Chapter 7
Normal distributions

In this chapter it will be shown how to fit normal distributions simultaneously to the T' cells of
a multifactor design. Under equality of variances a multifactor model is discussed to explain the
influence of the factors of the multifactor design. An application of a single factor model is presented

to illustrate the theory.

7.1 Estimation of distributions

To fit normal distributions simultaneously to the T' cells of any multifactor design it is required that

d(z)=m (7.1)
where
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a=| 2 | = 7 (7.2)
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is the concatenated vector of standardised upper class boundaries and

™

™2

™

is the concatenated vector of cumulative relative frequencies.

Taking the inverse normal function from (7.1) leads to the linear model
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where
X = ( x -1 ) (7.5)

is the design matrix for normality within each cell and
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is the concatenated vector of natural parameters with
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the natural parameters for the t-th cell.

From (7.4) the vector of contraints for normality, g,o.(7) = 0, follows where
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Employing the maximum likelihood procedure in Proposition 1 with vector of constraints

g(m) = Guor(m)

= (I;®Qx)-® ' (m) (7.11)
and matrix of partial derivatives
G, = Guu(m)
= (Ir®Qx) Dx (7.12)

the restricted ML estimate 7 follows, with asymptotic covariance matrix
Cov(w) V—-(G,V) (G,VG,) (G,;V) .

For each of the T subpopulations, the vector of restricted cumulative relative frequencies 7t; for
t=1,2,---,T follow a cumulative normal distribution curve at the upper class boundaries of x.
Each ® (7w ) for t = 1,2,---,T is a linear combination of the columns of X characterising a
specific fitted normal distribution with its own set of parameter estimates.

The ML estimate of « follows from (7.4)

&:<1T®(XX) 1x).<1> L(7) (7.13)
which consists of two sets of estimators namely
N &12 ]_/6'\2
«; = = )
arr 1/or
- (IT®[(XX) 1X] ).<I> L (#) (7.14)
1
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Qo fip/or
- (IT® [(XX) 1x]2) B (7). (7.15)
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Note: In(7.14) [(X X) ' X ], isthefirst row of the matrix (X X) ' X andin (7.15) [(X X) 'X |

2
is the second row of the matrix (X X) 'X .

It follows that

Cov (&) (g—:) Cov (7) (g—:)

- {(rexx) 'x)D,}cov (@) { (o (XX) 'X)D,} . (7.16)

The ML estimates for ;o and o are obtained from

Hy Qa1 /0
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5'1 1/@11
. o 1/a 1
G| 72 || Ve |_L (7.18)
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or 1/aqr
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Note: An element wise division for == and — are understood in (7.17) and (7.18).
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Let
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B
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be the concatenated vector of original parameters with

8, — pe | _ [ ae/an f—12,...
Ot 1/0(115
Hence
~ 0B . (0B
Cov (,@) (8—a) Cov (@) (8—04)
= BCov(a)B
where
B, 0 -~ 0
B 0 By, --- 0
0 0 --- By
with
9B,
B, = [|—
! <5at)
oy 1
- O‘Et 1t t=1,2,---,T
—— 0
Oy

the partial derivatives for the ¢-th cell.

In terms of Kronecker products the matrix B in (7.22) can be calculated from

B=|-2p +[=o + -5
aq 00 Qg 00 (841

Consequentely it follows that the asymptotic covariance matrices for i1 and & are

Cov () B,Cov(a)B

I

B,— (Z—% ® (1 0)) + (ail ® (0 1))

where

~
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and
(7.27)

B,= (—ai% ® (1 o)) . (7.28)

where

7.2 Equality of variances

Equality of variances

o1 — 09 0
01— 03 0
= (7.29)
o1 — 0T 0
is expressed in terms of matrix notation as
where
1 -1 0 0
1 0 -1 0
H =
1 0 O -1
— ( 10y Lo o) ) (7.31)
is a matrix of contrasts and
192 0'2 1
aqr O'T1
- (IT ® [(X X) ! XL) - 1 () (7.32)
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is a subset of the vector of natural parameters o formulated in (7.6) and (7.7).

Hence, the vector of constraints for equality of variances is ga (7) = 0, with

galm) =H- (e [(XX) 'X] ). ' (x) (7.33)
and matrix of partial derivatives
Og(m)
G"var -
() o
— . 1 .
- H (IT ® [(X X) X]l) D, . (7.34)
(D previously derived in (7.10).)
The restricted ML estimate of 7 follows by implementing
Enor (1)
g(m) =
gvar(7r>
Ir®
- (Ir ©Qx) 1 & ' (m) (7.35)
H (Ir®[(XX) "X],)
and
Gnor ™
o _ [ Gl
Gar ()
I ®
_ (Ir ®Qx) 1 .D, (7.36)
H- (IT® [(XX) X]l)
in the ML estimation procedure.
The restricted ML estimate 7 is now estimated such that:
1. 7, (t=1,2,--- ,T) follows a cumulative normal distribution curve at the upper boundaries

of x and

2. the fitted normal distributions have equal variances over the T' cells.
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7.3 Multifactor model

To explain the effect of the factors on the grouped response variable, a linear model may be formu-
lated on the cells of the multifactor design. Since a normal distribution is fitted to each cell, the
mean p, of the fitted normal distribution will be used as a representative measure for each cell.

Formulate the linear model
w=Y~y (7.37)

where Y is the matrix specifying a specific design and -y is the vector of parameters.

Suppose e.g. that there exists a linear relationship between the dependent variable and one of the
explanatory variables, the model becomes

L
1
p=| o (7.38)
Y1
L yr
where (y1, 41, ,yr) are the corresponding values of one of the factors in the design.

Model (7.38) implies that p is a linear combination of the columns of Y. Therefore, the linear

model (7.38) on the treatment means implies the constraints

Bmod() = Qv =0 (7.39)

where Qy=1—Y(YY) 'Y is the projection matrix orthogonal to the colums of Y.

Under equality of variances it follows from (7.15) that

H1
1 o Q21
Mo
1 J — (0%%)
o :
U
KT — GQor
o

leading to an equivalent formulation of the vector of constraints

gnos(1) = Qraz = Qy (@ [(XX) 'X| )@ ' (m) (7.40)
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which is expressed in terms of the so-called standardised means. The matrix of partial derivatives is

Gimog () = Qy% —Qy (IT ® [(X X) IX]2> .D,. (7.41)

Utilizing the maximum likelihood procedure with

8nor ()
g(m) = | gulm)
8mod ()
(Ir ® Qx)
= | H- (Ir® [XX) 'X],) | @ '(m) (7.42)
Qr (Ir@ [(XX) 'X],)

and

G
GW = G'var(ﬂ-
G

(Ir ® Qx)
= | H (Ir® [(XX) 'X],) | Dx (7.43)
Qv (Ir @ [(XX) 'X],)

leads to the restricted ML estimate of 7t with the following properties:

1. w,fort =1,2,---,T follows a cumulative normal distribution curve at the upper boundaries

of x
2. the fitted normal distributions have equal variances

3. the ML estimate g satisfy the multifactor design in (7.36)

It is now possible to evaluate the effect of the factor(s) by means of the ML estimate
y=XY) Yu (7.44)
with asymptotic covariance matrix

Cov(d) ={(YY) Y} Cov(@){(YY) Y} . (7.45)
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7.4 Application: Single-factor model

A total of 898 students who were enrolled for a first year Statistics course at the University of
Pretoria were included in this investigation. The students were all enrolled for Statistics (STATS)
for the first time and obtained at least an E symbol for Grade 12 Mathematics (MATHS) on the
higher grade. The aim of this study is to investigate the effect of achievement in MATHS on the
performance of STATS. The STATS exam paper counted out of 108 marks and the results were
classified into a total of 5 categories to illustrate the technique. The data is summarised in Table
7.1.

Table 7.1: Data set of 898 first year students.

STATS
MATHS || [0 — 40) | [40 — 50) | [50 — 60) | [60 — 75) | [75 — 108] | Total
A 0 4 19 53 84 160
B 3 17 35 65 19 139
C 24 44 56 68 19 211
D 43 57 82 48 6 236
E 59 53 26 13 1 152
Total 129 175 218 247 129 898
Take
39.5
X = 495 (7.46)
59.5
74.4

as the vector of upper class boundaries. Since the exam mark is treated as a continuous variable
and recorded to the nearest integer, the upper class boundaries in x are taken half-way between the
gaps of the respective class intervals. The performance in STATS will now be evaluated over the 5
levels of MATHS, specifing the 5 cells of the single-factor design. A total of 4 models will be fitted
with the SAS program / %67 listed in Appendix Bl to explain the effect of MATHS on the
grouped variable STATS.
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7.4.1 Model 1: Unequal variances

It is assumed that the STATS mark is normally distributed for each level of MATHS. Therefore,
normal distributions are fitted simultaneously to the 5 levels of MATHS, i.e. the 5 levels of the

single-factor design. Normality within each cell is estimated such that ® ! (7)) fort =1,2,---5is

X = (x -1)

395 —1
495 —1

= (7.47)
59.5 —1

744 -1

a linear combination of

or equivalently such that ® ! () is orthogonal to

Qyv=L-X(XX) 'X . (7.48)

Since rank (Qx) = 2 the vector of constraints g,o (7) = 0, with

(1)
(7r2)
gor(m) = | Qx® ! (ms)
(7r4)
(75)

= :®Qx) @ '(m) (7.49)
consists out of 10 linear independent functions.

Utilizing the ML estimation procedure, the restricted ML estimate for 7 is obtained leading to the
ML estimates for the fitted normal distributions summarised in Table 7.2.



Table 7.2: ML estimates for model with unequal variances.
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A definite positive monotone trend in STATS over the levels of MATHS is evident from Table 7.2.
The 71 -values range from 42.7 for an E-symbol in MATHS, up to 75.2 for an A-symbol in MATHS.
There is a slight variation with regard to the & -values, revealing that students with a B symbol in
MATHS had the smallest variation in STATS. According to the goodness of fit statistics tabulated
in Table 7.3 the model fitted the data extremely well. The degrees of freedom in Table 7.3 follows

from the number of linear independent constraints in (7.49).

Table 7.3: Goodness of fit statistics for model with unequal variances.

Pearson Wald

Model | df || Statistic | p-value || Statistic | p-value

1 10| 7.059 | 0.7199 6.356 | 0.7845

The mean in the i -th level of MATHS may be expressed in terms of the single factor model

=70+  i=1,2---5 (7.50)

where

7o = overall mean

™™ = effect for the i-th level of MATHS 1=1,2,---5

(3

In matrix notation (7.50) leads to

pn =LA
where
1 1 0 0 0
1 0 1 0 0
L=|11 0 0 1 0 :H XD (7.51)
1 0 0 0 1
1 -1 -1 -1 -1



70

and A\ denotes the vector of estimable parameters

A=| M (7.52)

with the last parameter 7M = — Zf‘zl 7M | the effect for an E symbol for MATHS, ommitted.
From the restricted ML estimate 7, the ML estimate of \ is
A=(LL) 'Lf (7.53)

with asymptotic covariance matrix

Cov (X) {(LL) 'L} Cov (@) {(LL) 'L} . (7.54)

The full set of ML estimates in (7.50) is obtained from
7 =SA (7.55)

where

(7.56)

QD
I

and

6%5 . (7.57)

o o o = O
o O = O O
- o O O O

-1 -1 -1 -1

o O o o o
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The asymptotic covariance matrix for 7 follows from

Cov(7) SCov (X) S (7.58)

From the effects for the single factor model (7-values) listed in Table 7.2 it can be concluded that
the average STATS mark for students with an A symbol in MATHS is 17.7 higher than the overall
average of 7o = 57.4. The 7-values drop substantially over the categories of MATHS indicating the
strong effect of MATHS on STATS. The average STATS mark for C-symbol students is significantly
lower than the overall average on the 10% level of significance, since the p-value is

~M
P Zi _ % 1.3
o 0.91
= & (—1.428)
= 0.08.

In SAS the matrices L (7.51) and S (7.57) may be programmed as:

e L =|J(51,1) || DESIGNF(CUSUM(J(5,1,1)))

e S =|BLOCK(1, DESIGNF(CUSUM(J(5,1,1))))

where 5 is the number of levels for the single factor MATHS.
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7.4.2 Model 2: Equal variances

From Table 7.2 it is clear that the standard deviations of the normal distributions stayed fairly stable
over the levels of MATHS, implying that the additional constraints of equal variances g,.,(7) = 0,
with

Bvar (77) - Hal

- H-(IT®[(XX) 1X] >-<I> L () (7.59)
2
where
1/0’1
1 -1 0 0 O
1/0’2
1 0 -1 0 O L
H= and oy =0 "= | 1/03
1 0 0 -1 0
1/0’4
1 0 0 0 -1
1/0’5
are feasible.

Note: Since the rows of H are all orthogonal to the vector of ones, an equivalent formulation of

the vector of constraints may be constructed with

gvar(ﬂ') =Q o

where Q =15 — %11 , is the projection matrix orthogonal to the vector of ones.

After employing the ML procedure with the vector of constraints

g(m) = golm) ) g (7.60)

Zuar(T)

the restricted ML estimate 7 was obtained and the results for Model 2 are summarised in Table 7.4.



Table 7.4: ML estimates for model with equal variances.
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No substantial changes with regard to the ji-values were obtained from that of Model 1, with the
o-values now estimated constant with @ = 12.7. The values of the goodness of fit statistics in Table
7.5 increased somewhat from that of Model 1, but still provided a satisfactory fit.

