutions to the

problem being optimised by exploiting the available pheromone trails and heuristic in-

formation [52, 54]. Real and artificial ant colonies share a number of characteristics. The

most important of these characteristics are summarised as follows [54]:
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• Natural and artificial ants both use a colony of individuals that interact and col-

laborate in order to solve a given task.

• Natural and artificial ants both modify their “environment” through stigmergic

communication based on pheromones. In the case of artificial ants the (artificial)

pheromone trail consists of numeric information which is only locally available.

• Natural and artificial ants both share a common task, i.e. the search for the shortest

path from an origin (the ant nest) to a certain goal state (the food).

• As do real ants, artificial ants build solutions iteratively by applying a local stochas-

tic transition policy in order to move between adjacent states.

However, these characteristics alone do not allow for the development of efficient

algorithms for difficult combinatorial problems. Artificial ants live in a discrete world

and possess additional capabilities:

• Artificial ants make use of heuristic information in the stochastic transition policy

used to select next links in the path being constructed.

• Artificial ants possess a memory that stores the path followed.

• The amount of pheromone deposited by artificial ants is a function of the quality

of the solution discovered.

• Pheromone evaporation in ACO algorithms is different to the pheromone evapora-

tion in nature, since the inclusion of an evaporation mechanism is a key question

to avoid the algorithm becoming stuck in local optima.

3.4.3 General Framework for Ant Colony Optimisation Meta-

Heuristic

Several ACO algorithms exist, which are collectively referred to as ant colony optimisa-

tion meta-heuristics. These algorithms model and exploit the behaviour of ants to be

applied to solve graph-based, NP-hard, combinatorial optimisation problems.

The main characteristics of ACO are:
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1. Autocatalytic: The system uses positive feedback as a way of auto-reinforcement.

This process is iterative, and soon almost all ants will be choosing the best path.

2. Distributed computation: A number of agents are searching for the best solu-

tion.

3. Constructive heuristics: A “greedy force” which balances the decisions of ants

in terms of shorter paths or paths with more pheromone.

The problem to solve with an ACO algorithm is represented by a graph, G = (V, L),

where V denotes the set of nodes and L is a matrix which represents the connections

between nodes. The graph has NG = |V | nodes.

ACO algorithms are essentially construction algorithms: For each algorithm iteration,

every artificial ant constructs a solution to the problem by travelling on a construction

graph. Each link, (i, j) ∈ L, of the graph, which represents a possible step that an ant

may make, possesses two kinds of information in order to guide ant movements:

• Heuristic information which measures the heuristic preference of moving from

node i to node j. This heuristic information is denoted by ηij.

• Artificial pheromone trail information which measures the “learned desirabil-

ity” of the movement and mimics the real pheromone that natural ants deposit.

This pheromone information is denoted by τij.

The ACO meta-heuristic framework consists of three parts, namely, Ants generation-

and activity(), EvaporatePheromone(), and DaemonActions() (refer to Algorithm 3).

Ants generation and activity() After initialising each link of the problem graph

with a very small amount of pheromone and defining the starting node of each ant, each

ant iteratively constructs a solution during each iteration.

The transition rule assigns a probability to each possible link leading from the cur-

rent node. This probability expresses the desirability of each link and is calculated as

a function of pheromone concentrations on the link and heuristic information. While

moving, an ant keeps in memory the partial solution it has built in terms of the path the

ant was walking on the construction path. As ants construct paths (i.e. solutions to the

44

 
 
 



optimisation problem), a pheromone update rule is executed to update pheromone con-

centrations on links. The exact way in which the pheromone update rule is implemented

differs based on the specific ACO algorithm used. Depending on the algorithm used,

all ants can update pheromone on all links along the traversed path (referred to as the

online step-by-step pheromone trail update). Once every ant has generated a solution,

the ant can deposit an amount of pheromone which is a function of the quality of the

ant’s solution (referred to as the global or online delayed pheromone trail update).

EvaporatePheromone() Pheromone evaporation is used to increase exploration of

alternative paths, thereby reducing the chance of premature stagnation. For each link,

(i, j), pheromone evaporation is implemented using

τij(t) = (1− ρ)τij(t), ∀(i, j) ∈ L (3.2)

where ρ ∈ [0, 1] specifies the rate at which pheromones evaporate.

DaemonActions() Since not all ACO algorithms make use of daemon actions, the

daemon actions are indicated as optional. Daemon actions can be used to implement

centralised actions which cannot be performed by single ants. An example daemon action

is the use of a local optimisation procedure applied to the solutions built by the ants.

Pheromone updates performed by the daemon are called offline pheromone updates.

A generic ACO meta-heuristic algorithm is summarised in Algorithm 3. The high-

level description in Algorithm 3 consists of the above three main components of ACO

algorithms, namely, ant generation and activation, pheromone evaporation, and daemon

actions gathered in the schedule activities construct. The schedule activities construct

does not specify how these three activities are scheduled and synchronised. This is up

to the algorithm design.

Action ants generation and activity creates a new ant and activates that ant. The

procedure new active ant is called for each ant to construct a path from source to desti-

nation node. The procedure refers to an ant routing table which is maintained for each

ant. Each entry in an ant routing table is a value obtained by a functional composition of

the pheromone and heuristic values of the link of the corresponding nodes. The abstract

specification of new active ant() allows for the implementation of any ACO instances.
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Algorithm 3 Generic ACO Meta-Heuristic

procedure ACO Meta Heuristic()
while termination criterion not satisfied do

begin schedule activities
ants generation and activity();
pheromone evaporation();
daemon actions(); {optional}

end schedule activities
end while
end procedure

procedure ants generation and activity()
while available resources do

schedule the creation of a new ant();
new active ant();

end while
end procedure

procedure new active ant() {ant lifecycle}
initialise ant();
M= update private ant memory();
i = starting node;
D = target node;
T = ∅; {ant solution}
while i 6= D do

Build set of neighbours for i; {using M}
A = read local ant routing table(); {problem specific heuristic information and pheromone infor-
mation}
Assign probability pij to each neighbour node j based on A,M , and problem constraints;
Select next node j according to transition policy based on pij and problem constraints;
T = T ∪ j;
i = j;
if online step by step pheromone update then

deposit pheromone on the visited arc();
update ant routing table();

end if
M= update private ant memory();

end while
if online delayed pheromone update then

evaluate solution();
deposit pheromone on all visited arcs();
update ant routing table();

end if
die(); {when ant finish building a solution and depositing pheromone the ant is deleted from the
system}
end procedure
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3.5 Ant Colony Optimisation Algorithms

The term ACO meta-heuristic (ACO-MH) is used to represent all instances of ACO

variants [52, 54]. ACO refers to an algorithm which is a specific instance of the generic

algorithm presented in Algorithm 3.

The ACO-MH comprises a wide class of algorithms that may manifest very different

implementations. However, the ACO-MH is not sufficiently general to cover the full

family of ant algorithms. The fast ant system [198, 199] is an example of an ant algorithm

which is not covered by the ACO-MH. The fast ant system is a construction algorithm

based on the operation of a single ant without using explicit pheromone evaporation.

The next subsections discuss three different instances of the ACO-MH, namely, the

ant system [56], the ant colony system [53], and the MAX-MIN ant system [194]. The

algorithms presented in this thesis are adaptations of these three ACO algorithms. The

complete algorithm for each of these ACO instances is given. The three algorithms vary

in their transition rules and their pheromone trail update rules.

3.5.1 Ant System

The ant system (AS), developed by Dorigo et al. [56], was the first algorithm inspired

by the behaviour of real ants. Even though AS was developed to solve the travelling

salesman problem (TSP) [74], it can be applied to a more general class of combinatorial

optimisation problems [27, 67, 75, 140]. The AS deviates from the natural metaphor in

that artificial ants possess a degree of memory. Memory is achieved by maintaining a

tabu list of already visited cities. This is used to prevent revisiting cities. The tabu list

is selected using the ant’s private memory, M (refer to the generic ACO meta-heuristic

in Algorithm 3).

In AS, at each construction step an ant k chooses to go to the next node with a

probability that is computed as:

pk
ij(t) =





(τij(t))
α(ηij(t))

β
∑

u∈Nk
i

(t)
(τiu(t))α(ηiu(t))β if j ∈ Nk

i (t)

0 otherwise

(3.3)

where Nk
i (t) is the set of feasible nodes for ant k which is currently located at node i;

Nk
i (t) = V (i)\TLk(t), where TLk(t) is the tabu list for ant k, storing the ant’s partial

47

 
 
 



tour and V (i) is the set of neighbouring nodes for ant k which is currently located at

node i; τij represents the a posteriori effectiveness of the move from node i to node j, as

expressed in the pheromone intensity of the corresponding link, (i, j); ηij represents the a

priori effectiveness of the move from i to j (i.e. the attractiveness, or desirability of the

move) computed using a specific heuristic; α is a positive constant used to amplify the

influence of pheromone concentrations; β is an adjustable parameter that controls the

relative influence of the attractiveness, ηij(t), of node j. The heuristic information, ηij,

adds an explicit bias towards the most attractive solutions and is, therefore, a problem

dependent function.

The transition probability as given in equation (3.3) balances pheromone intensity,

τij, and heuristic information, ηij. The best balance between exploration and exploitation

is achieved through proper selection of the parameters α and β. Therefore, the transition

probability is a trade-off between heuristic (which indicates that close nodes should be

chosen with high probability, thus implementing a greedy constructive heuristic) and

pheromone trail intensity at time t (which indicates that links with a high traffic load

are more desirable than links with a low traffic load, thus implementing the autocatalytic

process). The ant’s decision table, Ai, for node i (refer to Algorithm 3), is obtained by

the composition of the local pheromone trail values with the local heuristic values as in

equation (3.3).

Pheromone evaporation is implemented as given in equation (3.2). Once all ants have

constructed a solution, pheromones are laid on the links, and the amount of pheromone

on the trails is calculated using

τij(t + 1) ← τij(t) + ∆τij(t) (3.4)

where τij(t) represents the pheromone concentration associated with link (i, j), and ∆ij(t)

is the total amount of pheromone deposited by all ants on link (i, j), defined as

∆τij(t) =

nk∑

k=1

∆τ k
ij(t) (3.5)

with
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∆τ k
ij(t) =





Q
Lk(t)

if link (i, j) occurs in path described by TLk(t)

0 otherwise
(3.6)

where Q is a parameter that specifies the amount of pheromones ant k has to distribute

throughout its trail, Lk(t) is the tour length of ant k or the quality of the complete path

constructed by the ant k, and nk is the number of ants. Ants with a minimum tour

length deposit a greater amount of pheromone on the links that form part of their trails,

while longer tours receive smaller pheromone deposits.

The AS algorithm is summarised in Algorithm 4.

3.5.2 Ant Colony System Optimisation

This section describes the ant colony system (ACS) – an ACO meta-heuristic introduced

by Dorigo and Gambardella [53] in order to improve the performance of AS. ACS differs

from AS in four aspects:

1. a different transition rule is used,

2. a different pheromone update rule is defined,

3. local pheromone updates are introduced, and

4. candidate lists are used to provide additional local heuristic information.

Each of these differences is discussed next.

ACS transition rule

The ACS transition rule, also referred to as a pseudo-random-proportional action rule [74],

was developed explicitly to balance the exploration and the exploitation abilities of the

algorithm. Ant k, currently located at node i, selects the next node, j, to move to using

the rule,

j =





Arg Maxu∈Nk
i (t){τiu(t)η

β
iu(t)} if r ≤ r0,

J otherwise
(3.7)
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Algorithm 4 General Procedure of Ant System Algorithm

t = 0;
TLbest(t) = ∅; {shortest path}
Lbest(t) = 0; {tour length of the shortest path}
Initialise all parameters, i.e. α, β, ρ, Q, nk, τ0;
Place all ants, k = 1, ..., nk;
for each link (i, j) do

τij(t) = τ0; {Initialise pheromones to the small value τ0}
ηij(t) = 1

dij
; { dij represents the distance between the nodes i and j }

end for
repeat

for all ant k = 1, ..., nk do
TLk(t) = starting node of ant k;
i = starting node of ant k;
repeat

From current node i, select next node j with probability as defined in equation
(3.3);
Add j to the ordered list TLk(t);
i = j;

until full path has been constructed
Lk(t)=length of the tour described by TLk(t);
if Lk(t) < Lbest(t) then

TLbest(t) = TLk(t);
end if

end for
for each link (i, j) do

Apply evaporation using equation (3.2);
Calculate ∆τij(t) using equation (3.5);
Update pheromone using equation (3.4);

end for
for each link (i, j) do

τij(t + 1) = τij(t);
end for
t = t + 1;

until Stopping condition is true
Return TLbest(t);
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where r is a real random variable uniformly distributed in the interval [0, 1], r0 is a

tuneable parameter (0 ≤ r0 ≤ 1), and J ∈ Nk
i (t) is a node that is randomly selected

according to probability,

pk
iJ(t) =

τiJ(t)ηβ
iJ(t)∑

u∈Nk
i (t) τiu(t)η

β
iu(t)

(3.8)

where Nk
i (t) is a set of valid nodes to visit and β is an adjustable parameter that controls

the relative influence of the attractiveness, ηij(t), of node j. The ACS transition rule

uses α = 1 and may be omitted. If β = 0, only pheromone amplification is at work, and

this will, in turn, lead to the rapid selection of tours which may prove to be far from

optimal. When r ≤ r0 exploitation is facilitated. The selection of the next node is then

heavily influenced by the distances between nodes and existing pheromone concentrations

by choosing the best local compromise between distance and pheromone concentration.

When r > r0 exploration is favoured. Greater emphasis may be placed on exploitation

instead of exploration by increasing the value of r0.

Pheromone global update

The ant that performed the best tour is allowed to update the concentrations of pheromone

on the corresponding links globally. Gambardella and Dorigo [53] implemented two meth-

ods of selecting the best tour (best path), TLbt(t), namely

• iteration-best in terms of which TLbt(t) represents the best path found during

the current iteration, t, denoted as TLib(t), and

• global-best in terms of which TLbt(t) represents the best path globally which has

been found from the beginning of the trial, denoted as TLgb(t).

The pheromone concentration, τij(t), is then modified by an amount, ∆τij(t), as

follows:

∆τij(t) =





1
Lbt(t)

if (i, j) ∈ TLbt(t)

0 otherwise
(3.9)
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where Lbt(t) represents the length of the tour described by TLbt(t).

Only the best tour is reinforced through the global update as follows (including

pheromone evaporation),

τij(t + 1) ← (1− ρg)τij(t) + ρg∆τij(t) (3.10)

where ρg(0 ≤ ρg ≤ 1) is a parameter governing global pheromone decay.

The ACS global update rule results in the search being more directed by encouraging

ants to search in the vicinity of the best solution found thus far. This strategy favours

exploitation and is applied after all ants have constructed a solution.

Local update

When, while performing a tour, ant k is on node i and selects node j ∈ Nk
i (t) as the

next node to hop to, the pheromone concentration of (i, j) is immediately reinforced by

a fixed amount τ0. The pheromone decays simultaneously using

τij(t) ← (1− ρl)τij(t) + ρlτ0 (3.11)

where ρl(0 ≤ ρl ≤ 1) is a parameter which governs local pheromone decay, and τ0

is a small positive constant. Experimental results demonstrated that τ0 = 1/(nGLnn)

provided good results [53]; nG is the number of nodes in graph G, and Lnn is the tour

length produced by the nearest neighbour heuristic [172].

Candidate list

A candidate list is a list of preferred nodes to be visited from a given node. When an ant

is in node i, instead of examining all the unvisited neighbours of i, the ant chooses the

node to move to among those in the candidate list. Only if no candidate list node has

unvisited status then other nodes are examined. The candidate list contains nc < Nk
i (t)

nodes ordered by increasing cost, and the list is scanned sequentially and according to

the ant tabu list to avoid already visited cities.

ACS is summarised in Algorithm 5.
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Algorithm 5 General Procedure of Ant Colony System Algorithm

t = 0; Initialise parameters β, ρg, ρl, r0, nk, τ0;
Place all ants, k = 1, ..., nk;
for each link (i, j) do

τij(t) = τ0;
ηij(t) = 1

dij
; { dij represents the distance between the nodes i and j }

end for
TLgb(t) = ∅;
Lgb(t) = 0;
repeat

for all ants k = 1, ..., nk do
TLk(t) = starting node of ant k;
i = starting node of ant k;
repeat

From current node i, select next node j ∈ Nk
i (t) using equations (3.7) and (3.8);

Add j to the ordered list TLk(t);
i = j;
Apply local update using equation (3.11);

until full path has been constructed;
Lk(t)=length of the tour described by TLk(t);

end for
for k = 1, ..., nk do

if Lk(t) < Lgb(t) then
TLgb(t) = TLk(t);
Lgb(t) = Lk(t);

end if
end for
for each link (i, j) ∈ TLgb(t) do

Apply global update using equation (3.10);
end for
for each link (i, j) do

τij(t + 1) = τij(t);
end for
TLgb(t + 1) = TLgb(t);
Lgb(t + 1) = Lgb(t);
t = t + 1;

until Stopping condition is true;
Return TLgb(t) as the solution;
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3.5.3 MAX-MIN Ant System

Stützle and Hoos [194] introduced the max-min ant system (MMAS) in order to ad-

dress the premature stagnation problem of AS. The main difference between MMAS

and AS is that pheromone intensities are restricted within given intervals, τmin ≤ τij ≤
τmax for all τij, where τmin and τmax are two tunable parameters. By choosing appro-

priate values for τmin and τmax stagnation is reduced. Additional differences with AS as

stated in [194] are:

• After each iteration only the best ant is allowed to deposit pheromones following

the ACS model.

• Trails are initialised with the highest possible volume of pheromone τmax to incite

high exploration of trails at the commencement of the search process.

In order to limit the stagnation of the search a direct influence on the pheromone

limits is exerted by restricting the allowed range of the possible pheromone strength.

Pheromone strength is bounded by an upper and lower limit (thus MAX-MIN). A range

[τmin, τmax] is imposed to all τij components. A bound on the upper level is given as [195]

τmax(t) =

(
1

1− ρ

)
1

Lib(t)
(3.12)

where ρ is the evaporation factor and Lib(t) is the cost of the iteration-best path at

iteration t (alternatively the global-best path). The upper level is, therefore, time-

dependent. Before the first iteration the pheromone strength on all links is set to a

certain high value to ensure that, after the first iteration, the pheromones correspond to

τmax. The lower bound may be calculated as [195]

τmin(t) =
τmax(t)(1− p

1/(nG−1)
best )

(nG

2
− 1)p

1/(nG−1)
best

(3.13)

where nG denotes the number of nodes in graph, G, and pbest is the probability at which

the best solution is constructed. The term, nG

2
− 1, represents the average number of

nodes from which an ant has to choose.

The transition rule is the same as that of AS while the global update is the same

as that of ACS. As a result of the evaporation coefficient, all pheromones are decreased
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at the end of each iteration while the pheromones on the links pertaining to the best

solution are increased. The pheromone upper bound helps to avoid search stagnation by

preventing only one trail from accumulating high values of pheromone. By limiting the

amount of pheromone in a given trail, the probability of an ant choosing that particular

trail is also limited.

The max-min algorithm is summarised in Algorithm 6. The iteration-best solution

is used to update pheromone concentrations.

3.6 Summary

Ant colony optimisation (ACO) has been used for the last decade to design effective

algorithms to solve combinatorial optimisation problems.

This chapter provided an overview of the basic principles of combinatorial problems.

ACO meta-heuristics for solving combinatorial optimisation problems were discussed,

including the most popular ACO algorithms. The ACO algorithms discussed in this

chapter are stochastic, population-based search algorithms. Optimal solutions are in-

crementally constructed by a number of agents working cooperatively by exchanging

information obtained about the search space.

The ACO algorithms discussed in this chapter were developed to solve

• static and well defined combinatorial optimisation problems; that is, problems for

which all the necessary information is both available and does not change during

the optimisation process, and

• single-objective optimisation problems.

In order to apply ACO algorithms to dynamic problems, the algorithms have to

be adapted to ensure good exploration abilities during the entire optimisation process.

Similarly, ACO algorithms have to be adapted to solve multi-objective optimisation

problems (MOPs).

Chapter 4 shows how ACO algorithms can be adapted to solve MOPs, while Chapter

5 explains how ACO algorithms can be adapted to solve dynamic optimisation problems.
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Algorithm 6 General Procedure of Max-Min Ant System Algorithm

Initialise parameters α, β, ρ, nk, pbest, τmin, τmax;
t = 0, τmax(0) = τmax, τmin(0) = τmin;
Place all ants, k = 1, ..., nk;
for each link (i, j) do

τij(t) = τmax(0);
ηij(t) = 1

dij
; { dij represents the distance between the nodes i and j }

end for
repeat

TLib(t) = ∅; {TLib(t) is the iteration-best solution}
Lib(t) = 0;
for all ant k = 1, ..., nk do

TLk(t) = starting node of ant k;
i = starting node of ant k;
repeat

From current node i, select next node j with probability as defined in equation
(3.3);
Add j to the ordered list TLk(t);
i = j;

until full path has been constructed;
Lk(t)=length of the tour described by TLk(t);
if k=1 OR Lk(t) < Lib(t) then

TLib(t) = TLk(t);
Lib(t)=length of the tour described by TLib(t);

end if
end for
for each link (i, j) ∈ TLib(t) do

Apply global update using equation (3.10);
end for
for each link (i, j) do

Constrict τij(t) to be in [tmin(t), τmax(t)];
end for
TLib(t + 1) = TLib(t);
Lib(t + 1) = Lib(t);
t = t + 1;
Update τmax(t) using equation (3.12 );
Update τmin(t) using equation (3.13 );

until Stopping condition is true;
Return TLib(t) as the solution;
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Chapter 4

Multi-Objective Optimisation

Ant colony optimisation (ACO) algorithms were originally proposed for single-objective

optimisation problems [51, 52, 53, 54, 56, 195]. For many real-world problems it is

necessary to optimise more than one conflicting objective (multi-objective optimisation)

simultaneously. In this respect, an ACO has to be modified in order for it to be applicable

to multi-objective optimisation problems [11, 79, 134].

This chapter provides an overview of the different aspects of multi-objective op-

timisation. A definition of Pareto-optimality is provided and various multi-objective

optimisation algorithm classes are discussed. The adaptation of ACO algorithms for

multi-objective optimisation problems is discussed. In addition to the ACO algorithms

for multi-objective optimisation, the elitist non-dominated sorting genetic algorithm

(NSGA-II) is also described in detail. The NSGA-II is included in this chapter, as

it is used to compare the results with those of the ACO algorithms proposed in this the-

sis. Performance metrics that can be used to compare the performance of multi-objective

algorithms are also discussed.

4.1 Introduction

Many real-world problems require the simultaneous optimisation of a number of objective

functions. This is referred to as multi-objective optimisation (MOO) [208] and presents

a situation in which certain of the required objectives may be in conflict with one an-

other. An example of a multi-objective problem (MOP) is compressor design where

the major objectives are the maximisation of overall isentropic efficiency, the maximi-

sation of mass flow rate, the maximisation of total pressure ratio, the minimisation of

weight, and the maximisation of durability. Another example of a MOP is routing in

data communication networks, where the objectives may include minimisation of routing

cost, minimisation of route length, minimisation of congestion, and maximisation of the
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utilisation of physical infrastructure. There is an important trade-off between the last

two objectives, as minimisation of congestion is achieved by reducing the utilisation of

links. A reduction in utilisation, on the other hand, means that infrastructure, for which

high installation and maintenance costs are incurred, is under-utilised. Solutions to such

problems require a balance between conflicting objectives.

The remainder of this chapter is organised as follows: Section 4.2 provides a theoreti-

cal overview of the multi-objective problem (MOP). Section 4.3 discusses the concepts of

Pareto-optimal set and Pareto-optimal front. Section 4.4 presents a summary of MOO

algorithm classes. Section 4.5 demonstrates the way in which ACO can be adapted to

solve multi-objective problems. Section 4.6 discusses evolutionary multi-objective opti-

misation (EMO) and the NSGA-II algorithm. Section 4.7 discusses performance metrics

for comparing the performance of multi-objective algorithms.

4.2 Multi-Objective Optimisation Problem

Let S ⊆ Rnx denote the nx-dimensional search space defined by a finite set of decision

variables. Let x = (x1, x2, ..., xnx) ∈ S refer to a decision vector. A single objective

function, fk(x), is defined as fk : Rnx → R. Let f(x) = (f1(x), f2(x), ..., fno(x)) ∈ O ⊆
Rno be an objective vector containing no objective function evaluations; O is referred to

as the objective space. The search space, S , is also referred to as the decision space. Let

F ⊆ S denote the feasible space which is constrained by ng-inequality and nh-equality

constraints, i.e.

F = {x : gm(x) ≤ 0, hl(x) = 0, m = 1, ..., ng; l = 1, ..., nh} (4.1)

where gm and hl are the inequality and equality constraints respectively. With no con-

straints the feasible space is the same as the search space, S .

Using the notation above, a multi-objective optimisation problem is defined as:

minimise f(x)

subject to x ∈ F
x ∈ [xmin, xmax]

nx

(4.2)
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Solutions, x∗, to the MOP are in the feasible space, F ⊆ S . In order for x∗ to be in

the feasible space, F , both the inequality and equality constraints have to be satisfied.

The main issue in MOO is the presence of conflicting objectives, where improvement

in one objective may result in deterioration in another objective. Trade-offs do exist

between such conflicting objectives, however, and the task is to find solutions which

balance these trade-offs. Such a balance may be achieved when a solution is unable to

effect an improvement in any of the objectives without degrading one or more of the

other objectives. These solutions are referred to as non-dominated solutions of which

many may exist.

Therefore, the objective when solving a MOP is to produce a set of acceptable com-

promises rather than a single solution. This set of solutions is referred to as the non-

dominated set or the Pareto-optimal set. The plot of the objective functions whose

non-dominated solutions are in the Pareto-optimal set is called the Pareto front.

4.3 Pareto-Optimality

This section presents a number of definitions which pertain to MOO.

Definition 4.3.1. Domination: For two decision vectors, x and z, x dominates z,

noted x ≺ z, if and only if x is equally good or better than z for each of the objectives

to optimise, i.e.

fk(x) ≤ fk(z), ∀k ∈ {1, 2, .., no} ∧ ∃k ∈ {1, 2, .., no}|fk(x) < fk(z) (4.3)

The concept of dominance is illustrated in Figure 4.1 for a two-objective function,

f(x) = (f1(x), f2(x)). The shaded area denotes the area of the objective vectors which

are dominated by f .

Definition 4.3.2. Weak domination: A decision vector, x, weakly dominates a deci-

sion vector, z, noted x ¹ z, if and only if x is not worse than z for each of the objectives

to optimise, i.e.

fk(x) ≤ fk(z), ∀k ∈ {1, 2, .., no} (4.4)

Definition 4.3.3. Pareto-optimal: A decision vector x∗ ∈ F is termed a Pareto-

optimal solution for the MOP (refer to equation (4.2)) if there does not exist a decision

59

 
 
 



f1

(f1(x),  f2(x))
.

Dominated by f (x) = (f1(x),  f2(x))f2

Figure 4.1: The concept of dominance

vector, x 6= x∗ ∈ F that dominates x∗, i.e. 6 ∃x : fk(x) < fk(x
∗) ∀k ∈ {1, 2, .., no}. An

objective vector f∗(x) is Pareto-optimal if x is Pareto-optimal.

In words, a decision vector, x∗, is Pareto optimal if there exists no feasible vector

of decision variables x ∈ F which would decrease some criterion without causing a

simultaneous increase in at least one other criterion. The presence of multiple objective

functions, usually conflicting among them, give rise to a set of optimal solutions called

the Pareto-optimal set .

Definition 4.3.4. Pareto-optimal set: The set of all Pareto-optimal decision vectors

form the Pareto-optimal set, P∗. That is,

P∗ = {x∗ ∈ F| 6 ∃x ∈ F : x ≺ x∗} (4.5)

Therefore, the Pareto-optimal set contains the set of solutions, or balanced trade-offs,

for the MOP. The corresponding objective vectors are referred to as the Pareto-optimal

front PF∗.

Definition 4.3.5. Pareto-optimal front: Given the objective vector, f(x), and the

Pareto-optimal solution set, P∗, then the Pareto-optimal front, PF∗ is defined as

PF∗ = {f(x∗) = (f1(x
∗), f2(x

∗), ..., fno(x
∗))|x∗ ∈ P∗} (4.6)
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An example of a Pareto front is illustrated in Figure 4.2. Figure 4.3 illustrates the

assignment of an objective vector, f , to the decision vector, x.

Pareto-optimal  (Non-dominated)

Dominated

f1

f2

Figure 4.2: Pareto-optimal front for objectives f1 and f2

4.4 Multi-Objective Optimisation Algorithm Classes

It may be computationally expensive to generate the Pareto front [224]. Owing to the

computational complexity, exact methods to find all non-dominated solutions are not

feasible.

For this reason, a number of stochastic search strategies such as particle swarm opti-

misation (PSO) [60, 63], evolutionary algorithms (EAs) [15], tabu search [81], simulated

annealing [118], and ant colony optimisation (ACO) [54, 56] have been developed. These

strategies endeavour to find a set of solutions for which the objective vectors are not too

far removed from the optimal objective vectors.

MOO involves guiding the search towards the true Pareto front while maintaining a

diverse set of non-dominated solutions. The task of MOO is thus reduced to finding an
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x1

x2
Decision space

y1

y2
Objective space

(x1,x2,…,xn) (y1,y2,…,yn)f

Pareto set Pareto front

Figure 4.3: Mapping between decision space and objective space

approximation to the true Pareto front such that

• the distance to the true Pareto front is minimised,

• the set of non-dominated solutions, i.e. the Pareto-optimal set, is as diverse as

possible, and

• non-dominated solutions which have already been found are maintained.

The first objective is addressed by assigning an appropriate fitness function in order

to quantify the quality of a solution in the presence of multiple optimisation criteria.

In terms of the second objective, methods are used which preserve the diversity of non-

dominated solutions [42, 226]. The third objective which, in essence, addresses both

the first two objectives is achieved by using archives of previously found non-dominated

solutions [120]. The use of archives is a type of elitist strategy, where the best solutions

are maintained in a repository.

Depending on the fitness assignment strategy, classes of MOO algorithms are grouped

into:

• Aggregation-based methods. The objectives are aggregated into a single pa-

rameterised objective function. The parameters of this function are systematically
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varied during the optimisation run in order to find a set of non-dominated so-

lutions instead of a single trade-off solution. The aggregation-based method is

referred to as the weighted sum method [143]. Another aggregation-based method

is the epsilon-constraint method [46, 213], which involves optimising a primary

objective and expressing the other objectives in the form of inequality constraints.

Although aggregation methods have been successfully applied to solve MOPs, the

following disadvantages of these methods should be noted:

– Aggregation methods can find only one solution with a single application of

the algorithm. To find more than one solution repetitive applications of the

algorithm are required. However, repetitive applications do not guarantee

that distinct Pareto-optimal solutions will be found.

– Optimal values for the weights are problem dependent. Care must be taken

when choosing the values of the weights in order to ensure that an acceptable

solution is found.

• Criterion-based methods. Criterion-based methods [76, 142] switch between the

objectives during the optimisation process, i.e. different stages of the optimisation

process use different objectives.

• Dominance-based methods. One of the most important issues in MOO is that

of determining when one solution is better than another with respect to all objec-

tives. To address this issue the notion of dominance is used (refer to Section 4.3).

Dominance-based MOO algorithms [104, 177], using an archive, provide an efficient

way in which to find multiple Pareto-optimal solutions simultaneously in a single

simulation run.

The following paragraphs briefly describe MOO algorithms that make use of Pareto

dominance to find a set of non-dominated solutions.

Evolutionary algorithms (EA) refers to a class of stochastic optimisation methods

that simulate the process of natural evolution [224]. As a result of the population-

based nature of EAs, EAs have been widely used in multi-objective optimisation as the

population-based nature of EAs allows the generation of several elements of the Pareto-

optimal set with a single run [16, 40, 167].
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Particle swarm optimisation (PSO) [60, 61] refers to a population based stochastic

optimisation technique which was inspired by the social behaviour of bird flocking. PSO

algorithms have been adapted to maintain a set of non-dominated solutions using the

Pareto dominance [102, 158, 171].

Ant colony optimisation (ACO) algorithms have been adapted to solve MOPs [30,

49, 76, 85, 104, 177]. Most of the ACO algorithms adapt the way that pheromone and

heuristic information is used to increase diversity. Diversity is improved by ensuring

better exploration by artificial ants.

The rest of the chapter focuses on describing these MOO ACO algorithms, as MOO

ACO algorithms are used in this thesis to solve the multi-objective power-aware routing

problem.

4.5 Ant Colony Optimisation for Multi-Objective Op-

timisation

Ant colonies are increasingly used to solve various optimisation problems [51, 52, 53,

54, 56, 195]. Most of these applications of ACO algorithms are for single-objective

optimisation. For many real-world problems it is necessary to optimise more than one

conflicting objective simultaneously. In this respect, ACO algorithms have been adapted

to find a set of acceptable non-dominated solutions that cover, in the best way possible,

the various regions of the true Pareto front.

This section describes the different ways in which ACO has been adapted to solve

MOPs in general and is organised as follows: Subsection 4.5.1 discusses the different

issues with MOACO algorithms, while Subsections 4.5.2 to 4.5.6 respectively discuss

the single colony, single-pheromone, single-heuristic matrix methods, the single colony,

single-pheromone, multi-heuristic matrix methods, the single colony, multi-pheromone,

single-heuristic matrix methods, the single colony, multi-pheromone, multi-heuristic ma-

trix methods, and the multi-colony MOO algorithms.

4.5.1 Introduction

Very few studies have dealt with MOO using multi-objective ACO algorithms (MOA-

COs). The design of a MOACO algorithm should address the following issues [79, 134]:
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• The management of the pheromone information in MOO. ACO algorithms

for single objective problems represent the pheromone information in terms of a

single pheromone matrix (or vector) in which each entry in the matrix corresponds

to the desirability of the move from node i to node j. One pheromone matrix

represents one objective, because pheromone updates are proportional to some

objective function expressing the quality of a solution (trail) or partial solution.

So, the issue is to change the way in which the pheromone matrix is used to

account for multiple objectives. This can be achieved either by keeping a single

pheromone matrix [142], where pheromone updates are proportional to a weighted

sum of updates, where each update corresponds to an objective, or using multiple

pheromone matrices, one for each objective [104].

The essential difference between single and multi-pheromone matrix methods is

that those algorithms that use multiple pheromone matrices are able to keep ob-

jective specific history information completely partitioned, whereas those that use

a single pheromone matrix must combine this information.

When a MOACO algorithm uses multiple pheromone information and a one-to-one

pheromone to objective mapping is used then ideally the pheromone information

contained in a single matrix will reflect which solution components advantage a

particular objective.

The choice of the pheromone model depends on design issues such as how the

solution construction process uses pheromone information and how pheromone

matrices are updated and decayed.

The reduction in memory associated with using a single pheromone matrix ver-

sus multiple pheromone matrices is also a motivating factor when choosing a

pheromone model [10]. To make positive use of the extra memory required by

multiple pheromone matrices, pheromone matrices must contain different informa-

tion by being updated or decayed non-uniformly or by being mapped differently

during the pheromone update and solution construction processes.

• The management of heuristic information in MOO. Single-objective ACO

algorithms use one heuristic information matrix to represent the attractiveness of

each edge with reference to a single objective. In a multi-objective optimisation
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problem with no objectives, no different cost factors (heuristic information func-

tions) are defined between each pair of nodes, one for each objective. The heuristic

information must then be changed to account for multiple objectives. This can

be achieved by using two different strategies. The first strategy is to consider an

aggregation of the different objectives into a single heuristic information, where

each entry is an aggregated value of the attractiveness of each edge [27, 49, 72].

A second strategy is to consider each different objective separately. In this case

separate heuristic information matrices are maintained, one for each objective func-

tion [56, 76, 177].

• Pareto archival. Single-objective ACO algorithms have all ants converging to a

single solution. MOACO has to have the ability to find multiple solutions, which

can be achieved using a Pareto archive. Pareto archival is the method by which

multiple Pareto optimal solutions are stored for post algorithm run-time analysis

or use [30, 104, 148, 161]. A storage repository (called an archive) is used to store

the non-dominated solutions that are found.

• Balancing exploration against exploitation. The balance between explo-

ration and exploitation is guided by the ants’ memory, the pheromone matrices

with pheromone information accumulated by all the ants from the beginning of the

search process, the problem-specific heuristic information, the pheromone evapo-

ration, and the pheromone update.

Balancing exploration against exploitation is necessary in order to meet the two

MOACO goals:

– to find a number of solutions that are close to the Pareto front (quality en-

hancing behaviour), and

– to maintain a coverage of solutions along the entire Pareto front (diversity

preserving behaviour).

The use of several colonies can serve to achieve a balance between exploration and

exploitation. Communication between colonies emphasises exploitation by recruit-

ing colonies to work in the same region of the search space. Less communication

has an explorative effect, since each colony is more likely to be searching in a

different part of the search space.
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• Pheromone update. In single objective optimisation problems, the best perform-

ing ACO algorithms often use only the best solutions of each iteration (iteration-

best strategy) or, since the start of the algorithm (best-so-far strategy), for up-

dating the pheromones. However, in the multi-objective case it is more difficult to

determine which are the best solutions to be chosen for the pheromone update.

Two different ways of implementing the pheromone update are possible: the selec-

tion by dominance strategy [104, 177] and the selection by objective strategy [76].

The selection by dominance strategy allows only the non-dominated solutions to

update pheromone concentrations. An iteration-best strategy would consider the

non-dominated solutions among those generated in the current iteration; a best-

so-far strategy would be obtained by choosing only solutions of an archive of the

non-dominated solutions found since the start of the algorithm.

The selection by objective strategy allows solutions that find the best values for

each objective within the current cycle or since the start of the algorithm to update

pheromone concentrations.

If the selection by objective strategy is used and multiple pheromone information is

considered, each pheromone matrix associated with each objective will be updated

by the solution with the best objective value for the respective objective. Selection

by objective has two benefits:

– As in MMAS and ACS, one solution per pheromone matrix only will be al-

lowed to deposit pheromones, which leads to improved performance compared

to the original AS (see Sections 3.5.2 and 3.5.3). As a result the advanced

techniques used in the MMAS and ACS algorithms may easily be adapted to

multi-objective problems.

– Each pheromone matrix focuses on one objective only, and thus the aggrega-

tion of all the pheromone matrices by means of a weight vector truly regulates

the relative importance of each objective.

Recently, different ACO algorithms for multi-objective problems have been developed

which address the issues mentioned above. Gravel et al. [85] proposed a MOACO based

on the AS algorithm using a single heuristic information matrix and a single pheromone

matrix. Schaerer and Barán [177] adapted the ACS to use two heuristic matrices and
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a single pheromone matrix, while Pinto et al. [161] adapted the MMAS to use multiple

heuristic matrices and a single pheromone matrix. Cardoso et al. [30] and Doerner et

al. [49] modified the AS and ACS respectively to employ a pheromone matrix for each of

the objectives using a single heuristic matrix information. Iredi et al. [104] adapted the

AS for two objectives by including two pheromone matrices and two heuristic matrices –

one for each objective. Mora et al. [148] adapted the ACS to use two heuristic matrices

and two pheromone matrices.

With respect to the number of colonies used, either one colony can be used [177],

or one colony for each objective function [142]. The above algorithms all use only one

colony. Gambardella et al. [76] and Iredi et al. [104] have proposed the use of multiple

colonies, where each colony focus on the optimisation of one of the objectives. Using

several colonies can serve different goals. The usual aim is to have colonies that specialise

to find good solutions in different regions of the Pareto front, but it could also be used

to let each colony specialise on a given objective.

MOACO algorithms can be classified according to different criteria. One of them

could be whether the algorithm returns a set of non-dominated solutions, i.e. if it looks

for a set of Pareto solutions during its run, or it just gives a single solution as output.

Another interesting criterion is the way the pheromone information is updated.

For the purpose of this thesis, MOACO algorithms are examined and classified into:

• single colony, single-pheromone matrix, single-heuristic matrix algorithms,

• single colony, single-pheromone matrix, multi-heuristic matrix algorithms,

• single colony, multi-pheromone matrix, single-heuristic matrix algorithms,

• single colony, multi-pheromone matrix, multi-heuristic matrix algorithms, and

• multi-colony algorithms.

The following subsections provide a short overview of these classes of algorithms.

4.5.2 Single Colony, Single-Pheromone, Single-Heuristic Ma-

trix Methods

Gravel et al. [85] proposed a MOACO called a multiple objective ACO metaheuris-

tic (MOACOM). MOACOM is based on the AS algorithm and uses a single heuristic
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information matrix and a single pheromone matrix. Each value of the heuristic infor-

mation matrix and each value of the pheromone matrix is the result of the aggregation

of information associated with every objective. Considering these two matrices, the AS

transition rule is applied to build the ants’ solutions.

MOACOM deals with the multiple objectives in a lexicographic order, a priori es-

tablished by the decision maker. At the end of each iteration, only the first solution

according to the lexicographic order considered is taken into account and the pheromone

matrix is updated on the basis of the evaluation of the primary objective. Each ant k

deposits ∆τ k
ij pheromone on each link (i, j) used by the ant as follows:

∆τ k
ij =

Q

f 0(Tk)
(4.7)

where Q is a constant related to the amount of pheromone laid by the ants, f 0 is the

primary objective function, and Tk is the solution built by the ant k.

MOACOM uses elite solution storage, and hence does not maintain populations of

non-dominated solutions. As such, MOACOM saves on the computation costs associated

with maintaining a non-dominated solution set.

4.5.3 Single Colony, Single-Pheromone, Multi-Heuristic Ma-

trix Methods

Single colony, single-pheromone, multi-heuristic matrix methods use one pheromone ma-

trix and multiple heuristic matrices, one for each of the sub-objectives.

Schaerer and Barán [177] adapted the ACS to use two heuristic matrices. The al-

gorithm, referred to as multi-objective ant colony system (MOACS), changes the ACS

transition rule to

j =





Arg Maxu∈Nk
i (t){τiu(t)(η

1
iu)

βλk(t)(η2
iu)

β(1−λk)(t)} if r ≤ r0,

J otherwise
(4.8)

where β weights the relative importance of the heuristic matrices of the different objec-

tives with respect to the pheromone matrix, λk is computed for each ant k as λk = k
nk

,

where nk is the number of ants, and J ∈ Nk
i (t) is a node that is randomly selected

according to probability,
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pk
iJ(t) =

τiJ(t)(η1
iJ)βλk(t)(η2

iJ)β(1−λk)(t)∑
u∈Nk

i (t) τiu(t)(η1
iu)

βλk(t)(η2
iu)

β(1−λk)(t)
(4.9)

The local pheromone update is the same as for the original ACS, with τ0 initially

calculated as follows:

τ0 =
1

f̄ 1f̄ 2
(4.10)

where f̄ 1 and f̄ 2 are the average objective values over a set of heuristically obtained

solutions (prior the execution of the ant algorithm) for the objective functions, f 1 and

f 2, respectively. The value of τ0 is not fixed during the algorithm run, but undergoes

adaptation taking a new value τ
′
0. Every time an ant k builds a complete solution, Tk, this

solution is compared to the current set of non-dominated solutions, P , to check whether

Tk is a non-dominated solution. If Tk is a non-dominated solution it is included in P
while the solutions dominated by Tk are deleted from P . At the end of each iteration,

τ
′
0 is calculated by applying equation (4.10) with the average values of each objective

function taken from the solutions currently included in P . If τ
′
0 > τ0, then τ0 = τ

′
0, and

the pheromone matrices are reinitialised to the new value of τ0; otherwise, the global

update is performed for each solution, Tp, in P by applying the following rule:

τij = (1− ρ)τij +
ρ

f 1(Tp)f 2(Tp)
, ∀(i, j) ∈ Tp (4.11)

Instead of relying on multiple pheromone matrices to guide objective specific solution

construction, MOACS uses multiple heuristic matrices (one per objective) which are

weighted in a specific way for each ant to bias solution construction toward different

objective trade-offs. In other words, MOACS achieves diversity across the Pareto front

through the use of heuristics rather than pheromones.

Pinto et al. [161] presented a multi-objective algorithm based on MMAS referred to

as M-MMAS. M-MMAS simultaneously optimises four objectives (f 1, f 2, f 3, f 4), using

a single pheromone matrix, τ , and three heuristic matrices (M-MMAS uses the same

heuristic matrix for two of the objectives since both objectives are functions of the same

heuristic information). The MMAS transition rule is changed to
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if j ∈ Nk
i (t)

0 otherwise

(4.12)

where β1, β2, and β3 determine the relative influence among heuristic information.

The global update is performed for each solution, Tp, of the current set of non-

dominated solutions by applying the following rule:

τij = (1− ρ)τij + ∆τ p, ∀(i, j) ∈ Tp (4.13)

where

∆τ p =
1

f 1(Tp) + f 2(Tp) + f 3(Tp) + f 4(Tp)
(4.14)

The upper limit, τmax, for the pheromone matrix is

τmax =
∆τ p

(1− ρ)
(4.15)

The lower limit, τmin, for the pheromone matrix is

τmin =
∆τ p

2nk(1− ρ)
(4.16)

Other MOACO approaches that use single pheromone and multiple heuristic matrices

can be found in [72, 177].

4.5.4 Single Colony, Multi-Pheromone, Single-Heuristic Ma-

trix Methods

This class of MOACO addresses the management of the pheromone information (refer

to Section 4.5.1) using one pheromone matrix for each sub-objective. Assuming that no

sub-objectives need to be optimised, no pheromone matrices are used.

Cardoso et al. [30] extended the AS to maintain multiple pheromone matrices. The

AS transition rule (refer to equation (3.3)) is changed to
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where τ l
ij represents the pheromone information for the l-th objective, ηij is the heuristic

information, Nk
i (t) is the feasible neighbourhood of ant k at node i, β determines the

relative importance of the heuristic information, and each αl controls the influence of

the corresponding objective.

After each iteration, evaporation is applied separately for the pheromone of each

objective as follows:

τ l
ij = (1− ρl)τ

l
ij (4.18)

where ρl is the pheromone evaporation rate for the l-th objective (a different evaporation

rate is considered for each pheromone matrix).

At every iteration and for each objective, each ant k deposits ∆τ l
ij pheromone on

each link (i, j) used by the ant, where

∆τ l
ij =

Q

f l(Tk)
(4.19)

and Q is a constant related to the amount of pheromone laid by the ants, and f l is the

l-th objective function. Non-dominated solutions generated in each iteration are stored

in an archive.

Similar to Cardoso et al., Doerner et al. [49] modified the ACS to employ a pheromone

matrix for each of the objectives. The ACS transition rule (refer to equation (3.7)) is

changed to

j =





Arg Maxu∈Nk
i (t){(

∑no

l=1 wlτ
l
iu(t))η

β
iu(t)} if r ≤ r0,

J otherwise
(4.20)

where wl is the weight assigned to the pheromone matrix of each objective function, and

J ∈ Nk
i (t) is a node that is randomly selected according to probability,

pk
iJ(t) =

(
∑no

l=1 wlτ
l
iJ(t))ηβ

iJ(t)∑
u∈Nk

i (t)(
∑no

l=1 wlτ l
iu(t))η

β
iu(t)

(4.21)
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Pheromone update was carried out by using two different ants which had discovered

the best and the second-best solution generated in the current iteration for each l-th

objective. The global pheromone information is updated for each l-th objective according

to equation (3.10), as follows:

τ l
ij(t + 1) = (1− ρ)τ l

ij(t) + ρ∆τ l
ij(t) (4.22)

where ∆τ l
ij(t) has the following values:

∆τ l
ij(t) =





15 if edge (i, j) ∈ best and second-best solutions,

10 if edge (i, j) ∈ best solution,

5 if edge (i, j) ∈ second-best solution,

0 otherwise

(4.23)

4.5.5 Single Colony, Multi-Pheromone, Multi-Heuristic Ma-

trix Methods

Iredi et al. [104] adapted the AS for two objectives by including two pheromone matrices

(τ and τ
′
) and two heuristic matrices (η and η

′
) – one for each objective. The AS

transition rule (refer to equation (3.3)) is changed to

pk
ij(t) =





τ
αλk
ij (t)τ

′α(1−λk)

ij (t)η
βλk
ij (t)η

′β(1−λk)

ij (t)
∑

h∈ Nk
i

(t)
τ

αλk
ih (t)τ

′α(1−λk)

ih (t)η
βλk
ih (t)η

′β(1−λk)

ih (t)
if j ∈ Nk

i (t)

0 otherwise

(4.24)

where λk is different for each ant k, in order to force the ants to search in different regions

of the Pareto front; λk is calculated as the ratio of the ant index to the total number of

ants.
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Every ant that generates a solution in the non-dominated front for the current itera-

tion is allowed to update both pheromone matrices, τ and τ
′
, by depositing an amount

equal to 1
np

, where np is the number of ants that constructed a non-dominated solution.

Then, all non-dominated solutions for the current iteration are added to an external

archive and this archive is sorted to remove any dominated solutions. At the end of the

algorithm execution, the external archive is returned as the final set of solutions.

Mora et al. [148] adapted the ACS to use two heuristic matrices and two pheromone

matrices. The algorithm referred to as hCHAC changes the ACS transition rule to

j =





Arg Maxu∈Nk
i (t){ταλk

iu (t)τ
′α(1−λk)
iu (t)ηβλk

iu (t)η
′β(1−λk)
iu (t)} if r ≤ r0,

J otherwise
(4.25)

where J ∈ Nk
i (t) is a node that is randomly selected according to probability,

pk
ij(t) =





τ
αλk
ij (t)τ

′α(1−λk)

ij (t)η
βλk
ij (t)η

′β(1−λk)
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αλk
ih (t)τ
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ih (t)η
βλk
ih (t)η

′β(1−λk)

ih (t)
if j ∈ Nk

i (t)

0 otherwise

(4.26)

where λk is calculated as the ratio of the ant index to the total number of ants.

The local pheromone update is the same as for the original ACS, with different initial

values τ0 and τ
′
0 for each objective, initially calculated as follows:

τ0 =
1

NGf 1(Tworst)
(4.27)

τ
′
0 =

1

NGf 2(Tworst)
(4.28)

where Tworst is the worst solution heuristically obtained prior to the execution of the

ant algorithm and f 1 and f 2 are the objective functions.

Every ant k that generates a solution, Tk, in the non-dominated front for the current

iteration is allowed to update both pheromone matrices, τ and τ
′
, by depositing an

amount equal to 1
f1(Tk)

and 1
f2(Tk)

respectively. Then, all non-dominated solutions for

the current iteration are added to an external archive and this archive is sorted to remove

74

 
 
 



any dominated solutions. At the end of the algorithm execution, the external archive is

returned as the final solutions.

4.5.6 Multi-Colony MOACO Algorithms

The first implementations of ACO algorithms made use of only one colony of ants to

construct solutions. These algorithms have been adapted to use multiple colonies [76,

104, 142, 146]. One of the first applications of multiple colony ACO algorithms was to

solve MOP. This section discusses such algorithms.

MOPs are solved by assigning to each colony the responsibility for optimising one

of the objectives. Each colony is independent of the other colonies in the sense that it

has its own ants and its own pheromone information to the extent that, when an ant

from a certain colony constructs the ant’s solution, the ant is guided by the pheromone

information from the ant’s own colony only. After every iteration of the ant algorithm

for each colony, the colony computes the new pheromone information.

Three aspects define the behaviour of the multiple colonies:

• The set of weight vectors which are used to aggregate multiple pheromone infor-

mation.

The image of the optimal Pareto set in the objective space is a trade-off surface

between the different objectives. Over this surface, two solutions can be said to

belong to different regions with respect to the differences in the objective vectors

of the two solutions, for example, if the distance between their respective objective

vectors is more than a given value.

The use of single pheromone information does not in itself force each colony to

focus on a certain region. However, when multiple pheromone information is used,

the set of weight vectors that each colony uses in order to aggregate its multiple

pheromone information defines in some way a region in the objective space on

which the colony focuses the search. Choosing the set of weights forces each colony

to approximate a different region of the optimal Pareto set.

The infinite set of weights defines all the possible directions that can be taken to

approximate the optimal Pareto set. Any finite subset Γ of maximally dispersed

weight vectors defines a region for the entire optimal Pareto set. A partition of
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Γ defines regions in the optimal Pareto set that can be either disjoint or overlap-

ping regions depending on whether disjoint partitions of Γ are considered or not.

Then, the multiple colonies can use i) the same partition of Γ, ii) disjoint, or iii)

overlapping partitions of Γ.

As for the single colony algorithm, in multi-colony algorithm the ants in a colony

use different λ-values. That is, when making decisions ants weight the relative

importance of each optimisation objective differently. Given the number of colonies

nc and the number of ants per colony, nk/nc, Iredi et al. [104] proposed the following

possibilities to define each weight value λk for each ant k, where k ∈ [1, nk/nc]:

– Single region: for all colonies the values of λk are in the interval [0, 1], com-

puted as

λk =
k − 1

nk/nc − 1
(4.29)

An alternative could be to use different λk-values in the colonies so that λk-

values of the ants in the colonies are in different subintervals of [0, 1]. Thus,

the colonies weight the optimisation sub-objectives differently.

– Disjoint regions: each colony, c, have distinct λk-values, computed as

λk = (c− 1)nk/nc + k (4.30)

– 50% overlapping regions: the interval of values of λk for colony c overlaps by

50% with the interval for colony c − 1 and colony c + 1. Colony c has ants

with

λk ∈
[

c− 1

nc + 1
,

c + 1

nc + 1

]
(4.31)

• The pheromone update strategy.

In order to enforce specialisation of the colonies, each ant deposits pheromone

on one colony only. The pheromone update strategies described for the single

colony approach may also be applied to multiple colonies. The selection by dom-

inance method is adapted straightforwardly to the multi-colony approach. That

is, the ants belonging to the Pareto set of the candidate set are distributed be-

tween colonies and are allowed to deposit pheromone. In selection by objective,
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the Pareto set of the candidate set is, somehow, distributed among the colonies.

Then, for each colony, the best solution in respect of each objective is allowed to

deposit pheromone.

The pheromone update strategy must select the colony from which each solution

updates the pheromone information.

Iredi et al. [104] presented two different methods to determine in which colony an

ant should update the pheromone matrix:

1. Method 1 – Update by origin: an ant only updates the pheromone matrices in

its own colony. Using this method other colonies help to detect which of the

solutions in the local non-dominated front of a colony might be dominated.

The update by origin method enforces both colonies to search in different

regions of the non-dominated front.

2. Method 2 – Update by region: the sequence of solutions along the non-

dominated front is split into nc parts of equal size. Ants that have found

solutions in the c-th part update in the colony c, c ∈ [1, nc]. This method

may be used with bi-objective problems only, because for more than two ob-

jectives, a set of non-dominated objective vectors may just be partially sorted.

• Cooperation between colonies.

Cooperation is achieved by colonies exchanging solutions so that the pheromone

updates of one colony are influenced by solutions from other colonies. Another

alternative is to form the candidate set – from which the best solutions have been

selected in order to update the pheromone information – with solutions from all

colonies.

If no cooperation takes place between colonies, then a reasonable way for pheromone

update in the multi colony algorithm is that only those ants that found a solu-

tion which is in the local non-dominated front of the colony, update the colony’s

pheromone information. Therefore the results are the same as with a multi-start

approach where a single colony ant algorithm is run several times and the global

non-dominated front at the end is determined from the non-dominated fronts of

all runs. This approach significantly increases the processing speed and decreases

the number of evaluations for each iteration.
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Middendorf et al. [146] demonstrated that if a high solution quality is required

or the overall performance of the algorithm needs to be increased, information ex-

change between the colonies is important. Information exchange allows the colonies

to profit from the good solutions found by other colonies. Information exchange

also allows colonies to search in different regions of the search space by using dif-

ferent pheromone matrices, thus, improving diversity.

To balance exploration against exploitation, the colonies cooperate with a given

communication policy specifying the details of what kind of information to ex-

change, when to exchange it, and among which colonies.

In the remainder of this section multi-colony methods for multi-objective optimisation

are described.

Mariano and Morales [142] proposed a multi-colony ACO approach where one colony

of ants exists for each objective. Mariano and Morales studied a problem in which every

objective was influenced by parts of a solution only, so that an ant from colony c received

a (partial) solution from an ant from colony c − 1 and then tried either to improve or

to extend this solution with respect to the c-th sub-objective. A final solution that had

passed through all the colonies was allowed to update the pheromone information when

it formed part of the non-dominated front.

Gambardella et al. [76] adapted the ACS for two objectives by defining two ant

colonies each dedicated to the optimisation of a different objective function. Each colony

maintains its own pheromone matrix, initialised to have a bias towards an initial solution.

A local heuristic is first used to obtain the initial solution TLgb, which is then improved

by the two colonies, each with respect to a different objective: TLgb is updated each time

one of the colonies computes an improved feasible solution and represents the best path

globally that has been found from the beginning of the trial. The colonies cooperate by

exchanging TLgb which is used for global pheromone updating. The pheromone global

update is performed with TLgb using equation (3.10).

Both previous approaches used a lexicographical order to decide the order of im-

portance of each objective. That is, no two objectives could be assigned the same

importance.

Iredi et al. [104] proposed an approach for bi-criteria optimisation based on multiple

ant colonies without considering a lexicographical order. The ant algorithm for each

colony adapted the AS for two objectives by including two pheromone matrices (τ and
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τ
′
) and two heuristic matrices (η and η

′
) – one for each objective (refer to Section 4.5.5).

Each colony specialised in finding satisfactory non-dominated solutions in different parts

of the Pareto front.

In order to achieve collaboration between the colonies, the ants within an iteration

place their solutions into a global solution pool that is shared by the other colonies.

The pool is used to determine the non-dominated front of all the solutions pertaining

to that iteration. Subsequently, only those ants that had found a solution which was

in the global, non-dominated front are allowed to update the pheromone information.

Cooperation was activated after each iteration at which point all colonies had found a

solution.

Iredi et al. [104] showed that cooperation between the colonies permits the finding

of good solutions along the whole Pareto front. Heterogeneous colonies were used in

which the ants have different preferences as regards the sub-objectives when constructing

a solution. This choice of heterogeneous colonies has a considerable impact on the

performance of the algorithms.

Alaya et al. [6] proposed a multi-colony ant algorithm to solve a multi-objective

optimisation problem with any number no of objectives. The proposed algorithm uses

no + 1 ant colonies and no pheromone matrices. Each of the l-th colonies (l ∈ [1, ..., no])

aims at optimising the l-th objective function and uses one pheromone matrix, τ l, and

one heuristic information function, ηl, defined with respect to the l-th objective. The

(no + 1)-th colony considers, at each construction step, a randomly chosen objective to

optimise. The pheromone matrix, τno+1, considered by the (no +1)-th colony is the same

as the pheromone matrix of the l-th objective function, where l ∈ [1, ..., no] is randomly

chosen. The heuristic information ηno+1 considered by the (no + 1)-th colony is the sum

of heuristic informations associated with all objectives, i.e. ηno+1 =
∑no

l=1 ηl.

The ant algorithm for each colony is based on the MAX-MIN ant algorithm. The

pheromone update is as follows: For each of the first no colonies, pheromone is laid on

the components of the best solution, Tib
l , found by the l-th colony during the current

iteration, where the quality of solutions is evaluated with respect to the l-th objective,

f l, only.

The quantity, ∆τ l
ij, of pheromone deposited on each link (i, j) used by the Tib

l solu-

tion, for the l-th pheromone matrix is defined as follows
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∆τ l
ij =

1

(1 + f l(Tib
l )− f l(Tgb

l ))
(4.32)

where Tgb
l is the global best solution since the beginning of the run considering the l-th

objective function.

The (no +1)-th colony maintains a set of solutions: a best solution for each objective.

The (no + 1)-th colony lays pheromone on each pheromone structure relative to the

correspondent objective using equation (4.32).

4.5.7 Summary

This section examined several approaches in which ACO algorithms have been adapted to

solve MOPs. Five different approaches have been discussed, namely, the single colony,

single-pheromone, single-heuristic matrix, the single colony, single-pheromone, multi-

heuristic matrix, the single colony, multi-pheromone, single-heuristic matrix, the single

colony, multi-pheromone, multi-heuristic matrix, and the multi-colony approach.

4.6 Evolutionary Multi-Objective Optimisation

Over the past decade, a number of multi-objective evolutionary algorithms (MOEAs)

have been suggested [16, 40, 167, 224]. This section briefly describes evolutionary algo-

rithms (EAs) in Subsection 4.6.1 and the elitist non-dominated sorting genetic algorithm

(NSGA-II) in Subsection 4.6.2.

4.6.1 Evolutionary Algorithms

EAs are a class of stochastic optimisation methods that simulate the process of nat-

ural evolution [224]. Several classes of EAs have been developed, including genetic

algorithms, evolutionary programming, and evolution strategies [16]. All of these ap-

proaches maintain a population of candidate solutions. During the optimisation process,

these candidate solutions are changed through application of selection and variation op-

erators. While selection mimics competition for reproduction and resources among living

beings, variation imitates the natural capability of creating “new” living beings by means

of recombination and mutation. Although the underlying mechanisms are simple, EAs
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have proved to be a general, robust and powerful search mechanism [16]. In particu-

lar, EAs have been successful in solving optimisation problems with multiple conflicting

objectives [41] and intractable, large and complex search spaces [223].

In EA terminology, candidate solutions are referred to as individuals or chromosomes.

The set of candidate solutions is referred to as a population.

Algorithm 7 General Scheme of an Evolutionary Algorithm

Initialise population P with random candidate solutions;
while not terminating condition do

Evaluate each candidate from P ;
Select parents;
Recombine pair of parents;
Mutate the resulting offspring;
Select individuals for the next generation and insert them into P

′
;

P ← P
′
;

end while
Return P ;

A generic EA is summarised in Algorithm 7. An EA consists of the following steps:

Firstly, an initial population is created at random, and this constitutes the starting

point of the evolution process. A loop consisting of the following steps – evaluation

(fitness assignment), selection, recombination, and/or mutation – is then executed a

certain number of times. Each loop iteration is termed a generation, and a predefined

maximum number of generations often serves as the termination criterion of the loop.

However, other conditions, for example stagnation in the population or the existence of

an individual with sufficient quality, may also be used to terminate the simulation. In

the end the best individuals in the final population represent the outcome of the EA.

The different steps of the loop are discussed next:

• Evaluation function (fitness function). The evaluation function is a function or

procedure that assigns a quality measure to individuals.

• Parent selection mechanism. The role of parent selection or mating selection is to

distinguish between individuals based on their quality, in particular, to allow the

better individuals to become parents of the next generation. An individual is a

parent if it has been selected to undergo variation in order to create offspring.
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• Recombination. A binary variation operator is called recombination or crossover.

A recombination operator merges information from two parent individuals into one

or two offspring individuals.

• Mutation. A unary variation operator is commonly called mutation. A mutation

operator is applied to one individual and delivers a (slightly) modified mutant, its

child or offspring. A mutation operator is always stochastic: its output - the child

- depends on the outcomes of a series of random choices.

• Survivor selection mechanism. The role of survivor selection or environmental

selection is to distinguish among individuals from the offspring based on their

quality. The fittest will be allowed in the next generation.

4.6.2 Elitist Non-Dominated Sorting Genetic Algorithm

Since this thesis will compare the performance of MOACO algorithms to the performance

of the elitist non-dominated sorting genetic algorithm (NSGA-II) on the multi-objective

power aware routing problem, this section provides an overview of NSGA-II.

The NSGA-II [42] is one of the most efficient multi-objective evolutionary algorithms

using an elitist approach. The fitness assignment of NSGA-II consists of sorting the pop-

ulation on different fronts using the non-domination order relation. Initially, a random

parent population P of size Np is created. The population is sorted on the basis of non-

domination. Each solution is assigned a fitness equal to its non-domination level (1 is

the best level). Thus, minimisation of fitness is assumed. Binary tournament selection,

recombination, and mutation operators are used to create a child population of size Np.

From the first generation onward, the procedure differs, consisting of the main loop:

The parent and child population are combined into the population Rt. Rt is sorted

into non-dominated fronts. A new population P
′
is generated starting from the first non-

dominated front until Np individuals are found. The crowded comparison operator

is used for the selection process: Between two solutions with differing non-domination

fronts, the solution from the lower non-dominated front (with lower rank) is selected.

Otherwise, if both the solutions belong to the same non-dominated front then the solution

which is located in a region with the lesser number of solutions is included. From P
′
,

the child (offspring) population is generated with the standard bimodal crossover and

polynomial operators.
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At the end of the execution of the algorithm, the best individuals in terms of non-

dominance and diversity are chosen.

The NSGA-II consists of the following different modules:

1. Finding the non-dominated front. This module does a quick sorting on the

solution space obtained after combining the parent and child population, and ex-

tracts the set of non-dominated solutions (non-dominated front).

Algorithm 8 summarises the steps to find the set of non-dominated solutions from

a set of solutions.

Algorithm 8 Procedure to Find the Set of Non-Dominated Solutions (Find-Non-
Dominated-Front)

Input parameter P ; {Population from which to extract the non-dominated front}
P
′
= ∅;

for all p ∈ P ∧ p /∈ P
′
do

P
′
= P

′ ∪ {p}; {include p in P
′
temporarily }

{compare p with other members of P
′}

for all q ∈ P
′ ∧ q 6= p do

if p ≺ q then
P
′
= P

′ \ {q}; {if p dominates a member q of P
′
, delete q }

else
if q ≺ p then

P
′
= P

′ \ {p}; {if p is dominated by other members of P
′
, do not include p

in P
′}

end if
end if

end for
end for
Return P

′
;

2. A fast non-dominated sorting approach. This module strips out the non-

dominated fronts one by one from the solution space and then ranks these non-

dominated fronts. The solutions belonging to the first non-dominated front are

given a rank of 1, and those belonging to the next non-dominated front a rank

of 2, and so on. This way the set of non-dominated fronts is extracted from the

population to be sorted.

Algorithm 9 summarises the steps for finding the set of non-dominated fronts.
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Algorithm 9 Procedure to Find the Set of Non-Dominated Fronts (Non-Dominated-
Sort)

Input parameter P ; {Population for which to find the set of non-dominated fronts}
Z = ∅; {Z is the set of non-dominated fronts}
c = 1; {c is the non-dominated front counter and is initialized to one}
while P 6= ∅ do
Zc =Find-non-dominated-front(P ); {Find the c-th non-dominated front}
P = P \ Zc; {remove non-dominated solutions from P};
Z = Z ∪ Zc;
c = c + 1;

end while
Return Z;

3. Density estimation. It is very important to keep the solution points well spread

out. Therefore, efficient measures are required for controlling the crowding (den-

sity) in one region. In order to obtain an estimate of the density of the solutions

surrounding a particular solution in the population, the average distance of two

points on either side of this point along each of the objectives is calculated. This

distance is termed the crowding distance.

The crowding distance computation requires that the population be sorted accord-

ing to each objective function value in ascending order of magnitude. Thereafter,

for each objective function, the boundary solutions (solutions with the smallest

and the largest function values) are assigned an infinite distance value. All other

intermediate solutions are assigned a distance value equal to the absolute difference

in the function values of two adjacent solutions. This calculation is continued in

terms of other objective functions. The overall crowding distance value is calcu-

lated as the sum of the individual distance values corresponding to each objective.

The following crowding-distance-assignment procedure (Algorithm 10) outlines the

crowding distance computation procedure for all solutions in a non-dominated set

I.

After all population members in set I have been assigned a distance metric then

any two solutions are compared for the extent of their proximity to other solutions.

A solution with a smaller value of this distance measure is, in some sense, more

crowded than other solutions. This is exactly what is compared in the crowded

comparison operator which is described below.
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Algorithm 10 General Procedure of Crowding-distance-assignment

Input parameter I; {A non-dominated set}
nsi = |I|; {number of solutions in I}
for all i ∈ 1, ..., nsi do
I[i].distance = 0; {initialise distance}

end for
{no number of objectives}
for all j ∈ 1, ..., no do
I = sort(I, j); {sort using each j-th objective value}
I[1].distance = ∞;
I[nsi].distance = ∞;
for i = 2 To nsi − 1 do
I[i].distance = I[i].distance + (I[i + 1].j − I[i − 1].j); {I[i].j refers to the j-th
objective value of the i-individual in the set I}

end for
end for
Return I;

4. Crowded comparison operator. The crowded comparison operator ≺n guides

the selection process at the various stages of the algorithm towards a uniformly

spread-out Pareto-optimal front. The assumption is made that every individual,

Ii, in the population possesses two attributes: 1) non-domination rank Iirank
which

is based on the non-domination front, and 2) crowding distance Iidistance
.

The crowded comparison operator ≺n is defined as:

Ii ≺n Ij if (Iirank
< Ijrank

) or ((Iirank
= Ijrank

) and (Iidistance
> Ijdistance

) (4.33)

In other words, in terms of two solutions with differing non-domination ranks the

solution with the lower (better) rank is preferred. Otherwise, if both solutions

belong to the same front then the solution which is located in a lesser crowded

region is preferred.

Using the above procedures – a fast, non-dominated sorting procedure, a fast, crowded

distance estimation procedure and a simple crowded comparison operator – the NSGA-II

algorithm is summarised in Algorithm 11.

The NSGA-II is a genetic algorithm with O(noN
2
p ) computational complexity (where

no denotes the number of objectives and Np the population size). As a result of the
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low computational requirements of NSGA-II, its elitist approach and its parameterless

sharing scheme, the NSGA-II was selected as the algorithm to which the five algorithms

presented in this thesis will be compared.

Algorithm 11 General Procedure of NSGA-II

Create a random population P0;
Z = non-dominated-sort(P0);
Use binary tournament selection, recombination, and mutation operators to create a
child population Q0 of size Np.
t = 0;
while t < Nmaxgen do

Rt = Pt ∪Qt; {combine parent and children population}
Z = non-dominated-sort(Rt); {Z = (Z1,Z2, ...), all non-dominated fronts of Rt}
Pt+1 = ∅;
c = 1;
{till the parent population is filled}
while |Pt+1|+ |Zc| <= Np do

crowding-distance-assignment(Zc); {calculate crowding distance in Zc};
Pt+1 = Pt+1 ∪ Zc; {include c-th non-dominated front in the parent population}
c = c + 1; {check the next front for inclusion}

end while
Sort(Zc,≺n); {sort in descending order using ≺n}
Pt+1 = Pt+1 ∪Zc[1 : (Np − |Pt+1|)]; {Choose the first (Np − |Pt+1|) elements of Zc }
Qt+1 = make-new-pop(Pt+1); {Use selection, recombination, and mutation operators
to create a child population Qt+1}
t = t + 1; {increment the generation counter}

end while
Return Pt;

4.7 Performance Metrics for Multi-Objective Opti-

misation

It is not an easy task to compare the performance of multi-objective algorithms [22]. In

multi-objective optimisation the performance metric must assess a number of solutions,

each having a vector of objective values. Performance metrics are hard to define and more

than one metric is necessary to evaluate the performance of multi-objective algorithms.

There are several criteria for quantifying the quality of the approximation to the
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Pareto front. This section examines a number of performance criteria for MOO. The

rest of the section is organised as follows: Section 4.7.1 provides an overview of the goals

of multi-objective optimisation, while Section 4.7.2 discusses the perfomance metrics

used in this thesis.

4.7.1 Multi-Objective Optimisation Goals

It is relatively simple to define performance metrics for single objective optimisation.

However, MOPs do not have a single global optimum solution, but rather a number of

optimum solutions that represent a trade-off between the various sub-objectives. The

overall aim in MOO is to produce a set of solutions that represent a good approximation

to the trade-off surface. A good approximation set should be as close as possible to the

true Pareto front and should also provide a good coverage of the true Pareto front. The

goal of achieving a good coverage of the trade-off surface, i.e. to maintain diversity and

spread of solutions, is of particular interest in multi-objective optimisation.

It is difficult to define a single measure that can be used to quantify the quality of

solutions obtained by a multi-objective algorithm (MOA). Instead, MOA performance

is characterised using a number of different aspects [37, 208, 227]. This thesis focuses on

two aspects of MOA performance:

• Closeness to the true Pareto front, as the distance between the non-dominated set

obtained and the true Pareto front.

• Diversity of solutions in the Pareto front.

4.7.2 Performance Metrics

Several criteria have been developed to assess the quality of a MOO algorithm and to

compare such algorithms [95, 120, 188]. Some of the criteria require knowledge of the true

Pareto-optimal solutions, which are unknown in the optimisation problem presented in

this thesis. Taking this limitation into account, the following three criteria are selected:

1) size of the dominated space, 2) spread metric, and 3) the size of the approximated

Pareto front (number of non-dominated solutions). The first metric measures the close-

ness of the obtained non-dominated set to the true Pareto front. The second metric

measures the spread of solutions along the non-dominated set obtained, while the last
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metric measures the size of the non-dominated set. These three metrics, do not require

knowledge of the true Pareto front.

The above three metrics are described below:

1. Size of the dominated space or hypervolume measure (Sd):

The size of the dominated space is a measure of how much of the objective space

is weakly dominated by a given non-dominated set [17, 126, 218]. Consider the

non-dominated set P = {p1,p2, ...,pl}. The size of the space dominated by the

set P , denoted by Sd(P ), is defined as the volume of the union of hypercubes

{C1, ..., Cl}, where Ci is a hybercube whose two opposite vertices are pi and the

origin of the objective space. Since the optimisation problem in this thesis involves

the minimisation of five objectives, a reasonable maximum value for each objective

is selected for the origin of the objective space. The values of 100.0, 0.1, 500.0,

0.5, and 30.0, corresponding to a maximum value for each of the objectives EP ,

TNP , V F , CP , and MNC have been selected as the origin of the objective space.

These values lead to a maximum hypervolume of 75000. The hypervolume metric

measures how well the algorithms performed in identifying solutions along the full

extent of the Pareto front. Higher values of Sd(P ) indicate more closeness to the

true Pareto front and better performance.

2. Spacing (SP) or spread metric [179, 208]: The SP metric is used to measure the

spread (distribution) of vectors in the current non-dominated set. Schott [179]

proposed an SP metric to measure the range (distance) variance of neighbouring

vectors in the non-dominated set. The SP is defined as

SP =

√√√√ 1

nPF

nPF∑
i=1

(r̄ − ri)2 (4.34)

where ri = minj=1,...,nPF
∑no

m=1 |f i
m − f j

m|; fm is the m-th objective function, r̄ is

the mean of all ri, nPF is the number of non-dominated solutions, and no is the

number of objectives. The smaller the value of SP, the better the distribution in

the current non-dominated set. A value of zero indicates that all members of the

current Pareto front are equidistantly spaced.
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If an MOP has a PF which is composed of two or more Pareto curves then the

distance between the end-points of two successive curves may skew this metric.

Therefore, for this kind of Pareto sets, the distance corresponding to the breaks

should be removed from the spacing computation.

It should be noted that the objective values should be normalised before calcu-

lating the distance. Various normalisation schemes have been proposed in the

literature [103, 121].

3. Number of non-dominated solutions found (ND) [119, 208]:

This performance measure quantifies the size of the approximated Pareto front,

that is, the number of non-dominated solutions. The ND metric is defined as

ND(PF) = |PF| (4.35)

The size of the approximated Pareto front may also be calculated with respect to

the solution vectors in the decision space.

The n̄alg metric measures how well the algorithms performed in identifying solutions

along the Pareto front. Larger values for n̄alg are preferred as it indicates that

many efficient solutions were found which is preferred by the decision maker. The

maximum value for n̄alg is 100 which is the size of the archive.

Although counting the number of non-dominated solutions does provide an indica-

tion of the effectiveness of the MOO algorithm in generating desired solutions, ND

does not reflect on the distance of PF∗ from these non-dominated solutions. Also,

it is not possible to draw any conclusions about any dominance relation between

two approximation sets [228].

The three performance metrics are chosen because they address the main functional

goals of MOO algorithms (closeness to the true Pareto front and diversity of solution in

the PF). This set of three metrics will enable two or more non-dominated solution sets

to be compared among each other in terms of their functional achievements. Also, these

three metrics are unary and do not require knowledge of the true Pareto front which is

uknown in the power aware optimization problem presented in this thesis.
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Moreover, the hypervolume indicator is the only unary quality measure that is known

to be strictly monotonic with regard to Pareto dominance: whenever a Pareto set ap-

proximation entirely dominates another one, then the indicator value of the former will

also be better. This property is of high interest and relevance for the problem examined

in this thesis which involves a large number of objective functions. The spacing metric

has a low computational overhead, and can be used with more than two objectives. A

high number of non-dominated solutions, i.e. the cardinality of a non-dominated set,

and therefore more route choices is also desired for power aware dynamic optimization

problems where it is difficult to obtain many different non-dominated solutions.

4.8 Summary

The main objective of this chapter was to review multi-objective optimisation theory

and algorithms used in this thesis, with specific reference to ACO algorithms and the

NSGA-II. Different adaptations of ACO algorithms to solve MOPs have been discussed

in detail, and a compact description of the NSGA-II was given. Performance metrics for

MOO used in this thesis were discussed.

The next chapter discusses ACO optimisation methods for dynamic environments.
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Chapter 5

ACO in Dynamic Optimisation

Problems

Ant colony optimisation has proved suitable to solve static optimisation problems, that

is problems where the objective does not change with time [52, 54]. However, many

real-world problems are defined for dynamic environments, where a previously optimum

solution may become sub-optimal and new optima may appear.

Dynamic optimisation problems form a class of difficult optimisation problems. Op-

timisation algorithms applied to dynamic environments must be able to find and track

solutions as the environment changes. In this regard, it should be possible to track both

the position and value of optima as changes occur, and it should be possible to detect any

new optima that appear and those that disappear. Changes in environments may take

various forms, such as changes in the objective functions and/or problem constraints. An

acceptable solution at a particular point in time may not be acceptable after a change

in the environment has occurred.

The power-aware routing problem considered in this thesis is a dynamic optimisation

problem: A realistic mobility model is used within MANET, the position of the nodes

changes, and both the optimal decision variables (Pareto set) and the optimal objective

values (Pareto front) change repeatedly during the optimisation process.

This chapter is organised as follows: Section 5.1 provides a mathematical defini-

tion of dynamic optimisation problems. Section 5.2 discusses how ACO algorithms can

be adapted for dynamic optimisation problems. Section 5.3 discusses performance met-

rics for DOP. Section 5.4 describes dynamic multi-objective optimisation (DMOO), while

Section 5.5 discusses performance metrics for dynamic multi-objective optimisation prob-

lems (DMOP).
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5.1 Definition of Dynamic Optimisation Problems

A single-objective dynamic optimisation problem is formally defined as

Definition 5.1.1. Dynamic optimisation problem:

minimise f(x, δ(t)), x = (x1, ..., xnx), δ(t) = (δ1(t), ..., δnδ
(t))

subject to gm(x, δ(t)) ≤ 0, m = 1, ..., ng

hm(x, δ(t)) = 0, m = 1, ..., nh

x ∈ Rnx

(5.1)

where δ(t) is a vector of time-dependent objective function control parameters, nδ is the

number of objective function control parameters, and gm and hm denote the inequality

and equality constraints respectively. The objective is to find and track

x∗(t) = min
x

f(x, δ(t)) (5.2)

where the solution x∗(t) is the optimum found at time step t.

Therefore, the task of a dynamic optimisation algorithm is to locate the optimum

and track its trajectory as closely as possible and also to search for new optima that

may appear. Algorithms should have the ability to track changes in both the position

of x∗(t) and the value of the optimum, f(x∗(t)).

Dynamic environments can be classified into the following classes of problems [61,

64, 68]:

• the location of the optimum changes,

• the location of the optimum remains the same, but its value changes, and

• both the location and value of the optimum change simultaneously.

The difficulty of a dynamic optimisation problem is determined by the frequency, the

severity and the predictability of environment change [23]:

• The frequency of change determines how often the environment changes, usu-

ally in terms of the number of the iterations between each change. As frequency
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of change increases, the time available for adaptation becomes shorter and the

optimisation task becomes more difficult.

• The severity of change determines the amount of displacement of the current

location of the optimum. Large displacements make the problem more difficult.

• The predictability of change defines the pattern of the change, which can be

linear, random or cyclic.

5.2 ACO Algorithms and Dynamic Environments

ACO was developed for static environments in which ants, as a result of the autocat-

alytic feedback process, converge on a single solution. This characteristic of ACO meta-

heuristics limits their application to static environments. In order for ACO algorithms

to be applied to DOPs, mechanisms should be employed that maintain diversity. These

mechanisms should find a trade-off between the opposing goals of preserving pheromone

information and sufficient resetting of pheromone information to allow the ants to con-

tinuously explore the search space.

ACO algorithms for dynamic environments can be classified into the following ap-

proaches:

• Re-initialisation methods. The simplest way to enforce exploration is to restart

the ant algorithm after each environment change has occurred. However, a simple

restart of the ant algorithm will discard all old information about best paths. As

a result, it will take longer to find a solution which may prevent re-convergence to

a new optimum under frequent changes.

• New pheromone update methods. Changes in the search space render pheromone

information inaccurate and inconsistent. Therefore, an alternative approach to

restarting the ACO algorithm is to develop new approaches to pheromone updates.

Under the assumption that the change in the environment is relatively small, it is

likely that the new optimum will, in some sense, be related to the old one, and

it would probably be beneficial to transfer knowledge in the form of pheromone

information from the old optimisation run to the new run. On the other hand, if

too much information is transferred and the severity of change is high, the next
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iteration of the algorithm after the change has occurred may start near a local

optimum, and the algorithm may become detained at this local optimum. Thus, a

reasonable compromise between these two opposing approaches has to be found.

The rest of this section focuses on such methods.

5.2.1 Re-initialisation Methods

Gambardella et al. [77] proposed a complete re-initialisation of all pheromone concen-

trations when no improvement in the quality of solutions is observed. All pheromone

concentrations, τij, are re-initialised to τ0 = 1
QTLbest(t)

, where Q is a parameter and

TLbest(t) is the tour length of the best solution found so far. While all pheromones

are re-initialised, information about the best solution found so far is retained and used

to initialise new pheromones on each link. This technique can be applied in dynamic

environments when a change in the environment occurs. This diversification mechanism

increases exploration while retaining some knowledge from previous environments. Lim-

iting the amount of stored history to the adapted to change elitist solution assists the

algorithm to track the optimal solution.

5.2.2 New Pheromone Updates Methods

Stützle [194] proposed that, when stagnation occurs, pheromone values be increased pro-

portionally to the difference between the pheromone value and the largest pheromone

value. The increase of pheromone intensity for all links will increase the selection proba-

bility for all links. The same increase in pheromone intensity can be applied in dynamic

environments when a change in the environment occurs. The relative difference of the

pheromone trails will not be very large and, as a consequence, exploration of new paths

is increased.

Guntsch and Middendorf [90] proposed three pheromone update rules (strategies) for

dynamic environments, namely, the restart strategy, the η-strategy, and the τ -strategy.

The strategies distribute a reset-value, γi ∈ [0, 1], to each node i. These reset values are

used to reinitialise the pheromone values on all links incident to i, as follows:

τij(t + 1) = (1− γi)τij + γi
1

nG − 1
(5.3)
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where nG is the number of nodes in the representation graph.

The reset-values for each strategy are calculated as follows:

• Restart strategy: This strategy is a global pheromone modification strategy

which reinitialises all the pheromone values by the same degree. For each node, i,

γi = λR (5.4)

where λR ∈ [0, 1] is a strategy-specific parameter.

This strategy acts globally without considering the position of the environment

change. Consequently the ant algorithm may need more time to find the optimum.

The most extensive resetting of pheromone values should generally be performed

in the close vicinity of the changed node. With lower values of λR, a trade-off

between exploration and exploitation would be achieved. With higher values of

λR virtually all pheromone information is reset and the ant algorithm needs more

time to rediscover a good solution.

• η-strategy: The η-strategy uses heuristic-based information to decide to what

degree pheromone values are to be equalised on all links incident to a node i. The

equalization of the pheromone values to some degree resets the pheromone values

and effectively reduces the influence of experience on the decisions an ant makes

to build a solution, thus improving diversity. Each node, i, is given a value, γi,

proportionate to the nearest changed node j (a node which is inserted or deleted),

and equalisation is effected on all links incident to node i. The node, i, receives

the reset value

γi = max{0, dη
ij} (5.5)

where

dη
ij = 1− η̄

λE.ηij

(5.6)
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with

η̄ =
1

nG ∗ (nG − 1)

nG∑
i=1

nG∑
k=1
k 6=i

ηik (5.7)

and λE ∈ [0,∞) is a strategy-specific parameter.

