
Chapter 7

Normal distributions

In this chapter it will be shown how to fit normal distributions simultaneously to the T cells of

a multifactor design. Under equality of variances a multifactor model is discussed to explain the

influence of the factors of the multifactor design. An application of a single factor model is presented

to illustrate the theory.

7.1 Estimation of distributions

To fit normal distributions simultaneously to the T cells of any multifactor design it is required that

Φ (z) = π (7.1)

where

z =




z1

z2
...

zT




=




x− µ11

σ1
x− µ21

σ2
...

x− µT1

σT




(7.2)
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is the concatenated vector of standardised upper class boundaries and

π =




π1

π2
...

πT




(7.3)

is the concatenated vector of cumulative relative frequencies.

Taking the inverse normal function from (7.1) leads to the linear model

Φ−1 (π) =




Φ−1 (π1)

Φ−1 (π2)
...

Φ−1 (πT )




=




x− µ11

σ1
x− µ21

σ2
...

x− µT1

σT




=




Xα1

Xα2
...

XαT




= (IT ⊗X)α (7.4)

where

X =
(
x −1

)
(7.5)

is the design matrix for normality within each cell and

α =




α1

α2
...

αT




(7.6)
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is the concatenated vector of natural parameters with

αt =


 α1t

α2t


 =




1

σt
µt

σt


 t = 1 · · ·T (7.7)

the natural parameters for the t-th cell.

From (7.4) the vector of contraints for normality, gnor(π) = 0, follows where

gnor(π) =




QXΦ
−1 (π1)

QXΦ
−1 (π2)
...

QXΦ
−1 (πT )




= (IT ⊗QX) ·Φ−1 (π) (7.8)

and

Gnor(π) =
∂gnor(π)

∂π

=
∂

∂π

{
(IT ⊗QX) ·Φ−1 (π)

}

= (IT ⊗QX) ·Dπ (7.9)

with QX= I−X(X′
X)−1X′ the projection matrix orthogonal to X and Dπ=

∂Φ−1 (π)

∂π
.

To solve Dπ=
∂Φ−1 (π)

∂π
set ν = Φ−1 (π) then Φ (ν) = π and hence

Dπ =
∂ν

∂π

=

(
∂π

∂ν

)−1

=

(
∂Φ (ν)

∂ν

)−1

= (diag [φ(ν)])−1

=
(
diag

[
φ(Φ−1(π))

])−1
. (7.10)
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Employing the maximum likelihood procedure in Proposition 1 with vector of constraints

g(π) = gnor(π)

= (IT ⊗QX) ·Φ−1 (π) (7.11)

and matrix of partial derivatives

Gπ = Gnor(π)

= (IT ⊗QX) ·Dπ (7.12)

the restricted ML estimate π̂ follows, with asymptotic covariance matrix

Cov (π̂) � V− (GπV)′ (GπVG
′
π)
∗
(GπV) .

For each of the T subpopulations, the vector of restricted cumulative relative frequencies π̂t for

t = 1, 2, · · · , T follow a cumulative normal distribution curve at the upper class boundaries of x.

Each Φ−1(π̂t) for t = 1, 2, · · · , T is a linear combination of the columns of X characterising a

specific fitted normal distribution with its own set of parameter estimates.

The ML estimate of α follows from (7.4)

α̂ =
(
IT ⊗ (X′X)

−1
X′

)
·Φ−1 (π̂) (7.13)

which consists of two sets of estimators namely

α̂1 =




α̂11

α̂12
...

α̂1T




=




1/σ̂1

1/σ̂2
...

1/σ̂T




=
(
IT ⊗

[
(X′X)

−1
X′

]
1

)
·Φ−1 (π̂) (7.14)

and

α̂2 =




α̂21

α̂22
...

α̂2T




=




µ̂1/σ̂1

µ̂2/σ̂2
...

µ̂T/σ̂T




=
(
IT ⊗

[
(X′X)

−1
X′

]
2

)
·Φ−1 (π̂) . (7.15)
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Note: In (7.14)
[
(X′X)−1X′]

1
is the first row of the matrix (X′X)−1X′ and in (7.15)

[
(X′X)−1X′]

2

is the second row of the matrix (X′X)−1X′.

It follows that

Cov (α̂) �

(
∂α

∂π

)
Cov (π̂)

(
∂α

∂π

)′

=
{(
IT ⊗ (X′X)

−1
X′

)
Dπ

}
Cov (π̂)

{(
IT ⊗ (X′X)

−1
X′

)
Dπ

}′
. (7.16)

The ML estimates for µ and σ are obtained from

µ̂ =




µ̂1

µ̂2
...

µ̂T




=




α̂21/α̂11

α̂22/α̂12
...

α̂2T/α̂1T




=
α̂2

α̂1
(7.17)

and

σ̂ =




σ̂1

σ̂2
...

σ̂T




=




1/α̂11

1/α̂12
...

1/α̂1T




=
1

α̂1
. (7.18)

Note: An element wise division for
α̂2

α̂1
and

1

α̂1
are understood in (7.17) and (7.18).

Let

β =


µ⊗


1

0




+


σ⊗


0

1






=




β1

β2
...

βT




(7.19)
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be the concatenated vector of original parameters with

βt =


 µt

σt


 =


 α2t/α1t

1/α1t


 t = 1, 2, · · ·T . (7.20)

Hence

Cov
(
β̂
)
�

(
∂β

∂α

)
Cov (α̂)

(
∂β

∂α

)′

= BCov (α̂)B′ (7.21)

where

B =




B1 0 · · · 0

0 B2 · · · 0
...

...
. . .

...

0 0 · · · BT




(7.22)

with

Bt =

(
∂βt

∂αt

)

=



−α2t

α21t

1

α1t

− 1

α21t
0


 t = 1, 2, · · · , T (7.23)

the partial derivatives for the t-th cell.

In terms of Kronecker products the matrix B in (7.22) can be calculated from

B =


−α2

α21
⊗


 1 0

0 0




+


 1

α1
⊗


 0 1

0 0




+


− 1

α21
⊗


 0 0

1 0




 . (7.24)

Consequentely it follows that the asymptotic covariance matrices for µ̂ and σ̂ are

Cov (µ̂) � BµCov (α̂)B
′
µ (7.25)

where

Bµ=

(
α2

α21
⊗

(
1 0

))
+

(
1

α1
⊗

(
0 1

))
(7.26)
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and

Cov (σ̂) � Bσ Cov (α̂)B
′
σ (7.27)

where

Bσ=

(
− 1

α21
⊗

(
1 0

))
. (7.28)

7.2 Equality of variances

Equality of variances 


σ1 − σ2

σ1 − σ3
...

σ1 − σT




=




0

0
...

0




(7.29)

is expressed in terms of matrix notation as

Hα1 = 0 (7.30)

where

H =




1 −1 0 · · · 0

1 0 −1 · · · 0
...

...
...

. . .
...

1 0 0 · · · −1




=
(
1(T−1) −I(T−1)

)
(7.31)

is a matrix of contrasts and

α1 =




α11

α12
...

α1T




=




σ−11

σ−12
...

σ−1T




=
(
IT ⊗

[
(X′X)

−1
X′

]
1

)
·Φ−1 (π) (7.32)
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is a subset of the vector of natural parameters α formulated in (7.6) and (7.7).

Hence, the vector of constraints for equality of variances is gvar(π) = 0, with

gvar(π) = H ·
(
IT ⊗

[
(X′X)

−1
X′

]
1

)
·Φ−1 (π) (7.33)

and matrix of partial derivatives

Gvar(π) =
∂g(π)

∂π

= H·
(
IT ⊗

[
(X′X)

−1
X′

]
1

)
·Dπ . (7.34)

(Dπ previously derived in (7.10).)

The restricted ML estimate of π follows by implementing

g(π) =


 gnor(π)

gvar(π)




=


 (IT ⊗QX)

H ·
(
IT ⊗

[
(X′X)−1X′]

1

)


 ·Φ−1 (π) (7.35)

and

Gπ =


 Gnor(π)

Gvar(π)




=


 (IT ⊗QX)

H ·
(
IT ⊗

[
(X′X)−1X′]

1

)


 ·Dπ (7.36)

in the ML estimation procedure.