Table 7.5: Goodness of fit statistics for model with equal variances.

Pearson Wald

Model | df || Statistic | p-value || Statistic | p-value

2 14 | 13.218 | 0.5094 || 12.374 | 0.5763

The degrees of freedom for this model is 14, since an additional 4 constraints were imposed in (7.59)

for equality of variances.

7.4.3 Model 3: Ordinal factor

Due to the very strong monotone trend in STATS over the categories of MATHS, MATHS will now

be incorporated as an ordinal factor in the ML estimation process. The single factor model on the
levels of MATHS is

H= Y573 (7.61)
where
1 2
1 1
Ys=| 1 0 and 3= M
1 1 V2
1 -2

The complete set of vector of constraints for Model 3 is

hor (77)
g(m) = | gulm)
8mod3 (77)

—0 (7.62)
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where

gmod3(ﬂ') = Qy o
>-<1> ! () (7.63)

and Qy =15 — Y5 (Y,Ys5) 'Y,

Note: The vector of constraints in (7.63) is formulated in terms of aw, since i, is a scalar multiple
of g in (7.61) under equality of variances.

Utilizing the ML estimation procedure with the vector of constraints (7.62) the restricted ML esti-

mate 7 is estimated such that the vector p is a linear combination of Y3. (See Table 7.6.)
The ML estimate for v is

’AY3 = (Y3Y3) 1Y3ﬁ

~

71

~

Yo

57.3
7.5

indicating that the estimated average STATS mark for students with a C symbol for maths is 57.3
and that every increase of one symbol in MATHS implies an estimated increase of 7.5 in STATS.
(See Table 7.6.) The standard errors of v,

8’)’
8’7
0.4563
0.3521

enable the construction of confidence intervals and the testing of relevant hypotheses.



Table 7.6: ML estimates for model with an ordinal factor.
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The value of the Pearson and Wald statistic in Table 7.7 increased substantially from that of the

previous model indicating a weaker fit.

Table 7.7: Goodness of fit statistics for model with an ordinal factor.

Pearson Wald

Model | df || Statistic | p-value || Statistic | p-value

3 17| 25.150 | 0.0914 || 24.388 | 0.1093

Since rank(Qy ) = 3, an additional 3 linear independent constraints are included in the vector of

constraints leading to 17 degrees of freedom for Model 3.

7.4.4 Model 4: Regression model

Since the original scale of measurement for MATHS was done on an interval scale, the following

class midpoints were taken as representative values for the five levels of MATHS.

MATHS A|B |C|D|E
Class Midpoint | 90 | 75 | 65 | 55 | 45

The implication of this is that the 9 9 between the MATHS categories are not the same as
in the case of Model 3.

The linear model measuring a linear trend in MATHS is

=Yy,
where
1 90
1 75
Y,—| 1 65 and ~,= e
1 55 2
1 45
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The complete set of vector of constraints for Model 4 is

gnor(ﬂ-)
g(m) = gualm) [=0 (7.64)
gmod4(7r)
where
gmod4(7r) - Q (8%}
= Q -(IT®[(XX) IX}
and Q =1I;-Y,(Y, Yy 'Y,

The ML estimation procedure with vector of constraints (7.64) yields the ML estimate

~

Y= (YuYs) 'Yih
:yl
V2
12.2
0.68

suggesting a slope of 0.68 for STATS on MATHS. This means that an increase of one mark in
MATHS will lead to an estimated increase of 0.68 marks in STATS. From the vector of standard
errors

. 0y
o = R
Oy
2.108
0.0319
this increase is significant, since
& _0.68
o,  0.0319
= 21.317.

See Table 7.8 for the complete set of the ML estimates.



Table 7.8: ML estimates for regression model.

79

[ o 7
Maths Stats n (3,) 3,) . )
/" d T
0.047
0.0371
0.027
0.017
738 127 | 164
A j | \ 160
0 e (0.93)  (0.40) | (0.77)
0.047
0.0371
0.027 \
0.017
63.6 127 6.2
B | —<—— | 139
0 — e (0.56)  (0.40) | (0.29)
0.047
0.0371
0.027 74/\
C o /| | 967 127 | o7
‘ ; —1
0 P (0.45)  (0.40) | (0.03)
0.047
0.0371 L
0.027
0.017
499 127 | -75
D ‘ , ‘ 236
0 PR R e —— (0.55)  (0.40) | (0.35)
0.047 -
0.031 o\
0.027 LY
0.01
430 127 | —144
E 0 1 S 21 077 (040) | (0.67)
20 40 60 80 100
To 57.4
(07 ) (0.46)
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According to the goodness of fit statistics tabulated in Table 7.9, this model showed a substantial

better fit than the previous model where MATHS was modelled on an ordinal scale.

Table 7.9: Goodness of fit statistics for regression model.

Pearson Wald
Model | df || Statistic | p-value || Statistic | p-value
4 17 || 16.813 | 0.4671 || 16.010 | 0.5168




Chapter 8
Log-logistic distributions

In the case where the grouped response vector has a positive skew distribution, the log-logistic
distribution may be fitted very effectively to the T" frequency distributions of a multifactor design.
Due to the skewness of the response variable, the median of the fitted log-logistic distributions will

be used as a representative measure for each of the 1" frequency distributions.

From the cdf of the log-logistic distribution

0,.k
e’r
Flz:k,0) = ———
(3 %, 6) 1+ efar
the median v is obtained from
v 05
1+efprs

leading to

v=ewm (1) (8.1)

In the multifactor model the medians will be employed in a linear model to determine the effect of
the explanatory variables or so-called factors on the grouped response variable.

81
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8.1 Estimation of distributions

Analogous to Section 5.2, where a log-logistic curve was fitted to a single frequency distribution,
the log-logistic curve may be fitted simultaneously to the T cells of a multifactor design using

Uy
In

1—7\'1
T2

In
ln<L> — 1—m
1—-= :

™r
In
(1 — 7'l'T)

K1 In X+(911

Ko Inx+651

kr Inx—+0r1

Xa1
Xa2

XO{T
- LroX)a (8.2)

where
X:(lnx 1) (8.3)

is the design matrix for a log-logistic distribution and

(83]
«a K
a= ? where oy = ' ,t=1---T (8.4)
01
ar

is the concatenated vector of parameters.



The linear model (8.2) suggests the vector of constraints

8log (m)=0

where

3

1
1—71'1
T2

Qxln

QX In
8iog(T) = 1 —m

T
QX In (1 —7TT>

™

~ (reQo) (7

1-7

83

(8.5)

with Qx=1I — X(X X) 'X the projection matrix orthogonal to the columns of X given in (8.3).

The matrix of partial derivatives is

dg(m)
o
= (IT & QX) ' D7r

Glog(ﬂ')

where

0 2y
D, = gln(m)
= aiﬂ_{ln(ﬂ')—111(1—71')}
= {diag(m)} '+ {diag (1 —m)} " .

Employing the maximum likelihood procedure with
g(m) = glog(ﬂ') and  G=Giog()
the restricted ML estimate of 7 follows with asymptotic covariance matrix

Cov(®) V—(G,V) (G,VG,) (G,V) .
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From the restricted ML estimator 7, it is possible to obtain the ML estimator of «

& = (IT® (X X) 1X> ‘In <i) (8.10)

1-7

which consists out of two sets of estimators namely

R1
R = EQ :(IT®[(XX) IXD-m(l’j%) (8.11)
Rr
and R
01
0 — 92 - (IT®[(XX) 1XL) In (17_?%) (8.12)
Or
The asymptotic covariance matrix of & is
Cov(@) {(re(XX) 'X)D.}Cov(@{(lr&(XX) 'X)D,} (8.13)

with D given in (8.7).
The asymptotic standard errors of K and 0 can be calculated directly from

Cov (R) {(IT® [(XX) 1X] )DW}COV(%){<IT® [(XX) 1X]1> Dﬂ} (8.14)

1

and

Cov (6) {(IT® [(XX) 1X]2> DW}COV(%){<IT®[(XX) 1XL> Dﬂ} . (8.15)
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8.2 Multifactor model

In the case where log-logistic distributions are fitted simultaneously to a grouped positive skew
response variable in a multifactor design, the median (8.1) will be used as a representative measure
for each cell. The medians of the fitted log-logistic distributions will be employed in a linear model
to evaluate the effect of the explanatory variables on the response variable over the T' cells of the

multifactor design.

The concatenated vector of medians for the 7" cells in the multifactor design is

0
12 R1
2 0

v _2
v = .2 = exp Ko = exp (—;) . (8.16)

vr _H_T

KT

Let

v=Y~ (8.17)

specify the the multifactor model. The objective is to estimate 7t such that v is in the vector space

generated by the columns of Y implying the vector of constraints

Emod (ﬂ-) - QYV =0 (818)

with Qy=1-Y (YY) Y the projection matrix orthogonal to the columns of Y. Implementing
the chain rule the matrix of partial derivatives

0Qyv

Gmod(ﬂ') - ?;;
ov Ja
= 9. ox

= Qv-A (IT®(XX) 1X>D,T (8.19)



follows, where

and

and

=00 (%)
Z—Zexp —_—
K K

()
=——exp|——] .
K K

Using (8.22) and (8.23) the matrix A may be calculated from

Az(diag[an]®(1 0>>+(d1ag[ag]®(0 1))
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(8.20)

(8.21)

(8.22)

(8.23)

(8.24)



87

Employing the ML estimation procedure with

og\T Go ™
g(m) = Bog (7) and G,= oz(7) (8.25)
Gmod (TF) Gmod (77)
leads to the restricted ML estimate of 7r such that:
1. the elements of 7, 75, - - - w7 follow T' log-logistic curves at the upper boundaries of x and
2. the ML estimate N
-eo(3)
v=exp| —=<
K
is a linear combination of Y in (8.17).
The asymptotic covariance matrix of v is
~ 0 [0
Cov (V) {%}Cov(a) {%}
= ACov(a)A . (8.26)
The effect of the factors for the multifactor design can be explained from the ML estimate
5=(YY) 'YD (8.27)

and for the purpose of statistical inference, the standard errors are obtained from the asymptotic
covariance matrix

Cov (¥) {(YY) ly}cov(a){wY) 1y} . (8.28)



88
8.3 Application: Two-factor model

The premiums of 8334 policyholders in the short-term insurance are classified into the 5 categories
listed in Table 8.1.

Table 8.1: Frequency distribution of PREMIUM.

PREMIUM | Frequency
R51-R200 1920
R201-R300 2726
R301-R400 1677
R401-R500 930
R500-R1000 1081

The objective is to explain the effect of the age of the policyholder (AGE) and the type of product
(PRODUCT) on the PREMIUM of the policy. The variable AGE is classified into 4 categories, while
PRODUCT consists out of three types of insurance policies. A cross classification of these two

factors result in a total of 12 cells summarised in Table 8.2.

Table 8.2: Contingency table of AGE and PRODUCT.

PRODUCT
AGE I [l [l || Total

20-29 || 930 | 415 | 461 | 1806
30-39 || 1105 | 800 | 1017 || 2922
40-49 || 832 | 764 | 656 | 2252
50-59 || 448 | 416 | 490 | 1354

Total || 3315 | 2395 | 2624 || 8334

The 12 cells in Table 8.2 are to be modeled in a two-factor design. Due to the positive skew nature
of PREMIUM a log-logistic curve will be fitted to the frequency distribution of PREMIUM in each
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of the 12 cells. The variable PREMIUM is modeled in hundreds of rands, which implies that the
vector of upper class boundaries is

(8.29)

- W N

5

(See Table 8.1.) The median of the fitted log-logistic curves will be modeled over the 12 cells to
investigate the effect of the two factors AGE and PRODUCT on PREMIUM. This will be described in
a total of 4 models. The results for all 4 models were all obtained from the SAS program / %673
listed in Appendix B2.

8.3.1 Model 1: Saturated model

A log-logistic curve is fitted to every cell in the two-factor design, such that

ln< e ) Ct=1,2,---,12
]_—Tft

is in the column space of

In2 1
In3 1
X=(Inx 1)- (8.30)
In4 1
In5 1
Implementing the vector of constraints g(7) = gjog(7) = 0 with
1 1
QX H 1-— T
P
Qx In
glog(’ﬂ') = 1—m (831)
Qx In < UL )
1-— 12

where Qx=1— X(X X) 'X | in the ML estimation procedure, a total of 12 log-logistic distribu-

tions are fitted simultaneously to the frequency distributions of the two-factor design listed in Table
8.3.



Table 8.3: Descriptive statistics for the saturated model.

PRODUCT
AGE | 1| i
05 05 05
0.4 0.4 0.4
0.3 0.3 0.3
0.2 0.2 0.2
0.1 01 \ 0.1 N
20.29 %0 2 4 & 8 10 % 2 4 6 8 10 %0 2 4 & 8 10
[=3097 D=2842 [=3462 D=3143 [ —=4.031 ©=3.447
oc=1427 o, =0.038 oc=1715 o, =0.066 o =278 o, =0.086
05 05 05
0.4 0.4 0.4
0.3 0.3 0.3
0.2 0.2 0.2
0.1 0.1 0.1 N
30.39 00 2 4 6 8 10 % 2 4 6 8 10 % 2 4 & 8 10
[—3080 D—=2712 7—=2790 D—2538 A—=4260 =358
c=1831 o, =0.040 oc=1365 o,=0.039 o =3.167 o, =0.063
05 05 05
0.4 0.4 0.4
0.3 0.3 0.3
0.2 0.2 0.2
0.1 0.1 0.1
0 0 0 L ==
40.49 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
[=2941 D=258 [=2496 7=2235 [=4173 D =3.588
c=1"768 o, =0.045 c=1349 o, =0.039 c=2806 o,=0.074
05 05 05
0.4 0.4 0.4
0.3 0.3 0.3
0.2 0.2 0.2
0.1 0.1 0.1 N
50-59 % 2 4 6 8 10 % 2 4 6 8 10 % 2 4 6 8 10
n=2903 v =2544 n=2295 v=2019 n=4131 v =3.443
c=1.768 o, =0.061 c=1372 0,=0.054 o =3.223 o, =0.09
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The log-logistic curves tabulated in Table 8.3 provide an excellent fit for PREMIUM. This is further
motivated by the goodness of fit statistics reported in Table 8.4. The degrees of freedom follows

from the 24 linear independent constraints in (8.31).