• τ-strategy: This strategy uses a distance measure based on pheromone informa-

tion to equalise those links which are closer to the changed node to a greater extent

than links that are further from the changed node. The reset value is

γi = min{1, λτd
τ
ij}, λτ ∈ [0,∞) (5.8)

where

dτ
ij = max

T (i,j)

{ ∏

(x,y)∈T (i,j)

τxy

τmax

}
(5.9)

where T (i, j) is the set of all paths from i to j, and τxy is the pheromone associated

with link (x, y).

All three strategies adapt the pheromone information such that exploration is in-

creased, assisting the algorithm in the detection of new optima. Also, there is adequate

transfer of knowledge from previous iterations.

Guntsch et al. [93] developed a novel ACO algorithm for dynamic environments,

where extensive resetting of pheromone values is performed in the vicinity of change

(i.e. local pheromone resetting) and an elitist strategy is proposed for use in dynamic

environments. This ACO algorithm combines the three strategies discussed above in

order to make ant algorithms more suitable for optimisation in dynamic environments.

In a situation where strong local resetting of pheromones in the area of change is

necessary, a combination of the global restart strategy with one of the two more locally

acting strategies, i.e. with the η−strategy or τ−strategy, is applied. In the areas where

no change occurs, a lower global resetting of the pheromone values is needed to be able
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to change the best solution found. This combination can be realised by having each of

the two combined strategies distribute reset-values, and then choosing the maximum of

the two reset-values for each node.

A standard elitist strategy for ant algorithms is that an elitist ant, which represents

the best solution found so far, updates the pheromone values in every generation. How-

ever, this best solution may no longer represent a feasible solution after an environment

change. Instead of forgetting the old best solution, Guntsch et al. [93] adapted the

old best solution so that it becomes a reasonably good solution after the environment

changes. Two steps are followed in order to adapt the old best solution: i) all nodes

that were deleted after the environment change are also deleted from the old best solu-

tion, effectively connecting the predecessors and successors of the deleted nodes, and ii)

the nodes that were added after the environment change are inserted individually into

the old best solution at the place where they cause the minimum increase in cost. The

solution derived from this process is the new solution of the elitist ant.

Using a combination of the three strategies and the heuristic for keeping a modified

elitist ant, better solutions are found for different strategy parameters than is the case

with the pure strategies alone. The authors proved empirically that using the above

strategies and resetting the information only in the area of change performed best when

problem changes occur frequently. The novel ACO algorithm was applied successfully

to a combinatorial dynamic TSP.

Eyckelhof and Snoek [67] modified the AS to apply it to DOPs by introducing global

shaking: All pheromone values are squashed into a pre-defined range, while preserving

the relative pheromone rankings. That is, if τij(t) > τi′j′(t) holds before shaking, it also

holds after shaking.

Shaking is implemented as follows

τij = τ0

(
1 + log(

τij

τ0

)

)
(5.10)

Shaking is done when an environment change has been detected. The shaking proce-

dure changes the ratio between exploitation and exploration and diversifies search when

change occurs.

There is a high probability that paths only have to change in the vicinity of the

environment change. Therefore, in addition to global shaking, a local shaking operator

was developed which operates in the same way as global shaking, but only within a
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defined radius around the area of change. Local shaking showed good performance under

increased change frequencies. The higher the change frequency, the more important it is

to preserve some of the pheromone information in order to exploit the solutions in the

vicinity of the environment change. The local shake algorithm, by smoothing the part of

the pheromone matrix which is close to the environment change, combines exploitation

of the current pheromone matrix and biased exploration within the area of change.

Guntsch and Middendorf [91] proposed P-ACO, an ACS-based algorithm which uses

a population of previously best solutions to update the pheromone matrix. In the usual

implementations of the ACO, pheromone values are the incremental result of all the

updates since the start of algorithm execution. In P-ACO, on the other hand, the

pheromone patterns at time t are those precisely induced by the current ant population

P (t) and not the result of all past updates. That is, after one ant has completed its

solution, the solution is either added or included by replacement into the population set

according to both deterministic and stochastic criteria (population update strategies)

based on quality, population size, or age.

If a solution Tk enters the population, then the values of the pheromone variables

associated with Tk are correspondingly increased according to an AS-like rule using

equations (3.4)-(3.6). On the other hand, if a solution Tk leaves the population, then

the corresponding pheromone is decreased by the same amount it was increased when Tk

entered the population. In this way, the pheromone values precisely reflect the solutions

belonging to the current population P (t) at iteration t. In addition to this specific

mechanism, P-ACO makes use of the ACS’s transition rule using equations (3.7) and

(3.8) for component selection; however, it does not make any use of online step-by-step

pheromone updates, since pheromone updates are subject to the fact that solutions are

either entering or leaving the population.

Guntsch and Middendorf [92] applied the P-ACO algorithm for DOPs. When a

change occurs, heuristic repair of the solutions of the population is applied: the solutions

maintained in the population are modified after a change, such that they can also become

good solutions after the environment change. Since pheromone values depend only on

the solutions in the current population, using the solutions in the current population

to update pheromone information automatically adapts the pheromone information to

reflect the environment change. To maximise search efficacy the P-ACO algorithm only

inserts the best solution from each iteration into the population, thereby maintaining a
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small population of elite solutions. The purpose of maintaining a population of solutions

is to provide the P-ACO algorithm with a quick way to adjust the pheromone mapping

if a change occurs. The P-ACO algorithm has been shown to be more efficient than most

ACO algorithms for dynamic combinatorial optimisation [92].

Ramos et al. [169] developed distributed pheromone laying over the dynamic environ-

ment itself in order to track different optima. The authors show that the self-organised

algorithm is able to cope with, and to adapt quickly to unforeseen situations.

5.3 Performance Metrics for Dynamic Optimisation

Algorithms

It is far more difficult to quantify the performance of an algorithm on dynamic optimi-

sation problems than on static optimisation problems [19]. The difficulty in quantifying

performance in dynamic environments stems from the fact that the global optimum

changes over time, resulting in multiple solutions. The ability of the algorithm to re-

spond to these changes over time has to be quantified.

Even though techniques exist to detect environment changes, these techniques are

infeasible owing to the additional computational complexity. Morrison [149] provides a

summary of performance measures for dynamic environments with respect to evolution-

ary algorithms:

• Accuracy (Acc): At each environment change, the absolute difference between the

value of the best solution of the iteration found just before a change has taken

place and the value of the true global optimum before the change is calculated.

The average of these differences for all environment changes is then calculated as

a measure of performance [207], denoted by Acc, and defined as

Acc =
1

nc

nc∑
i=1

|f(Lopt(tc))− f(Lbest(tc))| (5.11)

where tc is the iteration just before a change has taken place, nc is the number

of changes of the fitness landscape (environment) during the run, Lopt(tc) is the
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optimum solution, Lbest(tc) is the best solution found in the environment after

iteration tc (just before the environment change), and f is the fitness function. If

nI is the number of iterations between changes then tc = nI − 1.

The smaller the measured value for Acc the better the result. In particular, a value

of 0 for Acc means that the algorithm found the optimum every time before the

landscape was changed (i.e. nI iterations were sufficient to track the optimum).

This measure requires knowledge of the iteration when the environment changed

and the true optimum for each change. In real problems, the position of the true

global optimum is not always available, and when the environment changes is also

not usually known.

• Adaptability (Ada): At each environment change, the average of the absolute dif-

ference between the value of the best solution found for each iteration and the value

of the optimum before the change is calculated. The average of these differences

for all environment changes (over the entire run) is then calculated as a measure

of performance [207], denoted by Ada, and defined as

Ada =
1

nc

nc∑
i=1

1

nI

nI−1∑
t=0

|f(Lopt(tc))− f(Lbest
i (t))| (5.12)

where Lbest
i (t) is the best solution found in the environment for iteration t for the

fitness landscape after the i-th environment change (i ∈ [0, nc − 1]).

The smaller the measured value for Ada the better the result. A value of 0 for Ada

means that the best solution in the population is the same as the optimum for all

iterations, i.e. the optimum is never lost by the algorithm.

Similar to the first measure, Ada requires knowledge of the iteration when the

environment changed and the true optimum for each change.

Combining the Acc and the Ada measures, the quality of the search process per-

formed by the algorithm can be evaluated. For example, results with low values

for Acc and larger values for Ada indicate that the algorithm loses the optimum

after a change is made, but the time interval between changes is long enough to

recover.

100

 
 
 



• At each iteration, the average of the Euclidean distance between each solution of the

iteration and the global optimum before the change is calculated. The average over

these distances for all iterations before a change and for all environment changes is

then calculated as a measure of performance [212], denoted by AED, and defined

as

AED =
1

nc

nc∑
i=1

1

nI

nI−1∑
t=0

1

nPF

nPF∑

k=1

||Lopt(t)− Li
k(t)|| (5.13)

where nPF is the number of solutions at iteration t, Li
k(t) is the k-th solution

at iteration t for the fitness landscape after the i-th environment change, and

||Lopt(t)−Li
k(t)|| denotes the Euclidean distance between the solutions Lopt(t) and

Li
k(t).

The smaller the measured value for AED the better the result. A value of 0 for

AED means that the algorithm has found the optimum at each iteration.

Again, the problem with the AED measure is the fact that the position of the global

optimum in the search space is usually not available, except in test problems.

Another problem is that the Euclidian distance does not apply to all problem

spaces.

• Best-of-generation average (BOGA): This is the average of the best solution for

each iteration over several executions of the algorithm on the same problem [88].

BOGA for algorithm A is defined as

BOGAA(t) =
1

nr

nr∑
r=1

Lbest
r (t) (5.14)

where nr is the number of runs and Lbest
r (t) is the best solution for iteration t and

run r.

To compare the performance of one algorithm against another, the BOGA metric

is calculated for each iteration before a change in the environment occurs (refers

to Equation (5.14)).

Figure 5.1 illustrates the BOGA metric for algorithms A and B. The run of each

algorithm consists of 20 iterations and the frequency of change is 5. Therefore,
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during each run the function changes every 5 iterations, resulting in 4 changes per

run.

0
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Figure 5.1: Best of generation averages

This method is the most commonly used method to compare the performance of

one algorithm against another. However, it does not provide a convenient method

for comparing performance across the full range of changes in the environment:

Many experiments are required for an accurate measure over all possible changes

and using this metric requires the determination of the number of iterations to

be used for a representative sample of all the environment changes. In addition,

this metric does not provide a convenient method for measuring the statistical

significance of the results: it is difficult to determine whether any differences in

performance are statistically significant.

• At each iteration, the difference between the value of the best solution of the

iteration minus the value of the worst solution within a small window, W , of

recent iterations, compared to the value of the best solution within the window

minus the value of the worst solution within the window, is calculated as a measure

of performance [112], denoted by WA. WA is defined as

WAA(t) =
f(Lbest(t))− f(Lworst

W (t))

f(Lbest
W (t))− f(Lworst

W (t))
(5.15)
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where Lbest
W (t) is the best solution within the window [t−W, ..., t], and Lworst

W (t) is

the worst solution within the window [t−W, ..., t].

This measure is based on the assumption that the best fitness value will not change

much over a small number of iterations, which may not be true. This measure also

does not provide a convenient method for comparing performance across the full

range of changes in the environment.

Since the position of the global optimum in the search space is not available for

the DMOP proposed in this thesis, the BOGAA(t) measure is used to compare the

performance of the developed algorithms.

5.4 Dynamic Multi-objective Optimisation

A dynamic multi-objective optimisation problem (DMOP) is a dynamic optimisation

problem (DOP) where at least one of the sub-objectives changes over time.

Solving a DMOP consists of tracking changes in the Pareto-optimal front. New

dominated solutions may be found and should be added. It may happen that current

solutions in the Pareto-front become dominated after a change and these should be

removed.

Very little research has been done on DMOO. Most research in DMOO has been done

on EAs [43, 68, 89, 106, 132] and PSO [87].

This section will only discuss a dynamic multi-objective optimisation evolutionary

algorithm (DMOEA) proposed by Liu and Wang [132], since this thesis will borrow

some of the aspects of this method. Liu and Wang proposed a new DMOEA denoted

by DMEA. The DMEA algorithm divides the simulation time of the DMOP into several

equal time sub-periods. In each sub-period, the DMOP is approximated by a static

multi-objective optimisation problem. As a result, the original DMOP is approximately

transformed into several static multi-objective optimisation problems. The comparative

study in [132] showed that DMEA is more effective than the compared algorithms with

respect to convergence, diversity, and the distribution of the obtained Pareto optimal

solutions.

To the author’s knowledge no studies exist of the application of ACO algorithms to

DMOPs.
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5.5 Performance Metrics for Dynamic Multi-Objective

Optimisation Problems

Performance measures for DMOPs need to quantify the ability of the algorithm to adapt

the Pareto-front under changes in the environment. As indicated in Section 5.3, perfor-

mance measures for single-objective optimisation problems can be divided into measures

that make use of the global optimum and measures independent of the global optimum.

In addition, performance measures for MOPs can be divided into measures where the true

Pareto front is known and performance metrics where the true Pareto front is unknown

(refer to Section 4.7.2).

Since the true Pareto-front is not known for the DMOP proposed in this thesis, the

focus of this thesis is on measures that do not require knowledge of the true Pareto-front.

The following performance metrics are used to compare the algorithms of this thesis:

• Number of non-dominated solutions found (ND) [119, 208]

The number of non-dominated solutions found (refer to Section 4.7.2) is calculated

for each iteration before a change to the environment occurs. The average over nr

runs is then calculated for each of these iterations as follows:

ND
i
=

1

nr

nr∑
r=1

NDi
r (5.16)

where NDi is the number of non-dominated solutions found for iteration i and NDi
r

is the number of non-dominated solutions found for run r at iteration i, which is

an iteration before a change occurs in the environment.

The performance of the algorithm over time is expressed as the average ND
i
over

all iterations, that is,

ND =
1

nc

nc∑
i=1

ND
i

(5.17)

where nc is the total number of recorded iterations (or change periods). When

comparing the performance of two algorithms, A and B, the total number of times

that ND
i

A is better than ND
i

B is calculated as the performance measure.
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The ND metric measures how well the algorithms performed in identifying solu-

tions along the Pareto front. Larger values for ND are preferred as it indicates

that many efficient solutions were found which is preferred by the decision maker.

The maximum value for ND is 100 which is the size of the archive.

• Size of the dominated space or hypervolume measure (Sd) [17, 218]

To compare the performance of one algorithm against another, the hypervolume,

Sd (refer to Section 4.7.2), is calculated for each iteration before a change to the

environment occurs. The average over nr runs is then calculated for each of these

iterations as follows:

Sd
i
=

1

nr

nr∑
r=1

Si
dr

(5.18)

where Si
d is the hypervolume calculated for iteration i and Si

dr
is the hypervolume

calculated for run r at iteration i, which is an iteration before a change occurs in

the environment.

The performance of the algorithm over time is expressed as the average Sd
i

over

all iterations, that is,

Sd =
1

nc

nc∑
i=1

Sd
i

(5.19)

Since the optimisation problem in this thesis involves the minimisation of five

objectives, a reasonable maximum value for each objective is selected for the origin

of the objective space (refer to Section 4.7.2). The hypervolume metric measures

how well the algorithms performed in identifying solutions along the full extent of

the Pareto front. Higher values of Sd indicate more closeness to the true Pareto

front and better performance.

When comparing the performance of two algorithms, A and B, the total number

of times that Sd
i

A is better than Sd
i

B is calculated as the performance measure.

• Spacing (SP) or spread metric [179, 208]
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To compare the performance of one algorithm against another, the spacing metric,

SP i (refer to Section 4.7.2), is calculated for each iteration before a change to the

environment occurs (refer to Equation (4.34)). The average over nr runs is then

calculated for each of these iterations as follows:

SP
i
=

1

nr

nr∑
r=1

SP i
r (5.20)

where SP i
r is the spacing metric value of run r at iteration i, which is an iteration

before a change occurs in the environment.

The performance of the algorithm over time is expressed as the average SP
i
over

all iterations, i.e.

SP =
1

nc

nc∑
i=1

SP
i

(5.21)

The smaller the value of SP , the better the distribution in the current non-

dominated set. A value of zero indicates that all members of the current Pareto

front are equidistantly spaced.

When comparing the performance of two algorithms, A and B, the total number

of times that SP
i

A is better than SP
i

B is calculated as the performance measure.

5.6 Summary

This section provided an overview of the main characteristics of dynamic problems and

the main goals of an optimisation algorithm for dynamic environments. The use of ant

algorithms to handle changes in dynamic environments has been described, and DMOO

and performance metrics for DMOO have been discussed.

The following chapter presents the multi-objective optimisation algorithms for power-

aware routing metrics.

106

 
 
 



Chapter 6

Multi-Objective Optimisation

Algorithms for Power-Aware

Routing Metrics

This chapter formally introduces the multi-objective power-aware routing problem. Five

multi-objective ant colony optimisation algorithms are then developed to solve the multi-

objective power-aware routing problem.

6.1 Introduction

The mobile ad hoc network routing problem is rendered difficult due to node mobility,

time-varying capacity of wireless links, and limited resources. Physically available routes

become invalid as a result of topology changes brought about by node movement or link

failure (i.e. routes may not be found by the routing algorithm) thus causing packets to

be dropped and leading both to throughput degradation and increased control overhead.

Control packet overhead (e.g. resource reservation, routing and scheduling) is an expen-

sive operation in mobile ad hoc wireless networks in terms of energy consumption and

should be kept to a minimum.

Routing algorithms for mobile networks that attempt to optimise routes while at-

tempting to keep message overhead small have been discussed in Chapter 2. Different

routing protocols use one or more of a small set of metrics to determine optimal paths.

However, some of these metrics have a negative impact on node and network life by

inadvertently overusing the energy resources of a small set of nodes in favour of others

(refer to Section 2.5.10).

Conservation of power and careful sharing of the cost of routing packets will ensure

that node and network life be increased. The simultaneous optimisation of several power-
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aware metrics will result in energy efficient routes and power saving.

This chapter presents new adaptations of the ant colony system (ACS), the max-

min ant system (MMAS), and the multiple colony ACO algorithm for solving the MOP

power-aware routing problem. This MOP consists of the following five objectives: 1)

minimise energy consumed per packet, 2) maximise time to network partition, 3) min-

imise variance in node power levels, 4) minimise cost per packet, and 5) minimise max-

imum node cost while taking into consideration a realistic mobility model. This thesis

proposes five algorithms for solving this MOP. The first two algorithms, namely, the en-

ergy efficiency for mobile networks using multi-objective ant colony optimisation, multi-

pheromone (EEMACOMP) algorithm and the energy efficiency for mobile networks using

multi-objective ant colony optimisation, multi-heuristic (EEMACOMH) algorithm are

adaptations of multi-objective ant colony optimisation algorithms (MOACO) based on

the ant colony system (ACS) algorithm. The next two algorithms, namely, the energy

efficiency for mobile networks using multi-objective MAX-MIN ant system optimisation,

multi-pheromone (EEMMASMP) algorithm and the energy efficiency for mobile net-

work using multi-objective MAX-MIN ant system optimisation, multi-heuristic (EEM-

MASMH) algorithm solve the above multi-objective problem using an adaptation of the

MAX-MIN ant system optimisation algorithm. The last algorithm, namely, the energy

efficiency for mobile networks using multi-objective ant colony optimisation, multi-colony

(EEMACOMC) algorithm uses a multiple colony ACO algorithm.

One of the objectives of this thesis is to explore different ways of adapting ACO

algorithms for the power aware routing problem and to identify which algorithms have

a better performance in terms of the optimisation criteria. The management of the

pheromone information in MOO is an important factor for the design of a MOACO

algorithm. So, the issue is to change the way in which the pheromone matrix is used

to account for multiple objectives. This can be achieved either by keeping a single

pheromone matrix (EEMACOMH and EEMMASMH), where pheromone updates are

proportional to a weighted sum of updates, each update corresponding to an objec-

tive, or using multiple pheromone matrices, one for each objective (EEMACOMP and

EEMMASMP). EEMACOMC uses multiple colonies, where each colony focuses on the

optimisation of one of the objectives. Using several colonies can serve different goals.

The usual aim is to have colonies that specialise to find good solutions in different regions

of the Pareto front, but it could also be used to let each colony specialise on a given
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objective. Finally, EEMACOMP, EEMACOMH and EEMMASMP, EEMMASMH are

chosen because they transfer knowledge of the best performing ACO algorithms for single

objective optimization, respectively ACS and MMAS, into the multi-objective context

for the power aware routing problem.

This chapter is organised as follows. Section 6.2 discusses the suitability of ACO

algorithms for the power-aware routing problem. Section 6.3 describes in detail the five

metrics for power-aware routing and formulates them mathematically. Section 6.4 for-

mulates the multi-objective optimisation problem. Section 6.5 discusses the mobility

model used, namely, the reference point group mobility model. All the changes to the

power-aware routing problem formulation resulting from this mobility model are dis-

cussed. Section 6.6 presents the five multi-objective ant colony optimisation algorithms

proposed in this thesis for simultaneously optimising the five power-aware routing met-

rics. Section 6.7 describes in detail the elitist non-dominated sorting genetic algorithm

for multi-objective power-aware routing (NSGA-II-MPA). The five algorithms proposed

will be compared with the NSGA-II-MPA algorithm.

6.2 Suitability of Ant Algorithms for the Power-Aware

Routing Problem

The ant algorithms discussed in the previous chapters illustrate the various reasons why

it is possible that these types of algorithm could perform well in mobile multi-hop ad

hoc networks. Some of these reasons will now be discussed in terms of their relevance to

important properties of the power-aware routing problem.

• Dynamic topology: The power-aware routing problem is a dynamic optimisation

problem because, after applying the mobility model to the MANET, the position of

the nodes changes and as a consequence the objective functions change repeatedly.

The changes in the environment are responsible for the poor performance of many

“classical” routing algorithms in mobile multi-hop ad hoc networks. The ability of

ACO algorithms to adapt from the optimum solution for one set of circumstances

to the optimal solution to another set of circumstances makes ACO suitable for

DOP.
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• Local information: The power-aware routing problem has certain characteris-

tics, including distributed information, non-stationary stochastic dynamics, and

asynchronous evolution of the network status. These characteristics match some

of the properties of ACO algorithms, such as the use of local information to gen-

erate solutions, indirect communication via the pheromone trails and stochastic

state transitions. In contrast to other routing approaches, the ant algorithms use

only local information to make stochastic decisions, that is, there is no need to

transmit routing tables or other information blocks to other nodes of the network.

In addition, ACO algorithms are characterised by the fact that they are multi-

agent systems interacting with each other via a form of indirect communication

(stigmergy).

• Link quality: It is possible to integrate the connection/link quality into the com-

putation of the pheromone concentration, especially into the evaporation process.

Link quality is inversely proportional to the cost between nodes and that may easily

reflect at the pheromone matrices. Evaporation helps to remove old or poor links

from the collective memory of the system. The association of link quality with

pheromone information will improve the decision process with respect to the link

quality. It is important to note that the link quality approach may be modified so

that nodes may also manipulate the pheromone concentration independent of the

ants, for example, if a node detects a change in the link quality.

• Support for multi-path: Each node has a routing table with entries for all its

neighbours. This routing table also contains the pheromone concentration. The

decision rule for selecting the next node is based on the pheromone concentration

at the current node which is provided for each possible link. Since this decision

is stochastic, a set of alternative valid paths can be discovered (multi-path) in

order to disperse the data. A multi-path data transfer provides reliable network

operations, while considering the energy levels of the nodes.

6.3 Metrics for Power-Aware Routing

This thesis hypothesises that conserving power and carefully sharing the cost of routing

packets will ensure that node and network life are increased. This section, therefore,
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describes five power-aware metrics that result in energy-efficient routes [186]:

1. Minimise energy consumed per packet (EP): This is one of the most obvious

metrics that reflects the hypothesis of this thesis in respect of conserving energy.

Assume that a certain packet, p, traverses the route T (s,D) which consists of nodes

n1, ..., nnT
where n1 is the source, s, and nnT

the destination, D. Let Eij denote

the energy consumed in transmitting (and receiving) one packet over one hop from

node ni to node nj and Tp the route which the packet, p, traverses. The energy,

EP (Tp), consumed for one packet, p, is denoted by

EP (Tp) =

nT−1∑
i=1

Ei(i+1) (6.1)

where nT is the number of nodes in the route, Tp. The energy, EP (T ), consumed

for all packets is denoted by

EP (T ) =

nT
p∑

p=1

EP (Tp) (6.2)

where nT
p is the total number of packets from s to D and T is the set of routes Tp,

one for each packet p.

Thus, the goal of this metric is to minimise EP (T ).

Discussion:

EP facilitates finding the min-power path which minimises the overall energy con-

sumption for delivering a packet. Each wireless link is annotated with its transmis-

sion energy. The min-power path is that path that minimises the sum of the link

costs along the path. In fact, it is interesting to observe that, under light loads,

the routes selected when using this metric are identical to the routes selected by

shortest-hop routing. This is not a surprising observation because, if the assump-

tion is made that Eij = Ec,∀(i, j) ∈ L, where Ec is a constant and L is the set of

all links, then the power consumed is (nT − 1)Ec . In order to minimise this value

nT needs to be minimised and this is equivalent to finding the shortest-hop path.
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In situations where one or more nodes on the shortest-hop path are heavily loaded,

the selected route may differ from the route selected by shortest-hop routing. This

is as a result of the fact that the amount of energy expended in transmitting one

packet over one hop will not be a constant since variable amounts of energy (per

hop) may be expended on network contention. Thus, the EP metric will tend to

route packets around congested areas (possibly increasing hop-count).

Shortest hop algorithms, while resulting in minimum delay, often result in the early

death of some mobile nodes. When mobile nodes are unfairly burdened to support

several packet-relaying functions these nodes consume more battery energy and run

out of energy earlier than other nodes, thereby creating partitions and disrupting

the overall functionality of the ad hoc network. Consider the network illustrated in

Figure 6.1 [186]. Here, node 6 will be selected as the route for packets going from

0 to 3, 1 to 4 and 2 to 5, thus providing the shortest hop. As a result, node 6 will

expend its battery resources at a faster rate than the other nodes in the network

and will be the first node to die. Thus, the EP metric alone does not really meet

the goal of increasing node and network life.

2. Maximise time to network partition (TNP): The objective of the TNP metric

is to divide the load among mobile nodes so that the network will partition in such a

way that nodes drain their energy at equal rates. The TNP metric is very important

in mission-critical applications such as battle site networks. Optimisation of TNP

is very difficult if it has to simultaneously maintain low delay and high throughput.

The goal of the TNP metric is to obtain a balanced ad hoc network in order to

achieve better performance in terms of execution time and throughput.

A common approach to balancing network load is to minimise the utilisation of

the link with the least capacity:

TNP (Tp) = Maxi,j ∈ Tp

{
1

ca(i,j)

}
(6.3)

with the capacity of link (i, j) defined as
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Figure 6.1: A network illustrating the problem with energy per packet as a metric.

ca(i, j) =
ec

i

Eij

(6.4)

where ec
i is the current energy of node i, and Eij is the energy expenditure for unit

flow transmission over the link (i, j); ca(i, j) is the capacity of the link (i, j) defined

as the number of unit-length messages that may be transmitted along (i, j) before

node i runs out of energy.

Discussion: Given a network topology, the maxflow-min-cut theorem [130] may be

used to find a minimal set of nodes (i.e. the cut-set nodes) whose removal will

cause the network to partition. The routes between these two partitions must pass

through one of these cut-set nodes, which are called critical nodes. Therefore,

a routing procedure must divide the work among the critical nodes in order to

maximise the lifetime of the network. Dividing the work among the critical nodes

is similar to the “load balancing” problem, where tasks need to be sent to one of the

many servers available so that response time is minimised – this is an NP-complete
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problem. If care is not taken that the critical nodes drain their power at an equal

rate, there will be delay increases as soon as one of these nodes die as a result of

network partition. Achieving equal power drain rate among these nodes requires

careful routing, and is similar to the load balancing problem described above. Since

nodes in different partitions determine routes independently, it is not possible to

achieve the global balance required to maximise the network partition time whilst

minimising the average delay. Maximising the network lifetime using the TNP

metric is a more fundamental goal of an energy efficient routing algorithm: Given

alternative routing paths, TNP selects that path which will result in the longest

network operation time.

3. Minimise variance in node power levels (VNP): In order to measure quanti-

tatively how well the nodes share the load, the variation factor, VF, is introduced.

The VF is defined as the variance of the capacity of the nodes:

V F (Tp) =

∑
i,j ∈ Tp

|ca(i, j)− µT |
nT − 1

(6.5)

where µT is the average capacity for solution Tp, which is computed as

µT =
1

(nT − 1)

∑
i,j ∈ Tp

ca(i, j) (6.6)

A lower value of VF indicates both a better load distribution and minimum variance

in node power and tends to zero for a perfectly balanced load sharing system.

The VNP metric is based on the assumption that all nodes in the network are

equally important and that no single node must be penalised more than any other

node. The VNP metric ensures that all the nodes in the network remain up and

running for as long as possible.

Discussion: A problem with minimising variance in node power levels is similar to

“load sharing” in distributed systems, where the objective is to minimise response

time while keeping the amount of unfinished work in all nodes the same. This

goal may be achieved by using a routing procedure, where each node sends traffic
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through the neighbour with the least amount of data waiting to be transmitted,

thus avoiding overloading a node.

4. Minimise cost per packet (CP): Let fi(e
e
i (t)) denote the node cost or weight

of node ni where ee
i (t) represents the total energy expended by node ni thus far.

The total cost of sending a packet along path T (s,D) = (s = n1, n2, ....D = nnT
) is

defined as the sum of the node costs of all the nodes that lie along that path. The

cost CP of sending a packet p from n1 to nnT
via intermediate nodes n2, ..., nnT−1

is,

CP (Tp) =

nT−1∑
i=1

fi(e
e
i (t)) (6.7)

The goal of the CP metric is to minimise the total cost over all the packets. The

paths selected when using the CP metric should be such that those nodes with de-

pleted energy reserves do not lie on many paths. In this way the network partition

is extended.

Discussion: Since fi represents the reluctance of a node to forward packets, fi is

chosen as [186]

fi(e
e
i (t)) =

1

Ei − (ee
i (t))

(6.8)

where Ei is the initial energy of node ni when the network is deployed.

Function fi is the reciprocal of the residual energy of node ni. Therefore, as the

energy of a node decreases, the cost of using that node increases.

Using equation (6.8), equation (6.7) becomes

CP (Tp) =
∑
i∈Tp

1

Ei − (ee
i (t))

(6.9)

To summarise, the benefits of the CP metric are the following:

115

 
 
 



• It is possible to incorporate the residual energy characteristics directly into

the routing protocol.

• As a side-effect, the CP metric increases the time to network partition and

reduces variation in node costs.

• The effects of network congestion are incorporated (as an increase in node

cost due to contention).

5. Minimise maximum node cost (MNC): The node cost, Cni
(t), is defined as

the ratio of the total energy consumed up to time, t, to the initial energy, Ei [65]:

Cni
(t) =

Ei − ec
i(t)

Ei

(6.10)

The MNC metric is then defined as

MNC(Tp) = max
i∈Tp

Cni
(t), ∀t > 0 (6.11)

The objective of this metric is to minimise MNC. Minimising the cost per node

significantly reduces the maximum node cost. MNC delays node failure and reduces

variance in remaining battery lives because links with high energy cost are avoided.

Since future network lifetime is difficult to estimate, the last three metrics have been

included in order to increase network lifetime indirectly. Variance of residual battery

energy of mobile nodes is a simple indication of energy balance and may be used to

extend network lifetime. The cost-per-packet metric is similar to the energy-per-packet

metric but cost-per-packet includes the residual energy life of each node in addition

to the transmission energy. The corresponding energy-aware routing protocol prefers

wireless links which require low transmission energy, but, at the same time, avoids nodes

with low residual energy with high node cost. The outcome of the MNC metric is that

each candidate path is annotated with the maximum node cost among the intermediate

nodes (equivalently, the minimal residual battery life), and the path with the minimum

path cost, is selected. Maximum node cost is also referred to as the max-min path in

online max-min (OMM) protocol [165] because this protocol uses the residual battery

life of nodes rather than their node cost. It is clear from the above that, in order to

maximise network lifetime, it is necessary to achieve a measure of balance between the
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energy consumed by a route and the minimum residual energy at the nodes along the

chosen route.

The five metrics discussed in this section express, in different ways, the hypothesis

of this thesis about conserving energy in the network by selecting routes carefully.

The next section formulates the power-aware routing problem.

6.4 Multi-Objective Optimisation Problem for Power-

Aware Routing Metrics Using a Mobility Model

Based on the five metrics defined in Section 6.3, this section defines the dynamic MOP

for power-aware routing. The problem is formulated in Section 6.4.1, while Section 6.4.2

discusses the heuristic information used to solve the dynamic MOP.

6.4.1 Problem Formulation

For this thesis, a network is modelled as a directed graph, G = (V, L), where V represents

the set of nodes and L is the set of links. The definitions in appendix C are used for the

formulation of the power-aware routing problem.

The power-aware routing problem is defined as a dynamic MOP, with the objective

to find a path, T (s,D) = {s = n1, n2, ..., D = nnT
}, such that the energy consumed per

packet, EP (Tp), utilisation of the most heavily used link, TNP (Tp), variance in node

power levels, V F (Tp), cost per packet, CP (Tp), and maximum node cost, MNC(Tp), are

minimised (refer to equations (6.1), (6.3), (6.5), (6.9) and (6.11)). More formally, the

problem is defined as

minimise f(Tp) = (EP (Tp), TNP (Tp), V F (Tp), CP (Tp), MNC(Tp)) (6.12)

An example of a networking routing problem is discussed in the remainder of this

section in order to illustrate the multi-objective power-aware problem stated above:

Given the network topology of a directed graph G as illustrated in Figure 6.2, the number

associated with each link (i, j) denotes the energy, Eij, consumed in transmitting one
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Figure 6.2: A network illustrating the multi-objective optimisation problem

packet over one hop from node i to node j. With each node is associated a number, ec
i ,

where ec
i is the residual power of node i. The initial energy for each node is 50Joule,

npT = 10, s = 3, and D = 9. Table 6.1 presents the values of the objective functions

for the random solution, Tp(3, 9) = (3, 1, 2, 5, 8, 9). After finding the set of candidate

paths (solutions) from source to destination, and using the concept of non-dominance,

the Pareto set is calculated. The objective of the algorithms of this thesis is to calculate

the Pareto set in one run and evaluate it just before a change in the environment occurs,

using the performance metrics discussed in Section 5.5.

The following subsection presents the heuristic information associated with each sub-

objective.
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Table 6.1: Objective functions calculated for the route of Figure 6.2

Solution Tp = (3, 1, 2, 5, 8, 9)
(i, j) (3, 1) (1, 2) (2, 5) (5, 8) (8, 9)
Eij 2 2.5 3.0 2 1
i 3 1 2 5 8 9
ec

i 10 15 20 30 20 40
ec
i

Eij
5.00 6.00 6.66 15.00 20.00

1
ec
i

0.10 0.066 0.050 0.033 0.050 0.025

EP (Tp) 10(2+2.5+3+2+1)=105
TNP (Tp) 0.2

µTp 10.53
V F (Tp) 5.57
CP (Tp) 0.1+0.066+0.05+0.033+0.05+0.025=0.324

MNC(Tp) max(0.8, 0.7, 0.6, 0.4, 0.6, 0.2) =0.8

6.4.2 Heuristic Information

For each of the five sub-objectives, the heuristic information needed to guide the search

to an optimal solution is defined as follows:

• Energy consumed per packet heuristic: Let ηνij
denote the heuristic desirability or

the attractiveness of the move from node i to node j which is associated with the

objective EP. Then,

ηνij
=

1

Eij

(6.13)

The heuristic information, ηνij
, guides the ants to construct good solutions with

low energy consumed per packet. For this purpose, the function ην creates a matrix

that associates a row to each node and a column for each feasible neighbour node.

Each entry is calculated according to the energy, Eij, consumed in transmitting one

packet over one hop from i to j (refer to equations (6.1) and (6.2)). The motivation

for using the energy consumed per packet heuristic information is that, intuitively,

good solutions will choose a link with low transmission energy.

• Time to network partition heuristic: Let ηξij
denote the heuristic information as-

sociated with the objective TNP. Then,

ηξij
=

ec
i

Eij

(6.14)
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The heuristic information, ηξij
, guides the ants to construct good solutions with

minimal utilisation of the most heavily used link in the network. The assignment

of each entry in the matrix created by ηξ is made according to the current energy,

ec
i , of node i and the energy, Eij, which is consumed in transmitting one packet

over one hop from i to j (refer to equation (6.3)). The motivation for using the

time to network partition heuristic information is that the use of the least heavily

used link in the network delays first node failure (due to node energy depletion),

and thus delays network partition.

• Variance in node power levels heuristic: Let ηπij
denote the heuristic information

associated with the objective VNP. Then,

ηπij
=

1

|ca(i, j)− µT | (6.15)

where ca(i, j) denotes the capacity of link (i, j) and µT is the average capacity for

all links of T which is computed as in equation (6.6).

The heuristic information, ηπij
, guides the ants to construct good solutions with

minimum variance in node power level and to send traffic through the nodes with

less capacity variation. The assignment of each entry in the matrix created by ηπ

is made according to the current capacity variation of link (i, j) (refer to equation

(6.5)). The motivation for using the variance in node power levels heuristic in-

formation is that the performance potential from an energy environment depends

on the variation in the energy available across the network. While the amount of

energy available is definitely relevant, it is the distribution of this energy in space

and time which significantly affects network performance. For instance, if large

amounts of energy are available, but concentrated in a small region of the network,

then the nodes in those regions without energy supply will limit the total useful

lifetime of the network. Energy available in other regions of the network may not

be able to meet the performance requirements of the system as a whole.

• Cost per packet heuristic: Let η%ij
denote the heuristic information associated with

the objective CP. Then,

η%ij
=

ec
j

Ej

(6.16)

where ec
j is the residual energy of node j and Ej is the initial energy of node j.
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The heuristic information, η%ij
, guides the ants to construct good solutions with

low cost per packet and to send traffic through nodes with more residual energy

(refer to equation (6.9)). The motivation for using the cost per packet heuristic

information is that, if routes that pass through nodes with high residual energy

are used, network lifetime will be maximised [8].

• Maximum node cost heuristic: Let ηςij denote the heuristic information associated

with the objective MNC. Then,

ηςij =
Ej

Ej − ec
j(t)

(6.17)

The heuristic information, ηςij , guides the ants to construct good solutions with

minimum node cost and to send traffic through links with high residual energy (re-

fer to equation (6.11)). The motivation for using the maximum node cost heuristic

information is that network lifetime will be maximised if routes that pass through

links with high node cost are avoided [18].

The next section deals with the mobility model used for the multi-objective power-

aware routing problem.

6.5 Reference Point Group Mobility Model

This thesis makes use of the reference point group mobility (RPGM) model [29] (refer

to Section 2.4). Nodes move in a random fashion using the random way point mobility

(RWP) model [29] around a global centre from which the nodes are not able to move

farther than a radius of Rg/2. This global centre is also mobile, and its motion may follow

an arbitrary motion pattern. The RWP model is used to create the motion pattern of

the global centre. The effect is that each node will follow the mobility pattern.

RPGM was selected because group motion occurs frequently in ad hoc networks,

and RPGM may be readily applied to many existing applications [101]. Moreover, with

a proper choice of parameters, RPGM may be used to model several mobility models

which have previously been proposed (refer to Section 2.4). RPGM has the advantage of

providing a general and flexible framework for describing mobility patterns which are task

oriented and time restricted, in addition to being easy to implement and verify. RWP
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is one of the widely used models for ad hoc and infrastructure wireless simulations [163]

and it has been implemented in several network simulations [110, 183].

The dynamic nature of the power-aware routing problem is determined by the mo-

bility model. The mobility model, in part, makes the problem a dynamic optimisation

problem. The Rg determines the severity of change and the pause time, Tsm, before

applying the mobility model, determines the frequency of change (refer to Section 5.1).

The remainder of this section presents the actions to be taken just before applying

the RPGM mobility model and all the updates after the change occurs.

Every Tsm seconds, a packet is sent from a source node to a destination node using

a random route, Ts, from the Pareto set. The choice of a random route is motivated

by the fact that none of the Pareto set solutions is absolutely better than the other

non-dominated solutions and all of them are equally acceptable with regards to the

satisfaction of all the objectives.

The energy required to do a single-hop transmission from node i to node j is Eij.

Therefore, the current energy, ec
i , for each node i ∈ Ts is updated according to

ec
i = ec

i − Eij (6.18)

where link (i, j) ∈ Ts.

The RPGM mobility model is applied (refer to Section 6.5) and the distances, dij,

between all nodes i and j belonging to L are recalculated. Since the energy required

for transmitting a message along a link (i, j) is proportionate to the distance, dij, the

energy, Eij, for all links (i, j) ∈ L is recalculated using

Eij = max

{
1

(Tr)2
,

1

(Tr)2
∗ d2

ij

}
(6.19)

where Tr is the transmission range of the node and dij is the Euclidean distance between

nodes i and j (refer to Section 2.5.8). The Pareto set is updated by deleting the invalid

routes (routes with broken links), i.e. routes for which Eij > ec
i or dij > Tr. Since

the objective functions have been changed, the sub-objectives for all solutions of the

current Pareto set are evaluated using equations (6.2), (6.3), (6.5), (6.9), (6.11) and all

the dominated solutions are discarded from the Pareto set.

Finally, the heuristic matrices are recalculated (refer to equations (6.13)-(6.17)).
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The above steps are summarised in Algorithm 12.

Algorithm 12 General Procedure of ApplyMobilityChanges

Choose a random route, Ts, from Pf ;
Send one packet from source to destination using Ts;
for all nodes i ∈ Ts do

Update ec
i according to equation (6.18);

end for
Apply the RPGM mobility model (refer to Section 6.5);
for all links (i, j) ∈ L do

Recalculate dij ;
Recalculate Eij according to equation (6.19);

end for
Delete invalid solutions from Pf ;
for all T ∈ Pf do

Re-evaluate the sub-objectives using equations (6.2), (6.3), (6.5), (6.9), (6.11);
end for
Remove dominated solutions from Pf ;
for all links (i, j) ∈ L do

Recalculate all the heuristic matrices according to equations (6.13)-(6.17);
end for

6.6 Multi-Objective Ant Colony Optimisation

This section presents the five multi-objective ant colony optimisation algorithms pro-

posed in this thesis for simultaneously optimising the five power-aware routing metrics

given in Section 6.3.

Subsection 6.6.1 discusses the general framework of the ACO algorithms developed

for the power-aware routing problem. Subsections 6.6.2 to 6.6.6 respectively present the

EEMACOMP, EEMACOMH, EEMMASMP, EEMMASMH and EEMACOMC multi-

objective ACO algorithms.

6.6.1 General Framework of ACO Algorithms for the Power-

Aware Routing Problem

An overview of the ACO algorithms for the power-aware routing problem is given below

in Figure 6.3.

The remainder of this subsection discusses the solution construction process for each

algorithm, the management of the archive, Pf (Pareto set), and the global pheromone

update.

Solution construction process. At every iteration of the developed algorithms

each ant constructs a complete solution as follows: Starting from the source node, s,
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———————————————————————————————

1. Initialise control parameters, and pheromone matrices.

2. Calculate the heuristic matrices.

3. Place all ants at source node s.

4. Repeat for the duration of the simulation time

(a) Repeat for the duration of pause time {Optimise static problem for power-aware routing }
i. For each ant

A. Construct a solution.

B. Evaluate the solution.

C. If solution is non-dominated insert it into the archive.

D. Keep the size of the archive to a predefined limit.

ii. Apply global pheromone update using all non-dominated solutions of the archive.

(b) Dynamic aspect for power-aware routing

i. Send a packet using a solution from the archive.

ii. Apply RPGM mobility model.

iii. ApplyMobilityChanges {apply updates due to the mobility of the nodes}
A. Update energy levels.

B. Update node distances.

C. Eliminate invalid solutions from the archive.

D. Re-evaluate the sub-objectives.

E. Eliminate dominated solutions from the archive.

F. Recalculate heuristic information.

iv. Apply pheromone conservation.

5. Return solutions of the archive.

——————————————————————————————————————————–

Figure 6.3: Overview of ACO algorithms for the power-aware routing problem

a non-visited node is selected at each step using an adaptation of the ACS transition

rule for the EEMACOMP, EEMACOMH, and EEMACOMC algorithms (refer to Sec-

tion 3.5.2) and an adaptation of the MAX-MIN transition rule for the EEMMASMP

and EEMMASMH algorithms (refer to Section 3.5.3). This process continues until the

destination node, D, is reached. When a new node has been added to a candidate solu-

tion, a local pheromone update is performed for the EEMACOMP, EEMACOMH, and

EEMACOMC algorithms (refer to Section 3.5.2).

Archive management. At the conclusion of each iteration, the Pareto set, Pf , is

updated including the non-dominated solutions that have been found thus far. Domi-

nated solutions are removed from Pf . If the number of non-dominated solutions exceeds

the predefined archive size, Pas, then a truncation operator is used to remove solutions

with a lower value of the crowding distance from the archive (refer to Section 4.6.2).

The use of the crowding distance guides the selection process at the various stages of the

algorithm towards a uniformly spread-out Pareto-optimal front.
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Global pheromone update. In the case of multiple pheromone algorithms (EEMA-

COMP and EEMMASMP) each pheromone matrix associated with each objective is

updated using all the solutions of the archive, Pf . That is, every ant that generated a

solution in the non-dominated front, Pf , from the beginning of the run is allowed to up-

date all pheromone matrices (refer to Section 4.5.4). In the case of a single pheromone

algorithm (EEMACOMH, EEMMASMH) every ant that generated a solution in the

non-dominated front from the beginning of the run is allowed to update the pheromone

matrix (refer to Section 4.5.3).

The next sections elaborate in detail on the different steps for each of the algorithms.

6.6.2 Energy Efficiency Using Multi-Objective Ant Colony Op-

timisation, Multi-Pheromone Algorithm

In accordance with the ant colony system (ACS) (refer to Section 3.5.2) the energy

efficiency for a mobile network using a multi-objective ant colony optimisation, multi-

pheromone (EEMACOMP) algorithm makes use of a colony of ants and several pheromone

matrices. This concept has been borrowed from Iredi et al. [104] (refer to Section 4.5.4).

EEMACOMP calculates five pheromone matrices – one for each optimisation criterion,

which, together with a heuristic matrix for each optimisation criterion, are used to cal-

culate transition probabilities. The association of different pheromone matrices for each

objective may be useful if the weight of each objective is different and the solution

components for each objective must be defined differently (refer to Section 4.5.4).

From equation (3.7), the transition rule for EEMACOMP becomes

j =





arg maxu ∈ Nk
i (t)

{
τλν
νiu

(t)ηβν
νiu

(t) + τ
λξ

ξiu
(t)η

βξ

ξiu
(t) + τλπ

πiu
(t)ηβπ

πiu
(t) + τ

λ%
%iu(t)η

β%
%iu(t)+

τλς
ςiu

(t)ηβς
ςiu

(t)
}

if r ≤ r0

J if r > r0

(6.20)

where λν , λξ, λπ, λ%, λς ∈ (0, 1) are user-defined parameters which establish the impor-

tance of the objectives; τνij
(t), τξij

(t), τπij
(t), τ%ij

(t) and τςij(t) are the pheromone ma-

trices, one per objective; ηνij
(t), ηξij

(t), ηπij
(t), η%ij

(t) and ηςij(t) represent the heuristic

information. The parameters βν , βξ, βπ, β%, βς define the relative influence among heuris-

tic information. The other symbols are as defined in Section 3.5.2. J ∈ Nk
i (t) is a node
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randomly selected based on the probability given by equation (3.8) [104]. According to

this equation the probability for EEMACOMP becomes

pk
iJ(t) =





(
τλν
νiJ

(t)ηβν
νiJ

(t)+τ
λξ
ξiJ

(t)η
βξ
ξiJ

(t)+τλπ
πiJ

(t)ηβπ
πiJ

(t)+τ
λ%
%iJ

(t)η
β%
%iJ

(t)+τ
λς
ςiJ

(t)η
βς
ςiJ

(t)

)

∑
∀u∈Nk

i
(t)

(
τλν
νiu

(t)ηβν
νiu

(t)+τ
λξ
ξiu

(t)η
βξ
ξiu

(t)+τλπ
πiu

(t)ηβπ
πiu

(t)+τ
λ%
%iu

(t)η
β%
%iu

(t)+τ
λς
ςiu

(t)η
βς
ςiu

(t)

)

if J ∈ Nk
i (t)

0 otherwise

(6.21)

where Nk
i (t) is a list containing a set of valid nodes to visit from node i.

All objective functions are normalized and bounded by an upper limit value that

gives approximately the same magnitude to each objective function [103]. To further

reduce any problems which may arise due to difference in magnitude of the objective

functions, the above rule uses the sum of the products of the different pheromone and

heuristic information matrices instead of the product as used by Iredi et al. [104].

The transition rule in equation (6.21) creates a bias towards those nodes which are

connected by links with a large amount of pheromone. The same transition rule will bias

the search toward minimising energy consumed per packet, utilisation of the link with

the least capacity, variance in node power levels, cost per packet, and maximum node

cost. Such nodes have a higher probability of being selected.

Heuristic information matrices are calculated at the beginning of the simulation and

every time there is a change in the environment using equations (6.13)-(6.17). Pheromone

matrix initialisation, and global and local updates are discussed next.

Pheromone matrix initialisation

The five pheromone matrices are initialised as follows:

τψij
(t) = τ0ψ (6.22)

for all ψ ∈ {ν, ξ, π, %, ς}, and for all (i, j) ∈ L, where τ0ψs are small positive values

calculated for each objective, as follows

τ0ψ =
1

NGBψ

(6.23)
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where NG is the number of nodes; Bν = EP (Tν), where Tν is the route from source s to

destination D with minimal energy consumed per packet; Bξ is the maximum capacity

of all links belonging to T for all paths T from s to D; Bπ is the minimal variance

of the capacity of all nodes for all paths T from s to D; B% = CP (T%), where T% is

the route with minimal cost consumed per packet; Bς denotes the maximum energy

consumed in transmitting one packet over one hop for all links belonging to T and for

all paths T from s to D. Routes T , Tν , and T% are calculated using greedy heuristics

as follows: Starting from the source node, s, a non-visited node is selected at each step

according to the heuristic information associated with the corresponding objective. This

process continues until the destination node, D, is reached and the greedy algorithm is

completed.

Global pheromone update

Once all nk ants have constructed solutions (refer to Section 6.6.1), the archive (Pareto

set), Pf , is updated including the non-dominated solutions that have been found thus

far. All the solutions from Pf are then selected to modify the pheromone trails globally.

Each pheromone trail associated with each objective is updated using the following global

update rules (refer to Section 3.5.2):

τψij
(t + 1) = (1− ρg)τψij

(t) + ρg∆
ψτij(t) (6.24)

where ρg ∈ [0, 1] is the global evaporation factor, ψij represents either νij, ξij, πij, %ij,

or ςij depending on the sub-objective, and

∆ψτij(t) =

{
1

C(Tk)
if i, j ∈ Tk

0 otherwise
(6.25)

for all Tk ∈ Pf , where C(Tk) represents the corresponding objective function.

If ρg is small, this strategy favours exploitation by encouraging ants to search in the

vicinity of the solutions of the current Pareto front.
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Local pheromone update

When a new node is added to a solution being constructed by an ant, a local pheromone

update is performed using

τψij
(t + 1) = (1− ρl)τψij

(t) + ρlτ0ψ (6.26)

where τ0ψ is the initial amount of pheromone on every link, ψ represents either ν, ξ, π,

%, or ς depending on the sub-objective, and ρl ∈ [0, 1] is the local evaporation factor.

The EEMACOMP discussed above has been developed for static objective functions.

The following subsection discusses an adaptation of EEMACOMP for dynamic objective

functions.

Dynamic EEMACOMP

The problem considered in this thesis is a dynamic optimisation problem. Therefore, the

static EEMACOMP above has to be adapted to dynamic environments. This section

presents an adaptation of EEMACOMP to dynamic environments.

The dynamic ACO algorithm is based on the principle of dividing the simulation

time, STtot , into nts time slices with equal length, STtot/Tsm, where Tsm is the length of

the pause time for the mobility model. Tsm is an indication of frequency of change (refer

to Section 5.1). During each time slice a problem very similar to a static EEMACOMP

is created, and optimisation is carried out. For each of these static problems the aim is

to simultaneously minimise the five objectives and to create a Pareto set, Pf , with the

best non-dominated solutions that have been found within the time slice. Every Tsm

seconds the mobility model is applied, the position of the nodes is changed with severity

of change, Rg (refer to Section 5.1), and a new static EEMACOMP is created. The

concept of a time slice has been introduced to bound the time dedicated to each static

problem. A different strategy could be to stop and restart the algorithm each time a new

event occurs (i.e. the mobility model is applied). The disadvantage of such an approach

is that the time to be dedicated to each static problem would not be known in advance,

and, consequently, optimisation may be interrupted before a good local minimum is

reached, thus producing unsatisfactory results.

If Tsm is small enough, the change in the problem is frequent but a lesser number of

iterations are allowed to track new optimal solutions. There is a lower limit to Tsm below
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which, albeit a small change in the problem, the number of iterations are not enough

for an algorithm to track the new optimal solutions adequately. Such a limiting Tsm

will depend on the chosen algorithm, but importantly allows the best scenario which the

chosen algorithm can achieve. The next chapter investigates this aspect and finds such

a limiting Tsm for the different developed algorithms.

Once a time slice is completed and the respective static problem has been solved by

the ACS based EEMACOMP algorithm, each pheromone matrix will contain informa-

tion on the characteristics of good solutions for this specific problem. In particular, good

paths will manifest high values in the corresponding entries of the pheromone matrix for

each objective. Pheromone information, together with the current Pareto set, may be

passed on to the static problem corresponding to the following time slice since the two

problems would potentially be very similar. This operation would prevent optimisation

having to restart each time from scratch and would contribute greatly to the good per-

formance of the EEMACOMP algorithm. In case there is no similarity between the

two static problems above, the performance of EEMACOMP will be the same as with

restarting the optimisation from scratch.

As part of the dynamic EEMACOMP, the ApplyMobilityChanges procedure is called

(refer to Algorithm 12) and pheromone conservation rules are applied.

The ApplyMobilityChanges procedure sends a message from source to destination,

applies the RPGM mobility model and executes all the necessary updates after the change

has occured. The Pf archive is re-evaluated and dominated solutions are removed from

the archive.

Pheromone conservation rules are applied in order to promote the efficient passing

on of information regarding the properties of good solutions from a static problem in

one time slice to the static problem in the following time slice. At the end of each

time slice the mobility procedure is applied and the environment changes. The distances

between nodes are modified, the energy required for transmitting a message along a

link (i, j) may be changed and nodes may move out of transmission range or run out of

energy. Pheromone trails must be adapted in order to reflect these changes. In order

to correct the amount of pheromones, this thesis uses the pheromone update rules for

dynamic environments which were proposed by Guntsch and Middendorf [90] (refer to

Section 5.2). The choice of these update rules is motivated by the fact that pheromone

values are not completely reinitialised but a trace of old values containing characteristics
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of good solutions remain. These rules distribute reset-values γνi
, γξi

, γπi
, γ%i

, γςi ∈ [0, 1]

to each node i. These values determine the amount of re-initialisation of the pheromone

values on links j incident to i according to

τψij
(t + 1) = (1− γψi

)τψij
(t) + γψi

1

nG − 1
(6.27)

where ψi represents either νi, ξi, πi, %i, or ςi depending on the sub-objective.

In order to calculate the reset-values, the η-strategy (refer to Section 5.2.2) is used,

where heuristic information is applied to decide to what degree pheromone values are

equalised. According to the η-strategy, the closer a link is to a modified node, the greater

the amount of pheromone which will be removed from this link. The motivation behind

the choice of η-strategy is that this specific strategy helps the ants to find new paths by

increasing the influence of new links. The measurement of closeness is based on the link

costs in terms of the different objectives.

Each node i is assigned the values γνi
, γξi

, γπi
, γ%i

, γςi proportionate to the distances

dη
νij

, dη
ξij

, dη
πij

, dη
%ij

, and dη
ςij

from the changed component, j, and equalisation is carried

out on all links incident to the changed component. These distances are derived from the

heuristics ηνij
, ηξij

, ηπij
, η%ij

, and ηςij such that a high heuristic implies a large distance.

For each pheromone matrix, the γνi
, γξi

, γπi
, γ%i

, γςi values are calculated using

γψi
= max{0, dη

ψij
} (6.28)

with

dη
ψij

= 1− η̄ψ

λE.ηψij

(6.29)

where ψ represents either ν, ξ, π, %, or ς depending on the sub-objective, and

η̄ψ =
1

nG ∗ (nG − 1)

nG∑
i=1

nG∑
j=1

j 6=i

ηψij
(6.30)

where λE ∈ [0,∞) is a strategy-specific parameter.

Algorithm 13 summarises EEMACOMP. In summary, if the environment has changed,

then pheromone conservation is applied to allow the ants to explore new, relevant areas

of the search space in later iterations.
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Algorithm 13 General Procedure of EEMACOMP

t = 0; Pf = ∅; Set timer Tsm;
Initialise s, D, r0, βν , βξ, βπ, β%, βς , λν , λξ, λπ, λ%, λς ;
Initialize nk; {number of ants}
Initialize Pas; {Maximum archive size}
Initialize τ0ν , τ0ξ, τ0π, τ0%, τ0ς ;
for each link (i, j) do

Initialize pheromone matrices τνij (t), τξij (t), τπij (t), τ%ij (t), τςij (t) using equation (6.22);
end for
for each link (i, j) do

Calculate ηνij , ηξij , ηπij , η%ij , ηςij ;
end for
Place all ants, k = 1, ..., nk at source node s;
while t <= STtot do

{begin resolve static EEMACOMP}
while Tsm seconds not elapsed do

for k = 1 to nk do
T = ∅;
i = s; {where s the source node and i the current node}
while (i 6= D) do

Build set Nk
i (t) for node i;

Assign probability pk
ij to each node of Nk

i according to equation (6.21);
Select node j of Nk

i using equations (6.20) and (6.21);
T = T ∪ j ;
Apply local update pheromone using equation (6.26);
i = j;

end while
Evaluate the sub-objectives for solution T using equations (6.2), (6.3), (6.5), (6.9), (6.11) ;
if T is non-dominated by any Tx ∈ Pf then

Pf = Pf ∪ T − {Ty | T ≺ Ty}, ∀Ty ∈ Pf ;
if size of Pf > Pas then

Truncate Pf

end if
end if

end for
for all Tk ∈ Pf do

Update global pheromone ∀(i, j) ∈ Tk using equations (6.24)-(6.25);
end for

end while
{end resolve static EEMACOMP}

Call Procedure ApplyMobilityChanges() (refer to Algorithm 12);
Apply pheromone conservation ∀(i, j) ∈ L using equations (6.27)-(6.30);
t = t + Tsm;
Reset timer Tsm;

end while
Return Pf
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6.6.3 Energy Efficiency Using Multi-Objective Ant Colony Op-

timisation, Multi-Heuristic Algorithm

In accordance with the ant colony system (ACS) (refer to Section 3.5.2), the energy

efficiency for mobile networks using a multi-objective ant colony optimisation, multi-

heuristic (EEMACOMH) algorithm makes use of a colony of ants, one pheromone matrix

and a different heuristic matrix for each objective.

This concept has been borrowed from Iredi et al. [104] (refer to Section 4.5.3). The

EEMACOMH algorithm is similar to EEMACOMP with the only difference being that

EEMACOMH uses a single pheromone matrix instead of five pheromone matrices. This

single pheromone matrix represents the desirability of the solution components with

regard to all the objectives.

From equation (3.7), the transition rule for EEMACOMH becomes

j =





arg maxu ∈ Nk
i (t)

{
τiu(t)× (ηβν

νiu
(t) + η

βξ

ξiu
(t) + ηβπ

πiu
(t) + η

β%
%iu(t) + ηβς

ςiu
(t))

}

if r ≤ r0

J if r > r0

(6.31)

where τij(t) is the pheromone matrix – the same for all objectives – and ηνij
(t), ηξij

(t),

ηπij
(t), η%ij

(t) and ηςij(t) represent the heuristics. The parameters βν , βξ, βπ, β%, and βς

define the relative influence among heuristic information. The rest of the symbols are as

defined in Section 3.5.2. J ∈ Nk
i (t) is a node randomly selected based on the probability

given by equation (3.8). According to this equation the probability for EEMACOMH

becomes

pk
iJ(t) =





(
τiJ (t)×(ηβν

νiJ
(t)+η

βξ
ξiJ

(t)+ηβπ
πiJ

(t)+η
β%
%iJ

(t)+η
βς
ςiJ

(t))

)

∑
∀u∈Nk

i
(t)

(
τiu(t)×(ηβν

νiu
(t)+η

βξ
ξiu

(t)+ηβπ
πiu

(t)+η
β%
%iu

(t)+η
βς
ςiu

(t))

)

if J ∈ Nk
i (t)

0 otherwise

(6.32)

The solution construction process is as given in Section 6.6.1. Heuristic information

matrices are calculated at the beginning of the simulation and every time there is a change
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in the environment using equations (6.13)-(6.17). Pheromone matrix initialisation, and

global and local updates are discussed next.

Pheromone matrix initialisation

The pheromone matrix is initialised as follows:

τij(t) = τ0 (6.33)

for all (i, j) ∈ L, where τ0 is a small positive value calculated as

τ0 =
1

NG ×Ba

(6.34)

where NG is the number of nodes, and Ba is the length of the initial solution produced

by the nearest neighbour heuristic [70].

Global pheromone update

Once each of the nk ants has completed its solution, if the ant’s solution, Tk, is non-

dominated by the solutions of Pf , the solution is stored in the archive, Pf , and solutions

of Pf newly dominated by Tk are removed from the archive. All the solutions from Pf are

then selected to modify the pheromone trail globally. The pheromone trail is updated

using the following global update rule (refer to Section 3.5.2) [161]:

τij(t + 1) = (1− ρg)τij(t) + ρg∆τ k(t), ∀ (i, j) ∈ Tk (6.35)

where

∆τ k =
1

EP (Tk) + TNP (Tk) + V F (Tk) + CP (Tk) + MNC(Tk)
(6.36)

for all Tk ∈ Pf , where each objective value is normalised to ensure that all objectives

have approximately the same magnitude [103].

133

 
 
 



Local pheromone update

When a new node is added to a solution being constructed by an ant, a local pheromone

update is performed using

τij(t + 1) = (1− ρl)τij(t) + ρlτ0 (6.37)

where τ0 is the initial amount of pheromone on every link of L.

The EEMACOMH discussed above has been developed for static objective functions.

The following section discusses an adaptation of EEMACOMH for dynamic objective

functions.

Dynamic EEMACOMH

As with EEMACOMP (refer to Section 6.6.2) the dynamic EEMACOMH is addressed as

a series of static problems with a new problem being defined each time the mobility model

is applied. The ApplyMobilityChanges procedure (refer to Algorithm 12) is applied at

the end of each time slice.

The pheromone conservation rules are applied as for EEMACOMP, but only one

pheromone matrix is updated as follows:

τij(t + 1) = (1− γi)τij(t) + γi
1

nG − 1
(6.38)

where

γi = max{0, dη
ij} (6.39)

with

dη
ij = 1− η̄

λE.(ηνij
+ ηξij

+ ηπij
+ η%ij

+ ηςij)
(6.40)

where

η̄ =
1

nG ∗ (nG − 1)

nG∑
i=1

nG∑
j=1

j 6=i

(ηνij
+ ηξij

+ ηπij
+ η%ij

+ ηςij) (6.41)
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where λE ∈ [0,∞) is a strategy-specific parameter.

The EEMACOMH algorithm is very similar to the EEMACOMP algorithm (refer

to Algorithm 13) with the following differences in respect of EEMACOMH: a) there

is only one pheromone matrix for the EEMACOMH algorithm, b) if the environment

is modified, equations (6.38)-(6.41) are used for pheromone conservation, c) equations

(6.35) and (6.36) are used for the global pheromone updating, d) the local pheromone

update is performed using equation (6.37), and e) the transition rule is applied according

to equations (6.31) and (6.32).

In the interests of completeness, Algorithm 14 presents the general procedure of the

proposed EEMACOMH algorithm.

6.6.4 Energy Efficiency Using Multi-Objective MAX-MIN Ant

System Optimisation, Multi-Pheromone Algorithm

Energy efficiency for mobile networks using the multi-objective MAX-MIN ant system

optimisation, multi-pheromone (EEMMASMP) algorithm is based on the MAX-MIN ant

system (MMAS) (refer to Section 3.5.3). The EEMMASMP algorithm modifies MMAS

with the following changes in order to solve the dynamic multi-objective problem:

• Similar to the previous two algorithms, EEMMASMP finds a set of Pareto optimal

solutions termed Pf , instead of finding a single optimal solution as is done by

MMAS.

• EEMMASMP solves the dynamic aspect of the multi-objective power-aware rout-

ing problem.

In accordance with MMAS, the EEMMASMP algorithm uses a colony of ants and

several pheromone matrices. EEMMASMP calculates five pheromone matrices – one for

each optimisation criterion – which, together with a heuristic matrix for each optimi-

sation criterion, are used to calculate transition probabilities. This concept has been

borrowed from Iredi et al. [104] (refer to Section 4.5.4).

The EEMACOMP and EEMMASMP algorithms are very similar. The only difference

between EEMACOMP and EEMMASMP is that the ACS (adapted to develop EEMA-
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Algorithm 14 General Procedure of EEMACOMH

t = 0; Pf = ∅; Set timer Tsm;
Initialize s,D, r0, ρ, βν , βξ, βπ, β%, βς , nk;
Initialize Pas; {Maximum archive size}
Calculate τ0 using equation (6.34);
for each link (i, j) do

Initialize pheromone matrix τij(t) = τ0;
Calculate ηνij , ηξij , ηπij , η%ij , ηςij ;

end for
Place all ants, k = 1, ..., nk at source node s;
while t <= STtot do

{begin resolve static EEMACOMH}
while Tsm seconds not elapsed do

for k = 1 to nk do
T = ∅;
i = s; {where s the source node and i the current node}
while (i 6= D) do

Build set Nk
i (t) for i;

Assign probability pk
ij to each node of Nk

i according to equation (6.32);
Select node j of Nk

i using equations (6.31) and (6.32);
T = T ∪ j ;
Apply local update pheromone using equation (6.37);
i = j;

end while
Evaluate the sub-objectives for solution T using equations (6.2), (6.3), (6.5), (6.9), (6.11);
if T is not dominated by any Tx ∈ Pf then

Pf = Pf ∪ T − {Ty | T ≺ Ty}, ∀Ty ∈ Pf ;
if size of Pf > Pas then

Truncate Pf

end if
end if

end for
for all Tk ∈ Pf do

Update global pheromone ∀(i, j) ∈ Tk using equations (6.35) and (6.36);
end for

end while
{end resolve static EEMACOMH}

Call Procedure ApplyMobilityChanges() (refer to Algorithm 12);
Apply pheromone conservation ∀(i, j) ∈ L using equations (6.38)-(6.41);
t = t + Tsm

Reset timer Tsm;
end while
Return Pf
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COMP) is replaced with MMAS. The differences between EEMMASMP and EEMA-

COMP with reference to MMAS are presented next.

From equation (3.3), the transition rule for EEMMASMP becomes

pk
ij(t) =





(
ταλν
νij

(t)ηβν
νij

(t)+τ
αλξ
ξij

(t)η
βξ
ξij

(t)+ταλπ
πij

(t)ηβπ
πij

(t)+τ
αλ%
%ij

(t)η
β%
%ij

(t)+τ
αλς
ςij

(t)η
βς
ςij

(t)

)

∑
∀u∈Nk

i
(t)

(
ταλν
νiu

(t)ηβν
νiu

(t)+τ
αλξ
ξiu

(t)η
βξ
ξiu

(t)+ταλπ
πiu

(t)ηβπ
πiu

(t)+τ
αλ%
%iu

(t)η
β%
%iu

(t)+τ
αλς
ςiu

(t)η
βς
ςiu

(t)

)

if j ∈ Nk
i (t)

0 otherwise

(6.42)

where α defines the relative influence between the heuristic information and the pheromone

levels. The other symbols are as defined in Section 6.6.2.

The solution construction process is as given in Section 6.6.1. Heuristic information

matrices are calculated at the beginning of the simulation, and every time there is a

change in the environment, using equations (6.13)-(6.17). Pheromone matrix initialisa-

tion and global updates are discussed next.

Pheromone matrix initialisation

The five pheromone matrices are initialised using

τψij
(t) = τ0 (6.43)

for all (i, j) ∈ L, where ψij represents either νij, ξij, πij, %ij, or ςij depending on the sub-

objective; τ0 is the upper bound set to some arbitrarily high value in order to achieve a

high degree of exploration at the start of the algorithm.

Global pheromone update

Once all nk ants have constructed solutions (refer to Section 6.6.1), the archive, Pf , is

updated including the non-dominated solutions that have been found thus far. All the

solutions from Pf are then selected to modify the pheromone trails. Each pheromone

trail associated with each objective is updated using equations (6.24)-(6.25) (refer to

Section 6.6.2).
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If, after application of the global update rule, the pheromone value of a link becomes

greater than the maximum value allowed, then the pheromone value of a link is explicitly

set as equal to the maximum allowed value (refer to Section 3.5.3) for all pheromone

matrices according to the following rules:

if τψij
(t + 1) > τmaxψ

then τψij
(t + 1) = τmaxψ

(6.44)

for all (i, j) ∈ Tk and for all Tk ∈ Pf , and τmaxψ
is calculated as proposed in Pinto and

Barán [161]:

τmaxψ
=

∑
Tk∈Pf

1

(1− ρg)C(Tk)
(6.45)

where C(Tk) represents the corresponding objective function.

On the other hand, if the pheromone value of a link becomes less than the lower

limit, then the pheromone value of a link is explicitly set equal to the lower limit (refer

to Section 3.5.3) for all pheromone matrices according to the following rules:

if τψij
(t + 1) < τminψ

then τψij
(t + 1) = τminψ

(6.46)

for all (i, j) ∈ Tk and for all Tk ∈ Pf , and τminψ
is calculated as proposed in Pinto and

Barán [161]:

τminψ
=

τmaxψ

2nk

(6.47)

The EEMMASMP discussed above has been developed for static objective func-

tions. EEMMASMP is adapted for dynamic objective functions in the same way as with

EEMACOMP (refer to Section 6.6.2).

Algorithm 15 summarises the EEMMASMP algorithm.
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Algorithm 15 General Procedure of EEMMASMP

t = 0; Pf = ∅; Set timer Tsm;
Initialize s, D, τ0, α, βν , βξ, βπ, β%, βς , λν , λξ, λπ, λ%, λς ;
Initialise nk; {number of ants}
Initialise Pas; {Maximum archive size}
for each link (i, j) do

Initialise pheromone matrices τνij (t), τξij (t), τπij (t), τ%ij (t), τςij (t) using equation (6.43);
Calculate ηνij , ηξij , ηπij , η%ij , ηςij ;

end for
Place all ants, k = 1, ..., nk at source node s;
while t <= STtot do

{begin resolve static EEMMASMP}
while Tsm seconds not elapsed do

for k = 1 to nk do
T = ∅; i = s; {where s the source node and i the current node}
while (i 6= D) do

Build set Nk
i (t) for i;

Assign probability pk
ij to each node of Nk

i (t) according to equation (6.42);
Select node j of Nk

i (t) using equation (6.42);
T = T ∪ j ;
i = j;

end while
Evaluate the sub-objectives for solution T using equations (6.2), (6.3), (6.5), (6.9), (6.11);
if T is not dominated by any Tx ∈ Pf then

Pf = Pf ∪ T − {Ty | T ≺ Ty}, ∀Ty ∈ Pf ;
if size of Pf > Pas then

Truncate Pf

end if
end if

end for
for all Tk ∈ Pf do

update global pheromone ∀(i, j) ∈ Tk using equations (6.24)-(6.25);
Restrict the pheromone intensities within the lower and upper limits, ∀(i, j) ∈ Tk, using
equations (6.44)-(6.47);

end for
end while
{end resolve static EEMMASMP}

Call Procedure ApplyMobilityChanges() (refer to Algorithm 12);
Apply pheromone conservation ∀(i, j) ∈ L using equations (6.27)-(6.30);
Restrict the pheromone intensities within the lower and upper limits, ∀(i, j),∈ L using equations
(6.44)-(6.47);
t = t + Tsm;
Reset timer Tsm;

end while
Return Pf

139

 
 
 



6.6.5 Energy Efficiency Using Multi-objective MAX-MIN Ant

System Optimisation, Multi-heuristic Algorithm

In accordance with the max-min ant system (MMAS) (refer to Section 3.5.3) the energy

efficiency for mobile networks using a multi-objective MAX-MIN ant system optimisa-

tion, multi-heuristic (EEMMASMH) algorithm uses a colony of ants, a single pheromone

matrix and a different heuristic matrix for each objective. EEMMASMH is very similar

to the EEMMASMP algorithm, the sole difference being that EEMMASMH uses only

one pheromone matrix, τij(t). This single pheromone matrix represents the desirability

of the solution components with regard to all objectives.

From equation (3.3), the transition rule for EEMMASMH becomes

pk
ij(t) =





τα
ij(t)

(
ηβν

νij
(t)+η

βξ
ξij

(t)+ηβπ
πij

(t)+η
β%
%ij

(t)+η
βς
ςij

(t)

)

∑
∀u∈Nk

i
(t)

τα
iu(t)

(
ηβν

νiu
(t)+η

βξ
ξiu

(t)+ηβπ
πiu

(t)+η
β%
%iu

(t)+η
βς
ςiu

(t)

)

if j ∈ Nk
i (t)

0 otherwise

(6.48)

where the symbols are as defined in Section 6.6.2.

The pheromone matrix is initialised as

τij(t) = τ0 (6.49)

for all (i, j) ∈ L, where τ0 is the upper bound set to some arbitrarily high value in order

to achieve a high degree of exploration at the start of the algorithm.

The equations for global pheromone updating are the same as those of EEMACOMH

(refer to equations (6.35) and (6.36)).

If, after applying the global update rule, τij(t + 1) becomes greater than τmax, then

τij(t + 1) is explicitly set equal to τmax according to the following rule:

if τij(t + 1) > τmax then τij(t + 1) = τmax (6.50)
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for all (i, j) ∈ Tk and for all Tk ∈ Pf , where

τmax =
∑

Tk∈Pf

1

(1− ρg)(EP (Tk) + TNP (Tk) + V F (Tk) + CP (Tk) + MNC(Tk))
(6.51)

On the other hand, if τij(t + 1) < τmin then τij(t + 1) is explicitly set equal to τmin

according to the following rule:

if τij(t + 1) < τmin then τij(t + 1) = τmin (6.52)

for all (i, j) ∈ Tk and for all Tk ∈ Pf , where

τmin =
τmax

2nk

(6.53)

The EEMMASMH discussed above has been developed for static objective func-

tions. EEMMASMH is adapted for dynamic objective functions in the same way as with

EEMACOMH (refer to Section 6.6.3).

Algorithm 16 summarises the EEMMASMH algorithm.

6.6.6 Energy Efficiency Using Multi-Objective Ant Colony Op-

timisation, Multi-Colony Algorithm

The multiple colony ACO developed by Gambardella et al. [76] and described in Sec-

tion 4.5.6 was used to solve MOPs by assigning a colony to each objective. This section

proposes the energy efficiency for mobile networks using a multi-objective ant colony opti-

misation, multi-colony (EEMACOMC) algorithm which applies the multi-colony concept

to the power-aware routing problem.

Since five objectives are defined for the power-aware routing problem, five colonies

are created – one for each of the objectives. These colonies each have the same number

of ants, nkc = nk/5, with c = 1, ..., 5.

Each colony implements an ACS, where the transition rule for each sub-objective is

j =





arg maxu∈Nk
i (t){τψiu

(t)η
βψ

ψiu
(t)} if r ≤ r0,

J otherwise
(6.54)

where βψ represents either βν , βξ, βπ, β%, or βς depending on the sub-objective, and
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Algorithm 16 General Procedure of EEMMASMH

t = 0; Pf = ∅; Set timer Tsm;
Initialise s, D, τ0, α, βν , βξ, βπ, β%, βς ;
Initialize nk; {number of ants}
Initialize Pas; {Maximum archive size}
for each link (i, j) do

Initialise pheromone matrix τij(t), using equation (6.49);
Calculate ηνij , ηξij , ηπij , η%ij , ηςij ;

end for
Place all ants, k = 1, ..., nk at source node s;
while t <= STtot do

{begin resolve static EEMMASMH}
while Tsm seconds not elapsed do

for k = 1 to nk do
T = ∅; i = s; {where s the source node and i the current node}
while (i 6= D) do

Build set Nk
i (t) for i;

Assign probability pk
ij to each node of Nk

i (t) according to equation (6.48);
Select node j of Nk

i (t) using equation (6.48);
T = T ∪ j ;
i = j;

end while
Evaluate the sub-objectives for solution T using equations (6.2), (6.3), (6.5), (6.9), (6.11);
if T is not dominated by any Tx ∈ Pf then

Pf = Pf ∪ T − {Ty | T ≺ Ty}, ∀Ty ∈ Pf ;
if size of Pf > Pas then

Truncate Pf

end if
end if

end for
for all Tk ∈ Pf do

update global pheromone ∀(i, j) ∈ Tk using equations (6.35) and (6.36);
Restrict the pheromone intensities within the lower and upper limits, ∀(i, j) ∈ Tk, using
equations (6.50)-(6.53);

end for
end while
{end resolve static EEMMASMH}

Call Procedure ApplyMobilityChanges() (refer to Algorithm 12);
Apply pheromone conservation ∀(i, j) ∈ L using equations (6.38)-(6.41);
Restrict the pheromone intensities within the lower and upper limits, ∀(i, j) ∈ L using equations
(6.50)-(6.53);
t = t + Tsm;
Reset timer Tsm;

end while
Return Pf
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defines the importance of ηψiu
(t). The rest of the symbols are as defined in Section 3.5.2.

J ∈ Nk
i (t) is a node that is randomly selected according to probability,

pk
iJ(t) =

τψiJ
(t)η

βψ

ψiJ
(t)

∑
u∈Nk

i (t) τψiu
(t)η

βψ

ψiu
(t)

(6.55)

At every iteration of the ACS algorithm each ant of a colony constructs a complete

solution (optimising the objective of the colony) as follows (refer to Algorithm 17):

Starting from the source node, s, a non-visited node is pseudo-randomly selected at each

step as in equation (6.54), while equation (6.55) provides the probability of selecting a

link. This process continues until the destination node, D, is reached. When a new

node has been added to a candidate solution, a local pheromone update is performed

using equation (6.26) (refer to Section 3.5.2). The solution created by the ant is inserted

into the global archive PG without being evaluated. The archive, PG, contains all the

candidate solutions.

Algorithm 18 summarises the general procedure for constructing nk/5 solutions for

all the ants of a colony.

Algorithm 17 General Procedure of BuildPathMultiColony

input parameters s, D, r0, βψ, τψ, ηψ;
T = ∅;
i = s; {where s the source node and i the current node}
while (i 6= D) do

Build set Nk
i (t) for i;

Assign probability pk
ij to each node of Nk

i (t) according to equation (6.54);
Select node j of Nk

i (t) using equations (6.54) and (6.55);
T = T ∪ j;
Apply local pheromone update using equation (6.26);
i = j;

end while
Return T;

The five pheromone matrices are initialised using equations (6.22)-(6.23) (refer to

Section 6.6.2). The cooperation between colonies and the global pheromone updates are

discussed next.
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Algorithm 18 General Procedure of BuildAllPathsMultiColony

input parameters s, D, r0, βψ, τψ, ηψ, nk;
for k = 1 to nk/5 do

T = BuildPathMultiColony(s, D, r0, βψ, τψ, ηψ);
Insert T in to global archive, PG;

end for
Return PG

Cooperation between colonies

The five colonies of ants cooperate and specialise in order to find good solutions in

different regions of the Pareto front. In every iteration, the ants in each colony deposit

their solutions into a global solution pool (called PG) that is shared by all colonies. This

pool of solutions, PG, is used to determine the non-dominated front of all solutions from

all the colonies in that iteration. Once all the ants from all colonies have constructed

their solutions and deposited them in PG, all the solutions of PG are evaluated against

the sub-objectives using equations (6.2), (6.3), (6.5), (6.9), (6.11). Every solution, T ,

of PG is compared with the solutions of Pf and, if T is non-dominated by any solution

of Pf , then T is inserted into Pf . All the solutions of Pf which are dominated by T

are removed from Pf . If the number of non-dominated solutions exceeds the predefined

archive size, Pas, a truncation operator is used to remove solutions with a lower value of

the crowding distance from the archive (refer to Section 4.6.2). The use of the crowding

distance guides the selection process during the various stages of the algorithm towards

a uniformly spread-out Pareto-optimal front.

Global pheromone update

Only those ants that found a solution which is in the global non-dominated front are

allowed to update pheromones. Each ant uses the update by origin method (refer to

Section 4.5.6) to determine in which colony the ant should update the pheromone matrix,

that is, the ant updates only in its own colony [104]. The update by origin method

imposes a stronger selection pressure on those ants that are allowed to update. The

update by origin method might also force the colonies to search in different regions of

the non-dominated front.

When only a few solutions from other colonies are in the same region, it is more likely
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that a solution from the local non-dominated front of a colony might also appear in the

global non-dominated front. Hence, it is more likely that an ant with solutions in less

dense areas of the non-dominated front will be allowed to update and, thereby, influence

the ensuing search process [104].

The ants of each colony that found a solution which is in the global non-dominated

front, Pf , update only the pheromone matrix which is associated with the objective of

the colony (refer to Section 4.5.6).

The pheromone trail of each colony is updated using the solutions of Pf as follows:

τψij
(t + 1) = (1− ρg)τψij

(t) + ρg∆
ψτij(t) (6.56)

where ψij represents either νij, ξij, πij, %ij, or ςij depending on the sub-objective, and

∆ψτij(t) =

{
1

C(Tk)
if i, j ∈ Tk and Tk ∈ colony nc

0 otherwise
(6.57)

for all Tk ∈ Pf , where C(Tk) represents the corresponding objective function, and nc ∈
{1, ..., 5} represents the index of the colony associated with each objective.

The EEMACOMC algorithm discussed above has been developed for static objective

functions. EEMACOMC is adapted for dynamic objective functions in the same way as

for EEMACOMP (refer to Section 6.6.2).

Algorithm 19 summarises the dynamic EEMACOMC.
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Algorithm 19 General Procedure of EEMACOMC

t = 0; Pf = ∅; Set timer Tsm;
Initialise s, D, r0, βν , βξ, βπ, β%, βς ;
Initialise nk; {number of ants}
Initialise τ0ν , τ0ξ, τ0π, τ0%, τ0ς ;
Initialise Pas; {Maximum archive size}
for each link (i, j) do

Initialise pheromone matrices τνij
(t), τξij

(t), τπij
(t), τ%ij

(t), τςij(t) using equations
(6.22)-(6.23);

end for
for each link (i, j) do

calculate ηνij
, ηξij

, ηπij
, η%ij

, ηςij ;
end for
Place all ants, k = 1, ..., nk at source node s;
while t <= STtot do
{begin resolve static EEMACOMC}
while Tsm seconds not elapsed do

PG = ∅;
PG = PG ∪BuildAllPathsMultiColony(s, D, r0, βν , τν , ην , nk);
PG = PG ∪BuildAllPathsMultiColony(s, D, r0, βξ, τξ, ηξ, nk);
PG = PG ∪BuildAllPathsMultiColony(s, D, r0, βπ, τπ, ηπ, nk);
PG = PG ∪BuildAllPathsMultiColony(s, D, r0, β%, τ%, η%, nk);
PG = PG ∪BuildAllPathsMultiColony(s, D, r0, βς , τς , ης , nk);
for all T ∈ PG do

Evaluate the sub-objectives for solution T using equations (6.2), (6.3), (6.5),
(6.9), (6.11);
if T is not dominated by any Tx ∈ Pf then

Pf = Pf ∪ T − {Ty | T ≺ Ty},∀Ty ∈ Pf ;
if size of Pf > Pas then

Truncate Pf ;
end if

end if
end for
for all Tk ∈ Pf do

Update global pheromone ∀(i, j) ∈ Tk using equations (6.56) and (6.57);
end for

end while
{end resolve static EEMACOMC}

Call Procedure ApplyMobilityChanges() (refer to Algorithm 12);
Apply pheromone conservation ∀(i, j) ∈ L using equations (6.27)-(6.30);
t = t + Tsm; Reset timer Tsm;

end while
Return Pf
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6.7 Elitist Non-Dominated Sorting Genetic Algorithm

for Multi-Objective Power-Aware Routing

NSGA-II has not yet been applied to the multi-objective power-aware routing problem.