The restricted ML estimate π̂ is now estimated such that:

1. π̂t, (t = 1, 2, · · · , T ) follows a cumulative normal distribution curve at the upper boundaries
of x and

2. the fitted normal distributions have equal variances over the T cells.
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7.3 Multifactor model

To explain the effect of the factors on the grouped response variable, a linear model may be formu-

lated on the cells of the multifactor design. Since a normal distribution is fitted to each cell, the

mean µ, of the fitted normal distribution will be used as a representative measure for each cell.

Formulate the linear model

µ = Yγ (7.37)

where Y is the matrix specifying a specific design and γ is the vector of parameters.

Suppose e.g. that there exists a linear relationship between the dependent variable and one of the

explanatory variables, the model becomes

µ =




1 y1

1 y2
...

...

1 yT





 γ0

γ1


 (7.38)

where (y1, y1, · · · , yT ) are the corresponding values of one of the factors in the design.

Model (7.38) implies that µ is a linear combination of the columns of Y. Therefore, the linear

model (7.38) on the treatment means implies the constraints

gmod(µ) = QYµ = 0 (7.39)

where QY= I−Y(Y′
Y)−1Y′ is the projection matrix orthogonal to the colums of Y.

Under equality of variances it follows from (7.15) that

1

σ




µ1

µ2
...

µT




=




µ1
σ
µ2
σ
...

µT

σ




=




α21

α22
...

α2T




= α2

leading to an equivalent formulation of the vector of constraints

gmod(µ) = QYα2 = QY

(
IT ⊗

[
(X′X)

−1
X′

]
2

)
·Φ−1 (π) (7.40)
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which is expressed in terms of the so-called standardised means. The matrix of partial derivatives is

Gmod(π) = QY
∂α2
∂π

= QY

(
IT ⊗

[
(X′X)

−1
X′

]
2

)
·Dπ. (7.41)

Utilizing the maximum likelihood procedure with

g(π) =




gnor(π)

gvar(π)

gmod(π)




=




(IT ⊗QX)

H ·
(
IT ⊗

[
(X′X)−1X′]

1

)

QY

(
IT ⊗

[
(X′X)−1X′]

2

)


 ·Φ−1 (π) (7.42)

and

Gπ =




Gnor(π)

Gvar(π)

Gmod(π)




=




(IT ⊗QX)

H ·
(
IT ⊗

[
(X′X)−1X′]

1

)

QY

(
IT ⊗

[
(X′X)−1X′]

2

)


 ·Dπ (7.43)

leads to the restricted ML estimate of π with the following properties:

1. π̂t for t = 1, 2, · · · , T follows a cumulative normal distribution curve at the upper boundaries

of x

2. the fitted normal distributions have equal variances

3. the ML estimate µ̂ satisfy the multifactor design in (7.36)

It is now possible to evaluate the effect of the factor(s) by means of the ML estimate

γ̂ = (Y′Y)
∗
Y′µ̂ (7.44)

with asymptotic covariance matrix

Cov (γ̂) =
{
(Y′Y)

∗
Y′}Cov (µ̂ )

{
(Y′Y)

∗
Y′}′ . (7.45)
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7.4 Application: Single-factor model

A total of 898 students who were enrolled for a first year Statistics course at the University of

Pretoria were included in this investigation. The students were all enrolled for Statistics (STATS)

for the first time and obtained at least an E symbol for Grade 12 Mathematics (MATHS) on the

higher grade. The aim of this study is to investigate the effect of achievement in MATHS on the

performance of STATS. The STATS exam paper counted out of 108 marks and the results were

classified into a total of 5 categories to illustrate the technique. The data is summarised in Table

7.1.

Table 7.1: Data set of 898 first year students.

STATS

MATHS [0− 40) [40− 50) [50− 60) [60− 75) [75− 108] Total

A 0 4 19 53 84 160

B 3 17 35 65 19 139

C 24 44 56 68 19 211

D 43 57 82 48 6 236

E 59 53 26 13 1 152

Total 129 175 218 247 129 898

Take

x =




39.5

49.5

59.5

74.4




(7.46)

as the vector of upper class boundaries. Since the exam mark is treated as a continuous variable

and recorded to the nearest integer, the upper class boundaries in x are taken half-way between the

gaps of the respective class intervals. The performance in STATS will now be evaluated over the 5

levels of MATHS, specifing the 5 cells of the single-factor design. A total of 4 models will be fitted

with the SAS program FACTOR1 listed in Appendix B1 to explain the effect of MATHS on the

grouped variable STATS.
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7.4.1 Model 1: Unequal variances

It is assumed that the STATS mark is normally distributed for each level of MATHS. Therefore,

normal distributions are fitted simultaneously to the 5 levels of MATHS, i.e. the 5 levels of the

single-factor design. Normality within each cell is estimated such that Φ−1 (πt) for t = 1, 2, · · · 5 is
a linear combination of

X =
(
x −1

)

=




39.5 −1
49.5 −1
59.5 −1
74.4 −1




(7.47)

or equivalently such that Φ−1 (πt) is orthogonal to

QX = I4 −X (X′X)
−1
X′ . (7.48)

Since rank (QX) = 2 the vector of constraints gnor(π) = 0, with

gnor(π) =




QXΦ
−1 (π1)

QXΦ
−1 (π2)

QXΦ
−1 (π3)

QXΦ
−1 (π4)

QXΦ
−1 (π5)




= (I5 ⊗QX) ·Φ−1 (π) (7.49)

consists out of 10 linear independent functions.

Utilizing the ML estimation procedure, the restricted ML estimate for π is obtained leading to the

ML estimates for the fitted normal distributions summarised in Table 7.2.
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Table 7.2: ML estimates for model with unequal variances.

MATHS STATS n
µ̂

(σ̂µ̂)
σ̂

(σ̂σ̂)
τ̂M

(σ̂τ̂M )

A
100806040200

0.04

0.03

0.02

0.01

0
160

75.2
(1.38)

13.7
(1.30)

17.7
(1.17)

B
100806040200

0.04

0.03

0.02

0.01

0
139

62.2
(1.03)

11.4
(0.82)

4.8
(0.94)

C
100806040200

0.04

0.03

0.02

0.01

0
211

56.1
(1.00)

13.8
(0.83)

−1.3
(0.91)

D
100806040200

0.04

0.03

0.02

0.01

0
236

51.0
(0.83)

12.1
(0.70)

−6.5
(0.81)

E
100806040200

0.04

0.03

0.02

0.01

0
152

42.7
(1.13)

12.2
(1.05)

−14.7
(1.00)

τ̂ 0
(σ̂τ̂0)

57.4
(0.49)
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A definite positive monotone trend in STATS over the levels of MATHS is evident from Table 7.2.

The µ̂ -values range from 42.7 for an E-symbol in MATHS, up to 75.2 for an A-symbol in MATHS.

There is a slight variation with regard to the σ̂ -values, revealing that students with a B symbol in

MATHS had the smallest variation in STATS. According to the goodness of fit statistics tabulated

in Table 7.3 the model fitted the data extremely well. The degrees of freedom in Table 7.3 follows

from the number of linear independent constraints in (7.49).

Table 7.3: Goodness of fit statistics for model with unequal variances.

Pearson Wald

Model df Statistic p-value Statistic p-value

1 10 7.059 0.7199 6.356 0.7845

The mean in the i -th level of MATHS may be expressed in terms of the single factor model

µi = τ 0 + τM
i i = 1, 2, · · · 5 (7.50)

where

τ 0 = overall mean

τM
i = effect for the i-th level of MATHS i = 1, 2, · · · 5

In matrix notation (7.50) leads to

µ = Lλ

where

L =




1 1 0 0 0

1 0 1 0 0

1 0 0 1 0

1 0 0 0 1

1 −1 −1 −1 −1




: 5× 5 (7.51)
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and λ denotes the vector of estimable parameters

λ =




τ 0

τM
1

τM
2

τM
3

τM
4




(7.52)

with the last parameter τM
5 = −∑4

i=1 τ
M
i , the effect for an E symbol for MATHS, ommitted.