Table 8.4: Goodness of fit statistics for the saturated model.

Pearson Wald
Model | df || Statistic | p-value || Statistic | p-value
1 24 || 30.799 | 0.1597 || 30.266 | 0.1761

Evaluating the means (7i) and medians (V) in Table 8.3 it is clear that Product Il is the most
expensive product. The standard deviations (o) indicate that the variation in PREMIUM is the
highest for Product Il which can also be seen from the some-what flatter log-logistic curves displayed
in Table 8.3. Product Il portrays the most drastic drop in PREMIUM over the categories of AGE
indicating a possible interaction between AGE and PRODUCT.

Define the following functions of the medians:

AP

median in (ij)-th cell

average median for i-th level of AGE

average median for j-th level of PRODUCT

overall average median
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The median of the (ij)-th cell may be expressed by the two-factor model

vj=To+Ti+7r+75"0 ,i=1,2,34 and j=1,23 (8.32)
where
To = U . overall median
o= vl -1 .
. effect for the i-th level of AGE
= vA-v
Tf = Df — To )
. effect for the j-th level of PRODUCT
= vy —v
TSP — y;‘}P — (7’0 + 78+ Tf) ~ interaction effect for the i-th level of AGE
= v’ —pf—pP+5  and j-th level of PRODUCT
Since
4 3 4 3
ZT?:ZTf:ZT?}P:ZTf}P:O (8.33)
=1 7=1 =1 7=1

T = — ZTZA and 7Y = — ZTf (8.34)

and for the interaction effects that

3 2
AP __ § { AP AP __ § : AP
i=1 j=1
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In matrix notation, the saturated model (8.32) may be written as

v = ZA\
Vi 1 1 0 0 1
V12 1 1 0 0 O
V13 1 1 0 0 -1
Vo 1 0 1 0 1
V22 1 0 1 0 O
Vo3 B 1 0 1 0 -1
V31 N 1 0 0 1 1
V32 1 0 0 1 0O
V33 1 0 0 1 -1
Vit 1 -1 -1 -1 1
Vo 1 -1 -1 -1 0
Va3 1 -1 -1 —1 -1

O 1 0 0 0 0 0 o
1 0 1 0 0 0 0 4
-1 -1 -1 0 0 0 0 s
O 0 0 1 0 0 © T4
1 0 0 0 1 0 0 =t
-1 0 0 -1 -1 0 0 ¥
O 0 0 0 0 1 0 T4
1 0 0 0 0 0 1 4P
-1 0 0 0 0 -1 -1 il
0 -1 0 -1 0 -1 0 T4
1 0-1 0 -1 0 -1 4
-1 1 1 1 1 1 1 T4

(8.36)

where Z : (12 x 12) is the design matrix and A : (12 x 1) consists out of the estimable parameters.

Since AGE has 4 levels and PRODUCT has 3 levels define the design matrices

1 0 0
0O 1 O
Dy =
0 0 1
-1 -1 -1

with corresponding vectors of ones

—_ = =

1 0
and Dp= 0 1 (8.37)
1 -1
1
and 1p=| 1 (8.38)
1
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The saturated model (8.36) may therefore be partitioned as

v = Z\
To
)\A
~ (1 24 2o Zar) - (8.39)
AAP

with a description of the submatrices and parameters listed in Table 8.5.

Table 8.5: Partitioning of the saturated model.

Submatrices Parameters

1=1,®1p: (12 x 1) 7o : overall median

Z,=D,®1p: (12 x 3) A4 4 | = effects for AGE

Zp=1,0Dp:(12x2) | A" = effects for PRODUCT

Note: The operator ® in Table 8.5 performs a direct product on all rows of Z4 and Zp. The
result has the same number of rows as Z 4 and Zp and the number of columns is equal to the
product of the number of columns of Z4 and Zp. See (8.36).



The ML estimate for X is
A\=(22)'Zv

with asymptotic covariance matrix
Cov (X) {(z Z) 'Z } Cov (D) {(z AR/ }

The complete set of effects for the two-factor design may be obtained from

7 =S\
where
S — Block (1 D, Dy DA®DP>
1 0 0 0
B 0 Dy O 0
0 0 Dp 0
0 0 0 D,®Dp
and
To
?A
T = B 1 (20 x 1)
T
~AP

Ty ~P
A T
=
~A 2 B ~P
= and 77 =| 7,
T3 ~P
A T3

95

(8.40)

(8.41)

(8.42)

(8.43)

(8.44)

(8.45)
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with the interaction effects included in

~AP
T11

~AP
T12
~AP
T13
~AP
Ta1
~AP
T2
/7:AP
~AP 23

~AP

T31

~AP
T32
~AP
T33
~AP
T41
~AP
T4

~AP
T43

The asymptotic standard errors for 7 are calculated from

Cov(7) SCov (X)s . (8.47)

A complete summary of all the effects (7) with standard errors (o) is given in Table 8.5. The
overall median is R289. Investigating the main effects a decreasing monotone trend in PREMIUM
over the categories of AGE is evident. Starting with a premium of R25 above the overall median
for the youngest policyholders and dropping down to a premium of R22 below the overall median
for the oldest policyholders. PRODUCT Il is the most expensive product with a PREMIUM of R63
above the overall median. The premiums for PRODUCT | and PRODUCT Il are both below average
with premiums of R22 and R41 below the overall median respectively. The interaction effects, i.e.
the 747 _values, show a very clear interaction structure between AGE and PRODUCT. Apart from
the overall decreasing effect in the PREMIUM over the categories of AGE, the PREMIUM drops
even more drastically over the AGE categories for PRODUCT II. This is contrasted with PRODUCT
[I1, which is a relatively cheaper policy for the younger policyholders. All the standard errors are
included which enable the testing of certain hypotheses and the construction of confidence intervals.



Table 8.6: Effects for the saturated model.
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PRODUCT 74
AGE | 1 1 0.
05 05 05
0.4 0.4 0.4
0.3 0.3 03
0.2 0.2 0.2
0.1 0.1 \ 01 N
20-29 % 2 4 s 8 10 % 2 4 6 8 10 % 2 4 6 8 10
74P = _0.08 74P = 0.41 74P = _0.32 0.25
o, =0.038 o. =0.045 o, =0.053 0.032
05 05 05
0.4 0.4 0.4
0.3 0.3 03
0.2 0.2 0.2
0.1 0.1 01 N
30-39 % 2 4 6 8 10 % 2 4 & 8 10 % 2 4 6 8 10
74P = _0.01 74P = 0.00 74P = 0.02 0.06
?7\7_ =0.034 37 =0.034 37_ =0.044 0.027
05 05 05
0.4 0.4 0.4
0.3 0.3 03
0.2 0.2 0.2
0.1 01 01
40-49 % 2 4 6 8 10 % 2 4 & 8 10 % 2 4 ﬁlo
74P = 0.00 7P = _0.16 74P = 0.16 —0.09
o, =0.036 o. =0.036 o, =0.047 0.028
05 05 05
0.4 0.4 0.4
0.3 0.3 03
0.2 0.2 0.2
0.1 01 01 N
50-59 % 2 4 6 8 10 % 2 4 6 8 10 % 2 4 6 8 10
74P = 0.10 74P = .24 74P = 0.15 —0.22
?7\7_ =0.044 37 =0.043 37_ = 0.055 0.034
7" —0.22 —0.41 0.63 To = 2.89
el 0.022 0.023 0.029 o, =0.018
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8.3.2 Model 2: No interaction model

In the case of no interaction between AGE and PRODUCT the two-factor model is

vy=To+T{+75 ,i=1,234 and j=1,23. (8.48)
In matrix notation the medians are to be fitted such that
v = Yo,
1 1 0 0 1 O
1 1 0 0 0 1
1 1 0 0 -1 -1
1 0o 1 0 1 O 02)
1 0 1 0 0 1 Yo
10 1 0 -1 -1 V4
ol 0 0 1 1 0 Y
1 0 0 1 0 1 s
1 0 0 1 -1 —1 Ve
1 -1 -1 -1 1 0
1 -1 -1 -1 0 1
1 -1 -1 -1 -1 -1
To
— (124 20 )| A (8.49)
\P
where
To="71 overall median
T V2
A = =17 effects for AGE
T§4 Va
AP = m _ |7 effects for PRODUCT
TS Ve
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See Table 8.5 for an explanation of the submatrices 1, Z 4 and Zp in (8.49).

It follows that 7r is to be estimated such that v is in the column space of Y5 and therefore implies

the constraints
gmod2(T) = Qy v =0 (8.50)

where Qy =I1—Y,(Y,Y,) 'Y,.

Note: The vector of constraints
gmod2(77) = ZAPV =0 (851)

with Z 4p also defined in Table 8.5 is simply a reformulation of (8.50) and will provide exactly
the same results. This follows since the columns of Z 4p generate the orthogonal vector space
of Y, or simply because the model is to be fiited such that all the interaction effects in A"

(see Table 8.5) are zero.

The no interaction model is obtained by employing the vector of constraints

8log ()
() = =0
S gnonr(m)

in the ML estimation procedure. The ML estimate of -, in (8.49) is

T %o 2.8775
72 7 0.2879
J=(Y,Ys) 'Y,0 = f?) _ f’z: _ | 00761
T4 T3 —0.1160
Vs 7 ~0.2305
Vo 7 —0.4380

containing the effects for the no interaction model.

The fitted log-logistic curves under the constraints of no interaction between AGE and PRODUCT are
displayed in Table 8.8 and Table 8.9. In Table 8.8 the estimated medians proportionately reflect the
row and column effects tabulated in Table 8.9. The strong negative linear trend in PREMIUM over
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the AGE categories is evident, with PRODUCT Il the most expensive product. All the interaction
effects in Table 8.9 are now equal to zero.

From the goodness of fit statistics tabulated in Table 8.7, Model 2 shows a substantial drop in fit
from that of Model 1. (See Table 8.4.) This is due to the clear interaction pattern seen in Model
1 where the saturated model was fitted. However, by calculating the measure of discrepancy the fit
is still satisfactory, since D = 0.015 < 0.05.

Table 8.7: Goodness of fit statistics for no interaction model.

Pearson Wald

Model | df || Statistic | p-value || Statistic | p-value

2 30 | 1248 | <0.0001 | 125.7 | <0.0001

The degrees of freedom for Model 2 is 30, since an additional 6 linear independent constraints are
included in gmod2(7) = 0. See (8.50) and (8.51).
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Table 8.8: Descriptive statistics for the no interaction model.

PRODUCT
AGE P1 P2 P3
05 05 05
0.4 0.4 0.4
0.3 0.3 0.3
0.2 0.2 - 0.2
0.1 0.1 0.1 N
%0 2 4 & 8 10 00 2 4 & 8 10 %0 2 4 & 8 10

20-29
nw=3.199 v =2935 w=3.053 v=2727 n=4539 v=3834
c=1476 o, =0.033 c=1673 o,=0.039 o =23.328 0o, =0.050

05 05 05
0.4 0.4 0.4
0.3 0.3 0.3
0.2 0.2 0.2
0.1 0.1 0.1
0 ' 0 0 ‘

30.39 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
w=3.092 v=2723 1n=2766 v=2516 n=4302 v=3.622
c=1.837 o, =0.031 oc=1357 o, =0.031 oc=3204 o, =0.043

05 05 05
0.4 0.4 0.4
0.3 0.3 0.3
0.2 0.2 0.2
0.1 0.1 0.1
0 0 0 L ==

40.49 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
=288 7=2531 [=2590 7=2323 7i=3991 ¥ =3.430
c=1."749 o, =0.033 c=1384 0o,=0.031 c=2691 o, =0.045

05 05 05
0.4 0.4 0.4
0.3 0.3 0.3
0.2 0.2 0.2
0.1 0.1 0.1
0 0 0 L ==

50.59 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
w=2.755 v =2.399 1n=2475 v=2192 n=3962 v=3.298
c=1.740 o, =0.041 o =1427 o, =0.040 c=3.109 o, =0.050




Table 8.9: Effects for the no interaction model.
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PRODUCT 7r
AGE | 1 1 o,
05 05 05
0.4 0.4 0.4
0.3 03 03
0.2 0.2 0.2
0.1 01 01
20-29 % 2 1 10 00 2 4 6 8 10 % 2 4%}10
AP _ AP _ AP _ 0.29
5. =0 5. =0 5. =0 0.028
05 05 05
0.4 0.4 0.4
0.3 03 03
0.2 0.2 0.2
0.1 01 01 N
30-39 0 2 4 6 10 % 2 4 & 8 10 % 2 4 6 8 10
%_\AP — 0 ?AP — ?AP - 008
5. =0 G, =0 5, =0 0.024
05 05 05
0.4 0.4 0.4
0.3 03 03
0.2 0.2 0.2
0.1 0.1 01
0 -t 0 ‘ ot L =]
40-49 0 2 4 6 10 0 2 4 6 8 10 2 4 6 8 10
%_\AP — 0 ~AP — 0 ?AP — —012
5. =0 G, =0 5, =0 0.025
05 05 05
0.4 0.4 0.4
0.3 03 03
0.2 0.2 0.2
0.1 0.1 01 N
50-59 ° 2 4 s 10 % 2 4 & 8 10 % 2 4 6 8 10
AP _ AP _ AP _ —0.25
5. = 5. = 5. = 0.030
74 —0.23 —0.44 0.67 To = 2.88
el 0.021 0.021 0.028 o, =0.017
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8.3.3 Model 3: Regression model with no interaction

The decreasing monotone trend in PREMIUM over the categories of AGE can be modeled more

effectively by incorporating AGE as a so-called covariate. Instead of the 3 dummy variables used in

Z,=D,®1p =

0 O
1

1 0
@1 1

0 1
1

-1 -1

o O O O O = ==

o

—1
-1
-1

the effect of AGE on PREMIUM can be modeled with the single covariate

EA:ZA®1PI

24.5
1

34.5
@11

44.5
1

04.5

24.5
24.5
24.5
34.5
34.5
34.5
44.5
44.5
44.5
54.5
54.5
54.5

0 0
0 0
0 0
1 0
1 0
oo :12x 3
0 1
0 1
0 1
-1 -1
-1 -1
-1 -1
12 x 1 (8.52)
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where z4 = ( 24.5 34.5 44.5 54.5 > represents the vector of class midpoints for AGE.