This section proposes for the first time to solve the multi-objective power-aware routing

problem using an adaptation of the NSGA-II algorithm called NSGA-II multi-objective

power-aware algorithm (NSGA-II-MPA).

NSGA-II-MPA modifies the NSGA-II procedure in tracking a new Pareto-optimal

front as soon as there is a change in the multi-objective power-aware routing problem.

The change in the problem is introduced with the application of the mobility model.

Hence, the position of the nodes changes and, as a result, there is a change in objective

functions.

As with the five ant algorithms proposed in this thesis, the dynamic multi-objective

power-aware routing problem is based on the principle of dividing the simulation time,

STtot , into nts time slices of equal length, STtot/Tsm. Tsm is the length of the pause time

for the mobility model. Tsm is an indication of frequency of change (refer to Section 5.1).

During each time slice a static problem is created, and optimisation is carried out using

the standard NSGA-II. For each of these static problems the aim is to simultaneously

minimise the five objectives and to create a population, Pt, with several non-domination

fronts that have been found within the time slice. The population, Pt, may be passed

on to the static problem corresponding to the following time slice since the two prob-

lems would potentially be very similar. This operation would prevent optimisation from

having to restart each time from scratch and would contribute greatly to the good perfor-

mance of the NSGA-II-MPA algorithm. To introduce diversity into the non-dominated

solutions obtained by the NSGA-II-MPA algorithm, a number of random solutions are

added whenever there is a change in the problem. The number of random solutions is

equal to a percentage of the population, Pt. When this percentage of random solutions

increases, the performance of NSGA-II-MPA deteriorates. More generations are needed

to track the new optimal front. At each change, the Pt archive is re-evaluated and

non-dominated sorting is applied.

Considering the power-aware routing problem formulation as given in Section 6.4.1,

the NSGA-II-PMA is described in more detail below.

The first iteration consists of the following three steps:
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1. Initialise all parameters.

2. Build routing tables. A procedure for building the routing tables is executed

to build possible paths from the source, s, to the destination, D, of the network.

This procedure selects the R paths with minimum energy consumed per packet

and with minimum cost per packet where R is a parameter of the algorithm. The

k shortest path algorithm is used to select the R paths [222].

3. Calculate initial population, P0.

From the routing tables, |P0| different random chromosomes are generated. This

set of chromosomes is termed the chromosome pool, P0 (or population), and it

forms the first generation. Duplicated solutions in the population are replaced

with new randomly generated solutions. A chromosome is represented by a binary

string of size log2 (R), in order to represent R different paths. Each chromosome

represents a possible route (path) between the source node, s, and the destination

node, D.

1-2-53

1-2-3-4-52

1-2-3-51

1-4-50

ROUTEID

11

4

2

5

3

6

1-2-53

1-2-3-4-52

1-2-3-51

1-4-50

ROUTEID

01 11

cromosome1 cromosome2

route

Figure 6.4: Routing tables and chromosomes
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In the example of Figure 6.4 the routing table contains 4 paths (R = 4) with

minimum energy consumed per packet and minimum cost per packet from s = 1

to D = 5. Each chromosome consists of a binary string of size 2 (log2 (4)) and

points to a specific path of the routing table. For example, the chromosome with

a binary value of 10 has a decimal value of 2 and points to the path with id = 2

(path 1− 2− 3− 4− 5).

Parents are selected from the population by using binary tournament selection

based on the rank and crowding distance. Out of two individuals the individual

with the lowest rank is selected, or, if both individuals have the same rank, the

individual with the greater crowding distance is selected (refer to Section 4.6.2).

The population selected generates offspring using crossover and mutation opera-

tors. Using the genetic operators, a child population Q0 of size Np is created.

The simulation (main loop) is run for STtot seconds with the following instructions:

Within the time slice, Tsm, the maximum number of allowed generations are used to find

the optimal population.

At each iteration, t, the following steps, as for the standard NSGA-II (refer to Sec-

tion 4.6.2) are applied: The population, Pt, is evaluated against the five sub-objectives.

Using binary tournament selection on parent population, Pt, of size Np, based on the

rank and crowding distance and applying crossover and mutation operators, Qt offspring,

of size Np, are created. The combined population, Rt = Pt ∪ Qt, of size 2Np, is sorted

into different non-domination levels. Individuals are then selected from this combined

population to be inserted into the new population on the basis of their non-domination

level. If there are more individuals in the last front than there are slots remaining in

the new population of size Np, a diversity preserving mechanism based on rank and the

crowding distance on the last front is employed. Individuals from this last front are

placed in the new population, Pt+1, on the basis of their contribution to diversity in the

population.

At the end of time slice, Tsm, the ApplyMobilityChangesNSGA procedure, as given

in Algorithm 20, and RebuildRoutesUpdatePopulation as given in Algorithm 21, handle

the dynamic aspect of the power-aware routing problem.

The ApplyMobilityChangesNSGA procedure sends one packet from the source to the

destination. In order to send the packet, a route Tbest from Pt+1 is used. Tbest is the

individual with rank 1 and the largest crowding distance. The RPGM mobility model
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(refer to Section 6.5) is applied. Energy levels and distances are recalculated (refer to

Section 6.5).

The RebuildRoutesUpdatePopulation procedure applies the following modifications

to the original NSGA-II procedure, whenever a change in the multi-objective power-

aware routing problem occurs:

• All parent solutions are re-evaluated before merging the parent and child popula-

tions into a bigger pool. This process allows both offspring and parent solutions

to be evaluated using the changed sub-objectives.

• New random solutions are introduced. If Ne represents the first Ne solutions of

the population, Pt, a percentage, $ = Np−Ne

Np
%, of the new population is replaced

with randomly created solutions which helps to improve exploration. The first Ne

solutions of Pt are kept in the archive to maintain elitism. The population, Pt, is

completed up to the maximum size Np, using Np−Ne new chromosomes generated

based on routing tables which are created using the k shortest path algorithm. The

final Pt is passed onto the next static problem.

Algorithm 20 General Procedure of ApplyMobilityChangesNSGA

Choose the best route, Tbest, from Pt;
Send one packet from source to destination using Tbest;
for all nodes i ∈ Tbest do

Update ec
i according to equation (6.18);

end for
Apply the RPGM mobility model (refer to Section 6.5);
for all links (i, j) ∈ L do

Recalculate dij;
Recalculate Eij according to equation (6.19);

end for

The algorithm moves to the next time slice optimising the new static problem until

the end of the simulation.

The NSGA-II algorithm for multi-objective power-aware routing problem is sum-

marised in Algorithm 22.
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Algorithm 21 General Procedure for RebuildRoutesUpdatePopulation

Delete invalid routes associated with Pt, i.e. routes for which Eij > ec
i or dij > Tr;

for all T ∈ Pt do
Re-evaluate the sub-objectives using equations (6.2), (6.3), (6.5), (6.9), (6.11);

end for
Apply non-dominated-sort on Pt; {refer to Section 4.6.2, Algorithm 9}
Find the first Ne individuals from Pt based on the rank and crowding distance; {An
individual is selected if the rank is lesser than the other, or if the rank is the same and
the crowding distance is greater than that of the other individuals}
The population Pe with |Pe| = Ne is created;
The corresponding paths, TNe , are selected; {Pe represent the elitist solutions}
Build routing table TNl

with Nl = Np −Ne paths from s to D; {Using the k shortest
path algorithm}
Complete the routing table, TNp = TNl

∪ TNe ;
From TNp generate Np different chromosomes, which form the new generation Pt;
Using the genetic operators on Pt, a child population Qt of size Np is created;

6.8 Summary

This chapter presented five new ant-based algorithms to solve the power-aware routing

problem. Versions of each algorithm have been developed assuming that the optimisation

problem is static. Each algorithm is then adapted to also solve the power-aware routing

problem in changing environments under the RPGM mobility model. The chapter also

presented an adaptation to the NSGA-II to solve the power-aware routing problem.

The next chapter empirically analyses the five algorithms, and compares their per-

formance to that of the NSGA-II.
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Algorithm 22 General Procedure of NSGA-II for the Multi-objective Power-Aware
Routing Problem

Initialise Ei, ec
i , ∀i ∈ V ;

Calculate Eij , dij , ∀(i, j) ∈ L;
Create initial routing tables; {Using the k shortest path algorithm}
Create a random population, P0, from the routing tables;
Evaluate the sub-objectives for all T ∈ P0 using equations (6.2), (6.3), (6.5), (6.9), (6.11);
Z = non-dominated-sort(P0); {refer to Section 4.6.2, Algorithm 9}
Use binary tournament selection, recombination, and mutation operators to create a child
population Q0 of size Np;
simulation time = 0; Set timer Tsm;
while simulation time <= STtot do

t = 0;
{begin resolving static NSGA-II}
while Tsm seconds not elapsed do

for all T ∈ Pt do
Re-evaluate the sub-objectives using equations (6.2), (6.3), (6.5), (6.9), (6.11);

end for
Rt = Pt ∪Qt; {combine parent and children population}
Z = non-dominated-sort(Rt); {Z = (Z1,Z2, ...), all non-dominated fronts of Rt}
Pt+1 = ∅;
i = 1;
{untill the parent population is filled}
while |Pt+1|+ |Zi| <= Np do

crowding-distance-assignment(Zi); {calculate crowding distance in Zi using Algo-
rithm 10};
Pt+1 = Pt+1 ∪ Zi; {include i-th non-dominated front in the parent population}
i = i + 1; {check the next front for inclusion}

end while
Sort(Zi,≺n); {sort in descending order using the crowded comparison operator, ≺n}
Pt+1 = Pt+1 ∪ Zi[1 : (Np − |Pt+1|)]; {Choose the first (Np − |Pt+1|) elements of Zi}
Qt+1 = make-new-pop(Pt+1); {Use selection, recombination, and mutation operators to
create a child population Qt+1}
t = t + 1; {increment the generation counter}

end while
{end resolving static NSGA-II}

Call Procedure ApplyMobilityChangesNSGA() (refer to Algorithm 20);
Call procedure RebuildRoutesUpdatePopulation() (refer to Algorithm 21);
simulation time = simulation time + Tsm;
P0 = Pt;
Q0 = Qt;
Reset Tsm;

end while
Return Pt;
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Chapter 7

Simulation and Empirical Analysis

This chapter contains an empirical study of the performance of the five multi-objective

ant colony optimisation algorithms presented in this thesis, and an analysis of the influ-

ence of various algorithmic features on performance. The five algorithms are compared

to each other and also to a state-of-the-art, multi-objective evolutionary algorithm, the

NSGA-II, which was adapted in this thesis (refer to Section 6.7) for the multi-objective,

power-aware routing problem. This chapter refers to the adapted NSGA-II as the NSGA-

II-MPA. Several numeric simulations are presented and discussed with the goal of vali-

dating the algorithms which have been implemented.

The remainder of this chapter is organised as follows: Section 7.1 describes the ex-

perimental procedure which was followed in order to test the five algorithms. Section 7.2

presents the empirical analysis of control parameters. Section 7.3 discusses parameter

settings for NSGA-II-MPA. Section 7.4 compares the implemented algorithms, while

Section 7.5 concludes the chapter.

7.1 Experimental Procedure

Different network configurations (scenarios) are tested for each algorithm and the Pareto

fronts are obtained for each of the algorithms. The following subsections describe the

different network scenarios, the simulation environment, and the performance measures

used to compare the different Pareto fronts.

7.1.1 Network Scenarios

A number of different network scenarios were considered, where the characteristics of

each scenario differ in the number of nodes, NG, pause time, Tsm, and the global range

of the mobility model, Rg. Table 7.1 illustrates the different values for NG, Tsm and Rg,

from which a total of 54 scenarios have been generated as listed in Table 7.2.
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Table 7.1: Different simulation parameters used to generate network scenarios

NG Tsm Rg

value 1 30 1 sec 300 m

value 2 100 2 sec 500 m

value 3 300 3 sec 800 m

value 4 4 sec

value 5 5 sec

value 6 6 sec

Table 7.2: List of scenarios for comparing the algorithms
Scenario Configuration Scenario Configuration
Name Name
scenario 1a NG = 30, Rg = 300 m, Tsm = 1 sec scenario 6a NG = 100, Rg = 800, Tsm = 1 sec
scenario 1b NG = 30, Rg = 300 m, Tsm = 2 sec scenario 6b NG = 100, Rg = 800, Tsm = 2 sec
scenario 1c NG = 30, Rg = 300 m, Tsm = 3 sec scenario 6c NG = 100, Rg = 800, Tsm = 3 sec
scenario 1d NG = 30, Rg = 300 m, Tsm = 4 sec scenario 6d NG = 100, Rg = 800, Tsm = 4 sec
scenario 1e NG = 30, Rg = 300 m, Tsm = 5 sec scenario 6e NG = 100, Rg = 800, Tsm = 5 sec
scenario 1f NG = 30, Rg = 300 m, Tsm = 6 sec scenario 6f NG = 100, Rg = 800, Tsm = 6 sec
scenario 2a NG = 30, Rg = 500 m, Tsm = 1 sec scenario 7a NG = 300, Rg = 300, Tsm = 1 sec
scenario 2b NG = 30, Rg = 500 m, Tsm = 2 sec scenario 7b NG = 300, Rg = 300, Tsm = 2 sec
scenario 2c NG = 30, Rg = 500 m, Tsm = 3 sec scenario 7c NG = 300, Rg = 300, Tsm = 3 sec
scenario 2d NG = 30, Rg = 500 m, Tsm = 4 sec scenario 7d NG = 300, Rg = 300, Tsm = 4 sec
scenario 2e NG = 30, Rg = 500 m, Tsm = 5 sec scenario 7e NG = 300, Rg = 300, Tsm = 5 sec
scenario 2f NG = 30, Rg = 500 m, Tsm = 6 sec scenario 7f NG = 300, Rg = 300, Tsm = 6 sec
scenario 3a NG = 30, Rg = 800 m, Tsm = 1 sec scenario 8a NG = 300, Rg = 500, Tsm = 1 sec
scenario 3b NG = 30, Rg = 800 m, Tsm = 2 sec scenario 8b NG = 300, Rg = 500, Tsm = 2 sec
scenario 3c NG = 30, Rg = 800 m, Tsm = 3 sec scenario 8c NG = 300, Rg = 500, Tsm = 3 sec
scenario 3d NG = 30, Rg = 800 m, Tsm = 4 sec scenario 8d NG = 300, Rg = 500, Tsm = 4 sec
scenario 3e NG = 30, Rg = 800 m, Tsm = 5 sec scenario 8e NG = 300, Rg = 500, Tsm = 5 sec
scenario 3f NG = 30, Rg = 800 m, Tsm = 6 sec scenario 8f NG = 300, Rg = 500, Tsm = 6 sec
scenario 4a NG = 100, Rg = 300 m, Tsm = 1 sec scenario 9a NG = 300, Rg = 800, Tsm = 1 sec
scenario 4b NG = 100, Rg = 300 m, Tsm = 2 sec scenario 9b NG = 300, Rg = 800, Tsm = 2 sec
scenario 4c NG = 100, Rg = 300 m, Tsm = 3 sec scenario 9c NG = 300, Rg = 800, Tsm = 3 sec
scenario 4d NG = 100, Rg = 300 m, Tsm = 4 sec scenario 9d NG = 300, Rg = 800, Tsm = 4 sec
scenario 4e NG = 100, Rg = 300 m, Tsm = 5 sec scenario 9e NG = 300, Rg = 800, Tsm = 5 sec
scenario 4f NG = 100, Rg = 300 m, Tsm = 6 sec scenario 9f NG = 300, Rg = 800, Tsm = 6 sec
scenario 5a NG = 100, Rg = 500 m, Tsm = 1 sec scenario 5d NG = 100, Rg = 500, Tsm = 4 sec
scenario 5b NG = 100, Rg = 500 m, Tsm = 2 sec scenario 5e NG = 100, Rg = 500, Tsm = 5 sec
scenario 5c NG = 100, Rg = 500 m, Tsm = 3 sec scenario 5f NG = 100, Rg = 500, Tsm = 6 sec
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Values of NG from 30 to 300 represent a small to large network which enables a

scalability analysis of the algorithms. Values of Tsm from 1 sec to 6 sec determine how

often the environment changes and represent high to low change frequencies. Values of

Rg from 300 meters to 800 meters determine the amount of displacement of the current

location of the optimum and represent low to high change severities.

The performance of each algorithm was tested under all 54 scenarios. For each of

the scenarios 30 independent simulations have been executed and results are reported as

averages over these simulations. Both the comparative results and the empirical results of

the impact of the parameters in terms of the performance of each algorithm are reported

in Section 7.4.

In order to test the quality of the solutions, a high initial energy of 400 energy units

was used for each node.

7.1.2 Simulation Environment

The simulation environment generates a network topology consisting of a number of

nodes. Initial placement of nodes was made randomly within the simulation environment,

which is a circular area with a diameter of 300m, 500m, or 800m. Nodes move within

this area according to the RPGM model (refer to Section 6.5). The centre of the circular

area is also mobile, and its motion follows the RWP model (refer to Section 2.4).

All the nodes have a resting period of Tsm seconds. Tsm determines the change

frequency. The performance of each algorithm was checked for Tsm = 1, Tsm = 2,

Tsm = 3, Tsm = 4, Tsm = 5, and Tsm = 6 seconds. After the resting period all the

nodes moved in accordance with the RWP mobility model. This process repeated itself

throughout the simulation, thus bringing about continuous changes in the topology of

the underlying network. The number of changes for each simulation is STtot / Tsm, where

STtot is the total simulation time.

Before the topology changes, a number of iterations of the multi-objective optimisa-

tion algorithm had taken place and, at each iteration, each ant had calculated a solution,

T , evaluated the solution and, if non-dominated, inserted the solution into the Pareto

set, Ps. Thereafter, the solutions in Ps which were dominated by T were deleted from

Ps. Before the mobility model was applied again, a packet was sent from the source

node to the destination node using a random route, Ts, from the Pareto set list and the

ApplyMobilityChanges procedure was executed (refer to Algorithm 12).
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7.1.3 Performance Measures

The five proposed algorithms and the NSGA-II-MPA algorithm each produced an esti-

mated Pareto front, PF (PEEMACOMP , PEEMACOMH , PEEMMASMP , PEEMMASMH ,

PEEMACOMC , and PNSGA−II−MPA). Each PF was evaluated using three quantitative

metrics, discussed in Section 4.7.2:

• The ND metric: The number of non-dominated solutions is computed, noted as

n̄alg in the result tables.

• The spread metric: The diversity of solutions in each Pareto front is computed

using the spread metric, noted %̄ in the result tables.

• The hypervolume measure: The size of the dominated space is computed using

the hypervolume measure, noted ξ̄ in the result tables.

Simulation of the five algorithms presented the following practical problems. Firstly,

due to mobility, different independent runs of the algorithms produced results that dif-

fered significantly. To overcome this high variability, performance measures were calcu-

lated as averages over 30 independent runs for each of the algorithms. For each scenario,

each algorithm is therefore executed thirty times, with each execution starting from dif-

ferent initial conditions. For each run of an algorithm a Pareto-optimal set of solutions,

PF , was computed, one for each network topology. The number of times that one al-

gorithm has a better nalg, %, and ξ average than all the other algorithms before each

change, is counted and referred to as nw
alg, %w, and ξw respectively. The total average

for all iterations before a change to the environment occurs, further averaged over 30

simulations is calculated for each metric and referred to as n̄alg, %̄, and ξ̄. The standard

deviation, and a 95% confidence interval, CI, is provided next to each value.

Secondly, when simulating the algorithms the network topology changes after the

mobility model is applied. For fair comparison among the different algorithms, it is

important that the algorithms are tested on the same sequence of topology changes.

Therefore, based on the mobility model used, a sequence of node changes is determined

for each of the 30 runs. All algorithms are then evaluated on these change sequences.

The objective of the experiments is to analyse and compare the performance of the

six algorithms according to the metrics listed above.
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7.1.4 Sending a Packet

A network initialised with random or uniform pheromone tables will not contain any

useful information about good routes. After a short time has elapsed, the largest prob-

abilities in the pheromone tables of each node will define relatively optimal routes. For

example, after 500 time steps or 5 seconds, the algorithm will converge on typically good

routes in relation to the five objectives, and a packet may be sent from the source to

the destination. Therefore, each algorithm runs for the allowed pause time, Tsm, before

sending a packet.

7.2 Empirical Analysis of the Ant-Based Algorithms

Control Parameters

The space of possible control parameter settings for the five ant algorithms is large,

including parameters r0, ρl, ρg, α, βν , βξ, βπ, β%, βς , λE, λν , λξ, λπ, λ%, λς , and Pas.

The objective of this section is to perform a sensitivity analysis of these parame-

ters in order to derive suggestions of how the parameters should be initialized for best

performance. For each parameter, a number of values were tested while all the other pa-

rameters were held constant. The default value of the parameters is: βν = 3.0, βξ = 3.0,

βπ = 3.0, β% = 3.0, βς = 3.0, STtot=120sec, r0 = 0.5, ρl = 0.5, ρg = 0.5, α = 1.0, λE = 6,

λν = 0.2, λξ = 0.2, λπ = 0.2, λ% = 0.2, λς = 0.2, Pas = 100. These values were obtained

using a trial-and-error process for finding preliminary best parameter settings. For each

parameter value the Pareto front, PF , was obtained using the process described in Sec-

tion 7.1.3. The performance metrics listed in Section 7.1.3 were computed for each of

these Pareto fronts and used to determine the best values for each control parameter.

Due to space limitations, the influence of parameter values is only presented for a 30

nodes network.

The results of the empirical analysis of the ant-based algorithms control parameters

are illustrated in Tables D.1-D.18 in Appendix D. Graphs of the performance metrics

as a function of the different control parameters, Tsm and Rg, based on Tables D.1-

D.18, are presented in Appendix E using the FluxViz software [1]. Relations between

the different performance metrics and the parameter values with reference to different

change frequencies are illustrated in two dimension figures. Each value is the average of
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the three change severities. Relations between the different performance metrics and the

parameter values with reference to different change severities are also illustrated in two

dimension figures, where each value is the average of the six change frequencies.

The following subsections perform an empirical analysis of the sensitivity of the

algorithms to the above parameters.

7.2.1 Heuristics vs Pheromone Parameters

Parameters βν , βξ, βπ, β%, and βς set the relative importance of heuristic versus pheromone

information. In the transition rules for the developed algorithms (refer to equations

(6.20), (6.31), (6.42), (6.48), and (6.54)), parameters βψ, where ψ represents either ν, ξ,

π, %, or ς depending on the sub-objective, are the exponents of heuristics, ηψij
, which

are defined as in equations (6.13)-(6.17). Heuristic values ranged between 0 (high link

cost) and 1 (small link cost).

The larger the value of βψ, the smaller the emphasis on heuristic information, and

learned desirability discovered by pheromone trails is favored. In this case, ants may

choose non-optimal paths too quickly. On the other hand, a small value for βψ gives

higher priority to heuristic information over pheromone and the algorithm becomes more

greedy and leads to increased exploration.

In order to find the best value for all βψ parameters, values for these parameters were

randomly selected from the range [1, 7]. The values (βν , βξ, βπ, β%, βς) ∈ {(1, 1, 1, 1, 1),

(3, 3, 3, 3, 3), (3.5, 4, 4.5, 4, 5), (4.5, 5, 3.5, 4, 4), (5, 5, 5, 5, 5), (7, 7, 7, 7, 7)} were selected and

tested. For this study the rest of the parameter values were fixed as in Section 7.2.

Tables D.1-D.3 in appendix D summarise the empirical results for βψ using the n̄alg,

%̄ and ξ̄ metrics. These results are visualised using the FluxViz software in Figures E.1-

E.15 in appendix E. These figures highlights the best results with blue indicating the

best values for the n̄alg, %̄ and ξ̄ metrics. Relations between the different performance

metrics and the βψ values with reference to different change frequencies are illustrated in

Figures 7.1-7.3. Relations between the different performance metrics and the βψ values

with reference to different change severities are illustrated in Figures 7.4-7.6. The βψ

axis represents the combination of the parameters (βν , βξ, βπ, β%, βς) used in the exper-

iments. Axis values of βψ=1, 2, 3, 4, 5, 6 respectively refer to parameter combinations

(1, 1, 1, 1, 1), (3, 3, 3, 3, 3), (3.5, 4, 4.5, 4, 5), (4.5, 5, 3.5, 4, 4), (5, 5, 5, 5, 5), and (7, 7, 7, 7, 7).

The larger the number of non-dominated solutions, n̄alg, the better the effectiveness
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of the MOO algorithm in generating desired solutions. A value of zero for %̄ indicates that

all members of the Pareto front are equidistantly spaced. A higher value of ξ̄ indicates

that the obtained Pareto front is closer to the true Pareto front.

For each βψ parameter combination, referred to as an experiment, six different change

frequencies (with Tsm ∈ {1, 2, 3, 4, 5, 6}) and three different change severities (with

Rg ∈ {300, 500, 800}) were used. The same applies with the rest of the sections for

the empirical analysis of the ant-based algorithms control parameters.

The rest of this section discusses the results obtained from the experiments with

regards to the influence of βψ on the performance metrics.

1. Influence of βψ on the number of non-dominated solutions, n̄alg.

Irrespective of the change frequency and change severity, for (βν , βξ, βπ, β%, βς) ∈
{(1, 1, 1, 1, 1), (3, 3, 3, 3, 3)} all the algorithms produced a very low number of non-

dominated solutions (refer to Figures E.1, E.4, E.7, E.10, E.13, 7.1, 7.4). For values

of (βν , βξ, βπ, β%, βς) = (3.5, 4, 4.5, 4, 5), (βν , βξ, βπ, β%, βς) = (4.5, 5, 3.5, 4, 4), and

(βν , βξ, βπ, β%, βς) = (5, 5, 5, 5, 5) the best values of n̄alg were obtained. There-

fore, βψ should be large enough in order to have a strong focus on pheromone

information.

For all the experiments, n̄alg decreased with increase in change frequency, Tsm

(refer to Figure 7.1), which is expected. As frequency of change increases, the

time available for adaptation becomes shorter and it becomes more difficult to find

optimum solutions.

Also, n̄alg decreased with increase in change severity, Rg (refer to Figure 7.4), which

is also expected. With high change severity there is a large displacement of the

current location of the optimum and it is more difficult to adapt and to find optimal

solutions.

2. Influence of βψ on the spread metric, %̄.

Irrespective of the change frequency and change severity, for (βν , βξ, βπ, β%,

βς) ∈ {(1, 1, 1, 1, 1), (3, 3, 3, 3, 3)} all the algorithms displayed a higher value for

%̄ which means less uniformly distributed solutions (refer to Figures E.2, E.5,

E.8, E.11, E.14). For all values of (βν , βξ, βπ, β%, βς) ∈ {(3.5, 4, 4.5, 4, 5),

(4.5, 5, 3.5, 4, 4), (5, 5, 5, 5, 5), (7, 7, 7, 7, 7)} lower values of %̄ (more uniformly dis-
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tributed solutions) were obtained. Higher values of βψ, and therefore a strong

focus on pheromone information, produced a better solution spread.

A decrease in change frequency, Tsm, leads to more uniformly distributed solutions

(refer to Figure 7.2), which is expected. As the change frequency decreases, the

time left for adaptation gets larger and there are more iterations available to track

the optima. The archive is more likely to become full several times, and each time

the crowding distance is used in selecting which solution in the archive will be

replaced with a new solution. This promotes diversity among the stored solutions

in the archive since those solutions which are in the most crowded areas are most

likely to be replaced by a new solution. At the end the archive will contain more

non-dominated solutions which are in the least crowded area in the objective space,

therefore, maintaining a good spread of non-dominated solutions.

The value of %̄ increased with increase in change severity, Rg (refer to Figure 7.5),

which is also expected. When Rg increases, more iterations are needed to track

the optima after the change occurred and therefore the distribution of solutions

decreases correspondingly.

3. Influence of βψ on the hypervolume metric, ξ̄.

For (βν , βξ, βπ, β%, βς) ∈ {(1, 1, 1, 1, 1), (3, 3, 3, 3, 3)} all the algorithms displayed

a lower value of the ξ̄ metric (refer to Figures E.3, E.6, E.9, E.12, E.15). For

all values of (βν , βξ, βπ, β%, βς) ∈ {(3.5, 4, 4.5, 4, 5), (4.5, 5, 3.5, 4, 4), (5, 5, 5, 5, 5)}
the best values of ξ̄ were obtained. For (βν , βξ, βπ, β%, βς) = (7, 7, 7, 7, 7) all the

algorithms presented a decline in value of the ξ̄ metric (refer to Figures 7.3, 7.6)

which shows that too much exploitation is not good. These observations are true

for all change frequencies (refer to Figure 7.3) and all change severities (refer to

Figure 7.6).

The graphs indicate an increase in ξ̄ with decrease in change frequency (refer to Fig-

ure 7.3). This result is expected since low change frequency gives more iterations,

and theoretically is supposed to produce a uniform distribution of the solutions

and closeness of the solutions to the optimal Pareto set, thus increasing the size

of the dominated space (hypervolume measure). Also, the graphs indicate an in-

crease of hypervolume, ξ̄, with decrease in change severity (refer to Figure 7.6). It

is intuitive to assume that smaller change severities are easier to adapt to, primar-
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ily by transferring solutions from the past optimisation problem which may help

to accelerate the rate of convergence to the optima, after a change has occurred.

Therefore the closeness of the solutions to the optimal Pareto set should be getting

worse as the change severity increases.

For the values of (βν , βξ, βπ, β%, βς) ∈ {(3.5, 4, 4.5, 4, 5), (4.5, 5, 3.5, 4, 4), (5, 5, 5, 5, 5)},
all algorithms displayed the best value, with reference to all three metrics. Accordingly,

the value of (βν , βξ, βπ, β%, βς) = (3, 4, 4.5, 4, 5) was adopted for the remainder of the

simulations.
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Figure 7.1: Influence of βψ on n̄alg metric, for different change frequencies, Tsm
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Figure 7.2: Influence of βψ on %̄ metric, for different change frequencies, Tsm
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Figure 7.3: Influence of βψ on ξ̄ metric, for different change frequencies, Tsm
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Figure 7.4: Influence of βψ on n̄alg metric, for different change severities, Rg
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Figure 7.5: Influence of βψ on %̄ metric, for different change severities, Rg
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Figure 7.6: Influence of βψ on ξ̄ metric, for different change severities, Rg
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7.2.2 Exploration Vs Exploitation Parameter, r0

The parameter, r0, is used in the ACS transition rule (refer to equations (6.20), (6.31),

(6.54)) to control the balance between exploration and exploitation of the search space.

Parameter r0 takes values within the interval [0, 1]. When r0 approaches zero, exploration

is favoured. More focus can be given on exploitation instead of exploration by increasing

the value of r0.

In order to find the best value for r0, five values were considered, namely r0 ∈
{0.1, 0.3, 0.5, 0.7, 0.9}.

Since r0 is an ACS specific parameter, the influence of r0 is investigated only for

the EEMACOMP, EEMACOMH and EEMACOMC algorithms, as these make use of

the ACS equation to compute the transition probability (see equations (6.20), (6.31),

(6.54)).

Tables D.4-D.6 summarise the empirical results for r0 using the n̄alg, %̄ and ξ̄ metrics.

Results are visualised in Figures E.16-E.24. Relations between the different performance

metrics and the r0 values with reference to different change frequencies are illustrated in

Figures 7.7-7.9. Relations between the different performance metrics and the r0 values

with reference to different change severities are illustrated in Figures 7.10-7.12.

The following parameter values were used based on the result of the previous section:

βν = 3.5, βξ = 4.0, βπ = 4.5, β% = 4.5, and βς = 5.0. The rest of the parameter values

were fixed as in Section 7.2.

The rest of this section discusses the results obtained from the experiments with

regards to the influence of r0 on the performance metrics.

1. Influence of r0 on the number of non-dominated solutions, n̄alg.

For the values of r0 ∈ {0.5, 0.7, 0.9} all the algorithms produced the largest n̄alg

irrespective of change frequencies and change severities. For r0 = 0.1 and r0 = 0.3

results are similar to the values of r0 ∈ {0.5, 0.7, 0.9} for lower change frequencies

(Tsm ∈ {3, 4, 5, 6}). For r0 = 0.1 and r0 = 0.3 and higher change frequencies

(Tsm = 1 and Tsm = 2) all the algorithms produced a very low number of non-

dominated solutions compared to larger values of Tsm (refer to Figure 7.7). This

result is expected because for r0 = 0.1 and r0 = 0.3 there is a high exploration

of the search space and if the change frequency is too high environment changes

may occur before convergence. That is, high exploration negatively affected the
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number of non-dominated solutions for high change frequencies. For the values of

r0 ∈ {0.5, 0.7, 0.9} all the algorithms produced the largest n̄alg for high change

frequencies which indicates that exploitation should be preferred under high change

frequencies.

For all the experiments, n̄alg increased with decrease in change frequency, Tsm

(refer to Figure 7.7). This result is expected as low change frequencies provides

more time to explore the search space, thereby finding more solutions.

The EEMACOMH algorithm produced the lowest number of non-dominated solu-

tions for Rg = 800, for all values of r0 (refer to Figure 7.10(b)).

Independent of change frequency and change severity, the best values for r0 are

r0 ∈ {0.5, 0.7, 0.9} (refer to Tables D.4-D.6 and Figures E.16, E.19, E.22).

2. Influence of r0 on the spread metric, %̄.

For values of r0 ∈ {0.5, 0.7, 0.9} all the algorithms produced a lower spread metric

value producing more uniformly distributed solutions.

Values of r0 = 0.1 and r0 = 0.3 produced the largest spread metric value with high

change frequencies (Tsm = 1 and Tsm = 2). That is, high exploration negatively

affected the solution spread for high change frequencies. The values of r0 = 0.1

and r0 = 0.3 produced a low spread metric value with low change frequencies

(Tsm ∈ {3, 4, 5, 6}), for all ACO algorithms.

The graphs indicate an increase in %̄ (i.e. deterioration in the solution spread)

with increase in change severity (refer to Figure 7.11). When Rg increases, more

iterations are needed to track the optima after the change occurred and therefore

less time is available to reach a good distribution of solutions.

The best values for the solution spread are produced with r0 = 0.5, irrespective of

change frequencies and change severities (refer to Tables D.4-D.6 and Figures E.17,

E.20, E.23).

3. Influence of r0 on the hypervolume metric, ξ̄.

For all change frequencies and all change severities the values of r0 = 0.1 and r0 =

0.3 produced the worst results for the hypervolume metric (refer to Figures E.18,

E.21, E.24). That is, high exploration negatively affected the ξ̄ metric. This is
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related to the fact that the computational load of the hypervolume calculation

sharply increases, the more criteria are considered (when the number of objectives

increases). Combined with a high exploration of the search space, environment

changes may occur before convergence thus affecting the hypervolume.

The graphs indicate an increase in ξ̄ with decrease in change frequency (refer to

Figure 7.9). Also, the graphs indicate an increase in ξ̄, with decrease in change

severity (refer to Figure 7.12).

The best values for the hypervolume were produced with r0 = 0.5, for all change

frequencies and all change severities.

A value of r0 = 0.5 offers the best trade-off between metrics n̄alg, %̄ and ξ̄ for all

change frequencies and all change severities. Therefore, a value of 0.5 for r0 was adopted

for the remainder of the simulations.
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Figure 7.7: Influence of r0 on n̄alg metric, for different change frequencies, Tsm
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Figure 7.8: Influence of r0 on %̄ metric, for different change frequencies, Tsm
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Figure 7.9: Influence of r0 on ξ̄ metric, for different change frequencies, Tsm
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Figure 7.10: Influence of r0 on n̄alg metric, for different change severities, Rg
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Figure 7.11: Influence of r0 on %̄ metric, for different change severities, Rg
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Figure 7.12: Influence of r0 on ξ̄ metric, for different change severities, Rg

7.2.3 Local Decay Parameter, ρl

After each solution construction step, the local updating rule is applied for all the ACS

based algorithms (refer to equations (6.26) and (6.37)). The local decay parameter, ρl,

determines the rate at which pheromone on all the paths are evaporated after each step.

Parameter ρl has values within the interval [0, 1]. A high value of ρl leaves less pheromone

at each step. Consequently, the ants have less information on other ants’ paths, and the
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search is less focused, favouring exploration. More focus can be given on exploitation

instead of exploration by decreasing the value of ρl.

In order to find the best value for ρl, five values for ρl were considered, namely

ρl ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. Since ρl is an ACS parameter, the influence of ρl is

investigated only for the EEMACOMP, EEMACOMH and EEMACOMC algorithms, as

these make use of the ACS local update rule. The following parameter values were used

based on the result of sections 7.2.1-7.2.2: βν = 3.5, βξ = 4.0, βπ = 4.5, β% = 4.5,

βς = 5.0, and r0 = 0.5. The rest of the parameter values were fixed as in Section 7.2.

Tables D.7-D.9 summarise the empirical results for control parameter ρl using the

n̄alg, %̄ and ξ̄ performance metrics. Results are visualised in Figures E.25-E.33 and 7.13-

7.18.

The rest of this subsection discusses the results obtained from the experiments with

regards to the influence of ρl on the performance metrics.

1. Influence of ρl on the number of non-dominated solutions, n̄alg.

All the algorithms produced high values for n̄alg for all values of ρl and low change

frequencies (Tsm ∈ {5, 6}). For values of ρl = 0.1 and ρl = 0.3 and high change

frequencies (Tsm ∈ {1, 2, 3, 4}) (refer to Figure 7.13) all the algorithms struggled

to find many non-dominated solutions. It is clear that too much exploitation

(small ρl) is not good under high change frequency with regard to n̄alg. In fact,

this observation is true for change frequencies Tsm ∈ {1, 2, 3, 4} and all change

severities (refer to Figures E.25, E.28, E.31, 7.13, 7.16).

For all the experiments, n̄alg decreased with increase in change frequency (refer to

Figure 7.13). This result is expected since, as frequency of change increases, the

time available for adaptation becomes shorter and it becomes more difficult to find

optimum solutions.

Results for Rg = 800 show that the EEMACOMH algorithm produced the lowest

number of non-dominated solutions (refer to Figure 7.16(b)).

The best results for the n̄alg metric were obtained with ρl ∈ {0.5, 0.7}, irrespective

of change frequencies and change severities (refer to Tables D.7-D.9 and Figures

E.25, E.28, E.31, 7.13, 7.16).

2. Influence of ρl on the spread metric, %̄.
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Results for ρl = 0.1 and ρl = 0.3 show that all the algorithms failed in obtaining

a good spread in the found non-dominated solutions (refer to Figures E.26, E.29,

E.32), irrespective of change severities and for change frequencies Tsm ∈ {1, 2, 3, 4}.
The spacing metric for ρl = 0.9 is also higher (obtaining less uniformly distributed

solutions) than the spacing metric obtained with ρl ∈ {0.5, 0.7}. It is also clear that

too much exploration (very large ρl) and too much exploitation (small ρl) is not

good (refer to Figures 7.14 and 7.17). In fact this observation is true for all change

frequencies and all change severities. A balance of exploration and exploitation

is needed, which is achieved with a ρl ∈ {0.5, 0.7} (refer to Tables D.7-D.9 and

Figures 7.14 and 7.17).

The graphs indicate a deterioration in the solution spread with increase in change

frequency (refer to Figure 7.14). A decrease in change frequency leads to more

uniformly distributed solutions, which is expected (refer to Section 7.2.1 on page

160).

The graphs indicate a deterioration in the solution spread with increase in change

severity (refer to Figure 7.17). That is, high change severity negatively affected

the solution spread.

3. Influence of ρl on the hypervolume metric, ξ̄.

Irrespective of the change frequency and change severity, all algorithms succeeded

in obtaining good performance with respect to the hypervolume metric (refer to

Figures E.27, E.30, E.33). A general trend that is observed over all values of Tsm

and Rg is that performance peaks at ρl = 0.5 and ρl = 0.7. Again this indicates

that a balance between exploration and exploitation is best for this dynamic envi-

ronment, since a high value of ρl which favours exploration and a low value of ρl

which favours exploitation produced the lowest values for the hypervolume (refer

to Figures 7.15 and 7.18).

The graphs indicate in most cases an increase in ξ̄ with decrease in change frequency

(refer to Figure 7.15). This result is expected, since low change frequency gives

more time for adaptation and is supposed to produce a uniform distribution of the

solutions and closeness of the solutions to the optimal Pareto set.

A value of ρl = 0.5 and ρl = 0.7 offers the best trade-off between metrics n̄alg, %̄ and

ξ̄ for all change frequencies and all change severities. Accordingly, the value of 0.5 for ρl
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was adopted for the remainder of the simulations.
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Figure 7.13: Influence of rl on n̄alg metric, for different change frequencies, Tsm
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Figure 7.14: Influence of rl on %̄ metric, for different change frequencies, Tsm
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Figure 7.15: Influence of rl on ξ̄ metric, for different change frequencies, Tsm
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Figure 7.16: Influence of rl on n̄alg metric, for different change severities, Rg
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Figure 7.17: Influence of rl on %̄ metric, for different change severities, Rg
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Figure 7.18: Influence of rl on ξ̄ metric, for different change severities, Rg
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7.2.4 Global Decay Parameter, ρg

After each iteration, all ants found a solution and the global updating rule is applied

(refer to equations (6.24), (6.35), and (6.56). The global decay or global evaporation

parameter, ρg, sets the amount of pheromone that evaporate on the paths after each

loop, as for ρl. A high value of ρg will help finding more solutions instead of focusing on

a specific solution.

In order to find the best value for ρg, five values were considered, namely ρg ∈
{0.1, 0.3, 0.5, 0.7, 0.9}. The influence of ρg was investigated for all five algorithms.

The following parameter values were used based on the result of sections 7.2.1-7.2.3:

βν = 3.5, βξ = 4.0, βπ = 4.5, β% = 4.5, βς = 5.0, r0 = 0.5, and ρl = 0.5. The rest of the

parameter values were fixed as in Section 7.2.

Tables D.10-D.12 summarise the empirical results for control parameter ρg using the

n̄alg, %̄ and ξ̄ metrics. Results are visualised in Figures E.34-E.48 and 7.19-7.24.

The rest of this subsection discusses the results obtained from the experiments.

1. Influence of ρg on the number of non-dominated solutions, n̄alg.

Parameter ρg follows similar trends as for ρl with reference to n̄alg, except that there

is no real trend between n̄alg and the change frequency (refer to Figures E.25, E.28,

E.31, E.34, E.37, E.40, E.43, E.46). Values of ρg ∈ {0.5, 0.7} performed the best

for all change frequencies (refer to Figure 7.19) and for all change severities (refer

to Figure 7.22).

2. Influence of ρg on the spread metric, %̄.

Results for ρg = 0.1 and ρg = 0.3 show that all the algorithms failed in obtaining

a good spread in the found non-dominated solutions (refer to Figures E.35, E.38,

E.41, E.44, E.47), irrespective of change severities and change frequencies. For

ρg = 0.9, the spread metric is higher than the spread metric obtained with ρg ∈
{0.5, 0.7}. It seems to be a general trend for all results thus far that too much

exploration (very large ρg) and too much exploitation (small ρg) is not good. For

ρg = 0.9 there is high pheromone evaporation and the search is very random.

Consequently, it takes more time for the algorithms to converge to a solution. That

explains the high value of %̄. For ρg = 0.1 and ρg = 0.3 there is high pheromone

concentration and ants tend to converge to the same solution. There is a too early

convergence to sub-optimal solutions, which again explains the high value of %̄.
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Again, parameter ρg follows the same trends as for ρl with reference to %̄. Values

of ρg ∈ {0.5, 0.7} performed the best (refer to Tables D.10-D.12 and Figures 7.20

and 7.23).

3. Influence of ρg on the hypervolume metric, ξ̄.

Parameter ρg follows the same trends as for ρl with reference to ξ̄ (refer to Fig-

ures E.27, E.30, E.33, E.36, E.39, E.42, E.45, E.48).

A general trend that was observed over all values of Tsm and Rg is that perfor-

mance peaks at ρg = 0.5 and ρg = 0.7 (refer to Figures 7.21 and 7.24). Again

this indicates that a balance between exploration and exploitation is best for this

dynamic environment.

A value of ρg = 0.5 and ρg = 0.7 offered the best trade-off between metrics n̄alg,

%̄ and ξ̄ for all change frequencies and all change severities. Accordingly, the value of

ρg = 0.7 was adopted for the remainder of the simulations.
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Figure 7.19: Influence of ρg on n̄alg metric, for different change frequencies, Tsm
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Figure 7.20: Influence of ρg on %̄ metric, for different change frequencies, Tsm
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Figure 7.21: Influence of ρg on ξ̄ metric, for different change frequencies, Tsm
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Figure 7.22: Influence of ρg on n̄alg metric, for different change severities, Rg
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Figure 7.23: Influence of ρg on %̄ metric, for different change severities, Rg
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Figure 7.24: Influence of ρg on ξ̄ metric, for different change severities, Rg
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7.2.5 Importance of the Pheromone Trail Concentrations Pa-

rameter, α

As illustrated in equations (6.42) and (6.48), α controls the balance between exploration

and exploitation. Diversification of the solution searching process in the solution space

can be emphasized by decreasing the value of α and exploitation can be increased by

increasing the value of α. If α = 0, no pheromone information is used, i.e. previous

search experience is neglected. The search then degrades to a stochastic greedy search.

Because α is used only in equations (6.42) and (6.48), the influence of α was investi-

gated only for EEMMASMP and EEMMASMH. For the other three algorithms, α was

set to one.

In order to find the best value for α, six values were considered, namely α ∈
{1, 1.5, 2, 2.5, 3, 3.5}.

The following parameter values were used based on the results of sections 7.2.1-7.2.4:

βν = 3.5, βξ = 4.0, βπ = 4.5, β% = 4.5, βς = 5.0, r0 = 0.5, ρl = 0.5, and ρg = 0.7. The

rest of the parameter values were fixed as in Section 7.2.

Tables D.13-D.15 summarise the empirical results for α using the n̄alg, %̄ and ξ̄ met-

rics. Results are visualised in Figures E.49-E.54 and 7.25-7.30. The rest of this section

discusses the results obtained from the experiments with regards to the influence of α

on the performance metrics.

1. Influence of α on the number of non-dominated solutions, n̄alg.

For α = 3 and α = 3.5 all the algorithms produced a very low number of non-

dominated solutions compared to lower values of α. The best values for α are for

α ∈ {1, 1.5, 2, 2.5}, for all change frequencies and all change severities (refer

to Tables D.13-D.15 and Figures E.49, E.52, 7.25 and 7.28). For these values all

algorithms produced a very large number of non-dominated solutions.

The graphs indicate a small decrease in the number of non-dominated solutions

with increase in change frequency which is expected (refer to Figures E.49, E.52 and

7.25). As pointed out in section 7.2.1 on page 159, as change frequency increases,

the time available for adaptation becomes shorter and it becomes harder to find

optimum solutions.

Also, there is a small decrease in the number of non-dominated solutions with

increase in change severity (refer to Figures E.49, E.52 and 7.28).

184

 
 
 



2. Influence of α on the spread metric, %̄.

The graphs indicate a small deterioration of the solution spread with higher values

of α (refer to Figures E.50 and E.53). The best values for the solution spread were

produced with α ∈ {1, 1.5, 2}, for all change frequencies and all change severities.

Figure 7.26 indicates a deterioration of the solution spread (i.e. higher %̄) with

increase in change frequency which is expected (refer to Section 7.2.1 on page

160). Also, there is a deterioration of the solution spread with increase in change

severity (refer to Figure 7.29). This result is expected since, when Rg increases,

more iterations are needed to track the optima after the change occurred and

therefore less time is available to reach a good distribution of solutions.

3. Influence of α on the hypervolume metric, ξ̄.

Values of α ∈ {1, 3, 3.5} produced the worst results for the hypervolume metric

(refer to Figures E.51 and E.54). This observation is true for all change frequencies

(refer to Figure 7.27) and all change severities (refer to Figure 7.30). That is, high

exploration and high exploitation negatively affected the ξ̄ metric.

The graphs indicate a small increase in ξ̄, with decrease in change frequency (refer

to Figure 7.27).

There is no pattern between ξ̄ and Rg, which indicates insensitivity of ξ̄ to Rg

(refer to Figure 7.30).

The best values for the hypervolume were produced with α ∈ {1.5, 2, 2.5}, for

all change frequencies and all change severities (refer to Tables D.13-D.15 and

Figures E.51, E.54, 7.27 and 7.30).

A value of α = 1.5 offered the best trade-off between metrics n̄alg, %̄ and ξ̄ for all

change frequencies and all change severities. Accordingly, the value of α = 1.5 was

adopted for the remainder of the simulations.
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Figure 7.25: Influence of α on n̄alg metric, for different change frequencies, Tsm
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Figure 7.26: Influence of α on %̄ metric, for different change frequencies, Tsm
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Figure 7.27: Influence of α on ξ̄ metric, for different change frequencies, Tsm
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Figure 7.28: Influence of α on n̄alg metric, for different change severities, Rg
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Figure 7.29: Influence of α on %̄ metric, for different change severities, Rg
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Figure 7.30: Influence of α on ξ̄ metric, for different change severities, Rg
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7.2.6 η-Strategy Parameter

The η-strategy parameter, noted λE, is used to determine the reset value to reinitialise

pheromone values on links. The η-strategy is applied after a change in the environment

occurs in order to promote diversity. If λE → ∞ there is no pheromone conservation

and exploration is emphasized. For lower values of λE there is a higher pheromone

conservation and exploitation is promoted.

All algorithms were run using the η-strategy. The influence of λE on the performance

metrics n̄alg, %̄, and ξ̄ was therefore evaluated. In order to find the best value for λE,

four values for λE were considered, namely λE ∈ {2, 4, 6, 8}.
The following parameter values were used based on the result of sections 7.2.1-7.2.5:

βν = 3.5, βξ = 4.0, βπ = 4.5, β% = 4.5, βς = 5.0, r0 = 0.5, ρl = 0.5, ρg = 0.7, and

α = 1.5. The rest of the parameter values were fixed as in Section 7.2.

Tables D.16-D.18 summarise the empirical results for the control parameter λE using

the n̄alg, %̄ and ξ̄ metrics. Results are visualised in Figures E.55-E.69 and 7.31-7.36.

The rest of this subsection discusses the results obtained from the experiments with

regards to the influence of λE on the performance metrics n̄alg, %̄, and ξ̄.

1. Influence of λE on the number of non-dominated solutions, n̄alg.

Results for λE = 2 and λE = 8 show that all the algorithms struggled to find many

non-dominated solutions irrespective of change frequency (refer to Figure 7.31) and

irrespective of change severity (refer to Figure 7.34). All the algorithms produced

the largest number of non-dominated solutions for λE = 4 and λE = 6 (refer to

Figures E.55, E.58, E.61, E.64, E.67).

The graphs indicate a decrease in the number of non-dominated solutions with

increase in change frequency (refer to Figure 7.31).

Results for Rg = 800 show that the EEMACOMH algorithm produced the low-

est number of non-dominated solutions irrespective of the λE value (refer to Fig-

ure 7.34(b)).

2. Influence of λE on the spread metric, %̄.
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Irrespective of the change frequency and change severity, for λE = 2 and λE = 8 all

the algorithms displayed a higher value for %̄ which means less uniformly distributed

solutions (refer to Figures E.56, E.59, E.62, E.65, and E.68). For λE = 4 and

λE = 6 lower values of %̄ (more uniformly distributed solutions) were obtained.

A decrease in change frequency lead to more uniformly distributed solutions (refer

to Figure 7.32). As pointed out in section 7.2.1 on page 160, as frequency of change

decreases, the time available for adaptation becomes larger and the crowding dis-

tance operator is applied more times on the archive. At the end the archive will

contain more non-dominated solutions which are in the least crowded area in the

objective space, therefore, maintaining a good spread of non-dominated solutions.

The graphs indicate a deterioration of the solution spread with increase in change

severity (refer to Figure 7.35). That is, high change severity negatively affected the

solution spread. When the change severity increases there is not much information

gained from the past to reuse, and it takes more time to optimise the problem

and less time to explore, which explains the poor distribution of solutions as Rg

increases.

The best solution distribution is produced with λE = 4 and λE = 6, for all change

frequencies and all change severities (refer to Tables D.16-D.18 and Figures E.56,

E.59, E.62, E.65, E.68, 7.32, 7.35).

3. Influence of λE on the hypervolume metric, ξ̄.

A general trend that is observed over all values of Tsm and Rg is that performance

with reference to the hypervolume metric peaks at λE = 4 and λE = 6 (refer to

Figures E.57, E.60, E.63, E.66, E.69, 7.33, and 7.36). Again, this indicates that

a balance between exploration and exploitation is best for this dynamic environ-

ment. With λE = 4 and λE = 6, the relative difference of the pheromone trails

is small enough to increase exploration of new paths and large enough to increase

exploitation of existing paths.

The graphs indicate an increase in ξ̄ with decrease in change frequency (refer to

Figure 7.33).

There is no pattern between ξ̄ and Rg, which indicates insensitivity of ξ̄ to Rg

(refer to Figure 7.36), excluding the EEMACOMH which showed a decrease in ξ̄
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with Rg = 800 (refer to Figure 7.36(b)).

A value of λE = 4 and λE = 6 offered the best trade-off between metrics n̄alg, %̄ and

ξ̄ for all change frequencies and all change severities. Accordingly, the value off λE = 6

was adopted for the remainder of the simulations.

40

50

60

70

80

90

100

2 4 6 8

Tsm=1 Tsm=2 Tsm=3 
Tsm=4 Tsm=5 Tsm=6 ͞nalg

λΕ
(a) EEMACOMP

40

50

60

70

80

90

100

2 4 6 8

Tsm=1 Tsm=2 Tsm=3 
Tsm=4 Tsm=5 Tsm=6 ͞nalg

λΕ
(b) EEMACOMH

40

50

60

70

80

90

100

2 4 6 8

Tsm=1 Tsm=2 Tsm=3 
Tsm=4 Tsm=5 Tsm=6 ͞nalg

λΕ
(c) EEMMASMP

40

50

60

70

80

90

100

2 4 6 8

Tsm=1 Tsm=2 Tsm=3 
Tsm=4 Tsm=5 Tsm=6 ͞nalg

λE

(d) EEMMASMH

40

50

60

70

80

90

100

2 4 6 8

Tsm=1 Tsm=2 Tsm=3 
Tsm=4 Tsm=5 Tsm=6 ͞nalg

λΕ
(e) EEMACOMC

Figure 7.31: Influence of λE on n̄alg metric, for different change frequencies, Tsm
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Figure 7.32: Influence of λE on %̄ metric, for different change frequencies, Tsm
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Figure 7.33: Influence of λE on ξ̄ metric, for different change frequencies, Tsm
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Figure 7.34: Influence of λE on n̄alg metric, for different change severities, Rg
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Figure 7.35: Influence of λE on %̄ metric, for different change severities, Rg
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Figure 7.36: Influence of λE on ξ̄ metric, for different change severities, Rg
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7.2.7 Importance of the Objectives Parameters

The parameters λν , λξ, λπ, λ%, λς ∈ [0, 1] are user-defined parameters which set the

importance of the objectives in the search. For this thesis the assumption was made

that the objectives have the same importance in the search. Therefore, the value for

all λψ was set to 0.2. It is suggested that future research investigates the influence of

different values for these parameters on performance.

7.2.8 Pareto Archive Size

The size of the archive is fixed. If the number of solutions is more than the archive

size, solutions which have high density in the objective space, i.e. solutions with a lower

value of the crowding distance (refer to Section 4.6.2), are removed. On the other

hand if the archive is not full, the current non-dominated solutions are added until the

archive becomes full. Keeping a bound on the archive size may be important because

the Pareto-optimal set may be infinitely large, but also because updating and searching

through the archive will become very time-consuming if the archive is allowed to grow

without bound.

The size of the Pareto archive was limited to 100 since this value has been used by

different researchers [120, 225].

7.2.9 Summary of Ant Based Control Parameters which Affect

Exploration and Exploitation

In order for ACO algorithms to be applied to DOPs, mechanisms should be employed that

maintain diversity. This section summarises the control parameters for ACO algorithms

which influence the exploration and exploitation.

• Heuristics vs Pheromone Parameters, βψ

Parameters βψ=βν , βξ, βπ, β%, and βς set the relative importance of heuristic versus

pheromone information. The larger the value of βψ, the smaller the emphasis on

heuristic information, and learned desirability discovered by pheromone trails is

favored. On the other hand, a small value for βψ gives higher priority to heuristic

information over pheromone and the algorithm becomes more greedy and leads to

increased exploration.
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Higher values of βψ, and therefore a strong focus on pheromone information, pro-

duce a better solution spread. The highest number of non-dominated solutions and

the best value for the hypervolume metric are obtained with a balance between ex-

ploration and exploitation which is achieved for the values of (βν , βξ, βπ, β%, βς)

∈ {(3.5, 4, 4.5, 4, 5), (4.5, 5, 3.5, 4, 4), (5, 5, 5, 5, 5)}.

• Exploration Vs Exploitation Parameter, r0

The parameter, r0, is used in the ACS transition rule (refer to equations (6.20),

(6.31), (6.54)) to control the balance between exploration and exploitation of the

search space. Parameter r0 takes values within the interval [0, 1]. When r0 ap-

proaches zero, exploration is favoured. More focus can be given on exploitation

instead of exploration by increasing the value of r0.

Irrespective of change frequencies and change severities, high exploration negatively

affected the number of non-dominated solutions while for high exploitation all the

algorithms produced the largest number of non-dominated solutions.

The best values for the hypervolume and the solution spread were produced with

a balance between exploration and exploitation which is achieved for the value of

r0 = 0.5, for all change frequencies and all change severities.

• Local Decay Parameter, ρl

The local decay parameter, ρl, determines the rate at which pheromone on all the

paths are evaporated after each step. Parameter ρl has values within the interval

[0, 1]. A high value of ρl leaves less pheromone at each step. Consequently, the ants

have less information on other ants’ paths, and the search is less focused, favouring

exploration. More focus can be given on exploitation instead of exploration by

decreasing the value of ρl.

A balance of exploration and exploitation is needed, which is achieved with a

ρl ∈ {0.5, 0.7}. These values offer the best trade-off between metrics n̄alg, %̄ and ξ̄

for all change frequencies and all change severities.

• Global Decay Parameter, ρg

The global decay or global evaporation parameter, ρg, sets the amount of pheromone

that evaporate on the paths after each iteration, as for ρl. A high value of ρg will

help to find more solutions instead of focusing on a specific solution.
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Irrespective of change frequencies and change severities, a balance of exploration

and exploitation is needed, which is achieved with a ρg ∈ {0.5, 0.7}. These values

offer the best trade-off between metrics n̄alg, %̄ and ξ̄.

• Pheromone Trail Concentrations Parameter, α

Diversification of the solution searching process in the solution space (exploration)

can be emphasized by decreasing the value of α and exploitation can be increased

by increasing the value of α. If α = 0, no pheromone information is used, i.e.

previous search experience is neglected. The search then degrades to a stochastic

greedy search.

For high values of α (high exploitation) all the algorithms produced a very low

number of non-dominated solutions compared to lower values of α. The best values

for α for the n̄alg metric are for α ∈ {1, 1.5, 2, 2.5}, for all change frequencies and

all change severities

There is a small deterioration of the solution spread with higher values of α. The

best values for the solution spread were produced with α ∈ {1, 1.5, 2}, for all

change frequencies and all change severities.

High exploration and high exploitation negatively affected the ξ̄ metric. The best

values for the hypervolume were produced with α ∈ {1.5, 2, 2.5}, for all change

frequencies and all change severities.

• η-Strategy Parameter

The η-strategy parameter, noted λE, is used to determine the reset value to reini-

tialise pheromone values on links. The η-strategy is applied after a change in

the environment occurs in order to promote diversity. If λE → ∞ there is no

pheromone conservation and exploration is emphasized. For lower values of λE

there is a higher pheromone conservation and exploitation is promoted.

A general trend that is observed over all values of change frequency and change

severity is that performance with reference to all the three metrics peaks at λE =

4 and λE = 6. Again, this indicates that a balance between exploration and

exploitation is best for this dynamic environment. With λE = 4 and λE = 6, the

relative difference of the pheromone trails is small enough to increase exploration

of new paths and large enough to increase exploitation of existing paths.
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7.2.10 Summary of Ant Based Control Parameters

The performed empirical analysis of the ant based algorithms control parameters (refer

to Sections 7.2.1-7.2.8) showed that the performance and quality of the ACO algorithms

is sensitive to control parameters. The empirical analysis showed that a balance between

exploration and exploitation is good for the dynamic power aware optimization problem.

Also, high exploration negatively affected the number of non-dominated solutions and

the solution spread for high change frequencies.

Table 7.3 summarises the simulation control parameters and their values as resulted

from this empirical study for the proposed multi-objective power-aware routing ACO

algorithms.

7.3 NSGA-II-MPA Parameters

The control parameters of NSGA-II-MPA have been optimised using the same process

as described and conducted in section 7.2 for the ant-based algorithms. Table 7.4 lists

the values for the NSGA-II-MPA parameters that produced the best results for these

experiments.

7.4 Algorithm Comparison

This section has as its main objective to compare the EEMACOMP, EEMACOMH,

EEMMASMP, EEMMASMH, and EEMACOMC algorithms to each other and also to

the NSGA-II-MPA.

The remainder of this section is organised as follows: Subsection 7.4.1 describes the

followed experimental procedure. Section 7.4.2 discusses performance with reference

to the number of non-dominated solutions. Performance with reference to the spacing

metric is covered in Section 7.4.3. Section 7.4.4 discusses the results with reference to the

hypervolume metric. Section 7.4.5 analyses the performance of the algorithms over time

with reference to the performance metrics. Section 7.4.6 discusses the performance of the

optimisation criteria (power-aware routing objectives). Section 7.4.7 gives an overview

of the ranking of the algorithms. Section 7.4.8 discusses the computational complexity

of the algorithms, while Section 7.4.9 gives a summary of the overall performance of the

algorithms.
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Table 7.3: Simulation parameters for the MOO ACO algorithms

Parameter Value Applicable Algorithms

Number of Nodes, NG 30, 100, 300 ALL
Transmission Range, Tr 400m ALL
Rg 300m, 500m, 800m ALL
Simulation Time 120 ALL
Mobility Model RPGM ALL
Number of Ants 25 ALL
Source Node, S 4 ALL
Destination Node, D 28 if NG = 30 ALL

98 if NG = 100 or NG = 300
Network Timer, Tsm 1, 2, 3, 4, 5, 6 sec ALL
Exploration Vs Exploitation 0.5 EEMACOMP, EEMACOMH,
Parameter, r0 EEMACOMC
Local Evaporation 0.5 EEMACOMP, EEMACOMH,
Parameter, ρl EEMACOMC
Global Evaporation 0.7 ALL
Parameter, ρg

α 1.50 EEMMASMP, EEMMASMH
Initial Energy for Node i, Ei 400 ALL
η-Strategy Parameter, λE 6 ALL
λν 0.2 EEMACOMP, EEMMASMP
λξ 0.2 EEMACOMP, EEMMASMP
λπ 0.2 EEMACOMP, EEMMASMP
λ% 0.2 EEMACOMP, EEMMASMP
λς 0.2 EEMACOMP, EEMMASMP
βν 3.5 ALL
βξ 4.0 ALL
βπ 4.5 ALL
β% 4.5 ALL
βς 5.0 ALL
Pareto Archive Size 100 ALL
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Table 7.4: Simulation parameters for the NSGA-II algorithm

Parameter value

Population size 100
Crossover probability 0.9
Mutation probability 0.125
R 256
Ne 30

7.4.1 Experimental Procedure

Each estimated pareto front, PF , produced by the EEMACOMP, EEMACOMH, EEM-

MASMP, EEMMASMH, EEMACOMC, and NSGA-II-MPA algorithms is evaluated us-

ing three performance metrics, namely the n̄alg, %̄, and ξ̄ (refer to Section 7.1.3). The

performance of each algorithm was tested under different scenarios for different change

frequencies, change severities and number of nodes as outlined in section 7.1.1. The

influence of the change frequency, the change severity and the number of nodes on the

performance of each algorithm was evaluated. For each of the scenarios 30 simulations

were executed and results are reported as averages over these simulations together with

the standard deviations.

Results obtained from the EEMACOMP, EEMACOMH, EEMMASMP, EEMMASMH,

EEMACOMC, and NSGA-II-MPA algorithms are summarised in Tables F.1 to F.54

in the appendix F. Each table represents the results of the execution for each algo-

rithm, for a specific scenario. A total of 54 scenarios, generated as listed in Table 7.2

for different values combinations of NG ∈ {30, 100, 300}, Tsm ∈ {1, 2, 3, 4, 5, 6}, and

Rg ∈ {300, 500, 800}, were tested.

In each table, the following information is provided for each algorithm:

• n̄alg: average number of non-dominated solutions found by each algorithm.

• %̄: average value of the spacing metric.

• ξ̄: average value of the hypervolume metric.

• nw
alg : number of times that the algorithm has a better n̄alg than the others, for

each environment change.
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• %w : number of times that the algorithm has a better %̄ than the others, for each

environment change.

• ξw : number of times that the algorithm has a better ξ̄ than the others, for each

environment change.

• Rank : overall rank of the algorithm. For each of the performance metrics the

algorithm is ranked according to the number of times that the algorithm has a

better performance than all the other algorithms with reference to this performance

metric, for each environment change. The algorithm’s average rank is calculated

and then the algorithm is ranked accordingly.

• CI : the 95% confidence intervals using the t-test for each algorithm and each

performance metric.

For all of the experiments, the algorithms used the best found values for the control

parameters as listed in tables 7.3 and 7.4.

Appendix G presents three dimensional graphs to illustrate the influence of change

frequency, Tsm, and change severity, Rg, on the performance metrics, n̄alg, %̄, and ξ̄ for

different number of nodes, based on Tables F.1 to F.54.

For each algorithm the following hypotheses or questions were investigated :

1. Is there a statistical significant difference in the performance of the algorithms?

2. Does performance deteriorate with increase in change frequency?

3. Does performance deteriorate with increase in change severity?

4. Are the algorithms scalable?

5. Is there an algorithm that is less affected by change frequency / change severity?

To test whether there is a statistical significant difference in the performance of any

two algorithms, algorithm1 and algorithm2, with reference to the performance metric,

pmetric, the following two hypotheses were considered:

H0 : µpmetric

algorithm1 = µpmetric

algorithm2

H1 : µpmetric

algorithm1 > µpmetric

algorithm2
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where H0 is the null hypothesis and H1 is the alternative hypothesis.

In order to test these hypotheses the Mann-Whitney U test [129] was applied over

the 30 pmetric values (one for each simulation) for each algorithm and for each Tsm, Rg

and NG combination. A 95% confidence level was used together with a 1-tail test. The

critical value for U is 317, where U is the test statistic for the Mann-Whitney test.

Results are illustrated in appendix H using Fluxviz [1] graphs. Each graph contains 4

axes. The first axis represents the change frequency, Tsm, the second axis represents

the change severity, Rg, and the third axis represents the number of nodes, NG. The

last axis represents the results of the Mann-Whitney U test one for each of the Tsm, Rg

and NG combinations. Each combination corresponds to a specific scenario. If the null

hypothesis, H0, is accepted for a specific scenario, the value of 0 and the symbol “≈” are

displayed next to the scenario (last axis), showing that there is no statistical significant

difference between the performance of the two compared algorithms. If H0 is rejected

the value of one and the symbol “>” are displayed next to the scenario, showing that

the first algorithm is better than the second one for the respective scenario.

7.4.2 Number of Non-Dominated Solutions Metric

This subsection analyses the empirical results of each algorithm in terms of the average

number of non-dominated solutions metric, n̄alg. The n̄alg metric measures how well

the algorithms performed in identifying solutions along the Pareto front. Larger values

for n̄alg are preferred as it indicates that many efficient solutions were found which is

preferred by the decision maker.

Figures G.1-G.3 in Appendix G illustrate the influence of Tsm and Rg on the n̄alg

metric under different NG values, using the values of Tables F.1 to F.54. The following

observations can be made from the figures and tables:

1. Influence of Tsm on the n̄alg metric.

Figures G.1-G.3 indicate that n̄alg increased for all ACO algorithms as Tsm in-

creases (change frequency decreases). Figures G.1(f), G.2(f) and G.3(f) indicate

that n̄alg increased for the NSGA-II-MPA algorithm as Tsm increases, for all sce-

narios, excluding those with NG ∈ {100, 300} and Rg = 800.
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Table 7.5 displays the average values for n̄alg over all the NG and Rg values while

Figure 7.37 illustrates the results of Table 7.5. Table 7.5 and Figure 7.37 indicate

that n̄alg increased for each algorithm as change frequency decreases. This result

is expected as low change frequencies (high pause time, Tsm) provides more time

to explore the search space, thereby finding more solutions.

Table 7.5: Average value for n̄alg over all the NG and Rg values
Tsm

PF 1 2 3 4 5 6
PEEMACOMP 78.56 82.48 85.68 86.87 88.26 91.26
PEEMACOMH 52.70 54.57 57.99 57.29 61.50 63.85
PEEMMASMP 75.60 77.79 80.01 80.72 83.18 85.78
PEEMMASMH 72.52 75.47 77.88 79.15 81.41 83.82
PEEMACOMC 72.69 76.18 76.70 78.56 81.02 83.23
PNSGA−II−MPA 34.99 39.40 41.67 41.58 41.33 41.72
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1 2 3 4 5 6

EEMACOMP
EEMACOMH
EEMMASMP
EEMMASMH
EEMACOMC
NSGA-II-MPA

͞nalg

Tsm

Figure 7.37: Average value for n̄alg over all the NG and Rg values

It is also to be noted from Table 7.5 and Figure 7.37 that EEMACOMH and

NSGA-II-MPA are significantly worse than the other algorithms. In other words,

EEMACOMH and NSGA-II-MPA do not scale well with reference to Tsm.
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2. Influence of Rg on the n̄alg metric.

Figures G.1-G.3 show that in most cases the number of non-dominated solutions

decreased with increase in change severity, Rg. For the rest of the scenarios, n̄alg

increased when Rg increased to 500, and decreased again with Rg = 800. In order

to better visualise the relation between Rg and n̄alg, Table 7.6 displays the average

values for n̄alg over all the NG and Tsm values while Figure 7.38 illustrates the

results of Table 7.6.

Table 7.6: Average value for n̄alg over all the NG and Tsm values
Rg

PF 300 500 800
PEEMACOMP 99.25 88.87 68.48
PEEMACOMH 75.93 69.46 34.05
PEEMMASMP 97.33 83.68 60.66
PEEMMASMH 94.92 81.82 58.90
PEEMACOMC 95.75 82.02 57.57
PNSGA−II−MPA 53.15 41.62 25.92
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Figure 7.38: Average value for n̄alg over all the NG and Tsm values
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Table 7.6 and Figure 7.38 show that when n̄alg is taken as the average value over

all the NG and Tsm values, the number of non-dominated solutions decreased with

increase in Rg. This trend is expected, because an increase in change severity, Rg,

causes only some of the nodes to be within transmission range. The number of

alternative paths by which to send a packet from source to destination and the

number of non-dominated solutions therefore decreases.

It is also to be noted from Table 7.6 and Figure 7.38 that EEMACOMH and

NSGA-II-MPA are affected the most by the change severity.

3. Performance of multi-pheromone approaches vs single-pheromone ap-

proaches with reference to the n̄alg metric.

Multi-pheromone approaches are EEMACOMP and EEMMASMP where a phero-

mone matrix is associated with each objective. Single-pheromone approaches are

EEMACOMH and EEMMASMH where one pheromone matrix is associated with

all the objectives.

Figures G.1(a), G.2(a), G.3(a), G.1(c), G.2(c), and G.3(c) illustrate the influence

of Rg and Tsm on the n̄alg metric for the multi-pheromone approaches, while fig-

ures G.1(b), G.2(b), G.3(b), G.1(d), G.2(d), and G.3(d) illustrate the influence of

Rg and Tsm on the n̄alg metric for the single-pheromone approaches. The figures

show that the multi-pheromone approaches produced a larger n̄alg in most scenarios

compared to single pheromone approaches.

To test whether there is a statistical significant difference in the performance of

the multi-pheromone approach, EEMACOMP, and the single pheromone approach,

EEMACOMH, the following two hypotheses were considered:

H0 : µ
n̄alg

EEMACOMP = µ
n̄alg

EEMACOMH

H1 : µ
n̄alg

EEMACOMP > µ
n̄alg

EEMACOMH

In order to test these hypotheses the Mann-Whitney U test was applied over all

scenarios for the EEMACOMP and EEMACOMH.
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Figure H.1 illustrates the results of the Mann-Whitney U test. Results show that

the multi-pheromone approach, EEMACOMP, produced significantly more non-

dominated solutions than the single pheromone approach, EEMACOMH, for 95%

of the scenarios (all scenarios except scenarios with {NG = 30, RG = 300, Tsm ∈
{3, 4, 5, 6}} and {NG = 30, RG = 500, Tsm ∈ {3, 5, 6}}). EEMACOMP increases

the coverage of the solution space, therefore finding more non-dominated solutions

than the EEMACOMH algorithm.

Following the same procedure as with EEMACOMP and EEMACOMH, to test

whether there is a statistical significant difference in the performance of the multi-

pheromone approach, EEMMASMP, and the single pheromone approach, EEM-

MASMH, the following two hypotheses were considered:

H0 : µ
n̄alg

EEMMASMP = µ
n̄alg

EEMMASMH

H1 : µ
n̄alg

EEMMASMP > µ
n̄alg

EEMMASMH

Results of the Mann-Whitney U test are illustrated in Figure H.2. The Mann-

Whitney U test shows that EEMMASMP produced significantly more non-dominated

solutions than EEMMASMH for all scenarios, excluding those with {NG = 30,

RG ∈ {300, 500}, ∀Tsm} and {NG = 300, RG = 500, Tsm ∈ {1, 2, 3}} (72% of the

scenarios).

For the scenarios where the null hypothesis is rejected, EEMMASMP increases

the coverage of the solution space, therefore finding more non-dominated solutions

than the EEMMASMH algorithm.

4. Performance of the multi-colony approach vs single-colony approaches

with reference to the n̄alg metric.

EEMACOMC is a multi-colony approach assigning a colony to each objective, while

EEMACOMP, EEMACOMH, EEMMASMP, and EEMMASMH are single-colony

approaches assigning the same colony for all objectives.

Figures G.1(a), G.2(a), G.3(a), G.1(b), G.2(b), G.3(b), G.1(c), G.2(c), G.3(c),

G.1(d), G.2(d), and G.3(d) illustrate the influence of Rg and Tsm on the n̄alg metric
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for the single-colony approaches, while figures G.1(e), G.2(e), and G.3(e) illustrate

the influence of Rg and Tsm on the n̄alg metric for the multi-colony approach.

Figures G.1(a), G.1(e), G.2(a), G.2(e), G.3(a), and G.3(e) show that the single-

colony approach, EEMACOMP, produced in most scenarios more non-dominated

solutions than the multi-colony approach, EEMACOMC.

To test whether there is a statistical significant difference in the performance of

EEMACOMP and EEMACOMC the following two hypotheses were considered:

H0 : µ
n̄alg

EEMACOMP = µ
n̄alg

EEMACOMC

H1 : µ
n̄alg

EEMACOMP > µ
n̄alg

EEMACOMC

Results of the Mann-Whitney U test are illustrated in Figure H.3. The Mann-

Whitney U test shows that EEMACOMP is significantly better than EEMACOMC

with reference to the n̄alg metric for all scenarios with NG > 30, excluding scenarios

with {Tsm = 6, RG = 300, NG = 100} and {Tsm = 1, RG = 800, NG = 100} (better

for 63% of the scenarios).

Figures G.1(b), G.1(e), G.2(b), G.2(e), G.3(b), and G.3(e) show that the multi-

colony approach, EEMACOMC, produced in most scenarios more non-dominated

solutions than the single-colony approach, EEMACOMH.

To test whether there is a statistical significant difference in the performance of

EEMACOMC and EEMACOMH the following two hypotheses were considered:

H0 : µ
n̄alg

EEMACOMC = µ
n̄alg

EEMACOMH

H1 : µ
n̄alg

EEMACOMC > µ
n̄alg

EEMACOMH

Results of the Mann-Whitney U test are illustrated in Figure H.4. The Mann-

Whitney U test shows that EEMACOMC is significantly better than EEMACOMH

with reference to the n̄alg metric for all scenarios, excluding those with {NG = 30,

Rg = 300, Tsm ∈ {3, 4, 5, 6}} and {NG = 30, Rg = 500, Tsm ∈ {5, 6}} (better for

88% of the scenarios).
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5. Performance of ACO approaches vs the NSGA-II-MPA approach with

reference to the n̄alg metric.

Figures G.1-G.3 show that all the ACO approaches displayed a higher value for

n̄alg when compared to the NSGA-II-MPA approach.

To test whether there is a statistical significant difference in the performance of the

ACO approaches and the NSGA-II-MPA approach the following two hypotheses

were considered:

H0 : µ
n̄alg

ACO = µ
n̄alg

NSGA−II−MPA

H1 : µ
n̄alg

ACO > µ
n̄alg

NSGA−II−MPA

where ACO takes the values EEMACOMP, EEMACOMH, EEMMASMP, EEM-

MASMH, and EEMACOMC.

Results of the Mann-Whitney U tests are illustrated in Figures H.5-H.9. The Mann-

Whitney U tests show that all the ACO approaches excluding EEMACOMH found

significantly more non-dominated solutions than the NSGA-II-MPA approach, for

all scenarios. EEMACOMH produced significantly more non-dominated solutions

than NSGA-II-MPA for all scenarios, excluding those with {NG ∈ {100, 300},
Rg = 800 } (better for 77% of the scenarios).

6. Performance of ACS approaches vs MAX-MIN approaches with refer-

ence to the n̄alg metric.

EEMACOMP and EEMACOMH are ACS approaches, while EEMMASMP and

EEMMASMH are MAX-MIN approaches. Figures G.1(a), G.2(a), G.3(a), G.1(b),

G.2(b), and G.3(b) illustrate the influence of Rg and Tsm on the n̄alg metric for

the ACS approaches, while Figures G.1(c), G.2(c), G.3(c), G.1(d), G.2(d), and

G.3(d) illustrate the influence of Rg and Tsm on the n̄alg metric for the MAX-MIN

approaches.

Figures G.1(a), G.1(c), G.1(d), G.2(a), G.2(c), G.2(d), G.3(a), G.3(c), and G.3(d)

show that the ACS approach, EEMACOMP, produced a higher n̄alg for higher num-

ber of nodes compared to the MAX-MIN approaches, EEMMASMP, and EEM-

MASMH.
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To test whether there is a statistical significant difference in the performance of the

EEMACOMP, and the EEMMASMP and EEMMASMH, approaches, the following

two hypotheses were considered:

H0 : µ
n̄alg

EEMACOMP = µ
n̄alg

EEMAXMIN

H1 : µ
n̄alg

EEMACOMP > µ
n̄alg

EEMAXMIN

where EEMAXMIN takes the values EEMMASMP and EEMMASMH.

In order to test these hypotheses the Mann-Whitney U test was applied and the

results are illustrated in Figures H.10 and H.11. Figure H.10 shows that EEMA-

COMP produced significantly more non-dominated solutions than EEMMASMP

for all scenarios with NG = 100 and Rg = 800, scenarios with NG = 300, irrespec-

tive of Tsm and Rg, and scenarios with {Rg = 800, NG = 30, Tsm ∈ {1, 2, 3, 4}}
(better for 63% of the scenarios). Figure H.11 shows that EEMACOMP produced

significantly more non-dominated solutions than EEMMASMH for all scenarios,

excluding those with {Rg = 300, NG = 30, ∀Tsm}, {Rg = 500, NG = 30, Tsm ∈
{1, 3, 4, 5, 6}}, {Rg = 800, NG = 30, Tsm = 1}, and {Rg = 500, NG = 100, Tsm =

6} (better for 75% of the scenarios).

Figures G.1(b), G.1(c), G.1(d), G.2(b), G.2(c), G.2(d), G.3(b), G.3(c), and G.3(d)

show that the MAX-MIN approaches, EEMMASMP and EEMMASMH, produced

on average a higher n̄alg compared to the ACS approach EEMACOMH.

To test whether there is a statistical significant difference in the performance of

the EEMMASMP and EEMMASMH approaches, and the EEMACOMH approach,

the following two hypotheses were considered:

H0 : µ
n̄alg

EEMAXMIN = µ
n̄alg

EEMACOMH

H1 : µ
n̄alg

EEMAXMIN > µ
n̄alg

EEMACOMH

In order to test these hypotheses the Mann-Whitney U test was applied and the

results are illustrated in Figures H.12 and H.13. Figure H.12 shows that EEM-

MASMP produced significantly more non-dominated solutions than EEMACOMH
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for all scenarios, except those with {Rg = 300, NG = 30, Tsm ∈ {3, 4, 5, 6}}
and {Rg = 500, NG = 30, Tsm ∈ {3, 5, 6}} (better for 87% of the scenarios).

Figure H.13 shows the same results when comparing EEMMASMH and EEMA-

COMH.

7. Influence of NG on the n̄alg metric.

Figures G.1-G.3 show that n̄alg decreased for each algorithm as the number of

nodes, NG, increased. With increase in number of nodes the computational com-

plexity is much higher and there is not enough time for the algorithms to explore

the search space and to track the optima after the change occurred, thereby finding

less solutions.

7.4.3 Spacing Metric

This subsection analyses the empirical results of each algorithm in terms of the average

spacing metric, %̄. The spacing metric serves as an indicator of the distribution of

solutions in the obtained Pareto front for each algorithm. The higher the value of %̄, the

less uniformity in the distribution of solutions. The ideal value for the spacing metric is

zero, in which case all solutions would be equidistantly spaced. Smaller values for %̄ are

therefore preferred.

Figures G.4-G.6 in Appendix G illustrate the influence of Tsm and Rg on the %̄

metric under different NG values, using the values of Tables F.1 to F.54. The following

observations can be made from the figures and tables:

1. Influence of Tsm on the %̄ metric.

Figures G.4-G.6 show that the solution spread improved (%̄ decreased) with de-

crease in change frequency. In order to derive different trends, Table 7.7 displays

the average values for %̄ over all the NG and Rg values while Figure 7.39 illustrates

the results of Table 7.7.

Table 7.7 and Figure 7.39 indicate that the solution spread improved with decrease

in change frequency. Lower change frequencies provide more time to explore the

search space. This helps to identify solutions along the full extent of the Pareto

front and keeps the solutions more uniformly distributed in the whole Pareto-
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Table 7.7: Average value for %̄ over all the NG and Rg values
Tsm

PF 1 2 3 4 5 6
PEEMACOMP 0.084 0.070 0.062 0.057 0.056 0.050
PEEMACOMH 0.129 0.114 0.101 0.102 0.097 0.087
PEEMMASMP 0.093 0.082 0.072 0.068 0.065 0.059
PEEMMASMH 0.098 0.085 0.077 0.073 0.070 0.066
PEEMACOMC 0.110 0.095 0.084 0.080 0.077 0.070
PNSGA−II−MPA 0.188 0.139 0.133 0.134 0.139 0.136
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Figure 7.39: Average value for %̄ over all the NG and Rg values
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optimal set, instead of gathering in a small region. A decrease in change frequency

leads to more uniformly distributed solutions, which justifies the obtained results.