From the restricted ML estimate π̂, the ML estimate of λ is

λ̂ = (L′L)−1L′µ̂ (7.53)

with asymptotic covariance matrix

Cov
(
λ̂
)
�

{
(L′L)−1L′

}
Cov (µ̂)

{
((L′L)−1L′

}′
. (7.54)

The full set of ML estimates in (7.50) is obtained from

τ̂ = Sλ̂ (7.55)

where

τ̂ =




τ̂ 0

τ̂M
1

τ̂M
2

τ̂M
3

τ̂M
4

τ̂M
5




(7.56)

and

S =




1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 −1 −1 −1 −1




: 6× 5 . (7.57)
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The asymptotic covariance matrix for τ̂ follows from

Cov (τ̂ ) � SCov
(
λ̂
)
S
′

(7.58)

From the effects for the single factor model (τ̂ -values) listed in Table 7.2 it can be concluded that

the average STATS mark for students with an A symbol in MATHS is 17.7 higher than the overall

average of τ̂ 0 = 57.4. The τ̂M -values drop substantially over the categories of MATHS indicating the

strong effect of MATHS on STATS. The average STATS mark for C-symbol students is significantly

lower than the overall average on the 10% level of significance, since the p-value is

Φ

(
τ̂M
3

σ̂
τ̂M3

)
= Φ

(−1.3
0.91

)

= Φ (−1.428)
= 0.08 .

In SAS the matrices L (7.51) and S (7.57) may be programmed as:

• L = J(5,1,1) || DESIGNF(CUSUM(J(5,1,1)))

• S = BLOCK(1 , DESIGNF(CUSUM(J(5,1,1))))

where 5 is the number of levels for the single factor MATHS.
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7.4.2 Model 2: Equal variances

From Table 7.2 it is clear that the standard deviations of the normal distributions stayed fairly stable

over the levels of MATHS, implying that the additional constraints of equal variances gvar(π) = 0,

with

gvar(π) = Hα1

= H ·
(
IT ⊗

[
(X′X)

−1
X′

]
2

)
·Φ−1 (π) (7.59)

where

H =




1 −1 0 0 0

1 0 −1 0 0

1 0 0 −1 0

1 0 0 0 −1




and α1 = σ
−1 =




1/σ1

1/σ2

1/σ3

1/σ4

1/σ5




are feasible.

Note: Since the rows of H are all orthogonal to the vector of ones, an equivalent formulation of

the vector of constraints may be constructed with

gvar(π) = QHα1

where QH = I5 − 1
5
11′, is the projection matrix orthogonal to the vector of ones.

After employing the ML procedure with the vector of constraints

g(π) =


 gnor(π)

gvar(π)


 = 0 (7.60)

the restricted ML estimate π̂ was obtained and the results for Model 2 are summarised in Table 7.4.
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Table 7.4: ML estimates for model with equal variances.

MATHS STATS n
µ̂

(σ̂µ̂)
σ̂

(σ̂σ̂)
τ̂M

(σ̂τ̂M )

A
100806040200

0.04

0.03

0.02

0.01

0
160

74.7
(1.15)

12.7
(0.40)

17.3
(1.01)

B
100806040200

0.04

0.03

0.02

0.01

0
139

62.3
(1.13)

12.7
(0.40)

5.0
(0.99)

C
100806040200

0.04

0.03

0.02

0.01

0
211

56.1
(0.91)

12.7
(0.40)

−1.2
(0.85)

D
100806040200

0.04

0.03

0.02

0.01

0
236

50.9
(0.87)

12.7
(0.40)

−6.4
(0.82)

E
100806040200

0.04

0.03

0.02

0.01

0
152

42.5
(1.13)

12.7
(0.40)

−14.8
(0.99)

τ̂ 0
(σ̂τ̂0)

57.3
(0.47)
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No substantial changes with regard to the µ̂-values were obtained from that of Model 1, with the

σ̂-values now estimated constant with σ̂ = 12.7. The values of the goodness of fit statistics in Table

7.5 increased somewhat from that of Model 1, but still provided a satisfactory fit.

Table 7.5: Goodness of fit statistics for model with equal variances.

Pearson Wald

Model df Statistic p-value Statistic p-value

2 14 13.218 0.5094 12.374 0.5763

The degrees of freedom for this model is 14, since an additional 4 constraints were imposed in (7.59)

for equality of variances.

7.4.3 Model 3: Ordinal factor

Due to the very strong monotone trend in STATS over the categories of MATHS, MATHS will now

be incorporated as an ordinal factor in the ML estimation process. The single factor model on the

levels of MATHS is

µ = Y3γ3 (7.61)

where

Y3=




1 2

1 1

1 0

1 −1
1 −2




and γ3=


 γ1

γ2


 .

The complete set of vector of constraints for Model 3 is

g(π) =




gnor(π)

gvar(π)

gmod3(π)


 = 0 (7.62)
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where

gmod3(π) = QY3α2

= QY3 ·
(
IT ⊗

[
(X′X)

−1
X′

]
2

)
·Φ−1 (π) (7.63)

and QY3 = I5 −Y3 (Y
′
3Y3)

−1
Y′
3.

Note: The vector of constraints in (7.63) is formulated in terms of α2, since α2 is a scalar multiple

of µ in (7.61) under equality of variances.

Utilizing the ML estimation procedure with the vector of constraints (7.62) the restricted ML esti-

mate π̂ is estimated such that the vector µ̂ is a linear combination of Y3. (See Table 7.6.)

The ML estimate for γ3 is

γ̂3 = (Y′
3Y3)

−1
Y′
3µ̂

=


 γ̂1

γ̂2




=


 57.3

7.5




indicating that the estimated average STATS mark for students with a C symbol for maths is 57.3

and that every increase of one symbol in MATHS implies an estimated increase of 7.5 in STATS.

(See Table 7.6.) The standard errors of γ̂3

σ̂γ̂3 =


 σ̂γ̂1

σ̂γ̂2




=


 0.4563

0.3521




enable the construction of confidence intervals and the testing of relevant hypotheses.
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Table 7.6: ML estimates for model with an ordinal factor.

MATHS STATS n
µ̂

(σ̂µ̂)
σ̂

(σ̂σ̂)
τ̂M

(σ̂τ̂M )

A
100806040200

0.04

0.03

0.02

0.01

0
160

72.3
(0.87)

12.7
(0.40)

15.0
(0.70)

B
100806040200

0.04

0.03

0.02

0.01

0
139

64.8
(0.60)

12.7
(0.40)

7.5
(0.35)

C
100806040200

0.04

0.03

0.02

0.01

0
211

57.3
(0.46)

12.7
(0.40)

0.0
(0.00)

D
100806040200

0.04

0.03

0.02

0.01

0
236

49.8
(0.55)

12.7
(0.40)

−7.5
(0.35)

E
100806040200

0.04

0.03

0.02

0.01

0
152

42.4
(0.81)

12.7
(0.40)

−15.0
(0.70)

τ̂ 0
(σ̂τ̂0)

57.3
(0.46)
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The value of the Pearson and Wald statistic in Table 7.7 increased substantially from that of the

previous model indicating a weaker fit.

Table 7.7: Goodness of fit statistics for model with an ordinal factor.

Pearson Wald

Model df Statistic p-value Statistic p-value

3 17 25.150 0.0914 24.388 0.1093

Since rank(QY3) = 3, an additional 3 linear independent constraints are included in the vector of

constraints leading to 17 degrees of freedom for Model 3.

7.4.4 Model 4: Regression model

Since the original scale of measurement for MATHS was done on an interval scale, the following

class midpoints were taken as representative values for the five levels of MATHS.

MATHS A B C D E

Class Midpoint 90 75 65 55 45

The implication of this is that the "distances" between the MATHS categories are not the same as

in the case of Model 3.