The model to be fitted is
v = Ysvy;
1

1
1

—_ = = = e e =

= (1 z4 zp)

Model (8.53) implies

gmod3(7r> = QY v=20

24.5
24.5
24.5
34.5
34.5
34.5
44.5
44.5
44.5
54.5
54.5
54.5

to be implemented in the vector of constraints

g(m

)=

1 0
0 1
-1 -1
1 0
0 1
-1 -1
1 0
0 1
-1 -1
1 0
0 1
-1 -1
71

2

3

Va

8log (77)

Zmod3 (77)

71
V2
3
Va

(8.53)

(8.54)

where Qy =I—Y;5(Y,Y3) 'Y, Since rank (Ys) = 4 a total of 8 linear independent constraints

are included in gmoq3(m) = 0. The total number of linear independent constraints in (8.54) are

equal to 32.
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After employing the ML estimation procedure the restricted ML estimate 7, yields the ML estimate

%, 3.5807
5 —0.01817
Vs = (Y5Ys) Y0 = 7\2 = : (8.55)
7y 0.22774
%, —0.44003

It follows from (8.55) that the effects for Product Il and Product IlI are
7 =7, =—-022774 and 75 =7, = —0.44003 (8.56)
respectively and hence the effect for Product Il is
78 = — (73 +7,) = — (—0.22774 — 0.44003) = 0.66777 (8.57)
meaning that the estimated median for Product Il is R66.78 above the overall median.

The estimated two-factor model is

Uiy = (3.5807 +77) —0.018172 | i=1,2,3,4and j =1,2,3 (8.58)
where
V;; = estimated premium in the ij-th category
24 = the class midpoint for the i-th category for AGE

7 = effect for the j-th category for PRODUCT

According to (8.58) the PREMIUM drops with R1.82 per year, or equivalently the PREMIUM drops
with R18.17 per age category of 10 years. This rate of change in PREMIUM over AGE is the same
for all three products, since no interaction between AGE and PRODUCT was assumed. See the
estimated medians in Table 8.10.



106

Table 8.10: Descriptive statistics for no interaction regression model.

PRODUCT
AGE | 1 11
05 05 05
0.4 0.4 0.4
0.3 0.3 0.3
0.2 0.2 - 0.2
0.1 0.1 0.1 N

20.29 %0 2 4 & 8 10 00 2 4 & 8 10 %0 2 4 & 8 10
=317 v =2917 nw=3.034 v=2705 1 =4.508 v=3.812
oc=1465 o, =0.028 c=1682 o,=0.033 o =23.286 o, =0.045

05 05 05
0.4 0.4 0.4
0.3 0.3 0.3
0.2 0.2 0.2
0.1 0.1 0.1 \

30.39 00 2 4 6 8 10 % 2 4 6 8 10 % 2 4 6 8 10
n=3106 v =2.735 n=2774 v=2523 n=4313 v=23.631
c=1844 o, =0.022 c=1359 o, =0.024 c=3214 o, =0.039

05 05 05
0.4 0.4 0.4
0.3 0.3 0.3
0.2 0.2 0.2
0.1 0.1 0.1
0 0 0 L ==

40.49 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
n=2908 v =2.554 n=2610 v=2.341 n=4.012 v=3.449
c=1."756 o, =0.025 c=139%4 0,=0.024 c=2701 o, =0.039

05 05 05
0.4 0.4 0.4
0.3 0.3 0.3
0.2 0.2 0.2
0.1 0.1 0.1
0 0 0 L ===

50.59 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
[=2730 D=2372 [=2439 D=2160 7i—=3928 ©=3.267
c=1."743 0o, =0.035 o =1405 o, =0.031 c=3.093 o,=0.044
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From (8.58) the regression lines for each of the three products may be constructed. These regression
lines have the same slope with different intercepts and are tabulated in Table 8.11. The regression
lines reported in Table 8.11 agree with the estimated medians reported in Table 8.10.

Table 8.11: Estimated regression lines for regression model with no interaction.

PRODUCT Vi
| 3.36196 — 0.018172"
I 3.14967 — 0.01817z
1l 4.25747 — 0.01817z

In Table 8.13 the effects for AGE reveal the same pattern as that of an ordinal variable. This follows
since the distances between the class midpoints are equal. The effects of AGE show a constant drop
of R18 per AGE category. Since all the interaction effects (?AP) are zero the medians in Table 8.10
proportionately reflect the row and column effects in Table 8.13.

Comparing the goodness of fit statistics of Model 3 (see Table 8.12) with that of Model 2 (see
Table 8.7), the fit for the two models stayed practically the same. This motivates that the inclusion
of AGE as a covariate in the model is doing practically just as good as the three dummy variables
in the previous model, emphasizing the solid linear trend in PREMIUM over AGE.

Table 8.12: Goodness of fit statistics for regression model with no interaction.

Pearson Wald

Model | df || Statistic | p-value || Statistic | p-value

3 32 || 126.0 | <0.0001 | 126.8 | <0.0001




Table 8.13: Effects for no interaction regression model.
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PRODUCT 74
AGE | 1 11 o,
05 05 05
0.4 0.4 0.4
0.3 03 03
0.2 0.2 - 02
0.1 0.1 01 yﬂ} N
20-29 °% 2 4 s 10 00 2 4 & 8 10 % 2 4 6 8 10
74P — 74P~ AP — 0.273
o, =0 o, =0 o, =0 0.022
05 05 05
0.4 0.4 0.4
0.3 03 03
0.2 0.2 02
0.1 0.1 0.1 .
30-39 0 2 4 6 10 % 2 4 & 8 10 % 2 4 6 8 10
~AP -0 ?AP —0 ?AP =0 0.091
o, =0 o, =0 o, =0 0.007
05 05 05
0.4 0.4 0.4
0.3 03 03
0.2 0.2 02
0.1 01 0.1 N
40-49 ° 2 1 & 10 % 2 4 & 8 10 % 2 4 6 8 10
/7§AP _ ~AP -0 ;]_\AP -0 —0.091
o, =0 o, =0 o, =0 0.007
05 05 05
0.4 0.4 0.4
0.3 03 03
0.2 0.2 02
0.1 01 0.1 N
50-59 ° 2 1 6 10 % 2 4 & 8 10 % 2 4 6 8 10
/7§AP —0 ;]_\AP -0 ;]_\AP -0 —0.273
o, =0 o, =0 o, =0 0.022
7 —0.228 —0.440 0.668 2.872
o 0.021 0.021 0.028 0.017




8.3.4 Model 4: Regression model with interaction
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Since the PREMIUM of the three products do not change at the same rate over the categories of

AGE, different slopes for each PRODUCT will be introduced leading to the model

v = Yy,
1
1
1

— = = = e e = e

24.5
24.5
24.5
34.5
34.5
34.5
44.5
44.5
44.5
54.5
54.5
54.5

1

0
1

24.5

0
—24.5
34.5

0
—34.5
44.5

0
—44.5
54.5

0
—54.5

- (12 2 @0z))

0

24.5
—24.5
0

34.5
—34.5
0

44.5
—44.5
0

54.5
—54.5

71
2
3
Va
s

Ve

71
V2
V3
Va
Vs
Ve

(8.59)

where z is defined in (8.52) and Z, is previously defined in Table 8.5. The vector of constraints

to be imposed in the ML estimation procedure is

g(m) =

8log ()
8mods (77)

=0

(8.60)

where gnods (1) = Quv with Qu =1 — Y, (Y,Y,) 1Y4 the projection matrix orthogonal to Y.

A total of 6 linear independent constraints are included in g0q44 (7) bringing the total number of
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linear independent constraints in g (7) to 30.

Employing the ML estimation procedure with the vector of constraints (8.60) the ML estimate for

Y is

3, 3.4879
R —0.01532
Y, = (YY) 'Y, 0= ?3 = —0.022 (8.61)
T 0.33708
o 0.00447
o —0.01963

implying that the overall trend in PREMIUM over AGE is

Uy =7, + 7.2 = 3.4879 — 0.015322 . (8.62)

Due to the interaction that exists between AGE and PRODUCT, the three regression equations for
PREMIUM are as follows:

PRODUCT I:
Ui = (3.4879 +7;) + (—0.01532 +7;) 2
= (3.4879 — 0.39227) + (—0.01532 + 0.00447) 2"
= 3.0956 — 0.01085z;" (8.63)
PRODUCT Il

Un = (3.4879+7,) + (—0.01532 + 7)) 2"
= (3.4879 + 0.33708) + (—0.01532 — 0.01963) z;*
= 3.8250 — 0.034962;" (8.64)

PRODUCT IlI: For PRODUCT Il the effect on the overall intercept (8.62) is

— (J5 +7,) = — (—0.39227 + 0.33708) = 0.05519

and the effect on the overall slope (8.62) is

— (95 +76) = — (0.00447 — 0.01963) = 0.01516
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leading to the regression line

Uiz = (3.4879 +0.05519) + (—0.01532 + 0.01516) 2;*
= 3.5431 — 0.000162; (8.65)

See Table 8.16 where all the estimated medians are tabulated. For each product the estimated
medians follow an unique trend over AGE. For PRODUCT | the premium drops with an estimated
R1.09 per year, while for PRODUCT Il the premium drops with an estimated R3.50 per year. For
PRODUCT I no real trend over AGE is evident with a slope that is practically equal to zero.

Investigating the effects in Table 8.17, the marginal and the partial trend over AGE may be examined.
Overall, the PREMIUM starts with R23 above the overall median of R288.30 and drops down linearly,
with an estimated R15.30 per age category, to R23 below the overall median. It is interesting to note
that this overall drop in PREMIUM seen by the 7_values is cancelled out by the interaction effects
for PRODUCT Ill, the 74”-values, implying no trend over AGE for PRODUCT III. For PRODUCT
[l the effect of AGE on PREMIUM is rather drastic. Starting with R29.40 above the marginal effect
for the youngest policy holders and dropping to R29.40 below the marginal effects for the oldest
policy holders.

According to Table 8.15 the fit of Model 4 is much better than that of Model 5 indicating different
trends in PREMIUM over AGE for the three products. This satisfactory fit further explained in Table
8.18 where the observed and expected frequencies are reported.

Table 8.15: Goodness of fit statistics for regression model with interaction.

Pearson Wald

Model | df || Statistic | p-value || Statistic | p-value
4 30 49.9 0.0127 50.0 0.0122
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Table 8.16: Descriptive statistics for regression model with interaction.