It is also to be noted from Table 7.7 and Figure 7.39 that EEMACOMP is better

than the other algorithms while NSGA-II-MPA is significantly worse than all the

ACO algorithms.

2. Influence of Rg on the %̄ metric.

Figures G.4-G.6 show that, for all the ACO algorithms, the solution spread deterio-

rated with increase in change severity, Rg. The same applied to the NSGA-II-MPA

algorithm for scenarios with NG = 30. For scenarios with NG > 30, NSGA-II-MPA

had a strange behaviour: For scenarios with NG = 100 (refer to Figure G.5(f)),

NSGA-II-MPA had the worst solution spread for Rg = 300. With Rg = 300,

the network has a small diameter and combined with a medium number of nodes

(NG = 100) may produce many redundant solutions. Redundancy may slow down

the optimisation process and have a negative impact on the exploration ability of

the algorithm. For scenarios with NG = 300 (refer to Figure G.6(f)), NSGA-II-

MPA had a parabolic behaviour with worst %̄ at Rg = 500 and best %̄ at Rg = 300.

With NG = 300 and Rg = 300, the redundancy of solutions is probably not uniform

and may be beneficial for the optimisation process. From these solutions many new

solution candidates may be reached, thus improving diversity.

In order to derive different trends, Table 7.8 displays the average values for %̄ over

all the NG and Tsm values while Figure 7.40 illustrates the results of Table 7.8.

Table 7.8 and Figure 7.40 indicate that when %̄ is taken as the average value over

all the NG and Tsm values, %̄ increased (the solution spread deteriorated) with

increase in RG for all algorithms.

Table 7.8: Average value for %̄ over all the NG and Tsm values
Rg

PF 300 500 800
PEEMACOMP 0.034 0.057 0.100
PEEMACOMH 0.057 0.098 0.163
PEEMMASMP 0.040 0.068 0.112
PEEMMASMH 0.043 0.073 0.120
PEEMACOMC 0.043 0.071 0.145
PNSGA−II−MPA 0.106 0.125 0.200
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Figure 7.40: Average value for %̄ over all the NG and Tsm values

The global range, Rg, relates to the connectivity of the network. When Rg is small

the network is highly connected which means that it is easy to move from any one

vertex to any other vertex in a few steps. Thus, the network has a small diameter

and many alternate disjoint paths between vertices. With a high value of Rg,

only part of the nodes are within transmission range from one another, and the

number of alternative paths available to send a packet from source to destination

decreases. Thus, it is logical that the diversity will deteriorate when the network

range increases. On the other side, when the change severity, Rg, increases, it

becomes more difficult for the optimiser to adapt current solutions to a changing

environment. There is not much information gained from the past to reuse and it

takes more time to optimise the problem and less time to explore, which explains

the poor distribution of solutions as Rg increases.

It is also to be noted from Table 7.8 and Figure 7.40 that NSGA-II-MPA is signif-

icantly worse than all the ACO algorithms.

3. Performance of multi-pheromone approaches vs single-pheromone ap-
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proaches with reference to %̄ metric.

Figures G.4(a), G.5(a), G.6(a), G.4(c), G.5(c), and G.6(c) illustrate the influence

of Rg and Tsm on the %̄ metric for the multi-pheromone approaches, while Fig-

ures G.4(b), G.5(b), G.6(b), G.4(d), G.5(d), and G.6(d) illustrate the influence of

Rg and Tsm on the %̄ metric for the single-pheromone approaches.

Figures G.4(a), G.4(b), G.5(a), G.5(b), G.6(a), and G.6(b) show that the multi-

pheromone approach, EEMACOMP, outperformed the corresponding single phero-

mone approach, EEMACOMH, in terms of the solution spread. To test whether

there is a statistical significant difference in the performance of the two approaches,

the following two hypotheses were considered:

H0 : µ%̄
EEMACOMP = µ%̄

EEMACOMH

H1 : µ%̄
EEMACOMP > µ%̄

EEMACOMH

In order to test these hypotheses the Mann-Whitney U test was applied over all

scenarios for EEMACOMP and EEMACOMH.

Figure H.14 illustrates the results of the Mann-Whitney U test. Results show that

the multi-pheromone approach, EEMACOMP, had a significantly better solution

spread than the single pheromone approach, EEMACOMH, except for the sce-

nario with Tsm = 1, NG = 30, and RG = 500 (better for 98% of the scenarios).

EEMACOMP improves the coverage of the solution space, therefore, leading to

more uniformly distributed solutions.

Figures G.4(c), G.4(d), G.5(c), G.5(d), G.6(c), and G.6(d) show that the multi-

pheromone approach, EEMMASMP, produced results similar to the corresponding

single pheromone approach, EEMMASMH, in terms of the solution spread. Fol-

lowing the same procedure as with EEMACOMP and EEMACOMH, the Mann-

Whitney U test has been applied for EEMMASMP and EEMMASMH. The Mann-

Whitney U test shows that there is no statistical significant difference in the aver-

age performance between EEMMASMP and EEMMASMH with reference to the

%̄ metric except for 33% of the scenarios, i.e scenarios with (Rg = 300, NG = 100,

Tsm ∈ {3, 5, 6}), (Rg = 800, NG = 100, Tsm = 1), (Rg = 300, NG = 300,
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Tsm ∈ {1, 3, 4, 5, 6}), (Rg = 500, NG = 300, Tsm ∈ {2, 3, 4}), (Rg = 500, NG = 300,

Tsm = 6), and (Rg = 800, NG = 300, Tsm ∈ {1, 3, 4, 5, 6}) (refer to Figure H.15).

4. Performance of the multi-colony approach vs single-colony approaches

with reference to %̄ metric.

Figures G.4(a), G.5(a), G.6(a), G.4(b), G.5(b), G.6(b), G.4(c), G.5(c), G.6(c),

G.4(d), G.5(d), and G.6(d) illustrate the influence of Rg and Tsm on the %̄ metric

for the single-colony approaches, while figures G.4(e), G.5(e), and G.6(e) illustrate

the influence of Rg and Tsm on the %̄ metric for the multi-colony approach.

Figures G.4(a), G.4(e), G.5(a), G.5(e), G.6(a), and G.6(e) show that the single-

colony approach, EEMACOMP, produced in most scenarios a better solution spread

than the multi-colony approach, EEMACOMC. To test whether there is a statis-

tical significant difference in the performance of EEMACOMP and EEMACOMC

the following two hypotheses were considered:

H0 : µ%̄
EEMACOMP = µ%̄

EEMACOMC

H1 : µ%̄
EEMACOMP > µ%̄

EEMACOMC

Results of the Mann-Whitney U test are illustrated in Figure H.16. The Mann-

Whitney U test shows that EEMACOMP is significantly better than EEMACOMC

with reference to the %̄ metric for all scenarios, excluding scenarios with {NG = 30,

Rg = 300, Tsm ∈ {3, 4, 6}}, {NG = 30, Rg = 500, Tsm = 5}, and {NG = 100,

Rg = 500, Tsm = 6} (better for 90% of the scenarios).

Figures G.4(b), G.4(e), G.5(b), G.5(e), G.6(b), and G.6(e) show that the multi-

colony approach, EEMACOMC produced in most scenarios a better solution spread

than the single-colony approach, EEMACOMH.

To test whether there is a statistical significant difference in the performance of

EEMACOMC and EEMACOMH the following two hypotheses were considered:

H0 : µ%̄
EEMACOMC = µ%̄

EEMACOMH

H1 : µ%̄
EEMACOMC > µ%̄

EEMACOMH
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Results of the Mann-Whitney U test are illustrated in Figure H.17. The Mann-

Whitney U test shows that EEMACOMC is significantly better than EEMACOMH

with reference to the %̄ metric for all scenarios, excluding scenarios with {NG = 30,

Rg = 300, Tsm ∈ {2, 3}}, {NG = 30, Rg = 500, Tsm = 6}, {NG = 30, Rg = 800,

Tsm ∈ {3, 5}}, and {NG = 100, Rg = 800, Tsm = 1} (better for 89% of the

scenarios).

5. Performance of ACO approaches vs NSGA-II-MPA approach with ref-

erence to %̄ metric.

Figures G.4-G.6 show that all the ACO approaches produced in most scenarios a

better solution spread compared to the NSGA-II-MPA approach.

To test whether there is a statistical significant difference in the performance of the

ACO approaches and the NSGA-II-MPA approach the following two hypotheses

were considered:

H0 : µ%̄
ACO = µ%̄

NSGA−II−MPA

H1 : µ%̄
ACO > µ%̄

NSGA−II−MPA

Results of the Mann-Whitney U tests are illustrated in Figures H.18-H.22. The

Mann-Whitney U tests show that all the ACO approaches produced significantly

better solution spread than the NSGA-II-MPA approach for all scenarios, excluding

the following scenarios: {NG = 30, Rg = 500, Tsm ∈ {1, 2}}, {NG = 100, Rg = 500,

Tsm ∈ {3, 4, 5, 6}}, {NG = 100, Rg = 800, Tsm ∈ {4, 5, 6}}, and {NG = 300, Rg =

800, Tsm ∈ {3, 4}} for EEMACOMP (better for 80% of the scenarios), {NG = 30,

Rg = 500, Tsm ∈ {1, 2, 3}}, {NG = 100, Rg = 500, Tsm ∈ {1, 2}}, and {NG = 300,

Rg = 300, Tsm ∈ {1, 2, 4, 5, 6}} for EEMACOMH (better for 83% of the scenarios),

{NG = 30, Rg = 500, Tsm ∈ {1, 2, 3}}, {NG = 100, Rg = 500, Tsm ∈ {1, 2, 6}},
and {NG = 300, Rg = 800, Tsm ∈ {2, 5}} for EEMMASMP (better for 85% of

the scenarios), {NG = 30, Rg = 500, Tsm ∈ {1, 2, 3}}, {NG = 100, Rg = 500,

Tsm ∈ {2, 6}}, and {NG = 300, Rg = 800, Tsm ∈ {5, 6}} for EEMMASMH (better

for 87% of the scenarios), and {NG = 30, Rg = 500, Tsm ∈ {2, 3}}, {NG = 100,
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Rg = 500, ∀ Tsm }, and {NG = 300, Rg = 800, Tsm ∈ {6}} for EEMACOMC

(better for 83% of the scenarios).

6. Performance of ACS approaches vs MAX-MIN approaches with refer-

ence to %̄ metric.

Figures G.4(a), G.5(a), G.6(a), G.4(b), G.5(b), and G.6(b) illustrate the influence

of Rg and Tsm on the %̄ metric for the ACS approaches, while Figures G.4(c),

G.5(c), G.6(c), G.4(d), G.5(d), and G.6(d) illustrate the influence of Rg and Tsm

on the %̄ metric for the MAX-MIN approaches.

Figures G.4(a), G.4(c), G.4(d), G.5(a), G.5(c), G.5(d), G.6(a), G.6(c), and G.6(d)

show that the ACS approach, EEMACOMP, produced in most scenarios a better

solution spread for NG > 30 compared to the MAX-MIN approaches, EEMMASMP

and EEMMASMH.

To test whether there is a statistical significant difference in the performance of

EEMACOMP and the EEMMASMP and EEMMASMH approaches, the following

two hypotheses were considered:

H0 : µ%̄
EEMACOMP = µ%̄

EEMAXMIN

H1 : µ%̄
EEMACOMP > µ%̄

EEMAXMIN

In order to test these hypotheses the Mann-Whitney U test was applied and the

results are illustrated in Figures H.23 and H.24. Figure H.23 shows that EEMA-

COMP, produced a significantly better solution spread than EEMMASMP for

NG > 30 excluding scenario with {NG = 100, Rg = 800, Tsm = 1} (better for

65% of the scenarios), while Figure H.24 indicates that EEMACOMP, produced

a significantly better solution spread than EEMMASMH for NG > 30 (better for

66% of the scenarios).

Figures G.4(b), G.4(c), G.4(d), G.5(b), G.5(c), G.5(d), G.6(b), G.6(c), and G.6(d)

show that the MAX-MIN approaches, EEMMASMP and EEMMASMH, produced
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in most scenarios a better solution spread compared to the ACS approach EEMA-

COMH.

To test whether there is a statistical significant difference in the performance of

the EEMMASMP and EEMMASMH approaches, and the EEMACOMH approach,

the following two hypotheses were considered:

H0 : µ%̄
EEMAXMIN = µ%̄

EEMACOMH

H1 : µ%̄
EEMAXMIN > µ%̄

EEMACOMH

In order to test these hypotheses the Mann-Whitney U test was applied and the

results are illustrated in Figures H.25 and H.26. Figure H.25 shows that EEM-

MASMP had a significantly better solution spread than EEMACOMH, except for

scenarios with {NG = 30, Rg = 300, Tsm ∈ {1, 2}}, and {NG = 30, Rg = 500,

Tsm ∈ {1, 2, 3, 4, 6}} (better for 87% of the scenarios). Figure H.26 indicates that

EEMMASMH had a significantly better solution spread than EEMACOMH for

all scenarios, except those with {NG = 30, Rg = 300, Tsm = 1}, and {NG = 30,

Rg = 500, Tsm ∈ {1, 2, 3, 4, 5, 6}} (better for 87% of the scenarios).

7. Influence of NG on the %̄ metric.

Figures G.4-G.6 show that when the number of nodes increased from 100 to 300

the distribution of solutions for all algorithms deteriorated. This is both an inter-

esting and an unexpected result, which is possibly related to the computational

complexity of the algorithms and scalability. The problem with scalability is that,

as the number of nodes increases, it becomes necessary for the routing protocol to

search more nodes in order to reach the destination, thus affecting diversity. When

the number of nodes increased from 30 to 100 the distribution of solutions for all

algorithms improved.

7.4.4 Hypervolume Metric

This subsection analyses the empirical results of each algorithm in terms of the hyper-

volume metric, ξ̄. The hypervolume metric measures how well the algorithms performed
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in identifying solutions along the full extent of the Pareto front. High values of the

hypervolume metric indicate the closeness of the solutions to the optimal Pareto set.

Figures G.7-G.9 in Appendix G illustrate the influence of Tsm and Rg on the ξ̄

metric under different NG values, using the values of Tables F.1 to F.54. The following

observations can be made from the figures and tables:

1. Influence of Tsm on the hypervolume metric, ξ̄.

Figures G.7-G.9 show a small increase of ξ̄ as change frequency decreases, for all

the ACO algorithms. This observation is confirmed when looking at Table 7.9 and

Figure 7.41. Table 7.9 displays the average values for ξ̄ over all the NG and Rg

values while Figure 7.41 illustrates the results of Table 7.9. This observation is

expected as change frequency determines how often the problem changes and it

seems intuitive to assume that a high change frequency makes a problem more

difficult for an algorithm to solve as less time is available at each Tsm to reach

the new global optima and optimise the multi-objective problem. Low change

frequency gives more iterations, and theoretically is supposed to produce a uniform

distribution of the solutions and closeness of the solutions to the optimal Pareto

set.

Table 7.9: Average value for ξ̄ over all the NG and Rg values
Tsm

PF 1 2 3 4 5 6
PEEMACOMP 60831.05 61552.60 61894.07 62010.58 62179.96 62485.17
PEEMACOMH 59205.85 59677.70 59843.11 59936.95 60076.63 60365.10
PEEMMASMP 60410.77 60999.21 61421.41 61440.03 61678.51 61995.58
PEEMMASMH 60264.39 60804.01 61252.15 61290.71 61489.01 61811.21
PEEMACOMC 61033.57 61753.97 62181.59 62308.67 62439.49 62701.89
PNSGA−II−MPA 61514.60 60201.54 60078.20 60028.05 60041.14 60048.25

2. Influence of Rg on the hypervolume metric, ξ̄.

For the ACO algorithms there are different observations according to the number of

nodes. Figure G.7 shows an increase in ξ̄ when Rg increases to 500 and a decrease

in ξ̄ when Rg increases to 800, for scenarios with NG = 30. For most scenarios

with NG = 100, there is an increase in ξ̄ with increase in change severity (refer to

Figure G.8). For scenarios with NG = 300, Figure G.9 shows an increase in ξ̄ with

decrease in change severity.
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Figure 7.41: Average value for ξ̄ over all the NG and Rg values

For the NSGA-II-MPA algorithm, Figure G.7(f) shows an increase in ξ̄ with in-

crease in change severity, for scenarios with NG = 30. For scenarios with NG = 100,

there is a decrease in ξ̄ when Rg increases to 500 and an increase in ξ̄ when Rg in-

creases to 800 (refer to Figure G.8(f)). For scenarios with NG = 300, Figure G.9(f)

shows an increase in ξ̄ when Rg increases to 500, and a decrease in ξ̄ when Rg

increases to 800.

Table 7.10: Average value for ξ̄ over all the NG and Tsm values
Rg

PF 300 500 800
PEEMACOMP 62046.719 62895.465 60677.192
PEEMACOMH 60746.295 61105.342 57976.182
PEEMMASMP 61491.817 62542.096 60083.312
PEEMMASMH 61459.620 62419.858 59746.060
PEEMACOMC 62708.710 62870.936 60783.509
PNSGA−II−MPA 57908.890 59735.745 63251.480

Table 7.10 displays the average values for ξ̄ over all the NG and Tsm values while

Figure 7.42 illustrates the results of Table 7.10. Table 7.10 and Figure 7.42 show
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Figure 7.42: Average value for ξ̄ over all the NG and Tsm values

that when ξ̄ is taken as the average value over all the NG and Tsm values, ξ̄ sharply

decreases for Rg = 800 for the ACO algorithms and ξ̄ sharply increases for Rg = 800

for the NSGA-II-MPA, outperforming the ACO algorithms. The expected result

is a decrease in ξ̄ with increase in change severity: It is a common assumption

that smaller change severities are easier to adapt to, primarily by transferring

solutions from the past optimisation problem which may help to accelerate the rate

of convergence to the optima, after a change has occurred. Since Rg determines the

change severity, the convergence to the optima, and therefore the closeness of the

solutions to the optimal Pareto set, should be getting worse as the change severity

increases.

3. Performance of multi-pheromone approaches vs single-pheromone ap-

proaches with reference to the hypervolume metric.

Figures G.7(a), G.8(a), G.9(a), G.7(c), G.8(c), and G.9(c) illustrate the influence

of Rg and Tsm on the ξ̄ metric for the multi-pheromone approaches, while fig-

ures G.7(b), G.8(b), G.9(b), G.7(d), G.8(d), and G.9(d) illustrate the influence of
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Rg and Tsm on the ξ̄ metric for the single-pheromone approaches.

Figures G.7(a), G.7(b), G.8(a), G.8(b), G.9(a), and G.9(b) show that the multi-

pheromone approach, EEMACOMP, displayed a higher value for the ξ̄ metric com-

pared to the single pheromone approach, EEMACOMH.

To test whether there is a statistical significant difference in the performance of

EEMACOMP and EEMACOMH the following two hypotheses were considered:

H0 : µξ̄
EEMACOMP = µξ̄

EEMACOMH

H1 : µξ̄
EEMACOMP > µξ̄

EEMACOMH

In order to test these hypotheses the Mann-Whitney U test was applied over all

scenarios for the EEMACOMP and EEMACOMH.

Figure H.27 illustrates the results of the Mann-Whitney U test. Results show

that EEMACOMP produced a significantly higher value for the ξ̄ metric than

EEMACOMH for all scenarios, excluding those with {NG = 30, Rg = 500, Tsm =

1} and {NG = 30, Rg = 800, Tsm = 1} (better for 96% of the scenarios).

4. Performance of the multi-colony approach vs single-colony approaches

with reference to the hypervolume metric.

Figures G.7(a), G.8(a), G.9(a), G.7(b), G.8(b), G.9(b), G.7(c), G.8(c), G.9(c),

G.7(d), G.8(d), and G.9(d) illustrate the influence of Rg and Tsm on the ξ̄ metric

for the single-colony approaches, while figures G.7(e), G.8(e), and G.9(e) illustrate

the influence of Rg and Tsm on the ξ̄ metric for the multi-colony approach.

Figures G.7(b), G.7(e), G.8(b), G.8(e), G.9(b), and G.9(e) show that the multi-

colony approach, EEMACOMC, produced in most scenarios a higher value for the

hypervolume metric than the single-colony approach, EEMACOMH.

To test whether there is a statistical significant difference in the performance of

EEMACOMC and EEMACOMH the following two hypotheses were considered:
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H0 : µξ̄
EEMACOMC = µξ̄

EEMACOMH

H1 : µξ̄
EEMACOMC > µξ̄

EEMACOMH

Results of the Mann-Whitney U test are illustrated in Figure H.28. The Mann-

Whitney U test shows that EEMACOMC is significantly better than EEMACOMH

with reference to the ξ̄ metric for all scenarios, excluding scenarios with {NG = 30,

Rg = 500, Tsm = 1} and {NG = 30, Rg = 800, Tsm ∈ {2, 6}} (better for 94% of

the scenarios).

5. Performance of ACO approaches vs the NSGA-II-MPA approach with

reference to the hypervolume metric.

Figures G.7-G.9 and Tables F.1 to F.54 show that all the ACO approaches dis-

played a higher value for the hypervolume metric when compared to the NSGA-II-

MPA approach, except for scenarios with NG = 300 and Rg ∈ {500, 800} and for

scenarios with NG = 30 and Rg = 800.

To test whether there is a statistical significant difference in the performance of the

ACO approaches and the NSGA-II-MPA approach the following two hypotheses

were considered:

H0 : µξ̄
ACO = µξ̄

NSGA−II−MPA

H1 : µξ̄
ACO > µξ̄

NSGA−II−MPA

Results of the Mann-Whitney U tests are illustrated in Figures H.29-H.33. The

Mann-Whitney U tests show that all the ACO approaches displayed a significantly

higher value for the hypervolume than the NSGA-II-MPA approach for all scenar-

ios, excluding the following scenarios: {NG = 30, Rg = 800, Tsm = 1}, {NG = 100,

Rg = 300, Tsm = 2}, {NG = 100, Rg = 500, Tsm = 1}, and {NG = 100, Rg = 800,

Tsm = 1} for EEMACOMP, EEMMASMP and EEMMASMH (better for 92% of

the scenarios), {NG = 30, Rg = 800, Tsm = 1}, {NG = 100, Rg = 300, Tsm = 4},
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and {NG = 100, Rg = 800, Tsm ∈ {2, 3, 4} for EEMACOMH (better for 90% of the

scenarios), {NG = 30, Rg = 800, Tsm ∈ {1, 2}}, {NG = 100, Rg = 300, Tsm = 2},
and {NG = 100, Rg = 500, Tsm = 1} for EEMACOMC (better for 92% of the

scenarios).

6. Performance of ACS approaches vs MAX-MIN approaches with refer-

ence to the hypervolume metric.

Tables F.1 to F.54 and Figures G.7-G.9 show no trend between the performance

of the ACS approaches and the MAX-MIN approaches with reference to the hy-

pervolume metric.

7. Influence of NG on the hypervolume metric.

Figures G.7-G.9 show that, for scenarios with NG = 300 and Rg = 800, all algo-

rithms displayed a lower value for the hypervolume metric.

There are two possible explanations for this result:

(a) Computational complexity of the algorithms: As the number of nodes in-

creases it becomes necessary for the routing protocol to search more nodes in

order to reach the destination, which, in turn, increases the convergence time

and affects closeness towards the true Pareto front.

(b) Premature convergence towards local optima: With a high number of nodes

the population tends to contain similar individuals and the diversity decreases

rapidly. The suboptimal solutions which may have helped in finding the global

optima are deleted too rapidly and the closeness towards the true Pareto front

gets worst.

7.4.5 Performance of the Algorithms Over the Environmental

Changes

This subsection compares the performance of the algorithms for each environment change.

For each environmental change the average values for all the solutions of the iteration

before a change to the environment occurs were calculated for each metric. These values

were then averaged over all Rg and NG and further averaged over the 30 simulations.

The obtained values are referred to as n̄alg, %̄, and ξ̄.
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Figure 7.43 visualises the performance of the algorithms over time with reference to

n̄alg. The graphs show that, for all change frequencies, there is little variance in n̄alg

over time. This shows the ability of all the algorithms, excluding the EEMACOMH and

the NSGA-II-MPA, to react to change and find an adequate number of non-dominated

solutions. Also, results show that transferring of solutions from the environment before

the change occurs helps to accelerate search after the environment has changed and

find a satisfactory number of non-dominated solutions. Therefore, in each environment,

good solutions were likely to be found where good solutions have been in the previous

environment. The EEMACOMP algorithm found more non-dominated solutions than all

the other algorithms and the NSGA-II-MPA found the least number of non-dominated

solutions. For low change frequencies all algorithms displayed the largest values for n̄alg.

Figure 7.43(a) shows a linear decrease over time for the NSGA-II-MPA algorithm for

Tsm = 1 (high change frequency). NSGA-II-MPA had less time to react to changes and

the time to find solutions was increased at each environment change.

Figure 7.43(f) shows an increase of n̄alg over time for the EEMACOMH algorithm for

Tsm = 6 (low change frequency). The optimiser had enough time to exploit the solutions

transferred from the previous environment and improve the tracking performance of the

optima and reduce the time to find solutions.

Figure 7.44 visualises the performance of the algorithms over time with reference to

%̄. The graphs show that, for all change frequencies, %̄ had a very small value, showing

a very good distribution of the solutions. For NSGA-II-MPA, %̄, remained constant over

time for Tsm ∈ {3, 4, 5, 6} and displayed an increase over time for Tsm = 1. For all

ACO algorithms, %̄ remained at relatively the same level, for all environment changes,

which again shows the robustness of the ACO algorithms. The assumption can be made

here that a diverse spread of non-dominated solutions can adapt more easily to changes

when the environment change is not too severe. For severe environment changes, the

performance of the algorithms are similar to restarting the optimisation from scratch,

and the optimum tracking becomes difficult. That is the case for NSGA-II-MPA, for

Tsm = 1.

The EEMACOMP algorithm had the best solution spread and the NSGA-II-MPA

had the worst solution spread compared to the rest of the algorithms.

Figure 7.45 visualises the performance of the algorithms over time with reference to

the ξ̄ metric. The graphs show high values of ξ̄ for all change frequencies. The value
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of ξ̄ is similar for all environment changes, showing that there is a good adaptability

to environment changes by all the algorithms. The size of the objective space which

is dominated by the non-dominated solutions is over 80% of the total hypervolume of

75000, where 75000 is the maximum hypervolume calculated using the values of 100.0,

0.1, 500.0, 0.5, and 30.0, corresponding to a maximum value for each of the objectives.

This indicates the closeness of the solutions to the optimal set and the good spread of

solutions across the objective space. All algorithms displayed a similar value of ξ̄.
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Figure 7.43: Performance of the algorithms over time with regard to the number of
non-dominated solutions metric, n̄alg
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Figure 7.44: Performance of the algorithms over time with regard to the spacing metric,
%̄
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Figure 7.45: Performance of the algorithms over time with regard to the hypervolume
metric, ξ̄

229

 
 
 



7.4.6 Optimization Criteria

This section analyses the performance of each algorithm in terms of the optimisation

criteria (objective functions). The performance of each algorithm was tested under

different scenarios for different change frequencies, change severities, and number of

nodes as outlined in section 7.1.1. For each scenario the Pareto front, PF , produced

by the EEMACOMP, EEMACOMH, EEMMASMP, EEMMASMH, EEMACOMC, and

NSGA-II-MPA algorithms is estimated. The influence of the change frequency, the

change severity, and the number of nodes on the value of each objective function is

evaluated.

For each of the scenarios 30 simulations have been executed and results were re-

ported as averages over these simulations over all environment changes together with

the standard deviations.

Results obtained from the EEMACOMP, EEMACOMH, EEMMASMP, EEMMASMH,

EEMACOMC, and NSGA-II-MPA algorithms are summarised in Tables I.1 to I.45 in

appendix I for the different scenarios. Based on these tables, appendix J illustrates the

influence of change frequency, Tsm, and change severity, Rg, on the EP , TNP , V NP ,

CP , and MNC optimisation criteria (refer to Section 6.3 for a discussion of these crite-

ria) for different number of nodes, NG, using Fluxviz graphs.

Figures J.1-J.3 visualise the influence of Tsm and Rg on the EP criterion based on

the results of Tables I.1-I.9. Figures J.4-J.6 visualise the influence of Tsm and Rg on

the TNP criterion based on the results of Tables I.10-I.18. Figures J.7-J.9 visualise the

influence of Tsm and Rg on the V NP criterion based on the results of Tables I.19-I.27.

Figures J.10-J.12 graphically illustrate the influence of Tsm and Rg on the CP criterion

based on the results of Tables I.28-I.36, while Figures J.13-J.15 visualise the influence of

Tsm and Rg on the MNC criterion based on the results of Tables I.37-I.45.

The algorithms were compared in terms of the value of the objective functions. To

test whether there is a statistical significant difference in the performance of any two

algorithms with reference to the optimisation criteria, the Mann-Whitney U test as

outlined in section 7.4.1 was applied.

• Energy consumed per packet, EP , objective

Tables I.1-I.9 and Figures J.1-J.3 show no variation in EP with increase in change

frequency for NG = 30 and no pattern between EP and change frequency for
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NG ∈ {100, 300}.
Table 7.11 displays the average values of EP over all the NG and Rg values using the

results of Tables I.1-I.9. Figure 7.46 illustrates the results of Table 7.11. Table 7.11

and Figure 7.46 indicate no significant difference in EP value as change frequency

increases. It is also to be noted from Table 7.11 and Figure 7.46 that when EP

is taken as the average value over all the NG and Rg values, NSGA-II-MPA is

significantly better than the other algorithms, showing a very low EP.

Table 7.11: Average value of the EP objective over all the NG and Rg values

Tsm

PF 1 2 3 4 5 6
PEEMACOMP 8.60 8.77 8.58 8.43 8.54 8.28
PEEMACOMH 9.90 10.47 10.39 10.32 10.62 10.22
PEEMMASMP 8.86 9.07 8.86 8.82 8.89 8.52
PEEMMASMH 9.10 9.29 9.08 9.05 9.09 8.75
PEEMULTCOL 8.72 8.90 8.66 8.60 8.68 8.34
PNSGA−II−MPA 2.58 2.55 2.53 2.51 2.52 2.52

Tables I.1-I.9 and Figures J.1-J.3 indicate an increase in EP with increase in Rg

for NG = 30. For NG = 100, EEMACOMC and NSGA-II-MPA produced the

highest EP for Rg = 800, while the rest of the algorithms produced the highest EP

for Rg = 300. For NG = 300, EEMACOMH, EEMACOMC and NSGA-II-MPA

produced the highest EP for Rg = 800 and no real trend between EP and change

severity for Rg ∈ {300, 500}, while the rest of the algorithms presented no pattern

between EP and change severity.

In order to better visualise the relation between Rg and EP, Table 7.12 displays the

average values of EP over all the NG and Tsm values while Figure 7.47 illustrates

the results of Table 7.12. Table 7.12 and Figure 7.47 indicate that EP increased

for each algorithm as Rg increased to the value of 800. This trend is expected,

because an increase in change severity, Rg, causes only some of the nodes to be

within transmission range and paths with minimum energy consumed per packet

may not be possible. It is also to be noted from Table 7.12 and Figure 7.47 that

when EP is taken as the average value over all the NG and Tsm values, NSGA-

II-MPA is significantly better than the other algorithms, showing a very low EP.
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Figure 7.46: Average value of the EP objective over all the NG and Rg values

Table 7.12: Average value of the EP objective over all the NG and Tsm values

Rg

PF 300 500 800
PEEMACOMP 8.87 7.56 9.17
PEEMACOMH 9.67 9.51 11.78
PEEMMASMP 8.88 7.96 9.67
PEEMMASMH 8.89 8.15 10.14
PEEMULTCOL 7.75 7.59 10.61
PNSGA−II−MPA 2.26 2.21 3.14

Tables I.1-I.9 and Figures J.1-J.3 show that the EP value increased significantly

when the number of nodes increased to NG = 300. This is an unexpected result

which is possibly related to the computational complexity of the algorithms. As

the number of nodes increases, it becomes necessary for the routing protocol to

search more nodes in order to reach the destination, thus affecting diversity and

the finding of the paths with the least energy consumed per packet.
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Figure 7.47: Average value of the EP objective over all the NG and Tsm values

Tables I.1-I.9 show that all the ACO approaches displayed a higher value for EP

and therefore worst performance when compared to the NSGA-II-MPA approach.

To test whether there is a statistical significant difference in the performance of the

NSGA-II-MPA approach and the ACO approaches, the following two hypotheses

were considered:

H0 : µEP
NSGA−II−MPA = µEP

ACO

H1 : µEP
NSGA−II−MPA > µEP

ACO

where ACO takes the values EEMACOMP, EEMACOMH, EEMMASMP, EEM-

MASMH, and EEMACOMC.

Results of the Mann-Whitney U tests were the same for all the compared algo-

rithms, as illustrated in Figure 7.48. The Mann-Whitney U tests show that the

NSGA-II-MPA had a significantly lower energy consumed per packet than all the

ACO algorithms for all the scenarios. This is possibly related to the effects of the
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k shortest path algorithm used for NSGA-II-MPA, which selects the first R paths

with minimum energy consumed per packet and with minimum cost per packet

(refer to Section 6.7).

Tsm Rg NG

≈

>

Figure 7.48: Comparing the NSGA-II-MPA algorithm against the ACO algorithms with
regard to EP using the Mann-Whitney U test

• Utilisation of the most heavily used link, TNP , objective

Tables I.10-I.18 and Figures J.4-J.6 indicate a small decrease in TNP with decrease

in change frequency for all algorithms. In addition, the NSGA-II-MPA displayed

a high value of TNP for Tsm = 1, showing a bad performance for high change

frequency.

Table 7.13 displays the average values of TNP over all the NG and Rg values using

the results of Tables I.10-I.18. Figure 7.49 illustrates the results of Table 7.13.

Table 7.13 and Figure 7.49 indicate a very small decrease or no difference for

TNP as Tsm increased (change frequency decreased), except for the NSGA-II-MPA

algorithm which displayed a high value of TNP for Tsm = 1. Low change frequencies

provide more time to better optimise the TNP objective.
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Table 7.13: Average value of the TNP objective over all the NG and Rg values

Tsm

PF 1 2 3 4 5 6
PEEMACOMP 0.0024 0.0022 0.0021 0.0021 0.0020 0.0020
PEEMACOMH 0.0026 0.0024 0.0023 0.0022 0.0022 0.0022
PEEMMASMP 0.0024 0.0022 0.0021 0.0021 0.0020 0.0020
PEEMMASMH 0.0024 0.0022 0.0021 0.0021 0.0021 0.0021
PEEMULTCOL 0.0023 0.0022 0.0022 0.0022 0.0021 0.0021
PNSGA−II−MPA 0.0130 0.0026 0.0024 0.0023 0.0023 0.0022
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Figure 7.49: Average value of the TNP objective over all the NG and Rg values
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Tables I.10-I.18 and Figures J.4-J.6 indicate an increase in TNP with increase in

change severity for all algorithms. In addition, the NSGA-II-MPA displayed a high

value of TNP for NG = 100, Rg = 300 and Tsm = 1.

In order to better visualise the relation between Rg and TNP, Table 7.14 displays

the average values for TNP over all the NG and Tsm values, while Figure 7.50

illustrates the results of Table 7.14. Table 7.14 and Figure 7.50 indicate that TNP

increased for each algorithm as Rg increased. This trend is expected, because an

increase in change severity, Rg, causes only some of the links to be valid, and it

may not be possible to minimise or avoid the utilisation of the link with the least

capacity.

Table 7.14: Average value of the TNP objective over all the NG and Tsm values

Rg

PF 300 500 800
PEEMACOMP 0.0014 0.0018 0.0033
PEEMACOMH 0.0014 0.0019 0.0036
PEEMMASMP 0.0014 0.0018 0.0033
PEEMMASMH 0.0014 0.0018 0.0033
PEEMULTCOL 0.0014 0.0019 0.0033
PNSGA−II−MPA 0.0021 0.0020 0.0083

Tables I.10-I.18 and Figures J.4-J.6 show that the TNP value decreased when the

number of nodes increased. This is an expected result because as the number of

nodes increases, more links are available and therefore it becomes more easy to

minimise the utilisation of the link with the least capacity.

Tables I.10-I.18 show that all the ACO approaches displayed a lower value for the

TNP for scenarios with NG = 300 when compared to the NSGA-II-MPA approach.

To test whether there is a statistical significant difference in the performance of

the ACO approaches and the NSGA-II-MPA approach for NG = 300, the following

two hypotheses were considered:

H0 : µTNP
ACO = µTNP

NSGA−II−MPA

H1 : µTNP
ACO > µTNP

NSGA−II−MPA
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Figure 7.50: Average value of the TNP objective over all the NG and Tsm values

Results of the Mann-Whitney U tests were the same for all the compared algorithms

as illustrated in Figure 7.51. The Mann-Whitney U tests show that all ACO

approaches are significantly better than the NSGA-II-MPA approach with reference

to the TNP objective for NG = 300. There is no significant difference between ACO

approaches and the NSGA-II-MPA approach with reference to the TNP objective

for NG ∈ {30, 100}.

• Variance in node power levels, V NP , objective

Tables I.19-I.27 and Figures J.7-J.9 show no pattern between VNP and change

frequency.

Table 7.15 displays the average values of VNP over all the NG and Rg values using

the results of Tables I.19-I.27. Figure 7.52 illustrates the results of Table 7.15.

Table 7.15 and Figure 7.52 indicate a small decrease in VNP with a decrease

in change frequency for the ACO algorithms and a small increase in VNP with
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Figure 7.51: Comparing the ACO algorithms against the NSGA-II-MPA algorithm with
regard to the TNP objective using the Mann-Whitney U test

a decrease in change frequency for the NSGA-II-MPA. Low change frequencies

deteriorate the optimisation of the VNP for the NSGA-II-MPA.

Table 7.15: Average value of the V NP objective over all the NG and Rg values

Tsm

PF 1 2 3 4 5 6
PEEMACOMP 81.53 80.63 80.55 80.07 79.29 78.78
PEEMACOMH 90.00 89.60 87.98 88.16 86.32 85.55
PEEMMASMP 82.95 82.46 82.75 82.18 81.17 80.82
PEEMMASMH 83.33 82.70 83.08 82.54 81.95 81.03
PEEMULTCOL 76.27 76.17 76.94 76.27 76.48 76.07
PNSGA−II−MPA 114.67 117.40 119.43 121.03 120.62 121.65

Tables I.19-I.27 and Figures J.7-J.9 indicate a decrease in VNP with increase in

Rg for NG = 30. For NG = 100 all the single-colony ACO algorithms produced

the highest VNP for Rg = 500 and the lowest VNP for Rg = 300, while the

EEMACOMC and the NSGA-II-MPA algorithms produced the lowest VNP for
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Figure 7.52: Average value of the V NP objective over all the NG and Rg values

Rg = 800.

Table 7.16 displays the average values of VNP over all the NG and Tsm values

while Figure 7.53 illustrates the results of Table 7.16. Table 7.16 and Figure 7.53

indicate an increase in VNP with increase in change severity from 300 to 500 and

then a decrease in VNP with increase in change severity from 500 to 800 for the

ACO algorithms. The NSGA-II-MPA produced a decrease in VNP with increase

in change severity. High change severities improve the optimisation of the VNP.

Table 7.16: Average value of the V NP objective over all the NG and Tsm values

Rg

PF 300 500 800
PEEMACOMP 76.67 82.16 81.59
PEEMACOMH 80.11 90.63 93.06
PEEMMASMP 78.13 84.41 83.63
PEEMMASMH 78.41 84.78 84.13
PEEMULTCOL 75.57 81.00 72.53
PNSGA−II−MPA 128.68 123.23 105.48
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Figure 7.53: Average value of the V NP objective over all the NG and Tsm values

Tables I.19-I.27 and Figures J.7-J.9 show no trend between the VNP value and the

number of nodes.

Tables I.19-I.27 show that all the ACO approaches except the EEMACOMH ap-

proach, displayed a lower value for the VNP for all scenarios when compared to

the NSGA-II-MPA approach. The EEMACOMH approach displayed a lower value

for VNP for all scenarios except for scenarios with Rg = 800 and NG ∈ {100, 300}
when compared to the NSGA-II-MPA approach. To test whether there is a sta-

tistical significant difference in the performance of EEMACOMP, EEMMASMP,

EEMMASMH, and EEMACOMC and the NSGA-II-MPA approach, the following

two hypotheses were considered:

H0 : µV NP
ACO = µV NP

NSGA−II−MPA

H1 : µV NP
ACO > µV NP

NSGA−II−MPA
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where ACO takes the values EEMACOMP, EEMMASMP, EEMMASMH, and

EEMACOMC.

Results of the Mann-Whitney U tests were the same for all the compared algo-

rithms as illustrated in Figure 7.54. The Mann-Whitney U tests show that the

EEMACOMP, EEMMASMP, EEMMASMH, and EEMACOMC approaches are

significantly better than the NSGA-II-MPA approach with reference to the VNP

objective for all scenarios.

Tsm Rg NG

≈

>

Figure 7.54: Comparing EEMACOMP, EEMMASMP, EEMMASMH, and EEMACOMC
against the NSGA-II-MPA algorithm with regard to the VNP objective using the Mann-
Whitney U test

To test whether there is a statistical significant difference in the performance of

EEMACOMH and the NSGA-II-MPA approach for all scenarios except for sce-

narios with Rg = 800 and NG ∈ {100, 300}, the following two hypotheses were

considered:

H0 : µV NP
EEMACOMH = µV NP

NSGA−II−MPA

H1 : µV NP
EEMACOMH > µV NP

NSGA−II−MPA
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Results of the Mann-Whitney U tests are illustrated in Figure 7.55. The Mann-

Whitney U tests show that the EEMACOMH approach is significantly better than

the NSGA-II-MPA approach with reference to the VNP objective for all scenarios

except for scenarios with Rg = 800 and NG ∈ {100, 300}.

Tsm Rg NG

≈

>

Figure 7.55: Comparing the EEMACOMH against the NSGA-II-MPA algorithm with
regard to the VNP objective using the Mann-Whitney U test

• Cost per packet, CP , objective

Tables I.28-I.36 and Figures J.10-J.12 show no trend between the CP value and

the change frequency for NG = 300, while for NG ∈ {30, 100} there is no difference

in CP value as change frequency increases.

Table 7.17 displays the average values of CP over all the NG and Rg values using

the results of Tables I.28-I.36. Figure 7.56 illustrates the results of Table 7.17.

Table 7.17 and Figure 7.56 indicate no difference in CP value with change frequency

variation except for NSGA-II-MPA which produced a higher value of CP for Tsm =

1. It is also to be noted from Table 7.17 and Figure 7.56 that when CP is taken

242

 
 
 



as the average value over all the NG and Rg values, NSGA-II-MPA is significantly

better than the other algorithms, showing a very low CP.

Tables I.28-I.36 and Figures J.10-J.12 show no trend between the CP value and

the change severity for NG ∈ {30, 300}. For NG = 100, the CP value increased

with increase in Rg for all ACO algorithms, while the NSGA-II-MPA algorithm

produced the lowest CP for Rg = 800.

Table 7.17: Average value of the CP objective over all the NG and Rg values

Tsm

PF 1 2 3 4 5 6
PEEMACOMP 0.043 0.044 0.043 0.043 0.043 0.042
PEEMACOMH 0.050 0.054 0.053 0.054 0.055 0.053
PEEMMASMP 0.045 0.047 0.045 0.045 0.046 0.044
PEEMMASMH 0.047 0.048 0.047 0.047 0.047 0.045
PEEMULTCOL 0.040 0.041 0.039 0.039 0.040 0.038
PNSGA−II−MPA 0.017 0.010 0.010 0.010 0.010 0.010
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Figure 7.56: Average value of the CP objective over all the NG and Rg values
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Table 7.18 displays the average values of CP over all the NG and Tsm values, while

Figure 7.57 illustrates the results of Table 7.18. Table 7.18 and Figure 7.57 indicate

that CP was higher for Rg = 300 which is not expected, because low change severity

is supposed to delay the energy depletion of a node and therefore to maintain a

low cost of using that node and lower value of CP.

Table 7.18: Average value of the CP objective over all the NG and Tsm values

Rg

PF 300 500 800
PEEMACOMP 0.051 0.039 0.038
PEEMACOMH 0.056 0.050 0.053
PEEMMASMP 0.052 0.042 0.042
PEEMMASMH 0.052 0.043 0.044
PEEMULTCOL 0.043 0.037 0.038
PNSGA−II−MPA 0.012 0.010 0.012
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Figure 7.57: Average value of the CP objective over all the NG and Tsm values

Tables I.28-I.36 show that the CP value increased when the number of nodes in-

creased. This is an expected result because as the number of nodes increases, paths
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consist on average of more nodes, and therefore the value of the CP objective which

is a function of the residual energy of each node of the path increases.

Tables I.28-I.36 show that all the ACO approaches displayed a higher value for CP

and therefore worst performance for all scenarios when compared to the NSGA-

II-MPA approach. To test whether there is a statistical significant difference in

the performance of the NSGA-II-MPA approach and the ACO approaches, the

following two hypotheses were considered:

H0 : µCP
NSGA−II−MPA = µCP

ACO

H1 : µCP
NSGA−II−MPA > µCP

ACO

Results of the Mann-Whitney U tests were the same for all the compared algorithms

as illustrated in Figure 7.58. The Mann-Whitney U tests show that the NSGA-II-

MPA approach is significantly better than all the ACO approaches with reference

to the CP objective for all scenarios. Again, this is possibly related to the effects

of the k shortest path algorithm used in NSGA-II-MPA, which selects the first

R paths with minimum energy consumed per packet and with minimum cost per

packet (refer to Section 6.7).

• Maximum node cost, MNC, objective

Tables I.37-I.45 and Figures J.13-J.15 indicate a decrease in MNC with decrease

in change frequency for all algorithms.

Table 7.19 displays the average values of MNC over all the NG and Rg values using

the results of Tables I.37-I.45. Figure 7.59 illustrates the results of Table 7.19.

Table 7.19 and Figure 7.59 indicate an exponential decrease for MNC as change

frequency decreased for all ACO algorithms and a small decrease for MNC as

change frequency decreased for NSGA-II-MPA. That is an expected result, because

low change frequencies give more time for the algorithms to find paths with low

energy cost links.
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Figure 7.58: Comparing the NSGA-II-MPA algorithm against the ACO algorithms with
regard to the CP objective using the Mann-Whitney U test

Tables I.37-I.45 and Figures J.13-J.15 indicate an increase in MNC with increase

in change severity for most scenarios and for all algorithms.

Table 7.20 displays the average values for MNC over all the NG and Tsm values

while Figure 7.60 illustrates the results of Table 7.20. Table 7.20 and Figure 7.60

indicate that MNC increased for each ACO algorithm as Rg increased. This trend

is expected, because an increase in change severity, Rg, causes only some of the

links to be valid and it may not be possible to always find paths with low energy

cost links. The value of MNC for NSGA-II-MPA increased when Rg increased from

500 to 800.

Tables I.37-I.45 and Figures J.13-J.15 show that the MNC value had a small in-

crease when the number of nodes increased.

Tables I.37-I.45 and Figures J.13-J.15 show that all the ACO approaches displayed

a higher value for MNC for all scenarios except for scenarios with NG = 300

and Rg = 800 when compared to the NSGA-II-MPA approach. To test whether

there is a statistical significant difference in the performance of the NSGA-II-MPA

246

 
 
 



Table 7.19: Average value of the MNC objective over all the NG and Rg values

Tsm

PF 1 2 3 4 5 6
PEEMACOMP 2.830 2.023 1.727 1.569 1.485 1.410
PEEMACOMH 2.794 1.999 1.778 1.602 1.518 1.456
PEEMMASMP 3.091 2.219 1.830 1.678 1.580 1.475
PEEMMASMH 3.067 2.220 1.828 1.665 1.579 1.516
PEEMULTCOL 3.736 2.577 2.057 1.751 1.610 1.556
PNSGA−II−MPA 1.513 1.339 1.267 1.232 1.212 1.202
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EEMACOMP
EEMACOMH
EEMMASMP
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NSGA-II-MPA

Tsm
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Figure 7.59: Average value of the MNC objective over all the NG and Rg values

Table 7.20: Average value of the MNC objective over all the NG and Tsm values

Rg

PF 300 500 800
PEEMACOMP 1.612 1.749 2.160
PEEMACOMH 1.666 1.760 2.148
PEEMMASMP 1.772 1.870 2.294
PEEMMASMH 1.766 1.870 2.302
PEEMULTCOL 1.802 2.011 2.830
PNSGA−II−MPA 1.240 1.143 1.500
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Figure 7.60: Average value of the MNC objective over all the NG and Tsm values

approach and the ACO approaches the following two hypotheses were considered:

H0 : µMNC
NSGA−II−MPA = µMNC

ACO

H1 : µMNC
NSGA−II−MPA > µMNC

ACO

Results of the Mann-Whitney U tests were the same for all the compared algorithms

as illustrated in Figure 7.61. The Mann-Whitney U tests show that the NSGA-II-

MPA approach is significantly better than all the ACO approaches with reference

to the MNC objective for all scenarios except for scenarios with NG = 300 and

Rg = 800 where the NSGA-II-MPA approach is equal to the ACO approaches.

The remainder of this section analyses the value of each optimisation criterion for

each environment change.
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Figure 7.61: Comparing the NSGA-II-MPA algorithm against the ACO algorithms with
regard to the MNC objective using the Mann-Whitney U test

Optimization criteria over time

For each optimisation criterion and for each iteration before a change to the environment

occurs, the average value of that criterion is computed over all the number of solutions

for this iteration, further averaged over all 30 simulations for all Rg and NG values per

Tsm value.

Figure 7.62 visualises the energy consumed per packet, EP, over time. For all change

frequencies, a slight decrease in EP is observed over time. This decrease over time in EP

shows that transferring solutions from the environment before the change occurs helps

to accelerate the rate of convergence to the optima after the change occurred. Therefore

more time is available to find solutions with equal or lower energy consumed per packet

after the environment has changed. For all environment changes the NSGA-II-MPA

produced a very low EP compared to the ACO algorithms.

Figure 7.63 visualises the utilisation of the most heavily used link, TNP, over time.

All algorithms minimise the TNP criterion to a very low value. Because of this low value

of TNP, the load among mobile nodes is divided so that the network will partition in

such a way that nodes drain their energy at equal rates. This will help to maximise the
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time to network partition. In addition, for NSGA-II-MPA, Figures 7.63(a) and 7.63(b)

indicate an exponential increase for TNP over time for Tsm = 1 and Tsm = 2.

Figure 7.64 visualises the variance in node power levels, VNP, over time. NSGA-II-

MPA displayed the highest value for VNP over all change frequencies, indicating a bad

load distribution. It is also to be noted from Figures 7.64(b)-7.64(d) that for the NSGA-

II-MPA, VNP decreased over time for Tsm ∈ {2, 3, 4} which is good. Otherwise, for all

algorithms, the value of VNP had a very small variation for all environment changes.

This small variation of VNP, together with the relatively low value for VNP, will ensure

that all the nodes in the network remain up and running for as long as possible.

Figure 7.65 visualises the cost per packet, CP, criterion over time. NSGA-II-MPA

produced the best CP value, having a small value for all environment changes. Even-

though NSGA-II-MPA produced the best cost results, all the ant algorithms achieved

very low cost solutions. Minimising CP achieves the objective of avoiding those nodes

with depleted energy reserves since these nodes have high node cost. In this way, network

partition is delayed.

Figure 7.66 visualises the maximum node cost, MNC, over time. EEMACOMC pro-

duced the worst MNC values (highest MNC values), while NSGA-II-MPA produced the

best MNC values. All algorithms produced low MNC values for all change frequen-

cies, and environment changes. This will help delay node failure and reduce variance in

remaining battery lives.

For all algorithms, there is a very small variation at each environment change in

the values of the EP, TNP, CP, and VNP objectives. This shows the robustness and

adaptability of all the algorithms to the environment changes.

7.4.7 Ranking Of The Algorithms Based On Performance Cri-

teria

Tables 7.21-7.29 give the average rank of the algorithms for each scenario based on the

results of Tables F.1-F.54. Symbols nw
alg, %w, and ξw are defined in Section 7.4.1. For

each of the performance metrics, each algorithm is ranked according to the number of

times that the algorithm had a better performance than all the other algorithms with

reference to this performance metric, for each environment change. The algorithm’s

average rank over all the performance criteria is calculated and then the algorithm is
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Figure 7.62: Energy consumed per packet, EP, criterion over time
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Figure 7.63: Utilisation of the most heavily used link, TNP, criterion over time
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Figure 7.64: Variance in node power levels, VNP, criterion over time
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Figure 7.65: Cost per packet, CP, criterion over time
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Figure 7.66: Maximum node cost, MNC, criterion over time
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ranked accordingly. Table 7.30 gives the average rank of the algorithms over all the

scenarios, together with the standard deviation.

Tables 7.24-7.29 indicate that EEMACOMP ranked overall in first place for 88% of

the scenarios with NG > 30. For scenarios with NG = 30, EEMACOMP ranked overall

in first place for 44% of the scenarios (refer to Tables 7.21-7.23). EEMACOMH is ranked

overall last for 87% of the scenarios. The NSGA-II-MPA algorithm had a better ξ̄ than

the other algorithms for almost all environment changes for scenarios with NG = 300

and Rg ∈ {500, 800} (refer to Tables 7.28-7.29).

Table 7.30 indicates that the EEMACOMP algorithm had on average the best rank

over all the scenarios, while the EEMACOMH algorithm had on average the worst rank

over all the scenarios.

Table 7.21: Ranks for scenarios with NG = 30, Rg = 300
Tsm

1 2 3 4 5 6

PF nw
alg %w ξw rank nw

alg %w ξw rank nw
alg %w ξw rank nw

alg %w ξw rank nw
alg %w ξw rank nw

alg %w ξw rank

PEEMACOMP 0 3 0 4 0 0 0 5 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 4
PEEMACOMH 0 0 0 5 0 0 0 5 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 4
PEEMMASMP 5 0 0 3 1 0 0 3 0 0 0 4 0 1 0 3 0 0 0 4 0 0 0 4
PEEMMASMH 0 0 0 5 0 1 0 3 0 1 0 3 0 0 0 4 0 1 0 3 0 1 0 3
PEEMACOMC 10 0 120 1 0 0 60 1 0 0 40 1 0 0 30 1 0 0 24 1 0 1 20 1
PNSGA−II−MPA 0 117 0 2 0 59 0 2 0 39 0 2 0 29 0 2 0 23 0 2 0 18 0 2

Table 7.22: Ranks for scenarios with NG = 30, Rg = 500
Tsm

1 2 3 4 5 6

PF nw
alg %w ξw rank nw

alg %w ξw rank nw
alg %w ξw rank nw

alg %w ξw rank nw
alg %w ξw rank nw

alg %w ξw rank

PEEMACOMP 5 54 9 1 0 31 13 1 0 29 6 1 0 28 0 2 0 18 0 2 0 14 0 2
PEEMACOMH 0 6 4 5 1 7 0 5 0 1 0 5 0 1 0 3 0 0 0 5 0 0 0 3
PEEMMASMP 4 43 20 2 0 9 4 4 0 6 0 3 0 3 0 3 0 3 0 3 0 0 0 3
PEEMMASMH 2 16 35 4 1 13 10 3 0 4 0 4 0 0 0 5 0 1 0 4 0 0 0 3
PEEMACOMC 1 1 52 3 0 0 33 2 0 0 34 2 0 0 30 1 0 2 24 1 0 6 20 1
PNSGA−II−MPA 0 0 0 6 0 0 0 6 0 0 0 6 0 0 0 5 0 0 0 5 0 0 0 3

Table 7.23: Ranks for scenarios with NG = 30, Rg = 800
Tsm

1 2 3 4 5 6

PF nw
alg %w ξw rank nw

alg %w ξw rank nw
alg %w ξw rank nw

alg %w ξw rank nw
alg %w ξw rank nw

alg %w ξw rank

PEEMACOMP 6 28 23 4 11 43 31 1 4 13 39 1 6 20 29 1 4 14 17 1 3 11 20 1
PEEMACOMH 0 0 0 6 0 0 0 6 0 0 0 5 0 0 0 5 0 0 0 5 0 0 0 5
PEEMMASMP 21 50 19 2 0 9 1 4 5 8 1 3 4 6 1 3 3 2 2 4 2 3 0 3
PEEMMASMH 9 42 56 1 0 8 24 3 5 19 0 2 4 4 0 4 1 8 3 2 5 6 0 2
PEEMACOMC 73 0 0 3 49 0 0 2 14 0 0 3 13 0 0 2 8 0 2 3 5 0 0 3
PNSGA−II−MPA 0 0 22 5 0 0 4 5 0 0 0 5 0 0 0 5 0 0 0 5 0 0 0 5

256

 
 
 



Table 7.24: Ranks for scenarios with NG = 100, Rg = 300
Tsm

1 2 3 4 5 6

PF nw
alg %w ξw rank nw

alg %w ξw rank nw
alg %w ξw rank nw

alg %w ξw rank nw
alg %w ξw rank nw

alg %w ξw rank

PEEMACOMP 118 114 32 1 47 59 39 1 8 39 40 1 12 27 29 1 2 24 23 1 3 20 20 1
PEEMACOMH 0 0 0 6 0 0 0 6 0 0 0 5 0 0 0 5 0 0 0 4 0 0 0 3
PEEMMASMP 0 1 0 5 2 0 0 3 2 0 0 4 3 0 0 3 0 0 0 4 0 0 0 3
PEEMMASMH 2 1 1 4 1 0 1 3 5 0 0 2 2 0 1 2 1 0 0 3 0 0 0 3
PEEMACOMC 0 4 1 3 0 1 0 5 2 1 0 3 0 3 0 3 0 0 1 2 0 0 0 3
PNSGA−II−MPA 0 0 86 2 0 0 20 2 0 0 0 5 0 0 0 5 0 0 0 4 0 0 0 2

Table 7.25: Ranks for scenarios with NG = 100, Rg = 500
Tsm

1 2 3 4 5 6

PF nw
alg %w ξw rank nw

alg %w ξw rank nw
alg %w ξw rank nw

alg %w ξw rank nw
alg %w ξw rank nw

alg %w ξw rank

PEEMACOMP 56 119 70 1 34 59 52 1 36 38 39 1 9 30 29 1 4 24 23 1 6 20 20 1
PEEMACOMH 0 0 0 5 0 0 0 5 0 0 0 5 0 0 0 4 0 0 0 4 0 0 0 4
PEEMMASMP 61 0 2 2 13 0 2 2 3 0 0 3 6 0 0 2 5 0 0 3 1 0 0 3
PEEMMASMH 2 1 1 4 6 1 1 3 1 1 1 2 3 0 1 3 6 0 1 2 4 0 0 2
PEEMACOMC 0 0 0 5 0 0 5 4 0 0 0 5 0 0 0 4 0 0 0 4 0 0 0 4
PNSGA−II−MPA 0 0 47 3 0 0 0 5 0 1 0 4 0 0 0 4 0 0 0 4 0 0 0 4

Table 7.26: Ranks for scenarios with NG = 100, Rg = 800
Tsm

1 2 3 4 5 6

PF nw
alg %w ξw rank nw

alg %w ξw rank nw
alg %w ξw rank nw

alg %w ξw rank nw
alg %w ξw rank nw

alg %w ξw rank

PEEMACOMP 63 0 4 3 57 9 0 1 40 8 0 1 30 12 0 1 23 16 0 1 19 13 0 1
PEEMACOMH 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 5 0 0 0 5
PEEMMASMP 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 5 0 0 0 5
PEEMMASMH 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 4 1 1 0 4 1 2 0 4
PEEMACOMC 55 0 67 2 1 0 60 2 0 0 40 2 0 0 30 2 0 0 24 2 0 0 20 2
PNSGA−II−MPA 2 120 49 1 2 51 0 3 0 32 0 3 0 18 0 3 0 7 0 3 0 5 0 3

Table 7.27: Ranks for scenarios with NG = 300, Rg = 300
Tsm

1 2 3 4 5 6

PF nw
alg %w ξw rank nw

alg %w ξw rank nw
alg %w ξw rank nw

alg %w ξw rank nw
alg %w ξw rank nw

alg %w ξw rank

PEEMACOMP 118 114 0 1 60 57 0 1 39 39 0 1 29 27 0 1 24 23 0 1 15 18 0 1
PEEMACOMH 0 0 0 6 0 0 0 5 0 0 0 5 0 0 0 5 0 0 0 4 0 0 0 6
PEEMMASMP 0 3 0 3 0 0 0 5 0 0 0 5 0 2 0 3 0 0 0 4 2 0 0 4
PEEMMASMH 1 0 0 5 0 2 0 3 1 0 0 3 0 2 0 3 0 0 0 4 2 1 0 3
PEEMACOMC 0 1 120 2 0 0 60 2 0 0 40 2 0 0 30 2 0 0 24 2 0 0 20 2
PNSGA−II−MPA 1 2 0 3 0 1 0 4 0 1 0 3 0 0 0 5 0 1 0 3 0 1 0 5

Table 7.28: Ranks for scenarios with NG = 300, Rg = 500
Tsm

1 2 3 4 5 6

PF nw
alg %w ξw rank nw

alg %w ξw rank nw
alg %w ξw rank nw

alg %w ξw rank nw
alg %w ξw rank nw

alg %w ξw rank

PEEMACOMP 119 118 0 1 59 58 0 1 39 39 0 1 29 29 0 1 23 23 0 1 19 19 0 1
PEEMACOMH 0 0 0 5 0 0 0 5 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 4
PEEMMASMP 0 1 0 4 0 1 0 4 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 4
PEEMMASMH 1 1 0 3 1 1 0 3 1 1 0 3 1 1 0 3 1 1 0 3 1 1 0 3
PEEMACOMC 0 0 0 5 0 0 0 5 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 4
PNSGA−II−MPA 0 0 120 2 0 0 60 2 0 0 40 2 0 0 30 2 0 0 24 2 0 0 20 2

Table 7.29: Ranks for scenarios with NG = 300, Rg = 800
Tsm

1 2 3 4 5 6

PF nw
alg %w ξw rank nw

alg %w ξw rank nw
alg %w ξw rank nw

alg %w ξw rank nw
alg %w ξw rank nw

alg %w ξw rank

PEEMACOMP 0 5 0 2 2 3 0 2 35 18 0 2 28 18 0 1 21 17 0 1 18 17 0 1
PEEMACOMH 0 0 0 4 0 0 0 4 0 0 0 5 0 0 0 4 0 0 0 4 0 0 0 6
PEEMMASMP 0 0 0 4 0 1 0 3 1 7 0 3 1 1 0 3 2 4 0 3 0 2 0 3
PEEMMASMH 0 2 0 3 0 0 0 4 1 0 0 4 0 0 0 4 0 0 0 4 1 1 0 3
PEEMACOMC 0 0 0 4 0 0 0 4 0 0 0 5 0 0 0 4 0 0 0 4 1 0 0 5
PNSGA−II−MPA 120 113 120 1 58 56 60 1 30 15 40 1 1 11 30 2 1 3 24 2 0 0 20 2
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Table 7.30: Average rank of all algorithms with respect to all performances measures

PF rank
PEEMACOMP 1.555 ± 1.040
PEEMACOMC 2.833 ± 1.313
PEEMMASMH 3.259 ± 0.850
PEEMMASMP 3.481 ± 0.794
PNSGA−II−MPA 3.259 ± 1.494
PEEMACOMH 4.666 ± 0.824

7.4.8 Computational Complexity of the Algorithms

The runtime complexity of each algorithm can be analysed by investigating the runtime

behavior of the sub-routines of the corresponding algorithm. The approximated worst

case asymptotic complexity of each algorithm is estimated as follows:

• EEMACOMP algorithm

The initialisation process has a worst case complexity of O(c1noN
2
G), while the

solution construction process has a worst case complexity of O(c2noN
2
G). When

checking whether to insert a new solution into the PF , EEMACOMP performs a

non-dominance check of worst case complexity O(c3noPas). The worst case com-

plexity for the crowding distance used in order to keep a bound on the archive

size is O(c4noP
2
as). The EEMACOMP global pheromone update has a worst case

complexity of O(c5noNGPas) and the ApplyMobilityChanges procedure has a worst

case complexity of O(c6noPas + c7noN
2
G). The pheromone conservation rule has a

worst case complexity of O(c8noN
2
G). The worst case complexity of EEMACOMP

is O(c9noPas+c10noP
2
as+c11noNGPas+c12noN

2
G) = O(noN

2
G) where no is the number

of objectives, Pas is the archive size, NG is the number of nodes, and c1, c2, ..., c12

are constants.

• EEMACOMH algorithm

The EEMACOMH algorithm has a similar worst case complexity as EEMACOMP

except for the global pheromone update, which has a worst case complexity of

O(c5NGPas) and the pheromone conservation rule which has a worst case complex-

ity of O(c8N
2
G). The worst case complexity of EEMACOMH is O(noN

2
G).

Comparing EEMACOMP with EEMACOMH, the use of multiple pheromone ma-
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trices requires an additional cost of O(5c5(no−1)NGPas) due to the global pheromone

update. EEMACOMP also requires an additional cost of O(c8(no − 1)N2
G) due to

the pheromone conservation.

• EEMMASMP algorithm

The EEMMASMP algorithm has a similar worst case complexity as EEMACOMP

except for an additional processing for restricting the pheromones by an upper and

lower limit in the order of O(5c12noN
2
G), where c12 is a constant. The worst case

complexity of EEMMASMP is O(noN
2
G).

• EEMMASMH algorithm

The EEMMASMH algorithm has a similar worst case complexity as EEMACOMH

except for additional processing in the order of O(13c12N
2
G) due to the restriction

of the pheromones by an upper and lower limit, where c12 is a constant. The worst

case complexity of EEMMASMH is O(noN
2
G).

• EEMACOMC algorithm

The EEMACOMC algorithm has a similar worst case complexity as EEMACOMP.

• NSGA-II-MPA has a worst case complexity O(noN
2
G + NG log(NG) + k log(k)) =

O(noN
2
G) where O(NG log(NG) + k log(k)) is the worst case complexity of the k-

shortest path algorithm.

The NSGA-II-MPA algorithm has the lowest worst case complexity because it does

not require pheromone updates, and the complexity of the k−shortest path algorithm is

less than the pheromone updates used in the ACO algorithms.

EEMMASMP has the highest worst case complexity because of the multi-pheromone

processing and the restriction of pheromones by the highest and lowest limits. Also,

EEMACOMP has a higher worst case complexity than EEMMASMH because of the

multi-pheromone processing which occurs more frequently than the restriction of pheromones

by the highest and lowest limits.

A fair ranking of the algorithms in terms of their worst case computational complexity

is: NSGA-II-MPA < EEMACOMH < EEMMASMH < EEMACOMC ≤ EEMACOMP

< EEMMASMP.
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7.4.9 Overall Performance of Algorithms

Based on the analysis of the empirical results presented in Subsections 7.4.2-7.4.7, this

subsection summarises the performance of the developed algorithms in terms of the n̄alg,

%̄ and ξ̄ metrics and the optimisation criteria.

A comparison of each algorithm for each scenario reveals the following conclusions:

• When change frequency, Tsm, decreased, all algorithms displayed lower values, and

therefore good results for the spacing metric for most scenarios. The solutions are

more uniformly distributed in the whole Pareto-optimal set, instead of gathering

in a small region.

• When change severity, Rg, increased, the number of non-dominated solutions de-

creased as well and the value of the %̄ metric increased for all algorithms.

• All algorithms displayed a high value for ξ̄ irrespective of Tsm, Rg, and NG. High

values of ξ̄ show closeness of the solutions to the optimal Pareto set, and to some

extent, the spread of the solutions across objective space.

• All algorithms displayed a very low value for the %̄ metric (below 0.3), showing

that they produced uniformly distributed solutions.

• The EEMACOMH algorithm is affected the most when change severity increased

to 800, producing a much smaller number of non-dominated solutions and a worst

solution spread compared to the rest of the ACO algorithms.

• All ACO algorithms compared to the NSGA-II-MPA algorithm displayed a higher

value for n̄alg for 90% of the scenarios.

• A larger number of nodes combined with higher change severity negatively affected

the performance of the ACO algorithms in terms of the number of non-dominated

solutions and solution spread, even though the value of %̄ is still low and under 0.3.

• The EEMACOMP algorithm found the largest number of non-dominated solutions

from EEMACOMH for all scenarios with NG > 30 (66.6% of the scenarios). Also,

EEMACOMP found the largest number of non-dominated solutions from EEM-

MASMP, EEMMASMH, and EEMACOMC for all scenarios with NG = 100 and
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Rg = 800 and scenarios with NG = 800 (44.4% of the scenarios). The EEMA-

COMP algorithm produced a better solution spread than EEMACOMH for 82%

of the scenarios, a better solution spread than EEMMASMP and EEMACOMC for

66% of the scenarios, a better solution spread than EEMMASMH for 77% of the

scenarios, and better solution spread than NSGA-II-MPA for 88% of the scenarios.

• For all environment changes, the EEMACOMP algorithm found more non-dominated

solutions than all the other algorithms and the NSGA-II-MPA found the least num-

ber of non-dominated solutions (refer to Figure 7.43).

• For all environment changes, the EEMACOMP algorithm had the best solution

spread and the NSGA-II-MPA had the worst solution spread (refer to Figure 7.44).

• For all algorithms, there is a very small variation at each environment change in

the values of the n̄alg, %̄, and ξ̄ metrics, and the values of the EP, TNP, CP, and

VNP objectives. This shows the robustness and adaptability of all the algorithms

to the environment changes.

• The NSGA-II-MPA approach had a lower energy consumed per packet than all the

ACO approaches and for all the scenarios.

• All ACO approaches are better than the NSGA-II-MPA approach with reference

to the utilisation of the most heavily used link, TNP , objective for NG = 300.

• The EEMACOMP, EEMMASMP, EEMMASMH, and EEMACOMC approaches

are better than the NSGA-II-MPA approach with reference to the variance in

node power levels, V NP , objective for all scenarios. The EEMACOMH approach

is better than the NSGA-II-MPA approach with reference to the V NP objective

for all scenarios except for scenarios with Rg = 800 and NG ∈ {100, 300}.

• The NSGA-II-MPA approach had a lower cost per packet, CP , than all ACO

approaches for all scenarios.

• The NSGA-II-MPA approach had a lower maximum node cost, MNC, than all

ACO approaches for all scenarios except for scenarios with NG = 300 and Rg = 800.
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• EEMACOMP had the highest rank with reference to the performance criteria for

most scenarios, and the highest average rank over all scenarios and performance

criteria.

• EEMACOMH had the lowest average rank over all scenarios and performance

criteria.

• If all objectives have the same importance it is recommended to use the EEMA-

COMP, EEMMASMP, EEMMASMH, or EEMACOMC ACO algorithms (espe-

cially the EEMACOMP), which provide more closeness to the true Pareto front

and maintain better distribution of solutions in the Pareto front. If any of the

EP, CP, or MNC objectives have a higher priority than the other objectives, it is

recommended to use the NSGA-II-MPA algorithm.

7.5 Summary

This chapter presented an empirical study of the performance of the five ant multi-

objective optimisation algorithms presented in this thesis and the role played by the

various algorithmic features.

The experimental procedures and results of parameter tuning were given.

The five algorithms were compared with one another and with the NSGA-II, which

was adapted in this thesis for the multi-objective, power-aware routing problem. Dif-

ferent scenarios were tested for each algorithm according to the values of different ACO

and NSGA-II parameters and the Pareto fronts for each algorithm were obtained.

The experimental results showed that the five ACO algorithms, excluding the EEMA-

COMH algorithm, outperformed, on most scenarios, the NSGA-II-MPA algorithm in

terms of the number of solutions and spacing metric. All algorithms produced similar

results for the hypervolume metric for most of the scenarios. The NSGA-II-MPA ap-

proach had a lower energy consumed per packet, and lower cost per packet than all the

ACO approaches and for all the scenarios. Also, the NSGA-II-MPA approach had a

lower maximum node cost than all the ACO approaches for most scenarios. All ACO

approaches had a lower utilisation of the most heavily used link than the NSGA-II-MPA

for NG = 300 and less variance in node power levels for most of the scenarios.

By minimising the five optimisation criteria for the power-aware routing problem,
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the proposed ACO algorithms minimised the energy consumed per packet and spread

the traffic over the network to make all nodes have similar amounts of consumed energy.

Maximum energy consumption has been reduced which means that the lifetime of the first

node to die is extended using the ACO approaches. Consequently, MANETS network

lifetime was maximised and network partitioning was delayed.

In addition, the results demonstrated that EEMACOMP outperformed the other four

ACO algorithms and the NSGA-II-MPA algorithm in terms of the number of solutions

and spacing metric in most scenarios and produced the best rank. Therefore, in light of

the results presented, the EEMACOMP approach is recommended by this study for the

multi-objective, power-aware routing problem.

263

 
 
 



Chapter 8

Conclusion

8.1 Summary

As a special type of network, mobile ad hoc networks (MANETs) have increasingly

been the focus of research in recent years. The network topology in MANETs usually

changes with time. Therefore, as a result of the highly dynamic and distributed nature

of MANETs, routing protocols are being presented with new challenges since traditional

routing protocols may not be suitable for MANETs. In particular, energy efficient rout-

ing may be the most important design criterion for MANETs since mobile nodes are

powered by batteries with limited capacity.

The main purpose of this thesis was to study ant algorithms as applied to the dynamic

environment of mobile ad hoc networks and, specifically, to resolve the five power-aware

metrics which were presented by Singh et al. [184]. These metrics aim to minimise the

energy consumed per packet, maximise the time needed to network partition, minimise

the variance in node power levels, minimise cost per packet, and minimise maximum

node cost. Taking into consideration a realistic mobility model using an ant colony

optimisation (ACO) approach, this thesis proposed to simultaneously optimise the five

power-aware metrics for energy efficiency and maximising the lifetime of MANETs. A

set of optimal solutions, the Pareto-optimal set, is found using ACO algorithms.

This thesis proposed five algorithms with which to solve the above multi-objective

optimisation problem. The first two algorithms are the energy efficiency for mobile net-

works using multi-objective ant colony optimisation, multi-pheromone (EEMACOMP)

algorithm and the energy efficiency for mobile networks using multi-objective ant colony

optimisation, multi-heuristic (EEMACOMH) algorithm. These two algorithms are adap-

tations of multi-objective ant colony optimisation algorithms (MOACO) based on the

ant colony system (ACS) algorithm.

The next two algorithms, namely, the energy efficiency for mobile networks using
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multi-objective MAX-MIN ant system optimisation, multi-pheromone (EEMMASMP)

algorithm and the energy efficiency for mobile networks using multi-objective MAX-MIN

ant system optimisation, multi-heuristic (EEMMASMH) algorithm succeeded in solving

the above multi-objective optimisation problem by using an adaptation of the MAX-MIN

ant system optimisation algorithm.

The last algorithm implemented, namely, the energy efficiency for mobile networks

using multi-objective ant colony optimisation, multi-colony (EEMACOMC) uses a mul-

tiple colony ACO algorithm.

In addition, this thesis used an adaptation of the NSGA-II algorithm called NSGA-

II multi-objective power-aware algorithm (NSGA-II-MPA) to solve the multi-objective

power-aware routing problem.

For each algorithm the following hypotheses or questions were investigated:

1. Is there a statistical significant difference in the performance of the algorithms?

2. Does performance deteriorate with increase in change frequency?

3. Does performance deteriorate with increase in change severity?

4. Are the algorithms scalable?

5. Is there an algorithm that is less affected by change frequency / change severity?

6. How is the performance of the algorithms over time?

The performance of each algorithm was tested under different scenarios for different

change frequencies, change severities and number of nodes as outlined in Section 7.1.1.

For each of the scenarios 30 simulations were executed and results were reported as

averages over these simulations. Each estimated pareto front, PF , produced by the

EEMACOMP, EEMACOMH, EEMMASMP, EEMMASMH, EEMACOMC, and NSGA-

II-MPA algorithms was evaluated using three performance metrics, namely the number

of non-dominated solutions, n̄alg, the spread metric, %̄, and the hypervolume metric, ξ̄

(refer to Section 7.1.3).

8.2 Conclusions

On the basis of the experimental results the final conclusions are summarised as follows:
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• The EEMACOMP algorithm found a largest number of non-dominated solutions

and produced a better solution spread compared to the rest of the algorithms, for

high percentage of scenarios.

• All ACO algorithms compared to the NSGA-II-MPA algorithm displayed a higher

value for n̄alg for 90% of the scenarios and they produced a better solution spread

for high percentage of scenarios.

• Performance for n̄alg and %̄ metrics deteriorate with increase in change frequency,

for all algorithms.

• Performance for n̄alg and %̄ metrics deteriorate with increase in change severity, for

all algorithms.

• The EEMACOMH algorithm is affected the most when change severity increased

to 800, producing a much smaller number of non-dominated solutions and a worst

solution spread compared to the rest of the ACO algorithms.

• A larger number of nodes combined with higher change severity negatively affected

the performance of the ACO algorithms in terms of the number of non-dominated

solutions and solution spread, even though the value of %̄ is still low and under 0.3.

• All the algorithms had a good performance over time. This shows the robustness

and adaptability of all the algorithms to the environment changes.

• All algorithms displayed a high value for ξ̄ irrespective of Tsm, Rg, and NG. High

values of ξ̄ show closeness of the solutions to the optimal Pareto set, and to some

extent, the spread of the solutions across objective space.

• EEMACOMP had the highest rank with reference to the performance criteria for

most scenarios, and the highest average rank over all scenarios and performance

criteria.

In summary, based on the simulations it can be concluded that using ant multi-

objective optimisation to simultaneously optimise the five power-aware metrics is ex-

tremely beneficial because the traffic is spread over the network, thus forcing all nodes

to have similar amounts of consumed energy. Maximum energy consumption has been

reduced which means that the lifetime of the first node to die is extended using the ACO
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approaches. Consequently, MANETS network lifetime was maximised and network par-

titioning was delayed.

This is the first time the power-aware routing multi-objective optimisation problem

has been solved using an ant colony optimisation algorithm. All five algorithms pre-

sented in this thesis were shown to outperform the NSGA-II-MPA algorithm in terms of

the performance metrics in most scenarios. Also, all the ACO approaches had a lower

variance in node power levels and a lower utilisation of the most heavily used link than

the NSGA-II-MPA approach. In addition, all ACO algorithms produced a very good

solution distribution, high number of non-dominated solutions and dominated a high

percentage of the objective space, showing closeness to the true Pareto front.

8.3 Future Work

Specific recommendations to develop and extend this work further and areas of future

research include:

• Other mobility models such as the random waypoint mobility model can be studied

in order to model different realistic situations of the movements of mobile nodes and

study the behaviour of the proposed algorithms. Finally, these different mobility

models may be compared in order to demonstrate their effects on the performance

of the proposed ant routing algorithms.

• A detailed comparison of the performance of the ant-based algorithms with other

meta-heuristics can be conducted.

• The influence of the control parameters on the ant-based algorithms under different

number of nodes can be analysed.

• The influence of different weights for the objective parameters, λψ, on the ant-based

algorithms can be examined.

• The impact of the Pareto archive size on the performance of the ant-based algo-

rithms can be analysed.

• Other performance metrics such as diversity in the objective space (DOM) pro-

posed by Morrison and De Jong [150], and their application to the evaluation and
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comparison of the developed multi-objective optimisation algorithms for the power

aware routing problem can be investigated.
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Appendix A

Definition of Abbreviations

This appendix list abbreviations used in this thesis along with their explanations.

ACK : ACKnowledgement

ACO : Ant Colony Optimisation

ACS : Ant Colony System

ADC : Analogous to Digital Converter

ANSI : American National Standards Institute

AODV : Ad hoc On-demand Distance Vector

AP : Access Point

APC : AP Controller

ARQ : Automatic Repeat reQuest

ARQN : ARQ sequence Number

AS : Ant System

ASCII : American Standard Code for Information Interchange

ASP : Active Server Page

ATIM : Ad Hoc Traffic Indication Message

ATM : Asynchronous Transfer Mode

BSAMM : Boundless Simulation Area Mobility Model

BSC : Base Station Controller

BSS : Basic Service Set

CBR : Constant Bit Rate

CDM : Code Division Multiplexing

CDMA : Code Division Multiple Access

CDPD : Cellular Digital Packet Data
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CMM : Column mobility model

CPU : Central Processing Unit

CRC : Cyclic Redundancy Check

CSMA : Carrier Sense Multiple Access

CSMA/CA : CSMA with Collision Avoidance

CSMA/CD : CSMA with Collision Detection

CSMM : City Section Mobility Model

CSP : Constraint Satisfaction Problem

CTS : Clear To Send

CW : Contention Window

DA : Destination Address

DAG : Directed Acyclic Graph

DCF : Distributed Coordination Function

DCS : Digital Cellular System

DNS : Domain Name System

DPSM : Dynamic power saving mechanism

DSDV : Destination Sequence Distance Vector

DSMA : Digital Sense Multiple Access

DSR : Dynamic Source Routing

DTMF : Dual Tone Multiple Frequency

DV : Distance Vector

EA : Evolutionary Algorithms

EC-MAC : Energy Conserving Medium Access Control

ECRMM : Exponential correlated random mobility model

EEMACOMC : Energy efficiency for mobile network using multi-objective ant colony

optimisation, Multi-colony

EEMACOMH : Energy Efficiency for mobile network using multi-objective ant colony

optimisation, Multi-heuristic

EEMACOMP : Energy Efficiency for mobile network using multi-objective ant colony

optimisation, Multi-pheromone
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EEMMASMH : Energy efficiency for mobile network using multi-objective MAX-MIN

ant system optimisation, Multi-heuristic

EEMMASMP : Energy efficiency for mobile network using multi-objective MAX-MIN

ant system optimisation, Multi-pheromone

EMO : Evolutionary Multi-objective Optimisation

ESS : Extended Service Set

FANT : Fast Ant System

FDM : Frequency Division Multiplexing

FDMA : Frequency Division Multiple Access

FEC : Forward Error Correction

FRTS : Future Request to Send

FSM : Frame Synchronisation Message

GMMM : Gauss-Markov Mobility Model

GPRS : General Packet Radio Service

GPS : Global Positioning System

IBSS : Independent Basic Service Set

IEEE : Institute of Electrical and Electronics Engineers

ILS : Iterated Local Search

IP : Internet Protocol

ISDN : Integrated Services Digital Network

ISO : International Organization for Standardization

LLC : Logical Link Control

MAC : Medium Access Control

MACA : Multiple Access with Collision Avoidance

MANET : Mobile Ad hoc NETwork

Mbps: Megabit per second

MMAS : Max-Min Ant System

MNC : Maximum Node Cost

MOACO : Multi-Objective Ant Colony Optimisation

MOEA : Multi-Objective Evolutionary Algorithms
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MOGA: Multi-Objective Genetic Algorithm

MOO : Multi-Objective Optimisation

MOP : Multi-Objective Problem

MST : Minimum Spanning Trees

NCMM : Nomadic community mobility model

NPGA : Niched Pareto Genetic Algorithm

NSGA : Non-dominated Sorting Genetic Algorithm

OSI: Open Systems Interconnection

PAES : Pareto Archived Evolution Strategy

PAMAS : Power Aware Multi-Access Protocol

PCF : Point Coordination Function

PDN : Public Data Network

PDU : Protocol Data Unit

PEDAP : Power Efficient Data Gathering and Aggregation Protocol

PEDAP-PA : Power Efficient Data Gathering and Aggregation Protocol-Power Aware

PESA : Pareto Envelope-based Selection Algorithm

PESA-II : Pareto Envelope-based Selection Algorithm-II

PMM : Pursue mobility model

PSM : Protocol/Service Multiplexor

PSN : PDU Sequence Number

PSPDN : Public Switched Packet Data Network

PSTN : Public Switched Telephone Network

PVRWMM : A Probabilistic Version of the Random Walk Mobility Model

QAP : Quadratic Assignment Problem

RDMM: Random direction mobility model

RF : Radio Frequency

RPGM : Reference Point Group Mobility Model

RT : Radio Transceiver

RTR : Radio Transmission and Reception

RTS : Request To Send
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RWMM :Random walk mobility model

RWPMM : Random waypoint mobility model

SA : Simulated Annealing

S-MAC : Sensors Medium Access Control

SMTTP : Single Machine Total Tardiness Problem

SPEA : Strength Pareto Evolutionary Algorithm

SPI: Serial Peripheral Interface

TBTT : Target Beacon Transmission Time

TCP : Transmission Control Protocol

TD-CDMA : Time Division-CDMA

TDD : Time Division Duplex

TDM : Time Division Multiplexing

TDMA : Time Division Multiple Access

T-MAC : Timeout Medium Access Control

TNP : Time to Network Partition

TS : Tabu search

TSP : Travelling Salesman Problem

UART : Universal Asynchronous Receiver Transmitter

UBR : Unspecified Bit Rate

UDP : User Datagram Protocol

VBR : Variable Bit Rate

VF : Variation Factor

VRS : Volcano Routing Scheme

WS : Wireless Sensor

WSN : Wireless Sensor Network
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Appendix B

Definition of Symbols

This appendix list symbols used in this thesis along with their explanations.