The linear model measuring a linear trend in MATHS is

µ = Y4γ4

where

Y4=




1 90

1 75

1 65

1 55

1 45




and γ4=


 γ1

γ2


 .
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The complete set of vector of constraints for Model 4 is

g(π) =




gnor(π)

gvar(π)

gmod4(π)


 = 0 (7.64)

where

gmod4(π) = QY4α2

= QY4 ·
(
IT ⊗

[
(X′X)

−1
X′

]
2

)
·Φ−1 (π)

and QY4 = I5 −Y4 (Y
′
4Y4)

−1
Y′
4.

The ML estimation procedure with vector of constraints (7.64) yields the ML estimate

γ̂4 = (Y′
4Y4)

−1
Y′
4µ̂

=


 γ̂1

γ̂2




=


 12.2

0.68




suggesting a slope of 0.68 for STATS on MATHS. This means that an increase of one mark in

MATHS will lead to an estimated increase of 0.68 marks in STATS. From the vector of standard

errors

σ̂γ̂4 =


 σ̂γ̂1

σ̂γ̂2




=


 2.108

0.0319




this increase is significant, since

γ̂2
σ̂γ̂2

=
0.68

0.0319

= 21. 317 .

See Table 7.8 for the complete set of the ML estimates.
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Table 7.8: ML estimates for regression model.

Maths Stats n
µ̂

(σ̂µ̂)
σ̂

(σ̂σ̂)
τ̂M

(σ̂τ̂M )

A
100806040200

0.04

0.03

0.02

0.01

0
160

73.8
(0.93)

12.7
(0.40)

16.4
(0.77)

B
100806040200

0.04

0.03

0.02

0.01

0
139

63.6
(0.56)

12.7
(0.40)

6.2
(0.29)

C
100806040200

0.04

0.03

0.02

0.01

0
211

56.7
(0.45)

12.7
(0.40)

−0.7
(0.03)

D
100806040200

0.04

0.03

0.02

0.01

0
236

49.9
(0.55)

12.7
(0.40)

−7.5
(0.35)

E
100806040200

0.04

0.03

0.02

0.01

0
152

43.0
(0.77)

12.7
(0.40)

−14.4
(0.67)

τ̂ 0
(σ̂τ̂0)

57.4
(0.46)
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According to the goodness of fit statistics tabulated in Table 7.9, this model showed a substantial

better fit than the previous model where MATHS was modelled on an ordinal scale.

Table 7.9: Goodness of fit statistics for regression model.

Pearson Wald

Model df Statistic p-value Statistic p-value

4 17 16.813 0.4671 16.010 0.5168

 
 
 



Chapter 8

Log-logistic distributions

In the case where the grouped response vector has a positive skew distribution, the log-logistic

distribution may be fitted very effectively to the T frequency distributions of a multifactor design.

Due to the skewness of the response variable, the median of the fitted log-logistic distributions will

be used as a representative measure for each of the T frequency distributions.

From the cdf of the log-logistic distribution

F (x;κ, θ) =
eθxκ

1 + eθxκ

the median ν is obtained from
eθνκ

1 + eθνκ
= 0.5

leading to

ν = exp

(
−θ

κ

)
. (8.1)

In the multifactor model the medians will be employed in a linear model to determine the effect of

the explanatory variables or so-called factors on the grouped response variable.
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8.1 Estimation of distributions

Analogous to Section 5.2, where a log-logistic curve was fitted to a single frequency distribution,

the log-logistic curve may be fitted simultaneously to the T cells of a multifactor design using

ln

(
π

1− π

)
=




ln

(
π1

1− π1

)

ln

(
π2

1− π2

)

...

ln

(
πT

1− πT

)




=




κ1 lnx+θ11

κ2 lnx+θ21
...

κT lnx+θT1




=




Xα1

Xα2
...

XαT




= (IT ⊗X)α (8.2)

where

X =
(
lnx 1

)
(8.3)

is the design matrix for a log-logistic distribution and

α =




α1

α2
...

αT




where αt =


 κt

θt


 , t = 1 · · ·T (8.4)

is the concatenated vector of parameters.
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The linear model (8.2) suggests the vector of constraints

glog(π) = 0

where

glog(π) =




QX ln

(
π1

1− π1

)

QX ln

(
π2

1− π2

)

...

QX ln

(
πT

1− πT

)




= (IT ⊗QX) · ln
(

π

1− π

)
(8.5)

with QX= I−X(X′
X)−1X′ the projection matrix orthogonal to the columns of X given in (8.3).

The matrix of partial derivatives is

Glog(π) =
∂g(π)

∂π
= (IT ⊗QX) ·Dπ (8.6)

where

Dπ =
∂

∂π
ln

(
π

1− π

)

=
∂

∂π
{ln (π)− ln (1− π)}

= {diag (π)}−1 + {diag (1− π)}−1 . (8.7)

Employing the maximum likelihood procedure with

g(π) = glog(π) and Gπ=Glog(π) (8.8)

the restricted ML estimate of π follows with asymptotic covariance matrix

Cov (π̂) � V− (GπV)′ (GπVG
′
π)
∗
(GπV) . (8.9)
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From the restricted ML estimator π̂, it is possible to obtain the ML estimator of α

α̂ =
(
IT ⊗ (X′X)

−1
X′

)
· ln

(
π̂

1− π̂

)
(8.10)

which consists out of two sets of estimators namely

κ̂ =




κ̂1

κ̂2
...

κ̂T




=
(
IT ⊗

[
(X′X)

−1
X′

]
1

)
· ln

(
π̂

1− π̂

)
(8.11)

and

θ̂ =




θ̂1

θ̂2
...

θ̂T




=
(
IT ⊗

[
(X′X)

−1
X′

]
2

)
· ln

(
π̂

1− π̂

)
. (8.12)

The asymptotic covariance matrix of α̂ is

Cov (α̂) �
{(
IT ⊗ (X′X)

−1
X′

)
Dπ

}
Cov (π̂)

{(
IT ⊗ (X′X)

−1
X′

)
Dπ

}′
(8.13)

with Dπ given in (8.7).

The asymptotic standard errors of κ̂ and θ̂ can be calculated directly from

Cov (κ̂) �
{(
IT ⊗

[
(X′X)

−1
X′

]
1

)
Dπ

}
Cov (π̂)

{(
IT ⊗

[
(X′X)

−1
X′

]
1

)
Dπ

}′
(8.14)

and

Cov
(
θ̂
)
�

{(
IT ⊗

[
(X′X)

−1
X′

]
2

)
Dπ

}
Cov (π̂)

{(
IT ⊗

[
(X′X)

−1
X′

]
2

)
Dπ

}′
. (8.15)
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8.2 Multifactor model

In the case where log-logistic distributions are fitted simultaneously to a grouped positive skew

response variable in a multifactor design, the median (8.1) will be used as a representative measure

for each cell. The medians of the fitted log-logistic distributions will be employed in a linear model

to evaluate the effect of the explanatory variables on the response variable over the T cells of the

multifactor design.

The concatenated vector of medians for the T cells in the multifactor design is

ν =




ν1

ν2
...

νT




= exp




(
−θ1

κ1

)

(
−θ2

κ2

)

...(
−θT

κT

)




= exp

(
−θ
κ

)
. (8.16)

Let

ν = Yγ (8.17)

specify the the multifactor model. The objective is to estimate π such that ν is in the vector space

generated by the columns of Y implying the vector of constraints

gmod(π) = QY ν = 0 (8.18)

with QY= I−Y(Y′
Y)−1Y′ the projection matrix orthogonal to the columns of Y. Implementing

the chain rule the matrix of partial derivatives

Gmod(π) =
∂QY ν

∂π

= QY ·
∂ν

∂α
· ∂α
∂π

= QY ·A·
(
IT ⊗ (X′X)

−1
X′

)
Dπ (8.19)
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follows, where

A =
∂ν

∂α
=




A1 0 · · · 0

0 A2 · · · 0
...

...
. . .

...