PRODUCT
AGE P1 P2 P3
05 05 05
0.4 0.4 0.4
0.3 0.3 0.3
0.2 0.2 0.2
0.1 0.1 0.1 N
20.29 %0 2 4 & 8 10 00 2 4 & 8 10 %0 2 4 & 8 10
[—3084 7=2830 [i=23279 7=2969 Ji—4142 7 —3.539
c=1422 o, =0.033 oc=1654 0, =0.046 oc=2874 o, =0.068
05 05 05
0.4 0.4 0.4
0.3 0.3 0.3
0.2 0.2 0.2
0.1 0.1 0.1
0 ' 0 0 L ==
30.39 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
=300 7=2721 [i—2879 7=2619 [i—4199 7 —3.538
c=1.836 o, =0.022 o =1406 o, =0.027 oc=3.117 o, =0.042
05 05 05
0.4 0.4 0.4
0.3 0.3 0.3
0.2 0.2 0.2
0.1 0.1 0.1
0 0 0 L ==
40-49 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
nw=2972 v=2613 n=2532 v=2269 n=4111 v =3.536
c=1."782 o, =0.028 c=1359 o,=0.026 oc=2761 o, =0.044
05 05 05
0.4 0.4 0.4
0.3 0.3 0.3
0.2 0.2 0.2
0.1 0.1 0.1 N
50-59 % 2 4 6 8 10 % 2 4 6 8 10 ° 2 4 6 8 10
w=2860 v=2504 n=2210 v=1.920 n=4246 vV =3.534
c=1."753 0, =0.045 oc=1411 o, =0.043 c=3332 o,=0.072




Table 8.17: Effects for regression model with interaction.
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PRODUCT 74
AGE | 1 1 o,
05 05 05
0.4 04 0.4
03 03 0.3
0.2 02 0.2
01 01 01 N
20-29 % 2 2 5 8 10 00 2 4 & 8 10 % 2 4 6 8 10
74P — _0.067 74P = 0.204 74P — _0.227 0.230
37_ =0.031 37 = 0.034 87_ = 0.042 0.026
05 05 05
0.4 04 0.4
03 03 0.3
0.2 02 0.2
01 01 0.1 N
30-39 % 2 4 6 8 10 % 2 4 & 8 10 % 2 4 6 8 10
74P = _0.022 74P = 0.098 74P — _0.076 0.077
37_ =0.010 87 =0.011 87_ =0.014 0.009
05 05 05
0.4 04 0.4
03 03 0.3
0.2 02 0.2
01 01 0.1 \.
40-49 % 2 4 6 8 10 % 2 4 6 8 10 % 2 4 6 8 10
74P = 0.022 74P = —0.098 74P = 0.076 —0.077
el =0.010 o =0.011 87_ =0.014 0.009
05 05 05
0.4 04 0.4
03 03 0.3
0.2 02 0.2
01 01 0.1 N
50-59 %0 2 4 6 8 10 % 2 4 6 8 10 % 2 4 6 8 10
74P = 0.067 74P = —0.294 74P = 0.227 —0.230
ZT\T =0.031 37 =0.034 37_ =0.042 0.026
Tp —0.216 —0.438 0.654 2.883
o, 0.021 0.022 0.028 0.017




Table 8.18: Observed and expected frequencies for regression model with interaction.
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PRODUCT
AGE | 1]

Premium | f | m Premium | f | m Premium | f | m

R51-R200 | 157 | 166 R51-R200 | 49 | 68 R51-R200 | 69 | 61

20-29 R201-R300 | 371 | 359 R201-R300 | 148 | 144 R201-R300 | 108 | 108
R301-R400 | 232 | 239 R301-R400 | 101 | 109 R301-R400 | 103 | 107
R401-R500 | 93 | 96 R401-R500 | 62 | 51 R401-R500 | 81 | 73

R500+ 77 70 R500+ 55 | 44 R500+ 100 | 112

Premium | f | m Premium | f | m Premium | f | m

R51-R200 | 267 | 271 R51-R200 | 213 | 194 R51-R200 | 132 | 145

30-39 R201-R300 | 400 | 378 R201-R300 | 328 | 317 R201-R300 | 249 | 235
R301-R400 | 212 | 237 R301-R400 | 147 | 174 R301-R400 | 211 | 226
R401-R500 | 115 | 109 R401-R500 | 71 | 66 R401-R500 | 156 | 155
R5004 111 | 109 R5004 41 | 49 R500+ 269 | 256

Premium | f | m Premium | f | m Premium | f | m

R51-R200 | 241 | 229 R51-R200 | 302 | 289 R51-R200 | 73 | 84
40-49 R201-R300 | 278 | 289 R201-R300 | 275 | 283 R201-R300 | 168 | 155
R301-R400 | 167 | 167 R301-R400 | 117 | 117 R301-R400 | 151 | 155
R401-R500 | 84 | 74 R401-R500 | 40 | 42 R401-R500 | 94 | 105
R500+ 62 | 72 R500+ 30 | 33 R500+ 170 | 156

Premium | [ | m Premium | f | m Premium | f | m |

R51-R200 | 135 | 139 R51-R200 | 205 | 223 R51-R200 | 77 | 73
50-59 R201-R300 | 150 | 155 R201-R300 | 130 | 120 R201-R300 | 121 | 112
R301-R400 | 89 | 83 R301-R400 | 49 | 43 R301-R400 | 98 | 106
R401-R500 | 40 | 36 R401-R500 | 18 | 16 R401-R500 | 76 | 73
R500+ 34 | 35 R500+ 14 | 15 R500+ 118 | 126
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Chapter 9
Bivariate grouped data

Consider a bivariate data set with n observations classified in a two-way contingency table with I
rows and J columns. The frequencies of the I.J cells are denoted by f;; in Table 9.1.

Table 9.1: Contingency table with I rows and J columns.

X
Y (=00, 11]  (y1,92] (Yo 290 1] (s 1,94
(=00, 7] Ji fi2 Ji 1 S
(I1,$2] f21 f22 f2,J 1 f2J
($1 2, 1] f] 1,1 fl 1,2 fl 1,J 1 f] 1,J
(351 1,961] fI1 f12 fI,J 1 fIJ

The objective is to fit a bivariate distribution curve to the two-way grouped data set in Table 9.1.

116
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9.1 Formulation

The vectors of upper class boundaries are

T hn
x

X = _2 and y = y_2 (9.1)
Tr Yi 1

with
Jiu Sz oo figa J1s
for fa2 o0 fou Jas

F= : D : : (9.2)
fn froooc fraga Jroag
fn Jfr2 o firga J1s
the matrix of frequencies listed in Table 9.1.
Define
f = vec (F) (9.3)

as the column vector where the elements of F are stacked row by row below each other. It is
assumed that f has a multinomial distribution

f ~mult (n, ) .

Let )
— 9.4
Po o (9.4)
denote the vector of relative frequencies. Hence
E (Po) = mo (9.5)

and

Cov (po) = % (diag (o) — o)
= Vp. (9.6)



Define the matrix of relative frequencies

1
P, = —F
n
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(9.7)

where F' is given in (9.2). The matrix with cumulative relative frequencies may be obtained from

P=C;-Py-Cy

where
100 - 0
110 - 0
Cr:(IxhH=111--0 and C,:(JxJ)=
111 -1
From )3 12 it follows that

vec (P) = vec(Cr-Py-Cy)
= (C, ® Cy)vec(Py)
= (C,®Cr)po

From (9.10) the random vector of cumulative relative frequencies is

p = Cp,
with

C:(CJ®C]) .

The expected value and covariance matrix of the random vector p is

E(p) = E(Cpy)
= C’Tl'o

= T

(9.8)

(9.9)

(9.10)

(9.11)

(9.12)

(9.13)
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and

Cov(p) = Cov(Cpy)
= lc {diag(mo)—momy} C
n

= %{Cdiag(c 171')C —71'71'}

= V. (9.14)
9.2 Estimation
Estimation of the bivariate distribution curve F' (z,y), is obtained such that
fori =1,2,--- 1 and j =1,2,---,.J where 7;; is the expected cumulative relative frequency in

(9.13). The complete set of expected cumulative relative frequencies is given in Table 9.2.

Table 9.2: Expected cumulative relative frequencies for a bivariate grouped data set.

Y
X (—o0,y1] (1, 92] (Ws 2,95 1) (v 1,94]
(—OO,$1] 11 T12 T1,J 1 g
(901,$2] 21 22 T2.J 1 Tog
($1 2,1 1] 1 11 Tr 1,2 Tr 1,0 1 Tr 1,J
(II 1,II] T T2 Tr,J 1 TrJg

Imposing the restriction (9.15) in the ML estimation procedure, leads to the ML estimate of 7 under

constraints, that will satisfy the characteristics of the specified bivariate continuous distribution.



Chapter 10
The bivariate normal distribution

In this chapter a few of the basic concepts of the bivariate normal distribution will be discussed.
These concepts are of importance in the estimation of the bivariate normal distribution to a two-way
contingency table. It will also be shown how to calculate bivariate normal probabilities by making use
of a series of gamma functions. The one-to-one relationship between the correlation coefficient and
the bivariate normal probabilities is explained in detail since it plays a major role in the estimation
of the bivariate normal distribution discussed in the next chapter.

10.1 Joint distribution

The bivariate normal distribution with pdf

B 1 1 T — [y ’
Jw.y) = QWOnyﬂ'exp{_Q(l_[ﬂ) [( Tu >

AEEE) ]

where —oco < p,, p, < 00, 0 < 04y 0, <00 and —1 < p < 1is to be fitted to the two-way
contingency table in Table 9.1. The pdf of the bivariate normal distribution involves 5 parameters

and a special notation for this joint distribution is

(x,y) ~ BVN (11, 1, 05,02, p) -
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10.2 Marginal distributions

When = and y are jointly normally distributed, each of the two marginal distributions by itself is
normally distributed. The marginal distribution of = is normal with mean p, and standard deviation

) = zimz - exp {—% <x ;x“x)2} . (10.2)

The marginal distribution of y is normal with mean 4, and standard deviation o, i.e.

fly) = \/%Jy - exp {—% (Z/;_f,)z} . (10.3)

Oy, 1.€.

10.3 Standard bivariate normal distribution

By making use of standardisation it is possible to obtain the standard bivariate normal distribution

1

2my/1 — p? .

where z, = (m) and z, = (y — ,uy)' In this case

O Oy

f(zzy2y) = exp {—ﬁ (22 — 2pzp2 + 2]] } (10.4)

(2, 2y) ~ BVN(0,0,1,1, p)

with
p=—2v (10.5)

040y
where 0,, = Cov(x,y), the only parameter determining the shape of the bivariate normal distribu-
Yy Y y g

tion.

The standard bivariate normal curve is displayed in Table 10.1 to illustrate the effect of the correlation
coefficient p.



Table 10.1: The effect of the correlation coefficient p.

Case 1l: p=0

Case 2: p=10.7

Case 3: p=-0.7

122
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Table 10.1 is summarised as follows:

Case 1: p=0
The contour curves are circles, indicating no relationship between = and . For all other values

of p the contour curves are ellipses.

Case 2: p=0.7
When = and y are positively related so that p > 0, the principal axis has a positive slope,
implying that the surface tends to run along a line with a positive slope. It is clear that high
x values are related with high y values and visa versa.

Case 3: p=-0.7
When z and y are negatively related, p < 0, the principal axis has a negative slope and the

surface runs along a line with a negative slope.

10.4 Conditional distributions

The density function of the conditional distribution of x for any given value of y is

f(z,y)
f(y)

where f(z,y) is the joint density function of x and y and f(y) is the marginal density function of

f(zly) =

y. When z and y are jointly normally distributed the conditional pdf of x for any given y is

Flaly) = ﬂ_%wexp [—% (%)] (106)

where

Oz

oy = Mot (p— | (¥ — 1)
Oy

0y = 03(1=p°)

The parameter o, = p1, — (p&) 14, is the intercept of the line of regression of x on y and the
o

Yy
parameter 3, = p— is the slope of this line.
Oy
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The conditional distribution of y for any given x follows similarly with

1 1 y_:uyx 2
r) = —eX ——= 107
f(ylz) Norra p[2<aw)] (10.7)
where
g
My, = uy+<pa—y) (z = p,)
ol = o (l—p°)

The parameter o, , = 1, — (p@> i, is the intercept of the line of regression of y on x and the
g

T

parameter 3, , = p— is the slope of this line.

10.5 Bivariate normal probabilities

10.5.1 Calculation of bivariate normal probabilities

The probability

b a 1 1

corresponds to the volume under the surface of the standard bivariate normal distribution over the
region —oo < 2z, < a and —oo < z, < b. The lines 2z, = 0 and 2, = 0 divide the domain in 4
so-called quadrants. See Table 10.2.

Table 10.2: The four quadrants of the bivariate normal distribution.

Quadrant Region
Q1 —00< 2, <0 —00< 2z <0
Q- —00<2, <0 0<z, <00
Qs 0<z2, <00 —00<z, <0
Q4 0< 2z, <0 0<2 <00
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Define

b a 1 1
Do(a,b; p) = ————exp [ - [% — 2p2,2, + 22 )dzxdz 10.9

as the integral where integration of the standard bivariate normal distribution takes place in the
positive quadrant, (4. See Figure 10.1.

15

y | //7
NN/

-1.5 T T T T

Figure 10.1: Integration region of ®¢(a, b; p)

Due to the symmetry of the bivariate normal distribution, any bivariate normal probability ®(a, b; p)
in (10.8) can be calculated as a linear combination of ®¢(a, b; p)-values in (10.9), summarised in
Table 10.3.
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1 p \'1 _,, oy it+1 2<i+1)
dola,b;p) = —.2t (1 — r
o) = o= () a2 0 (5
2 : 2 ;
. a ’z—l—l Ve b ’z—l—l
2(1—p2) 2 2(1—p2) 2
_2(2,0)14/1—;)2F2 i+1) a® i+l o b? i+ 1
B 44 2 2(1—p2)" 2 2(1—p2)" 2

=0

The probability ®y(a, b; p) can be calculated by making use of the SAS program , : - - listed
in the Appendix. The probability ®(a,b;p) can be obtained by making use of the SAS function
PROBBNRM(a,b,p) | or by making use of the SAS program , - - also listed in the Appendix.

10.5.2 Calculation of p

Integration over each of the four quadrants tabulated in Table 10.2 leads to the definition of the
following four probabilities or so-called volumes

1 1
VOL1 = //7-@( {—7 22— 2p2,2, + 22 }dzxdz 10.13
| i A R Al dadn 008

1 1
VOL2 = //—-ex {—— 25—2 2oty + 22 }dzxdz 10.14
) 2m/1= 7 g 2(1—PQ>[ Pyt ) v (101

1 1
VOL3 = //—-ex {—— 22— 2pz,z, + 22 }dzxdz 10.15
5 Qﬂﬂ p 2<1_p2)[ p Y y:| Y ( )
VOL4 = //;-exp{—; [22 — 2p2,% —1—22}}(&' dz, (10.16)
5 27T /1_p2 2(1_p2) x Y Yy Wy

The probability or the total volume of the positive quadrant (), may be expressed in terms of the
correlation coefficient

arcsin p 1
=VOL4 — - 10.17
2 4 ( )
which is referred to as - X ")) (- < -
) = ). Due to the symmetry of the bivariate normal distribution i.e.