Chapter 2: Energy Efficient Network Protocols for Mobile Ad-Hoc Net-

works

αmax : maximum angular change

amax : maximum acceleration

ca : media dependent constant

cp : clock period

Cs(Ts) : total edge weights in the spanning tree Ts

cs,uw : weight of the edge (u,w)

d : distance travelled

ds : maximum propagation delay among all pairs of nodes

duw : distance between node u and w

Df : destination of the f -flow

er
min : minimum residual energy from all the nodes in a path

ec
u : current energy of node u

em
u : energy needed by node u to transmit a message to its nearest neighbor

er
u : residual energy of node u

E : energy consumed by a program

Eu : initial energy of node u

Euw : energy required to do a single-hop transmission from node u to node w

θ : the MN’s direction

θxt : random direction variable

θ̄ : mean direction
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∆θ : change in direction

G = (V, L) : directed graph with nodes V and links between nodes, L

hd : constant between 2 and 4

Ic : average current

κ(u) : fraction of node’s u initial energy that has been used so far

Nc : number of clock cycles taken by a program

pt : tuning parameter

P (a, b) : probability that a MN will go from state a to state b

P f
u : potential associated with flow f at a given node u

Po : average power

rx : random offset of a MN, in direction x

ry : random offset of a MN, in direction y

σ : constant for admission control

Sr : sending rate

t : time interval

tgx(t) : x position of a target

tgy(t) : y position of a target

∆t : time step

Te : execution time of the program

Ts : spanning tree

v : the MN’s velocity

∆v : change in velocity

vs : supply voltage

vxt : random speed variable

v̄ : mean speed value

vmax : maximum velocity

xj,i(t) : location of the i-th node in the j-th group at time t

yj,i(t) : reference location of the i-th node in the j-th group at time t

zj,i(t) : local displacement of the i-th node in the j-th group at time t

ζ : constant
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Chapter 3: Combinatorial Optimisation and Ant Colony Optimisation

Meta-heuristic

α: pheromone amplification coefficient

β: heuristic amplification coefficient

f(xk(t)) : lenght of the solution xk(t)

h : bias to using pheromone deposits in the decision process

ηij : heuristic preference of moving from node i to node j

nk : number of ants

nl : number of nodes in the candidate list

NG : number of nodes

N(x) : neighbourhood of x

Nk
i (t) : set of feasible nodes connected to node i, for ant k

Lm : number of ants that have used the lower branch

pk
ij(t) : probability that ant k selects to move to node j from node i

p̂ : probability at which the best solution is constructed

PL(m) : probability with which the (m + 1)-th ant chooses the lower branch

PU(m) : probability with which the (m + 1)-th ant chooses the upper branch

Q : positive constant used to weight influence of f in solution quality calculation

r : random number

r0 : tunable parameter to control exploration and exploitation

ρ : evaporation coefficient

ρl : evaporation coefficient governing local trail decay

∆ij(t) : total amount of pheromone deposited by all ants on edge (i, j)

τ0 : small positive constant

τij : pheromone concentration on link (i, j)

τmin : minimum allowed pheromone concentration

τmax : maximum allowed pheromone concentration

Um : number of ants that have used the upper branch

xk(t) : solution found by ant k at time step t

x+(t) : best tour since the beginning of the trial
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x̃(t) : iteration-best solution found at time step t

x̂(t) : global-best solution found at time step t

z : degree of attraction of an unexplored branch

Chapter 4: Multi-objective Optimisation

x ≺ y : x strictly dominates y

≺n : crowded comparison operator

#Col : number of ant colonies

#τ : number of pheromone structures

Bi : compensation at busbar i

cc(i, j) : changeover costs that has to be paid when j is the direct successor of i in a

schedule.

cij : cost per bps of link (i, j)

Cj : completion time of job j in the current job sequence

cm : centroid for objective fm

di : Euclidian distance between i and nearest solution in the PF∗

dij : propagation delay of link (i, j)

da
j : due date for job j

d̄ : mean of all di

ε : constant

fd : density function

F : feasible space

Fs : scalar function

Fv(i) : fitness value of i

gm : inequality constraints

hm : equality constraints

idistance : crowding distance of solution i

irank : non-domination front rank of solution i

I : non-dominated set

K : kernel function
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λl : weighs the relative importance of the l-th objective

mbest : number of best ants in a colony

nk : number of ants

no : number of objectives

nx : dimension of the decision vector

nPF : number of solutions in the estimated Pareto front

N : number of vectors in the set of non-dominated solutions

NG : number of nodes

Nmaxgen : maximum number of generations

Np : population size

O : objective space

pj : processing time for job j

P0 : initial random population

Ps : Pareto set list for MOO power-aware problem

P ∗ : Pareto-optimal set, containing non-dominated position vectors

PF∗ : Pareto-optimal front containing non-dominated objective vectors

Q0 : initial child population

Rt : combined population of parent and a child, at generation t

S : nx dimensional search space

Sm : spread metric

Sv(i) : strenght value of i

tij : current traffic of link (i, j)

tgi : ideal value of objective i

Tk : solution build by ant k

T (s,Nr) : multicast tree with source in s and a set of destinations Nr

Vi : actual voltage at busbar i

V ∗
i : desired voltage at busbar i

xmj : value of the objective fm in the j-th non-dominated solution

x∗ : Pareto-optimal solution

Z = (Z1,Z2, ...) : set of non-dominated fronts
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Chapter 5: Dynamic Optimisation

γi : pheromone reset value for node i

dη
ij : distance of node i to the nearest changed component j based on heuristic infor-

mation

dτ
ij : distance of node i to the nearest changed component j based on pheromone

information

δ(t) : time-dependent objective function

Lbest(t) : best solution found up to iteration t

Lbest
W (t) : best solution within the window W

Lworst
W (t) : worst solution within the window W

λE : strategy specific parameter

λR : strategy specific parameter

λτ : strategy specific parameter

nc : number of changes of the fitness landscape during the run

nI : number of iterations between environment changes

nPF : number of solutions

nr : number of runs

x∗(t) : Pareto-optimal solution at time step t

Chapter 6: Multi-objective Optimisation Algorithms for Power-Aware

Routing Metrics

cij : link cost for link (i, j)

ca(i, j) : capacity of the edge (i, j)

γνi
: variable proportionate to the nearest changed component j for objective EP

γξi
: variable proportionate to the nearest changed component j for objective TNP
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γπi
: variable proportionate to the nearest changed component j for objective VF

γρi
: variable proportionate to the nearest changed component j for objective CP

γςi : variable proportionate to the nearest changed component j for objective MNC

Cni
(t) : ratio of the total energy consumed up to time, t, over the initial energy, Ei

ee
i (t) : total energy expended by node i so far

λν : user-defined parameter which establish the importance of the objective EP in the

search

λξ : user-defined parameter which establish the importance of the objective TNP in

the search

λπ : user-defined parameter which establish the importance of the objective VF in the

search

λρ : user-defined parameter which establish the importance of the objective CP in the

search

λς : user-defined parameter which establish the importance of the objective MNC in

the search

µL : average capacity for all edges L

nkc : number of ants for c colony

Ne : constant, the first Ne fittest individuals from population Pt+1

nts : number of time slices within the total simulation time

nT : number of nodes in the solution T

npT : total number of packets from source s to destination D

ην(ij) : heuristic desirability of the move from node i to node j associated with objective

EP

ηξ(ij) : heuristic desirability of the move from node i to node j associated with objective

TNP

ηπ(ij) : heuristic desirability of the move from node i to node j associated with objective

VF

ηρ(ij) : heuristic desirability of the move from node i to node j associated with objective

CP

ης(ij) : heuristic desirability of the move from node i to node j associated with objective

MNC
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Pas : maximum archive size

Pf : estimated Pareto set

PG : global archive containing solutions from all the colonies in a specific iteration

Rg : radius from global centre

R : number of shortest path routes

Rp
i : residual power of a node i

STtot : total simulation time

TNp : routing table with Np paths

Tr : transmission range

Tsm : pause time/time before applying the mobility model

τmaxν : maximum allowed pheromone value for objective EP

τmaxξ
: maximum allowed pheromone value for objective TNP

τmaxπ : maximum allowed pheromone value for objective VF

τmaxρ : maximum allowed pheromone value for objective CP

τmaxς : maximum allowed pheromone value for objective MNC

τminν : minimum allowed pheromone value for objective EP

τminξ
: minimum allowed pheromone value for objective TNP

τminπ : minimum allowed pheromone value for objective VF

τminρ : minimum allowed pheromone value for objective CP

τminς : minimum allowed pheromone value for objective MNC

Chapter 7: Simulation and Empirical Analysis

Pa : approximation of the true Pareto front

n̄alg: average number of non-dominated solutions found by each algorithm

%̄: average value of the spacing metric

ξ̄: average value of the hypervolume metric

nw
alg : number of times that an algorithm has a better n̄alg than the others, for each

environment change

%w : number of times that an algorithm has a better %̄ than the others, for each

environment change

ξw : number of times that an algorithm has a better ξ̄ than the others, for each envi-

ronment change
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Appendix C

Definition of the Power-Aware

Routing Problem

This appendix list symbols used in this thesis to formulate the multi-objective optimisation

problem for power-aware routing metrics

V : Set of nodes

L : Set of links

G = (V, L) : Directed graph

(i, j) ∈ L : Link from node i to node j; i, j ∈ V.

Eij : The energy expenditure for unit flow transmission over the link (i, j)

Ei : Initial energy at the transmitting node i

Ri : Residual energy at the transmitting node i

Rp
i : Residual power of a node i.

x1, x2, x3 : nonnegative weighting factors

cij : link cost for link i, j

cij is given by : cij = Ex1
ij Ex2

i R−x3
i

dij : Distance between the nodes i and j

ci : cost of node i, ci =
1

Ri

ca(ij) : Capacity of link (i, j)

npT : Number of packets for a request

nk : Number of ants

lu : Load of node u

ec
u : Current energy of node u
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nT : Number of nodes for path T

T (s,D) : path from source s to destination D = (n1, n2, ..., nnT
)

with s = n1 and D = nnT

Tr : Transmission range

zi : denotes the measured voltage (that gives a good indication of the energy used

thus far)

0 < g(zi) ≤ 1.0 : is the normalised remaining lifetime (or capacity) of the battery
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Appendix D

Control Parameter Tables

This appendix contains the results of the empirical analysis of the ant-based algorithms

control parameters. The empirical analysis is done for all scenario combinations of 30 nodes,

Tsm ∈ {1, 2, 3, 4, 5, 6}, and Rg ∈ {300, 500, 800}.
Tables D.1-D.3, D.4-D.6, D.7-D.9, D.10-D.12, D.13-D.15, and D.16-D.18 illustrate the

influence of parameters βψ, r0, ρl, ρg, α, and λE respectively, on the n̄alg, %̄ and ξ̄ metrics.
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Table D.1: Influence of parameter βψ on the n̄alg, %̄ and ξ̄ metrics, for 30 nodes and
Rg = 300

(a) Tsm = 1
βψ PF n̄alg %̄ ξ̄

βν = 1.0 PEEMACOMP 50.38±5.89 0.213±0.024 45342.56±952.36
βξ = 1.0 PEEMACOMH 48.21±5.22 0.221±0.027 44567.23±961.78
βπ = 1.0 PEEMMASMP 53.41±5.14 0.218±0.029 44128.45±927.47
β% = 1.0 PEEMMASMH 48.36±5.33 0.215±0.027 43567.38±966.96
βς = 1.0 PEEMACOMC 51.34±5.26 0.238±0.029 44528.09±975.72
βν = 3.0 PEEMACOMP 50.34±5.35 0.187±0.023 46873.32±946.23
βξ = 3.0 PEEMACOMH 48.43±5.65 0.192±0.022 45568.27±957.32
βπ = 3.0 PEEMMASMP 49.37±5.57 0.211±0.023 46785.32±953.23
β% = 3.0 PEEMMASMH 48.54±5.45 0.186±0.024 47467.28±964.32
βς = 3.0 PEEMACOMC 51.37±5.63 0.188±0.021 47843.31±976.38
βν = 3.5 PEEMACOMP 84.67±4.49 0.053±0.008 62874.32±213.34
βξ = 4.0 PEEMACOMH 82.35±4.46 0.054±0.008 62543.64±221.43
βπ = 4.5 PEEMMASMP 79.65±4.74 0.057±0.009 62647.23±226.31
β% = 4.0 PEEMMASMH 83.86±4.73 0.058±0.010 62568.22±236.74
βς = 5.0 PEEMACOMC 85.74±4.76 0.057±0.010 62657.82±223.52
βν = 4.5 PEEMACOMP 84.37±4.32 0.054±0.009 62676.43±202.41
βξ = 5.0 PEEMACOMH 82.54±4.34 0.053±0.008 62217.32±213.52
βπ = 3.5 PEEMMASMP 78.42±4.69 0.055±0.009 62542.43±203.43
β% = 4.0 PEEMMASMH 82.64±4.54 0.057±0.009 62653.61±192.53
βς = 4.0 PEEMACOMC 84.67±4.63 0.056±0.009 62562.31±223.43
βν = 5.0 PEEMACOMP 83.76±4.46 0.052±0.008 62314.32±197.32
βξ = 5.0 PEEMACOMH 79.32±4.56 0.050±0.008 62435.21±214.65
βπ = 5.0 PEEMMASMP 76.32±4.89 0.051±0.009 62421.56±198.37
β% = 5.0 PEEMMASMH 79.56±4.67 0.049±0.008 62652.27±187.43
βς = 5.0 PEEMACOMC 83.58±4.78 0.057±0.009 62467.48±215.76
βν = 7.0 PEEMACOMP 67.43±4.67 0.047±0.007 44673.36±934.24
βξ = 7.0 PEEMACOMH 72.48±4.98 0.049±0.007 43456.22±956.76
βπ = 7.0 PEEMMASMP 66.48±4.78 0.049±0.006 43467.83±946.32
β% = 7.0 PEEMMASMH 72.74±4.54 0.047±0.006 44612.38±975.32
βς = 7.0 PEEMACOMC 72.45±4.47 0.055±0.007 44132.64±896.34

(b) Tsm = 2
βψ PF n̄alg %̄ ξ̄

βν = 1.0 PEEMACOMP 54.67±5.13 0.186±0.022 47832.26±612.52
βξ = 1.0 PEEMACOMH 47.32±5.32 0.176±0.022 46348.69±864.23
βπ = 1.0 PEEMMASMP 54.76±5.21 0.195±0.024 46178.35±874.72
β% = 1.0 PEEMMASMH 52.57±5.24 0.180±0.023 45674.86±849.78
βς = 1.0 PEEMACOMC 54.44±5.13 0.178±0.022 46234.12±875.92
βν = 3.0 PEEMACOMP 52.54±5.42 0.144±0.019 48765.24±896.38
βξ = 3.0 PEEMACOMH 54.45±5.36 0.148±0.018 47654.34±876.36
βπ = 3.0 PEEMMASMP 52.67±5.41 0.154±0.017 47654.38±887.56
β% = 3.0 PEEMMASMH 56.21±5.32 0.158±0.016 48756.34±895.45
βς = 3.0 PEEMACOMC 57.24±5.12 0.153±0.017 48765.43±850.39
βν = 3.5 PEEMACOMP 87.32±3.68 0.039±0.007 62976.32±224.32
βξ = 4.0 PEEMACOMH 85.21±3.68 0.042±0.007 62158.94±234.44
βπ = 4.5 PEEMMASMP 82.43±3.59 0.040±0.007 62143.32±229.26
β% = 4.0 PEEMMASMH 86.43±3.57 0.041±0.006 62234.65±242.76
βς = 5.0 PEEMACOMC 88.56±3.67 0.046±0.007 62214.32±226.83
βν = 4.5 PEEMACOMP 86.72±3.58 0.041±0.007 62645.76±223.24
βξ = 5.0 PEEMACOMH 85.64±3.56 0.043±0.006 62228.56±217.57
βπ = 3.5 PEEMMASMP 82.56±3.29 0.041±0.006 62147.89±212.28
β% = 4.0 PEEMMASMH 86.32±3.67 0.042±0.007 62145.65±198.47
βς = 4.0 PEEMACOMC 85.21±3.76 0.043±0.008 62346.76±216.19
βν = 5.0 PEEMACOMP 86.73±3.24 0.038±0.006 62734.66±226.68
βξ = 5.0 PEEMACOMH 85.43±3.78 0.042±0.007 62134.67±232.93
βπ = 5.0 PEEMMASMP 78.43±4.14 0.042±0.008 62221.58±215.28
β% = 5.0 PEEMMASMH 82.34±3.76 0.043±0.007 62352.25±197.47
βς = 5.0 PEEMACOMC 76.43±4.43 0.041±0.008 62367.44±232.19
βν = 7.0 PEEMACOMP 74.65±4.34 0.043±0.007 47432.65±938.36
βξ = 7.0 PEEMACOMH 75.73±4.75 0.044±0.007 46783.43±949.27
βπ = 7.0 PEEMMASMP 72.47±4.76 0.042±0.007 46754.28±938.68
β% = 7.0 PEEMMASMH 75.83±4.37 0.043±0.006 46672.21±965.23
βς = 7.0 PEEMACOMC 74.86±4.25 0.041±0.006 46178.63±845.19

(c) Tsm = 3
βψ PF n̄alg %̄ ξ̄

βν = 1.0 PEEMACOMP 56.78±4.32 0.157±0.015 49436.26±798.43
βξ = 1.0 PEEMACOMH 52.23±4.56 0.146±0.015 48654.28±837.43
βπ = 1.0 PEEMMASMP 56.32±4.76 0.161±0.017 48654.38±832.69
β% = 1.0 PEEMMASMH 55.76±4.78 0.157±0.016 48685.36±826.79
βς = 1.0 PEEMACOMC 58.92±4.75 0.148±0.016 46678.54±823.56
βν = 3.0 PEEMACOMP 54.65±4.65 0.117±0.013 50343.32±765.34
βξ = 3.0 PEEMACOMH 56.87±4.69 0.118±0.013 51345.65±768.45
βπ = 3.0 PEEMMASMP 56.73±4.76 0.123±0.013 51346.76±765.38
β% = 3.0 PEEMMASMH 57.85±4.65 0.126±0.014 51657.34±758.34
βς = 3.0 PEEMACOMC 58.34±4.67 0.127±0.014 52348.97±763.10
βν = 3.5 PEEMACOMP 89.45±3.47 0.036±0.006 63234.65±197.45
βξ = 4.0 PEEMACOMH 88.12±3.48 0.037±0.007 62108.45±239.65
βπ = 4.5 PEEMMASMP 87.32±3.87 0.034±0.005 62430.26±232.68
β% = 4.0 PEEMMASMH 86.49±3.65 0.038±0.005 62450.32±238.46
βς = 5.0 PEEMACOMC 89.43±3.54 0.033±0.005 63346.65±187.58
βν = 4.5 PEEMACOMP 88.32±3.68 0.038±0.006 63245.67±237.54
βξ = 5.0 PEEMACOMH 88.83±3.47 0.037±0.006 62128.90±226.78
βπ = 3.5 PEEMMASMP 87.32±3.64 0.036±0.006 62234.56±224.67
β% = 4.0 PEEMMASMH 88.42±3.59 0.037±0.007 62456.53±218.56
βς = 4.0 PEEMACOMC 87.43±3.43 0.033±0.006 63241.58±189.54
βν = 5.0 PEEMACOMP 88.65±3.85 0.037±0.005 63245.78±189.47
βξ = 5.0 PEEMACOMH 87.32±3.65 0.037±0.006 62234.69±226.78
βπ = 5.0 PEEMMASMP 88.34±3.89 0.038±0.007 62347.97±226.48
β% = 5.0 PEEMMASMH 87.18±3.65 0.037±0.006 62569.35±225.54
βς = 5.0 PEEMACOMC 84.70±4.12 0.034±0.007 63257.89±196.37
βν = 7.0 PEEMACOMP 87.54±4.12 0.038±0.006 51679.32±785.43
βξ = 7.0 PEEMACOMH 86.43±4.34 0.036±0.006 51125.43±754.23
βπ = 7.0 PEEMMASMP 86.23±4.23 0.039±0.006 49765.43±784.53
β% = 7.0 PEEMMASMH 82.46±4.12 0.037±0.005 48965.38±768.43
βς = 7.0 PEEMACOMC 84.78±4.32 0.034±0.005 49875.34±743.36

(d) Tsm = 4
βψ PF n̄alg %̄ ξ̄

βν = 1.0 PEEMACOMP 58.54±4.32 0.136±0.014 52134.14±727.58
βξ = 1.0 PEEMACOMH 56.32±4.56 0.131±0.014 51235.95±764.36
βπ = 1.0 PEEMMASMP 57.73±4.76 0.134±0.015 49875.65±745.49
β% = 1.0 PEEMMASMH 59.27±4.78 0.136±0.016 48765.86±734.56
βς = 1.0 PEEMACOMC 61.85±4.75 0.132±0.015 46678.54±732.45
βν = 3.0 PEEMACOMP 61.87±4.65 0.102±0.013 52785.36±674.53
βξ = 3.0 PEEMACOMH 59.34±4.69 0.111±0.013 53456.25±687.32
βπ = 3.0 PEEMMASMP 58.43±4.76 0.114±0.012 53456.78±638.56
β% = 3.0 PEEMMASMH 61.54±4.65 0.112±0.012 54326.53±643.25
βς = 3.0 PEEMACOMC 61.68±4.67 0.117±0.012 54367.43±658.54
βν = 3.5 PEEMACOMP 95.47±1.47 0.033±0.005 63156.75±185.38
βξ = 4.0 PEEMACOMH 98.35±1.14 0.035±0.006 62136.54±215.76
βπ = 4.5 PEEMMASMP 96.84±1.37 0.030±0.004 62342.56±226.57
β% = 4.0 PEEMMASMH 98.49±1.12 0.030±0.004 62269.09±234.56
βς = 5.0 PEEMACOMC 94.79±1.54 0.032±0.005 64356.43±185.43
βν = 4.5 PEEMACOMP 94.47±1.68 0.034±0.005 63096.54±198.65
βξ = 5.0 PEEMACOMH 95.37±1.47 0.036±0.006 62132.34±223.73
βπ = 3.5 PEEMMASMP 97.86±1.24 0.031±0.005 62326.78±216.74
β% = 4.0 PEEMMASMH 96.44±1.39 0.032±0.005 62347.84±202.45
βς = 4.0 PEEMACOMC 95.34±1.45 0.029±0.004 64217.86±183.24
βν = 5.0 PEEMACOMP 96.74±1.45 0.033±0.005 63246.26±196.43
βξ = 5.0 PEEMACOMH 95.45±1.65 0.032±0.006 62028.68±216.98
βπ = 5.0 PEEMMASMP 94.24±1.69 0.034±0.006 62369.02±212.38
β% = 5.0 PEEMMASMH 93.32±1.85 0.033±0.005 62346.32±218.65
βς = 5.0 PEEMACOMC 92.34±1.96 0.032±0.005 64341.56±185.73
βν = 7.0 PEEMACOMP 90.45±3.12 0.034±0.006 51467.65±643.67
βξ = 7.0 PEEMACOMH 88.90±3.54 0.032±0.005 53457.32±689.02
βπ = 7.0 PEEMMASMP 91.78±3.23 0.033±0.005 52368.65±654.32
β% = 7.0 PEEMMASMH 90.37±3.10 0.034±0.004 50231.68±689.54
βς = 7.0 PEEMACOMC 89.45±3.32 0.030±0.004 52355.75±653.45
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Table D.1: Influence of parameter βψ on the n̄alg, %̄ and ξ̄ metrics, for 30 nodes and
Rg = 300 (cont.)

(e) Tsm = 5
βψ PF n̄alg %̄ ξ̄

βν = 1.0 PEEMACOMP 60.34±3.60 0.117±0.011 52879.32±683.45
βξ = 1.0 PEEMACOMH 58.64±3.86 0.126±0.012 51786.43±678.54
βπ = 1.0 PEEMMASMP 58.65±3.86 0.126±0.012 50326.67±635.67
β% = 1.0 PEEMMASMH 60.32±3.47 0.133±0.013 50546.43±657.43
βς = 1.0 PEEMACOMC 62.45±3.87 0.128±0.013 49647.54±643.54
βν = 3.0 PEEMACOMP 63.45±3.58 0.096±0.010 53567.43±654.32
βξ = 3.0 PEEMACOMH 63.48±3.68 0.089±0.009 53345.89±537.89
βπ = 3.0 PEEMMASMP 61.37±3.88 0.094±0.010 54583.24±548.79
β% = 3.0 PEEMMASMH 63.68±3.56 0.092±0.011 54789.32±547.87
βς = 3.0 PEEMACOMC 63.87±3.45 0.108±0.012 54786.54±547.86
βν = 3.5 PEEMACOMP 97.43±1.68 0.028±0.002 63236.43±192.34
βξ = 4.0 PEEMACOMH 98.43±1.34 0.031±0.003 62096.56±217.65
βπ = 4.5 PEEMMASMP 97.65±1.54 0.029±0.003 62247.86±227.86
β% = 4.0 PEEMMASMH 98.78±1.76 0.029±0.003 62436.78±226.78
βς = 5.0 PEEMACOMC 96.78±1.67 0.028±0.002 64786.54±176.54
βν = 4.5 PEEMACOMP 97.65±1.74 0.027±0.002 63245.67±183.42
βξ = 5.0 PEEMACOMH 96.54±1.54 0.031±0.003 62158.65±216.54
βπ = 3.5 PEEMMASMP 96.78±1.76 0.030±0.003 62457.89±192.34
β% = 4.0 PEEMMASMH 97.98±1.67 0.030±0.003 62458.64±186.75
βς = 4.0 PEEMACOMC 96.78±1.54 0.029±0.002 64658.54±175.67
βν = 5.0 PEEMACOMP 97.86±1.89 0.026±0.002 62785.45±194.56
βξ = 5.0 PEEMACOMH 95.90±1.67 0.029±0.002 62216.54±209.63
βπ = 5.0 PEEMMASMP 98.64±1.35 0.028±0.002 62439.97±196.75
β% = 5.0 PEEMMASMH 96.43±1.67 0.029±0.003 62215.46±197.85
βς = 5.0 PEEMACOMC 97.85±1.22 0.028±0.002 64217.87±176.54
βν = 7.0 PEEMACOMP 90.45±4.12 0.028±0.002 52546.54±563.45
βξ = 7.0 PEEMACOMH 88.90±4.34 0.031±0.002 55748.75±579.35
βπ = 7.0 PEEMMASMP 91.78±4.23 0.028±0.002 53678.76±567.89
β% = 7.0 PEEMMASMH 90.37±4.12 0.029±0.003 52358.54±578.90
βς = 7.0 PEEMACOMC 89.45±4.32 0.028±0.003 53687.54±543.87

(f) Tsm = 6
βψ PF n̄alg %̄ ξ̄

βν = 1.0 PEEMACOMP 62.48±2.78 0.089±0.010 54879.23±568.39
βξ = 1.0 PEEMACOMH 63.47±2.78 0.102±0.011 53568.65±589.26
βπ = 1.0 PEEMMASMP 62.47±2.68 0.113±0.011 53324.68±538.75
β% = 1.0 PEEMMASMH 64.54±2.46 0.115±0.012 55497.43±568.64
βς = 1.0 PEEMACOMC 64.67±2.75 0.117±0.012 55665.78±589.43
βν = 3.0 PEEMACOMP 63.89±2.48 0.087±0.009 56745.32±568.54
βξ = 3.0 PEEMACOMH 65.76±2.69 0.085±0.008 56453.23±575.68
βπ = 3.0 PEEMMASMP 64.68±2.84 0.082±0.007 56554.82±586.74
β% = 3.0 PEEMMASMH 64.79±2.58 0.081±0.008 57894.32±536.57
βς = 3.0 PEEMACOMC 64.58±2.57 0.092±0.010 56778.45±556.90
βν = 3.5 PEEMACOMP 98.75±0.42 0.028±0.002 63215.43±187.45
βξ = 4.0 PEEMACOMH 98.64±0.38 0.031±0.003 62226.53±209.84
βπ = 4.5 PEEMMASMP 98.65±0.52 0.028±0.002 62453.76±223.46
β% = 4.0 PEEMMASMH 98.67±0.51 0.027±0.002 62432.45±210.65
βς = 5.0 PEEMACOMC 98.75±0.46 0.029±0.002 64879.07±186.74
βν = 4.5 PEEMACOMP 98.41±0.57 0.027±0.002 63198.04±176.84
βξ = 5.0 PEEMACOMH 98.63±0.43 0.030±0.003 62137.64±196.74
βπ = 3.5 PEEMMASMP 97.84±0.58 0.031±0.003 62327.89±186.59
β% = 4.0 PEEMMASMH 98.75±0.58 0.029±0.002 62532.46±178.65
βς = 4.0 PEEMACOMC 98.76±0.48 0.028±0.002 64784.56±168.54
βν = 5.0 PEEMACOMP 98.75±0.45 0.028±0.002 63246.53±183.47
βξ = 5.0 PEEMACOMH 98.76±0.49 0.029±0.003 62068.65±187.08
βπ = 5.0 PEEMMASMP 98.75±0.52 0.028±0.002 62513.40±194.56
β% = 5.0 PEEMMASMH 97.83±0.47 0.028±0.003 62456.78±195.78
βς = 5.0 PEEMACOMC 98.54±0.43 0.027±0.002 64479.65±185.60
βν = 7.0 PEEMACOMP 94.58±1.28 0.030±0.003 55591.23±467.87
βξ = 7.0 PEEMACOMH 96.54±1.35 0.029±0.002 56489.78±487.98
βπ = 7.0 PEEMMASMP 96.78±1.41 0.031±0.002 55830.65±538.76
β% = 7.0 PEEMMASMH 94.56±1.34 0.028±0.003 54679.43±587.65
βς = 7.0 PEEMACOMC 95.64±1.42 0.027±0.002 55892.36±564.38
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Table D.2: Influence of parameter βψ on the n̄alg, %̄ and ξ̄ metrics, for 30 nodes and
Rg = 500

(a) Tsm = 1
βψ PF n̄alg %̄ ξ̄

βν = 1.0 PEEMACOMP 48.32±5.59 0.235±0.024 44569.87±965.43
βξ = 1.0 PEEMACOMH 46.34±5.71 0.242±0.024 42357.98±987.39
βπ = 1.0 PEEMMASMP 48.64±5.63 0.229±0.023 42671.70±908.12
β% = 1.0 PEEMMASMH 46.74±5.57 0.245±0.025 40178.68±957.52
βς = 1.0 PEEMACOMC 47.84±5.79 0.254±0.025 43678.12±945.68
βν = 3.0 PEEMACOMP 49.53±5.49 0.217±0.023 44568.93±938.50
βξ = 3.0 PEEMACOMH 46.74±5.82 0.229±0.023 43476.90±929.02
βπ = 3.0 PEEMMASMP 47.54±5.49 0.245±0.025 43412.96±949.25
β% = 3.0 PEEMMASMH 45.32±5.67 0.221±0.022 44678.98±927.54
βς = 3.0 PEEMACOMC 47.21±5.83 0.246±0.024 43528.95±965.43
βν = 3.5 PEEMACOMP 80.57±4.27 0.062±0.008 63257.87±238.69
βξ = 4.0 PEEMACOMH 76.53±4.31 0.065±0.009 63456.87±239.78
βπ = 4.5 PEEMMASMP 73.57±4.37 0.064±0.008 63468.96±243.74
β% = 4.0 PEEMMASMH 76.43±4.29 0.067±0.010 63578.98±239.39
βς = 5.0 PEEMACOMC 78.65±4.37 0.078±0.012 63412.96±243.29
βν = 4.5 PEEMACOMP 83.12±4.26 0.064±0.009 63689.09±238.20
βξ = 5.0 PEEMACOMH 81.45±4.10 0.063±0.008 63578.95±258.93
βπ = 3.5 PEEMMASMP 77.65±4.53 0.062±0.008 63689.02±232.78
β% = 4.0 PEEMMASMH 78.61±4.34 0.069±0.010 63689.06±265.32
βς = 4.0 PEEMACOMC 80.43±4.26 0.076±0.011 63789.01±243.21
βν = 5.0 PEEMACOMP 79.54±4.39 0.060±0.007 63687.86±245.89
βξ = 5.0 PEEMACOMH 78.78±4.38 0.063±0.008 63687.98±252.90
βπ = 5.0 PEEMMASMP 79.68±4.48 0.062±0.008 63678.98±268.95
β% = 5.0 PEEMMASMH 78.59±4.63 0.065±0.009 63768.38±234.78
βς = 5.0 PEEMACOMC 82.43±4.72 0.075±0.012 63768.47±246.85
βν = 7.0 PEEMACOMP 62.37±4.89 0.059±0.008 43483.85±977.58
βξ = 7.0 PEEMACOMH 65.43±5.27 0.064±0.009 42568.87±948.69
βπ = 7.0 PEEMMASMP 64.68±4.98 0.062±0.008 43578.89±967.74
β% = 7.0 PEEMMASMH 67.54±4.67 0.065±0.008 42316.89±917.95
βς = 7.0 PEEMACOMC 67.43±4.75 0.075±0.009 42478.87±898.64

(b) Tsm = 2
βψ PF n̄alg %̄ ξ̄

βν = 1.0 PEEMACOMP 51.23±5.38 0.201±0.022 46873.21±864.29
βξ = 1.0 PEEMACOMH 49.47±5.81 0.228±0.023 44578.27±827.84
βπ = 1.0 PEEMMASMP 49.54±5.37 0.217±0.022 44587.23±873.52
β% = 1.0 PEEMMASMH 48.79±5.23 0.236±0.024 43568.26±827.48
βς = 1.0 PEEMACOMC 49.32±5.47 0.234±0.024 46237.53±824.56
βν = 3.0 PEEMACOMP 48.31±5.57 0.174±0.018 46587.32±857.48
βξ = 3.0 PEEMACOMH 49.37±5.51 0.182±0.019 46542.76±837.21
βπ = 3.0 PEEMMASMP 48.43±5.41 0.169±0.019 44528.43±853.28
β% = 3.0 PEEMMASMH 49.42±5.38 0.186±0.019 46632.94±836.71
βς = 3.0 PEEMACOMC 48.31±5.49 0.158±0.018 44551.23±853.21
βν = 3.5 PEEMACOMP 84.59±3.84 0.050±0.007 63835.31±242.58
βξ = 4.0 PEEMACOMH 82.45±3.78 0.054±0.008 63765.38±229.36
βπ = 4.5 PEEMMASMP 85.32±3.74 0.052±0.008 63698.35±249.54
β% = 4.0 PEEMMASMH 87.41±3.51 0.051±0.008 63854.32±232.35
βς = 5.0 PEEMACOMC 83.67±3.48 0.058±0.009 63764.28±231.56
βν = 4.5 PEEMACOMP 86.31±3.75 0.052±0.007 63785.34±242.78
βξ = 5.0 PEEMACOMH 85.83±3.60 0.053±0.008 63875.32±229.51
βπ = 3.5 PEEMMASMP 82.47±3.87 0.052±0.008 63865.31±243.76
β% = 4.0 PEEMMASMH 83.68±3.74 0.050±0.008 63879.32±242.75
βς = 4.0 PEEMACOMC 84.59±3.67 0.057±0.009 63879.41±253.75
βν = 5.0 PEEMACOMP 83.76±3.87 0.051±0.007 63876.32±246.28
βξ = 5.0 PEEMACOMH 82.47±3.60 0.050±0.007 63764.21±242.64
βπ = 5.0 PEEMMASMP 82.39±3.59 0.053±0.008 63287.48±264.76
β% = 5.0 PEEMMASMH 83.60±3.68 0.049±0.006 63872.46±231.64
βς = 5.0 PEEMACOMC 84.65±3.89 0.058±0.009 63897.36±227.85
βν = 7.0 PEEMACOMP 65.56±5.23 0.052±0.007 46783.21±847.32
βξ = 7.0 PEEMACOMH 68.43±5.06 0.053±0.008 45612.67±816.93
βπ = 7.0 PEEMMASMP 67.40±4.94 0.051±0.008 45783.54±814.54
β% = 7.0 PEEMMASMH 68.72±4.28 0.050±0.007 45734.21±823.74
βς = 7.0 PEEMACOMC 69.03±4.43 0.056±0.008 46474.32±784.53

(c) Tsm = 3
βψ PF n̄alg %̄ ξ̄

βν = 1.0 PEEMACOMP 53.42±5.28 0.178±0.017 48725.32±708.32
βξ = 1.0 PEEMACOMH 52.31±5.41 0.203±0.018 47432.65±742.54
βπ = 1.0 PEEMMASMP 52.34±5.26 0.202±0.017 46743.28±764.52
β% = 1.0 PEEMMASMH 53.48±5.12 0.212±0.019 46734.19±791.36
βς = 1.0 PEEMACOMC 53.45±5.27 0.209±0.018 48684.32±754.18
βν = 3.0 PEEMACOMP 54.32±5.54 0.152±0.015 49321.32±758.32
βξ = 3.0 PEEMACOMH 56.78±5.28 0.163±0.016 48987.54±798.43
βπ = 3.0 PEEMMASMP 54.67±5.43 0.142±0.014 48743.12±783.21
β% = 3.0 PEEMMASMH 53.68±5.42 0.158±0.015 49876.54±768.34
βς = 3.0 PEEMACOMC 52.78±5.21 0.147±0.015 44843.25±756.32
βν = 3.5 PEEMACOMP 87.43±3.65 0.045±0.006 64321.43±186.32
βξ = 4.0 PEEMACOMH 86.87±3.52 0.048±0.006 64762.43±189.32
βπ = 4.5 PEEMMASMP 87.32±3.42 0.049±0.007 64528.96±183.27
β% = 4.0 PEEMMASMH 88.45±3.31 0.045±0.006 64876.32±168.32
βς = 5.0 PEEMACOMC 86.72±3.25 0.048±0.006 64326.54±179.34
βν = 4.5 PEEMACOMP 88.92±3.27 0.043±0.005 64679.03±189.43
βξ = 5.0 PEEMACOMH 87.21±3.46 0.045±0.005 64328.54±183.46
βπ = 3.5 PEEMMASMP 86.43±3.29 0.048±0.006 64578.21±197.32
β% = 4.0 PEEMMASMH 85.87±3.45 0.046±0.006 64789.21±192.42
βς = 4.0 PEEMACOMC 87.62±3.32 0.047±0.006 64231.65±193.45
βν = 5.0 PEEMACOMP 86.73±3.61 0.045±0.004 64231.85±197.54
βξ = 5.0 PEEMACOMH 85.82±3.42 0.047±0.006 64326.42±178.43
βπ = 5.0 PEEMMASMP 86.74±3.32 0.048±0.006 64167.42±189.34
β% = 5.0 PEEMMASMH 87.32±3.41 0.049±0.007 64231.42±185.32
βς = 5.0 PEEMACOMC 86.83±3.34 0.046±0.005 63897.36±194.32
βν = 7.0 PEEMACOMP 73.26±4.41 0.044±0.006 48653.23±749.85
βξ = 7.0 PEEMACOMH 74.38±4.21 0.047±0.006 48864.28±738.21
βπ = 7.0 PEEMMASMP 73.57±4.45 0.048±0.005 47632.13±732.51
β% = 7.0 PEEMMASMH 72.65±4.21 0.046±0.006 48235.24±725.43
βς = 7.0 PEEMACOMC 73.31±4.13 0.047±0.006 47234.21±674.35

(d) Tsm = 4
βψ PF n̄alg %̄ ξ̄

βν = 1.0 PEEMACOMP 56.32±4.65 0.154±0.015 51367.42±524.67
βξ = 1.0 PEEMACOMH 54.52±4.76 0.168±0.017 51523.78±563.28
βπ = 1.0 PEEMMASMP 55.21±4.86 0.174±0.016 51478.32±568.24
β% = 1.0 PEEMMASMH 54.87±4.54 0.178±0.018 52367.81±537.82
βς = 1.0 PEEMACOMC 55.76±4.32 0.173±0.016 52418.34±572.36
βν = 3.0 PEEMACOMP 58.54±4.23 0.137±0.013 51764.34±528.54
βξ = 3.0 PEEMACOMH 58.64±4.56 0.148±0.014 51378.41±548.39
βπ = 3.0 PEEMMASMP 58.36±4.54 0.137±0.012 51378.78±537.27
β% = 3.0 PEEMMASMH 57.33±4.79 0.142±0.013 52317.48±549.23
βς = 3.0 PEEMACOMC 57.64±4.37 0.141±0.013 48487.43±578.43
βν = 3.5 PEEMACOMP 91.32±1.23 0.043±0.004 64893.56±169.32
βξ = 4.0 PEEMACOMH 92.54±1.28 0.044±0.005 64732.18±179.32
βπ = 4.5 PEEMMASMP 92.45±1.52 0.044±0.005 64643.28±184.28
β% = 4.0 PEEMMASMH 92.45±1.27 0.042±0.004 64743.28±165.87
βς = 5.0 PEEMACOMC 94.41±1.18 0.046±0.006 64769.32±167.32
βν = 4.5 PEEMACOMP 92.34±1.42 0.040±0.004 64784.39±179.32
βξ = 5.0 PEEMACOMH 92.31±1.48 0.042±0.005 64328.54±167.42
βπ = 3.5 PEEMMASMP 93.42±1.28 0.043±0.005 64652.81±158.36
β% = 4.0 PEEMMASMH 91.24±1.59 0.043±0.005 64692.40±175.32
βς = 4.0 PEEMACOMC 92.84±1.56 0.046±0.006 64467.28±183.56
βν = 5.0 PEEMACOMP 92.45±1.42 0.041±0.004 64683.68±187.35
βξ = 5.0 PEEMACOMH 93.56±1.69 0.043±0.005 64573.89±168.43
βπ = 5.0 PEEMMASMP 94.31±1.58 0.044±0.004 64358.28±175.23
β% = 5.0 PEEMMASMH 93.45±1.42 0.043±0.005 64487.29±168.34
βς = 5.0 PEEMACOMC 94.21±1.23 0.045±0.005 64468.37±176.26
βν = 7.0 PEEMACOMP 76.42±3.48 0.043±0.004 52678.38±548.84
βξ = 7.0 PEEMACOMH 77.53±3.67 0.044±0.005 51278.39±532.65
βπ = 7.0 PEEMMASMP 76.27±3.53 0.042±0.004 52689.30±548.27
β% = 7.0 PEEMMASMH 75.43±3.67 0.043±0.005 52378.87±546.32
βς = 7.0 PEEMACOMC 77.25±3.45 0.046±0.005 51379.43±568.32

310

 
 
 



Table D.2: Influence of parameter βψ on the n̄alg, %̄ and ξ̄ metrics, for 30 nodes and
Rg = 500 (cont.)

(e) Tsm = 5
βψ PF n̄alg %̄ ξ̄

βν = 1.0 PEEMACOMP 62.36±3.68 0.136±0.012 52468.32±462.63
βξ = 1.0 PEEMACOMH 60.36±3.87 0.142±0.013 51679.43±478.32
βπ = 1.0 PEEMMASMP 59.41±3.75 0.141±0.013 51743.28±482.46
β% = 1.0 PEEMMASMH 58.95±3.68 0.138±0.012 53458.21±457.21
βς = 1.0 PEEMACOMC 58.45±3.64 0.139±0.012 53679.21±458.43
βν = 3.0 PEEMACOMP 60.43±3.59 0.113±0.011 53578.54±437.85
βξ = 3.0 PEEMACOMH 61.69±3.53 0.121±0.011 53532.89±468.42
βπ = 3.0 PEEMMASMP 62.78±3.67 0.116±0.010 52476.32±478.34
β% = 3.0 PEEMMASMH 63.47±3.73 0.123±0.010 53648.21±437.84
βς = 3.0 PEEMACOMC 62.40±3.65 0.117±0.009 52678.32±462.74
βν = 3.5 PEEMACOMP 94.53±1.16 0.040±0.004 65135.84±162.48
βξ = 4.0 PEEMACOMH 94.79±1.14 0.042±0.004 64876.35±160.34
βπ = 4.5 PEEMMASMP 94.78±1.21 0.042±0.005 64967.43±168.36
β% = 4.0 PEEMMASMH 94.76±1.13 0.043±0.004 64978.32±157.21
βς = 5.0 PEEMACOMC 95.67±1.02 0.044±0.005 64896.85±158.32
βν = 4.5 PEEMACOMP 95.28±1.32 0.041±0.004 64876.48±168.03
βξ = 5.0 PEEMACOMH 96.73±1.28 0.042±0.005 64768.36±179.32
βπ = 3.5 PEEMMASMP 95.67±1.28 0.041±0.004 64785.35±169.21
β% = 4.0 PEEMMASMH 94.61±1.41 0.041±0.004 64895.54±175.32
βς = 4.0 PEEMACOMC 95.72±1.23 0.042±0.004 64869.45±178.42
βν = 5.0 PEEMACOMP 94.68±1.25 0.041±0.004 65130.74±185.74
βξ = 5.0 PEEMACOMH 95.73±1.23 0.042±0.004 64768.32±162.69
βπ = 5.0 PEEMMASMP 95.48±1.12 0.044±0.006 64673.40±172.68
β% = 5.0 PEEMMASMH 94.68±1.03 0.041±0.004 64789.48±171.28
βς = 5.0 PEEMACOMC 96.71±1.02 0.041±0.005 64867.43±172.43
βν = 7.0 PEEMACOMP 78.43±2.96 0.042±0.005 53674.32±445.32
βξ = 7.0 PEEMACOMH 78.32±2.68 0.041±0.004 54527.85±476.43
βπ = 7.0 PEEMMASMP 78.35±2.89 0.041±0.004 54749.32±487.45
β% = 7.0 PEEMMASMH 77.93±2.74 0.042±0.004 54638.32±478.45
βς = 7.0 PEEMACOMC 79.42±2.56 0.041±0.005 53689.32±468.47

(f) Tsm = 6
βψ PF n̄alg %̄ ξ̄

βν = 1.0 PEEMACOMP 66.47±2.59 0.117±0.012 53470.53±354.72
βξ = 1.0 PEEMACOMH 64.21±2.68 0.125±0.013 52548.54±381.43
βπ = 1.0 PEEMMASMP 62.83±2.96 0.121±0.012 52876.49±378.43
β% = 1.0 PEEMMASMH 64.89±2.86 0.119±0.011 54679.36±375.32
βς = 1.0 PEEMACOMC 64.56±2.75 0.123±0.011 55428.21±368.46
βν = 3.0 PEEMACOMP 65.32±2.73 0.087±0.010 55769.32±378.54
βξ = 3.0 PEEMACOMH 64.75±2.54 0.086±0.008 54628.32±359.56
βπ = 3.0 PEEMMASMP 66.48±2.95 0.092±0.009 53528.49±367.39
β% = 3.0 PEEMMASMH 65.69±2.86 0.086±0.009 54619.43±376.39
βς = 3.0 PEEMACOMC 65.37±2.68 0.067±0.008 54783.91±387.43
βν = 3.5 PEEMACOMP 98.43±0.36 0.038±0.004 65132.56±173.24
βξ = 4.0 PEEMACOMH 98.65±0.36 0.040±0.004 64917.65±166.43
βπ = 4.5 PEEMMASMP 98.63±0.32 0.039±0.005 65108.41±172.54
β% = 4.0 PEEMMASMH 98.32±0.28 0.039±0.005 64995.48±164.38
βς = 5.0 PEEMACOMC 97.63±0.35 0.040±0.005 65216.75±168.32
βν = 4.5 PEEMACOMP 97.85±0.38 0.039±0.005 65218.28±168.21
βξ = 5.0 PEEMACOMH 98.43±0.42 0.041±0.005 64875.49±182.46
βπ = 3.5 PEEMMASMP 97.54±0.39 0.039±0.004 64842.18±172.47
β% = 4.0 PEEMMASMH 98.43±0.43 0.039±0.004 64978.42±179.21
βς = 4.0 PEEMACOMC 97.43±0.38 0.040±0.005 65237.65±164.28
βν = 5.0 PEEMACOMP 98.56±0.38 0.040±0.004 65174.29±174.53
βξ = 5.0 PEEMACOMH 97.54±0.37 0.040±0.005 64875.34±157.42
βπ = 5.0 PEEMMASMP 98.38±0.36 0.041±0.005 64843.76±164.86
β% = 5.0 PEEMMASMH 96.94±0.34 0.039±0.004 64875.39±168.43
βς = 5.0 PEEMACOMC 98.45±0.32 0.038±0.005 65328.52±167.43
βν = 7.0 PEEMACOMP 82.54±1.70 0.039±0.005 55734.85±379.42
βξ = 7.0 PEEMACOMH 84.53±1.59 0.039±0.004 56387.51±372.59
βπ = 7.0 PEEMMASMP 82.38±1.48 0.040±0.005 55841.74±347.89
β% = 7.0 PEEMMASMH 84.32±1.67 0.041±0.005 55874.32±386.42
βς = 7.0 PEEMACOMC 83.28±1.78 0.040±0.004 55278.32±365.74
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Table D.3: Influence of parameter βψ on the n̄alg, %̄ and ξ̄ metrics, for 30 nodes and
Rg = 800

(a) Tsm = 1
βψ PF n̄alg %̄ ξ̄

βν = 1.0 PEEMACOMP 44.65±5.92 0.264±0.027 42316.37±942.54
βξ = 1.0 PEEMACOMH 41.68±5.97 0.278±0.028 41235.65±960.32
βπ = 1.0 PEEMMASMP 45.78±6.12 0.247±0.026 41674.23±957.36
β% = 1.0 PEEMMASMH 45.37±6.27 0.259±0.027 39123.45±976.21
βς = 1.0 PEEMACOMC 46.57±6.31 0.239±0.025 41345.43±967.32
βν = 3.0 PEEMACOMP 47.34±6.13 0.232±0.023 42456.21±939.42
βξ = 3.0 PEEMACOMH 40.32±5.38 0.255±0.026 41326.48±942.65
βπ = 3.0 PEEMMASMP 45.78±6.26 0.245±0.024 41267.74±953.48
β% = 3.0 PEEMMASMH 44.12±6.23 0.234±0.023 41356.27±937.21
βς = 3.0 PEEMACOMC 43.56±5.97 0.257±0.026 42347.21±987.46
βν = 3.5 PEEMACOMP 77.43±3.82 0.121±0.013 62457.75±256.32
βξ = 4.0 PEEMACOMH 51.38±5.68 0.158±0.021 62453.27±253.21
βπ = 4.5 PEEMMASMP 76.84±3.75 0.118±0.012 62435.67±260.34
β% = 4.0 PEEMMASMH 74.38±3.85 0.117±0.012 62456.87±263.52
βς = 5.0 PEEMACOMC 75.76±3.95 0.145±0.019 62121.45±264.32
βν = 4.5 PEEMACOMP 78.34±3.25 0.124±0.012 62347.21±268.32
βξ = 5.0 PEEMACOMH 52.65±5.45 0.157±0.021 62413.67±276.32
βπ = 3.5 PEEMMASMP 76.38±3.76 0.123±0.012 62437.12±265.32
β% = 4.0 PEEMMASMH 73.76±3.98 0.120±0.013 62357.24±246.32
βς = 4.0 PEEMACOMC 75.83±3.68 0.147±0.019 62179.58±259.32
βν = 5.0 PEEMACOMP 76.48±3.79 0.123±0.013 62318.43±252.31
βξ = 5.0 PEEMACOMH 49.36±5.62 0.160±0.020 62568.43±263.20
βπ = 5.0 PEEMMASMP 72.57±3.87 0.124±0.013 62537.95±267.34
β% = 5.0 PEEMMASMH 74.69±3.86 0.122±0.013 62457.32±252.43
βς = 5.0 PEEMACOMC 76.38±3.92 0.152±0.018 62168.65±258.43
βν = 7.0 PEEMACOMP 60.27±4.42 0.122±0.013 41357.43±921.54
βξ = 7.0 PEEMACOMH 45.65±5.93 0.162±0.019 40235.42±907.43
βπ = 7.0 PEEMMASMP 61.28±4.32 0.118±0.013 42315.32±975.75
β% = 7.0 PEEMMASMH 63.67±4.42 0.117±0.012 41562.78±932.43
βς = 7.0 PEEMACOMC 62.67±4.46 0.147±0.017 41246.32±923.84

(b) Tsm = 2
βψ PF n̄alg %̄ ξ̄

βν = 1.0 PEEMACOMP 44.75±5.23 0.242±0.024 44572.48±875.32
βξ = 1.0 PEEMACOMH 38.27±4.78 0.258±0.026 42568.32±865.34
βπ = 1.0 PEEMMASMP 44.37±5.78 0.229±0.023 44684.32±874.23
β% = 1.0 PEEMMASMH 43.28±5.56 0.227±0.023 42168.38±891.25
βς = 1.0 PEEMACOMC 44.89±5.23 0.218±0.021 43451.56±864.29
βν = 3.0 PEEMACOMP 48.34±5.78 0.221±0.020 45628.92±875.43
βξ = 3.0 PEEMACOMH 41.85±5.61 0.238±0.022 44567.38±859.32
βπ = 3.0 PEEMMASMP 46.87±5.43 0.221±0.021 45672.49±867.32
β% = 3.0 PEEMMASMH 46.38±5.74 0.216±0.019 43563.81±879.43
βς = 3.0 PEEMACOMC 46.39±5.53 0.236±0.023 44671.49±869.32
βν = 3.5 PEEMACOMP 80.43±2.56 0.101±0.014 63215.37±198.56
βξ = 4.0 PEEMACOMH 44.65±5.34 0.162±0.017 63458.39±187.34
βπ = 4.5 PEEMMASMP 79.54±2.79 0.106±0.012 63451.87±189.46
β% = 4.0 PEEMMASMH 77.31±2.67 0.107±0.011 63486.83±196.36
βς = 5.0 PEEMACOMC 76.38±2.58 0.134±0.018 63151.78±197.34
βν = 4.5 PEEMACOMP 79.87±2.58 0.105±0.013 63268.54±185.64
βξ = 5.0 PEEMACOMH 46.32±5.32 0.164±0.018 63478.85±179.54
βπ = 3.5 PEEMMASMP 79.32±2.79 0.108±0.012 63679.36±193.45
β% = 4.0 PEEMMASMH 76.86±2.48 0.106±0.011 63589.27±196.38
βς = 4.0 PEEMACOMC 77.43±2.58 0.132±0.018 63479.26±185.32
βν = 5.0 PEEMACOMP 78.65±2.58 0.103±0.012 63456.28±189.34
βξ = 5.0 PEEMACOMH 45.21±5.23 0.161±0.017 63268.48±178.43
βπ = 5.0 PEEMMASMP 77.54±2.76 0.107±0.012 63467.28±179.32
β% = 5.0 PEEMMASMH 79.76±2.48 0.104±0.011 63542.67±168.04
βς = 5.0 PEEMACOMC 78.43±2.56 0.135±0.017 63417.43±185.39
βν = 7.0 PEEMACOMP 64.35±4.12 0.105±0.012 44576.32±823.45
βξ = 7.0 PEEMACOMH 47.21±5.46 0.164±0.018 42478.32±826.74
βπ = 7.0 PEEMMASMP 64.73±4.08 0.110±0.013 43578.31±858.32
β% = 7.0 PEEMMASMH 63.89±4.25 0.103±0.011 44562.38±854.10
βς = 7.0 PEEMACOMC 63.78±4.13 0.132±0.016 44267.21±843.76

(c) Tsm = 3
βψ PF n̄alg %̄ ξ̄

βν = 1.0 PEEMACOMP 47.43±5.32 0.213±0.019 46432.78±764.35
βξ = 1.0 PEEMACOMH 42.87±5.67 0.224±0.021 45648.35±785.84
βπ = 1.0 PEEMMASMP 48.32±5.59 0.213±0.020 45876.48±748.63
β% = 1.0 PEEMMASMH 46.52±5.48 0.208±0.020 44675.39±743.56
βς = 1.0 PEEMACOMC 47.32±5.64 0.203±0.019 45673.28±785.32
βν = 3.0 PEEMACOMP 49.32±5.31 0.204±0.019 47845.21±754.28
βξ = 3.0 PEEMACOMH 43.58±5.73 0.210±0.020 47641.09±765.36
βπ = 3.0 PEEMMASMP 49.32±5.63 0.196±0.019 46539.27±785.34
β% = 3.0 PEEMMASMH 48.31±5.47 0.189±0.018 46638.28±786.34
βς = 3.0 PEEMACOMC 48.65±5.31 0.175±0.018 46861.28±756.28
βν = 3.5 PEEMACOMP 87.23±2.37 0.090±0.013 64231.57±187.45
βξ = 4.0 PEEMACOMH 61.32±4.87 0.117±0.015 64523.87±189.43
βπ = 4.5 PEEMMASMP 85.64±2.68 0.092±0.014 64376.21±178.34
β% = 4.0 PEEMMASMH 87.32±2.46 0.093±0.013 64231.76±172.72
βς = 5.0 PEEMACOMC 87.34±2.43 0.113±0.016 64326.75±178.43
βν = 4.5 PEEMACOMP 88.34±2.38 0.089±0.014 64532.62±183.35
βξ = 5.0 PEEMACOMH 62.81±4.75 0.121±0.016 64325.66±189.12
βπ = 3.5 PEEMMASMP 84.19±2.57 0.095±0.015 64512.64±190.32
β% = 4.0 PEEMMASMH 85.23±2.42 0.097±0.015 64235.68±191.23
βς = 4.0 PEEMACOMC 86.31±2.43 0.116±0.015 64325.57±186.64
βν = 5.0 PEEMACOMP 88.74±2.21 0.093±0.013 64231.65±192.54
βξ = 5.0 PEEMACOMH 63.71±4.73 0.123±0.016 64321.67±178.32
βπ = 5.0 PEEMMASMP 87.43±2.45 0.097±0.013 64317.54±187.24
β% = 5.0 PEEMMASMH 85.63±2.32 0.098±0.014 64326.64±172.43
βς = 5.0 PEEMACOMC 84.36±2.34 0.118±0.017 64587.21±185.39
βν = 7.0 PEEMACOMP 69.37±4.49 0.096±0.013 46367.21±734.23
βξ = 7.0 PEEMACOMH 53.58±5.56 0.126±0.018 45427.34±768.34
βπ = 7.0 PEEMMASMP 67.39±4.68 0.096±0.012 44532.76±758.32
β% = 7.0 PEEMMASMH 66.37±4.47 0.095±0.012 44562.38±784.20
βς = 7.0 PEEMACOMC 64.75±4.32 0.116±0.017 45789.32±754.32

(d) Tsm = 4
βψ PF n̄alg %̄ ξ̄

βν = 1.0 PEEMACOMP 52.43±4.23 0.178±0.018 48569.34±645.28
βξ = 1.0 PEEMACOMH 43.48±4.54 0.186±0.017 47834.23±648.23
βπ = 1.0 PEEMMASMP 51.67±4.32 0.202±0.019 47562.39±648.34
β% = 1.0 PEEMMASMH 48.32±4.38 0.197±0.019 46739.32±648.23
βς = 1.0 PEEMACOMC 48.17±4.42 0.186±0.018 46893.58±657.21
βν = 3.0 PEEMACOMP 51.28±4.25 0.172±0.017 47987.34±674.23
βξ = 3.0 PEEMACOMH 48.63±4.41 0.164±0.016 47876.23±679.24
βπ = 3.0 PEEMMASMP 51.28±4.23 0.186±0.018 46876.32±648.23
β% = 3.0 PEEMMASMH 51.67±4.31 0.188±0.018 47634.18±648.62
βς = 3.0 PEEMACOMC 52.48±4.27 0.162±0.017 47892.43±657.34
βν = 3.5 PEEMACOMP 90.24±1.78 0.080±0.008 65324.74±167.34
βξ = 4.0 PEEMACOMH 48.79±4.34 0.145±0.015 64875.23±169.32
βπ = 4.5 PEEMMASMP 90.24±1.67 0.083±0.008 65123.54±172.46
β% = 4.0 PEEMMASMH 91.68±1.65 0.084±0.009 64897.32±182.34
βς = 5.0 PEEMACOMC 91.43±1.72 0.106±0.009 64875.93±164.67
βν = 4.5 PEEMACOMP 91.54±1.56 0.081±0.008 65134.26±157.21
βξ = 5.0 PEEMACOMH 49.23±4.34 0.147±0.016 64587.21±186.39
βπ = 3.5 PEEMMASMP 90.23±1.47 0.082±0.008 65236.28±175.31
β% = 4.0 PEEMMASMH 90.45±1.38 0.083±0.009 64468.19±176.34
βς = 4.0 PEEMACOMC 89.38±1.42 0.107±0.009 64673.82±184.52
βν = 5.0 PEEMACOMP 91.54±1.35 0.079±0.008 65126.38±183.41
βξ = 5.0 PEEMACOMH 48.25±4.45 0.151±0.016 64437.75±176.34
βπ = 5.0 PEEMMASMP 91.32±1.36 0.083±0.008 65178.34±178.34
β% = 5.0 PEEMMASMH 89.43±1.37 0.083±0.008 64258.54±164.28
βς = 5.0 PEEMACOMC 88.45±1.27 0.108±0.009 64731.84±163.58
βν = 7.0 PEEMACOMP 91.48±1.38 0.076±0.007 48356.75±623.58
βξ = 7.0 PEEMACOMH 50.32±4.37 0.154±0.015 47834.28±628.56
βπ = 7.0 PEEMMASMP 91.45±1.37 0.085±0.008 46735.18±684.32
β% = 7.0 PEEMMASMH 87.23±1.42 0.087±0.009 46438.29±672.38
βς = 7.0 PEEMACOMC 92.42±1.48 0.109±0.010 46849.03±673.61
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Table D.3: Influence of parameter βψ on the n̄alg, %̄ and ξ̄ metrics, for 30 nodes and
Rg = 800 (cont.)

(e) Tsm = 5
βψ PF n̄alg %̄ ξ̄

βν = 1.0 PEEMACOMP 56.89±3.78 0.153±0.016 51678.29±546.58
βξ = 1.0 PEEMACOMH 46.48±4.43 0.156±0.015 52368.21±548.28
βπ = 1.0 PEEMMASMP 54.87±3.65 0.180±0.018 50158.38±528.49
β% = 1.0 PEEMMASMH 57.59±3.58 0.165±0.017 48689.21±538.42
βς = 1.0 PEEMACOMC 57.47±3.58 0.164±0.017 51674.39±538.27
βν = 3.0 PEEMACOMP 56.28±3.68 0.134±0.014 52479.35±547.89
βξ = 3.0 PEEMACOMH 51.73±4.27 0.145±0.015 53478.94±538.91
βπ = 3.0 PEEMMASMP 57.38±3.48 0.157±0.016 52368.73±527.38
β% = 3.0 PEEMMASMH 57.43±3.84 0.143±0.015 52379.68±539.32
βς = 3.0 PEEMACOMC 56.32±3.75 0.141±0.015 52198.48±528.84
βν = 3.5 PEEMACOMP 94.35±1.54 0.076±0.007 65247.12±157.41
βξ = 4.0 PEEMACOMH 67.37±2.50 0.111±0.010 65108.26±162.37
βπ = 4.5 PEEMMASMP 95.21±1.45 0.080±0.008 65121.54±167.23
β% = 4.0 PEEMMASMH 94.78±1.53 0.078±0.008 64978.32±158.37
βς = 5.0 PEEMACOMC 95.67±1.48 0.104±0.011 64984.32±148.27
βν = 4.5 PEEMACOMP 94.68±1.62 0.078±0.007 65247.12±152.59
βξ = 5.0 PEEMACOMH 68.32±2.48 0.112±0.012 65141.58±176.32
βπ = 3.5 PEEMMASMP 95.68±1.68 0.081±0.008 65126.78±165.23
β% = 4.0 PEEMMASMH 94.38±1.64 0.080±0.008 64789.23±168.34
βς = 4.0 PEEMACOMC 94.68±1.53 0.102±0.010 64853.68±178.31
βν = 5.0 PEEMACOMP 93.68±1.57 0.074±0.008 65331.56±167.32
βξ = 5.0 PEEMACOMH 69.32±2.56 0.110±0.013 65135.61±165.32
βπ = 5.0 PEEMMASMP 95.78±1.47 0.078±0.007 65231.67±168.32
β% = 5.0 PEEMMASMH 94.67±1.48 0.078±0.007 65109.43±154.29
βς = 5.0 PEEMACOMC 95.32±1.32 0.104±0.010 65123.56±153.28
βν = 7.0 PEEMACOMP 92.63±1.42 0.074±0.008 52338.41±623.58
βξ = 7.0 PEEMACOMH 68.32±2.57 0.108±0.012 50279.32±538.35
βπ = 7.0 PEEMMASMP 93.87±1.48 0.081±0.007 50368.88±536.21
β% = 7.0 PEEMMASMH 92.59±1.47 0.082±0.008 48378.28±537.28
βς = 7.0 PEEMACOMC 91.87±1.31 0.103±0.009 48765.46±543.61

(f) Tsm = 6
βψ PF n̄alg %̄ ξ̄

βν = 1.0 PEEMACOMP 57.12±3.47 0.132±0.014 53468.68±487.45
βξ = 1.0 PEEMACOMH 48.41±4.26 0.135±0.014 52367.94±475.27
βπ = 1.0 PEEMMASMP 57.46±3.54 0.147±0.016 52346.76±458.42
β% = 1.0 PEEMMASMH 58.94±3.43 0.146±0.016 51237.54±467.38
βς = 1.0 PEEMACOMC 58.67±3.47 0.137±0.015 52678.45±438.73
βν = 3.0 PEEMACOMP 58.34±3.62 0.127±0.013 53683.64±468.32
βξ = 3.0 PEEMACOMH 52.67±3.79 0.125±0.013 54328.38±472.39
βπ = 3.0 PEEMMASMP 58.43±3.45 0.131±0.014 53678.75±473.84
β% = 3.0 PEEMMASMH 59.43±3.12 0.132±0.014 53681.43±468.22
βς = 3.0 PEEMACOMC 58.21±3.23 0.123±0.013 54128.62±438.50
βν = 3.5 PEEMACOMP 96.78±0.41 0.073±0.006 65283.23±153.57
βξ = 4.0 PEEMACOMH 76.65±2.47 0.106±0.009 65139.49±157.28
βπ = 4.5 PEEMMASMP 96.32±0.48 0.078±0.007 65246.81±148.75
β% = 4.0 PEEMMASMH 95.78±0.47 0.079±0.008 65160.05±149.41
βς = 5.0 PEEMACOMC 96.87±0.51 0.092±0.008 65237.17±146.18
βν = 4.5 PEEMACOMP 97.45±0.35 0.074±0.007 65358.38±148.96
βξ = 5.0 PEEMACOMH 77.84±2.34 0.109±0.010 65185.33±154.32
βπ = 3.5 PEEMMASMP 97.54±0.25 0.080±0.008 65268.44±159.36
β% = 4.0 PEEMMASMH 95.68±0.47 0.078±0.007 65148.43±151.82
βς = 4.0 PEEMACOMC 97.65±0.57 0.095±0.009 65206.66±159.43
βν = 5.0 PEEMACOMP 97.54±0.27 0.075±0.007 65368.24±151.26
βξ = 5.0 PEEMACOMH 78.11±2.67 0.106±0.010 65247.48±148.53
βπ = 5.0 PEEMMASMP 96.54±0.66 0.076±0.007 65369.17±151.48
β% = 5.0 PEEMMASMH 95.67±0.49 0.079±0.007 65369.32±152.48
βς = 5.0 PEEMACOMC 97.82±0.58 0.097±0.009 65138.49±156.99
βν = 7.0 PEEMACOMP 94.43±1.37 0.073±0.007 54163.47±543.73
βξ = 7.0 PEEMACOMH 73.19±2.78 0.107±0.010 52479.76±547.54
βπ = 7.0 PEEMMASMP 93.92±1.52 0.075±0.007 52689.43±549.21
β% = 7.0 PEEMMASMH 92.45±1.36 0.078±0.008 47864.57±568.32
βς = 7.0 PEEMACOMC 93.78±1.31 0.098±0.010 47894.22±563.89
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Table D.4: Influence of parameter r0 on the n̄alg, %̄ and ξ̄ metrics, for 30 nodes and
Rg = 300

(a) Tsm = 1
r0 PF n̄alg %̄ ξ̄

PEEMACOMP 58.32±5.23 0.216±0.021 45123.28±1211.21
0.1 PEEMACOMH 55.17±6.23 0.238±0.023 43234.19±1326.15

PEEMACOMC 52.29±6.48 0.272±0.025 46156.21±1129.75

PEEMACOMP 61.35±4.26 0.176±0.015 47657.56±1123.69
0.3 PEEMACOMH 58.87±5.76 0.197±0.017 45864.43±1178.28

PEEMACOMC 54.38±5.97 0.251±0.023 48234.76±1031.65

PEEMACOMP 86.28±1.36 0.062±0.005 59649.56± 823.69
0.5 PEEMACOMH 83.75±1.34 0.065±0.006 58284.28± 864.32

PEEMACOMC 82.38±1.97 0.067±0.006 55127.83± 776.23

PEEMACOMP 89.72±1.02 0.067±0.006 58124.34± 975.87
0.7 PEEMACOMH 87.65±1.03 0.069±0.006 59658.24± 675.21

PEEMACOMC 87.72±1.57 0.073±0.007 54354.12± 855.12

PEEMACOMP 91.75±1.34 0.082±0.007 54287.38± 876.82
0.9 PEEMACOMH 88.23±1.65 0.079±0.008 53129.12± 995.34

PEEMACOMC 87.97±1.12 0.079±0.007 52876.21± 954.12

(b) Tsm = 2
r0 PF n̄alg %̄ ξ̄

PEEMACOMP 64.21±4.12 0.149±0.016 45123.28±1165.13
0.1 PEEMACOMH 60.28±3.89 0.198±0.018 46234.12±1026.45

PEEMACOMC 59.34±4.25 0.223±0.022 48234.15±1089.43

PEEMACOMP 68.23±3.12 0.134±0.013 48123.24±1024.12
0.3 PEEMACOMH 63.45±4.16 0.153±0.015 46987.23±1054.23

PEEMACOMC 66.13±3.26 0.178±0.013 49134.73±1012.34

PEEMACOMP 92.12±1.12 0.058±0.005 57876.43± 834.12
0.5 PEEMACOMH 90.12±1.12 0.063±0.005 58724.45± 812.33

PEEMACOMC 89.28±1.27 0.061±0.006 58827.14± 761.41

PEEMACOMP 95.24 ±0.89 0.062±0.006 58824.12± 946.56
0.7 PEEMACOMH 90.43±0.98 0.068±0.007 57239.15± 667.21

PEEMACOMC 91.34±1.02 0.065±0.006 56431.12± 765.13

PEEMACOMP 93.84±0.76 0.071±0.006 56128.13± 898.83
0.9 PEEMACOMH 89.11±1.02 0.073±0.007 55321.26± 965.12

PEEMACOMC 89.12±1.05 0.074±0.006 54132.15± 875.11

(c) Tsm = 3
r0 PF n̄alg %̄ ξ̄

PEEMACOMP 85.23±1.23 0.028±0.005 48234.35± 897.56
0.1 PEEMACOMH 80.35±1.69 0.032±0.006 51167.54± 896.37

PEEMACOMC 76.12±2.12 0.031±0.006 52342.28± 897.45

PEEMACOMP 86.34±1.06 0.030±0.006 52347.32±1012.23
0.3 PEEMACOMH 82.87±1.23 0.034±0.007 49258.87±1017.85

PEEMACOMC 84.18±1.18 0.037±0.005 53276.34± 987.23

PEEMACOMP 96.19±0.89 0.032±0.003 62345.17± 342.67
0.5 PEEMACOMH 94.24±1.04 0.035±0.003 62126.65± 342.43

PEEMACOMC 92.45±1.08 0.034±0.004 61897.24± 376.43

PEEMACOMP 98.32±0.81 0.039±0.005 61763.28± 432.17
0.7 PEEMACOMH 96.67±0.91 0.042±0.006 61348.68± 327.56

PEEMACOMC 93.38±0.99 0.043±0.006 60897.74± 467.36

PEEMACOMP 94.83±0.76 0.048±0.008 58321.46± 459.31
0.9 PEEMACOMH 92.45±0.83 0.062±0.009 57387.54± 543.26

PEEMACOMC 90.89±0.89 0.065±0.008 56428.43± 543.35

(d) Tsm = 4
r0 PF n̄alg %̄ ξ̄

PEEMACOMP 99.34±0.14 0.025±0.002 56235.43±687.43
0.1 PEEMACOMH 99.45±0.18 0.029±0.003 57832.12±567.23

PEEMACOMC 99.34±0.21 0.026±0.003 58432.25±563.21

PEEMACOMP 98.89±0.87 0.028±0.003 56886.31±761.26
0.3 PEEMACOMH 97.87±1.03 0.030±0.004 59112.21±623.75

PEEMACOMC 98.32±1.07 0.027±0.005 59124.41±682.65

PEEMACOMP 99.89±0.07 0.029±0.003 63126.26±298.12
0.5 PEEMACOMH 98.76±1.14 0.031±0.003 62234.67±307.21

PEEMACOMC 99.43±0.38 0.027±0.002 64123.32±187.23

PEEMACOMP 99.21±0.45 0.038±0.005 63654.21±321.21
0.7 PEEMACOMH 98.97±0.67 0.040±0.005 62312.35±235.65

PEEMACOMC 99.25±0.63 0.041±0.006 63897.45±256.32

PEEMACOMP 96.87±0.93 0.045±0.008 60123.34±378.54
0.9 PEEMACOMH 96.56±0.87 0.048±0.010 61234.32±231.33

PEEMACOMC 97.78±1.25 0.057±0.010 58765.34±431.29

(e) Tsm = 5
r0 PF n̄alg %̄ ξ̄

PEEMACOMP 99.42±0.17 0.024±0.002 56198.78±679.53
0.1 PEEMACOMH 99.64±0.13 0.028±0.004 57832.12±558.98

PEEMACOMC 99.57±0.12 0.026±0.003 58532.67±560.76

PEEMACOMP 99.81±0.16 0.026±0.003 56897.34±743.21
0.3 PEEMACOMH 99.78±0.15 0.029±0.004 59123.13±617.45

PEEMACOMC 98.99±0.59 0.026±0.004 59123.41±676.46

PEEMACOMP 99.67±0.28 0.026±0.002 63561.36±264.39
0.5 PEEMACOMH 99.45±0.46 0.030±0.004 62247.56±275.34

PEEMACOMC 99.76±0.04 0.026±0.002 65234.12± 97.24

PEEMACOMP 99.26±0.37 0.036±0.004 63654.43±302.13
0.7 PEEMACOMH 99.78±0.08 0.038±0.006 62415.45±212.34

PEEMACOMC 99.64±0.06 0.039±0.005 63912.34±203.31

PEEMACOMP 99.75±0.07 0.045±0.008 60896.12±371.23
0.9 PEEMACOMH 99.76±0.06 0.048±0.010 61431.34±212.38

PEEMACOMC 99.68±0.12 0.057±0.010 59249.23±397.32

(f) Tsm = 6
r0 PF n̄alg %̄ ξ̄

PEEMACOMP 99.65±0.12 0.024±0.003 56987.24±613.65
0.1 PEEMACOMH 99.78±0.09 0.027±0.003 58182.41±521.45

PEEMACOMC 99.86±0.02 0.025±0.003 59326.48±489.49

PEEMACOMP 99.88±0.02 0.026±0.002 56896.32±761.26
0.3 PEEMACOMH 99.89±0.01 0.028±0.004 59123.12±623.75

PEEMACOMC 99.98±0.01 0.027±0.003 59123.41±682.65

PEEMACOMP 99.90±0.02 0.026±0.002 63673.29±264.25
0.5 PEEMACOMH 99.68±0.07 0.027±0.003 62345.12±219.28

PEEMACOMC 99.81±0.05 0.025±0.002 63592.15± 87.34

PEEMACOMP 99.83±0.07 0.033±0.005 63687.32±276.12
0.7 PEEMACOMH 99.82±0.09 0.034±0.005 62234.23±201.21

PEEMACOMC 99.78±0.07 0.036±0.006 63943.21±178.32

PEEMACOMP 99.82±0.03 0.041±0.007 60993.49±389.45
0.9 PEEMACOMH 99.79±0.04 0.044±0.009 61431.87±209.21

PEEMACOMC 99.84±0.03 0.050±0.009 59789.67±334.98
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Table D.5: Influence of parameter r0 on the n̄alg, %̄ and ξ̄ metrics, for 30 nodes and
Rg = 500

(a) Tsm = 1
r0 PF n̄alg %̄ ξ̄

PEEMACOMP 56.23±6.14 0.227±0.025 46234.96±1236.24
0.1 PEEMACOMH 54.19±6.38 0.259±0.027 45534.36±1298.32

PEEMACOMC 51.67±6.68 0.279±0.029 48342.32±1129.75

PEEMACOMP 60.12±4.49 0.192±0.016 49765.32±1139.31
0.3 PEEMACOMH 55.43±5.89 0.204±0.016 46743.46±1145.32

PEEMACOMC 52.32±6.32 0.264±0.022 49876.87±1012.61

PEEMACOMP 96.43±1.03 0.062±0.006 63843.61±321.24
0.5 PEEMACOMH 94.65±1.26 0.064±0.008 63875.32±349.38

PEEMACOMC 96.39±1.05 0.074±0.008 62784.56±356.26

PEEMACOMP 97.65±0.89 0.078±0.007 59234.74±621.74
0.7 PEEMACOMH 96.56±1.01 0.079±0.009 58421.32±666.23

PEEMACOMC 97.36±1.02 0.082±0.009 56389.32±701.32

PEEMACOMP 93.34±1.23 0.089±0.009 56235.42±654.23
0.9 PEEMACOMH 92.32±1.25 0.082±0.011 55981.21±674.21

PEEMACOMC 90.61±1.30 0.084±0.013 54238.27±687.32

(b) Tsm = 2
r0 PF n̄alg %̄ ξ̄

PEEMACOMP 62.11±4.59 0.168±0.015 46239.37±1053.24
0.1 PEEMACOMH 58.23±3.98 0.234±0.019 48341.65±1012.32

PEEMACOMC 57.21±4.76 0.243±0.024 49431.43±1074.21

PEEMACOMP 67.12±3.19 0.149±0.019 49763.46±1013.34
0.3 PEEMACOMH 62.36±4.36 0.165±0.017 48754.25±1034.27

PEEMACOMC 64.28±3.69 0.184±0.019 49986.24±1003.65

PEEMACOMP 95.35±1.09 0.047±0.006 63639.29±254.29
0.5 PEEMACOMH 94.22±1.02 0.050±0.006 64567.65±223.76

PEEMACOMC 96.43±0.96 0.053±0.008 63730.62±261.23

PEEMACOMP 96.25±1.15 0.076±0.013 58598.45±431.23
0.7 PEEMACOMH 94.09±1.05 0.072±0.011 57123.32±436.43

PEEMACOMC 93.89±1.17 0.068±0.009 56428.23±452.31

PEEMACOMP 92.34±0.87 0.078±0.012 58238.27±496.23
0.9 PEEMACOMH 91.23±1.28 0.076±0.011 57431.38±654.28

PEEMACOMC 91.38±1.28 0.079±0.012 56458.49±658.90

(c) Tsm = 3
r0 PF n̄alg %̄ ξ̄

PEEMACOMP 82.34±1.45 0.041±0.005 50234.76±867.32
0.1 PEEMACOMH 78.76±1.78 0.036±0.004 53568.98±865.32

PEEMACOMC 75.14±2.14 0.034±0.005 53476.28±854.27

PEEMACOMP 84.76±1.28 0.042±0.006 54127.54±895.64
0.3 PEEMACOMH 81.83±1.43 0.041±0.005 52378.74±934.21

PEEMACOMC 83.12±1.22 0.039±0.005 55274.71±953.43

PEEMACOMP 94.54±0.94 0.042±0.005 65325.63±154.78
0.5 PEEMACOMH 94.69±1.13 0.041±0.006 65378.32±162.84

PEEMACOMC 93.42±1.17 0.040±0.006 65673.82±175.24

PEEMACOMP 97.98±0.23 0.044±0.008 64512.65±248.54
0.7 PEEMACOMH 95.46±0.45 0.043±0.007 64256.27±234.63

PEEMACOMC 92.45±0.57 0.040±0.006 63459.29±257.38

PEEMACOMP 92.65±0.79 0.046±0.009 60342.11±345.35
0.9 PEEMACOMH 91.78±0.87 0.058±0.012 59472.12±389.32

PEEMACOMC 90.65±1.16 0.061±0.013 59765.23±397.45

(d) Tsm = 4
r0 PF n̄alg %̄ ξ̄

PEEMACOMP 98.12±0.25 0.032±0.002 58234.34±634.21
0.1 PEEMACOMH 97.13±0.24 0.033±0.003 59876.26±583.76

PEEMACOMC 97.34±0.28 0.030±0.002 59128.45±524.23

PEEMACOMP 97.83±0.82 0.034±0.003 58983.24±687.12
0.3 PEEMACOMH 97.57±1.17 0.034±0.003 60862.42±568.23

PEEMACOMC 97.64±1.37 0.032±0.002 61347.68±547.89

PEEMACOMP 98.86±0.45 0.038±0.004 64897.34±265.37
0.5 PEEMACOMH 99.27±0.17 0.043±0.005 64523.46±289.31

PEEMACOMC 98.96±0.43 0.046±0.005 65236.24±167.27

PEEMACOMP 98.14±0.64 0.041±0.004 63865.23±196.78
0.7 PEEMACOMH 98.24±0.62 0.046±0.005 62896.48±227.34

PEEMACOMC 98.64±0.57 0.048±0.008 63985.34±223.47

PEEMACOMP 95.75±1.03 0.053±0.007 61325.87±282.56
0.9 PEEMACOMH 95.72±1.23 0.062±0.006 61657.12±264.24

PEEMACOMC 96.34±1.39 0.067±0.007 60321.56±368.43

(e) Tsm = 5
r0 PF n̄alg %̄ ξ̄

PEEMACOMP 99.80±0.06 0.028±0.003 58145.25±647.23
0.1 PEEMACOMH 99.72±0.07 0.029±0.004 58754.23±517.28

PEEMACOMC 99.65±0.15 0.027±0.003 59846.26±543.76

PEEMACOMP 99.92±0.06 0.032±0.005 58754.38±712.35
0.3 PEEMACOMH 99.82±0.09 0.034±0.006 59876.26±617.45

PEEMACOMC 99.12±0.08 0.036±0.007 59976.39±643.43

PEEMACOMP 99.86±0.28 0.036±0.006 65147.76±145.13
0.5 PEEMACOMH 99.48±0.36 0.040±0.007 65432.67±172.34

PEEMACOMC 99.70±0.13 0.042±0.008 65435.14±99.86

PEEMACOMP 99.43±0.34 0.042±0.008 64567.81±231.21
0.7 PEEMACOMH 99.83±0.09 0.045±0.008 64541.26±216.31

PEEMACOMC 99.72±0.08 0.044±0.009 64125.36±213.24

PEEMACOMP 99.85±0.06 0.052±0.012 62312.26±293.24
0.9 PEEMACOMH 99.87±0.06 0.057±0.014 62456.28±228.65

PEEMACOMC 99.88±0.06 0.064±0.015 61387.37±304.18

(f) Tsm = 6
r0 PF n̄alg %̄ ξ̄

PEEMACOMP 99.90±0.01 0.027±0.002 58123.43±516.37
0.1 PEEMACOMH 99.92±0.02 0.028±0.003 59282.39±503.68

PEEMACOMC 99.99±0.01 0.028±0.003 59835.76±496.52

PEEMACOMP 99.93±0.03 0.030±0.003 58126.39±524.42
0.3 PEEMACOMH 99.94±0.01 0.031±0.003 59581.18±512.32

PEEMACOMC 99.90±0.01 0.033±0.004 59765.36±534.27

PEEMACOMP 99.94±0.03 0.035±0.004 65238.56±154.23
0.5 PEEMACOMH 99.79±0.04 0.037±0.004 65276.89±152.31

PEEMACOMC 99.83±0.04 0.036±0.005 65394.26±123.54

PEEMACOMP 99.67±0.09 0.040±0.006 63876.35±223.41
0.7 PEEMACOMH 99.63±0.11 0.045±0.007 62784.43±213.41

PEEMACOMC 99.56±0.12 0.047±0.008 63978.27±147.23

PEEMACOMP 99.73±0.03 0.051±0.008 61239.58±325.26
0.9 PEEMACOMH 99.72±0.03 0.054±0.009 61674.89±288.45

PEEMACOMC 99.80±0.02 0.062±0.010 59893.72±328.86
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Table D.6: Influence of parameter r0 on the n̄alg, %̄ and ξ̄ metrics, for 30 nodes and
Rg = 800