0 0 · · · AT




(8.20)

and

At =
∂νt

∂αt

=

∂ exp

(
−θt

κt

)

∂


 κt

θt




=

(
θt
κ2t

exp

(
−θt

κt

)
− 1

κt
exp

(
−θt

κt

) )
, t = 1 · · ·T. (8.21)

To compute A in (8.20) define the two vectors

aκ =




θ1
κ21

exp

(
−θ1

κ1

)

θ2
κ22

exp

(
−θ2

κ2

)

...

θT
κ2T

exp

(
−θT

κT

)




=
θ

κ2
exp

(
−θ
κ

)
(8.22)

and

aθ =




− 1

κ1
exp

(
−θt

κt

)

− 1

κ2
exp

(
−θt

κt

)

...

− 1

κT
exp

(
−θt

κt

)




= −1
κ
exp

(
−θ
κ

)
. (8.23)

Using (8.22) and (8.23) the matrix A may be calculated from

A =
(
diag [aκ]⊗

(
1 0

))
+

(
diag [aθ]⊗

(
0 1

))
. (8.24)
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Employing the ML estimation procedure with

g(π) =


 glog(π)

Gmod(π)


 and Gπ=


Glog(π)

Gmod(π)


 (8.25)

leads to the restricted ML estimate of π such that:

1. the elements of π̂1, π̂2, · · · π̂T follow T log-logistic curves at the upper boundaries of x and

2. the ML estimate

ν̂=exp

(
− θ̂
κ̂

)

is a linear combination of Y in (8.17).

The asymptotic covariance matrix of ν̂ is

Cov (ν̂) �

{
∂ν

∂α

}
Cov (α̂)

{
∂ν

∂α

}′

= ACov (α̂)A′ . (8.26)

The effect of the factors for the multifactor design can be explained from the ML estimate

γ̂ = (Y′Y)
−1
Y′ν̂ (8.27)

and for the purpose of statistical inference, the standard errors are obtained from the asymptotic

covariance matrix

Cov (γ̂) �
{
(Y′Y)

−1
Y′

}
Cov (ν̂)

{
(Y′Y)

−1
Y′

}′
. (8.28)
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8.3 Application: Two-factor model

The premiums of 8334 policyholders in the short-term insurance are classified into the 5 categories

listed in Table 8.1.

Table 8.1: Frequency distribution of PREMIUM.

PREMIUM Frequency

R51-R200 1920

R201-R300 2726

R301-R400 1677

R401-R500 930

R500-R1000 1081

The objective is to explain the effect of the age of the policyholder (AGE) and the type of product

(PRODUCT) on the PREMIUM of the policy. The variable AGE is classified into 4 categories, while

PRODUCT consists out of three types of insurance policies. A cross classification of these two

factors result in a total of 12 cells summarised in Table 8.2.

Table 8.2: Contingency table of AGE and PRODUCT.

PRODUCT

AGE I II III Total

20-29 930 415 461 1806

30-39 1105 800 1017 2922

40-49 832 764 656 2252

50-59 448 416 490 1354

Total 3315 2395 2624 8334

The 12 cells in Table 8.2 are to be modeled in a two-factor design. Due to the positive skew nature

of PREMIUM a log-logistic curve will be fitted to the frequency distribution of PREMIUM in each
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of the 12 cells. The variable PREMIUM is modeled in hundreds of rands, which implies that the

vector of upper class boundaries is

x =




2

3

4

5




. (8.29)

(See Table 8.1.) The median of the fitted log-logistic curves will be modeled over the 12 cells to

investigate the effect of the two factors AGE and PRODUCT on PREMIUM. This will be described in

a total of 4 models. The results for all 4 models were all obtained from the SAS program FACTOR2

listed in Appendix B2.

8.3.1 Model 1: Saturated model

A log-logistic curve is fitted to every cell in the two-factor design, such that

ln

(
πt

1− πt

)
, t = 1, 2, · · · , 12

is in the column space of

X=
(
lnx 1

)
=




ln 2 1

ln 3 1

ln 4 1

ln 5 1




. (8.30)

Implementing the vector of constraints g(π) = glog(π) = 0 with

glog(π) =




QX ln

(
π1

1− π1

)

QX ln

(
π2

1− π2

)

...

QX ln

(
π12

1− π12

)




(8.31)

where QX= I−X(X′
X)−1X′, in the ML estimation procedure, a total of 12 log-logistic distribu-

tions are fitted simultaneously to the frequency distributions of the two-factor design listed in Table

8.3.
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Table 8.3: Descriptive statistics for the saturated model.

PRODUCT
AGE I II III

20-29
1086420

0.5

0.4

0.3

0.2

0.1

0
1086420

0.5

0.4

0.3

0.2

0.1

0
1086420

0.5

0.4

0.3

0.2

0.1

0

µ̂ = 3.097 ν̂ = 2.842
σ̂ = 1.427 σ̂ν̂ = 0.038

µ̂ = 3.462 ν̂ = 3.143
σ̂ = 1.715 σ̂ν̂ = 0.066

µ̂ = 4.031 ν̂ = 3.447
σ̂ = 2.786 σ̂ν̂ = 0.086

30-39
1086420

0.5

0.4

0.3

0.2

0.1

0
1086420

0.5

0.4

0.3

0.2

0.1

0
1086420

0.5

0.4

0.3

0.2

0.1

0

µ̂ = 3.080 ν̂ = 2.712
σ̂ = 1.831 σ̂ν̂ = 0.040

µ̂ = 2.790 ν̂ = 2.538
σ̂ = 1.365 σ̂ν̂ = 0.039

µ̂ = 4.260 ν̂ = 3.588
σ̂ = 3.167 σ̂ν̂ = 0.063

40-49
1086420

0.5

0.4

0.3

0.2

0.1

0
1086420

0.5

0.4

0.3

0.2

0.1

0
1086420

0.5

0.4

0.3

0.2

0.1

0

µ̂ = 2.941 ν̂ = 2.584
σ̂ = 1.768 σ̂ν̂ = 0.045

µ̂ = 2.496 ν̂ = 2.235
σ̂ = 1.349 σ̂ν̂ = 0.039

µ̂ = 4.173 ν̂ = 3.588
σ̂ = 2.806 σ̂ν̂ = 0.074

50-59
1086420

0.5

0.4

0.3

0.2

0.1

0
1086420

0.5

0.4

0.3

0.2

0.1

0
1086420

0.5

0.4

0.3

0.2

0.1

0

µ̂ = 2.903 ν̂ = 2.544
σ̂ = 1.768 σ̂ν̂ = 0.061

µ̂ = 2.295 ν̂ = 2.019
σ̂ = 1.372 σ̂ν̂ = 0.054

µ̂ = 4.131 ν̂ = 3.443
σ̂ = 3.223 σ̂ν̂ = 0.090
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The log-logistic curves tabulated in Table 8.3 provide an excellent fit for PREMIUM. This is further

motivated by the goodness of fit statistics reported in Table 8.4. The degrees of freedom follows

from the 24 linear independent constraints in (8.31).

Table 8.4: Goodness of fit statistics for the saturated model.

Pearson Wald

Model df Statistic p-value Statistic p-value

1 24 30.799 0.1597 30.266 0.1761

Evaluating the means (µ̂) and medians (ν̂) in Table 8.3 it is clear that Product III is the most

expensive product. The standard deviations (σ̂) indicate that the variation in PREMIUM is the

highest for Product III which can also be seen from the some-what flatter log-logistic curves displayed

in Table 8.3. Product II portrays the most drastic drop in PREMIUM over the categories of AGE

indicating a possible interaction between AGE and PRODUCT.