VOL1=VOL4 and VOL2=VOL3
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and the property
VOL1+4+VOL2 +VOL3+VOL4 =1

it follows that 5
—arcsin p = (VOL1 + VOL4) — (VOL2 + VOL3)
T

which leads to the expression of p

p = sin (g (VOL1 + VOL4) — (VOL2 + VOL 3)]) . (10.18)

As an illustration of the one-to-one relationship between the volumes of the respective quadrants
of the bivariate normal distribution and the correlation coefficient p consider Table 10.4 and Table
10.5.

Table 10.4: Relationship between p and the four volumes of the bivariate normal distribution.

(VOL1+ VOL4) | (VOL2 + VOL3) P

1 0 sin (7/2) = 1

0.9 0.1 sin (1/2(0.8)) = 0.95106
0.8 0.2 sin (1/2(0.6)) = 0.80902
0.7 0.3 sin (7/2(0.4)) = 0.58779
0.6 0.4 sin (7/2(0.2)) = 0.30902
0.5 0.5 sin (r/2(0)) = 0.0
0.4 0.6 sin (7/2(-0.2)) = —0.30902
0.3 0.7 sin (1/2(—0.4)) = —0.58779
0.2 0.8 sin (7/2(—0.6)) = —0.80902
0.1 0.9 sin (7/2(-0.8)) = —0.95106
0 1 sin (—m/2) = -1

In the case where p =0
VOL1=VOL2=VOL3=VOL4=0.25,

resulting in an even distribution of the volumes over the four quadrants.



Table 10.5: Contours of bivariate normal distribution with p
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For a slight positive relationship of p = 0.2 (see Table 10.5), the volumes of the positive and negative
quadrants are slightly higher than the two mixed quadrants. Comparing p = 0.5 with p = —0.5 it
is clear that the two graphs are mirror images of each other. Further, it is also clear that a stronger
positive relationship is associated with higher volumes in the positive and negative quadrants, while
a stronger negative relationship is associated with higher volumes in the two mixed quadrants. (See
Table 10.5.)



Chapter 11

Estimating the bivariate normal
distribution

In this chapter the estimation procedure to fit a bivariate normal distribution (10.1) to the two-way

contingency table in Table 9.1 is described.

11.1 Bivariate normal probabilities

After standardising the vector of upper class boundaries x in (9.1), the vector of standardised upper

class boundaries is

— 1
g = Xl
Og
1
_ o
= (X —1) 1y
O
— Xa, (11.1)
with
2z
Xz(x —1> and o, = Zw . (11.2)
0.
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Similarly it follows from standardising y in (9.1) that

—u, 1
g = Y
Oy
1
- _ Oy
(Y 1) iy
Oy
= Yo, (11.3)
with
1
Y:(y —1> and o, = ﬁ . (11.4)
Oy

The vectors o, in (11.2) and ay, in (11.3) are referred to as the vectors of so-called natural

parameters.
The bivariate normal probabilities
Dij=F (2,2 ) =P(Zy < 2,2, < 2) (11.5)

with corresponding standardised upper class boundaries are tabulated in Table 11.1.

Table 11.1: Bivariate normal probabilities.

Ry 2y 2y Ry

g Dy D9 Dy Dy
Zx Dy Dy Dy g Dy
Zy O 1,1 @, 1,2 " o, 1,J 1 D 1,J
g dn Do q)I,J 1 3

To fit a bivariate normal distribution to the contingency table in Table 9.1 it is required that the
bivariate normal probabilities should equal the corresponding cumulative relative frequencies i.e.

[®],, =[], fori=1,2,-,Tandj=12--J (11.6)

v
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where
(I)ll (I)12 (I)I,J 1 (I)IJ
Doy Pyp oo Doy Py
P = : : e : : (11.7)
Pra1 Praz o Praga Proag
Qp P 0 Prgg ry

is the matrix with bivariate normal probabilities defined in (11.5) and

11 T2 =0 T1J 1 1,7
21 T2 0 T2 1 T2,
1= : S : : (11.8)
Tr 11 Tr12 - TriJg 1 71 1J
Il Tr2 Tr,J 1 mrJ

is the corresponding matrix with expected cumulative relative frequencies defined in (9.15).

It follows from (11.6), that the following three conditions must hold:

1. Marginal distribution of x:

(I):r = Ty
Dy T1,J
P s
o = > (11.9)
o, 1,J Tr 1,J
(First (I — 1) elements of last columns of ® (11.7) and IT (11.8).)
2. Marginal distribution of y:
e, = m,
(‘I)n Dy - ‘I)I,J 1 ) = <7T11 T2 - T1J 1 > (11-10)

(First (J — 1) elements of last rows of ® (11.7) and II (11.8).)
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3. Joint distribution of x and y:

b, = my
Dy Dy T ‘I)l,J 1 11 12 T T1,J 1
Dy Doy Tt (I)z,J 1 21 22 Tt T2.J 1
vec = vecC
O 1,1 D 1,2 ®r o151 Tr 11 Tr 1,2 -+ Tr 1,J 1

(11.11)

(First (I — 1) (J — 1) elements of ® (11.7) and IT (11.8).)
In ®,, and 7., the elements of the joint bivariate probabilities and the elements of the joint

cumulative relative frequencies are stacked row by row as a single column vector.

11.2 Parameters

The bivariate normal distribution depends on five parameters i.e.

(x,y) ~ BVN (1t 1y, 02,02, p)

where —oco < p,, p, < 00, 0 < 0, 0y < oo and —1 < p < 1. The parameters p, and o, are
functions of the marginal distribution of , while the parameters y, and o, are functions of the

marginal distribution of . The parameter p is a function of the joint distribution of x and y.

11.2.1 Marginal distribution of x

From the properties of the bivariate normal distribution it follows that the marginal cumulative
relative frequencies

Ty = " (11.12)
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follow a cumulative N (u,, 02) distribution curve at the upper class boundaries of x and hence

i) 1(71':,3) = z,

= Xa, (11.13)

which leads to ]
a,=| 7 | =(XX) 'X® (m,) . (11.14)

ox

Under normality (11.13), the standardised upper class boundaries z,, is a function of the natural
parameters . By substituting (11.14) in (11.13) it follows that z, is the projection of ® * ()
on the vector space of X i.e.

z, = Px® '(m,) (11.15)

where
Py=X(XX) 'X (11.16)

is the projection matrix of the vector space generated by the columns of X.

11.2.2 Marginal distribution of y

The cumulative relative frequencies

”y:(ﬂn Mg =+ Mg 1) (11.17)

follow a cumulative N (uy, 02) distribution curve at the upper class boundaries of y and hence

@ 1(7"y) = 2y

- Yo, (11.18)
which leads to )
a, = f;; YY) 'Y® ‘() . (11.19)
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Under normality (11.18), the standardised upper class boundaries z,, is a function of the natural
parameters «,. By substituting (11.19) in (11.18) it follows that z, is the projection of ® ! (mr,)
on the vector space of Y i.e.

z,=Py® '(m,) (11.20)

where
Py=Y (YY) 'Y . (11.21)

11.2.3 Joint distribution of x and y

The one-to-one relationship between the correlation coefficient and the volumes of the four quadrants
of the bivariate normal distribution

p=sin (g [(VOL1 + VOL4) — (VOL2 + VOL 3)]) (11.22)

is explained in the previous chapter. The four quadrants of the bivariate normal distribution are
denoted by ()1, @2, @3 and Q4 and by adding the relative frequencies in the 4 quadrants it is possible
to calculate the volume for each quadrant. In matrix notation the vector of relative frequencies is

m=C 'm. (11.23)
(See (9.12) for an explanation of the matrix C.)

The expressions for the 4 volumes are as follows:

VOL1 = v;my=v,C 'm (11.24)
VOL2 = v,my=v,C 'w (11.25)
VOL3 = vymy=v,C '& (11.26)
VOL4 = v,my=v,C 'w (11.27)
where
v, =vec(V,) for ¢=1{1,2,3,4} (11.28)

and V is an (I x J) indicator matrix such that:
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1. [Vg];; =1 ifthe (i,j)-thcell € @y for ¢={1,2,3,4}
2. [Vgl;; =0 if the (i, j)-th cell ¢ Q, for ¢={1,2,3,4}

3. Cells containing the lines z, = 0 or 2, = 0, i.e. belonging to more than one quadrant, should
be allocated proportionately to the standard bivariate normal distribution, depending on the

value of p.

This implies that

4
> v, =1 (11.29)
qg=1

and following from (11.22) it is now possible to express p as

p = sin (g (v, +v,) = (Vo + v3)] C ln) . (11.30)

11.3 Vector of constraints

The vector of constraints, g (m) = 0, with

)
g(m)=| g,(m) (11.31)

consists out of three sets of constraints.
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11.3.1 Marginal distribution of x

g, (m) = &, —m, (11.32)
= ®(z,) — 7,
Dy T
. Dy B T2 g
O 1,J Tr 1,J

The (I — 1) constraints in g, () refer to the marginal cumulative relative frequencies 7, that has
to follow a cumulative normal distribution curve at the standardised upper class boundaries x. This
follows from the properties of the bivariate normal distribution, since the marginal distribution of x
is

r~N (,ux, ai) .

11.3.2 Marginal distribution of y

gy(m) = &, —m, (11.33)
= ®(z,)—m,
O3 4§
o (I)I,Z B 1,2
(DI,J 1 Tr,J 1

The (J — 1) constraints in g, (7) refer to the marginal cumulative relative frequencies 7, that has
to follow a cumulative normal distribution curve at the upper class boundaries y. This follows since

the marginal distribution of y is
y~N (:“y’ 012/) :
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11.3.3 Joint distribution of x and y

Sy (77) = (I)acy — Ty (1134)

The (I —1)(J — 1) constraints in g,, (7) refer to the joint cumulative relative frequencies 7,
that has to follow a cumulative bivariate normal distribution curve at the intersections of the upper

class boundaries x and y. The bivariate normal distribution to be fitted is such that

(,y) ~ BVN (1, 1, 05,05, p) -

The elements of

Dy Dy D5

Dy Doy Dy 5 1
= vec

Qr 11 Proap o Proaga

are the cumulative probabilities from the standard bivariate normal distribution at the intersections
of the class boundaries z, and z, stacked row by row below each other as a single column vector

and the elements of

11 T12 T1,J 1

21 T22 T2,.J 1
Ty = VEC

Tr 11 Tro12 0 Tro1J 1

are the cumulative relative frequencies, also stacked row by row below each other.
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11.4 Matrix of Partial Derivatives

As in the case of the vector of constraints, the matrix of partial derivatives of g (7r) with respect to

iy

g, ()
or

G, = Jg () _ g, () (11.35)
or or

08y ()
or

also consists out of three sets and will be derived below.

11.4.1 Marginal distribution of x

g, () 0P, B o,

ow om ow
0% (z)
= e I, (11.36)
where 5
LE
I, = o (I—-1)x1J. (11.37)

Since z, = Xa, with o, = (X X) 'X & ! (r,) it follows from the chain rule for matrix differen-

tiation
0P (z,) _ 0®(z,) 0z, O, Om,
or N 0z, Ja, Om, Om
= diag|¢(z,)]- Px-D, -1, (11.38)
where o
p,- 2% (m) (11.39)

o,



To solve (11.39) set v = ® ' (7r,) then ® (v) = 7, and hence
ov

o, )
(%)
(%5")
— (diag[¢ (v)]) *
= (diag [¢ (@ (m,))])

D, =

1

11.4.2 Marginal distribution of y

O, (x) _ 0%, om,

or om o
_ ai’ (Zy) . I
n or Y
where 5
Fis
Iy:a—ﬂ_y:(J—l)xIJ.
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(11.40)

(11.41)

(11.42)

Since z, = Xa, and o, = (YY) 'Y ! (7,) it follows from the chain rule for matrix differen-

tiation
o®(z,) _ 0®(z) 0zy Oay Om,
or N 0z, ay Om, Om
= diag[¢(z,)]- Py -D, -1,
where
Dy — 8@ ! (ﬂ-y)
om,

= (ane[o(2 *m)])

(11.43)

(11.44)
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11.4.3 Joint distribution of x and y

From the chain rule for matrix differentiation it follows that

Oy (m) _ 0By Oy
o - Or or
Zl’
0 z,
0%y P ) Omy
a or or
ZI
0 z,
P
0z,
om
(4)
oe,, 09, 0P, 0z,
= ( 0z, 0z, op > | om | Ly (11.45)
(1) 2) (3) (5)
@
or
(6)
where 5
Ty
Ixyza—ﬂ_y:(l—l)((]—l)xlj. (11.46)

A total of 6 derivatives that are labled in (11.45), are simplified in (1) to (6) below.
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0
0z,

F(zx,zy)

1
_ (zf — 2pz129 + zg) } dz1dze

0 /Z /Z 1 {
= - . eX —
D2y or/i—p P\ T2(— )
1
22— 2pzp 20+ 73) } dzo

| sl
= 27T\/%7p2-e><p{—%}/z exp{—ﬁ(@—pzx)z}d@

2
1 1, /z 1 [ 29— pzs
= ————— .exp{ ——2 exp ——= | —— dz
274/ 1 — p? p{ Qz} p{ 2( 1p2>} 2

Set w — <le_p> then

and consequentely

0 1 1,
asz(zxuzy) - m'exp{_izz}

It now follows that
o®,, (0P, 0P, 0®,,
0z, 0z,  0zp = 02z
= (vec(E1A,),vec (ExA,), -+ ,vec(E;r 14A;)) (11.47)

where

A, = diag (¢ (z,)) - ® <(Zy ! 1\)/1’;(: 2 1)) (11.48)
—p
andE;: (/—1xI—-1), i={1---1—1} is a matrix such that
El],, =1 if i=r=s
[E;]., = 0 elsewhere. (11.49)



2. Likewise

0

and therefore it follows that

o o) =0 (a0 (s

1—p?