(a) Tsm = 1
r0 PF n̄alg %̄ ξ̄

PEEMACOMP 43.12±4.12 0.257±0.022 44123.34±1248.68
0.1 PEEMACOMH 34.76±5.23 0.278±0.024 43126.32±1305.34

PEEMACOMC 44.36±4.56 0.286±0.023 46651.67±1158.65

PEEMACOMP 46.57±4.87 0.217±0.020 46238.52±1146.31
0.3 PEEMACOMH 38.24±6.03 0.232±0.021 44297.42±1167.29

PEEMACOMC 48.98±5.34 0.204±0.020 47147.65±1065.21

PEEMACOMP 96.31±0.86 0.116±0.014 63573.38±363.25
0.5 PEEMACOMH 62.34±3.01 0.153±0.017 63743.85±356.38

PEEMACOMC 96.85±0.87 0.144±0.015 62341.52±387.41

PEEMACOMP 96.87±0.84 0.135±0.015 56128.39±628.39
0.7 PEEMACOMH 61.28±3.06 0.176±0.018 56217.42±675.84

PEEMACOMC 96.84±0.91 0.163±0.017 57120.43±613.61

PEEMACOMP 90.54±1.25 0.139±0.014 55742.67±658.54
0.9 PEEMACOMH 58.32±2.36 0.173±0.018 56236.28±689.45

PEEMACOMC 89.45±1.45 0.165±0.019 53760.31±698.42

(b) Tsm = 2
r0 PF n̄alg %̄ ξ̄

PEEMACOMP 45.25±4.49 0.235±0.021 44123.76±1076.45
0.1 PEEMACOMH 36.19±3.88 0.256±0.022 46237.57±1042.74

PEEMACOMC 46.63±4.77 0.264±0.024 47891.46±1097.63

PEEMACOMP 52.98±3.65 0.189±0.019 49123.62±1021.53
0.3 PEEMACOMH 38.85±4.80 0.205±0.023 48124.74±1042.52

PEEMACOMC 61.37±3.98 0.198±0.016 48342.38±1023.53

PEEMACOMP 95.43±1.32 0.094±0.008 63436.89±265.73
0.5 PEEMACOMH 47.67±1.89 0.152±0.012 64194.75±212.53

PEEMACOMC 97.28±1.32 0.129±0.009 63456.68±282.48

PEEMACOMP 97.38±1.24 0.112±0.012 57428.85±542.53
0.7 PEEMACOMH 46.67±1.87 0.162±0.014 58024.76±548.59

PEEMACOMC 97.58±1.32 0.143±0.011 56197.76±567.89

PEEMACOMP 92.27±1.32 0.104±0.014 56743.91±598.96
0.9 PEEMACOMH 46.28±1.28 0.158±0.013 57101.56±587.43

PEEMACOMC 91.38±1.28 0.138±0.011 56142.53±579.21

(c) Tsm = 3
r0 PF n̄alg %̄ ξ̄

PEEMACOMP 80.34±1.25 0.078±0.010 50142.09±887.31
0.1 PEEMACOMH 70.32±1.86 0.103±0.012 52386.48±884.29

PEEMACOMC 73.70±1.98 0.101±0.012 52568.36±867.32

PEEMACOMP 82.79±1.18 0.081±0.010 53127.59±907.23
0.3 PEEMACOMH 72.74±1.47 0.108±0.010 51124.78±948.49

PEEMACOMC 82.45±1.28 0.106±0.010 53682.68±964.18

PEEMACOMP 92.72±0.76 0.089±0.008 64897.65±164.73
0.5 PEEMACOMH 75.78±1.34 0.117±0.010 64161.46±168.31

PEEMACOMC 90.43±1.05 0.111±0.009 64678.54±189.52

PEEMACOMP 98.27±0.17 0.098±0.009 62893.56±267.71
0.7 PEEMACOMH 73.43±1.51 0.138±0.012 62784.23±245.76

PEEMACOMC 97.84±0.62 0.123±0.011 62172.58±268.81

PEEMACOMP 95.89±0.73 0.126±0.011 60194.33±367.30
0.9 PEEMACOMH 71.67±1.95 0.148±0.012 58634.87±395.44

PEEMACOMC 90.12±1.12 0.135±0.012 58025.76±403.29

(d) Tsm = 4
r0 PF n̄alg %̄ ξ̄

PEEMACOMP 82.33±1.16 0.065±0.004 51421.08±815.23
0.1 PEEMACOMH 45.12±1.76 0.096±0.011 52876.62±835.75

PEEMACOMC 74.81±1.84 0.081±0.009 52879.57±843.19

PEEMACOMP 84.56±1.03 0.068±0.006 53864.62±863.28
0.3 PEEMACOMH 46.52±1.62 0.100±0.013 51671.49±931.76

PEEMACOMC 83.56±1.28 0.096±0.013 53783.18±918.38

PEEMACOMP 98.67±0.64 0.078±0.009 65154.39±142.75
0.5 PEEMACOMH 50.34±1.61 0.103±0.013 65329.01±158.29

PEEMACOMC 98.65±0.72 0.105±0.011 65874.84±163.90

PEEMACOMP 97.89±0.13 0.098±0.009 63162.30±178.23
0.7 PEEMACOMH 50.03±1.68 0.124±0.015 63812.28±164.23

PEEMACOMC 97.97±0.32 0.116±0.013 63976.23±168.13

PEEMACOMP 96.12±0.70 0.112±0.010 61328.76±367.30
0.9 PEEMACOMH 47.48±2.13 0.137±0.015 59205.19±395.44

PEEMACOMC 92.61±1.23 0.130±0.013 58785.54±403.29

(e) Tsm = 5
r0 PF n̄alg %̄ ξ̄

PEEMACOMP 84.42±1.23 0.062±0.005 52241.12±764.27
0.1 PEEMACOMH 56.55±1.87 0.097±0.010 52985.93±798.45

PEEMACOMC 76.76±1.42 0.088±0.009 53129.52±754.18

PEEMACOMP 86.45±1.01 0.066±0.006 54198.37±812.54
0.3 PEEMACOMH 58.89±1.84 0.101±0.011 52468.65±902.36

PEEMACOMC 85.58±1.12 0.099±0.010 54513.76±846.37

PEEMACOMP 98.87±0.31 0.068±0.007 65253.36±134.76
0.5 PEEMACOMH 68.23±1.54 0.102±0.010 65367.28±146.78

PEEMACOMC 98.83±0.32 0.103±0.010 65886.36±154.67

PEEMACOMP 96.86±0.63 0.074±0.007 63329.53±169.24
0.7 PEEMACOMH 65.23±1.74 0.107± 0.011 63883.34±166.28

PEEMACOMC 96.62±0.67 0.109±0.011 63998.29±162.67

PEEMACOMP 97.23±0.62 0.070±0.007 61678.43±345.56
0.9 PEEMACOMH 64.42±1.86 0.110±0.012 59987.14±378.27

PEEMACOMC 94.67±1.01 0.113±0.013 59326.83±382.88

(f) Tsm = 6
r0 PF n̄alg %̄ ξ̄

PEEMACOMP 86.32±1.16 0.060±0.005 53441.17±715.76
0.1 PEEMACOMH 64.56±1.65 0.094±0.012 53142.56±767.43

PEEMACOMC 79.84±1.37 0.082±0.008 53897.43±735.36

PEEMACOMP 89.76±0.97 0.064±0.005 56321.43±765.23
0.3 PEEMACOMH 67.43±1.65 0.100±0.009 54568.23±679.43

PEEMACOMC 88.75±1.03 0.087±0.008 58376.21±627.47

PEEMACOMP 99.90±0.05 0.068±0.005 65731.34±132.56
0.5 PEEMACOMH 77.90±1.32 0.101±0.009 65302.24±138.21

PEEMACOMC 99.82±0.06 0.088±0.008 65285.43±146.27

PEEMACOMP 98.83±0.08 0.076±0.006 63473.17±156.72
0.7 PEEMACOMH 75.34±1.45 0.108±0.011 63912.45±161.45

PEEMACOMC 97.85±0.13 0.097±0.009 64087.43±143.82

PEEMACOMP 97.23±0.34 0.065±0.006 62061.43±327.31
0.9 PEEMACOMH 64.42±1.67 0.097±0.009 60129.65±356.73

PEEMACOMC 94.67±0.97 0.086±0.010 60459.37±362.78
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Table D.7: Influence of parameter ρl on the n̄alg, %̄ and ξ̄ metrics, for 30 nodes and
Rg = 300

(a) Tsm = 1
ρl PF n̄alg %̄ ξ̄

PEEMACOMP 55.34±5.12 0.203±0.021 44683.37±1237.31
0.1 PEEMACOMH 52.43±6.13 0.218±0.027 42478.34±1359.27

PEEMACOMC 50.67±6.22 0.248±0.022 45678.26±1198.47

PEEMACOMP 60.59±4.02 0.163±0.012 48976.09±1179.18
0.3 PEEMACOMH 56.47±4.98 0.183±0.014 46390.56±1272.47

PEEMACOMC 52.69±5.16 0.224±0.020 49346.21±1078.43

PEEMACOMP 93.59±1.09 0.065±0.006 62549.20± 210.37
0.5 PEEMACOMH 92.45±1.16 0.063±0.005 61843.22± 222.67

PEEMACOMC 91.75±1.21 0.062±0.007 62734.23± 185.48

PEEMACOMP 87.62±1.06 0.060±0.006 62139.56± 187.25
0.7 PEEMACOMH 85.69±1.11 0.064±0.007 61372.73± 231.45

PEEMACOMC 87.12±1.12 0.063±0.007 63719.63± 145.62

PEEMACOMP 84.24±1.28 0.096±0.008 50165.23± 887.41
0.9 PEEMACOMH 86.38±1.22 0.087±0.008 52345.78± 934.26

PEEMACOMC 86.72±1.17 0.088±0.009 53485.26± 976.25

(b) Tsm = 2
ρl PF n̄alg %̄ ξ̄

PEEMACOMP 60.45±3.99 0.188±0.017 45893.24±1102.12
0.1 PEEMACOMH 61.34±3.65 0.205±0.019 46673.28±1003.37

PEEMACOMC 57.48±4.12 0.214±0.025 48657.27±1067.23

PEEMACOMP 66.34±2.65 0.142±0.015 49985.34±1013.45
0.3 PEEMACOMH 61.32±3.69 0.162±0.016 48987.58±1034.63

PEEMACOMC 64.37±3.12 0.171±0.018 49896.47±1024.63

PEEMACOMP 94.47±1.02 0.040±0.006 62984.23± 249.31
0.5 PEEMACOMH 90.38±1.15 0.039±0.006 61575.23± 275.52

PEEMACOMC 91.32±1.35 0.044±0.007 63473.28± 214.71

PEEMACOMP 94.27±0.69 0.038±0.004 63243.56± 187.45
0.7 PEEMACOMH 91.82±0.85 0.040±0.005 61187.53± 197.37

PEEMACOMC 90.26±0.87 0.043±0.005 63385.32± 124.84

PEEMACOMP 91.63±0.83 0.076±0.007 54127.83± 612.43
0.9 PEEMACOMH 85.28±1.07 0.078±0.007 55873.63± 603.45

PEEMACOMC 85.69±1.08 0.081±0.008 53486.28± 624.47

(c) Tsm = 3
ρl PF n̄alg %̄ ξ̄

PEEMACOMP 72.29±2.54 0.167±0.015 47468.49±1043.32
0.1 PEEMACOMH 73.45±2.43 0.186±0.017 48654.12± 973.52

PEEMACOMC 68.64±2.05 0.194±0.021 47643.15±1023.54

PEEMACOMP 79.32±2.34 0.122±0.012 50237.54± 926.32
0.3 PEEMACOMH 74.56±2.67 0.135±0.013 49675.32± 963.28

PEEMACOMC 76.63±3.03 0.162±0.015 51254.52± 912.74

PEEMACOMP 96.53±0.49 0.033±0.002 63421.43± 236.41
0.5 PEEMACOMH 94.31±0.45 0.036±0.004 61142.32± 312.42

PEEMACOMC 91.74±0.89 0.035±0.003 63372.15± 238.21

PEEMACOMP 95.12±0.53 0.037±0.002 62134.63± 237.83
0.7 PEEMACOMH 92.52±0.74 0.040±0.003 60287.16± 257.48

PEEMACOMC 92.24±0.76 0.041±0.003 62315.36± 223.64

PEEMACOMP 92.89±0.83 0.070±0.006 56367.32± 532.16
0.9 PEEMACOMH 88.84±1.07 0.071±0.006 57342.75± 523.63

PEEMACOMC 87.73±1.08 0.076±0.008 55634.27± 546.72

(d) Tsm = 4
ρl PF n̄alg %̄ ξ̄

PEEMACOMP 84.65±2.34 0.132±0.012 50238.42±1043.32
0.1 PEEMACOMH 83.89±2.37 0.151±0.017 50123.52± 962.53

PEEMACOMC 89.85±2.13 0.153±0.016 48532.19±1023.54

PEEMACOMP 81.32±2.13 0.114±0.011 51429.73± 875.34
0.3 PEEMACOMH 86.87±2.43 0.126±0.011 50873.28± 879.45

PEEMACOMC 80.63±2.67 0.139±0.013 52389.29± 861.38

PEEMACOMP 98.43±0.38 0.029±0.002 63428.52± 167.29
0.5 PEEMACOMH 96.84±0.42 0.033±0.003 62314.53± 173.59

PEEMACOMC 94.76±0.43 0.030±0.003 63753.41± 165.25

PEEMACOMP 96.72±0.47 0.034±0.002 62236.73± 194.23
0.7 PEEMACOMH 94.41±0.52 0.038±0.003 60574.29± 223.56

PEEMACOMC 93.28±0.61 0.036±0.002 62639.29± 196.49

PEEMACOMP 93.56±0.66 0.065±0.006 58894.29± 438.09
0.9 PEEMACOMH 89.94±0.87 0.063±0.005 58674.39± 476.28

PEEMACOMC 89.43±0.86 0.067±0.007 56879.34± 487.19

(e) Tsm = 5
ρl PF n̄alg %̄ ξ̄

PEEMACOMP 93.24±0.92 0.075±0.009 55287.12±612.39
0.1 PEEMACOMH 94.38±0.93 0.086±0.010 56289.33±605.28

PEEMACOMC 94.36±0.81 0.096±0.012 56498.39±606.34

PEEMACOMP 90.49±1.62 0.046±0.007 58723.29±484.03
0.3 PEEMACOMH 92.21±1.34 0.059±0.008 57128.83±497.23

PEEMACOMC 92.47±1.58 0.068±0.009 56294.29±538.28

PEEMACOMP 99.99±0.03 0.027±0.002 63484.56±138.28
0.5 PEEMACOMH 99.99±0.04 0.028±0.002 62226.38±174.28

PEEMACOMC 99.99±0.03 0.026±0.002 64138.39±132.38

PEEMACOMP 98.97±0.32 0.027±0.002 62873.28±184.29
0.7 PEEMACOMH 97.76±0.47 0.030±0.003 61348.06±209.36

PEEMACOMC 98.87±0.29 0.024±0.002 63102.37±167.28

PEEMACOMP 96.48±0.45 0.045±0.005 60342.11±217.38
0.9 PEEMACOMH 97.52±0.39 0.037±0.005 61238.40±227.38

PEEMACOMC 96.85±0.23 0.046±0.006 61469.03±267.28

(f) Tsm = 6
ρl PF n̄alg %̄ ξ̄

PEEMACOMP 94.23±1.02 0.070±0.009 54376.53±873.23
0.1 PEEMACOMH 93.76±1.03 0.076±0.010 53276.37±892.73

PEEMACOMC 97.63±0.89 0.084±0.010 52156.89±912.32

PEEMACOMP 93.25±1.03 0.040±0.008 55897.32±782.37
0.3 PEEMACOMH 96.34±0.92 0.055±0.010 54562.38±794.52

PEEMACOMC 97.42±0.97 0.063±0.012 53896.31±822.57

PEEMACOMP 99.99±0.04 0.026±0.002 63456.29±169.48
0.5 PEEMACOMH 99.99±0.05 0.027±0.003 62296.32±196.49

PEEMACOMC 99.99±0.02 0.026±0.002 63767.29±172.31

PEEMACOMP 98.86±0.36 0.027±0.002 62576.34±196.74
0.7 PEEMACOMH 98.87±0.43 0.026±0.003 60867.29±217.45

PEEMACOMC 98.58±0.26 0.024±0.002 62832.27±198.93

PEEMACOMP 96.45±0.45 0.043±0.003 59132.34±234.73
0.9 PEEMACOMH 97.93±0.39 0.035±0.003 59675.23±239.02

PEEMACOMC 98.38±0.23 0.044±0.004 58739.28±324.53
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Table D.8: Influence of parameter ρl on the n̄alg, %̄ and ξ̄ metrics, for 30 nodes and
Rg = 500

(a) Tsm = 1
ρl PF n̄alg %̄ ξ̄

PEEMACOMP 57.24±4.38 0.214±0.023 48425.14±1028.39
0.1 PEEMACOMH 55.32±5.30 0.229±0.029 47542.46±1145.29

PEEMACOMC 51.34±5.29 0.257±0.024 49428.31±1112.41

PEEMACOMP 62.31±4.01 0.187±0.014 53276.28± 943.28
0.3 PEEMACOMH 56.23±4.36 0.194±0.016 49763.29± 995.24

PEEMACOMC 52.61±5.06 0.232±0.020 52376.29± 968.38

PEEMACOMP 94.29±1.13 0.063±0.006 63378.20± 224.29
0.5 PEEMACOMH 88.98±1.17 0.062±0.006 62268.38± 229.10

PEEMACOMC 87.11±1.18 0.078±0.008 63965.32± 213.60

PEEMACOMP 93.28±0.96 0.062±0.005 63489.29± 156.39
0.7 PEEMACOMH 89.24±0.98 0.065±0.007 62318.39± 197.30

PEEMACOMC 88.39±1.02 0.076±0.008 64231.72± 143.10

PEEMACOMP 87.29±1.15 0.098±0.011 54519.21± 843.56
0.9 PEEMACOMH 86.49±1.17 0.086±0.009 55289.16± 861.28

PEEMACOMC 86.98±1.18 0.085±0.009 56534.29± 824.49

(b) Tsm = 2
ρl PF n̄alg %̄ ξ̄

PEEMACOMP 65.38±3.99 0.193±0.019 50476.29±976.23
0.1 PEEMACOMH 64.29±3.65 0.209±0.019 51289.38±964.23

PEEMACOMC 59.18±4.12 0.202±0.026 53287.38±943.27

PEEMACOMP 71.28±2.65 0.154±0.017 54673.28± 942.32
0.3 PEEMACOMH 67.39±3.69 0.173±0.018 56987.29± 854.25

PEEMACOMC 69.28±3.12 0.182±0.019 53278.29±947.43

PEEMACOMP 97.65±0.63 0.049±0.008 63986.23±247.45
0.5 PEEMACOMH 96.49±0.79 0.048±0.008 64289.39±232.65

PEEMACOMC 98.37±0.53 0.056±0.009 64612.48±217.45

PEEMACOMP 98.27±0.26 0.048±0.007 64378.28±132.46
0.7 PEEMACOMH 97.39±0.28 0.050±0.007 64231.29±126.39

PEEMACOMC 96.49±0.68 0.055±0.008 64538.29±122.84

PEEMACOMP 93.47±0.76 0.079±0.007 58156.28±534.23
0.9 PEEMACOMH 88.32±1.02 0.082±0.007 58249.42±537.49

PEEMACOMC 85.85±1.01 0.084±0.008 56754.48±527.30

(c) Tsm = 3
ρl PF n̄alg %̄ ξ̄

PEEMACOMP 70.34±2.58 0.186±0.016 55342.31±436.35
0.1 PEEMACOMH 71.43±2.51 0.197±0.018 56349.29±423.72

PEEMACOMC 65.39±2.26 0.199±0.020 54892.36±437.89

PEEMACOMP 76.78±2.43 0.146±0.013 58765.36±379.28
0.3 PEEMACOMH 75.58±2.87 0.164±0.013 58764.28±389.45

PEEMACOMC 74.28±3.12 0.178±0.014 61368.48±342.71

PEEMACOMP 96.28±0.47 0.042±0.002 63856.29±265.29
0.5 PEEMACOMH 94.34±0.48 0.046±0.003 62489.49±248.49

PEEMACOMC 95.71±0.92 0.047±0.003 64128.23±217.39

PEEMACOMP 93.48±0.55 0.040±0.002 62562.39±227.38
0.7 PEEMACOMH 91.48±0.73 0.042±0.002 62340.57±227.43

PEEMACOMC 91.89±0.72 0.043±0.003 62873.29±243.23

PEEMACOMP 92.12±0.75 0.076±0.005 59127.85±387.36
0.9 PEEMACOMH 88.13±1.02 0.078±0.005 61378.27±363.81

PEEMACOMC 86.38±1.01 0.079±0.007 60321.76±338.29

(d) Tsm = 4
ρl PF n̄alg %̄ ξ̄

PEEMACOMP 81.43±2.38 0.152±0.014 58245.56±532.54
0.1 PEEMACOMH 81.62±2.39 0.165±0.018 57845.39±523.58

PEEMACOMC 86.27±2.16 0.173±0.018 56398.29±611.26

PEEMACOMP 80.16±2.19 0.126±0.013 59783.21±267.39
0.3 PEEMACOMH 84.68±2.48 0.135±0.012 58321.34±246.38

PEEMACOMC 78.38±2.69 0.148±0.015 60341.38±234.56

PEEMACOMP 97.29±0.39 0.040±0.003 64211.52±126.39
0.5 PEEMACOMH 95.93±0.44 0.046±0.004 64287.29±125.67

PEEMACOMC 93.28±0.47 0.048±0.004 64231.76±123.56

PEEMACOMP 94.28±0.49 0.037±0.002 63128.45±174.29
0.7 PEEMACOMH 92.34±0.56 0.039±0.003 62657.12±209.31

PEEMACOMC 92.46±0.64 0.039±0.003 63105.58±175.30

PEEMACOMP 92.47±0.68 0.074±0.006 59873.28±358.20
0.9 PEEMACOMH 89.13±0.89 0.078±0.007 59765.39±386.29

PEEMACOMC 89.12±0.89 0.079±0.007 58768.34±376.20

(e) Tsm = 5
ρl PF n̄alg %̄ ξ̄

PEEMACOMP 86.34±1.56 0.081±0.009 59134.28±387.31
0.1 PEEMACOMH 85.29±1.67 0.087±0.011 59629.22±376.23

PEEMACOMC 87.26±1.74 0.098±0.014 58987.34±386.29

PEEMACOMP 88.21±0.87 0.056±0.007 60235.39±332.45
0.3 PEEMACOMH 88.76±0.86 0.064±0.007 60341.67±334.74

PEEMACOMC 89.12±0.79 0.075±0.009 61329.45±317.29

PEEMACOMP 99.99±0.02 0.038±0.002 63897.34±113.52
0.5 PEEMACOMH 99.99±0.02 0.043±0.003 64126.67±164.29

PEEMACOMC 99.99±0.02 0.042±0.003 64435.34±143.19

PEEMACOMP 96.64±0.33 0.034±0.003 62436.37±164.28
0.7 PEEMACOMH 95.34±0.49 0.035±0.003 61283.17±187.39

PEEMACOMC 96.35±0.29 0.029±0.002 63451.38±174.28

PEEMACOMP 95.89±0.46 0.049±0.006 61204.25±189.28
0.9 PEEMACOMH 96.34±0.43 0.046±0.006 61654.29±185.28

PEEMACOMC 96.73±0.24 0.049±0.007 61859.14±187.28

(f) Tsm = 6
ρl PF n̄alg %̄ ξ̄

PEEMACOMP 93.17±1.06 0.074±0.010 60124.32±432.11
0.1 PEEMACOMH 93.13±1.05 0.082±0.011 58491.67±539.03

PEEMACOMC 97.14±0.92 0.093±0.012 59247.38±543.85

PEEMACOMP 92.35±1.07 0.054±0.006 60975.12±332.81
0.3 PEEMACOMH 96.39±0.94 0.060±0.007 59728.34±396.58

PEEMACOMC 96.26±0.99 0.067±0.008 58347.98±354.67

PEEMACOMP 99.99±0.02 0.037±0.003 65123.45±146.76
0.5 PEEMACOMH 99.99±0.02 0.040±0.004 64598.26±175.73

PEEMACOMC 99.99±0.02 0.038 ±0.003 64897.16±134.76

PEEMACOMP 97.15±0.39 0.034±0.003 63785.26±186.39
0.7 PEEMACOMH 97.12±0.46 0.032±0.002 61349.39±187.32

PEEMACOMC 98.13±0.28 0.029±0.002 63412.90±165.28

PEEMACOMP 97.12±0.48 0.049±0.006 60245.21±224.65
0.9 PEEMACOMH 98.23±0.43 0.047±0.006 60276.54±228.48

PEEMACOMC 98.16±0.24 0.042±0.007 59875.20±315.68
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Table D.9: Influence of parameter ρl on the n̄alg, %̄ and ξ̄ metrics, for 30 nodes and
Rg = 800

(a) Tsm = 1
ρl PF n̄alg %̄ ξ̄

PEEMACOMP 50.23±4.87 0.245±0.025 46327.43±1067.12
0.1 PEEMACOMH 38.23±6.78 0.246±0.027 46528.31±1178.34

PEEMACOMC 43.56±5.45 0.287±0.028 47623.63±1137.20

PEEMACOMP 57.23±4.83 0.223±0.019 52387.41± 964.29
0.3 PEEMACOMH 43.51±6.34 0.213±0.018 47392.09± 996.62

PEEMACOMC 43.27±5.59 0.249±0.023 50230.71± 979.45

PEEMACOMP 89.46±1.45 0.126±0.017 62345.26± 248.39
0.5 PEEMACOMH 52.45±2.45 0.152±0.019 61327.87± 269.29

PEEMACOMC 86.35±1.53 0.147±0.018 62391.34± 236.51

PEEMACOMP 90.45±0.99 0.117±0.016 62315.36± 168.30
0.7 PEEMACOMH 56.21±1.78 0.154±0.018 61651.67± 199.97

PEEMACOMC 85.37±1.24 0.145±0.017 62316.76± 165.38

PEEMACOMP 85.23±1.37 0.145±0.017 52341.67± 867.25
0.9 PEEMACOMH 52.45±1.46 0.167±0.019 53720.56± 887.34

PEEMACOMC 82.37±1.40 0.154±0.018 54592.46± 865.29

(b) Tsm = 2
ρl PF n̄alg %̄ ξ̄

PEEMACOMP 61.34±2.76 0.234±0.023 50416.83±983.12
0.1 PEEMACOMH 34.45±3.69 0.228±0.022 50598.30±915.84

PEEMACOMC 56.47±2.68 0.224±0.023 52783.62±937.75

PEEMACOMP 67.45±1.87 0.168±0.018 53247.83±869.23
0.3 PEEMACOMH 36.12±3.87 0.197±0.021 55127.84±854.25

PEEMACOMC 66.31±2.34 0.198±0.022 52134.74±875.84

PEEMACOMP 95.42±1.21 0.097±0.010 63687.36±157.23
0.5 PEEMACOMH 45.56±2.35 0.152±0.014 64165.67±135.28

PEEMACOMC 96.23±1.23 0.130±0.012 64151.75±147.82

PEEMACOMP 96.34±0.67 0.094±0.009 64132.87±138.43
0.7 PEEMACOMH 46.56±2.38 0.150±0.013 64124.36±128.38

PEEMACOMC 94.28±0.97 0.132±0.012 64256.97±137.83

PEEMACOMP 92.45±0.98 0.123±0.012 58102.65±524.47
0.9 PEEMACOMH 44.59±1.57 0.154±0.014 58168.35±557.85

PEEMACOMC 82.67±1.13 0.143±0.014 56637.19±548.29

(c) Tsm = 3
ρl PF n̄alg %̄ ξ̄

PEEMACOMP 67.39±2.89 0.198±0.020 55894.10±413.45
0.1 PEEMACOMH 60.29±3.28 0.215±0.021 56764.20±428.40

PEEMACOMC 61.34±2.57 0.216±0.022 56230.41±457.12

PEEMACOMP 72.76±2.68 0.165±0.016 60356.76±365.20
0.3 PEEMACOMH 67.23±3.56 0.187±0.018 60345.56±374.12

PEEMACOMC 72.45±2.87 0.194±0.021 61846.27±367.20

PEEMACOMP 94.29±0.68 0.089±0.009 64389.29±167.34
0.5 PEEMACOMH 75.37±1.87 0.117±0.011 64298.57±178.27

PEEMACOMC 94.29±0.62 0.112±0.013 64129.34±176.27

PEEMACOMP 91.45±0.85 0.082±0.008 63978.12±242.19
0.7 PEEMACOMH 70.32±1.26 0.109±0.011 62875.23±267.48

PEEMACOMC 90.65±0.76 0.105±0.011 63216.75±237.28

PEEMACOMP 92.12±0.89 0.114±0.010 61268.47±289.47
0.9 PEEMACOMH 72.45±1.25 0.126±0.013 62346.63±275.28

PEEMACOMC 84.27±1.08 0.129±0.014 62561.37±256.29

(d) Tsm = 4
ρl PF n̄alg %̄ ξ̄

PEEMACOMP 74.29±3.45 0.187±0.016 59754.25±523.42
0.1 PEEMACOMH 40.23±5.28 0.198±0.021 58673.88±523.65

PEEMACOMC 72.45±3.76 0.184±0.020 56498.49±634.29

PEEMACOMP 77.43±2.46 0.164±0.018 60158.48±287.39
0.3 PEEMACOMH 43.42±4.78 0.162±0.018 59438.29±267.69

PEEMACOMC 75.32±3.75 0.137±0.017 60856.27±267.84

PEEMACOMP 96.34±0.56 0.074±0.007 65237.29±112.54
0.5 PEEMACOMH 50.24±3.89 0.140±0.009 64012.46±122.59

PEEMACOMC 94.29±0.78 0.105±0.008 64784.57±117.45

PEEMACOMP 93.64±0.87 0.067±0.004 63538.35±165.24
0.7 PEEMACOMH 48.45±0.76 0.126±0.008 62896.56±164.37

PEEMACOMC 90.34±0.84 0.083±0.007 63784.39±145.22

PEEMACOMP 91.07±0.68 0.087±0.007 59675.32±278.34
0.9 PEEMACOMH 45.62±0.89 0.129±0.009 59347.84±267.93

PEEMACOMC 87.34±0.89 0.098±0.008 58986.67±297.48

(e) Tsm = 5
ρl PF n̄alg %̄ ξ̄

PEEMACOMP 94.26±0.75 0.134±0.013 59843.25±297.45
0.1 PEEMACOMH 61.27±1.48 0.148±0.014 59834.76±285.36

PEEMACOMC 96.74±0.76 0.124±0.012 59876.30±227.69

PEEMACOMP 98.54±0.56 0.125±0.012 60654.23±245.76
0.3 PEEMACOMH 64.27±1.43 0.138±0.013 60453.28±243.76

PEEMACOMC 98.67±0.46 0.127±0.011 61456.76±231.45

PEEMACOMP 99.45±0.03 0.074±0.006 65142.45±109.50
0.5 PEEMACOMH 70.21±1.14 0.108±0.008 64984.21±128.59

PEEMACOMC 99.23±0.03 0.103±0.008 64793.24±124.53

PEEMACOMP 98.14±0.35 0.065±0.004 62865.23±164.28
0.7 PEEMACOMH 66.34±1.46 0.089±0.007 61563.20±178.36

PEEMACOMC 98.27±0.32 0.096±0.007 63851.34±145.67

PEEMACOMP 97.89±0.46 0.089±0.008 61673.87±182.41
0.9 PEEMACOMH 63.28±1.93 0.098±0.009 61874.30±178.37

PEEMACOMC 98.73±0.24 0.099±0.009 61812.67±176.34

(f) Tsm = 6
ρl PF n̄alg %̄ ξ̄

PEEMACOMP 91.15±1.08 0.116±0.011 60867.92±387.29
0.1 PEEMACOMH 92.48±1.07 0.122±0.012 59786.20±419.34

PEEMACOMC 96.30±0.87 0.117±0.011 60589.20±396.16

PEEMACOMP 91.87±1.06 0.107±0.010 60909.34±304.65
0.3 PEEMACOMH 95.18±0.91 0.103±0.011 59989.45±376.43

PEEMACOMC 95.22±0.93 0.116±0.012 59876.63±346.72

PEEMACOMP 99.53±0.02 0.070±0.006 65133.28±115.67
0.5 PEEMACOMH 99.52±0.02 0.101±0.008 65237.75±104.67

PEEMACOMC 99.29±0.03 0.089±0.007 65162.58±112.68

PEEMACOMP 96.87±0.32 0.057±0.005 63972.49±142.58
0.7 PEEMACOMH 96.03±0.41 0.076±0.006 61859.85±125.67

PEEMACOMC 97.37±0.29 0.079±0.006 63653.86±143.67

PEEMACOMP 95.23±0.42 0.078±0.009 60879.34±213.67
0.9 PEEMACOMH 96.25±0.37 0.106±0.011 60867.45±222.79

PEEMACOMC 96.89±0.27 0.092±0.010 59932.05±276.38
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Table D.10: Influence of parameter ρg on the n̄alg, %̄ and ξ̄ metrics, for 30 nodes and
Rg = 300 (a) Tsm = 1

ρg PF n̄alg %̄ ξ̄

PEEMACOMP 53.21±5.89 0.212±0.023 44785.23±1242.54
PEEMACOMH 51.45±6.78 0.214±0.026 42564.32±1323.65

0.1 PEEMMASMP 56.28±6.91 0.213±0.029 42368.65±1324.58
PEEMMASMH 51.52±6.62 0.210±0.028 42468.45±1368.29
PEEMACOMC 54.68±6.35 0.240±0.024 45783.59±1284.92
PEEMACOMP 62.78±4.67 0.160±0.014 49102.46±1164.27
PEEMACOMH 58.97±5.39 0.174±0.013 46450.67±1237.86

0.3 PEEMMASMP 56.49±5.28 0.143±0.012 46463.54±1245.63
PEEMMASMH 58.56±5.36 0.175±0.013 46563.41±1256.23
PEEMACOMC 54.54±5.43 0.212±0.021 49673.43±1065.28
PEEMACOMP 84.97±1.53 0.061±0.006 60684.53± 346.37
PEEMACOMH 85.87±1.78 0.062±0.005 59974.87± 343.85

0.5 PEEMMASMP 86.85±1.43 0.063±0.004 59765.39± 343.85
PEEMMASMH 87.56±1.57 0.064±0.005 59749.76± 356.86
PEEMACOMC 88.43±1.54 0.070±0.006 56863.47± 397.67
PEEMACOMP 88.61±1.12 0.056±0.005 62348.62± 192.54
PEEMACOMH 87.38±1.15 0.061±0.006 61537.83± 242.75

0.7 PEEMMASMP 84.29±1.16 0.060±0.005 61458.77± 246.84
PEEMMASMH 86.89±1.16 0.062±0.006 61683.42± 247.85
PEEMACOMC 87.54±1.14 0.060±0.008 63741.48± 148.38
PEEMACOMP 86.36±1.32 0.091±0.007 50365.45± 897.65
PEEMACOMH 86.89±1.24 0.082±0.007 52729.12± 845.34

0.9 PEEMMASMP 85.29±1.21 0.081±0.009 52483.81± 947.41
PEEMMASMH 88.23±1.25 0.082±0.008 52279.01± 948.01
PEEMACOMC 84.32±1.19 0.085±0.008 53625.45± 982.38

(b) Tsm = 2
ρg PF n̄alg %̄ ξ̄

PEEMACOMP 63.29±4.21 0.188±0.016 45583.13±1096.23
PEEMACOMH 63.58±3.82 0.196±0.017 46583.40±1024.97

0.1 PEEMMASMP 64.29±3.63 0.187±0.017 46279.83±1045.79
PEEMMASMH 63.89±3.82 0.184±0.016 46784.57±1042.65
PEEMACOMC 59.49±4.39 0.150±0.022 48871.39±1045.09
PEEMACOMP 67.39±2.87 0.141±0.013 50167.94±1025.35
PEEMACOMH 64.38±3.89 0.156±0.014 49531.64±1025.65

0.3 PEEMMASMP 62.57±3.94 0.158±0.014 49238.78±1015.75
PEEMMASMH 64.54±3.64 0.149±0.015 49436.78±1024.76
PEEMACOMC 65.29±3.26 0.165±0.016 49916.74±1012.57
PEEMACOMP 93.23±1.46 0.052±0.005 61268.01± 336.86
PEEMACOMH 88.89±1.43 0.057±0.005 61362.39± 313.64

0.5 PEEMMASMP 89.35±1.28 0.058±0.006 61235.85± 323.89
PEEMMASMH 89.10±1.32 0.057±0.005 60898.74± 307.64
PEEMACOMC 87.78±1.48 0.058±0.005 58763.83± 346.76
PEEMACOMP 95.29±0.71 0.037±0.005 63452.74± 168.38
PEEMACOMH 91.98±0.97 0.038±0.005 61246.78± 178.38

0.7 PEEMMASMP 92.58±0.92 0.036±0.005 61379.76± 169.53
PEEMMASMH 92.81±0.92 0.037±0.005 61542.74± 187.84
PEEMACOMC 91.68±0.91 0.040±0.004 63427.64± 135.74
PEEMACOMP 93.87±0.91 0.072±0.006 54237.93± 567.24
PEEMACOMH 86.38±1.12 0.074±0.007 55974.83± 578.64

0.9 PEEMMASMP 87.43±1.16 0.075±0.006 55958.81± 594.85
PEEMMASMH 87.47±1.21 0.075±0.007 56412.87± 584.68
PEEMACOMC 86.91±1.23 0.078±0.007 53684.59± 567.96

(c) Tsm = 3
ρg PF n̄alg %̄ ξ̄

PEEMACOMP 74.29±2.65 0.163±0.013 47674.68±1024.58
PEEMACOMH 73.89±2.62 0.182±0.015 48784.46± 965.90

0.1 PEEMMASMP 74.21±2.54 0.181±0.015 48874.37± 958.85
PEEMMASMP 74.72±2.67 0.182±0.016 48784.75± 965.85
PEEMACOMC 69.45±2.13 0.192±0.022 47852.54±1012.78
PEEMACOMP 79.86±2.45 0.120±0.010 50452.87± 912.85
PEEMACOMH 75.59±2.76 0.131±0.011 49872.76± 987.94

0.3 PEEMMASMP 75.32±2.81 0.132±0.012 49873.67± 985.95
PEEMMASMH 74.89±2.82 0.136±0.011 49876.86± 996.28
PEEMACOMC 76.67±3.12 0.167±0.013 51469.86± 942.67
PEEMACOMP 96.84±0.56 0.032±0.002 63562.67± 223.48
PEEMACOMH 94.78±0.57 0.034±0.003 61413.78± 302.34

0.5 PEEMMASMP 95.67±0.58 0.033±0.003 61345.56± 269.89
PEEMMASMH 95.48±0.68 0.032±0.004 61456.74± 289.98
PEEMACOMC 98.46±0.96 0.034±0.003 63467.75± 226.86
PEEMACOMP 95.64±0.68 0.031±0.002 63254.76± 227.64
PEEMACOMH 93.49±0.82 0.033±0.003 61467.64± 238.89

0.7 PEEMMASMP 93.67±0.84 0.033±0.004 61427.53± 268.98
PEEMMASMH 94.63±0.82 0.035±0.003 61452.34± 286.42
PEEMACOMC 92.24±0.83 0.040±0.003 62438.56± 232.84
PEEMACOMP 93.78±0.86 0.068±0.005 56684.76± 525.65
PEEMACOMH 89.26±1.16 0.067±0.006 57684.87± 542.98

0.9 PEEMMASMP 89.34±1.18 0.069±0.005 57764.89± 527.83
PEEMMASMH 89.63±1.16 0.067±0.005 57765.95± 545.95
PEEMACOMC 88.82±1.15 0.072±0.007 55874.65± 556.96

(d) Tsm = 4
ρg PF n̄alg %̄ ξ̄

PEEMACOMP 85.87±2.56 0.131±0.011 50458.95±1024.64
PEEMACOMH 84.65±2.67 0.148±0.015 50457.43± 963.87

0.1 PEEMMASMP 84.75±2.68 0.149±0.015 50348.93± 967.85
PEEMMASMH 84.83±2.78 0.145±0.015 50456.28± 993.69
PEEMACOMC 90.21±2.98 0.148±0.014 48894.27±1014.85
PEEMACOMP 82.53±2.56 0.112±0.010 51653.84± 856.83
PEEMACOMH 87.97±2.67 0.124±0.012 51206.36± 847.96

0.3 PEEMMASMP 88.34±2.67 0.122±0.013 51208.36± 857.48
PEEMMASMH 88.91±2.58 0.125±0.013 50927.84± 857.79
PEEMACOMC 82.53±2.84 0.137±0.012 52563.28± 842.69
PEEMACOMP 98.64±0.63 0.027±0.003 63652.74± 149.59
PEEMACOMH 97.83±0.65 0.033±0.003 62348.94± 165.85

0.5 PEEMMASMP 98.43±0.64 0.030±0.003 62648.83± 163.47
PEEMMASMH 97.54±0.62 0.032±0.003 62651.84± 187.34
PEEMACOMC 95.74±0.54 0.028±0.002 63851.28± 147.86
PEEMACOMP 98.47±0.51 0.029±0.002 63461.86± 184.76
PEEMACOMH 96.85±0.57 0.032±0.003 62673.96± 212.78

0.7 PEEMMASMP 96.38±0.58 0.033±0.003 62759.39± 217.95
PEEMMASMH 96.42±0.51 0.033±0.003 62712.84± 224.97
PEEMACOMC 94.28±0.64 0.030±0.002 63845.83± 179.86
PEEMACOMP 94.74±0.69 0.061±0.005 58912.59± 412.49
PEEMACOMH 90.37±0.89 0.061±0.005 58851.68± 456.75

0.9 PEEMMASMP 90.52±0.88 0.065±0.005 58879.48± 453.98
PEEMMASMH 90.31±0.89 0.059±0.005 58827.78± 446.85
PEEMACOMC 89.88±0.84 0.068±0.006 56912.67± 456.37

(e) Tsm = 5
ρg PF n̄alg %̄ ξ̄

PEEMACOMP 98.52±0.55 0.077±0.009 55468.75± 602.23
PEEMACOMH 97.41±0.66 0.088±0.012 56369.85± 616.11

0.1 PEEMMASMP 97.84±0.65 0.082±0.012 56378.84± 623.54
PEEMMASMH 97.95±0.66 0.081±0.010 56469.84± 624.76
PEEMACOMC 98.64±0.78 0.092±0.013 56672.65± 628.45
PEEMACOMP 98.84±0.66 0.045±0.008 58853.48± 458.27
PEEMACOMH 99.76±0.37 0.062±0.009 57349.81± 486.24

0.3 PEEMMASMP 99.32±0.35 0.057±0.008 57269.78± 457.53
PEEMMASMH 99.64±0.37 0.056±0.007 57471.87± 467.84
PEEMACOMC 98.73±0.62 0.064±0.008 56412.36± 528.85
PEEMACOMP 99.99±0.01 0.026±0.002 63625.85± 145.28
PEEMACOMH 99.99±0.01 0.029±0.002 62368.73± 165.76

0.5 PEEMMASMP 99.98±0.01 0.028±0.002 62479.98± 169.52
PEEMMASMH 99.99±0.01 0.027±0.002 62538.74± 178.49
PEEMACOMC 99.98±0.02 0.027±0.002 64113.18± 145.87
PEEMACOMP 98.91±0.34 0.027±0.002 63838.92± 165.39
PEEMACOMH 98.67±0.49 0.030±0.003 62416.62± 201.23

0.7 PEEMMASMP 98.43±0.52 0.027±0.002 62412.37± 214.45
PEEMMASMH 98.85±0.53 0.028±0.002 62376.73± 202.27
PEEMACOMC 99.35±0.34 0.025±0.002 64362.61± 156.64
PEEMACOMP 98.89±0.52 0.046±0.004 60450.39± 212.36
PEEMACOMH 98.87±0.46 0.038±0.004 61348.27± 212.27

0.9 PEEMMASMP 98.75±0.46 0.039±0.004 61328.56± 213.78
PEEMMASMH 98.87±0.43 0.036±0.004 61327.68± 212.49
PEEMACOMC 99.31±0.31 0.048±0.005 61579.37± 245.22

(f) Tsm = 6
ρg PF n̄alg %̄ ξ̄

PEEMACOMP 98.37±1.23 0.105±0.013 54412.73± 873.23
PEEMACOMH 98.76±1.21 0.123±0.013 53348.54± 892.73

0.1 PEEMMASMP 97.83±1.17 0.120±0.014 53351.75± 892.73
PEEMMASMH 98.62±1.17 0.124±0.014 53345.48± 892.73
PEEMACOMC 98.83±0.93 0.136±0.014 52187.38± 912.32
PEEMACOMP 99.53±1.12 0.069±0.008 55936.76± 782.37
PEEMACOMH 99.72±0.95 0.088±0.009 54675.85± 794.52

0.3 PEEMMASMP 99.29±0.94 0.087±0.009 54653.73± 794.52
PEEMMASMH 99.72±0.95 0.084±0.009 54587.64± 794.52
PEEMACOMC 99.83±0.99 0.087±0.010 53913.43± 822.57
PEEMACOMP 99.98±0.02 0.029±0.002 63516.38± 169.48
PEEMACOMH 99.99±0.01 0.033±0.003 62247.68± 196.49

0.5 PEEMMASMP 99.97±0.01 0.031±0.002 62327.75± 196.49
PEEMMASMH 99.99±0.01 0.032±0.003 62368.48± 196.49
PEEMACOMC 99.99±0.01 0.028±0.002 63869.54± 172.31
PEEMACOMP 99.64±0.39 0.029±0.002 63646.74± 196.74
PEEMACOMH 99.97±0.48 0.031±0.003 62946.73± 217.45

0.7 PEEMMASMP 99.91±0.47 0.032±0.003 62953.63± 224.61
PEEMMASMH 99.98±0.47 0.031±0.002 62934.74± 213.08
PEEMACOMC 99.74±0.29 0.026±0.002 63912.69± 198.93
PEEMACOMP 99.92±0.48 0.053±0.004 59345.58± 234.73
PEEMACOMH 98.42±0.42 0.041±0.005 59697.79± 239.02

0.9 PEEMMASMP 99.38±0.45 0.042±0.004 59696.48± 239.02
PEEMMASMH 98.31±0.45 0.045±0.004 59874.75± 239.02
PEEMACOMC 98.74±0.26 0.059±0.005 58854.85± 324.53
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Table D.11: Influence of parameter ρg on the n̄alg, %̄ and ξ̄ metrics, for 30 nodes and
Rg = 500 (a) Tsm = 1

ρg PF n̄alg %̄ ξ̄

PEEMACOMP 58.36±4.57 0.202±0.021 48524.76±1012.65
PEEMACOMH 57.54±5.67 0.212±0.026 47674.96±1123.45

0.1 PEEMMASMP 56.86±5.32 0.214±0.025 47543.64±1124.57
PEEMMASMH 58.58±5.42 0.209±0.022 47653.63±1118.53
PEEMACOMC 53.26±4.87 0.237±0.027 49532.64±1102.39
PEEMACOMP 63.48±4.78 0.168±0.013 53348.89± 924.57
PEEMACOMH 57.67±4.13 0.175±0.014 49766.45±1027.65

0.3 PEEMMASMP 56.78±4.26 0.172±0.014 49543.26±1056.54
PEEMMASMH 57.38±4.42 0.179±0.015 49875.47±1037.89
PEEMACOMC 53.87±4.79 0.213±0.022 52568.84± 947.65
PEEMACOMP 85.67±1.37 0.068±0.005 61573.57± 313.24
PEEMACOMH 86.23±1.68 0.067±0.006 59878.53± 335.68

0.5 PEEMMASMP 85.73±1.43 0.071±0.006 59997.63± 311.24
PEEMMASMH 86.47±1.35 0.074±0.007 59986.47± 354.35
PEEMACOMC 84.12±1.25 0.082±0.008 58964.47± 354.36
PEEMACOMP 93.59±0.87 0.062±0.004 63556.75± 146.74
PEEMACOMH 90.32±0.92 0.068±0.006 62146.63± 178.67

0.7 PEEMMASMP 90.49±0.59 0.067±0.007 62674.32± 174.32
PEEMMASMH 90.37±0.87 0.062±0.007 62456.64± 169.75
PEEMACOMC 89.89±0.95 0.077±0.008 64143.54± 113.56
PEEMACOMP 89.35±1.10 0.096±0.010 55642.15± 764.32
PEEMACOMH 87.83±1.12 0.084±0.008 55376.53± 757.54

0.9 PEEMMASMP 87.52±1.13 0.083±0.008 55857.98± 774.35
PEEMMASMH 87.31±1.12 0.087±0.009 55436.97± 743.46
PEEMACOMC 87.88±1.15 0.082±0.008 56798.95± 724.73

(b) Tsm = 2
ρg PF n̄alg %̄ ξ̄

PEEMACOMP 66.34±3.76 0.183±0.019 50675.53±965.43
PEEMACOMH 66.82±3.43 0.187±0.024 51347.75±946.29

0.1 PEEMMASMP 65.28±3.37 0.198±0.023 51564.64±947.25
PEEMMASMH 66.72±3.39 0.196±0.023 51346.54±946.29
PEEMACOMC 61.28±4.04 0.187±0.024 53567.64±956.53
PEEMACOMP 71.79±2.45 0.145±0.016 54674.46±923.53
PEEMACOMH 68.36±3.47 0.157±0.017 56947.64±845.42

0.3 PEEMMASMP 67.89±3.38 0.162±0.017 57322.56±845.63
PEEMMASMH 67.74±3.35 0.162±0.018 57423.49±875.43
PEEMACOMC 70.85±3.05 0.168±0.019 54325.53±912.54
PEEMACOMP 93.87±0.76 0.063±0.007 62432.54±313.47
PEEMACOMH 90.58±0.86 0.064±0.007 61654.76±327.84

0.5 PEEMMASMP 90.46±0.84 0.067±0.008 61546.87±343.58
PEEMMASMH 90.48±0.86 0.066±0.008 61489.56±348.53
PEEMACOMC 90.74±0.83 0.069±0.008 60986.54±337.53
PEEMACOMP 98.74±0.22 0.049±0.006 64328.35±133.25
PEEMACOMH 97.73±0.27 0.054±0.007 64211.31±145.32

0.7 PEEMMASMP 98.64±0.25 0.053±0.006 64228.84±132.76
PEEMMASMH 98.36±0.26 0.052±0.007 64223.12±129.75
PEEMACOMC 97.39±0.28 0.056±0.007 64453.21±122.84
PEEMACOMP 94.57±0.72 0.077±0.008 58137.64±525.46
PEEMACOMH 89.26±0.87 0.084±0.009 58362.26±556.36

0.9 PEEMMASMP 89.32±0.74 0.081±0.008 58753.32±524.36
PEEMMASMH 89.48±0.36 0.080±0.008 58458.64±527.65
PEEMACOMC 87.23±0.78 0.082±0.008 56873.25±512.65

(c) Tsm = 3
ρg PF n̄alg %̄ ξ̄

PEEMACOMP 72.46±2.43 0.164±0.014 55453.27±437.54
PEEMACOMH 73.58±2.52 0.186±0.016 56567.32±415.43

0.1 PEEMMASMP 72.57±2.48 0.185±0.016 56864.32±421.64
PEEMMASMH 71.84±2.53 0.186±0.017 56347.27±443.25
PEEMACOMC 66.79±2.78 0.189±0.018 55632.24±431.87
PEEMACOMP 77.43±2.36 0.137±0.012 58875.32±367.45
PEEMACOMH 75.89±2.56 0.162±0.014 58986.43±392.36

0.3 PEEMMASMP 75.72±2.59 0.160±0.013 58975.23±358.53
PEEMMASMH 76.73±2.67 0.158±0.013 58865.43±348.09
PEEMACOMC 74.69±2.78 0.167±0.014 61654.32±327.85
PEEMACOMP 96.12±0.39 0.043±0.003 63475.24±279.75
PEEMACOMH 94.79±0.42 0.047±0.004 62175.43±267.54

0.5 PEEMMASMP 95.90±0.44 0.045±0.003 62284.56±268.94
PEEMMASMH 92.79±0.56 0.044±0.003 62489.49±267.54
PEEMACOMC 96.31±0.40 0.048±0.005 64028.23±234.72
PEEMACOMP 92.58±0.58 0.042±0.002 63675.43±235.87
PEEMACOMH 92.67±0.61 0.044±0.002 62532.25±246.54

0.7 PEEMMASMP 92.78±0.65 0.047±0.004 62765.43±245.89
PEEMMASMH 92.98±0.68 0.046±0.003 62450.46±223.67
PEEMACOMC 92.37±0.75 0.048±0.004 63965.43±228.85
PEEMACOMP 93.58±0.73 0.079±0.006 59765.43±378.54
PEEMACOMH 89.48±0.87 0.076±0.005 61353.32±314.68

0.9 PEEMMASMP 89.27±0.79 0.076±0.005 61343.62±321.35
PEEMMASMH 89.38±0.84 0.073±0.004 61576.64±326.87
PEEMACOMC 87.84±0.74 0.082±0.006 60543.32±346.75

(d) Tsm = 4
ρg PF n̄alg %̄ ξ̄

PEEMACOMP 82.69±2.25 0.148±0.014 58486.76±517.65
PEEMACOMH 81.78±2.36 0.152±0.017 57965.35±513.45

0.1 PEEMMASMP 82.46±2.19 0.156±0.017 57354.54±525.43
PEEMMASMH 83.48±2.39 0.158±0.018 58236.54±496.39
PEEMACOMC 87.82±1.97 0.162±0.018 56543.21±605.58
PEEMACOMP 82.36±2.14 0.123±0.012 59764.32±276.54
PEEMACOMH 85.98±2.37 0.125±0.011 58287.54±276.54

0.3 PEEMMASMP 86.34±2.42 0.137±0.013 58345.43±265.43
PEEMMASMH 87.02±2.52 0.132±0.013 58574.32±274.37
PEEMACOMC 79.56±2.37 0.144±0.015 60564.26±247.78
PEEMACOMP 98.35±0.33 0.042±0.003 64202.65±115.75
PEEMACOMH 96.78±0.52 0.048±0.005 64157.54±124.83

0.5 PEEMMASMP 96.43±0.56 0.046±0.004 64231.76±121.28
PEEMMASMH 96.78±0.48 0.047±0.004 64210.43±117.84
PEEMACOMC 95.37±0.57 0.050±0.005 64256.34±118.32
PEEMACOMP 95.38±0.56 0.037±0.002 64124.23±162.18
PEEMACOMH 93.58±0.78 0.039±0.003 64342.54±178.56

0.7 PEEMMASMP 94.67±0.63 0.042±0.005 64342.25±186.59
PEEMMASMH 93.87±0.74 0.045±0.005 64273.45±187.29
PEEMACOMC 93.58±0.58 0.039±0.004 64165.54±158.48
PEEMACOMP 93.74±0.64 0.072±0.006 59765.43±346.59
PEEMACOMH 90.56±0.63 0.067±0.004 62753.24±198.48

0.9 PEEMMASMP 90.47±0.64 0.065±0.004 62264.13±204.39
PEEMMASMH 90.49±0.92 0.078±0.006 59986.43±338.77
PEEMACOMC 89.69±0.86 0.074±0.006 58975.43±367.58

(e) Tsm = 5
ρg PF n̄alg %̄ ξ̄

PEEMACOMP 90.58±0.74 0.080±0.009 59256.84±357.39
PEEMACOMH 91.38±0.83 0.083±0.012 59874.32±386.46

0.1 PEEMMASMP 91.74±0.81 0.084±0.012 60132.25±398.48
PEEMMASMH 90.74±0.82 0.085±0.013 59986.54±386.39
PEEMACOMC 91.89±0.81 0.093±0.014 59543.21±392.48
PEEMACOMP 92.87±0.62 0.053±0.006 60435.43±352.38
PEEMACOMH 92.23±0.68 0.061±0.007 60653.33±347.72

0.3 PEEMMASMP 90.85±0.72 0.062±0.007 60674.24±365.83
PEEMMASMH 91.95±0.58 0.062±0.008 60653.25±363.82
PEEMACOMC 90.59±0.74 0.071±0.008 61543.36±337.73
PEEMACOMP 99.98±0.02 0.038±0.003 63764.35±110.93
PEEMACOMH 99.99±0.01 0.048±0.005 64053.42±153.28

0.5 PEEMMASMP 99.98±0.02 0.047±0.004 64112.32±172.17
PEEMMASMH 99.99±0.01 0.046±0.004 64145.65±159.48
PEEMACOMC 99.97±0.02 0.043±0.003 64234.56±137.48
PEEMACOMP 97.89±0.32 0.036±0.003 63687.68±156.28
PEEMACOMH 96.65±0.39 0.038±0.004 64146.54±167.59

0.7 PEEMMASMP 96.89±0.45 0.037±0.004 64278.54±178.45
PEEMMASMH 95.35±0.46 0.039±0.004 64249.56±178.37
PEEMACOMC 96.70±0.32 0.032±0.002 64367.13±167.48
PEEMACOMP 96.98±0.43 0.048±0.005 61342.63±167.26
PEEMACOMH 97.65±0.40 0.044±0.005 61764.36±164.84

0.9 PEEMMASMP 97.49±0.37 0.045±0.005 61784.35±162.86
PEEMMASMH 97.30±0.36 0.048±0.006 61875.43±168.32
PEEMACOMC 96.50±0.26 0.052±0.007 61986.65±163.28

(f) Tsm = 6
ρg PF n̄alg %̄ ξ̄

PEEMACOMP 94.46±0.97 0.103±0.014 60245.56±413.45
PEEMACOMH 93.57±0.87 0.113±0.014 58654.36±518.64

0.1 PEEMMASMP 93.79±0.97 0.123±0.015 58674.35±527.53
PEEMMASMH 94.74±0.98 0.122±0.015 58689.38±568.54
PEEMACOMC 97.89±0.94 0.138±0.016 59567.32±568.26
PEEMACOMP 92.45±0.97 0.074±0.008 60943.46±315.46
PEEMACOMH 96.44±0.87 0.087±0.010 59875.43±413.95

0.3 PEEMMASMP 97.48±0.78 0.086±0.010 59874.28±417.74
PEEMMASMH 96.85±0.86 0.087±0.011 59778.03±424.67
PEEMACOMC 97.93±0.95 0.092±0.012 58467.27±385.43
PEEMACOMP 99.98±0.02 0.038±0.003 65025.35±138.65
PEEMACOMH 99.97±0.02 0.042±0.004 64297.54±158.64

0.5 PEEMMASMP 99.98±0.02 0.041±0.004 64325.31±154.92
PEEMMASMH 99.99±0.01 0.041±0.004 64257.43±165.73
PEEMACOMC 99.99±0.01 0.039±0.003 64449.23±146.54
PEEMACOMP 97.78±0.32 0.036±0.003 63579.65±167.41
PEEMACOMH 96.49±0.43 0.035±0.003 64278.17±175.73

0.7 PEEMMASMP 96.63±0.41 0.037±0.004 64476.73±173.28
PEEMMASMH 96.69±0.40 0.036±0.003 64173.18±168.85
PEEMACOMC 98.78±0.23 0.033±0.003 64317.67±161.84
PEEMACOMP 97.36±0.35 0.062±0.005 60367.64±234.56
PEEMACOMH 97.87±0.36 0.054±0.005 60546.76±243.45

0.9 PEEMMASMP 97.94±0.37 0.058±0.006 60458.46±232.57
PEEMMASMH 98.32±0.32 0.059±0.006 60368.65±226.76
PEEMACOMC 98.89±0.36 0.068±0.007 59975.45±327.65
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Table D.12: Influence of parameter ρg on the n̄alg, %̄ and ξ̄ metrics, for 30 nodes and
Rg = 800 (a) Tsm = 1

ρg PF n̄alg %̄ ξ̄

PEEMACOMP 51.47±4.89 0.193±0.023 46157.89±875.48
PEEMACOMH 40.32±5.56 0.215±0.024 46326.74±843.21

0.1 PEEMMASMP 51.57±4.71 0.195±0.022 45923.46±824.58
PEEMMASMH 52.67±4.82 0.192±0.021 46165.78±893.27
PEEMACOMC 53.45±4.63 0.208±0.023 47124.68±845.37
PEEMACOMP 60.39±2.69 0.172±0.018 53467.67±423.45
PEEMACOMH 43.21±3.28 0.196±0.020 51568.78±420.47

0.3 PEEMMASMP 62.36±2.58 0.171±0.017 53678.49±389.34
PEEMMASMH 63.78±2.56 0.173±0.017 54267.75±367.23
PEEMACOMC 64.78±2.32 0.184±0.018 53678.59±312.67
PEEMACOMP 80.43±2.43 0.158±0.016 61576.23±278.45
PEEMACOMH 47.21±2.78 0.182±0.018 60345.67±347.87

0.5 PEEMMASMP 82.34±1.98 0.156±0.015 60987.36±356.89
PEEMMASMH 80.23±2.13 0.151±0.014 61203.67±289.56
PEEMACOMC 82.56±2.12 0.166±0.018 61342.67±275.79
PEEMACOMP 91.50±1.23 0.115±0.012 63768.23±162.45
PEEMACOMH 58.68±1.86 0.153±0.016 63867.12±156.34

0.7 PEEMMASMP 93.18±0.95 0.113±0.012 63784.37±158.43
PEEMMASMH 91.36±1.17 0.116±0.013 64106.23±145.37
PEEMACOMC 93.27±0.89 0.143±0.014 62897.45±167.45
PEEMACOMP 87.34±1.32 0.142±0.014 56345.54±632.34
PEEMACOMH 52.67±2.34 0.168±0.016 55267.43±643.27

0.9 PEEMMASMP 89.45±0.94 0.135±0.013 57389.28±648.48
PEEMMASMH 87.45±1.23 0.138±0.013 58489.54±568.23
PEEMACOMC 99.56±0.96 0.140±0.014 57231.65±598.32

(b) Tsm = 2
ρg PF n̄alg %̄ ξ̄

PEEMACOMP 60.43±5.89 0.193±0.029 50125.54±962.35
PEEMACOMH 34.13±8.65 0.239±0.035 51267.35±972.34

0.1 PEEMMASMP 61.45±6.34 0.201±0.032 51568.56±973.15
PEEMMASMH 60.37±6.78 0.197±0.030 51345.78±916.26
PEEMACOMC 59.75±6.43 0.202±0.031 51267.78±946.32
PEEMACOMP 72.34±4.56 0.152±0.019 53412.45±862.34
PEEMACOMH 34.26±8.12 0.196±0.031 54528.54±876.54

0.3 PEEMMASMP 72.45±5.13 0.147±0.019 54461.24±778.32
PEEMMASMH 68.23±5.67 0.154±0.020 53764.83±896.32
PEEMACOMC 71.38±5.27 0.175±0.025 53674.78±845.46
PEEMACOMP 91.23±0.67 0.115±0.016 61368.34±359.27
PEEMACOMH 40.12±6.79 0.162±0.026 61658.38±378.13

0.5 PEEMMASMP 91.31±1.13 0.114±0.017 61578.37±358.12
PEEMMASMH 85.32±3.42 0.113±0.016 61679.28±397.21
PEEMACOMC 92.38±1.23 0.148±0.019 61267.28±392.35
PEEMACOMP 96.38±0.57 0.095±0.008 64963.58±180.65
PEEMACOMH 46.76±6.69 0.154±0.023 64643.84±181.34

0.7 PEEMMASMP 95.34±0.48 0.102±0.015 64764.39±183.87
PEEMMASMH 90.48±0.72 0.104±0.015 64998.64±184.76
PEEMACOMC 97.12±0.42 0.134±0.017 64326.75±198.85
PEEMACOMP 92.14±0.78 0.116±0.015 58687.12±210.56
PEEMACOMH 42.36±7.76 0.173±0.025 64643.84±234.56

0.9 PEEMMASMP 90.31±0.57 0.117±0.015 64764.39±247.96
PEEMMASMH 85.31±3.78 0.123±0.016 64998.64±235.61
PEEMACOMC 92.56±1.24 0.152±0.019 64326.75±246.75

(c) Tsm = 3
ρg PF n̄alg %̄ ξ̄

PEEMACOMP 66.45±5.13 0.197±0.026 55142.48±835.67
PEEMACOMH 35.61±8.23 0.221±0.032 55897.26±832.45

0.1 PEEMMASMP 65.47±6.16 0.178±0.030 55897.38±845.23
PEEMMASMH 64.78±6.47 0.176±0.028 55789.16±834.58
PEEMACOMC 63.13±6.73 0.180±0.028 55789.38±864.14
PEEMACOMP 73.45±4.56 0.150±0.018 58235.56±735.78
PEEMACOMH 36.12±8.12 0.192±0.028 59745.38±736.56

0.3 PEEMMASMP 73.46±5.13 0.145±0.017 59237.48±757.86
PEEMMASMH 69.89±5.67 0.152±0.018 59657.37±763.28
PEEMACOMC 72.48±5.27 0.171±0.022 58467.29±784.43
PEEMACOMP 98.58±0.46 0.082±0.008 64987.34±212.54
PEEMACOMH 77.87±5.13 0.116±0.011 64786.43±214.89

0.5 PEEMMASMP 97.38±0.46 0.092±0.010 64879.45±217.86
PEEMMASMH 95.69±0.67 0.089±0.009 64987.48±223.78
PEEMACOMC 97.89±0.43 0.110±0.010 65022.45±201.74
PEEMACOMP 91.34±1.34 0.082±0.008 64657.28±232.45
PEEMACOMH 69.37±5.67 0.108±0.010 64734.12±245.27

0.7 PEEMMASMP 90.45±1.68 0.090±0.010 64847.28±246.28
PEEMMASMH 89.34±1.76 0.087±0.008 64827.67±253.27
PEEMACOMC 91.58±1.67 0.105±0.010 65136.68±227.84
PEEMACOMP 75.23±5.26 0.116±0.012 61231.24±321.25
PEEMACOMH 64.25±6.75 0.127±0.013 61324.32±342.45

0.9 PEEMMASMP 74.32±5.68 0.114±0.013 62123.58±346.67
PEEMMASMH 74.58±5.89 0.113±0.012 62356.67±356.17
PEEMACOMC 73.58±5.87 0.128±0.014 62542.46±368.32

(d) Tsm = 4
ρg PF n̄alg %̄ ξ̄

PEEMACOMP 74.23±5.01 0.190±0.024 59754.23±632.45
PEEMACOMH 43.48±7.83 0.196±0.030 58654.39±675.34

0.1 PEEMMASMP 71.27±5.28 0.189±0.027 59648.28±674.27
PEEMMASMH 72.34±5.78 0.186±0.026 58795.48±694.26
PEEMACOMC 69.28±5.72 0.187±0.027 59756.76±693.09
PEEMACOMP 77.32±4.83 0.150±0.016 60145.63±609.23
PEEMACOMH 42.35±8.09 0.192±0.025 60126.65±578.95

0.3 PEEMMASMP 76.74±4.78 0.145±0.016 58643.27±623.46
PEEMMASMH 76.43±4.87 0.152±0.017 59643.28±643.12
PEEMACOMC 77.54±4.79 0.171±0.021 59856.20±620.54
PEEMACOMP 97.75±0.34 0.075±0.006 65135.76±148.45
PEEMACOMH 49.78±3.76 0.143±0.011 64876.59±154.79

0.5 PEEMMASMP 96.54±0.42 0.083±0.007 65237.89±165.89
PEEMMASMH 94.35±0.54 0.084±0.007 65210.76±163.56
PEEMACOMC 98.95±0.45 0.106±0.009 64897.04±172.68
PEEMACOMP 93.56±2.12 0.068±0.008 65215.43±212.34
PEEMACOMH 47.57±7.29 0.124±0.010 64678.27±235.37

0.7 PEEMMASMP 92.35±1.76 0.067±0.010 65368.34±218.35
PEEMMASMH 87.36±1.78 0.066±0.008 65418.48±215.31
PEEMACOMC 90.68±1.13 0.086±0.010 64245.54±247.78
PEEMACOMP 76.26±6.13 0.087±0.012 56237.84±432.27
PEEMACOMH 43.67±8.12 0.128±0.013 56231.37±456.78

0.9 PEEMMASMP 76.28±6.16 0.087±0.013 57643.27±467.37
PEEMMASMH 75.38±6.78 0.089±0.012 57634.25±487.37
PEEMACOMC 77.81±6.12 0.099±0.014 57248.39±487.43

(e) Tsm = 5
ρg PF n̄alg %̄ ξ̄

PEEMACOMP 94.34±1.12 0.135±0.024 59743.25±614.54
PEEMACOMH 60.67±6.23 0.150±0.030 59124.34±676.85

0.1 PEEMMASMP 94.32±1.21 0.134±0.027 59547.28±687.94
PEEMMASMH 93.76±1.07 0.136±0.026 59765.27±686.12
PEEMACOMC 95.29±0.89 0.127±0.027 59158.68±675.65
PEEMACOMP 97.13±0.65 0.125±0.027 60234.56±658.34
PEEMACOMH 64.45±7.12 0.137±0.028 60346.76±634.52

0.3 PEEMMASMP 98.67±0.22 0.128±0.027 58764.38±645.68
PEEMMASMH 98.87±0.27 0.126±0.026 59786.45±657.38
PEEMACOMC 97.89±0.38 0.125±0.029 59976.40±643.12
PEEMACOMP 99.65±0.37 0.075±0.012 65126.89±157.45
PEEMACOMH 70.09±4.12 0.109±0.018 64997.65±167.32

0.5 PEEMACOMH 99.13±0.35 0.076±0.013 65321.67±158.23
PEEMACOMH 96.38±0.74 0.078±0.014 65213.78±142.54
PEEMACOMC 99.34±0.29 0.104±0.018 65132.86±164.32
PEEMACOMP 98.12±1.07 0.066±0.009 65257.62±233.46
PEEMACOMH 65.78±6.78 0.092±0.011 64789.32±286.54

0.7 PEEMMASMP 97.23±1.23 0.068±0.011 65297.41±226.23
PEEMMASMH 96.21±1.41 0.068±0.011 65179.45±238.12
PEEMACOMC 96.53±1.23 0.092±0.013 65248.87±227.49
PEEMACOMP 77.12±6.03 0.088±0.012 57368.65±412.45
PEEMACOMH 64.32±7.86 0.098±0.014 56334.77±435.67

0.9 PEEMMASMP 77.93±6.36 0.087±0.014 57748.63±446.64
PEEMMASMH 77.29±6.46 0.089±0.014 57564.25±427.74
PEEMACOMC 78.85±6.36 0.101±0.015 57347.89±438.42

(f) Tsm = 6
ρg PF n̄alg %̄ ξ̄

PEEMACOMP 93.35±1.56 0.127±0.022 60654.24±512.46
PEEMACOMH 61.46±6.67 0.134±0.027 60124.45±532.65

0.1 PEEMMASMP 93.47±1.31 0.133±0.026 60123.34±545.63
PEEMMASMH 90.77±1.01 0.132±0.025 60127.38±578.38
PEEMACOMC 93.27±0.67 0.158±0.031 60126.38±568.27
PEEMACOMP 94.89±0.47 0.108±0.015 60786.34±542.67
PEEMACOMH 62.78±7.78 0.104±0.016 60765.38±576.38

0.3 PEEMMASMP 93.93±0.38 0.111±0.017 60876.34±548.97
PEEMMASMH 91.37±0.32 0.123±0.018 60765.38±568.27
PEEMACOMC 97.28±0.39 0.116±0.017 60856.32±638.91
PEEMACOMP 99.42±0.24 0.074±0.009 65235.74±165.89
PEEMACOMH 76.44±5.12 0.104±0.015 65243.78±188.76

0.5 PEEMMASMP 99.47±0.23 0.076±0.008 65345.87±167.85
PEEMMASMH 95.75±0.32 0.077±0.007 65358.96±156.89
PEEMACOMC 99.43±0.28 0.090±0.011 65234.85±178.90
PEEMACOMP 96.45±1.13 0.067±0.009 65367.84±258.48
PEEMACOMH 67.38±6.87 0.093±0.012 65174.29±267.39

0.7 PEEMMASMP 96.38±1.15 0.069±0.012 65276.38±244.12
PEEMMASMH 92.58±1.38 0.070±0.012 65186.56±272.46
PEEMACOMC 94.28±1.26 0.091±0.015 65289.98±265.67
PEEMACOMP 78.28±5.78 0.097±0.013 60135.78±445.76
PEEMACOMH 65.59±7.46 0.102±0.016 58976.36±448.76

0.9 PEEMMASMP 79.26±6.15 0.098±0.016 58765.93±465.89
PEEMMASMH 78.32±6.32 0.098±0.016 59478.58±437.83
PEEMACOMC 76.29±6.28 0.117±0.018 60368.85±468.38
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Table D.13: Influence of parameter α on the n̄alg, %̄ and ξ̄ metrics, for 30 nodes and
Rg = 300

(a) Tsm = 1
α PF n̄alg %̄ ξ̄

1.00 PEEMMASMP 86.23±1.56 0.054±0.007 44326.65±1231.15
PEEMMASMH 87.67±1.47 0.052±0.008 47234.57±1234.16

1.50 PEEMMASMP 88.36±1.14 0.048±0.006 59234.45± 479.34
PEEMMASMH 86.38±1.13 0.049±0.007 59379.23± 523.43

2.00 PEEMMASMP 89.35±1.03 0.058±0.006 58345.67± 667.87
PEEMMASMH 87.25±1.35 0.062±0.006 57453.65± 723.56

2.50 PEEMMASMP 90.21±0.56 0.078±0.007 59135.51± 673.26
PEEMMASMH 90.14±0.58 0.082±0.008 57256.53± 723.45

3.00 PEEMMASMP 57.56±4.31 0.078±0.008 45124.34± 865.32
PEEMMASMH 58.91±4.21 0.076±0.008 46432.32± 867.35

3.50 PEEMMASMP 55.48±4.24 0.082±0.008 43257.82± 874.53
PEEMMASMH 57.76±4.38 0.079±0.008 44267.81± 874.27

(b) Tsm = 2
α PF n̄alg %̄ ξ̄

1.00 PEEMMASMP 91.35±1.21 0.052±0.007 46456.38±1131.45
PEEMMASMH 90.68±1.26 0.054±0.007 49589.28±1078.81

1.50 PEEMMASMP 88.43±0.99 0.040±0.006 60341.45± 643.31
PEEMMASMH 89.45±1.13 0.042±0.006 58743.24± 675.63

2.00 PEEMMASMP 91.57±0.83 0.053±0.006 60834.47± 682.34
PEEMMASMH 92.67±1.27 0.054±0.007 59234.45± 673.35

2.50 PEEMMASMP 91.45±0.95 0.076±0.008 61324.89± 674.21
PEEMMASMH 91.89±1.14 0.075±0.007 59242.43± 639.39

3.00 PEEMMASMP 64.45±3.89 0.076±0.008 46745.98± 732.19
PEEMMASMH 63.89±3.75 0.078±0.008 46879.23± 753.96

3.50 PEEMMASMP 66.43±3.37 0.079±0.008 45789.74± 779.90
PEEMMASMH 66.45±3.56 0.085±0.009 44789.37± 765.89

(c) Tsm = 3
α PF n̄alg %̄ ξ̄

1.00 PEEMMASMP 93.37±0.67 0.036±0.003 47654.78±1011.25
PEEMMASMH 90.53±0.83 0.035±0.003 49789.48±1023.65

1.50 PEEMMASMP 89.56±0.87 0.033±0.002 61678.38± 354.21
PEEMMASMH 90.78±1.09 0.034±0.003 60345.43± 387.43

2.00 PEEMMASMP 92.87±0.78 0.033±0.003 60934.24± 467.21
PEEMMASMH 93.87±1.16 0.032±0.002 60327.48± 486.21

2.50 PEEMMASMP 92.56±0.92 0.058±0.008 61871.54± 321.43
PEEMMASMH 91.78±1.11 0.061±0.007 60673.65± 321.46

3.00 PEEMMASMP 65.85±3.65 0.062±0.006 48754.32± 632.34
PEEMMASMH 64.76±3.59 0.071±0.007 49124.65± 645.21

3.50 PEEMMASMP 68.45±3.43 0.072±0.007 47123.64± 723.54
PEEMMASMH 67.87±3.78 0.079±0.008 46543.76± 745.65

(d) Tsm = 4
α PF n̄alg %̄ ξ̄

1.00 PEEMMASMP 94.79±0.64 0.030±0.002 48694.23±689.32
PEEMMASMH 92.68±0.79 0.031±0.002 50346.65±679.43

1.50 PEEMMASMP 91.67±0.92 0.031±0.002 61875.54±332.65
PEEMMASMH 91.64±1.02 0.032±0.002 60984.27±375.42

2.00 PEEMMASMP 92.81±0.73 0.033±0.003 61324.67±364.67
PEEMMASMH 93.65±1.11 0.030±0.002 60985.64±389.43

2.50 PEEMMASMP 93.86±0.87 0.054±0.006 61934.17±312.45
PEEMMASMH 92.67±1.05 0.054±0.007 61456.76±314.78

3.00 PEEMMASMP 67.51±3.57 0.058±0.007 49427.75±623.56
PEEMMASMH 66.87±3.43 0.068±0.007 49843.67±645.71

3.50 PEEMMASMP 72.43±3.34 0.067±0.008 48764.36±703.41
PEEMMASMH 75.65±3.57 0.076±0.008 48521.72±713.65

(e) Tsm = 5
α PF n̄alg %̄ ξ̄

1.00 PEEMMASMP 96.54±0.54 0.028±0.002 49875.23±598.43
PEEMMASMH 94.52±0.65 0.030±0.002 52345.93±587.21

1.50 PEEMMASMP 94.59±0.48 0.029±0.002 61975.84±321.45
PEEMMASMH 95.61±0.37 0.030±0.002 62148.45±335.76

2.00 PEEMMASMP 94.51±0.45 0.030±0.003 62153.28±301.62
PEEMMASMH 95.78±0.39 0.028±0.002 61997.32±321.68

2.50 PEEMMASMP 94.16±0.46 0.045±0.005 61989.34±324.74
PEEMMASMH 93.85±0.42 0.042±0.005 61769.43±316.82

3.00 PEEMMASMP 70.52±3.32 0.051±0.006 51279.67±598.34
PEEMMASMH 68.67±3.12 0.059±0.007 50898.58±612.46

3.50 PEEMMASMP 73.69±2.85 0.061±0.007 48895.42±640.23
PEEMMASMH 77.84±2.77 0.072±0.008 48943.52±632.68

(f) Tsm = 6
α PF n̄alg %̄ ξ̄

1.00 PEEMMASMP 97.32±0.44 0.027±0.002 50128.93±547.58
PEEMMASMH 96.27±0.58 0.029±0.002 53257.74±537.74

1.50 PEEMMASMP 99.21±0.13 0.028±0.002 62143.65±214.43
PEEMMASMH 97.82±0.27 0.029±0.002 62159.53±197.84

2.00 PEEMMASMP 98.72±0.15 0.029±0.002 62358.28±217.53
PEEMMASMH 98.12±0.17 0.029±0.002 62108.34±228.53

2.50 PEEMMASMP 95.46±0.26 0.039±0.004 62346.27±237.84
PEEMMASMH 96.62±0.23 0.040±0.004 61985.53±267.84

3.00 PEEMMASMP 74.63±2.56 0.049±0.005 53276.45±532.54
PEEMMASMH 70.83±2.87 0.055±0.006 52356.43±523.12

3.50 PEEMMASMP 75.42±2.65 0.060±0.006 48895.42±640.23
PEEMMASMH 73.54±2.34 0.068±0.006 48943.52±632.68
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Table D.14: Influence of parameter α on the n̄alg, %̄ and ξ̄ metrics, for 30 nodes and
Rg = 500