Define the following functions of the medians:

νAP
ij : median in (ij) -th cell

ν̄A
i = 1

3

3∑
j=1

νAP
ij : average median for i-th level of AGE

ν̄P
j = 1

4

4∑
i=1

νAP
ij : average median for j-th level of PRODUCT

ν̄ = 1
12

4∑
i=1

3∑
j=1

νAP
ij = 1

4

4∑
i=1

ν̄A
i = 1

3

3∑
j=1

ν̄P
j : overall average median
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The median of the (ij)-th cell may be expressed by the two-factor model

νij = τ 0 + τA
i + τP

j + τAP
ij , i = 1, 2, 3, 4 and j = 1, 2, 3 (8.32)

where

τ 0 = ν̄ : overall median

τA
i = ν̄A

i − τ 0

= ν̄A
i − ν̄

: effect for the i-th level of AGE

τP
j = ν̄P

j − τ 0

= ν̄P
j − ν̄

: effect for the j-th level of PRODUCT

τAP
ij = νAP

ij −
(
τ0 + τA

i + τP
i

)

= νAP
ij − ν̄A

i − ν̄P
j + ν̄

:
interaction effect for the i-th level of AGE

and j-th level of PRODUCT

Since
4∑

i=1

τA
i =

3∑

j=1

τP
j =

4∑

i=1

τAP
ij =

3∑

j=1

τAP
ij = 0 (8.33)

it follows for the main effects that

τA
4 = −

3∑

i=1

τA
i and τP

3 = −
2∑

j=1

τP
j (8.34)

and for the interaction effects that

τAP
4j = −

3∑

i=1

τAP
ij and τAP

i3 = −
2∑

j=1

τAP
ij . (8.35)

 
 
 



93

In matrix notation, the saturated model (8.32) may be written as

ν = Zλ


ν11

ν12

ν13

ν21

ν22

ν23

ν31

ν32

ν33

ν41

ν42

ν43




=




1 1 0 0 1 0 1 0 0 0 0 0

1 1 0 0 0 1 0 1 0 0 0 0

1 1 0 0 −1 −1 −1 −1 0 0 0 0

1 0 1 0 1 0 0 0 1 0 0 0

1 0 1 0 0 1 0 0 0 1 0 0

1 0 1 0 −1 −1 0 0 −1 −1 0 0

1 0 0 1 1 0 0 0 0 0 1 0

1 0 0 1 0 1 0 0 0 0 0 1

1 0 0 1 −1 −1 0 0 0 0 −1 −1
1 −1 −1 −1 1 0 −1 0 −1 0 −1 0

1 −1 −1 −1 0 1 0 −1 0 −1 0 −1
1 −1 −1 −1 −1 −1 1 1 1 1 1 1







τ 0

τA
1

τA
2

τA
3

τP
1

τP
2

τAP
11

τAP
12

τAP
21

τAP
22

τAP
31

τAP
32




(8.36)

where Z : (12× 12) is the design matrix and λ : (12× 1) consists out of the estimable parameters.

Since AGE has 4 levels and PRODUCT has 3 levels define the design matrices

DA =




1 0 0

0 1 0

0 0 1

−1 −1 −1




and DP =




1 0

0 1

−1 −1


 (8.37)

with corresponding vectors of ones

1A =




1

1

1

1




and 1P =




1

1

1


 . (8.38)

 
 
 



94

The saturated model (8.36) may therefore be partitioned as

ν = Zλ

=
(
1 ZA ZP ZAP

)




τ 0

λA

λP

λAP




(8.39)

with a description of the submatrices and parameters listed in Table 8.5.

Table 8.5: Partitioning of the saturated model.

Submatrices Parameters

1 = 1A ⊗ 1P : (12× 1) τ 0 : overall median

ZA = DA ⊗ 1P : (12× 3) λA :




τA
1

τA
2

τA
3


 = effects for AGE

ZP = 1A ⊗DP : (12× 2) λP :


 τP

1

τP
2


 = effects for PRODUCT

ZAP = ZA � ZP : (12× 6) λAP :




τAP
11

τAP
12

τAP
21

τAP
22

τAP
31

τAP
32




=
interaction effects for

AGE and PRODUCT

Note: The operator � in Table 8.5 performs a direct product on all rows of ZA and ZP . The

result has the same number of rows as ZA and ZP and the number of columns is equal to the

product of the number of columns of ZA and ZP . See (8.36).
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The ML estimate for λ is

λ̂=(Z′Z)
−1
Z′ν̂ (8.40)

with asymptotic covariance matrix

Cov
(
λ̂
)
�

{
(Z′Z)

−1
Z′
}
Cov (ν̂)

{
(Z′Z)

−1
Z′
}′

. (8.41)

The complete set of effects for the two-factor design may be obtained from

τ̂ = Sλ̂ (8.42)

where

S = Block
(
1 DA DP DA ⊗DP

)

=




1 0 0 0

0 DA 0 0

0 0 DP 0

0 0 0 DA ⊗DP




(8.43)

and

τ̂ =




τ̂ 0

τ̂
A

τ̂
B

τ̂
AP




: (20× 1) (8.44)

consists out of all the effects for the two-factor model. In (8.44) the main effects are

τ̂
A =




τ̂A
1

τ̂A
2

τ̂A
3

τ̂A
4




and τ̂
B =




τ̂P
1

τ̂P
2

τ̂P
3


 (8.45)
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with the interaction effects included in

τ̂
AP =




τ̂AP
11

τ̂AP
12

τ̂AP
13

τ̂AP
21

τ̂AP
22

τ̂AP
23

τ̂AP
31

τ̂AP
32

τ̂AP
33

τ̂AP
41

τ̂AP
42

τ̂AP
43




. (8.46)

The asymptotic standard errors for τ̂ are calculated from

Cov (τ̂ ) � SCov
(
λ̂
)
S′ . (8.47)

A complete summary of all the effects (τ̂) with standard errors (σ̂τ̂) is given in Table 8.5. The

overall median is R289. Investigating the main effects a decreasing monotone trend in PREMIUM

over the categories of AGE is evident. Starting with a premium of R25 above the overall median

for the youngest policyholders and dropping down to a premium of R22 below the overall median

for the oldest policyholders. PRODUCT III is the most expensive product with a PREMIUM of R63

above the overall median. The premiums for PRODUCT I and PRODUCT II are both below average

with premiums of R22 and R41 below the overall median respectively. The interaction effects, i.e.

the τ̂AP -values, show a very clear interaction structure between AGE and PRODUCT. Apart from

the overall decreasing effect in the PREMIUM over the categories of AGE, the PREMIUM drops

even more drastically over the AGE categories for PRODUCT II. This is contrasted with PRODUCT

III, which is a relatively cheaper policy for the younger policyholders. All the standard errors are

included which enable the testing of certain hypotheses and the construction of confidence intervals.
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Table 8.6: Effects for the saturated model.

PRODUCT τ̂A

AGE I II III σ̂τ̂A

20-29
1086420

0.5

0.4

0.3

0.2

0.1

0
1086420

0.5

0.4

0.3

0.2

0.1

0
1086420

0.5

0.4

0.3

0.2

0.1

0

τ̂AP = −0.08
σ̂τ̂AP = 0.038

τ̂AP = 0.41
σ̂τ̂AP = 0.045

τ̂AP = −0.32
σ̂τ̂AP = 0.053

0.25
0.032

30-39
1086420

0.5

0.4

0.3

0.2

0.1

0
1086420

0.5

0.4

0.3

0.2

0.1

0
1086420

0.5

0.4

0.3

0.2

0.1

0

τ̂AP = −0.01
σ̂τ̂AP = 0.034

τ̂AP = 0.00
σ̂τ̂AP = 0.034

τ̂AP = 0.02
σ̂τ̂AP = 0.044

0.06
0.027

40-49
1086420

0.5

0.4

0.3

0.2

0.1

0
1086420

0.5

0.4

0.3

0.2

0.1

0
1086420

0.5

0.4

0.3

0.2

0.1

0

τ̂AP = 0.00
σ̂τ̂AP = 0.036

τ̂AP = −0.16
σ̂τ̂AP = 0.036

τ̂AP = 0.16
σ̂τ̂AP = 0.047

−0.09
0.028

50-59
1086420

0.5

0.4

0.3

0.2

0.1

0
1086420

0.5

0.4

0.3

0.2

0.1

0
1086420

0.5

0.4

0.3

0.2

0.1

0

τ̂AP = 0.10
σ̂τ̂AP = 0.044

τ̂AP = −0.24
σ̂τ̂AP = 0.043

τ̂AP = 0.15
σ̂τ̂AP = 0.055

−0.22
0.034

τ̂P

σ̂τ̂P

−0.22
0.022

−0.41
0.023

0.63
0.029

τ̂ 0 = 2.89
σ̂τ̂0 = 0.018
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8.3.2 Model 2: No interaction model