0z,

where

0Py 0Pyy 0Py . 0%qy
azy Y 8Zy ) Y 8Zy
= (vec (A E),vec (AyEy), -

,vec (A,E; 1))

1)—P(Zy®11 1)

1
Ay=~1><(z””® ’

andE;: (J—-1xJ-1), j={1,---

oF (zx ) 2y )

T ) - diag (¢ (zy))

,J — 1} is a matrix such that

=1 if j=v=w

= 0 elsewhere.

1

dp
3 /z /‘Z ; “exXpy —————— [2,2 o 2p2’1Z2 + Z2:| } ledZQ
dp 2my/1 — p? 2(1—p2) ! 2
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(11.50)

(11.51)

(11.52)

z z a 1 1 ) 2
- pom/i—p2 | —o 2 A2 dzd
/ / ap{%M} eXp{ 2(1—p?) & pz1z2+22}} z1dzy +

0

z z 1
- e
/ / 2my/1 — p? dp *

p

p

1

/z /’Z 1 ,exp{_i [2%—2p2122+23:|} .
2my/1 — p? 2(1—p?)
0 1

8_p{_2(1—p

2) [Z% — 2pz129 + Zﬂ } dz1dze

g

1
{_m [2’% —2pz120 + Zg} } dz1dzy

z z 1 1 , 2
1-— p2 / / m - €XpP {—m [21 — 2pz129 + 22} } dz1dze +
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Simplification of the derivative above leads to

0 1
37 (o - 4]
2122 P
= (1 — p2) — (1 — p2)2 [Z% — 2p212’2 + Z;]

p (1= p?) + 207 p
= = 22'2%—’_ 2\2 z 2225
(1-p?) (1-p?) (1-p?)

and therefore

OF (24, 2y ) P~ . P = .
8—p = 1_p2\11(z$,zy,0,0,p)—mq/(zx,zy,Z,O,p)—l—
1+—02@ (zx 2y s 1, 1;p) P g (zx , 2 ,O,2;p) (11.53)
(1—p?)° ! (1—p?)° !
where
v (zx ) Zy ,/{:,l;p) = / / mz\féexp (—m [zf — 2pz129 + Zg]) dz1dzo

(11.54)
Define the integral

Wo (2e, 2y, kL :/ / —Flex (—— 22— 2pz2 +z2)dzdz
0( Y P) ; . 27T\/m12 p 2(1_102)[1 Pz122 2} 1622
(11.55)
where integration takes place from the origin. Depending on the specific location of (zx ) 2y )

U (22 ,2y , k,1; p) (11.54) can be expressed in terms of 0, (22 ,2y , k,1;p) (11.55) as follows:
Quadrant 1: (2, <0, z, <0)

v (zx ) Zy ,k:,l;p) = \T/O(oo,oo,k,l;p) — \T/g(—zl, ,00,k,l;p) —
@0(00, —Zy 7k7l7p) + E’0<_Z:If y TRy 7k7l7/0>
(11.56)

Quadrant 2: (2, <0, z, >0)

U (zz , Zy ,k:,l;p) = {Ivfo(oo,oo,k,l;p) — \TJO(—zx ,00,k,l; p) +
(_1)k \T/U(Oovzy >k>l; —,0) - (_1>k \TJO(_ZJE ) Ry ,k?,l; —P)
(11.57)
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Quadrant 3: (2, >0, z, <0)

U (2,2, .k 5p) = Wg(oo,00,k,1;p) + (—1) Wo(2, , 00, k, I; —p) —

\IJO(Ooa —Ry 7k7 lﬂp) - (_1)l CI}O(ZI ) TRy 7k7 la _p)
(11.58)

Quadrant 4: (z, >0, 2z, >0)

CI} (Zx ) 2y 7k7la/0) - \’170(007 05 P, k7l) + (_]—)l E,O(Z:IJ y 00, =P, ka l) +
(_1)k CI}()(OO,Zy JkJZ; _p) =+ {IVI0<ZQU 7Zy 7k7l7p)
(11.59)

The integral \Tlo(zx .2y, k,1; p) is expressed as a series of gamma functions in Algorithm 2.

Algorithm 2
k

4 z 1 1
o (20,2 .k, p) = /0 /0 m 22k exp (—m (21 — 2pz122 + z%]) dzidzs
2 (- 2p) . [i+k+1 i4+1+1
N 4 Z i : 2 : 2

1=0

22 i+k+1 2 i+1+1
'G(Q(l—pQ)’ 2 )'G 2(1-p%) 2 (11.60)

Proof. -

_ z z 1 1
\IIO (Z:c ) Ry ,]{37 l, p) = /0 ; m Z]fZé exp (_2(1——p2> [Z% - 2,02122 + Zg}) ledZQ
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\T/o(zx,zy,k,l;p) — . (1_pp2)i
L A By
.2—(1_'02)_F<MTH)G<2<1Z§p2>’m2+1>

_ 2_(1;7:)2)—Z{(2ﬁ)ir<z’+l;+1>r(z‘+l2+1>

=0

o 22 7i+k—|~1 e 2 7i+l+1
2(1—p2) 2 2(1—p2) 2

. Since z, = Xa, and o, = (X X) "X & ! (7r,) it follows that

0Z 0z, _ da, ‘ o,
or Ja, Om, Om
= Pxy-D, 1, (11.61)

See (11.38).

. Similarly as in 4 above, z, = Yo, and a, = (YY) 'Y @ ! (m,) and therefore

o0z, 0z, OJoy Om,
or  Oa, Om, Om
- Py-D, 1, (11.62)
See (11.43).
. From (11.30) it follows that
0 0 (. (m
L= —{sin (Sl +vi) = (v 4w C ') |

= c0s (5 [(vi +vi) = (va + V)| € ') - (S (v +v) = (v + V)] C 1) .
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11.5 Iterative procedure

A very short outline of the iterative procedure is as follows and will be discussed briefly.

p = observed cumulative relative frequencies

P=P
DO OVER =
T=Pp

Calculate V = Cov ()
Calculate z, , z, » and p, from .
Calculate G (as a function of )
p=p
DO OVER p

Calculate z, ,, z, , and p, from p.

Calculate Gy, (as a function of p)

® (2, ,) P.
g(p) = P (z, ,) — | p,
vec (<I> (in;m Zy p pp)) Py
P=p—(G:V) (G:VG,) g(p)
END
END

The procedure starts off with the unrestricted vector of cumulative relative frequencies. Convergence
is first obtained over p utilizing

p=p—(G,:V) (G:VG,) g(p) (11.63)
where the vectors of standardised upper class boundaries are calculated from

z, p=Px® '(p.) and z, ,=Py® ! (py) (11.64)
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projecting ® ! (p,) and ® ' (p,) into the respective vector spaces of X and Y. These standardised
upper class boundaries divide the cells of the contingency table into 4 so-called quadrants leading

to an estimate for
. T
pp=sin (511 +v,) = (v + )] C 'p) . (11.65)

Care should be taken to the cells belonging to more than one quadrant, since allocation of the
relative frequencies p should be done proportionately to the bivariate distribution, thus depending
on the value of p,. The calculation of p, will therefore be done iteratively, starting at a value say,
p = 0, untill iteration over (11.65) leads to a unique estimate for p,. (Explained in detail in the
next chapter.) The vector of constraints g(p) and the matrix of partial derivatives G,, are now all

functions of p and convergence over p ultimately leads to a new value for 7.

For convergence over 7 the covariance matrix V and the matrix of partial derivatives G, are all
functions of 7. Convergence over 7 leads to the restricted ML estimate of 7, i.e. 7, that satisfies
all the properties of the bivariate normal distribution.

11.6 ML estimates

The ML estimates of the bivariate normal distribution can be obtained from the restricted ML

estimate 7, discussed in the previous section. In matrix notation 7 can be represented as

%11 %12 e %I,J 1 %L]
%21 %22 e %2,J 1 %2(]
= (11.66)
T 1,1 Tr 1,2 T 1,J 1 Tr 1,J
%Il %12 %I,J 1 /77\-IJ

where 7;; corresponds to the restricted ML estimate of the cumulative relative frequency for the
i-th row and the j-th column of the two-way contingency table. The asymptotic covariance matrix
of 7 is

Cov(w) V—-(G,V) (G,VG,) (G,V) .
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11.6.1 ML estimates of the natural parameters

The ML estimates of the vectors of natural parameters are functions of the restricted ML estimate

7 with
€
= =] % | 2xx) 'x® (7)) (11.67)
a P
2
O
and
1
a= "=l %|=00vve =) (11.68)
Qy2 =2
Ty
where
T
T A
mo=| and 7, = ( - S ) . (11.69)
Tr 1,7
See the last column and row of II (11.66).
The corresponding covariance matrices are
Cov (&,) = {(X X) 'X DIII} Cov (%) {(X X) 'X DIII} (11.70)
Cov (&) = {(Y Y) 'y Dny} Cov (7) {(Y Y) 'y Dny} (11.71)
where .
: 1 :
D, = (dlag [d) (<I> 1(7rx))]) , D, = <d1ag [¢ (CI’ l(ﬂy)>D
and

OIS S5
oo Y o
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11.6.2 ML estimates of the original parameters

The ML estimates of the original parameters namely s, p,, 0., 0, and p with their standard errors
are all functions of the restricted ML estimate 7 and will be discussed briefly. The ML estimates for
the p's and ¢'s follow from (11.67) and (11.68) and according to the multivariate delta theorem

T Jum

B, = N ,B, Cov(a,)B, (11.72)
O fo
and
“3 /“/Iy :uy ~
B, = N , B, Cov(ay)B, | . (11.73)
ay Oy

The matrices of derivatives in (11.72) and (11.73) are

- A
Oa, S E
and
8,6 o 1
By _ y _ o o
ooy, _1 0

The only parameter that remains is p and is estimated from
% = sin (g [(vom n VOL4> . (VOLz + VOL3>D
— sin (g (v, +v,) — (v + v4)] C 17?) . (11.74)

In (11.74) the restricted ML estimates of the relative frequencies of the 4 quadrants are simply
added to obtain the ML estimates for the 4 so-called volumes. For the cells belonging to more
than one quadrant, the relative frequencies are added proportionately to the fitted bivariate normal
distribution. This requires that p is to be solved iteratively over (11.74) beginning at any starting
point, say p = 0 untill convergence leads to the unique ML estimate for p. The variance of p follows

Var (p) = (S—I’;) \Y% (g—g> (11.75)
dp

3n = oo (5104 va) = (v +v0)] € ') - (S vitva) — (v v C 1)

where
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11.7 Goodness of fit

Since the vector of constraints in

8uy ()

consists out of (I — 1)+ (J —1) + (I —2)(J — 2) linear independent constraints, the degrees of
freedom for the Pearson ? statistic

X2 _ ZZ (pij : Fij) (11.76)

and the Wald statistic
W =g(p) (G,VG,) g(p)

df=1J—T—J+2. (11.77)

In (11.76) p;j fori =1,2,--- T and j =1,2,---,J is the observed cumulative relative frequency
in the (7, j)-th cell (see (9.11)) and in matrix notation the observed cumulative relative frequencies

may be represented as

P11 pPi2 - DP1Jg 1 P1y
P21 P22 - P21 P2y
P = : : . : : . (11.78)
Pr 11 Pri2 - PriJg 1 PriJg
pbnn Pr2 - DPrg1 PrJ

The elements of P are also referred to as the unrestricted ML estimates of 7r. The elements of II
in (11.66) are the restricted ML estimates of 7 obtained from the ML estimation procedure and

satisfies the properties of the bivariate normal distribution.



Chapter 12
Application

The association between Grade 12 Mathematics (MATHS) and first year Statistics (STATS) is
investigated. First year students who had Mathematics on HG and who were enrolled for Statistics
for the first time in 2004 were included in the sample. The results are shown in Table 12.1.

Table 12.1: Two-way contingency table of 746 first year students, row percentages in brackets.

MATHS STATS (y)

() 0-49 50-59 60-74 | 75100 | Total
0-59 106 90 35 5 236
(44.92%) | (38.14%) | (14.83%) | (2.12%)

60-69 57 73 59 22 211
(27.01%) | (34.60%) | (27.96%) | (10.43%)

70-79 15 40 57 27 139
(10.79%) | (28.78%) | (41.01%) | (19.42%)

80-100 2 14 45 99 160
(1.25%) | (8.75%) | (28.13%) | (61.88%)

Total 180 217 196 153 746

(24.13%) | (29.09%) | (26.27%) | (20.51%) || (100%)

154




155

The row percentages in Table 12.1 reveal a definite interaction structure between MATHS and
STATS. Low MATHS marks correspond with low STATS marks and vice versa, identifying a positive
correlation between the two variables. The Pearson x? test of independence, x? = 326

(df =9, p value<0.001), shows a very strong association between the two variables.