(a) Tsm = 1
α PF n̄alg %̄ ξ̄

1.00 PEEMMASMP 85.21±1.69 0.063±0.008 42457.65±935.59
PEEMMASMH 83.26±1.75 0.067±0.009 45127.78±897.77

1.50 PEEMMASMP 82.67±1.54 0.064±0.008 58764.23±498.27
PEEMMASMH 82.84±1.35 0.063±0.007 58653.13±516.68

2.00 PEEMMASMP 85.12±1.42 0.088±0.009 58234.87±531.65
PEEMMASMH 82.38±1.34 0.082±0.009 58321.78±543.82

2.50 PEEMMASMP 90.54±0.91 0.126±0.011 58247.80±542.76
PEEMMASMH 90.76±0.87 0.137±0.013 57379.21±562.68

3.00 PEEMMASMP 53.87±4.39 0.135±0.012 43217.75±987.49
PEEMMASMH 52.82±4.54 0.138±0.012 44673.12±886.32

3.50 PEEMMASMP 52.43±4.47 0.132±0.013 42368.93±932.56
PEEMMASMH 51.76±4.76 0.145±0.014 42368.75±942.58

(b) Tsm = 2
α PF n̄alg %̄ ξ̄

1.00 PEEMMASMP 86.32±1.31 0.052±0.006 45378.97±785.43
PEEMMASMH 85.47±1.43 0.051±0.004 46734.48±768.34

1.50 PEEMMASMP 83.86±1.23 0.053±0.005 63367.34±225.67
PEEMMASMH 84.21±1.12 0.051±0.004 63876.43±227.54

2.00 PEEMMASMP 87.86±1.41 0.049±0.004 63216.25±248.65
PEEMMASMH 84.56±1.23 0.048±0.004 63425.71±246.58

2.50 PEEMMASMP 92.34±0.87 0.087±0.006 63256.76±245.65
PEEMMASMH 92.76±0.78 0.118±0.011 63245.56±231.43

3.00 PEEMMASMP 56.34±4.12 0.121±0.011 46758.34±752.32
PEEMMASMH 54.67±4.23 0.124±0.012 48654.23±768.34

3.50 PEEMMASMP 54.76±4.36 0.124±0.013 44354.76±837.32
PEEMMASMH 53.98±4.23 0.132±0.013 44567.28±876.23

(c) Tsm = 3
α PF n̄alg %̄ ξ̄

1.00 PEEMMASMP 88.31±1.27 0.047±0.005 48126.43±675.43
PEEMMASMH 88.32±1.34 0.046±0.004 48765.32±658.32

1.50 PEEMMASMP 86.32±1.28 0.045±0.004 63786.32±187.45
PEEMMASMH 87.32±1.17 0.045±0.003 63997.32±189.54

2.00 PEEMMASMP 89.97±1.14 0.046±0.004 64217.43±164.32
PEEMMASMH 86.74±1.23 0.044±0.003 63974.32±167.34

2.50 PEEMMASMP 94.65±0.64 0.071±0.006 63546.27±175.35
PEEMMASMH 95.87±0.67 0.102±0.008 63754.32±198.76

3.00 PEEMMASMP 59.32±3.79 0.085±0.008 49324.65±657.32
PEEMMASMH 58.76±3.98 0.096±0.009 49876.24±657.43

3.50 PEEMMASMP 58.54±4.05 0.102±0.011 46786.43±823.34
PEEMMASMH 56.12±4.13 0.112±0.012 46782.34±835.27

(d) Tsm = 4
α PF n̄alg %̄ ξ̄

1.00 PEEMMASMP 89.38±1.21 0.044±0.004 50326.67±546.38
PEEMMASMH 90.37±1.25 0.044±0.004 50268.45±569.23

1.50 PEEMMASMP 87.35±1.14 0.046±0.004 63456.32±183.17
PEEMMASMH 89.32±1.16 0.045±0.003 63765.78±182.34

2.00 PEEMMASMP 91.23±1.01 0.045±0.004 64129.54±185.23
PEEMMASMH 88.76±1.12 0.043±0.004 63795.21±187.21

2.50 PEEMMASMP 96.67±0.53 0.065±0.006 64231.58±178.27
PEEMMASMH 97.43±0.56 0.097±0.009 64258.21±174.32

3.00 PEEMMASMP 64.38±3.63 0.078±0.008 51478.38±578.32
PEEMMASMH 62.24±3.77 0.085±0.008 51789.25±578.32

3.50 PEEMMASMP 62.48±3.87 0.097±0.010 48765.38±732.24
PEEMMASMH 69.23±3.49 0.096±0.011 48654.34±765.32

(e) Tsm = 5
α PF n̄alg %̄ ξ̄

1.00 PEEMMASMP 92.69±1.13 0.043±0.005 51356.86±535.86
PEEMMASMH 90.93±1.24 0.042±0.004 50786.78±556.84

1.50 PEEMMASMP 89.74±1.76 0.044±0.004 63765.97±186.28
PEEMMASMH 91.53±0.78 0.045±0.005 63869.86±187.93

2.00 PEEMMASMP 93.46±0.75 0.043±0.004 63976.49±190.23
PEEMMASMH 89.89±0.78 0.043±0.004 63975.34±192.45

2.50 PEEMMASMP 98.98±0.49 0.070±0.007 64127.86±176.92
PEEMMASMH 98.74±0.46 0.094±0.009 64138.28±179.74

3.00 PEEMMASMP 66.83±3.68 0.082±0.008 52347.86±548.94
PEEMMASMH 64.74±3.67 0.088±0.009 52478.54±546.73

3.50 PEEMMASMP 65.75±3.58 0.095±0.010 49875.39±708.86
PEEMMASMH 71.68±3.37 0.102±0.010 49745.75±714.58

(f) Tsm = 6
α PF n̄alg %̄ ξ̄

1.00 PEEMMASMP 94.83±0.87 0.041±0.004 52568.85±587.61
PEEMMASMH 96.67±0.76 0.042±0.004 51865.27±559.32

1.50 PEEMMASMP 94.97±0.63 0.042±0.005 64987.43±191.57
PEEMMASMH 95.54±0.56 0.042±0.005 65132.12±183.68

2.00 PEEMMASMP 98.37±0.41 0.040±0.004 65234.58±175.68
PEEMMASMH 93.47±0.63 0.039±0.004 65210.58±174.27

2.50 PEEMMASMP 99.17±0.34 0.072±0.008 64237.82±173.58
PEEMMASMH 98.94±0.32 0.090±0.009 64565.34±172.47

3.00 PEEMMASMP 71.23±3.58 0.076±0.008 53563.82±579.34
PEEMMASMH 69.41±3.47 0.081±0.009 53642.48±587.45

3.50 PEEMMASMP 69.74±3.34 0.087±0.010 50874.28±618.39
PEEMMASMH 76.93±3.57 0.096±0.011 50684.23±674.32
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Table D.15: Influence of parameter α on the n̄alg, %̄ and ξ̄ metrics, for 30 nodes and
Rg = 800

(a) Tsm = 1
α PF n̄alg %̄ ξ̄

1.00 PEEMMASMP 81.31±1.45 0.117±0.015 40235.76±958.27
PEEMMASMH 82.87±1.37 0.120±0.015 43468.97±934.28

1.50 PEEMMASMP 86.34±1.46 0.115±0.014 57685.29±538.27
PEEMMASMH 84.84±1.47 0.114±0.015 57743.29±529.43

2.00 PEEMMASMP 84.10±1.48 0.116±0.014 57639.73±528.53
PEEMMASMH 80.12±1.59 0.117±0.013 57497.28±563.19

2.50 PEEMMASMP 88.43±0.98 0.149±0.018 58754.27±562.49
PEEMMASMH 83.31±0.93 0.156±0.018 55126.43±576.26

3.00 PEEMMASMP 50.34±4.63 0.142±0.018 40237.87±958.23
PEEMMASMH 48.53±4.68 0.145±0.019 42579.42±897.36

3.50 PEEMMASMP 48.26±4.69 0.151±0.020 41368.28±965.29
PEEMMASMH 47.83±4.87 0.168±0.022 40489.38±976.32

(b) Tsm = 2
α PF n̄alg %̄ ξ̄

1.00 PEEMMASMP 84.41±1.56 0.103±0.012 42348.86±895.28
PEEMMASMH 83.75±1.59 0.105±0.013 44876.74±875.29

1.50 PEEMMASMP 88.63±1.40 0.101±0.012 59564.20±486.73
PEEMMASMH 85.87±1.45 0.104±0.014 59764.32±487.63

2.00 PEEMMASMP 86.82±1.42 0.099±0.012 59754.63±487.93
PEEMMASMH 81.87±1.56 0.103±0.012 58965.38±498.49

2.50 PEEMMASMP 89.76±0.85 0.138±0.019 59458.32±524.87
PEEMMASMH 86.23±0.87 0.137±0.018 57278.94±512.65

3.00 PEEMMASMP 53.67±4.53 0.136±0.018 42459.05±879.39
PEEMMASMH 49.87±4.54 0.141±0.018 43268.74±856.83

3.50 PEEMMASMP 51.67±4.45 0.143±0.020 42568.94±985.84
PEEMMASMH 53.89±4.67 0.162±0.021 41764.98±974.92

(c) Tsm = 3
α PF n̄alg %̄ ξ̄

1.00 PEEMMASMP 86.19±1.84 0.090±0.012 43785.93±765.39
PEEMMASMH 88.39±1.78 0.092±0.013 45672.95±784.29

1.50 PEEMMASMP 91.63±1.02 0.091±0.012 62568.83±379.74
PEEMMASMH 90.57±1.13 0.088±0.012 62853.05±368.97

2.00 PEEMMASMP 92.76±0.91 0.088±0.012 62348.95±378.94
PEEMMASMH 92.12±0.95 0.089±0.011 62452.97±364.27

2.50 PEEMMASMP 92.57±0.96 0.115±0.017 63109.98±427.98
PEEMMASMH 91.79±0.98 0.126±0.018 62341.98±438.92

3.00 PEEMMASMP 53.68±4.49 0.118±0.017 43569.09±764.92
PEEMMASMH 50.87±4.37 0.136±0.018 45785.94±785.53

3.50 PEEMMASMP 51.86±4.34 0.127±0.018 43658.86±875.34
PEEMMASMH 52.98±4.23 0.143±0.019 43875.92±867.43

(d) Tsm = 4
α PF n̄alg %̄ ξ̄

1.00 PEEMMASMP 91.64±1.11 0.083±0.011 45347.37±674.32
PEEMMASMH 90.43±1.24 0.082±0.011 46783.58±687.54

1.50 PEEMMASMP 94.26±0.98 0.084±0.010 63124.56±347.28
PEEMMASMH 92.15±1.04 0.081±0.011 63321.54±358.39

2.00 PEEMMASMP 94.87±0.93 0.084±0.012 63427.65±347.38
PEEMMASMH 94.24±0.91 0.084±0.012 63214.45±337.48

2.50 PEEMMASMP 93.21±0.92 0.110±0.016 63435.63±345.76
PEEMMASMH 92.32±0.96 0.113±0.017 63256.53±398.43

3.00 PEEMMASMP 57.23±4.21 0.112±0.017 45673.27±687.43
PEEMMASMH 54.45±4.14 0.123±0.018 46876.34±675.34

3.50 PEEMMASMP 54.87±4.23 0.121±0.017 44567.32±835.63
PEEMMASMH 55.23±4.06 0.124±0.017 44563.28±813.45

(e) Tsm = 5
α PF n̄alg %̄ ξ̄

1.00 PEEMMASMP 94.54±0.69 0.077±0.008 50238.32±628.13
PEEMMASMH 95.76±0.64 0.076±0.008 49683.42±614.57

1.50 PEEMMASMP 99.15±0.53 0.076±0.008 65236.21±187.58
PEEMMASMH 95.78±0.67 0.075±0.007 65214.54±175.32

2.00 PEEMMASMP 99.32±0.16 0.078±0.008 65341.36±174.47
PEEMMASMH 96.32±0.38 0.078±0.008 65139.32±178.32

2.50 PEEMMASMP 99.13±0.14 0.097±0.014 65231.65±175.23
PEEMMASMH 96.31±0.63 0.102±0.015 65237.74±176.34

3.00 PEEMMASMP 62.87±3.37 0.106±0.015 49864.32±664.21
PEEMMASMH 61.49±3.26 0.110±0.017 49742.32±654.38

3.50 PEEMMASMP 59.43±3.47 0.111±0.015 48632.93±669.23
PEEMMASMH 60.43±3.32 0.112±0.016 49743.27±667.34

(f) Tsm = 6
α PF n̄alg %̄ ξ̄

1.00 PEEMMASMP 98.41±0.49 0.078±0.009 48653.23±668.25
PEEMMASMH 96.64±0.46 0.077±0.009 47845.57±623.56

1.50 PEEMMASMP 99.23±0.53 0.076±0.008 64235.76±268.43
PEEMMASMH 96.17±0.78 0.075±0.008 64357.78±242.58

2.00 PEEMMASMP 99.45±0.38 0.078±0.008 64567.21±249.32
PEEMMASMH 97.12±0.65 0.077±0.009 64565.87±246.53

2.50 PEEMMASMP 99.53±0.43 0.103±0.015 64265.76±238.65
PEEMMASMH 96.89±0.75 0.108±0.016 64567.23±216.74

3.00 PEEMMASMP 63.56±3.78 0.109±0.017 48754.23±675.32
PEEMMASMH 61.83±3.57 0.114±0.017 47965.23±685.78

3.50 PEEMMASMP 62.92±3.54 0.112±0.016 46743.27±693.26
PEEMMASMH 62.32±3.65 0.115±0.016 47853.32±693.26
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Table D.16: Influence of parameter λE on the n̄alg, %̄ and ξ̄ metrics, for 30 nodes and
Rg = 300

(a) Tsm = 1
λE PF n̄alg %̄ ξ̄

PEEMACOMP 45.17±6.48 0.227±0.026 38238.38±989.21
PEEMACOMH 44.69±6.93 0.238±0.028 37128.43±978.32

λE = 2.0 PEEMMASMP 47.68±6.58 0.248±0.029 35359.78±947.39
PEEMMASMH 46.59±6.69 0.259±0.028 38589.56±949.16
PEEMACOMC 47.38±6.75 0.267±0.031 37431.34±968.32
PEEMACOMP 83.12±4.83 0.056±0.009 61567.32±228.31
PEEMACOMH 81.43±4.58 0.057±0.009 62568.43±243.78

λE = 4.0 PEEMMASMP 76.69±5.11 0.060±0.009 62749.21±238.10
PEEMMASMH 83.59±4.98 0.062±0.010 61895.23±229.42
PEEMACOMC 82.58±4.76 0.059±0.011 62458.29±225.62
PEEMACOMP 83.48±4.75 0.055±0.009 61897.32±283.20
PEEMACOMH 84.59±4.58 0.056±0.009 62678.21±264.28

λE = 6.0 PEEMMASMP 80.32±4.73 0.061±0.010 62456.21±247.21
PEEMMASMH 80.38±4.68 0.062±0.011 62134.67±241.67
PEEMACOMC 81.84±4.72 0.063±0.011 62348.21±243.46
PEEMACOMP 50.36±6.23 0.235±0.027 41268.32±987.51
PEEMACOMH 48.41±6.09 0.268±0.029 41468.43±967.39

λE = 8.0 PEEMMASMP 49.48±6.14 0.258±0.028 40234.76±989.32
PEEMMASMH 51.32±6.26 0.231±0.026 38235.56±976.31
PEEMACOMC 50.42±6.28 0.259±0.030 44132.64±924.67

(b) Tsm = 2
λE PF n̄alg %̄ ξ̄

PEEMACOMP 51.54±5.35 0.198±0.023 43127.34±834.56
PEEMACOMH 49.21±5.58 0.196±0.024 42347.11±832.57

λE = 2.0 PEEMMASMP 52.68±5.29 0.214±0.026 41346.21±864.28
PEEMMASMH 51.64±5.79 0.203±0.023 42347.31±838.23
PEEMACOMC 51.32±5.37 0.189±0.023 44247.31±879.31
PEEMACOMP 86.28±3.23 0.043±0.008 62128.42±236.27
PEEMACOMH 84.23±3.47 0.044±0.007 62245.26±256.28

λE = 4.0 PEEMMASMP 83.78±3.29 0.042±0.008 62253.38±236.20
PEEMMASMH 84.61±3.38 0.043±0.006 62348.21±242.67
PEEMACOMC 86.78±3.84 0.048±0.007 62357.21±238.41
PEEMACOMP 85.28±3.28 0.044±0.007 62856.31±235.28
PEEMACOMH 86.41±3.95 0.046±0.008 62236.18±238.31

λE = 6.0 PEEMMASMP 84.79±3.30 0.041±0.007 62241.69±236.40
PEEMMASMH 87.32±3.37 0.040±0.007 62217.74±248.31
PEEMACOMC 87.59±3.20 0.047±0.008 62248.21±238.31
PEEMACOMP 52.86±5.21 0.181±0.023 44827.39±725.58
PEEMACOMH 49.41±5.46 0.184±0.024 43148.36±853.28

λE = 8.0 PEEMMASMP 52.79±5.39 0.187±0.024 44269.31±867.31
PEEMMASMH 53.89±5.20 0.183±0.023 42168.23±856.30
PEEMACOMC 55.28±5.38 0.194±0.025 44568.25±848.21

(c) Tsm = 3
λE PF n̄alg %̄ ξ̄

PEEMACOMP 52.35±4.39 0.168±0.016 46278.38±823.57
PEEMACOMH 51.58±4.31 0.167±0.016 45723.59±812.68

λE = 2.0 PEEMMASMP 52.47±4.57 0.172±0.018 44689.26±847.75
PEEMMASMH 54.68±4.83 0.163±0.017 45749.24±839.33
PEEMACOMC 55.31±4.47 0.162±0.015 44568.27±848.31
PEEMACOMP 87.32±3.28 0.039±0.007 63258.43±185.32
PEEMACOMH 88.37±3.29 0.038±0.007 62314.27±226.21

λE = 4.0 PEEMMASMP 87.48±3.74 0.036±0.006 62336.39±246.78
PEEMMASMH 86.68±3.61 0.039±0.007 62352.68±254.78
PEEMACOMC 89.78±3.63 0.034±0.005 63216.79±186.36
PEEMACOMP 89.68±3.78 0.038±0.007 63252.78±194.56
PEEMACOMH 88.48±3.52 0.037±0.007 62127.65±248.21

λE = 6.0 PEEMMASMP 88.53±3.73 0.035±0.006 62387.21±245.29
PEEMMASMH 87.69±3.63 0.040±0.007 62379.42±249.35
PEEMACOMC 89.67±3.61 0.035±0.006 63258.85±197.34
PEEMACOMP 53.58±4.46 0.162±0.016 46436.74±842.37
PEEMACOMH 51.49±4.67 0.151±0.015 46478.24±846.31

λE = 8.0 PEEMMASMP 52.46±4.73 0.162±0.017 47347.28±825.67
PEEMMASMH 54.69±4.71 0.163±0.017 46389.25±838.38
PEEMACOMC 57.28±4.76 0.155±0.016 45780.23±837.81

(d) Tsm = 4
λE PF n̄alg %̄ ξ̄

PEEMACOMP 56.31±3.54 0.124±0.014 48267.21±756.23
PEEMACOMH 54.78±3.48 0.127±0.014 47864.23±769.32

λE = 2.0 PEEMMASMP 55.38±3.89 0.113±0.013 48479.31±758.31
PEEMMASMH 57.39±3.56 0.118±0.013 47438.21±776.49
PEEMACOMC 57.45±3.48 0.126±0.014 47268.37±764.54
PEEMACOMP 97.32±2.67 0.036±0.005 63023.41±196.32
PEEMACOMH 97.21±2.45 0.037±0.005 62245.64±224.54

λE = 4.0 PEEMMASMP 96.28±2.63 0.032±0.004 62136.29±236.73
PEEMMASMH 97.59±2.47 0.031±0.004 62224.52±238.38
PEEMACOMC 95.38±2.43 0.033±0.004 64238.21±198.37
PEEMACOMP 95.38±2.57 0.036±0.006 63231.43±192.37
PEEMACOMH 97.32±2.48 0.034±0.005 62245.20±223.47

λE = 6.0 PEEMMASMP 97.73±2.64 0.035±0.004 62237.43±221.68
PEEMMASMH 97.69±2.53 0.032±0.004 62236.32±216.38
PEEMACOMC 96.18±2.64 0.033±0.004 64239.32±174.62
PEEMACOMP 56.32±3.43 0.124±0.013 50235.53±746.32
PEEMACOMH 53.28±3.52 0.116±0.012 49189.32±784.25

λE = 8.0 PEEMMASMP 54.58±3.47 0.128±0.014 48752.31±787.25
PEEMMASMH 57.32±3.67 0.122±0.013 48358.61±768.42
PEEMACOMC 56.36±3.58 0.118±0.012 45489.31±742.52

(e) Tsm = 5
λE PF n̄alg %̄ ξ̄

PEEMACOMP 57.27±3.45 0.105±0.011 50458.13±664.37
PEEMACOMH 56.63±3.67 0.113±0.012 48736.32±657.32

λE = 2.0 PEEMMASMP 57.43±3.64 0.112±0.011 49843.34±658.21
PEEMMASMH 58.74±3.58 0.114±0.012 50258.16±646.72
PEEMACOMC 59.35±3.69 0.116±0.012 47637.89±659.28
PEEMACOMP 98.32±1.49 0.029±0.002 63125.78±198.41
PEEMACOMH 98.75±1.56 0.031±0.003 62152.34±212.38

λE = 4.0 PEEMMASMP 97.89±1.58 0.030±0.003 62049.21±216.38
PEEMMASMH 98.43±1.49 0.028±0.002 62137.43±217.39
PEEMACOMC 97.32±1.57 0.029±0.002 64128.34±172.48
PEEMACOMP 96.48±1.54 0.030±0.003 63102.31±178.36
PEEMACOMH 97.40±1.39 0.030±0.003 62126.37±211.38

λE = 6.0 PEEMMASMP 97.72±1.58 0.028±0.002 62138.37±212.79
PEEMMASMH 98.58±1.43 0.029±0.002 62257.32±222.38
PEEMACOMC 97.39±1.66 0.030±0.003 64458.32±192.27
PEEMACOMP 60.23±3.47 0.103±0.010 52678.48±656.28
PEEMACOMH 59.87±3.65 0.114±0.012 51887.45±668.32

λE = 8.0 PEEMMASMP 58.43±3.83 0.102±0.010 52568.32±672.19
PEEMMASMH 61.42±3.64 0.117±0.012 53468.29±647.28
PEEMACOMC 61.89±3.68 0.121±0.013 50328.52±648.26

(f) Tsm = 6
λE PF n̄alg %̄ ξ̄

PEEMACOMP 59.32±3.62 0.102±0.010 53878.32±632.27
PEEMACOMH 60.24±3.55 0.104±0.010 51736.48±634.68

λE = 2.0 PEEMMASMP 61.38±3.49 0.110±0.011 50648.25±618.36
PEEMMASMH 62.48±3.52 0.109±0.011 52868.37±636.42
PEEMACOMC 62.49±3.48 0.112±0.011 52438.68±647.29
PEEMACOMP 98.58±1.48 0.028±0.002 63234.69±192.26
PEEMACOMH 98.63±1.52 0.030±0.003 62252.45±216.59

λE = 4.0 PEEMMASMP 98.38±1.53 0.030±0.003 62149.31±222.37
PEEMMASMH 98.92±1.48 0.028±0.003 62236.28±227.94
PEEMACOMC 97.59±1.48 0.022±0.002 62160.32±228.39
PEEMACOMP 97.62±1.53 0.030±0.003 63148.45±187.53
PEEMACOMH 97.52±1.42 0.028±0.002 62221.46±234.17

λE = 6.0 PEEMMASMP 98.63±1.46 0.028±0.002 62248.29±227.35
PEEMMASMH 98.86±1.48 0.029±0.003 62237.28±232.67
PEEMACOMC 97.76±1.43 0.029±0.003 62369.31±236.48
PEEMACOMP 60.45±3.38 0.097±0.010 53569.31±556.32
PEEMACOMH 62.38±3.42 0.098±0.011 52848.42±573.28

λE = 8.0 PEEMMASMP 62.38±3.58 0.088±0.009 53739.24±562.59
PEEMMASMH 64.67±3.37 0.092±0.008 53894.16±548.28
PEEMACOMC 63.69±3.34 0.108±0.011 53269.31±538.38
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Table D.17: Influence of parameter λE on the n̄alg, %̄ and ξ̄ metrics, for 30 nodes and
Rg = 500

(a) Tsm = 1
λE PF n̄alg %̄ ξ̄

PEEMACOMP 42.37±6.46 0.245±0.028 35328.32±985.34
PEEMACOMH 42.39±6.76 0.254±0.029 36348.21±964.32

λE = 2.0 PEEMMASMP 44.52±6.45 0.268±0.030 34689.32±988.37
PEEMMASMH 42.78±6.38 0.286±0.032 36328.27±953.28
PEEMACOMC 45.40±6.72 0.272±0.032 34581.74±975.35
PEEMACOMP 80.49±4.63 0.067±0.011 63579.58±198.27
PEEMACOMH 79.85±4.79 0.066±0.012 63589.37±196.36

λE = 4.0 PEEMMASMP 75.26±5.14 0.068±0.011 63589.46±186.32
PEEMMASMH 79.28±4.98 0.067±0.012 63729.48±208.83
PEEMACOMC 79.37±4.79 0.076±0.013 63689.21±205.58
PEEMACOMP 78.19±4.97 0.068±0.012 63521.68±195.68
PEEMACOMH 79.38±4.73 0.067±0.011 63689.32±187.43

λE = 6.0 PEEMMASMP 81.25±4.56 0.069±0.012 63658.31±196.37
PEEMMASMH 80.29±4.52 0.066±0.012 63479.31±186.33
PEEMACOMC 81.75±4.74 0.078±0.013 63479.35±192.48
PEEMACOMP 47.47±6.35 0.242±0.029 38236.82±986.34
PEEMACOMH 48.83±6.48 0.273±0.031 36279.38±998.26

λE = 8.0 PEEMMASMP 47.18±6.48 0.262±0.030 38269.27±968.37
PEEMMASMH 46.27±6.56 0.246±0.029 34279.32±989.12
PEEMACOMC 47.45±6.78 0.267±0.031 37378.36±974.38

(b) Tsm = 2
λE PF n̄alg %̄ ξ̄

PEEMACOMP 49.32±5.74 0.225±0.024 40237.35±857.32
PEEMACOMH 48.48±5.73 0.235±0.025 41459.38±847.39

λE = 2.0 PEEMMASMP 50.39±5.69 0.228±0.025 40269.28±874.37
PEEMMASMH 48.39±5.85 0.221±0.023 40159.74±857.24
PEEMACOMC 50.28±5.75 0.198±0.021 41359.38±846.48
PEEMACOMP 85.38±3.47 0.046±0.008 64236.18±186.32
PEEMACOMH 83.12±3.75 0.049±0.008 64279.54±185.29

λE = 4.0 PEEMMASMP 84.88±3.53 0.050±0.009 64287.53±194.32
PEEMMASMH 85.23±3.38 0.048±0.007 64798.32±185.29
PEEMACOMC 85.38±3.76 0.055±0.009 64689.23±178.43
PEEMACOMP 86.53±3.57 0.047±0.008 64689.32±183.27
PEEMACOMH 85.38±3.76 0.049±0.008 64538.26±195.29

λE = 6.0 PEEMMASMP 85.43±3.67 0.052±0.009 64769.32±193.36
PEEMMASMH 86.85±3.67 0.050±0.008 64678.36±198.48
PEEMACOMC 86.76±3.38 0.056±0.009 64537.28±184.29
PEEMACOMP 49.32±5.75 0.198±0.024 44827.39±824.76
PEEMACOMH 50.68±5.48 0.203±0.025 43148.36±834.57

λE = 8.0 PEEMMASMP 51.38±5.54 0.199±0.024 44269.31±856.28
PEEMMASMH 48.35±5.47 0.204±0.025 42168.23±848.37
PEEMACOMC 50.45±5.46 0.216±0.026 44568.25±859.16

(c) Tsm = 3
λE PF n̄alg %̄ ξ̄

PEEMACOMP 52.67±5.22 0.176±0.018 43247.17±875.23
PEEMACOMH 52.89±5.26 0.183±0.018 42547.25±878.41

λE = 2.0 PEEMMASMP 53.69±5.14 0.186±0.018 42379.31±876.39
PEEMMASMH 53.75±4.95 0.184±0.017 41469.34±864.79
PEEMACOMC 54.89±4.97 0.165±0.016 42689.42±869.29
PEEMACOMP 86.42±3.58 0.043±0.007 64128.43±192.34
PEEMACOMH 86.29±3.69 0.046±0.007 64279.41±179.32

λE = 4.0 PEEMMASMP 87.97±3.84 0.046±0.006 64479.69±186.38
PEEMMASMH 87.39±3.82 0.045±0.006 64589.31±189.27
PEEMACOMC 88.36±3.74 0.050±0.007 64268.31±184.28
PEEMACOMP 87.47±3.82 0.044±0.006 64316.48±198.32
PEEMACOMH 87.53±3.73 0.045±0.007 64582.63±186.30

λE = 6.0 PEEMMASMP 88.89±3.69 0.046±0.006 64689.24±180.38
PEEMMASMH 88.25±3.85 0.045±0.007 64269.51±193.60
PEEMACOMC 87.93±3.73 0.052±0.007 64693.28±185.32
PEEMACOMP 50.32±5.38 0.174±0.016 43580.21±874.19
PEEMACOMH 50.37±5.19 0.171±0.016 43689.32±869.38

λE = 8.0 PEEMMASMP 51.46±5.28 0.184±0.017 43474.19±840.85
PEEMMASMH 52.68±5.23 0.185±0.018 45270.31±858.71
PEEMACOMC 56.13±4.89 0.179±0.017 44528.81±859.26

(d) Tsm = 4
λE PF n̄alg %̄ ξ̄

PEEMACOMP 53.78±3.74 0.129±0.016 46379.31±787.37
PEEMACOMH 52.96±3.69 0.138±0.017 46628.39±774.62

λE = 2.0 PEEMMASMP 54.68±3.95 0.127±0.014 44784.02±779.26
PEEMMASMH 56.89±3.74 0.125±0.013 45279.26±764.28
PEEMACOMC 57.38±3.80 0.132±0.014 44479.37±759.31
PEEMACOMP 96.78±1.85 0.040±0.006 64268.41±187.31
PEEMACOMH 95.29±1.75 0.044±0.006 62989.23±212.74

λE = 4.0 PEEMMASMP 96.88±1.84 0.044±0.006 63456.81±194.36
PEEMMASMH 95.59±1.85 0.045±0.005 63579.26±196.38
PEEMACOMC 96.84±1.78 0.048±0.007 64138.31±195.28
PEEMACOMP 97.12±1.95 0.041±0.005 64258.35±181.48
PEEMACOMH 96.24±1.79 0.043±0.006 63897.31±192.69

λE = 6.0 PEEMMASMP 97.32±1.68 0.044±0.006 63158.36±185.38
PEEMMASMH 97.20±1.84 0.046±0.006 62236.32±187.28
PEEMACOMC 97.23±1.79 0.047±0.007 64239.39±178.37
PEEMACOMP 53.78±3.63 0.135±0.015 48259.37±779.31
PEEMACOMH 54.68±3.68 0.126±0.013 47289.41±796.28

λE = 8.0 PEEMMASMP 54.76±3.75 0.137±0.014 46280.35±775.27
PEEMMASMH 53.28±3.84 0.131±0.013 46685.21±783.19
PEEMACOMC 54.60±3.92 0.125±0.012 44682.30±734.68

(e) Tsm = 5
λE PF n̄alg %̄ ξ̄

PEEMACOMP 56.51±3.76 0.123±0.012 53673.29±578.35
PEEMACOMH 55.78±3.84 0.126±0.013 52459.31±589.37

λE = 2.0 PEEMMASMP 54.74±3.86 0.121±0.012 54389.31±595.68
PEEMMASMH 57.39±3.89 0.118±0.012 53258.16±574.29
PEEMACOMC 58.29±3.73 0.131±0.013 55865.32±583.19
PEEMACOMP 97.35±1.58 0.038±0.004 64317.45±176.35
PEEMACOMH 97.84±1.69 0.043±0.005 64578.87±185.48

λE = 4.0 PEEMMASMP 98.12±1.46 0.042±0.004 64268.38±187.43
PEEMMASMH 98.26±1.45 0.041±0.004 64789.42±195.39
PEEMACOMC 97.59±1.53 0.042±0.005 64247.39±192.36
PEEMACOMP 97.69±1.62 0.039±0.004 64345.28±186.32
PEEMACOMH 98.84±1.45 0.042±0.005 64679.13±178.37

λE = 6.0 PEEMMASMP 97.93±1.60 0.041±0.004 64639.21±176.43
PEEMMASMH 98.78±1.48 0.042±0.005 64529.43±182.58
PEEMACOMC 98.49±1.62 0.043±0.005 64779.52±187.41
PEEMACOMP 57.32±3.59 0.123±0.012 52689.31±548.37
PEEMACOMH 56.83±3.87 0.126±0.012 52367.64±548.31

λE = 8.0 PEEMMASMP 57.59±3.88 0.117±0.011 52784.21±569.32
PEEMMASMH 58.30±3.83 0.120±0.011 54689.32±579.31
PEEMACOMC 59.32±3.72 0.132±0.013 54563.21±583.27

(f) Tsm = 6
λE PF n̄alg %̄ ξ̄

PEEMACOMP 58.32±3.76 0.113±0.011 55638.29±484.27
PEEMACOMH 58.54±3.69 0.118±0.012 53589.38±499.31

λE = 2.0 PEEMMASMP 60.82±3.65 0.119±0.012 52468.17±516.74
PEEMMASMH 61.34±3.69 0.114±0.011 53589.12±487.59
PEEMACOMC 60.42±3.74 0.125±0.012 54681.37±472.83
PEEMACOMP 98.89±1.38 0.038±0.003 64237.69±185.31
PEEMACOMH 98.76±1.37 0.039±0.004 64512.78±186.23

λE = 4.0 PEEMMASMP 98.59±1.42 0.041±0.003 64562.73±189.37
PEEMMASMH 98.98±1.36 0.040±0.003 64282.21±184.73
PEEMACOMC 98.98±1.45 0.041±0.003 64897.13±194.27
PEEMACOMP 98.37±1.44 0.039±0.003 64561.27±184.28
PEEMACOMH 98.48±1.41 0.040±0.004 64628.35±185.24

λE = 6.0 PEEMMASMP 98.87±1.40 0.041±0.003 64678.27±184.36
PEEMMASMH 98.95±1.35 0.042±0.004 64528.31±171.64
PEEMACOMC 98.85±1.41 0.038±0.003 64896.42±183.68
PEEMACOMP 59.58±3.48 0.105±0.011 55678.23±437.59
PEEMACOMH 61.58±3.49 0.106±0.012 56238.30±427.31

λE = 8.0 PEEMMASMP 61.47±3.61 0.097±0.009 54751.73±467.31
PEEMMASMH 62.73±3.57 0.098±0.009 54518.47±475.38
PEEMACOMC 62.86±3.53 0.114±0.012 54369.53±482.44
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Table D.18: Influence of parameter λE on the n̄alg, %̄ and ξ̄ metrics, for 30 nodes and
Rg = 800

(a) Tsm = 1
λE PF n̄alg %̄ ξ̄

PEEMACOMP 40.32±6.67 0.262±0.029 38967.05±876.94
PEEMACOMH 35.56±7.45 0.312±0.032 39080.56±857.84

λE = 2.0 PEEMMASMP 41.35±6.41 0.275±0.031 37946.08±859.75
PEEMMASMH 40.25±6.58 0.267±0.030 38460.84±843.94
PEEMACOMC 38.73±6.44 0.297±0.031 37960.48±857.04
PEEMACOMP 78.37±4.59 0.122±0.013 63739.40±214.97
PEEMACOMH 55.24±5.64 0.162±0.018 63489.95±235.96

λE = 4.0 PEEMMASMP 75.32±4.67 0.118±0.014 63749.94±247.38
PEEMMASMH 74.57±4.43 0.120±0.013 63974.05±232.69
PEEMACOMC 73.68±4.48 0.114±0.012 62589.08±242.74
PEEMACOMP 78.32±4.63 0.120±0.013 63634.70±224.85
PEEMACOMH 56.32±5.60 0.161±0.019 63583.58±234,93

λE = 6.0 PEEMMASMP 77.32±4.62 0.116±0.015 63685.48±217.92
PEEMMASMH 74.56±4.53 0.123±0.013 63907.37±218.84
PEEMACOMC 73.28±4.72 0.112±0.013 62689.04±248.39
PEEMACOMP 44.35±6.13 0.253±0.029 40346.89±827.32
PEEMACOMH 38.52±7.28 0.287±0.032 38956.58±845.83

λE = 8.0 PEEMMASMP 44.28±6.34 0.266±0.031 39705.45±848.03
PEEMMASMH 43.12±6.35 0.252±0.028 37584.48±874.38
PEEMACOMC 44.70±6.36 0.278±0.031 38570.74±864.59

(b) Tsm = 2
λE PF n̄alg %̄ ξ̄

PEEMACOMP 47.21±5.23 0.236±0.024 43469.21±762.39
PEEMACOMH 36.32±6.41 0.247±0.025 44579.27±739.31

λE = 2.0 PEEMMASMP 47.21±5.32 0.238±0.024 41379.38±770.23
PEEMMASMH 45.28±5.42 0.222±0.022 42369.48±739.36
PEEMACOMC 47.31±5.47 0.242±0.024 42479.28±748.31
PEEMACOMP 84.28±3.53 0.096±0.010 64451.85±182.58
PEEMACOMH 45.69±4.36 0.152±0.016 64528.37±178.35

λE = 4.0 PEEMMASMP 82.75±3.62 0.106±0.012 64387.31±189.49
PEEMMASMH 80.23±3.58 0.104±0.012 64873.27±182.32
PEEMACOMC 83.68±3.41 0.132±0.014 64134.69±197.48
PEEMACOMP 86.98±3.47 0.098±0.010 64704.32±180.51
PEEMACOMH 46.89±6.57 0.153±0.017 64548.32±184.29

λE = 6.0 PEEMMASMP 83.78±3.48 0.107±0.013 64684.71±184.08
PEEMMASMH 80.73±3.62 0.103±0.012 64370.26±186.03
PEEMACOMC 85.95±3.62 0.130±0.015 64268.28±178.71
PEEMACOMP 47.86±5.48 0.209±0.024 46480.31±734.94
PEEMACOMH 38.85±6.38 0.247±0.026 45268.37±794.62

λE = 8.0 PEEMMASMP 51.51±5.29 0.209±0.022 45379.21±785.37
PEEMMASMH 47.06±5.52 0.233±0.024 44269.32±792.04
PEEMACOMC 50.74±5.36 0.238±0.024 46391.38±738.58

(c) Tsm = 3
λE PF n̄alg %̄ ξ̄

PEEMACOMP 49.31±5.46 0.192±0.019 45438.75±745.07
PEEMACOMH 45.62±5.83 0.224±0.022 44792.08±739.04

λE = 2.0 PEEMMASMP 50.38±5.36 0.207±0.020 43697.74±748.31
PEEMMASMH 51.63±5.12 0.205±0.020 44689.29±749.62
PEEMACOMC 52.70±4.98 0.214±0.021 43793.83±763.07
PEEMACOMP 83.67±3.63 0.088±0.015 64876.37±174.29
PEEMACOMH 75.36±3.84 0.117±0.018 64697.39±178.34

λE = 4.0 PEEMMASMP 84.68±3.62 0.089±0.015 64868.36±173.05
PEEMMASMH 84.18±3.69 0.088±0.016 64894.28±172.85
PEEMACOMC 85.82±3.57 0.110±0.013 64749.28±176.83
PEEMACOMP 85.28±3.48 0.089±0.016 64853.20±174.93
PEEMACOMH 76.39±3.86 0.120±0.017 64749.78±179.23

λE = 6.0 PEEMMASMP 86.38±3.32 0.088±0.015 64759.39±176.81
PEEMMASMH 84.31±3.64 0.088±0.016 64997.48±167.03
PEEMACOMC 86.84±3.25 0.109±0.012 64865.38±174.82
PEEMACOMP 48.29±5.48 0.182±0.018 46893.03±745.03
PEEMACOMH 44.28±5.63 0.205±0.019 45803.67±779.28

λE = 8.0 PEEMMASMP 47.59±5.49 0.192±0.018 47941.06±786.85
PEEMMASMH 48.27±5.58 0.192±0.018 48077.49±715.94
PEEMACOMC 47.38±5.38 0.197±0.019 46830.74±749.26

(d) Tsm = 4
λE PF n̄alg %̄ ξ̄

PEEMACOMP 50.63±3.82 0.126±0.017 48428.79±674.32
PEEMACOMH 44.85±4.23 0.179±0.019 48739.28±684.29

λE = 2.0 PEEMMASMP 51.05±3.73 0.132±0.017 46894.32±693.23
PEEMMASMH 52.83±3.69 0.137±0.016 47598.25±674.25
PEEMACOMC 52.39±3.62 0.157±0.017 46830.42±694.32
PEEMACOMP 95.28±0.73 0.076±0.008 64479.32±182.31
PEEMACOMH 50.27±3.58 0.142±0.018 64529.69±186.48

λE = 4.0 PEEMMASMP 94.87±0.94 0.083±0.009 64986.36±187.28
PEEMMASMH 91.86±1.36 0.084±0.009 64993.37±186.19
PEEMACOMC 97.52±0.72 0.107±0.010 64769.41±182.37
PEEMACOMP 95.83±0.87 0.077±0.008 64453.28±185.27
PEEMACOMH 49.95±3.61 0.140±0.018 64389.21±183.28

λE = 6.0 PEEMMASMP 95.83±0.90 0.083±0.009 64279.32±182.69
PEEMMASMH 92.94±1.26 0.081±0.009 64587.27±185.17
PEEMACOMC 96.82±0.72 0.104±0.009 64247.73±183.28
PEEMACOMP 51.84±3.84 0.143±0.018 49637.20±648.29
PEEMACOMH 44.79±4.83 0.157±0.020 49641.05±639.48

λE = 8.0 PEEMMASMP 51.58±3.77 0.144±0.018 48528.26±674.98
PEEMMASMH 50.74±3.96 0.146±0.018 47287.19±683.28
PEEMACOMC 51.48±3.83 0.152±0.019 46729.37±697.36

(e) Tsm = 5
λE PF n̄alg %̄ ξ̄

PEEMACOMP 52.48±3.85 0.135±0.014 55731.73±468.24
PEEMACOMH 45.37±4.65 0.153±0.015 54672.18±478.23

λE = 2.0 PEEMMASMP 52.74±3.87 0.132±0.013 56792.36±486.37
PEEMMASMH 53.63±3.73 0.134±0.013 54527.27±487.74
PEEMACOMC 53.75±3.61 0.156±0.015 56984.58±483.84
PEEMACOMP 96.32±0.26 0.074±0.011 64784.27±164.32
PEEMACOMH 70.32±1.89 0.109±0.015 64768.38±168.28

λE = 4.0 PEEMMASMP 97.34±0.28 0.078±0.011 64468.28±172.63
PEEMMASMH 94.78±0.35 0.079±0.012 64974.27±168.37
PEEMACOMC 97.87±0.27 0.103±0.014 64684.72±171.73
PEEMACOMP 96.34±0.28 0.072±0.011 64572.73±174.28
PEEMACOMH 70.34±1.73 0.107±0.014 64884.28±172.48

λE = 6.0 PEEMMASMP 96.73±0.32 0.076±0.009 64854.18±169.24
PEEMMASMH 95.73±0.35 0.076±0.009 64764.48±172.69
PEEMACOMC 97.78±0.26 0.103±0.014 64875.21±171.38
PEEMACOMP 56.23±3.74 0.135±0.016 54761.85±452.84
PEEMACOMH 51.67±4.81 0.152±0.018 53582.83±468.24

λE = 8.0 PEEMMASMP 55.42±3.92 0.128±0.016 54783.49±458.58
PEEMMASMH 56.48±3.88 0.125±0.016 54894.52±460.47
PEEMACOMC 56.41±3.89 0.137±0.017 54783.49±462.74

(f) Tsm = 6
λE PF n̄alg %̄ ξ̄

PEEMACOMP 58.46±3.74 0.118±0.012 57348.29±368.93
PEEMACOMH 51.31±4.12 0.136±0.015 56538.29±379.32

λE = 2.0 PEEMMASMP 59.37±3.85 0.124±0.014 55682.49±369.36
PEEMMASMH 56.65±3.79 0.123±0.013 55789.24±387.43
PEEMACOMC 58.37±3.72 0.131±0.014 56389.20±374.73
PEEMACOMP 99.23±0.08 0.072±0.008 64989.21±181.49
PEEMACOMH 78.32±2.12 0.102±0.011 64526.48±182.48

λE = 4.0 PEEMMASMP 99.34±0.13 0.076±0.008 64579.25±182.38
PEEMMASMH 96.14±0.22 0.077±0.008 64869.37±179.26
PEEMACOMC 98.79±0.15 0.092±0.009 64784.23±178.36
PEEMACOMP 98.77±0.13 0.072±0.008 64897.35±178.42
PEEMACOMH 77.83±2.31 0.103±0.011 64863.28±174.79

λE = 6.0 PEEMMASMP 99.64±0.16 0.078±0.008 64759.26±175.28
PEEMMASMH 95.76±0.28 0.077±0.008 64529.28±172.38
PEEMACOMC 98.95±0.17 0.091±0.010 64975.36±174.38
PEEMACOMP 58.23±3.57 0.119±0.013 57842.79±377.39
PEEMACOMH 52.48±3.78 0.138±0.015 57841.79±377.73

λE = 8.0 PEEMMASMP 60.26±3.53 0.125±0.013 58847.28±364.28
PEEMMASMH 61.84±3.42 0.126±0.013 56793.26±388.27
PEEMACOMC 60.84±3.47 0.132±0.014 56729.39±389.54
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Appendix E

Control Parameter Graphs

This appendix contains FluxViz graphs to visualise the results of the empirical analysis

of the ant-based algorithm control parameters, for all scenario combinations of 30 nodes,

Tsm ∈ {1, 2, 3, 4, 5, 6}, and Rg ∈ {300, 500, 800}.
Figures E.1-E.15 visualise the influence of βψ on the n̄alg, %̄ and ξ̄ metrics for all the pro-

posed ACO algorithms, based on the results of Tables D.1-D.3. Figures E.16-E.24 visualise

the influence of r0 on the n̄alg, %̄ and ξ̄ metrics for the EEMACOMP, EEMACOMH, and

EEMACOMC algorithms, based on the results of Tables D.4-D.6. Figures E.25-E.33 visualise

the influence of ρl on the n̄alg, %̄ and ξ̄ metrics for the EEMACOMP, EEMACOMH, and

EEMACOMC algorithms, based on the results of Tables D.7-D.9. Figures E.34-E.48 visualise

the influence of ρg on the n̄alg, %̄ and ξ̄ metrics for all the proposed ACO algorithms, based

on the results of Tables D.10-D.12. Figures E.49-E.54 visualise the influence of α on the n̄alg,

%̄ and ξ̄ metrics for the EEMMASMP and EEMMASMH algorithms, based on the results of

Tables D.13-D.15 and Figures E.55-E.69 visualise the influence of λE on the n̄alg, %̄ and ξ̄

metrics for all the proposed ACO algorithms, based on the results of Tables D.16-D.18.
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Tsm
Rg

͞nalgβϱβν βξ βπ βς
Figure E.1: Influence of βψ on the n̄alg metric for EEMACOMP

Tsm Rgβϱβν βξ βπ βς ─ϱ
Figure E.2: Influence of βψ on the %̄ metric for EEMACOMP
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Tsm Rgβϱβν βξ βπ βς ─ξ
Figure E.3: Influence of βψ on the ξ̄ metric for EEMACOMP

Tsm
Rg

͞nalgβϱβν βξ βπ βς
Figure E.4: Influence of βψ on the n̄alg metric for EEMACOMH

331

 
 
 



Tsm Rgβϱβν βξ βπ βς ─ϱ
Figure E.5: Influence of βψ on the %̄ metric for EEMACOMH

Tsm Rgβϱβν βξ βπ βς ─ξ
Figure E.6: Influence of βψ on the ξ̄ metric for EEMACOMH
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Tsm
Rg

͞nalgβϱβν βξ βπ βς
Figure E.7: Influence of βψ on the n̄alg metric for EEMMASMP

Tsm Rgβϱβν βξ βπ βς ─ϱ
Figure E.8: Influence of βψ on the %̄ metric for EEMMASMP
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Tsm Rgβϱβν βξ βπ βς ─ξ
Figure E.9: Influence of βψ on the ξ̄ metric for EEMMASMP

Tsm
Rg

͞nalgβϱβν βξ βπ βς
Figure E.10: Influence of βψ on the n̄alg metric for EEMMASMH
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Tsm Rgβϱβν βξ βπ βς ─ϱ
Figure E.11: Influence of βψ on the %̄ metric for EEMMASMH

Tsm Rgβϱβν βξ βπ βς ─ξ
Figure E.12: Influence of βψ on the ξ̄ metric for EEMMASMH
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Tsm Rg
͞nalgβϱβν βξ βπ βς

Figure E.13: Influence of βψ on the n̄alg metric for EEMACOMC

Tsm Rgβϱβν βξ βπ βς ─ϱ
Figure E.14: Influence of βψ on the %̄ metric for EEMACOMC
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Tsm Rgβϱβν βξ βπ βς ─ξ
Figure E.15: Influence of βψ on the ξ̄ metric for EEMACOMC

r0 Tsm Rg
͞nalg

Figure E.16: Influence of r0 on the n̄alg metric for EEMACOMP
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r0
Tsm Rg

─ϱ
Figure E.17: Influence of r0 on the %̄ metric for EEMACOMP

r0
Tsm Rg

─ξ
Figure E.18: Influence of r0 on the ξ̄ metric for EEMACOMP
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r0 Tsm
Rg

͞nalg

Figure E.19: Influence of r0 on the n̄alg metric for EEMACOMH

r0 Tsm Rg

─ϱ
Figure E.20: Influence of r0 on the %̄ metric for EEMACOMH
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r0 Tsm Rg
─ξ

Figure E.21: Influence of r0 on the ξ̄ metric for EEMACOMH

r0 Tsm Rg
͞nalg

Figure E.22: Influence of r0 on the n̄alg metric for EEMACOMC
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r0 Tsm
─ϱRg

Figure E.23: Influence of r0 on the %̄ metric for EEMACOMC

r0 Tsm Rg
─ξ

Figure E.24: Influence of r0 on the ξ̄ metric for EEMACOMC
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͞nalgRgTsmρl Rg
͞nalgRg

Figure E.25: Influence of ρl on the n̄alg metric for EEMACOMP

RgTsmρl
─ϱ

Figure E.26: Influence of ρl on the %̄ metric for EEMACOMP
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RgTsmρl
─ξ

Figure E.27: Influence of ρl on the ξ̄ metric for EEMACOMP

͞nalgRgTsmρl

Figure E.28: Influence of ρl on the n̄alg metric for EEMACOMH
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RgTsmρl
─ϱ

Figure E.29: Influence of ρl on the %̄ metric for EEMACOMH

RgTsmρl
─ξ

Figure E.30: Influence of ρl on the ξ̄ metric for EEMACOMH
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͞nalgRgTsmρl

Figure E.31: Influence of ρl on the n̄alg metric for EEMACOMC

RgTsmρl
─ϱ

Figure E.32: Influence of ρl on the %̄ metric for EEMACOMC
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RgTsmρl
─ξ

Figure E.33: Influence of ρl on the ξ̄ metric for EEMACOMC

Tsm Rg
͞nalgρg

Figure E.34: Influence of ρg on the n̄alg metric for EEMACOMP
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Tsm Rgρg
─ϱ

Figure E.35: Influence of ρg on the %̄ metric for EEMACOMP

Tsm Rgρg
─ξ

Figure E.36: Influence of ρg on the ξ̄ metric for EEMACOMP
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Tsm Rg
͞nalgρg

Figure E.37: Influence of ρg on the n̄alg metric for EEMACOMH

Tsm Rgρg
─ϱ

Figure E.38: Influence of ρg on the %̄ metric for EEMACOMH
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Tsm Rgρg
─ξ

Figure E.39: Influence of ρg on the ξ̄ metric for EEMACOMH

Tsm Rg
͞nalgρg

Figure E.40: Influence of ρg on the n̄alg metric for EEMMASMP
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Tsm Rgρg
─ϱ

Figure E.41: Influence of ρg on the %̄ metric for EEMMASMP

Tsm Rgρg
─ξ

Figure E.42: Influence of ρg on the ξ̄ metric for EEMMASMP
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Tsm Rg
͞nalgρg

Figure E.43: Influence of ρg on the n̄alg metric for EEMMASMH

Tsm Rgρg
─ϱ

Figure E.44: Influence of ρg on the %̄ metric for EEMMASMH
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Tsm Rgρg
─ξ

Figure E.45: Influence of ρg on the ξ̄ metric for EEMMASMH

Tsm Rg
͞nalgρg

Figure E.46: Influence of ρg on the n̄alg metric for EEMACOMC
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Tsm Rgρg
─ϱ

Figure E.47: Influence of ρg on the %̄ metric for EEMACOMC

Tsm Rgρg
─ξ

Figure E.48: Influence of ρg on the ξ̄ metric for EEMACOMC
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͞nalgRgTsmα

Figure E.49: Influence of α on the n̄alg metric for EEMMASMP

α Tsm Rg
─ϱ

Figure E.50: Influence of α on the %̄ metric for EEMMASMP
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α Tsm Rg

─ξ
Figure E.51: Influence of α on the ξ̄ metric for EEMMASMP

α Tsm Rg
͞nalg

Figure E.52: Influence of α on the n̄alg metric for EEMMASMH

355

 
 
 



α
Tsm Rg

─ϱ
Figure E.53: Influence of α on the %̄ metric for EEMMASMH

α Tsm Rg

─ξ
Figure E.54: Influence of α on the ξ̄ metric for EEMMASMH
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Tsm Rg
͞nalgλE

Figure E.55: Influence of λE on the n̄alg metric for EEMACOMP

Tsm RgλE
─ϱ

Figure E.56: Influence of λE on the %̄ metric for EEMACOMP
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Tsm RgλE
─ξ

Figure E.57: Influence of λE on the ξ̄ metric for EEMACOMP

Tsm Rg
͞nalgλE

Figure E.58: Influence of λE on the n̄alg metric for EEMACOMH
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Tsm RgλE
─ϱ

Figure E.59: Influence of λE on the %̄ metric for EEMACOMH

Tsm RgλE
─ξ

Figure E.60: Influence of λE on the ξ̄ metric for EEMACOMH
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Tsm Rg
͞nalgλE

Figure E.61: Influence of λE on the n̄alg metric for EEMMASMP

Tsm RgλE
─ϱ

Figure E.62: Influence of λE on the %̄ metric for EEMMASMP
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Tsm RgλE
─ξ

Figure E.63: Influence of λE on the ξ̄ metric for EEMMASMP

Tsm Rg
͞nalgλE

Figure E.64: Influence of λE on the n̄alg metric for EEMMASMH
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Tsm RgλE
─ϱ

Figure E.65: Influence of λE on the %̄ metric for EEMMASMH

Tsm RgλE
─ξ

Figure E.66: Influence of λE on the ξ̄ metric for EEMMASMH
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Tsm Rg
͞nalgλE

Figure E.67: Influence of λE on the n̄alg metric for EEMACOMC

Tsm RgλE
─ϱ

Figure E.68: Influence of λE on the %̄ metric for EEMACOMC
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Tsm RgλE
─ξ

Figure E.69: Influence of λE on the ξ̄ metric for EEMACOMC
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Appendix F

Algorithms Results for Different

Scenarios

This appendix contains the results obtained from the execution of EEMACOMP, EEMA-

COMH, EEMMASMP, EEMMASMH, EEMACOMC, and NSGA-II-MPA algorithms. Each

table represents the results of the execution for each algorithm, for a specific scenario. The

results of a total of 54 scenarios, generated as listed in Table 7.2 were presented.

Table F.1: Scenario 1a: NG = 30, Tsm = 1, Rg = 300
PF n̄alg CI nw

alg %̄ CI %w ξ CI ξw rank

PEEMACOMP 99.90 ± 0.46 0.174 0 0.041 ± 0.007 0.003 3 63224.486 ± 267.890 101.730 0 4
PEEMACOMH 99.01 ± 3.18 1.209 0 0.045 ± 0.007 0.003 0 62092.989 ± 226.056 85.844 0 5
PEEMMASMP 99.98 ± 0.04 0.015 5 0.044 ± 0.006 0.002 0 62296.492 ± 233.573 88.699 0 3
PEEMMASMH 99.82 ± 0.74 0.280 0 0.044 ± 0.007 0.003 0 62327.805 ± 229.138 87.015 0 5
PEEMACOMC 99.99 ± 0.01 0.003 10 0.053 ± 0.011 0.004 0 64314.165 ± 235.574 89.459 120 1
PNSGA−II−MP A 63.33 ± 8.78 3.336 0 0.035 ± 0.013 0.005 117 56870.433 ± 603.268 229.089 0 2

Table F.2: Scenario 1b: NG = 30, Tsm = 2, Rg = 300
PF n̄alg CI nw

alg %̄ CI %w ξ CI ξw rank

PEEMACOMP 99.99 ± 0.01 0.004 0 0.032 ± 0.005 0.002 0 63565.719 ± 176.532 67.038 0 5
PEEMACOMH 99.95 ± 0.08 0.029 0 0.036 ± 0.005 0.002 0 62211.133 ± 189.257 71.870 0 5
PEEMMASMP 99.99 ± 0.01 0.004 1 0.034 ± 0.005 0.002 0 62392.343 ± 181.858 69.060 0 3
PEEMMASMH 99.99 ± 0.01 0.003 0 0.034 ± 0.005 0.002 1 62428.696 ± 157.554 59.831 0 3
PEEMACOMC 99.99 ± 0.01 0.005 0 0.037 ± 0.006 0.002 0 64688.689 ± 126.121 47.894 60 1
PNSGA−II−MP A 67.49 ± 4.75 1.802 0 0.026 ± 0.007 0.003 59 55614.676 ± 519.436 197.254 0 2

Table F.3: Scenario 1c: NG = 30, Tsm = 3, Rg = 300
PF n̄alg CI nw

alg %̄ CI %w ξ CI ξw rank

PEEMACOMP 99.99 ± 0.02 0.006 0 0.031 ± 0.006 0.002 0 63544.068 ± 161.976 61.510 0 4
PEEMACOMH 99.99 ± 0.02 0.009 0 0.034 ± 0.005 0.002 0 62274.447 ± 164.946 62.638 0 4
PEEMMASMP 99.99 ± 0.01 0.006 0 0.032 ± 0.005 0.002 0 62570.899 ± 169.698 64.442 0 4
PEEMMASMH 100.00 ± 0.01 0.005 0 0.032 ± 0.006 0.002 1 62620.186 ± 193.859 73.617 0 3
PEEMACOMC 100.00 ± 0.00 0.002 0 0.033 ± 0.007 0.003 0 64891.575 ± 113.712 43.182 40 1
PNSGA−II−MP A 69.73 ± 3.58 1.359 0 0.026 ± 0.008 0.003 39 55185.113 ± 380.058 144.326 0 2
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Table F.4: Scenario 1d: NG = 30, Tsm = 4, Rg = 300
PF n̄alg CI nw

alg %̄ CI %w ξ CI ξw rank

PEEMACOMP 99.99 ± 0.02 0.006 0 0.027 ± 0.002 0.001 0 63506.710 ± 162.595 61.745 0 4
PEEMACOMH 99.98 ± 0.03 0.010 0 0.030 ± 0.003 0.001 0 62157.398 ± 189.768 72.064 0 4
PEEMMASMP 99.99 ± 0.02 0.007 0 0.028 ± 0.002 0.001 1 62491.748 ± 164.565 62.493 0 3
PEEMMASMH 99.98 ± 0.03 0.010 0 0.028 ± 0.003 0.001 0 62548.683 ± 132.324 50.250 0 4
PEEMACOMC 100.00 ± 0.01 0.005 0 0.027 ± 0.003 0.001 0 64966.841 ± 95.356 36.211 30 1
PNSGA−II−MP A 68.40 ± 3.38 1.284 0 0.022 ± 0.004 0.002 29 54799.546 ± 349.731 132.809 0 2

Table F.5: Scenario 1e: NG = 30, Tsm = 5, Rg = 300
PF n̄alg CI nw

alg %̄ CI %w ξ CI ξw rank

PEEMACOMP 99.99 ± 0.03 0.012 0 0.026 ± 0.002 0.001 0 63653.053 ± 181.660 68.985 0 4
PEEMACOMH 99.98 ± 0.03 0.010 0 0.029 ± 0.003 0.001 0 62291.449 ± 174.384 66.222 0 4
PEEMMASMP 99.99 ± 0.02 0.008 0 0.027 ± 0.002 0.001 0 62606.987 ± 101.707 38.623 0 4
PEEMMASMH 99.99 ± 0.02 0.009 0 0.027 ± 0.002 0.001 1 62644.622 ± 109.402 41.545 0 3
PEEMACOMC 100.00 ± 0.01 0.004 0 0.025 ± 0.003 0.001 0 65083.452 ± 82.395 31.289 24 1
PNSGA−II−MP A 68.64 ± 3.21 1.218 0 0.021 ± 0.003 0.001 23 54743.463 ± 371.421 141.046 0 2

Table F.6: Scenario 1f: NG = 30, Tsm = 6, Rg = 300
PF n̄alg CI nw

alg %̄ CI %w ξ CI ξw rank

PEEMACOMP 99.99 ± 0.02 0.007 0 0.026 ± 0.003 0.001 0 63568.844 ± 178.857 67.920 0 4
PEEMACOMH 99.97 ± 0.04 0.016 0 0.028 ± 0.002 0.001 0 62232.058 ± 211.322 80.249 0 4
PEEMMASMP 99.99 ± 0.02 0.009 0 0.026 ± 0.003 0.001 0 62585.621 ± 151.951 57.703 0 4
PEEMMASMH 99.99 ± 0.02 0.007 0 0.026 ± 0.003 0.001 1 62645.141 ± 169.564 64.391 0 3
PEEMACOMC 99.99 ± 0.02 0.006 0 0.026 ± 0.003 0.001 1 65034.690 ± 111.904 42.495 20 1
PNSGA−II−MP A 69.41 ± 2.15 0.816 0 0.022 ± 0.004 0.002 18 54680.648 ± 367.682 139.626 0 2

Table F.7: Scenario 2a: NG = 30, Tsm = 1, Rg = 500
PF n̄alg CI nw

alg %̄ CI %w ξ CI ξw rank

PEEMACOMP 99.99 ± 0.01 0.005 5 0.058 ± 0.012 0.005 54 65226.872 ± 263.451 100.045 9 1
PEEMACOMH 99.19 ± 1.40 0.533 0 0.062 ± 0.015 0.006 6 65120.907 ± 269.432 102.316 4 5
PEEMMASMP 99.99 ± 0.01 0.004 4 0.059 ± 0.011 0.004 43 65181.359 ± 249.229 94.644 20 2
PEEMMASMH 99.95 ± 0.14 0.055 2 0.061 ± 0.011 0.004 16 65230.484 ± 255.296 96.948 35 4
PEEMACOMC 99.99 ± 0.02 0.006 1 0.073 ± 0.012 0.005 1 65235.356 ± 201.804 76.634 52 3
PNSGA−II−MP A 34.62 ± 10.30 3.913 0 0.071 ± 0.041 0.016 0 58325.611 ± 1226.224 465.655 0 6

Table F.8: Scenario 2b: NG = 30, Tsm = 2, Rg = 500
PF n̄alg CI nw

alg %̄ CI %w ξ CI ξw rank

PEEMACOMP 99.99 ± 0.01 0.004 0 0.045 ± 0.009 0.003 31 65515.194 ± 167.296 63.530 13 1
PEEMACOMH 99.97 ± 0.03 0.013 1 0.048 ± 0.007 0.003 7 65275.753 ± 257.623 97.831 0 5
PEEMMASMP 99.99 ± 0.01 0.005 0 0.047 ± 0.006 0.002 9 65383.847 ± 258.138 98.027 4 4
PEEMMASMH 100.00 ± 0.01 0.004 1 0.046 ± 0.007 0.003 13 65404.545 ± 270.217 102.614 10 3
PEEMACOMC 99.99 ± 0.02 0.007 0 0.053 ± 0.009 0.003 0 65606.504 ± 140.949 53.525 33 2
PNSGA−II−MP A 38.35 ± 10.92 4.145 0 0.056 ± 0.022 0.008 0 56729.359 ± 1082.743 411.168 0 6

Table F.9: Scenario 2c: NG = 30, Tsm = 3, Rg = 500
PF n̄alg CI nw

alg %̄ CI %w ξ CI ξw rank

PEEMACOMP 99.99 ± 0.01 0.005 0 0.040 ± 0.006 0.002 29 65546.819 ± 143.534 54.507 6 1
PEEMACOMH 99.98 ± 0.02 0.008 0 0.044 ± 0.008 0.003 1 65132.242 ± 205.670 78.103 0 5
PEEMMASMP 99.99 ± 0.01 0.005 0 0.043 ± 0.006 0.002 6 65328.468 ± 204.463 77.644 0 3
PEEMMASMH 100.00 ± 0.01 0.004 0 0.043 ± 0.007 0.003 4 65322.738 ± 219.420 83.324 0 4
PEEMACOMC 99.99 ± 0.02 0.007 0 0.045 ± 0.004 0.001 0 65781.230 ± 112.204 42.609 34 2
PNSGA−II−MP A 40.08 ± 8.05 3.058 0 0.050 ± 0.017 0.006 0 55849.097 ± 1056.987 401.388 0 6

Table F.10: Scenario 2d: NG = 30, Tsm = 4, Rg = 500
PF n̄alg CI nw

alg %̄ CI %w ξ CI ξw rank

PEEMACOMP 99.99 ± 0.03 0.010 0 0.038 ± 0.004 0.001 28 65125.553 ± 237.599 90.227 0 2
PEEMACOMH 99.61 ± 0.21 0.081 0 0.042 ± 0.005 0.002 1 64730.302 ± 276.602 105.039 0 3
PEEMMASMP 100.00 ± 0.01 0.005 0 0.041 ± 0.005 0.002 1 64927.279 ± 214.315 81.385 0 3
PEEMMASMH 99.99 ± 0.03 0.011 0 0.041 ± 0.005 0.002 0 64999.946 ± 254.636 96.697 0 5
PEEMACOMC 99.99 ± 0.02 0.009 0 0.045 ± 0.005 0.002 0 65783.826 ± 122.137 46.381 30 1
PNSGA−II−MP A 37.51 ± 8.74 3.319 0 0.056 ± 0.020 0.008 0 55655.191 ± 1070.395 406.479 0 5
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Table F.11: Scenario 2e: NG = 30, Tsm = 5, Rg = 500
PF n̄alg CI nw

alg %̄ CI %w ξ CI ξw rank

PEEMACOMP 99.99 ± 0.02 0.008 0 0.036 ± 0.005 0.002 18 65617.854 ± 168.297 63.910 0 2
PEEMACOMH 99.99 ± 0.02 0.008 0 0.041 ± 0.005 0.002 0 65145.065 ± 266.484 101.197 0 5
PEEMMASMP 100.00 ± 0.01 0.005 0 0.040 ± 0.007 0.003 3 65344.205 ± 205.927 78.200 0 3
PEEMMASMH 100.00 ± 0.02 0.006 0 0.040 ± 0.005 0.002 1 65316.900 ± 207.545 78.815 0 4
PEEMACOMC 99.98 ± 0.03 0.012 0 0.040 ± 0.009 0.003 2 65966.720 ± 143.414 54.461 24 1
PNSGA−II−MP A 38.40 ± 8.95 3.400 0 0.056 ± 0.022 0.009 0 55630.706 ± 1023.066 388.506 0 5

Table F.12: Scenario 2f: NG = 30, Tsm = 6, Rg = 500
PF n̄alg CI nw

alg %̄ CI %w ξ CI ξw rank

PEEMACOMP 99.99 ± 0.02 0.007 0 0.036 ± 0.005 0.002 14 65484.216 ± 147.404 55.976 0 2
PEEMACOMH 99.99 ± 0.02 0.007 0 0.039 ± 0.008 0.003 0 65075.075 ± 216.256 82.122 0 3
PEEMMASMP 99.99 ± 0.02 0.008 0 0.039 ± 0.006 0.002 0 65324.222 ± 186.415 70.790 0 3
PEEMMASMH 100.00 ± 0.01 0.003 0 0.038 ± 0.006 0.002 0 65374.224 ± 215.049 81.664 0 3
PEEMACOMC 99.98 ± 0.04 0.013 0 0.037 ± 0.003 0.001 6 65984.503 ± 105.847 40.195 20 1
PNSGA−II−MP A 38.14 ± 6.74 2.560 0 0.057 ± 0.019 0.007 0 55545.986 ± 914.529 347.290 0 3

Table F.13: Scenario 3a: NG = 30, Tsm = 1, Rg = 800
PF n̄alg CI nw

alg %̄ CI %w ξ CI ξw rank

PEEMACOMP 94.69 ± 4.28 1.626 6 0.114 ± 0.021 0.008 28 64001.298 ± 1414.019 536.969 23 4
PEEMACOMH 62.99 ± 5.77 2.191 0 0.150 ± 0.017 0.007 0 64034.460 ± 1198.534 455.140 0 6
PEEMMASMP 99.41 ± 0.44 0.168 21 0.112 ± 0.015 0.006 50 64171.344 ± 1224.235 464.899 19 2
PEEMMASMH 95.04 ± 3.77 1.430 9 0.114 ± 0.011 0.004 42 64240.559 ± 1131.037 429.508 56 1
PEEMACOMC 99.70 ± 0.10 0.038 73 0.140 ± 0.021 0.008 0 63131.522 ± 2180.916 828.196 0 3
PNSGA−II−MP A 10.91 ± 2.18 0.827 0 0.648 ± 0.804 0.305 0 73608.534 ± 18301.648 6949.995 22 5

Table F.14: Scenario 3b: NG = 30, Tsm = 2, Rg = 800
PF n̄alg CI nw

alg %̄ CI %w ξ CI ξw rank

PEEMACOMP 97.33 ± 1.84 0.699 11 0.093 ± 0.014 0.005 43 65057.395 ± 662.695 251.657 31 1
PEEMACOMH 48.72 ± 4.03 1.530 0 0.149 ± 0.019 0.007 0 64744.536 ± 487.665 185.189 0 6
PEEMMASMP 96.90 ± 0.84 0.319 0 0.099 ± 0.014 0.005 9 64984.261 ± 526.431 199.911 1 4
PEEMMASMH 92.59 ± 3.71 1.407 0 0.102 ± 0.014 0.005 8 65018.660 ± 480.622 182.515 24 3
PEEMACOMC 99.16 ± 0.31 0.118 49 0.128 ± 0.017 0.007 0 64552.590 ± 809.187 307.286 0 2
PNSGA−II−MP A 11.50 ± 2.30 0.875 0 0.336 ± 0.037 0.014 0 64672.183 ± 299.427 113.706 4 5

Table F.15: Scenario 3c: NG = 30, Tsm = 3, Rg = 800
PF n̄alg CI nw

alg %̄ CI %w ξ CI ξw rank

PEEMACOMP 99.85 ± 0.14 0.054 4 0.086 ± 0.016 0.006 13 65629.139 ± 265.796 100.935 39 1
PEEMACOMH 78.10 ± 5.92 2.248 0 0.114 ± 0.019 0.007 0 65128.423 ± 231.488 87.907 0 5
PEEMMASMP 99.77 ± 0.13 0.048 5 0.087 ± 0.010 0.004 8 65546.599 ± 212.285 80.615 1 3
PEEMMASMH 98.06 ± 0.15 0.057 5 0.086 ± 0.011 0.004 19 65544.757 ± 238.916 90.728 0 2
PEEMACOMC 99.90 ± 0.10 0.038 14 0.108 ± 0.015 0.006 0 65242.358 ± 222.482 84.487 0 3
PNSGA−II−MP A 12.27 ± 2.16 0.820 0 0.327 ± 0.043 0.016 0 64696.133 ± 152.603 57.951 0 5

Table F.16: Scenario 3d: NG = 30, Tsm = 4, Rg = 800
PF n̄alg CI nw

alg %̄ CI %w ξ CI ξw rank

PEEMACOMP 99.13 ± 0.26 0.098 6 0.074 ± 0.008 0.003 20 65495.200 ± 147.854 56.147 29 1
PEEMACOMH 51.07 ± 4.78 1.816 0 0.139 ± 0.024 0.009 0 64988.903 ± 186.441 70.801 0 5
PEEMMASMP 97.34 ± 0.49 0.187 4 0.080 ± 0.009 0.003 6 65405.510 ± 159.005 60.382 1 3
PEEMMASMH 96.10 ± 0.72 0.273 2 0.081 ± 0.011 0.004 4 65397.152 ± 161.211 61.219 0 4
PEEMACOMC 99.07 ± 0.24 0.091 13 0.102 ± 0.011 0.004 0 65161.206 ± 175.899 66.797 0 2
PNSGA−II−MP A 12.07 ± 2.18 0.828 0 0.335 ± 0.046 0.018 0 64609.478 ± 155.420 59.020 0 5

Table F.17: Scenario 3e: NG = 30, Tsm = 5, Rg = 800
PF n̄alg CI nw

alg %̄ CI %w ξ CI ξw rank

PEEMACOMP 99.92 ± 0.08 0.031 4 0.072 ± 0.013 0.005 14 65491.333 ± 154.719 58.754 17 1
PEEMACOMH 71.58 ± 5.62 2.133 0 0.106 ± 0.019 0.007 0 65142.655 ± 154.383 58.626 0 5
PEEMMASMP 99.92 ± 0.09 0.033 3 0.075 ± 0.007 0.003 2 65430.145 ± 151.300 57.456 2 4
PEEMMASMH 96.89 ± 0.16 0.062 1 0.076 ± 0.009 0.003 8 65411.462 ± 144.077 54.713 3 2
PEEMACOMC 99.76 ± 0.19 0.072 8 0.101 ± 0.019 0.007 0 65377.718 ± 220.545 83.751 2 3
PNSGA−II−MP A 12.13 ± 2.54 0.963 0 0.344 ± 0.049 0.019 0 64617.781 ± 134.993 51.263 0 5
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Table F.18: Scenario 3f: NG = 30, Tsm = 6, Rg = 800
PF n̄alg CI nw

alg %̄ CI %w ξ CI ξw rank

PEEMACOMP 99.93 ± 0.09 0.033 3 0.071 ± 0.011 0.004 11 65779.387 ± 147.350 55.956 20 1
PEEMACOMH 79.73 ± 5.16 1.959 0 0.102 ± 0.015 0.006 0 65317.919 ± 238.452 90.551 0 5
PEEMMASMP 99.90 ± 0.13 0.048 2 0.075 ± 0.008 0.003 3 65664.166 ± 141.667 53.797 0 3
PEEMMASMH 96.66 ± 0.25 0.094 5 0.076 ± 0.007 0.003 6 65659.230 ± 142.055 53.945 0 2
PEEMACOMC 99.93 ± 0.10 0.040 5 0.089 ± 0.011 0.004 0 65383.320 ± 169.117 64.222 0 3
PNSGA−II−MP A 12.68 ± 1.86 0.706 0 0.327 ± 0.026 0.010 0 64572.612 ± 165.208 62.737 0 5

Table F.19: Scenario 4a: NG = 100, Tsm = 1, Rg = 300
PF n̄alg CI nw

alg %̄ CI %w ξ̄ CI ξw rank

PEEMACOMP 97.49 ± 6.58 2.497 118 0.031 ± 0.007 0.003 114 60767.397 ± 641.430 243.581 32 1
PEEMACOMH 49.48 ± 18.62 7.070 0 0.060 ± 0.014 0.005 0 59463.509 ± 932.029 353.935 0 6
PEEMMASMP 93.30 ± 11.89 4.514 0 0.039 ± 0.009 0.004 1 60679.108 ± 681.288 258.717 0 5
PEEMMASMH 90.23 ± 13.43 5.099 2 0.040 ± 0.011 0.004 1 60711.591 ± 698.380 265.208 1 4
PEEMACOMC 88.02 ± 10.31 3.914 0 0.037 ± 0.007 0.003 4 60278.843 ± 759.165 288.291 1 3
PNSGA−II−MP A 25.44 ± 10.98 4.170 0 0.237 ± 0.078 0.030 0 62051.618 ± 1288.137 489.166 86 2

Table F.20: Scenario 4b: NG = 100, Tsm = 2, Rg = 300
PF n̄alg CI nw

alg %̄ CI %w ξ̄ CI ξw rank

PEEMACOMP 99.97 ± 0.04 0.014 47 0.023 ± 0.004 0.002 59 61684.110 ± 263.857 100.199 39 1
PEEMACOMH 59.65 ± 16.82 6.389 0 0.047 ± 0.009 0.003 0 60582.562 ± 435.989 165.565 0 6
PEEMMASMP 99.52 ± 0.98 0.373 2 0.030 ± 0.007 0.003 0 61505.116 ± 289.649 109.993 0 3
PEEMMASMH 97.44 ± 2.26 0.857 1 0.032 ± 0.008 0.003 0 61515.673 ± 304.920 115.793 1 3
PEEMACOMC 97.34 ± 4.47 1.699 0 0.032 ± 0.012 0.005 1 61251.689 ± 446.044 169.384 0 5
PNSGA−II−MP A 35.68 ± 14.93 5.671 0 0.217 ± 0.097 0.037 0 61231.443 ± 1012.577 384.523 20 2

Table F.21: Scenario 4c: NG = 100, Tsm = 3, Rg = 300
PF n̄alg CI nw

alg %̄ CI %w ξ̄ CI ξw rank

PEEMACOMP 99.98 ± 0.03 0.012 8 0.018 ± 0.002 0.001 39 61926.924 ± 181.857 69.059 40 1
PEEMACOMH 75.45 ± 14.40 5.468 0 0.038 ± 0.006 0.002 0 61074.074 ± 384.329 145.948 0 5
PEEMMASMP 99.95 ± 0.09 0.036 2 0.024 ± 0.004 0.001 0 61816.187 ± 206.793 78.529 0 4
PEEMMASMH 97.73 ± 0.14 0.054 5 0.026 ± 0.004 0.001 0 61802.234 ± 234.342 88.991 0 2
PEEMACOMC 99.70 ± 0.79 0.301 2 0.024 ± 0.004 0.002 1 61734.794 ± 278.649 105.816 0 3
PNSGA−II−MP A 44.72 ± 14.29 5.428 0 0.165 ± 0.067 0.026 0 60308.215 ± 955.849 362.981 0 5

Table F.22: Scenario 4d: NG = 100, Tsm = 4, Rg = 300
PF n̄alg CI nw

alg %̄ CI %w ξ̄ CI ξw rank

PEEMACOMP 99.98 ± 0.03 0.010 12 0.019 ± 0.004 0.002 27 61948.178 ± 190.681 72.411 29 1
PEEMACOMH 71.71 ± 16.65 6.321 0 0.039 ± 0.007 0.003 0 61054.009 ± 357.629 135.808 0 5
PEEMMASMP 99.89 ± 0.27 0.103 3 0.023 ± 0.005 0.002 0 61807.696 ± 212.408 80.661 0 3
PEEMMASMH 96.92 ± 0.56 0.211 2 0.024 ± 0.004 0.002 0 61814.092 ± 212.300 80.620 1 2
PEEMACOMC 99.76 ± 0.48 0.181 0 0.022 ± 0.002 0.001 3 61688.167 ± 289.308 109.864 0 3
PNSGA−II−MP A 43.28 ± 14.74 5.596 0 0.188 ± 0.076 0.029 0 60668.669 ± 977.903 371.356 0 5

Table F.23: Scenario 4e: NG = 100, Tsm = 5, Rg = 300
PF n̄alg CI nw

alg %̄ CI %w ξ̄ CI ξw rank

PEEMACOMP 99.99 ± 0.03 0.013 2 0.017 ± 0.003 0.001 24 62059.323 ± 183.441 69.661 23 1
PEEMACOMH 77.88 ± 12.32 4.680 0 0.036 ± 0.007 0.003 0 61224.766 ± 284.764 108.138 0 4
PEEMMASMP 99.97 ± 0.05 0.020 0 0.022 ± 0.003 0.001 0 61884.880 ± 200.674 76.205 0 4
PEEMMASMH 96.32 ± 0.18 0.070 1 0.026 ± 0.004 0.002 0 61869.871 ± 205.383 77.993 0 3
PEEMACOMC 99.82 ± 0.41 0.157 0 0.021 ± 0.002 0.001 0 61837.894 ± 271.395 103.061 1 2
PNSGA−II−MP A 41.24 ± 16.47 6.256 0 0.206 ± 0.097 0.037 0 60573.137 ± 798.495 303.226 0 4

Table F.24: Scenario 4f: NG = 100, Tsm = 6, Rg = 300
PF n̄alg CI nw

alg %̄ CI %w ξ̄ CI ξw rank

PEEMACOMP 99.99 ± 0.02 0.007 3 0.015 ± 0.003 0.001 20 62023.971 ± 173.217 65.778 20 1
PEEMACOMH 77.76 ± 11.65 4.423 0 0.033 ± 0.007 0.003 0 61177.929 ± 258.965 98.341 0 3
PEEMMASMP 99.98 ± 0.04 0.016 0 0.019 ± 0.003 0.001 0 61890.620 ± 201.835 76.646 0 3
PEEMMASMH 95.59 ± 0.14 0.052 0 0.023 ± 0.003 0.001 0 61870.458 ± 190.483 72.335 0 3
PEEMACOMC 99.95 ± 0.08 0.030 0 0.020 ± 0.002 0.001 0 61786.033 ± 227.451 86.374 0 3
PNSGA−II−MP A 44.31 ± 14.71 5.586 0 0.188 ± 0.077 0.029 0 60534.065 ± 624.689 237.224 0 2
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Table F.25: Scenario 5a: NG = 100, Tsm = 1, Rg = 500
PF n̄alg CI nw

alg %̄ CI %w ξ̄ CI ξw rank

PEEMACOMP 94.53 ± 9.51 3.611 56 0.047 ± 0.008 0.003 119 60709.700 ± 981.508 372.725 70 1
PEEMACOMH 47.57 ± 18.58 7.055 0 0.096 ± 0.032 0.012 0 58818.263 ± 985.701 374.317 0 5
PEEMMASMP 94.75 ± 9.25 3.511 61 0.061 ± 0.010 0.004 0 60576.821 ± 777.649 295.310 2 2
PEEMMASMH 92.40 ± 11.00 4.177 2 0.061 ± 0.022 0.008 1 60465.880 ± 789.736 299.900 1 4
PEEMACOMC 78.79 ± 16.81 6.382 0 0.063 ± 0.015 0.006 0 60499.958 ± 890.883 338.310 0 5
PNSGA−II−MP A 51.53 ± 14.69 5.580 0 0.099 ± 0.070 0.026 0 60083.048 ± 1612.485 612.336 47 3

Table F.26: Scenario 5b: NG = 100, Tsm = 2, Rg = 500
PF n̄alg CI nw

alg %̄ CI %w ξ̄ CI ξw rank

PEEMACOMP 99.48 ± 1.32 0.500 34 0.036 ± 0.005 0.002 59 61651.210 ± 677.703 257.356 52 1
PEEMACOMH 67.85 ± 17.96 6.819 0 0.065 ± 0.017 0.006 0 59580.938 ± 843.767 320.418 0 5
PEEMMASMP 99.14 ± 2.27 0.863 13 0.047 ± 0.006 0.002 0 61250.944 ± 659.970 250.622 2 2
PEEMMASMH 97.23 ± 3.34 1.268 6 0.048 ± 0.008 0.003 1 61235.382 ± 635.453 241.311 1 3
PEEMACOMC 91.60 ± 11.59 4.400 0 0.047 ± 0.008 0.003 0 61409.163 ± 722.389 274.325 5 4
PNSGA−II−MP A 62.93 ± 11.06 4.200 0 0.063 ± 0.039 0.015 0 58489.752 ± 1437.332 545.822 0 5

Table F.27: Scenario 5c: NG = 100, Tsm = 3, Rg = 500
PF n̄alg CI nw

alg %̄ CI %w ξ̄ CI ξw rank

PEEMACOMP 98.74 ± 3.27 1.241 36 0.034 ± 0.005 0.002 38 61716.716 ± 419.716 159.386 39 1
PEEMACOMH 45.07 ± 13.03 4.949 0 0.067 ± 0.011 0.004 0 59371.538 ± 724.454 275.109 0 5
PEEMMASMP 97.13 ± 4.57 1.737 3 0.042 ± 0.010 0.004 0 61190.523 ± 477.902 181.482 0 3
PEEMMASMH 94.67 ± 6.12 2.323 1 0.044 ± 0.006 0.002 1 61200.155 ± 504.360 191.529 1 2
PEEMACOMC 84.33 ± 11.22 4.259 0 0.044 ± 0.005 0.002 0 61313.928 ± 545.723 207.237 0 5
PNSGA−II−MP A 64.12 ± 10.24 3.890 0 0.064 ± 0.042 0.016 1 58209.978 ± 1306.440 496.116 0 4

Table F.28: Scenario 5d: NG = 100, Tsm = 4, Rg = 500
PF n̄alg CI nw

alg %̄ CI %w ξ̄ CI ξw rank

PEEMACOMP 99.94 ± 0.07 0.028 9 0.029 ± 0.003 0.001 30 62177.310 ± 278.901 105.912 29 1
PEEMACOMH 66.07 ± 14.56 5.529 0 0.057 ± 0.011 0.004 0 59980.010 ± 541.183 205.513 0 4
PEEMMASMP 99.93 ± 0.12 0.047 6 0.037 ± 0.004 0.002 0 61674.493 ± 282.908 107.433 0 2
PEEMMASMH 96.91 ± 0.18 0.070 3 0.040 ± 0.003 0.001 0 61613.815 ± 274.259 104.149 1 3
PEEMACOMC 94.84 ± 7.03 2.671 0 0.038 ± 0.004 0.002 0 61693.781 ± 407.696 154.821 0 4
PNSGA−II−MP A 67.49 ± 5.73 2.174 0 0.053 ± 0.025 0.010 0 57864.309 ± 1064.516 404.247 0 4

Table F.29: Scenario 5e: NG = 100, Tsm = 5, Rg = 500
PF n̄alg CI nw

alg %̄ CI %w ξ̄ CI ξw rank

PEEMACOMP 99.91 ± 0.13 0.050 4 0.028 ± 0.002 0.001 24 62324.560 ± 277.373 105.332 23 1
PEEMACOMH 69.79 ± 13.49 5.122 0 0.054 ± 0.011 0.004 0 60058.741 ± 424.982 161.386 0 4
PEEMMASMP 99.86 ± 0.31 0.117 5 0.038 ± 0.005 0.002 0 61790.100 ± 318.713 121.030 0 3
PEEMMASMH 96.08 ± 0.37 0.139 6 0.040 ± 0.005 0.002 0 61706.344 ± 318.672 121.015 1 2
PEEMACOMC 96.76 ± 4.47 1.699 0 0.039 ± 0.005 0.002 0 61734.661 ± 368.194 139.820 0 4
PNSGA−II−MP A 68.13 ± 3.92 1.489 0 0.048 ± 0.020 0.008 0 57600.732 ± 1039.846 394.878 0 4