In the case of no interaction between AGE and PRODUCT the two-factor model is

νij = τ 0 + τA
i + τP

j , i = 1, 2, 3, 4 and j = 1, 2, 3. (8.48)

In matrix notation the medians are to be fitted such that

ν = Y2γ2

=




1 1 0 0 1 0

1 1 0 0 0 1

1 1 0 0 −1 −1
1 0 1 0 1 0

1 0 1 0 0 1

1 0 1 0 −1 −1
1 0 0 1 1 0

1 0 0 1 0 1

1 0 0 1 −1 −1
1 −1 −1 −1 1 0

1 −1 −1 −1 0 1

1 −1 −1 −1 −1 −1







γ1

γ2

γ3

γ4

γ5

γ6




=
(
1 ZA ZP

)



τ 0

λA

λP


 (8.49)

where

τ 0 = γ1 : overall median

λA =




τA
1

τA
2

τA
3


 =




γ2

γ3

γ4


 : effects for AGE

λP =


τP

1

τP
2


 =


γ5

γ6


 : effects for PRODUCT
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See Table 8.5 for an explanation of the submatrices 1, ZA and ZP in (8.49).

It follows that π is to be estimated such that ν is in the column space of Y2 and therefore implies

the constraints

gmod2(π) = QY2ν = 0 (8.50)

where QY2 = I−Y2 (Y
′
2Y2)

−1
Y′
2.

Note: The vector of constraints

gmod2(π) = Z
′
APν = 0 (8.51)

with ZAP also defined in Table 8.5 is simply a reformulation of (8.50) and will provide exactly

the same results. This follows since the columns of ZAP generate the orthogonal vector space

of Y2 or simply because the model is to be fiited such that all the interaction effects in λ
AP

(see Table 8.5) are zero.

The no interaction model is obtained by employing the vector of constraints

g(π) =


 glog(π)

gmod2(π)


 = 0

in the ML estimation procedure. The ML estimate of γ2 in (8.49) is

γ̂ = (Y′
2Y2)

−1
Y′
2ν̂ =




γ̂1

γ̂2

γ̂3

γ̂4

γ̂5

γ̂6




=




τ̂ 0

τ̂A
1

τ̂A
2

τ̂A
3

τ̂P
1

τ̂P
2




=




2.8775

0.2879

0.0761

−0.1160
−0.2305
−0.4380




containing the effects for the no interaction model.

The fitted log-logistic curves under the constraints of no interaction between AGE and PRODUCT are

displayed in Table 8.8 and Table 8.9. In Table 8.8 the estimated medians proportionately reflect the

row and column effects tabulated in Table 8.9. The strong negative linear trend in PREMIUM over
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the AGE categories is evident, with PRODUCT III the most expensive product. All the interaction

effects in Table 8.9 are now equal to zero.

From the goodness of fit statistics tabulated in Table 8.7, Model 2 shows a substantial drop in fit

from that of Model 1. (See Table 8.4.) This is due to the clear interaction pattern seen in Model

1 where the saturated model was fitted. However, by calculating the measure of discrepancy the fit

is still satisfactory, since D = 0.015 < 0.05.

Table 8.7: Goodness of fit statistics for no interaction model.

Pearson Wald

Model df Statistic p-value Statistic p-value

2 30 124.8 <0.0001 125.7 <0.0001

The degrees of freedom for Model 2 is 30, since an additional 6 linear independent constraints are

included in gmod2(π) = 0. See (8.50) and (8.51).

 
 
 



101

Table 8.8: Descriptive statistics for the no interaction model.

PRODUCT
AGE P1 P2 P3

20-29
1086420

0.5

0.4

0.3

0.2

0.1

0
1086420

0.5

0.4

0.3

0.2

0.1

0
1086420

0.5

0.4

0.3

0.2

0.1

0

µ̂ = 3.199 ν̂ = 2.935
σ̂ = 1.476 σ̂ν̂ = 0.033

µ̂ = 3.053 ν̂ = 2.727
σ̂ = 1.673 σ̂ν̂ = 0.039

µ̂ = 4.539 ν̂ = 3.834
σ̂ = 3.328 σ̂ν̂ = 0.050

30-39
1086420

0.5

0.4

0.3

0.2

0.1

0
1086420

0.5

0.4

0.3

0.2

0.1

0
1086420

0.5

0.4

0.3

0.2

0.1

0

µ̂ = 3.092 ν̂ = 2.723
σ̂ = 1.837 σ̂ν̂ = 0.031

µ̂ = 2.766 ν̂ = 2.516
σ̂ = 1.357 σ̂ν̂ = 0.031

µ̂ = 4.302 ν̂ = 3.622
σ̂ = 3.204 σ̂ν̂ = 0.043

40-49
1086420

0.5

0.4

0.3

0.2

0.1

0
1086420

0.5

0.4

0.3

0.2

0.1

0
1086420

0.5

0.4

0.3

0.2

0.1

0

µ̂ = 2.885 ν̂ = 2.531
σ̂ = 1.749 σ̂ν̂ = 0.033

µ̂ = 2.590 ν̂ = 2.323
σ̂ = 1.384 σ̂ν̂ = 0.031

µ̂ = 3.991 ν̂ = 3.430
σ̂ = 2.691 σ̂ν̂ = 0.045

50-59
1086420

0.5

0.4

0.3

0.2

0.1

0
1086420

0.5

0.4

0.3

0.2

0.1

0
1086420

0.5

0.4

0.3

0.2

0.1

0

µ̂ = 2.755 ν̂ = 2.399
σ̂ = 1.740 σ̂ν̂ = 0.041

µ̂ = 2.475 ν̂ = 2.192
σ̂ = 1.427 σ̂ν̂ = 0.040

µ̂ = 3.962 ν̂ = 3.298
σ̂ = 3.109 σ̂ν̂ = 0.050
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Table 8.9: Effects for the no interaction model.

PRODUCT τ̂P

AGE I II III σ̂τ̂P

20-29
1086420

0.5

0.4

0.3

0.2

0.1

0
1086420

0.5

0.4

0.3

0.2

0.1

0
1086420

0.5

0.4

0.3

0.2

0.1

0

τ̂AP = 0
σ̂τ̂AP = 0

τ̂AP = 0
σ̂τ̂AP = 0

τ̂AP = 0
σ̂τ̂AP = 0

0.29
0.028

30-39
1086420

0.5

0.4

0.3

0.2

0.1

0
1086420

0.5

0.4

0.3

0.2

0.1

0
1086420

0.5

0.4

0.3

0.2

0.1

0

τ̂AP = 0
σ̂τ̂AP = 0

τ̂AP = 0
σ̂τ̂AP = 0

τ̂AP = 0
σ̂τ̂AP = 0

0.08
0.024

40-49
1086420

0.5

0.4

0.3

0.2

0.1

0
1086420

0.5

0.4

0.3

0.2

0.1

0
1086420

0.5

0.4

0.3

0.2

0.1

0

τ̂AP = 0
σ̂τ̂AP = 0

τ̂AP = 0
σ̂τ̂AP = 0

τ̂AP = 0
σ̂τ̂AP = 0

−0.12
0.025

50-59
1086420

0.5

0.4

0.3

0.2

0.1

0
1086420

0.5

0.4

0.3

0.2

0.1

0
1086420

0.5

0.4

0.3

0.2

0.1

0

τ̂AP = 0
σ̂τ̂AP = 0

τ̂AP = 0
σ̂τ̂AP = 0

τ̂AP = 0
σ̂τ̂AP = 0

−0.25
0.030

τ̂A

σ̂τ̂A

−0.23
0.021

−0.44
0.021

0.67
0.028

τ̂ 0 = 2.88
σ̂τ̂0 = 0.017
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8.3.3 Model 3: Regression model with no interaction

The decreasing monotone trend in PREMIUM over the categories of AGE can be modeled more

effectively by incorporating AGE as a so-called covariate. Instead of the 3 dummy variables used in

ZA = DA ⊗ 1P =







1 0 0

0 1 0

0 0 1

−1 −1 −1



⊗




1

1

1







=




1 0 0

1 0 0

1 0 0

0 1 0

0 1 0

0 1 0

0 0 1

0 0 1

0 0 1

−1 −1 −1
−1 −1 −1
−1 −1 −1




: 12× 3

the effect of AGE on PREMIUM can be modeled with the single covariate

z̃A = zA ⊗ 1P =







24.5

34.5

44.5

54.5



⊗




1

1

1







=




24.5

24.5

24.5

34.5

34.5

34.5

44.5

44.5

44.5

54.5

54.5

54.5




: 12× 1 (8.52)
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where zA =
(
24.5 34.5 44.5 54.5

)′
represents the vector of class midpoints for AGE.