Traditionally researchers might have been tempted to use the class midpoint as an estimate for the

values within a particular class interval. By using this approach the sample correlation coefficient is
r = 0.5495 (12.1)

with an estimated regression line of
y=25.8+0.5187z . (12.2)

Since we are dealing with a bivariate grouped data set, the basic assumptions for applying these
statistical techniques are not met and the results obtained in (12.1) and (12.2) might be incorrect.

In this chapter a bivariate normal distribution will be fitted to the data in Table 12.1. It is justified to
assume that MATHS (x) and STATS (y) are jointly normally distributed and therefore the estimation
of the correlation structure between these two variables may be done more effectively by fitting a
bivariate normal distribution. By doing this, the complete underlying bivariate continuous structure

between the two variables will be taken into account.

12.1 ML estimation procedure

The vectors of upper class boundaries are

59.5 49.5
x=1| 69.5 and y=| 595 (12.3)
79.5 74.5

respectively.
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The projection matrix for

59.5 —1
X=(x -1)=] 695 1
795 —1

0.83333 0.33333 —0.16667
Px = 0.33333  0.33333 0.33333 (12.4)
—0.16667 0.33333 0.83333

and the projection matrix for

495 —1
Yz(y —1)= 59.5 —1
745 —1

0.76316 0.39474 —0.15789
Py =] 0.39474 0.34211 026316 | . (12.5)
—0.15789 0.26316 0.89474

These two projection matrices play a major role in the estimation of the bivariate normal distribution,
since the standardised upper class boundaries are estimated such that z, is in the vector space

generated by X and z, is in the vector space generated by Y.

A step by step explanation of the results during the iterative procedure will be presented to give
more insight into the ML estimation procedure.

e Firstly, the estimates for the unrestricted ML estimate p will be given. The vector p is the
observed vector of cumulative relative frequencies and is used as the starting point for the
iterative ML estimation procedure.

e Secondly the estimates for the restricted ML estimate 7t will be given. The estimates obtained
from 7t are the ML estimates for the bivariate normal distribution. This follows since the vector
7 is the ML estimate of 7 under the constraints (11.31), obtained iteratively from the ML

estimation procedure.
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12.1.1 Unrestricted estimates

The observed frequencies are elements of

106 90 35 5
57 73 59 22

F = (12.6)
15 40 57 27

2 14 45 99
and the matrix with unrestricted (observed) cumulative relative frequencies is

0.14209 0.26273 0.30965 0.31635

0.21850 0.43700 0.56300 0.59920
P= . (12.7)
0.23861 0.51072 0.71314 0.78552

0.24129 0.53217 0.79491 1.00000

Marginal distribution of MATHS

The unrestricted estimates for the marginal distribution of MATHS are tabulated in Table 12.2 and
will be discussed briefly.

Table 12.2: Unrestricted estimates obtained from the marginal distribution of x.

0.31635 —0.44634
0.06345

0.59920 66.535079 | 15.76167 0.18811
4.22132

0.78552 0.82256

Note: The elements of p, are elements contained in the last column of P (12.7).

Since the marginal distribution for MATHS has to follow a normal distribution, the vector of stan-
dardised upper class boundaries for x follows by projecting @ ! (p,) into the vector space of X

Z. = Px® '(p,) (12.8)
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and is employed in the vector of constraints

g.(m) = ®(2,) — 7, =0. (12.9)

In SAS IML: [® (z,) = PROBNORM(z,)

The unrestricted estimate for the vector of natural parameters

= (XX) 'X® '(p,) (12.10)

P -

leads to the unrestricted estimates for 7i, and 7, indicating that the average mark for MATHS is
66.5 with a standard deviation of 15.8.

Marginal distribution of STATS

The unrestricted estimates for the marginal distribution of STATS are tabulated in Table 12.3.

Table 12.3: Unrestricted estimates obtained from the marginal distribution of y.

Py Oy My Oy Zy
0.24129 —0.63404
0.06021
0.53217 60.04601 | 16.63317 —0.03283
3.61002
0.79491 0.86899

Note: The elements of p, are elements contained in the last row of P (12.7).

Following the same rationale for the standardised upper class boundaries for y, the vector of stan-
dardised upper class boundaries
z,=P,® ' (7, (12.11)

Y y

is employed in the vector of constraints

gy(ﬂ) =@ (Zy) -7, =0. (12.12)
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In SAS IML: [& (z,) = PROBNORM(z,)

At this initial step of the iterative procedure it follows from Table 12.3 that the average mark for
STATS is 60.5, with a standard deviation of 16.6.

Joint distribution of MATHS and STATS

From the estimates of the standardised upper class boundaries (see Table 12.2 and Table 12.3) it
follows that the origin (Z;,%,) = (0,0) is located in the second class interval for MATHS and the
third class interval for STATS. In Figure 12.1 a contour diagram of the bivariate normal distribution

with the four quadrants and the standardised upper class boundaries is shown.

e
0/
17

Figure 12.1: Contour diagram of the bivariate normal distribution with the four quadrants and
the standardised upper class boundaries.



The ML estimator for p is obtained from
p=sin (5 |(VOL1 +VOL4) - (VOL2+VOL3) |) .
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(12.13)

The volumes are estimated by the total of the observed relative frequencies located in each of the

four quadrants. In matrix notation the observed relative frequencies are

0.14209 0.12064
1 0.07641 0.09786

746 0.02011 0.05362
0.00268 0.01877

0.04692 0.00670
0.07909 0.02949
0.07641 0.03619
0.06032 0.13271

(12.14)

For those cells situated in only one quadrant, the relative frequencies can simply be added, but for

cells situated in more than one quadrant, allocation has to be done proportionately to the bivariate

normal distribution, thus depending on the value of p. Since p is to be estimated, the value of p

is obtained iteratively over (12.13), starting at any value between -1 and 1. In Table 12.4 various

starting points for p were being used, all leading to the same unique unrestricted estimate for p.

(Convergence criterion = 1e-10.)

Table 12.4: Unrestricted estimate for p obtained iteratively

Starting point | Starting point | Starting point
5=-05 =0 =05

1. 0.6128852 | 1. 0.6383751 | 1. 0.6616935
2. 0.6708946 | 2. 0.6735298 | 2. 0.6761977
3. 0.6773286 | 3. 0.6776614 | 3. 0.6780025
4. 0.6781484 | 4. 0.6781915 | 4. 0.6782358
5. 0.6782547 | 5. 0.6782603 | 5. 0.6782661
6. 0.6782685 | 6. 0.6782692 | 6. 0.6782700
7. 0.6782703 | 7. 0.6782704 | 7. 0.6782705
8. 0.6782705 | 8. 0.6782706 | 8. 0.6782706
9. 0.6782706 | 9. 0.6782706 | 9. 0.6782706
10. 0.6782706 | 10. 0.6782706 | 10. 0.6782706
11. 0.6782706 | 18. 0.6782706 | 11. 0.6782706
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Evaluating the estimates for the 4 volumes of the bivariate normal distribution in Table 12.5, it is
clear that the property of symmetry has not been met and p is now estimated from the observed
frequencies (unrestricted ML estimate for ).

Table 12.5: Unrestricted estimates for the volumes of the four quadrants

Quadrant Unrestricted estimates for VOL
Q1 :2:<0,2, <0 VOL1 = 0.3979789
Q2: 2, <0,2,>0 VOL2 =0.1177174
Q3:2:;>0,2, <0 VOL3 = 0.1450123
Q4:2:>0,2,>0 VOL4 = 0.3392913

From Table 12.5 it follows that

5 = sin (g [(0.3979780 + 0.3392013) — (0.1177174 + 0.1450123)])
— sin (g [0.737 27 — 0.262 73])
— sin (g [0.474 54])
— 0.67827 (12.15)

indicating a positive relationship between MATHS and STATS.

This estimate for p is now being used in the vector of constraints g,,(m) = 0 where

8uy(m) = ®uy — Puy
0.14209 0.26273 0.30965
= ®((2,®14),(14®%,),p) —vec | 0.21850 0.43700 0.56300
0.23861 0.51072 0.71314

In SAS IML: |® (z,, z,, p) = PROBBNRM(z,, 2, p)
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12.1.2 ML estimates

After convergence of the ML estimation procedure the restricted ML estimate for 7 in matrix

notation is
0.17170 0.25637 0.31180 0.31869
~ 0.22874 0.38802 0.53638 0.56766
II= (12.16)
0.25077 0.45896 0.70922 0.79166

0.25569 0.48298 0.81013 1.00000

and possesses all the properties of the bivariate normal distribution. The matrix of expected fre-

quencies is

128.0903 63.1637 41.3464 5.1455
42.5489  55.6571 69.3300 18.1950

M = (12.17)
16.4324 36.4943 76.0140 38.1641
3.6702 14.2495 57.3636 80.1349

and according to the Pearson and Wald statistics tabulated in Table 12.6, the bivariate normal

distribution did not provide an extremely good fit.

Table 12.6: Goodness of fit statistics

Statistic | Value | df | p-value
Pearson | 45.191 | 10 | 2.0089E-6
Wald | 44.994 | 10 | 2.1799E-6

However, taking into account the rather large sample size, the measure of discrepancy

W 44.994
D— 220 12.1
T (12.18)

is only just higher than the cut off value of 0.05, suggesting that the fit is not too poor. This is
further motivated by comparing the observed frequencies in F' (12.6) with the expected frequencies
in M (12.17).



Marginal distribution of MATHS

The ML estimates obtained from the marginal distribution of x are tabulated in Table 12.7.

Table 12.7: ML estimates for the marginal distribution of x.

7, &, i 5, %

0.31869 —0.47135
0.06418

0.56766 66.84445 | 15.58162 0.17043
4.28995

0.79166 0.81221

Note: The elements of 7, are elements contained in the last column row of II (12.16).
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The marginal cumulative relative frequencies 7, follow a cumulative normal distribution at the upper

class boundaries x and therefore

—0.47135 0.31869
®,=®(z,)=®| 017043 |=| 056766 | =7 .
0.81221 0.79166

The estimated standard errors for 1i, and 7, are
o, =0.62047 and o, =0.67075
and therefore a 95% confidence interval for p, is

(65.628,68.061) .

(12.19)

(12.20)
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Marginal distribution of STATS

The ML estimates obtained from the marginal distribution of y are tabulated in Table 12.8.

Table 12.8: ML estimates for the marginal distribution of y.

Ty Qry Hy Ty Zy
0.25569 —0.65670
0.06140
0.48298 60.19482 | 16.28563 —0.04266
3.69619
0.81013 0.87839

Note: The elements of 7, are elements contained in the last row of II (12.16).

Similarly to the marginal distribution of x, it follows that the marginal cumulative relative frequencies
7, follow a cumulative normal distribution at the upper class boundaries of y

—0.65670 0.25569
®,=®(z,)=®| —004266 | = | 048208 | =7, . (12.21)
0.87839 0.81013

The estimated standard errors for i, and 7, are
5, =063940 and G, = 0.64606 . (12.22)

and may be used for inferential purposes.



Joint distribution of MATHS and STATS
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The joint cumulative relative frequencies at the intersections of the standardised upper class bound-

aries are equal to the probabilities of the bivariate normal distribution i.e.

0.17170 0.25637 0.31180

~

®,, = vec (<I> (Ex,i )) = vec

0.22874 0.38802 0.53638

= Tay -

0.25077 0.45896 0.70922

Note: The elements of 7, are the first (1 — 1) (J —

1) elements contained in II (12.16).

The ML estimate for p is estimated by adding the appropriate relative frequencies under constraints

0.17170 0.08467
1 0.05704 0.07461
746 0.02203 0.04892
0.00492 0.01910

(see (12.17)).
Table 12.9.

The symmetrical nature of the fitted

0.05542
0.09294
0.10190
0.07690

0.00690
0.02439
0.05116
0.10742

(12.23)

bivariate normal distribution is portrayed by

Table 12.9: ML estimates for the volumes of the four quadrants

Quadrant ML estimates for VOL
Q1:2, <0, z,<0| VOLI = 0.366415
Q2:2, <0, z,>0| VOL2 = 0.133585
Qs:2:>0, 2,<0| VOL3=0.133585
Qs:2,>0, z,>0| VOL4 = 0.366415
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The ML estimate for p is

sin (5 [2(0.366415) - 2 (0.133585)] )

)
I

— sin (g [0.73283 — 0.267 17])

— sin (g [0.465 66])

— 0.66795 (12.24)
with a standard error of
o, =0.0303 . (12.25)
Since R
t=L —99 (12.26)
Op

the null hypothesis of Hy : p = 0 is rejected, indicating a significant association between MATHS
and STATS.

The estimated regression line of STATS (y)on MATHS (z) is

~
A~ ~

yyx:ayx+5yxx

where

= 12.528
is the intercept and
- 5,
By x - a_\x
= 0.6981
is the slope, yielding the regression equation
Yy =13.54+0.70z . (12.27)

According to this regression line it is clear that for every increase of 1% in MATHS, the STATS
mark increases with 0.7%. The estimated correlation coefficient and regression equation for the
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fitted bivariate normal distribution, differ substantially from that where the class midpoint values
were used as an estimate for the values within a class interval emphasizing the importance of the
technique. Compare with (12.1) and (12.2).

All the results for this application were obtained from the SAS program .>5 - - listed in Appendix
C3.
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