Table F.30: Scenario 5f: NG = 100, Tsm = 6, Rg = 500
PF n̄alg CI nw

alg %̄ CI %w ξ̄ CI ξw rank

PEEMACOMP 99.88 ± 0.39 0.148 6 0.027 ± 0.002 0.001 20 62397.835 ± 344.081 130.664 20 1
PEEMACOMH 70.14 ± 17.50 6.646 0 0.047 ± 0.009 0.003 0 60103.994 ± 633.657 240.630 0 4
PEEMMASMP 99.80 ± 0.57 0.218 1 0.033 ± 0.004 0.002 0 61816.394 ± 386.216 146.664 0 3
PEEMMASMH 95.34 ± 0.42 0.160 4 0.040 ± 0.004 0.002 0 61719.687 ± 460.593 174.909 0 2
PEEMACOMC 94.90 ± 7.76 2.947 0 0.036 ± 0.006 0.002 0 61839.904 ± 518.148 196.765 0 4
PNSGA−II−MP A 67.31 ± 6.85 2.600 0 0.055 ± 0.032 0.012 0 57782.114 ± 1099.095 417.378 0 4

Table F.31: Scenario 6a: NG = 100, Tsm = 1, Rg = 800
PF n̄alg CI nw

alg %̄ CI %w ξ̄ CI ξw rank

PEEMACOMP 49.76 ± 7.60 2.888 63 0.101 ± 0.014 0.005 0 63966.209 ± 239.094 90.795 4 3
PEEMACOMH 17.87 ± 1.97 0.747 0 0.141 ± 0.027 0.010 0 63092.267 ± 469.712 178.372 0 4
PEEMMASMP 45.36 ± 6.69 2.542 0 0.102 ± 0.013 0.005 0 63802.972 ± 284.920 108.198 0 4
PEEMMASMH 37.76 ± 6.23 2.366 0 0.111 ± 0.017 0.007 0 63743.410 ± 334.980 127.208 0 4
PEEMACOMC 46.63 ± 7.77 2.949 55 0.145 ± 0.026 0.010 0 64132.040 ± 218.203 82.862 67 2
PNSGA−II−MP A 39.99 ± 4.14 1.571 2 0.066 ± 0.015 0.006 120 63723.083 ± 668.519 253.868 49 1
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Table F.32: Scenario 6b: NG = 100, Tsm = 2, Rg = 800
PF n̄alg CI nw

alg %̄ CI %w ξ̄ CI ξw rank

PEEMACOMP 70.35 ± 11.25 4.273 57 0.067 ± 0.006 0.002 9 64222.008 ± 410.147 155.752 0 1
PEEMACOMH 19.54 ± 3.58 1.360 0 0.109 ± 0.018 0.007 0 62811.829 ± 524.574 199.205 0 4
PEEMMASMP 52.48 ± 9.25 3.513 0 0.082 ± 0.008 0.003 0 63657.375 ± 356.806 135.496 0 4
PEEMMASMH 49.32 ± 9.27 3.522 0 0.081 ± 0.009 0.003 0 63592.264 ± 408.145 154.992 0 4
PEEMACOMC 49.79 ± 9.64 3.661 1 0.125 ± 0.025 0.010 0 64552.145 ± 224.790 85.363 60 2
PNSGA−II−MP A 44.33 ± 2.90 1.100 2 0.056 ± 0.009 0.003 51 63066.698 ± 589.824 223.984 0 3

Table F.33: Scenario 6c: NG = 100, Tsm = 3, Rg = 800
PF n̄alg CI nw

alg %̄ CI %w ξ̄ CI ξw rank

PEEMACOMP 83.52 ± 5.96 2.265 40 0.057 ± 0.008 0.003 8 64377.146 ± 324.728 123.315 0 1
PEEMACOMH 21.44 ± 2.07 0.785 0 0.096 ± 0.016 0.006 0 62801.812 ± 557.635 211.760 0 4
PEEMMASMP 58.83 ± 6.17 2.344 0 0.070 ± 0.010 0.004 0 63719.011 ± 314.813 119.549 0 4
PEEMMASMH 57.77 ± 5.95 2.259 0 0.072 ± 0.008 0.003 0 63736.318 ± 356.174 135.256 0 4
PEEMACOMC 52.75 ± 8.59 3.261 0 0.116 ± 0.020 0.008 0 64776.202 ± 297.890 113.123 40 2
PNSGA−II−MP A 45.09 ± 2.97 1.126 0 0.052 ± 0.011 0.004 32 62842.974 ± 425.018 161.399 0 3

Table F.34: Scenario 6d: NG = 100, Tsm = 4, Rg = 800
PF n̄alg CI nw

alg %̄ CI %w ξ̄ CI ξw rank

PEEMACOMP 88.91 ± 5.12 1.946 30 0.054 ± 0.007 0.003 12 64408.502 ± 333.447 126.625 0 1
PEEMACOMH 21.50 ± 2.42 0.919 0 0.093 ± 0.021 0.008 0 62719.980 ± 425.522 161.591 0 4
PEEMMASMP 60.10 ± 5.38 2.043 0 0.071 ± 0.009 0.003 0 63729.103 ± 363.186 137.919 0 4
PEEMMASMH 63.17 ± 7.47 2.838 0 0.071 ± 0.008 0.003 0 63776.172 ± 412.075 156.484 0 4
PEEMACOMC 51.06 ± 7.59 2.880 0 0.113 ± 0.019 0.007 0 64852.175 ± 254.121 96.502 30 2
PNSGA−II−MP A 43.60 ± 2.54 0.966 0 0.055 ± 0.014 0.005 18 62682.837 ± 431.736 163.951 0 3

Table F.35: Scenario 6e: NG = 100, Tsm = 5, Rg = 800
PF n̄alg CI nw

alg %̄ CI %w ξ̄ CI ξw rank

PEEMACOMP 97.41 ± 1.83 0.695 23 0.051 ± 0.008 0.003 16 64694.801 ± 305.435 115.988 0 1
PEEMACOMH 27.80 ± 3.85 1.462 0 0.085 ± 0.018 0.007 0 62955.198 ± 394.722 149.895 0 5
PEEMMASMP 77.58 ± 9.38 3.562 0 0.063 ± 0.008 0.003 0 64064.886 ± 315.961 119.985 0 5
PEEMMASMH 83.74 ± 9.15 3.474 1 0.065 ± 0.009 0.003 1 64302.477 ± 356.163 135.252 0 4
PEEMACOMC 66.10 ± 9.08 3.447 0 0.099 ± 0.013 0.005 0 65124.118 ± 247.699 94.063 24 2
PNSGA−II−MP A 44.81 ± 2.54 0.964 0 0.054 ± 0.014 0.005 7 62688.714 ± 428.186 162.602 0 3

Table F.36: Scenario 6f: NG = 100, Tsm = 6, Rg = 800
PF n̄alg CI nw

alg %̄ CI %w ξ̄ CI ξw rank

PEEMACOMP 98.35 ± 1.71 0.649 19 0.046 ± 0.005 0.002 13 64816.358 ± 324.336 123.166 0 1
PEEMACOMH 30.25 ± 4.11 1.561 0 0.078 ± 0.012 0.005 0 63037.767 ± 456.105 173.205 0 5
PEEMMASMP 81.69 ± 8.01 3.041 0 0.057 ± 0.006 0.002 0 64133.585 ± 329.989 125.312 0 5
PEEMMASMH 90.11 ± 5.77 2.190 1 0.060 ± 0.006 0.002 2 64401.268 ± 313.081 118.892 0 4
PEEMACOMC 71.83 ± 10.60 4.026 0 0.097 ± 0.014 0.005 0 65167.685 ± 219.785 83.463 20 2
PNSGA−II−MP A 45.46 ± 2.59 0.984 0 0.051 ± 0.010 0.004 5 62698.708 ± 402.134 152.709 0 3

Table F.37: Scenario 7a: NG = 300, Tsm = 1, Rg = 300
PF n̄alg CI nw

alg %̄ CI %w ξ̄ CI ξw rank

PEEMACOMP 93.04 ± 5.98 2.272 118 0.070 ± 0.011 0.004 114 59664.151 ± 817.604 310.483 0 1
PEEMACOMH 55.69 ± 15.85 6.020 0 0.116 ± 0.022 0.008 0 58365.149 ± 1338.723 508.376 0 6
PEEMMASMP 83.60 ± 9.50 3.608 0 0.081 ± 0.014 0.005 3 59098.923 ± 1124.492 427.022 0 3
PEEMMASMH 78.12 ± 12.14 4.609 1 0.088 ± 0.014 0.005 0 58932.512 ± 1047.305 397.711 0 5
PEEMACOMC 78.70 ± 11.56 4.391 0 0.090 ± 0.017 0.007 1 60895.836 ± 663.018 251.779 120 2
PNSGA−II−MP A 41.79 ± 6.96 2.641 1 0.126 ± 0.037 0.014 2 55946.879 ± 845.442 321.054 0 3

Table F.38: Scenario 7b: NG = 300, Tsm = 2, Rg = 300
PF n̄alg CI nw

alg %̄ CI %w ξ̄ CI ξw rank

PEEMACOMP 98.26 ± 1.09 0.415 60 0.057 ± 0.007 0.003 57 60744.233 ± 701.076 266.231 0 1
PEEMACOMH 54.51 ± 12.58 4.778 0 0.107 ± 0.017 0.006 0 59134.469 ± 1211.763 460.163 0 5
PEEMMASMP 91.20 ± 5.40 2.050 0 0.070 ± 0.010 0.004 0 60135.895 ± 678.887 257.805 0 5
PEEMMASMH 85.95 ± 7.65 2.905 0 0.070 ± 0.011 0.004 2 60004.429 ± 727.168 276.140 0 3
PEEMACOMC 86.81 ± 7.31 2.775 0 0.074 ± 0.009 0.003 0 61624.241 ± 514.635 195.431 60 2
PNSGA−II−MP A 47.93 ± 6.57 2.495 0 0.101 ± 0.023 0.009 1 57023.982 ± 614.058 233.187 0 4
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Table F.39: Scenario 7c: NG = 300, Tsm = 3, Rg = 300
PF n̄alg CI nw

alg %̄ CI %w ξ̄ CI ξw rank

PEEMACOMP 99.01 ± 0.74 0.282 39 0.053 ± 0.005 0.002 39 60833.889 ± 603.457 229.161 0 1
PEEMACOMH 58.28 ± 12.14 4.609 0 0.096 ± 0.012 0.005 0 59270.084 ± 1200.147 455.752 0 5
PEEMMASMP 94.08 ± 4.04 1.535 0 0.063 ± 0.009 0.003 0 60381.056 ± 705.074 267.750 0 5
PEEMMASMH 89.50 ± 6.73 2.556 1 0.069 ± 0.008 0.003 0 60385.598 ± 910.002 345.570 0 3
PEEMACOMC 89.82 ± 5.01 1.902 0 0.069 ± 0.007 0.003 0 61955.239 ± 413.362 156.973 40 2
PNSGA−II−MP A 54.78 ± 4.96 1.884 0 0.089 ± 0.017 0.007 1 57707.289 ± 846.618 321.501 0 3

Table F.40: Scenario 7d: NG = 300, Tsm = 4, Rg = 300
PF n̄alg CI nns ρ CI nsp ξ CI nhy rank

PEEMACOMP 99.51 ± 0.69 0.263 29 0.049 ± 0.004 0.002 27 61362.221 ± 583.576 221.611 0 1
PEEMACOMH 61.48 ± 11.41 4.331 0 0.090 ± 0.012 0.005 0 59652.101 ± 962.851 365.640 0 5
PEEMMASMP 96.38 ± 2.10 0.798 0 0.056 ± 0.006 0.002 2 60695.994 ± 730.138 277.268 0 3
PEEMMASMH 92.91 ± 4.42 1.680 1 0.063 ± 0.006 0.002 1 60657.401 ± 705.691 267.984 0 3
PEEMACOMC 92.94 ± 4.00 1.520 0 0.066 ± 0.006 0.002 0 62310.982 ± 326.953 124.160 30 2
PNSGA−II−MP A 56.15 ± 4.17 1.585 0 0.086 ± 0.012 0.005 0 57993.635 ± 618.046 234.701 0 5

Table F.41: Scenario 7e: NG = 300, Tsm = 5, Rg = 300
PF n̄alg CI nw

alg %̄ CI %w ξ̄ CI ξw rank

PEEMACOMP 99.72 ± 0.23 0.088 24 0.047 ± 0.005 0.002 23 61310.428 ± 684.846 260.068 0 1
PEEMACOMH 61.82 ± 11.87 4.508 0 0.090 ± 0.014 0.005 0 59550.839 ± 1205.634 457.836 0 4
PEEMMASMP 96.97 ± 0.92 0.349 0 0.057 ± 0.007 0.003 0 60885.171 ± 651.764 247.505 0 4
PEEMMASMH 93.70 ± 3.04 1.153 0 0.063 ± 0.008 0.003 0 60799.321 ± 742.919 282.121 0 4
PEEMACOMC 94.73 ± 2.77 1.052 0 0.063 ± 0.007 0.003 0 62121.522 ± 368.008 139.750 24 2
PNSGA−II−MP A 57.11 ± 4.31 1.637 0 0.084 ± 0.018 0.007 1 58166.765 ± 494.275 187.699 0 3

Table F.42: Scenario 7f: NG = 300, Tsm = 6, Rg = 300
PF n̄alg CI nw

alg %̄ CI %w ξ̄ CI ξw rank

PEEMACOMP 99.77 ± 0.18 0.066 15 0.047 ± 0.005 0.002 18 61453.252 ± 515.557 195.781 0 1
PEEMACOMH 64.31 ± 8.84 3.359 0 0.086 ± 0.013 0.005 0 59624.352 ± 1108.043 420.776 0 6
PEEMMASMP 97.26 ± 0.52 0.199 2 0.057 ± 0.007 0.003 0 61127.984 ± 601.689 228.490 0 4
PEEMMASMH 94.51 ± 1.10 0.419 2 0.062 ± 0.007 0.003 1 60694.849 ± 758.565 288.063 0 3
PEEMACOMC 96.04 ± 1.72 0.653 0 0.062 ± 0.006 0.002 0 62292.129 ± 341.366 129.633 20 2
PNSGA−II−MP A 57.44 ± 4.29 1.629 0 0.085 ± 0.018 0.007 1 58260.458 ± 547.242 207.813 0 5

Table F.43: Scenario 8a: NG = 300, Tsm = 1, Rg = 500
PF n̄alg CI nw

alg %̄ CI %w ξ̄ CI ξw rank

PEEMACOMP 57.73 ± 9.90 3.759 119 0.106 ± 0.013 0.005 118 59920.766 ± 726.594 275.922 0 1
PEEMACOMH 30.13 ± 5.41 2.053 0 0.191 ± 0.025 0.009 0 57008.681 ± 1295.680 492.030 0 5
PEEMMASMP 47.69 ± 7.94 3.014 0 0.126 ± 0.021 0.008 1 59349.600 ± 842.997 320.125 0 4
PEEMMASMH 44.55 ± 8.13 3.086 1 0.139 ± 0.029 0.011 1 59158.660 ± 808.495 307.024 0 3
PEEMACOMC 48.00 ± 8.15 3.096 0 0.139 ± 0.019 0.007 0 60049.206 ± 641.399 243.569 0 5
PNSGA−II−MP A 20.46 ± 2.97 1.127 0 0.265 ± 0.036 0.014 0 64489.940 ± 804.127 305.365 120 2

Table F.44: Scenario 8b: NG = 300, Tsm = 2, Rg = 500
PF n̄alg CI nw

alg %̄ CI %w ξ̄ CI ξw rank

PEEMACOMP 56.48 ± 9.23 3.506 59 0.099 ± 0.016 0.006 58 60475.012 ± 649.481 246.639 0 1
PEEMACOMH 28.44 ± 5.56 2.110 0 0.177 ± 0.025 0.009 0 57370.244 ± 1110.111 421.561 0 5
PEEMMASMP 44.34 ± 6.94 2.634 0 0.121 ± 0.019 0.007 1 59858.127 ± 785.103 298.141 0 4
PEEMMASMH 42.37 ± 8.36 3.174 1 0.135 ± 0.021 0.008 1 59535.577 ± 859.987 326.577 0 3
PEEMACOMC 46.25 ± 7.19 2.729 0 0.126 ± 0.018 0.007 0 60600.033 ± 447.278 169.853 0 5
PNSGA−II−MP A 22.78 ± 4.19 1.590 0 0.251 ± 0.028 0.011 0 64926.835 ± 398.208 151.218 60 2

Table F.45: Scenario 8c: NG = 300, Tsm = 3, Rg = 500
PF n̄alg CI nw

alg %̄ CI %w ξ̄ CI ξw rank

PEEMACOMP 65.50 ± 12.17 4.622 39 0.087 ± 0.013 0.005 39 61097.779 ± 584.252 221.868 0 1
PEEMACOMH 30.20 ± 5.08 1.928 0 0.173 ± 0.020 0.008 0 57665.954 ± 1015.658 385.693 0 4
PEEMMASMP 50.63 ± 8.67 3.292 0 0.115 ± 0.037 0.014 0 60559.718 ± 693.155 263.223 0 4
PEEMMASMH 46.66 ± 9.57 3.636 1 0.122 ± 0.017 0.006 1 60147.474 ± 745.628 283.150 0 3
PEEMACOMC 48.00 ± 7.94 3.016 0 0.116 ± 0.022 0.008 0 60969.451 ± 508.311 193.030 0 4
PNSGA−II−MP A 22.93 ± 3.95 1.502 0 0.260 ± 0.027 0.010 0 64903.466 ± 217.519 82.602 40 2
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Table F.46: Scenario 8d: NG = 300, Tsm = 4, Rg = 500
PF n̄alg CI nw

alg %̄ CI %w ξ̄ CI ξw rank

PEEMACOMP 68.56 ± 8.41 3.194 29 0.078 ± 0.008 0.003 29 61270.011 ± 471.914 179.208 0 1
PEEMACOMH 30.50 ± 4.38 1.664 0 0.171 ± 0.017 0.006 0 57855.751 ± 900.304 341.888 0 4
PEEMMASMP 53.40 ± 6.43 2.442 0 0.105 ± 0.020 0.008 0 60902.062 ± 487.941 185.294 0 4
PEEMMASMH 49.46 ± 7.41 2.815 1 0.116 ± 0.012 0.004 1 60419.280 ± 589.481 223.853 0 3
PEEMACOMC 53.36 ± 7.65 2.904 0 0.109 ± 0.015 0.006 0 61248.190 ± 346.946 131.752 0 4
PNSGA−II−MP A 24.30 ± 3.95 1.500 0 0.260 ± 0.026 0.010 0 64803.937 ± 186.757 70.920 30 2

Table F.47: Scenario 8e: NG = 300, Tsm = 5, Rg = 500
PF n̄alg CI nw

alg %̄ CI %w ξ̄ CI ξw rank

PEEMACOMP 71.88 ± 10.71 4.069 23 0.077 ± 0.015 0.006 23 61379.528 ± 492.537 187.039 0 1
PEEMACOMH 31.02 ± 4.26 1.619 0 0.164 ± 0.020 0.007 0 57910.109 ± 1204.360 457.352 0 4
PEEMMASMP 53.98 ± 7.82 2.971 0 0.097 ± 0.019 0.007 0 61146.303 ± 535.447 203.334 0 4
PEEMMASMH 49.03 ± 9.02 3.426 1 0.106 ± 0.017 0.007 1 60546.164 ± 672.581 255.410 0 3
PEEMACOMC 54.58 ± 9.08 3.450 0 0.106 ± 0.014 0.005 0 61458.694 ± 338.349 128.487 0 4
PNSGA−II−MP A 22.41 ± 3.84 1.458 0 0.259 ± 0.023 0.009 0 64684.148 ± 469.194 178.175 24 2

Table F.48: Scenario 8f: NG = 300, Tsm = 6, Rg = 500
PF n̄alg CI nw

alg %̄ CI %w ξ̄ CI ξw rank

PEEMACOMP 86.12 ± 5.06 1.921 19 0.068 ± 0.011 0.004 19 61913.483 ± 406.288 154.287 0 1
PEEMACOMH 35.75 ± 4.20 1.594 0 0.152 ± 0.020 0.008 0 58739.849 ± 679.759 258.136 0 4
PEEMMASMP 63.01 ± 4.72 1.793 0 0.091 ± 0.016 0.006 0 61552.664 ± 363.220 137.932 0 4
PEEMMASMH 58.56 ± 4.73 1.797 1 0.111 ± 0.024 0.009 1 61103.759 ± 441.805 167.774 0 3
PEEMACOMC 64.24 ± 7.35 2.793 0 0.089 ± 0.010 0.004 0 61737.664 ± 219.503 83.356 0 4
PNSGA−II−MP A 21.37 ± 4.27 1.620 0 0.271 ± 0.028 0.011 0 64744.982 ± 132.848 50.449 20 2

Table F.49: Scenario 9a: NG = 300, Tsm = 1, Rg = 800
PF n̄alg CI nw

alg %̄ CI %w ξ̄ CI ξw rank

PEEMACOMP 19.90 ± 2.38 0.903 0 0.187 ± 0.025 0.010 5 49998.628 ± 1503.670 571.014 0 2
PEEMACOMH 12.40 ± 1.71 0.650 0 0.296 ± 0.041 0.016 0 44856.393 ± 1623.950 616.690 0 4
PEEMMASMP 16.28 ± 1.73 0.657 0 0.209 ± 0.023 0.009 0 48540.331 ± 1094.242 415.535 0 4
PEEMMASMH 14.79 ± 1.68 0.639 0 0.225 ± 0.029 0.011 2 47568.622 ± 1660.751 630.665 0 3
PEEMACOMC 14.37 ± 1.87 0.709 0 0.246 ± 0.037 0.014 0 50765.209 ± 1246.919 473.514 0 4
PNSGA−II−MP A 26.87 ± 3.17 1.203 120 0.148 ± 0.025 0.009 113 58532.224 ± 916.999 348.228 120 1

Table F.50: Scenario 9b: NG = 300, Tsm = 2, Rg = 800
PF n̄alg CI nw

alg %̄ CI %w ξ̄ CI ξw rank

PEEMACOMP 20.43 ± 3.20 1.216 2 0.176 ± 0.022 0.008 3 51058.473 ± 1205.798 457.898 0 2
PEEMACOMH 12.49 ± 1.32 0.500 0 0.284 ± 0.039 0.015 0 45387.773 ± 1578.853 599.565 0 4
PEEMMASMP 16.51 ± 2.35 0.891 0 0.209 ± 0.037 0.014 1 49824.905 ± 1304.895 495.530 0 3
PEEMMASMH 14.31 ± 1.98 0.751 0 0.214 ± 0.027 0.010 0 48500.839 ± 1543.321 586.072 0 4
PEEMACOMC 14.69 ± 2.13 0.809 0 0.229 ± 0.029 0.011 0 51500.682 ± 1137.012 431.777 0 4
PNSGA−II−MP A 23.64 ± 2.80 1.062 58 0.148 ± 0.029 0.011 56 60058.894 ± 535.292 203.275 60 1

Table F.51: Scenario 9c: NG = 300, Tsm = 3, Rg = 800
PF n̄alg CI nw

alg %̄ CI %w ξ̄ CI ξw rank

PEEMACOMP 24.53 ± 3.42 1.299 35 0.156 ± 0.021 0.008 18 52374.117 ± 788.967 299.608 0 2
PEEMACOMH 13.36 ± 1.47 0.560 0 0.251 ± 0.024 0.009 0 45869.401 ± 1662.672 631.395 0 5
PEEMMASMP 19.71 ± 2.20 0.835 1 0.170 ± 0.016 0.006 7 51680.217 ± 983.538 373.495 0 3
PEEMMASMH 16.49 ± 2.34 0.888 1 0.196 ± 0.026 0.010 0 50509.870 ± 1215.758 461.680 0 4
PEEMACOMC 15.84 ± 2.61 0.991 0 0.205 ± 0.033 0.013 0 52969.544 ± 834.896 317.049 0 5
PNSGA−II−MP A 21.35 ± 2.27 0.862 3 0.164 ± 0.024 0.009 15 61001.573 ± 430.931 163.645 40 1

Table F.52: Scenario 9d: NG = 300, Tsm = 4, Rg = 800
PF n̄alg CI nw

alg %̄ CI %w ξ̄ CI ξw rank

PEEMACOMP 25.84 ± 3.88 1.472 28 0.146 ± 0.019 0.007 18 52801.550 ± 1032.938 392.255 0 1
PEEMACOMH 13.69 ± 1.42 0.539 0 0.261 ± 0.044 0.017 0 46294.130 ± 1514.349 575.069 0 4
PEEMMASMP 19.49 ± 3.01 1.141 1 0.171 ± 0.024 0.009 1 51326.327 ± 1189.155 451.578 0 3
PEEMMASMH 16.91 ± 2.10 0.796 0 0.192 ± 0.029 0.011 0 50389.864 ± 1739.927 660.732 0 4
PEEMACOMC 16.05 ± 2.37 0.899 0 0.195 ± 0.034 0.013 0 53072.900 ± 1251.343 475.194 0 4
PNSGA−II−MP A 21.43 ± 2.22 0.842 1 0.154 ± 0.022 0.009 11 61174.784 ± 383.731 145.721 30 2
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Table F.53: Scenario 9e: NG = 300, Tsm = 5, Rg = 800
PF n̄alg CI nw

alg %̄ CI %w ξ̄ CI ξw rank

PEEMACOMP 25.49 ± 4.02 1.527 21 0.146 ± 0.024 0.009 17 53088.762 ± 1097.656 416.832 0 1
PEEMACOMH 13.68 ± 1.86 0.706 0 0.265 ± 0.052 0.020 0 46410.901 ± 1824.780 692.955 0 4
PEEMMASMP 20.37 ± 2.48 0.942 2 0.163 ± 0.015 0.006 4 51953.859 ± 743.169 282.216 0 3
PEEMMASMH 16.92 ± 2.20 0.836 0 0.186 ± 0.030 0.012 0 50803.910 ± 1415.343 537.472 0 4
PEEMACOMC 17.48 ± 2.72 1.034 0 0.201 ± 0.031 0.012 0 53250.626 ± 823.638 312.774 0 4
PNSGA−II−MP A 19.11 ± 1.91 0.725 1 0.175 ± 0.026 0.010 3 61664.790 ± 427.184 162.222 24 2

Table F.54: Scenario 9f: NG = 300, Tsm = 6, Rg = 800
PF n̄alg CI nw

alg %̄ CI %w ξ̄ CI ξw rank

PEEMACOMP 37.32 ± 5.34 2.029 18 0.115 ± 0.014 0.005 17 54929.165 ± 778.742 295.725 0 1
PEEMACOMH 16.71 ± 1.97 0.748 0 0.219 ± 0.036 0.014 0 47976.933 ± 1287.187 488.805 0 6
PEEMMASMP 30.40 ± 4.41 1.675 0 0.136 ± 0.014 0.006 2 53865.025 ± 736.264 279.594 0 3
PEEMMASMH 23.64 ± 3.30 1.253 1 0.160 ± 0.019 0.007 1 52832.253 ± 726.900 276.038 0 3
PEEMACOMC 22.17 ± 3.13 1.189 1 0.170 ± 0.026 0.010 0 55091.131 ± 808.302 306.950 0 5
PNSGA−II−MP A 19.40 ± 2.48 0.940 0 0.165 ± 0.030 0.011 0 61614.645 ± 268.340 101.901 20 2
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Appendix G

Illustration of the Influence of

Change Frequency and Change

Severity on the Performance Metrics

This appendix presents a three dimension graphs to illustrate the influence of change fre-

quency, Tsm, and change severity, Rg, on the performance metrics, n̄alg, %̄, and ξ̄ for different

number of nodes.
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Figure G.1: Influence of Rg and Tsm on the n̄alg metric for NG = 30
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Figure G.2: Influence of Rg and Tsm on the n̄alg metric for NG = 100
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Figure G.3: Influence of Rg and Tsm on the n̄alg metric for NG = 300
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Figure G.4: Influence of Rg and Tsm on the %̄ metric for NG = 30
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Figure G.5: Influence of Rg and Tsm on the %̄ metric for NG = 100
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Figure G.6: Influence of Rg and Tsm on the %̄ metric for NG = 300
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Figure G.7: Influence of Rg and Tsm on the ξ̄ metric for NG = 30
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Figure G.8: Influence of Rg and Tsm on the ξ̄ metric for NG = 100
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Figure G.9: Influence of Rg and Tsm on the ξ̄ metric for NG = 300
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Appendix H

Results of the Mann-Whitney U

Test

This appendix contains the results of the Mann-Whitney U test for each pair of algorithms

to be compared. Results are visualised using the FluxViz graphs. Each graph contains 4 axis.

The first axis represents the change frequency, Tsm, the second axis represents the change

severity, Rg, and the third axis represents the number of nodes, NG. The last axis represents

the results of the Mann-Whitney U test one for each of the Tsm, Rg and NG combinations.

Each combination corresponds to a specific scenario. If the result of the Mann-Whitney U

test for each scenario has the value of zero then there is no significant difference between

the two algorithms to be compared. The symbol “≈“ is displayed next to the value of zero.

If the result of the Mann-Whitney U test has the value of one then the first algorithm is

significantly better than the second algorithm for the specific scenario. The symbol “>“ is

displayed next to the value of one.
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Figure H.1: Comparing the EEMACOMP against the EEMACOMH algorithm with
regard to the n̄alg metric using the Mann-Whitney U test
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Figure H.2: Comparing the EEMMASMP against the EEMMASMH algorithm with
regard to the n̄alg metric using the Mann-Whitney U test
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Figure H.3: Comparing the EEMACOMP against the EEMACOMC algorithm with
regard to the n̄alg metric using the Mann-Whitney U test
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Figure H.4: Comparing the EEMACOMC against the EEMACOMH algorithm with
regard to the n̄alg metric using the Mann-Whitney U test
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Figure H.5: Comparing the EEMACOMP against the NSGA-II-MPA algorithm with
regard to the n̄alg metric using the Mann-Whitney U test
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Figure H.6: Comparing the EEMACOMH against the NSGA-II-MPA algorithm with
regard to the n̄alg metric using the Mann-Whitney U test
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Figure H.7: Comparing the EEMMASMP against the NSGA-II-MPA algorithm with
regard to the n̄alg metric using the Mann-Whitney U test
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Figure H.8: Comparing the EEMMASMH against the NSGA-II-MPA algorithm with
regard to the n̄alg metric using the Mann-Whitney U test
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Figure H.9: Comparing the EEMACOMC against the NSGA-II-MPA algorithm with
regard to the n̄alg metric using the Mann-Whitney U test
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Figure H.10: Comparing the EEMACOMP against the EEMMASMP algorithm with
regard to the n̄alg metric using the Mann-Whitney U test
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Figure H.11: Comparing the EEMACOMP against the EEMMASMH algorithm with
regard to the n̄alg metric using the Mann-Whitney U test
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Figure H.12: Comparing the EEMMASMH against the EEMACOMH algorithm with
regard to the n̄alg metric using the Mann-Whitney U test
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Figure H.13: Comparing the EEMMASMP against the EEMACOMH algorithm with
regard to the n̄alg metric using the Mann-Whitney U test
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Figure H.14: Comparing the EEMACOMP against the EEMACOMH algorithm with
regard to the %̄ metric using the Mann-Whitney U test
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Figure H.15: Comparing the EEMMASMP against the EEMMASMH algorithm with
regard to the %̄ metric using the Mann-Whitney U test
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Figure H.16: Comparing the EEMACOMP against the EEMACOMC algorithm with
regard to the %̄ metric using the Mann-Whitney U test
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Figure H.17: Comparing the EEMACOMC against the EEMACOMH algorithm with
regard to the %̄ metric using the Mann-Whitney U test
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Figure H.18: Comparing the EEMACOMP against the NSGA-II-MPA algorithm with
regard to the %̄ metric using the Mann-Whitney U test
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Figure H.19: Comparing the EEMACOMH against the NSGA-II-MPA algorithm with
regard to the %̄ metric using the Mann-Whitney U test
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Figure H.20: Comparing the EEMMASMP against the NSGA-II-MPA algorithm with
regard to the %̄ metric using the Mann-Whitney U test
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Figure H.21: Comparing the EEMMASMH against the NSGA-II-MPA algorithm with
regard to the %̄ metric using the Mann-Whitney U test
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Figure H.22: Comparing the EEMACOMC against the NSGA-II-MPA algorithm with
regard to the %̄ metric using the Mann-Whitney U test
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Figure H.23: Comparing the EEMACOMP against the EEMMASMP algorithm with
regard to the %̄ metric using the Mann-Whitney U test
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Figure H.24: Comparing the EEMACOMP against the EEMMASMH algorithm with
regard to the %̄ metric using the Mann-Whitney U test
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Figure H.25: Comparing the EEMMASMP against the EEMACOMH algorithm with
regard to the %̄ metric using the Mann-Whitney U test
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Figure H.26: Comparing the EEMMASMH against the EEMACOMH algorithm with
regard to the %̄ metric using the Mann-Whitney U test
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Figure H.27: Comparing the EEMACOMP against the EEMACOMH algorithm with
regard to the ξ̄ metric using the Mann-Whitney U test
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Figure H.28: Comparing the EEMACOMC against the EEMACOMH algorithm with
regard to the ξ̄ metric using the Mann-Whitney U test
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Figure H.29: Comparing the EEMACOMP against the NSGA-II-MPA algorithm with
regard to the ξ̄ metric using the Mann-Whitney U test
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Figure H.30: Comparing the EEMACOMH against the NSGA-II-MPA algorithm with
regard to the ξ̄ metric using the Mann-Whitney U test

399

 
 
 



Tsm Rg NG

≈

>

Figure H.31: Comparing the EEMMASMP against the NSGA-II-MPA algorithm with
regard to the ξ̄ metric using the Mann-Whitney U test
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Figure H.32: Comparing the EEMMASMH against the NSGA-II-MPA algorithm with
regard to the ξ̄ metric using the Mann-Whitney U test
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Figure H.33: Comparing the EEMACOMC against the NSGA-II-MPA algorithm with
regard to the ξ̄ metric using the Mann-Whitney U test
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Figure H.34: Comparing the EEMMASMP against the EEMMASMH algorithm with
regard to the ξ̄ metric using the Mann-Whitney U test
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Figure H.35: Comparing the EEMACOMP against the EEMACOMC algorithm with
regard to the ξ̄ metric using the Mann-Whitney U test
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Figure H.36: Comparing the EEMACOMP against the EEMMASMP algorithm with
regard to the ξ̄ metric using the Mann-Whitney U test
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Figure H.37: Comparing the EEMACOMP against the EEMMASMH algorithm with
regard to the ξ̄ metric using the Mann-Whitney U test
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Figure H.38: Comparing the EEMMASMH against the EEMACOMH algorithm with
regard to the ξ̄ metric using the Mann-Whitney U test
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Figure H.39: Comparing the EEMMASMP against the EEMACOMH algorithm with
regard to the ξ̄ metric using the Mann-Whitney U test
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Appendix I

Optimisation Criteria Results

This appendix summarises the values of each objective function for each algorithm EEMA-

COMP, EEMACOMH, EEMMASMP, EEMMASMH, EEMACOMC, and NSGA-II-MPA and

for each scenario.

Table I.1: EP objective: NG = 30, Rg = 300
Tsm

PF 1 2 3 4 5 6
PEEMACOMP 2.99±0.19 3.04±0.19 3.05±0.16 3.06±0.16 3.10±0.15 3.07±0.14
PEEMACOMH 2.68±0.12 2.71±0.12 2.71±0.11 2.70±0.11 2.74±0.11 2.70±0.10
PEEMMASMP 2.76±0.13 2.79±0.13 2.79±0.11 2.80±0.12 2.82±0.11 2.80±0.10
PEEMMASMH 2.79±0.13 2.81±0.13 2.80±0.12 2.81±0.12 2.84±0.11 2.82±0.11
PEEMACOMC 4.16±0.27 4.01±0.23 3.95±0.17 3.94±0.13 3.94±0.15 3.90±0.12
PNSGA−II−MP A 1.84±0.12 1.78±0.09 1.73±0.07 1.72±0.07 1.72±0.06 1.71±0.06

Table I.2: EP objective: NG = 30, Rg = 500
Tsm

PF 1 2 3 4 5 6
PEEMACOMP 4.11±0.42 4.00±0.27 4.03±0.24 3.71±0.25 4.10±0.25 3.90±0.20
PEEMACOMH 3.71±0.34 3.58±0.22 3.58±0.21 3.24±0.17 3.60±0.21 3.46±0.15
PEEMMASMP 3.64±0.33 3.57±0.19 3.56±0.18 3.36±0.19 3.59±0.18 3.59±0.17
PEEMMASMH 3.66±0.33 3.59±0.22 3.58±0.19 3.39±0.19 3.60±0.18 3.63±0.19
PEEMACOMC 5.76±0.46 5.50±0.34 5.49±0.36 5.48±0.36 5.38±0.33 5.30±0.36
PNSGA−II−MP A 1.93±0.18 1.82±0.11 1.79±0.09 1.78±0.09 1.76±0.07 1.74±0.06

Table I.3: EP objective: NG = 30, Rg = 800
Tsm

PF 1 2 3 4 5 6
PEEMACOMP 5.79±0.66 6.01±0.45 6.34±0.37 6.05±0.35 6.21±0.43 6.42±0.37
PEEMACOMH 5.41±0.39 5.29±0.44 5.47±0.29 5.27±0.29 5.39±0.26 5.56±0.26
PEEMMASMP 5.64±0.41 5.56±0.31 5.78±0.30 5.55±0.26 5.60±0.29 5.79±0.28
PEEMMASMH 5.50±0.40 5.50±0.31 5.81±0.30 5.55±0.30 5.57±0.30 5.85±0.29
PEEMACOMC 8.63±0.77 8.60±0.75 8.67±0.66 8.62±0.66 8.67±0.65 8.57±0.59
PNSGA−II−MP A 2.95±0.32 2.91±0.24 2.82±0.18 2.80±0.14 2.79±0.13 2.79±0.13
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Table I.4: EP objective: NG = 100, Rg = 300
Tsm

PF 1 2 3 4 5 6
PEEMACOMP 4.57±0.33 4.55±0.24 4.47±0.21 4.52±0.18 4.50±0.17 4.50±0.14
PEEMACOMH 4.72±0.55 4.69±0.40 4.56±0.39 4.66±0.34 4.65±0.31 4.67±0.31
PEEMMASMP 4.37±0.32 4.44±0.23 4.41±0.19 4.47±0.16 4.47±0.16 4.47±0.15
PEEMMASMH 4.37±0.38 4.45±0.28 4.43±0.29 4.49±0.27 4.51±0.31 4.52±0.30
PEEMACOMC 4.25±0.42 4.31±0.24 4.32±0.20 4.38±0.17 4.40±0.18 4.39±0.15
PNSGA−II−MP A 2.15±0.20 2.13±0.16 2.11±0.16 2.11±0.15 2.11±0.17 2.14±0.15

Table I.5: EP objective: NG = 100, Rg = 500
Tsm

PF 1 2 3 4 5 6
PEEMACOMP 3.78±0.38 3.85±0.36 3.68±0.31 3.75±0.31 3.78±0.31 3.76±0.29
PEEMACOMH 3.35±0.63 3.09±0.40 3.31±0.51 3.13±0.37 3.09±0.31 3.07±0.37
PEEMMASMP 3.40±0.30 3.48±0.26 3.28±0.28 3.46±0.28 3.49±0.26 3.45±0.27
PEEMMASMH 3.43±0.34 3.55±0.32 3.36±0.37 3.54±0.37 3.54±0.37 3.62±0.36
PEEMACOMC 3.57±0.52 3.59±0.38 3.39±0.29 3.46±0.31 3.50±0.30 3.49±0.26
PNSGA−II−MP A 2.05±0.14 2.03±0.11 2.01±0.09 2.00±0.08 2.00±0.08 1.99±0.09

Table I.6: EP objective: NG = 100, Rg = 800
Tsm

PF 1 2 3 4 5 6
PEEMACOMP 3.45±0.34 3.64±0.33 3.65±0.29 3.71±0.30 3.99±0.29 4.04±0.27
PEEMACOMH 2.79±0.37 2.73±0.27 2.64±0.24 2.64±0.23 2.71±0.25 2.70±0.21
PEEMMASMP 3.16±0.29 3.21±0.29 3.21±0.27 3.27±0.29 3.43±0.25 3.43±0.27
PEEMMASMH 3.13±0.31 3.20±0.26 3.19±0.23 3.31±0.26 3.65±0.24 3.67±0.22
PEEMACOMC 5.12±0.53 5.48±0.52 5.53±0.46 5.59±0.53 5.89±0.51 6.00±0.46
PNSGA−II−MP A 2.53±0.19 2.47±0.13 2.38±0.08 2.38±0.09 2.39±0.09 2.36±0.08

Table I.7: EP objective: NG = 300, Rg = 300
Tsm

PF 1 2 3 4 5 6
PEEMACOMP 19.25±2.44 19.27±2.01 19.19±1.98 18.64±1.93 18.95±1.84 18.92±1.62
PEEMACOMH 20.08±4.16 21.68±3.89 21.80±3.76 21.64±3.63 22.47±3.71 22.14±3.25
PEEMMASMP 19.59±2.51 19.64±1.98 19.53±1.96 19.25±1.71 19.36±1.60 19.14±1.33
PEEMMASMH 19.67±2.71 19.53±2.26 19.40±2.53 19.16±2.59 19.29±2.43 19.24±2.80
PEEMACOMC 15.20±2.13 14.96±1.64 14.83±1.57 14.78±1.41 14.92±1.20 14.77±1.12
PNSGA−II−MP A 2.85±0.21 2.85±0.19 2.95±0.16 2.91±0.14 2.91±0.16 2.90±0.14

Table I.8: EP objective: NG = 300, Rg = 500
Tsm

PF 1 2 3 4 5 6
PEEMACOMP 14.58±2.69 15.59±2.54 15.08±2.24 14.91±2.28 14.93±2.33 14.50±1.98
PEEMACOMH 19.13±4.86 21.92±4.63 22.22±4.30 22.31±4.50 23.10±4.48 22.22±3.78
PEEMMASMP 15.90±2.92 17.53±2.81 17.32±2.30 16.96±2.16 17.34±2.33 16.38±1.85
PEEMMASMH 16.46±3.38 18.02±3.63 17.59±3.58 17.63±3.99 17.64±4.08 16.80±4.12
PEEMACOMC 13.25±2.56 14.44±2.52 14.16±2.17 13.78±2.07 13.97±2.21 13.12±1.99
PNSGA−II−MP A 2.71±0.22 2.81±0.16 2.83±0.12 2.80±0.12 2.81±0.12 2.85±0.12

Table I.9: EP objective: NG = 300, Rg = 800
Tsm

PF 1 2 3 4 5 6
PEEMACOMP 18.86±3.83 18.96±3.61 17.75±2.87 17.49±2.98 17.26±2.84 15.45±2.22
PEEMACOMH 27.20±6.73 28.53±6.95 27.18±6.14 27.27±5.87 27.84±5.98 25.43±4.89
PEEMMASMP 21.33±4.43 21.43±4.20 19.87±3.71 20.24±3.73 19.95±3.47 17.63±2.56
PEEMMASMH 22.84±5.04 22.97±5.36 21.54±5.23 21.57±5.63 21.15±6.62 18.59±6.99
PEEMACOMC 18.56±4.37 19.23±4.10 17.55±3.28 17.40±3.65 17.40±2.98 15.51±2.55
PNSGA−II−MP A 4.16±0.28 4.19±0.24 4.12±0.26 4.13±0.20 4.17±0.23 4.18±0.21
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Table I.10: TNP objective: NG = 30, Rg = 300
Tsm

PF 1 2 3 4 5 6
PEEMACOMP 0.0018±0.0002 0.0016±0.0001 0.0016±0.0001 0.0016±0.0001 0.0016±0.0001 0.0016±0.0000
PEEMACOMH 0.0018±0.0002 0.0016±0.0001 0.0016±0.0001 0.0016±0.0001 0.0016±0.0001 0.0016±0.0001
PEEMMASMP 0.0017±0.0002 0.0016±0.0001 0.0016±0.0001 0.0016±0.0001 0.0016±0.0001 0.0015±0.0001
PEEMMASMH 0.0017±0.0002 0.0016±0.0001 0.0016±0.0001 0.0016±0.0001 0.0015±0.0001 0.0015±0.0001
PEEMACOMC 0.0017±0.0001 0.0017±0.0001 0.0016±0.0001 0.0016±0.0000 0.0016±0.0000 0.0016±0.0000
PNSGA−II−MP A 0.0015±0.0002 0.0014±0.0001 0.0014±0.0001 0.0013±0.0001 0.0013±0.0001 0.0013±0.0000

Table I.11: TNP objective: NG = 30, Rg = 500
Tsm

PF 1 2 3 4 5 6
PEEMACOMP 0.0028±0.0005 0.0025±0.0002 0.0024±0.0002 0.0024±0.0002 0.0023±0.0001 0.0024±0.0001
PEEMACOMH 0.0029±0.0004 0.0026±0.0002 0.0026±0.0001 0.0025±0.0001 0.0025±0.0001 0.0024±0.0001
PEEMMASMP 0.0028±0.0004 0.0026±0.0002 0.0025±0.0001 0.0025±0.0001 0.0025±0.0001 0.0025±0.0001
PEEMMASMH 0.0028±0.0004 0.0026±0.0002 0.0025±0.0001 0.0025±0.0001 0.0025±0.0001 0.0025±0.0001
PEEMACOMC 0.0027±0.0002 0.0025±0.0001 0.0025±0.0001 0.0025±0.0001 0.0024±0.0001 0.0024±0.0001
PNSGA−II−MP A 0.0020±0.0005 0.0017±0.0002 0.0017±0.0002 0.0017±0.0001 0.0017±0.0001 0.0016±0.0001

Table I.12: TNP objective: NG = 30, Rg = 800
Tsm

PF 1 2 3 4 5 6
PEEMACOMP 0.0064±0.0016 0.0057±0.0009 0.0053±0.0006 0.0051±0.0006 0.0047±0.0005 0.0049±0.0006
PEEMACOMH 0.0067±0.0018 0.0060±0.0009 0.0054±0.0005 0.0053±0.0005 0.0049±0.0003 0.0050±0.0003
PEEMMASMP 0.0064±0.0017 0.0056±0.0009 0.0051±0.0006 0.0050±0.0005 0.0046±0.0004 0.0047±0.0004
PEEMMASMH 0.0063±0.0016 0.0055±0.0008 0.0051±0.0006 0.0050±0.0005 0.0046±0.0004 0.0047±0.0004
PEEMACOMC 0.0045±0.0005 0.0043±0.0003 0.0043±0.0003 0.0042±0.0003 0.0039±0.0002 0.0042±0.0003
PNSGA−II−MP A 0.0860±0.0840 0.0051±0.0017 0.0042±0.0008 0.0041±0.0006 0.0039±0.0005 0.0038±0.0004

Table I.13: TNP objective: NG = 100, Rg = 300
Tsm

PF 1 2 3 4 5 6
PEEMACOMP 0.0014±0.0001 0.0013±0.0001 0.0013±0.0000 0.0013±0.0000 0.0013±0.0000 0.0013±0.0000
PEEMACOMH 0.0016±0.0002 0.0014±0.0001 0.0014±0.0001 0.0014±0.0001 0.0013±0.0000 0.0013±0.0000
PEEMMASMP 0.0014±0.0001 0.0013±0.0001 0.0013±0.0000 0.0013±0.0000 0.0013±0.0000 0.0013±0.0000
PEEMMASMH 0.0014±0.0001 0.0013±0.0001 0.0013±0.0001 0.0013±0.0001 0.0013±0.0001 0.0013±0.0001
PEEMACOMC 0.0015±0.0002 0.0014±0.0001 0.0014±0.0001 0.0014±0.0001 0.0013±0.0000 0.0013±0.0000
PNSGA−II−MP A 0.0119±0.4545 0.0022±0.0008 0.0017±0.0003 0.0018±0.0004 0.0018±0.0004 0.0017±0.0003

Table I.14: TNP objective: NG = 100, Rg = 500
Tsm

PF 1 2 3 4 5 6
PEEMACOMP 0.0016±0.0002 0.0016±0.0002 0.0015±0.0001 0.0015±0.0001 0.0015±0.0001 0.0015±0.0001
PEEMACOMH 0.0018±0.0002 0.0016±0.0002 0.0016±0.0001 0.0016±0.0001 0.0015±0.0001 0.0015±0.0001
PEEMMASMP 0.0016±0.0002 0.0015±0.0001 0.0015±0.0001 0.0015±0.0001 0.0015±0.0001 0.0015±0.0001
PEEMMASMH 0.0016±0.0002 0.0015±0.0001 0.0015±0.0001 0.0015±0.0001 0.0015±0.0001 0.0015±0.0001
PEEMACOMC 0.0018±0.0002 0.0017±0.0002 0.0016±0.0001 0.0016±0.0001 0.0016±0.0001 0.0016±0.0001
PNSGA−II−MP A 0.0022±0.0077 0.0016±0.0003 0.0015±0.0002 0.0015±0.0001 0.0015±0.0001 0.0015±0.0001

Table I.15: TNP objective: NG = 100, Rg = 800
Tsm

PF 1 2 3 4 5 6
PEEMACOMP 0.0031±0.0004 0.0029±0.0003 0.0028±0.0002 0.0027±0.0002 0.0028±0.0002 0.0027±0.0002
PEEMACOMH 0.0033±0.0004 0.0030±0.0003 0.0028±0.0002 0.0028±0.0002 0.0027±0.0002 0.0027±0.0001
PEEMMASMP 0.0031±0.0003 0.0029±0.0002 0.0027±0.0002 0.0027±0.0001 0.0027±0.0001 0.0027±0.0001
PEEMMASMH 0.0031±0.0004 0.0029±0.0002 0.0027±0.0002 0.0027±0.0002 0.0027±0.0002 0.0027±0.0001
PEEMACOMC 0.0038±0.0003 0.0037±0.0002 0.0035±0.0001 0.0035±0.0001 0.0035±0.0002 0.0035±0.0001
PNSGA−II−MP A 0.0028±0.0004 0.0026±0.0002 0.0025±0.0001 0.0025±0.0001 0.0025±0.0001 0.0024±0.0001

407

 
 
 



Table I.16: TNP objective: NG = 300, Rg = 300
Tsm

PF 1 2 3 4 5 6
PEEMACOMP 0.0012±0.0001 0.0012±0.0000 0.0011±0.0000 0.0011±0.0000 0.0011±0.0000 0.0011±0.0000
PEEMACOMH 0.0013±0.0001 0.0013±0.0001 0.0012±0.0000 0.0012±0.0000 0.0012±0.0000 0.0012±0.0000
PEEMMASMP 0.0012±0.0000 0.0012±0.0000 0.0011±0.0000 0.0011±0.0000 0.0011±0.0000 0.0011±0.0000
PEEMMASMH 0.0012±0.0001 0.0012±0.0000 0.0012±0.0000 0.0011±0.0001 0.0011±0.0001 0.0011±0.0001
PEEMACOMC 0.0013±0.0001 0.0012±0.0000 0.0012±0.0000 0.0012±0.0000 0.0012±0.0000 0.0012±0.0000
PNSGA−II−MP A 0.0018±0.0005 0.0016±0.0002 0.0015±0.0002 0.0014±0.0001 0.0014±0.0001 0.0014±0.0001

Table I.17: TNP objective: NG = 300, Rg = 500
Tsm

PF 1 2 3 4 5 6
PEEMACOMP 0.0014±0.0001 0.0014±0.0001 0.0013±0.0001 0.0013±0.0001 0.0013±0.0001 0.0013±0.0000
PEEMACOMH 0.0016±0.0002 0.0016±0.0002 0.0016±0.0002 0.0015±0.0001 0.0016±0.0002 0.0015±0.0002
PEEMMASMP 0.0014±0.0001 0.0014±0.0001 0.0013±0.0000 0.0013±0.0000 0.0013±0.0000 0.0013±0.0000
PEEMMASMH 0.0014±0.0001 0.0014±0.0001 0.0014±0.0001 0.0014±0.0001 0.0014±0.0001 0.0013±0.0001
PEEMACOMC 0.0015±0.0001 0.0015±0.0001 0.0015±0.0001 0.0015±0.0001 0.0015±0.0001 0.0014±0.0001
PNSGA−II−MP A 0.0042±0.0027 0.0027±0.0008 0.0024±0.0004 0.0023±0.0003 0.0023±0.0003 0.0022±0.0003

Table I.18: TNP objective: NG = 300, Rg = 800
Tsm

PF 1 2 3 4 5 6
PEEMACOMP 0.0020±0.0002 0.0019±0.0002 0.0018±0.0001 0.0018±0.0001 0.0018±0.0001 0.0017±0.0001
PEEMACOMH 0.0025±0.0003 0.0024±0.0003 0.0023±0.0003 0.0023±0.0002 0.0022±0.0002 0.0022±0.0002
PEEMMASMP 0.0020±0.0002 0.0020±0.0001 0.0019±0.0001 0.0019±0.0001 0.0018±0.0001 0.0018±0.0001
PEEMMASMH 0.0021±0.0002 0.0020±0.0002 0.0019±0.0001 0.0019±0.0002 0.0019±0.0002 0.0018±0.0002
PEEMACOMC 0.0024±0.0002 0.0023±0.0002 0.0022±0.0002 0.0021±0.0002 0.0021±0.0002 0.0020±0.0001
PNSGA−II−MP A 0.0049±0.0010 0.0044±0.0006 0.0043±0.0006 0.0042±0.0005 0.0043±0.0006 0.0042±0.0006

Table I.19: VNP objective: NG = 30, Rg = 300
Tsm

PF 1 2 3 4 5 6
PEEMACOMP 108.10±6.46 110.91±5.39 112.53±4.46 112.24±3.57 112.09±3.88 113.13±2.93
PEEMACOMH 113.66±6.21 117.24±4.80 118.96±3.93 118.89±2.83 118.71±3.08 119.69±2.35
PEEMMASMP 112.59±6.16 115.70±4.89 117.40±4.11 117.09±3.18 117.02±3.40 117.87±2.53
PEEMMASMH 112.31±6.37 115.43±4.94 117.21±4.22 116.94±3.16 116.78±3.38 117.58±2.51
PEEMACOMC 90.67±6.65 95.73±5.54 98.05±4.36 98.36±3.21 98.94±3.33 99.75±2.68
PNSGA−II−MP A 134.02±10.59 141.11±6.91 145.06±5.40 145.95±4.32 146.53±4.33 147.30±3.75

Table I.20: VNP objective: NG = 30, Rg = 500
Tsm

PF 1 2 3 4 5 6
PEEMACOMP 83.60±8.03 88.39±4.44 89.48±3.72 91.67±4.82 89.75±3.37 90.85±3.48
PEEMACOMH 83.81±8.65 90.16±4.77 91.87±3.82 94.43±4.67 92.75±3.52 94.07±3.23
PEEMMASMP 87.70±7.77 91.77±4.28 92.93±3.58 94.85±4.45 93.33±3.29 93.05±3.01
PEEMMASMH 87.33±8.05 91.82±4.24 93.06±3.47 94.69±4.34 93.28±3.13 92.69±3.36
PEEMACOMC 67.67±6.13 73.01±4.35 74.57±4.81 73.03±4.44 76.97±3.75 77.42±3.76
PNSGA−II−MP A 126.29±11.08 134.26±6.34 137.05±5.46 138.41±4.46 138.94±3.58 139.91±3.46

Table I.21: VNP objective: NG = 30, Rg = 800
Tsm

PF 1 2 3 4 5 6
PEEMACOMP 79.72±15.02 74.19±13.71 74.02±12.39 72.01±12.55 72.55±12.62 69.33±11.01
PEEMACOMH 78.85±12.66 78.44±12.07 67.41±7.60 72.48±9.20 66.56±8.56 63.58±7.14
PEEMMASMP 79.17±13.93 73.49±13.24 73.30±10.97 71.07±11.67 70.74±11.58 69.49±10.33
PEEMMASMH 76.36±13.58 70.87±11.50 71.60±10.65 70.62±12.93 73.37±11.79 68.00±9.89
PEEMACOMC 54.91±9.10 53.07±6.33 57.80±7.85 55.47±6.77 56.42±7.35 58.03±7.69
PNSGA−II−MP A 113.15±22.97 106.48±14.44 105.87±9.37 109.76±11.97 105.53±7.64 107.30±8.22

408

 
 
 



Table I.22: VNP objective: NG = 100, Rg = 300
Tsm

PF 1 2 3 4 5 6
PEEMACOMP 85.02±6.10 83.95±4.37 84.97±3.83 83.76±3.12 84.08±3.00 83.73±2.66
PEEMACOMH 91.30±7.59 87.06±5.61 85.78±5.45 84.39±4.99 83.74±4.58 82.78±4.65
PEEMMASMP 87.58±6.10 85.17±4.09 85.84±3.65 84.52±2.88 84.66±2.89 84.39±2.63
PEEMMASMH 88.09±5.78 85.54±4.09 85.96±3.68 84.76±3.12 84.78±3.23 84.47±2.87
PEEMACOMC 92.17±6.11 88.69±4.85 87.87±3.82 86.63±2.73 86.34±2.95 86.07±2.47
PNSGA−II−MP A 118.54±13.32 124.89±8.47 129.26±5.64 129.68±5.78 130.83±5.63 130.96±5.24

Table I.23: VNP objective: NG = 100, Rg = 500
Tsm

PF 1 2 3 4 5 6
PEEMACOMP 103.59±5.40 104.14±3.86 104.73±4.08 103.72±3.87 103.49±3.27 103.37±3.07
PEEMACOMH 118.22±5.91 119.04±4.14 119.38±4.90 119.73±4.34 120.16±3.02 119.47±3.43
PEEMMASMP 107.90±4.61 108.33±3.36 110.67±3.48 108.72±3.47 108.56±2.91 108.36±2.77
PEEMMASMH 108.11±4.49 108.03±3.35 110.22±3.49 108.19±3.61 108.28±3.19 107.81±3.08
PEEMACOMC 105.14±5.41 104.41±3.79 106.48±3.32 105.93±4.00 105.58±3.15 105.47±3.04
PNSGA−II−MP A 120.06±11.35 127.65±7.50 130.26±5.68 131.94±4.03 132.33±3.97 133.21±4.40

Table I.24: VNP objective: NG = 100, Rg = 800
Tsm

PF 1 2 3 4 5 6
PEEMACOMP 83.78±8.00 83.86±7.42 86.17±5.70 85.33±5.82 83.34±4.35 83.88±4.08
PEEMACOMH 99.07±12.52 102.94±11.51 107.01±9.25 107.31±9.25 104.19±8.06 104.64±7.24
PEEMMASMP 87.75±8.80 91.04±7.60 93.86±6.11 93.71±5.98 89.65±4.64 89.86±4.44
PEEMMASMH 89.66±8.79 91.59±9.01 93.88±7.35 92.89±8.12 87.98±8.40 88.18±8.58
PEEMACOMC 63.80±8.35 66.19±7.91 69.01±7.77 69.80±6.69 67.61±6.96 66.78±5.36
PNSGA−II−MP A 97.34±7.90 100.57±5.66 105.18±4.03 104.85±4.48 104.84±3.89 106.40±3.81

Table I.25: VNP objective: NG = 300, Rg = 300
Tsm

PF 1 2 3 4 5 6
PEEMACOMP 36.37±5.36 34.53±4.65 33.36±3.95 34.48±4.50 33.47±4.32 33.42±4.26
PEEMACOMH 42.67±6.45 38.45±5.65 36.07±4.72 35.33±4.88 33.85±4.49 33.42±4.56
PEEMMASMP 35.75±4.97 33.03±3.50 31.99±3.01 32.29±2.99 31.74±2.82 31.75±2.48
PEEMMASMH 36.34±4.67 33.85±3.39 32.89±3.16 33.20±2.92 32.70±2.74 32.50±2.50
PEEMACOMC 45.39±5.07 42.62±3.95 41.48±3.46 41.27±3.48 40.16±2.99 40.12±3.09
PNSGA−II−MP A 119.89±16.36 116.80±9.58 114.37±8.87 113.77±6.63 113.71±6.16 113.65±5.58

Table I.26: VNP objective: NG = 300, Rg = 500
Tsm

PF 1 2 3 4 5 6
PEEMACOMP 58.39±7.40 55.22±6.48 53.78±5.40 52.15±5.83 51.69±5.52 50.86±5.05
PEEMACOMH 69.95±9.15 64.73±8.64 61.26±7.30 58.97±7.01 57.71±7.11 55.71±6.25
PEEMMASMP 56.12±6.32 53.21±5.01 51.98±4.39 51.02±3.66 50.51±3.89 50.27±3.67
PEEMMASMH 57.07±6.12 55.20±5.71 53.43±4.23 52.36±4.16 52.31±4.59 52.09±3.73
PEEMACOMC 67.50±6.72 64.57±5.20 62.93±5.05 62.78±4.48 62.85±4.48 61.63±4.33
PNSGA−II−MP A 106.86±12.57 102.19±7.11 103.40±5.26 105.41±5.21 105.22±4.09 104.76±3.22

Table I.27: VNP objective: NG = 300, Rg = 800
Tsm

PF 1 2 3 4 5 6
PEEMACOMP 95.20±7.57 90.53±8.03 85.94±6.58 85.22±7.00 83.13±6.38 80.44±6.45
PEEMACOMH 112.43±9.39 108.35±9.40 104.05±8.82 101.90±8.34 99.25±8.61 96.59±7.85
PEEMMASMP 92.01±6.48 90.39±6.14 86.76±5.59 86.35±5.52 84.35±5.21 82.33±4.60
PEEMMASMH 94.65±6.84 91.93±6.76 89.43±5.92 89.22±6.54 88.11±6.24 85.95±6.64
PEEMACOMC 99.21±6.94 97.30±6.57 94.25±6.92 93.16±5.77 93.49±6.15 89.33±5.10
PNSGA−II−MP A 95.84±12.89 102.66±12.83 104.40±12.81 109.51±12.47 107.60±12.36 111.38±12.81
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Table I.28: CP objective: NG = 30, Rg = 300
Tsm

PF 1 2 3 4 5 6
PEEMACOMP 0.013±0.001 0.013±0.001 0.014±0.001 0.014±0.001 0.014±0.001 0.014±0.001
PEEMACOMH 0.012±0.001 0.012±0.001 0.012±0.001 0.012±0.001 0.013±0.000 0.012±0.001
PEEMMASMP 0.012±0.001 0.013±0.001 0.013±0.001 0.013±0.001 0.013±0.001 0.013±0.000
PEEMMASMH 0.012±0.001 0.013±0.001 0.013±0.001 0.013±0.001 0.013±0.001 0.013±0.001
PEEMACOMC 0.017±0.001 0.017±0.001 0.017±0.000 0.017±0.001 0.017±0.001 0.017±0.000
PNSGA−II−MP A 0.009±0.001 0.009±0.000 0.009±0.000 0.009±0.000 0.009±0.000 0.009±0.000

Table I.29: CP objective: NG = 30, Rg = 500
Tsm

PF 1 2 3 4 5 6
PEEMACOMP 0.012±0.001 0.012±0.001 0.012±0.001 0.011±0.001 0.012±0.001 0.012±0.001
PEEMACOMH 0.011±0.000 0.010±0.000 0.010±0.000 0.010±0.000 0.011±0.000 0.010±0.000
PEEMMASMP 0.011±0.000 0.010±0.000 0.010±0.000 0.010±0.000 0.011±0.000 0.011±0.000
PEEMMASMH 0.011±0.000 0.011±0.000 0.011±0.000 0.010±0.000 0.011±0.000 0.011±0.000
PEEMACOMC 0.017±0.001 0.016±0.001 0.016±0.001 0.016±0.001 0.016±0.001 0.015±0.001
PNSGA−II−MP A 0.009±0.001 0.008±0.001 0.008±0.001 0.008±0.001 0.008±0.001 0.008±0.001

Table I.30: CP objective: NG = 30, Rg = 800
Tsm

PF 1 2 3 4 5 6
PEEMACOMP 0.011±0.001 0.010±0.000 0.011±0.001 0.011±0.000 0.011±0.001 0.011±0.001
PEEMACOMH 0.010±0.001 0.009±0.001 0.009±0.000 0.009±0.000 0.010±0.000 0.009±0.000
PEEMMASMP 0.011±0.001 0.010±0.000 0.010±0.000 0.010±0.000 0.010±0.000 0.010±0.000
PEEMMASMH 0.010±0.001 0.010±0.000 0.010±0.000 0.010±0.000 0.010±0.000 0.010±0.000
PEEMACOMC 0.019±0.002 0.018±0.001 0.017±0.001 0.017±0.001 0.018±0.001 0.017±0.001
PNSGA−II−MP A 0.066±3.068 0.008±0.001 0.008±0.001 0.008±0.000 0.008±0.000 0.008±0.000

Table I.31: CP objective: NG = 100, Rg = 300
Tsm

PF 1 2 3 4 5 6
PEEMACOMP 0.025±0.002 0.025±0.001 0.025±0.001 0.025±0.001 0.025±0.001 0.025±0.001
PEEMACOMH 0.025±0.003 0.026±0.002 0.025±0.002 0.026±0.002 0.026±0.002 0.026±0.002
PEEMMASMP 0.024±0.002 0.025±0.001 0.025±0.001 0.025±0.001 0.025±0.001 0.025±0.001
PEEMMASMH 0.024±0.002 0.025±0.002 0.025±0.001 0.025±0.001 0.025±0.001 0.025±0.001
PEEMACOMC 0.022±0.002 0.023±0.002 0.023±0.001 0.023±0.001 0.024±0.001 0.024±0.001
PNSGA−II−MP A 0.016±0.341 0.010±0.002 0.011±0.002 0.010±0.002 0.010±0.002 0.011±0.002

Table I.32: CP objective: NG = 100, Rg = 500
Tsm

PF 1 2 3 4 5 6
PEEMACOMP 0.019±0.002 0.019±0.002 0.019±0.002 0.019±0.002 0.019±0.001 0.019±0.001
PEEMACOMH 0.016±0.003 0.015±0.002 0.016±0.003 0.016±0.002 0.016±0.002 0.015±0.002
PEEMMASMP 0.017±0.002 0.017±0.001 0.017±0.001 0.018±0.001 0.018±0.001 0.018±0.001
PEEMMASMH 0.017±0.002 0.018±0.002 0.017±0.002 0.018±0.002 0.018±0.002 0.019±0.002
PEEMACOMC 0.016±0.002 0.017±0.002 0.016±0.001 0.016±0.001 0.017±0.001 0.016±0.001
PNSGA−II−MP A 0.010±0.006 0.010±0.001 0.010±0.001 0.010±0.001 0.010±0.001 0.010±0.001

Table I.33: CP objective: NG = 100, Rg = 800
Tsm

PF 1 2 3 4 5 6
PEEMACOMP 0.010±0.001 0.010±0.001 0.010±0.000 0.010±0.000 0.011±0.001 0.011±0.000
PEEMACOMH 0.008±0.001 0.008±0.001 0.008±0.001 0.008±0.000 0.008±0.001 0.008±0.000
PEEMMASMP 0.009±0.001 0.009±0.001 0.009±0.001 0.010±0.001 0.010±0.001 0.010±0.001
PEEMMASMH 0.009±0.001 0.009±0.001 0.009±0.001 0.010±0.001 0.010±0.001 0.011±0.001
PEEMACOMC 0.012±0.002 0.013±0.002 0.013±0.002 0.013±0.002 0.014±0.002 0.014±0.002
PNSGA−II−MP A 0.008±0.000 0.008±0.000 0.008±0.000 0.008±0.000 0.008±0.000 0.008±0.000
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Table I.34: CP objective: NG = 300, Rg = 300
Tsm

PF 1 2 3 4 5 6
PEEMACOMP 0.117±0.015 0.117±0.012 0.117±0.012 0.113±0.012 0.115±0.011 0.115±0.010
PEEMACOMH 0.121±0.025 0.131±0.024 0.132±0.023 0.131±0.022 0.136±0.023 0.134±0.020
PEEMMASMP 0.120±0.015 0.120±0.012 0.119±0.012 0.117±0.010 0.118±0.010 0.117±0.008
PEEMMASMH 0.120±0.017 0.119±0.014 0.118±0.015 0.117±0.016 0.118±0.015 0.117±0.017
PEEMACOMC 0.091±0.013 0.090±0.010 0.089±0.010 0.089±0.009 0.090±0.007 0.089±0.007
PNSGA−II−MP A 0.014±0.002 0.015±0.002 0.016±0.001 0.016±0.001 0.016±0.001 0.016±0.001

Table I.35: CP objective: NG = 300, Rg = 500
Tsm

PF 1 2 3 4 5 6
PEEMACOMP 0.085±0.016 0.091±0.015 0.088±0.013 0.087±0.014 0.087±0.014 0.085±0.012
PEEMACOMH 0.108±0.029 0.125±0.028 0.128±0.026 0.129±0.027 0.133±0.027 0.129±0.023
PEEMMASMP 0.093±0.017 0.103±0.017 0.101±0.014 0.099±0.013 0.102±0.014 0.096±0.011
PEEMMASMH 0.096±0.020 0.105±0.021 0.103±0.021 0.103±0.024 0.103±0.024 0.098±0.024
PEEMACOMC 0.074±0.015 0.081±0.015 0.080±0.013 0.077±0.012 0.079±0.013 0.074±0.012
PNSGA−II−MP A 0.012±0.002 0.012±0.001 0.012±0.001 0.012±0.001 0.012±0.001 0.013±0.001

Table I.36: CP objective: NG = 300, Rg = 800
Tsm

PF 1 2 3 4 5 6
PEEMACOMP 0.098±0.021 0.099±0.020 0.094±0.016 0.093±0.017 0.092±0.016 0.083±0.013
PEEMACOMH 0.137±0.036 0.145±0.038 0.140±0.034 0.142±0.033 0.146±0.034 0.134±0.028
PEEMMASMP 0.111±0.024 0.112±0.023 0.104±0.021 0.106±0.021 0.105±0.019 0.093±0.014
PEEMMASMH 0.119±0.027 0.120±0.029 0.113±0.028 0.113±0.031 0.111±0.036 0.098±0.037
PEEMACOMC 0.088±0.022 0.092±0.021 0.084±0.017 0.083±0.019 0.083±0.016 0.075±0.014
PNSGA−II−MP A 0.011±0.001 0.011±0.001 0.011±0.001 0.011±0.001 0.011±0.001 0.011±0.001

Table I.37: MNC objective: NG = 30, Rg = 300
Tsm

PF 1 2 3 4 5 6
PEEMACOMP 2.604±0.889 1.835±0.460 1.600±0.335 1.467±0.263 1.395±0.223 1.323±0.179
PEEMACOMH 2.494±0.814 1.747±0.419 1.587±0.319 1.421±0.244 1.368±0.211 1.292±0.164
PEEMMASMP 2.701±0.947 1.919±0.493 1.616±0.329 1.531±0.294 1.453±0.257 1.353±0.208
PEEMMASMH 2.701±0.937 1.921±0.495 1.605±0.349 1.499±0.286 1.410±0.228 1.358±0.205
PEEMACOMC 3.633±1.558 2.466±0.802 1.964±0.557 1.675±0.365 1.460±0.280 1.497±0.277
PNSGA−II−MP A 1.076±0.022 1.084±0.021 1.088±0.018 1.078±0.025 1.084±0.022 1.084±0.022

Table I.38: MNC objective: NG = 30, Rg = 500
Tsm

PF 1 2 3 4 5 6
PEEMACOMP 3.141±1.179 2.089±0.584 1.759±0.407 1.553±0.306 1.547±0.295 1.417±0.222
PEEMACOMH 2.913±1.063 1.920±0.505 1.711±0.395 1.489±0.277 1.415±0.233 1.365±0.202
PEEMMASMP 2.975±1.119 2.058±0.562 1.752±0.406 1.570±0.312 1.500±0.268 1.410±0.234
PEEMMASMH 2.957±1.091 2.046±0.550 1.689±0.385 1.555±0.311 1.497±0.265 1.445±0.248
PEEMACOMC 4.914±2.267 3.122±1.154 2.389±0.813 1.862±0.457 1.660±0.392 1.674±0.362
PNSGA−II−MP A 1.115±0.030 1.111±0.021 1.112±0.022 1.090±0.021 1.105±0.030 1.103±0.030

Table I.39: MNC objective: NG = 30, Rg = 800
Tsm

PF 1 2 3 4 5 6
PEEMACOMP 3.988±1.619 2.613±0.812 2.118±0.571 1.877±0.445 1.706±0.330 1.663±0.341
PEEMACOMH 3.919±1.473 2.492±0.787 2.346±0.698 1.983±0.516 1.792±0.422 1.829±0.435
PEEMMASMP 4.168±1.687 2.813±0.887 2.301±0.662 2.075±0.531 1.855±0.429 1.791±0.431
PEEMMASMH 4.217±1.740 2.858±0.925 2.207±0.667 2.023±0.508 1.816±0.389 1.824±0.425
PEEMACOMC 7.024±3.452 4.441±1.855 3.201±1.244 2.596±0.816 2.137±0.631 2.059±0.562
PNSGA−II−MP A 1.303±0.231 1.236±0.058 1.237±0.049 1.234±0.057 1.246±0.065 1.231±0.054
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Table I.40: MNC objective: NG = 100, Rg = 300
Tsm

PF 1 2 3 4 5 6
PEEMACOMP 1.953±0.497 1.528±0.255 1.378±0.183 1.309±0.145 1.257±0.120 1.229±0.108
PEEMACOMH 2.070±0.528 1.614±0.275 1.457±0.197 1.388±0.165 1.329±0.143 1.284±0.119
PEEMMASMP 2.229±0.605 1.731±0.356 1.530±0.261 1.451±0.215 1.371±0.182 1.310±0.147
PEEMMASMH 2.211±0.589 1.737±0.369 1.528±0.260 1.431±0.203 1.367±0.176 1.341±0.151
PEEMACOMC 2.139±0.569 1.714±0.349 1.517±0.254 1.391±0.188 1.356±0.174 1.287±0.138
PNSGA−II−MP A 1.179±0.070 1.153±0.056 1.140±0.029 1.143±0.037 1.146±0.044 1.138±0.038

Table I.41: MNC objective: NG = 100, Rg = 500
Tsm

PF 1 2 3 4 5 6
PEEMACOMP 2.409±0.773 1.841±0.443 1.591±0.300 1.479±0.245 1.417±0.218 1.363±0.184
PEEMACOMH 2.319±0.670 1.829±0.414 1.632±0.320 1.477±0.231 1.430±0.218 1.350±0.176
PEEMMASMP 2.720±0.904 2.037±0.560 1.703±0.373 1.580±0.320 1.524±0.298 1.424±0.236
PEEMMASMH 2.682±0.866 2.042±0.564 1.724±0.381 1.584±0.306 1.510±0.282 1.452±0.231
PEEMACOMC 2.488±0.799 1.924±0.529 1.631±0.314 1.485±0.243 1.435±0.234 1.372±0.188
PNSGA−II−MP A 1.129±0.034 1.129±0.019 1.123±0.023 1.121±0.021 1.114±0.025 1.111±0.024

Table I.42: MNC objective: NG = 100, Rg = 800
Tsm

PF 1 2 3 4 5 6
PEEMACOMP 3.645±1.382 2.520±0.784 2.095±0.571 1.849±0.419 1.701±0.369 1.618±0.337
PEEMACOMH 3.031±1.100 2.056±0.568 1.826±0.414 1.626±0.328 1.536±0.290 1.497±0.270
PEEMMASMP 3.612±1.457 2.508±0.836 1.984±0.521 1.804±0.425 1.739±0.401 1.595±0.340
PEEMMASMH 3.359±1.292 2.406±0.762 1.980±0.570 1.758±0.420 1.746±0.393 1.749±0.394
PEEMACOMC 5.147±2.514 3.393±1.388 2.608±0.951 2.026±0.606 2.013±0.576 1.914±0.509
PNSGA−II−MP A 1.099±0.019 1.140±0.024 1.129±0.024 1.126±0.034 1.128±0.028 1.132±0.034

Table I.43: MNC objective: NG = 300, Rg = 300
Tsm

PF 1 2 3 4 5 6
PEEMACOMP 2.514±0.739 1.824±0.382 1.613±0.274 1.466±0.212 1.393±0.180 1.334±0.156
PEEMACOMH 2.669±0.771 1.948±0.409 1.727±0.301 1.607±0.256 1.525±0.224 1.469±0.214
PEEMMASMP 3.026±1.006 2.215±0.601 1.794±0.378 1.656±0.309 1.557±0.266 1.459±0.224
PEEMMASMH 2.992±0.971 2.185±0.606 1.821±0.409 1.622±0.286 1.566±0.268 1.490±0.223
PEEMACOMC 2.580±0.823 1.899±0.429 1.638±0.318 1.466±0.208 1.390±0.179 1.372±0.175
PNSGA−II−MP A 2.083±0.595 1.574±0.287 1.417±0.192 1.329±0.144 1.277±0.116 1.248±0.101

Table I.44: MNC objective: NG = 300, Rg = 500
Tsm

PF 1 2 3 4 5 6
PEEMACOMP 2.318±0.604 1.791±0.343 1.576±0.250 1.473±0.203 1.396±0.168 1.327±0.137
PEEMACOMH 2.504±0.667 1.959±0.400 1.728±0.294 1.618±0.242 1.554±0.223 1.463±0.187
PEEMMASMP 2.860±0.878 2.184±0.574 1.773±0.363 1.616±0.280 1.546±0.261 1.430±0.196
PEEMMASMH 2.859±0.861 2.171±0.580 1.810±0.390 1.629±0.285 1.562±0.257 1.439±0.191
PEEMACOMC 2.482±0.731 1.890±0.427 1.646±0.308 1.484±0.210 1.389±0.170 1.352±0.160
PNSGA−II−MP A 1.284±0.258 1.199±0.065 1.190±0.030 1.177±0.030 1.181±0.039 1.174±0.034

Table I.45: MNC objective: NG = 300, Rg = 800
Tsm

PF 1 2 3 4 5 6
PEEMACOMP 2.894±0.824 2.163±0.492 1.814±0.330 1.645±0.254 1.554±0.211 1.416±0.167
PEEMACOMH 3.225±1.001 2.425±0.599 1.992±0.419 1.810±0.312 1.716±0.282 1.558±0.217
PEEMMASMP 3.526±1.134 2.510±0.669 2.014±0.444 1.819±0.339 1.680±0.287 1.499±0.209
PEEMMASMH 3.628±1.189 2.614±0.721 2.087±0.465 1.882±0.373 1.737±0.300 1.546±0.216
PEEMACOMC 3.216±1.008 2.341±0.593 1.921±0.405 1.775±0.322 1.646±0.266 1.478±0.193
PNSGA−II−MP A 3.348±1.254 2.430±0.755 1.968±0.506 1.789±0.395 1.625±0.323 1.594±0.283
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Appendix J

Illustration of the Influence of

Change Frequency, Change Severity,

and Number of Nodes on the

Optimisation Criteria

This appendix presents FluxViz graphs to illustrate the influence of change frequency, Tsm

and change severity, Rg, on the EP , TNP , V NP , CP and MNC optimisation criteria for

different number of nodes, NG. Figures J.1-J.3 visualise the influence of Tsm and Rg on the

EP criterion based on the results of Tables I.1-I.9. Figures J.4-J.6 visualise the influence

of Tsm and Rg on the TNP criterion based on the results of Tables I.10-I.18. Figures J.7-

J.9 visualise the influence of Tsm and Rg on the V NP criterion based on the results of

Tables I.19-I.27. Figures J.10-J.12 illustrate the influence of Tsm and Rg on the CP criterion

based on the results of Tables I.28-I.36, while Figures J.13-J.15 visualise the influence of Tsm

and Rg on the MNC criterion based on the results of Tables I.37-I.45.
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Figure J.1: Influence of Rg and Tsm on the EP objective for NG = 30
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Figure J.1: Influence of Rg and Tsm on the EP objective for NG = 30 (cont.)
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Figure J.1: Influence of Rg and Tsm on the EP objective for NG = 30 (cont.)
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Figure J.2: Influence of Rg and Tsm on the EP objective for NG = 100
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Figure J.2: Influence of Rg and Tsm on the EP objective for NG = 100 (cont.)
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Figure J.2: Influence of Rg and Tsm on the EP objective for NG = 100 (cont.)
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Figure J.3: Influence of Rg and Tsm on the EP objective for NG = 300
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Figure J.3: Influence of Rg and Tsm on the EP objective for NG = 300 (cont.)
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Figure J.3: Influence of Rg and Tsm on the EP objective for NG = 300 (cont.)
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Figure J.4: Influence of Rg and Tsm on the TNP objective for NG = 30
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Figure J.4: Influence of Rg and Tsm on the TNP objective for NG = 30 (cont.)
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Figure J.4: Influence of Rg and Tsm on the TNP objective for NG = 30 (cont.)
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Figure J.5: Influence of Rg and Tsm on the TNP objective for NG = 100
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Figure J.5: Influence of Rg and Tsm on the TNP objective for NG = 100 (cont.)
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Figure J.5: Influence of Rg and Tsm on the TNP objective for NG = 100 (cont.)
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Figure J.6: Influence of Rg and Tsm on the TNP objective for NG = 300
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Figure J.6: Influence of Rg and Tsm on the TNP objective for NG = 300 (cont.)
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Figure J.6: Influence of Rg and Tsm on the TNP objective for NG = 300 (cont.)
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Figure J.7: Influence of Rg and Tsm on the VNP objective for NG = 30
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Figure J.7: Influence of Rg and Tsm on the VNP objective for NG = 30 (cont.)
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Figure J.7: Influence of Rg and Tsm on the VNP objective for NG = 30 (cont.)
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Figure J.8: Influence of Rg and Tsm on the VNP objective for NG = 100
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Figure J.8: Influence of Rg and Tsm on the VNP objective for NG = 100 (cont.)
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Figure J.8: Influence of Rg and Tsm on the VNP objective for NG = 100 (cont.)
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Figure J.9: Influence of Rg and Tsm on the VNP objective for NG = 300
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Figure J.9: Influence of Rg and Tsm on the VNP objective for NG = 300 (cont.)
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Figure J.9: Influence of Rg and Tsm on the VNP objective for NG = 300 (cont.)
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Figure J.10: Influence of Rg and Tsm on the CP objective for NG = 30
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Figure J.10: Influence of Rg and Tsm on the CP objective for NG = 30 (cont.)
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Figure J.10: Influence of Rg and Tsm on the CP objective for NG = 30 (cont.)
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Figure J.11: Influence of Rg and Tsm on the CP objective for NG = 100
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Figure J.11: Influence of Rg and Tsm on the CP objective for NG = 100 (cont.)
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Figure J.11: Influence of Rg and Tsm on the CP objective for NG = 100 (cont.)
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Figure J.12: Influence of Rg and Tsm on the CP objective for NG = 300
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Figure J.12: Influence of Rg and Tsm on the CP objective for NG = 300 (cont.)
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Figure J.12: Influence of Rg and Tsm on the CP objective for NG = 300 (cont.)
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Figure J.13: Influence of Rg and Tsm on the MNC objective for NG = 30

450

 
 
 



Tsm Rg
MNC

(c) EEMMASMP

Tsm Rg
MNC

(d) EEMMASMH

Figure J.13: Influence of Rg and Tsm on the MNC objective for NG = 30 (cont.)

451

 
 
 



Tsm Rg
MNC

(e) EEMACOMC

Tsm Rg
MNC

(f) NSGA-II-MPA

Figure J.13: Influence of Rg and Tsm on the MNC objective for NG = 30 (cont.)
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Figure J.14: Influence of Rg and Tsm on the MNC objective for NG = 100
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Figure J.14: Influence of Rg and Tsm on the MNC objective for NG = 100 (cont.)
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Figure J.14: Influence of Rg and Tsm on the MNC objective for NG = 100 (cont.)
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Figure J.15: Influence of Rg and Tsm on the MNC objective for NG = 300
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Figure J.15: Influence of Rg and Tsm on the MNC objective for NG = 300 (cont.)
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Figure J.15: Influence of Rg and Tsm on the MNC objective for NG = 300 (cont.)
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