The model to be fitted is

ν = Y3γ3

=




1 24.5 1 0

1 24.5 0 1

1 24.5 −1 −1
1 34.5 1 0

1 34.5 0 1

1 34.5 −1 −1
1 44.5 1 0

1 44.5 0 1

1 44.5 −1 −1
1 54.5 1 0

1 54.5 0 1

1 54.5 −1 −1







γ1

γ2

γ3

γ4




=
(
1 z̃A ZP

)




γ1

γ2

γ3

γ4




(8.53)

Model (8.53) implies

gmod3(π) = QY3ν = 0

to be implemented in the vector of constraints

g(π) =


 glog(π)

gmod3(π)


 (8.54)

where QY3 = I−Y3 (Y
′
3Y3)

−1
Y′
3. Since rank (Y3) = 4 a total of 8 linear independent constraints

are included in gmod3(π) = 0. The total number of linear independent constraints in (8.54) are

equal to 32.
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After employing the ML estimation procedure the restricted ML estimate π̂, yields the ML estimate

γ̂3 = (Y′
3Y3)

−1
Y′
3ν̂ =




γ̂1

γ̂2

γ̂3

γ̂4




=




3.5897

−0.01817
−0.22774
−0.44003




. (8.55)

It follows from (8.55) that the effects for Product II and Product III are

τ̂P
1 = γ̂3 = −0.22774 and τ̂P

2 = γ̂4 = −0.44003 (8.56)

respectively and hence the effect for Product III is

τ̂P
3 = − (γ̂3 + γ̂4) = − (−0.22774− 0.44003) = 0.66777 (8.57)

meaning that the estimated median for Product III is R66.78 above the overall median.

The estimated two-factor model is

ν̂ij =
(
3.5897 + τ̂P

j

)
− 0.01817zAi , i = 1, 2, 3, 4 and j = 1, 2, 3 (8.58)

where

ν̂ij = estimated premium in the ij-th category

zAi = the class midpoint for the i-th category for AGE

τ̂P
j = effect for the j-th category for PRODUCT

According to (8.58) the PREMIUM drops with R1.82 per year, or equivalently the PREMIUM drops

with R18.17 per age category of 10 years. This rate of change in PREMIUM over AGE is the same

for all three products, since no interaction between AGE and PRODUCT was assumed. See the

estimated medians in Table 8.10.
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Table 8.10: Descriptive statistics for no interaction regression model.

PRODUCT
AGE I II III

20-29
1086420

0.5

0.4

0.3

0.2

0.1

0
1086420

0.5

0.4

0.3

0.2

0.1

0
1086420

0.5

0.4

0.3

0.2

0.1

0

µ̂ = 3.179 ν̂ = 2.917
σ̂ = 1.465 σ̂ν̂ = 0.028

µ̂ = 3.034 ν̂ = 2.705
σ̂ = 1.682 σ̂ν̂ = 0.033

µ̂ = 4.508 ν̂ = 3.812
σ̂ = 3.286 σ̂ν̂ = 0.045

30-39
1086420

0.5

0.4

0.3

0.2

0.1

0
1086420

0.5

0.4

0.3

0.2

0.1

0
1086420

0.5

0.4

0.3

0.2

0.1

0

µ̂ = 3.106 ν̂ = 2.735
σ̂ = 1.844 σ̂ν̂ = 0.022

µ̂ = 2.774 ν̂ = 2.523
σ̂ = 1.359 σ̂ν̂ = 0.024

µ̂ = 4.313 ν̂ = 3.631
σ̂ = 3.214 σ̂ν̂ = 0.039

40-49
1086420

0.5

0.4

0.3

0.2

0.1

0
1086420

0.5

0.4

0.3

0.2

0.1

0
1086420

0.5

0.4

0.3

0.2

0.1

0

µ̂ = 2.908 ν̂ = 2.554
σ̂ = 1.756 σ̂ν̂ = 0.025

µ̂ = 2.610 ν̂ = 2.341
σ̂ = 1.394 σ̂ν̂ = 0.024

µ̂ = 4.012 ν̂ = 3.449
σ̂ = 2.701 σ̂ν̂ = 0.039

50-59
1086420

0.5

0.4

0.3

0.2

0.1

0
1086420

0.5

0.4

0.3

0.2

0.1

0
1086420

0.5

0.4

0.3

0.2

0.1

0

µ̂ = 2.730 ν̂ = 2.372
σ̂ = 1.743 σ̂ν̂ = 0.035

µ̂ = 2.439 ν̂ = 2.160
σ̂ = 1.405 σ̂ν̂ = 0.031

µ̂ = 3.928 ν̂ = 3.267
σ̂ = 3.093 σ̂ν̂ = 0.044
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From (8.58) the regression lines for each of the three products may be constructed. These regression

lines have the same slope with different intercepts and are tabulated in Table 8.11. The regression

lines reported in Table 8.11 agree with the estimated medians reported in Table 8.10.

Table 8.11: Estimated regression lines for regression model with no interaction.

PRODUCT ν̂ij

I 3.36196− 0.01817zAi

II 3.14967− 0.01817zAi

III 4.25747− 0.01817zAi

In Table 8.13 the effects for AGE reveal the same pattern as that of an ordinal variable. This follows

since the distances between the class midpoints are equal. The effects of AGE show a constant drop

of R18 per AGE category. Since all the interaction effects
(
τ̂AP

)
are zero the medians in Table 8.10

proportionately reflect the row and column effects in Table 8.13.

Comparing the goodness of fit statistics of Model 3 (see Table 8.12) with that of Model 2 (see

Table 8.7), the fit for the two models stayed practically the same. This motivates that the inclusion

of AGE as a covariate in the model is doing practically just as good as the three dummy variables

in the previous model, emphasizing the solid linear trend in PREMIUM over AGE.

Table 8.12: Goodness of fit statistics for regression model with no interaction.

Pearson Wald

Model df Statistic p-value Statistic p-value

3 32 126.0 <0.0001 126.8 <0.0001
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Table 8.13: Effects for no interaction regression model.

PRODUCT τ̂A

AGE I II III σ̂τ̂A

20-29
1086420

0.5

0.4

0.3

0.2

0.1

0
1086420

0.5

0.4

0.3

0.2

0.1

0
1086420

0.5

0.4

0.3

0.2

0.1

0

τ̂AP = 0
σ̂τ̂AP = 0

τ̂AP = 0
σ̂τ̂AP = 0

τ̂AP = 0
σ̂τ̂AP = 0

0.273
0.022

30-39
1086420

0.5

0.4

0.3

0.2

0.1

0
1086420

0.5

0.4

0.3

0.2

0.1

0
1086420

0.5

0.4

0.3

0.2

0.1

0

τ̂AP = 0
σ̂τ̂AP = 0

τ̂AP = 0
σ̂τ̂AP = 0

τ̂AP = 0
σ̂τ̂AP = 0

0.091
0.007

40-49
1086420

0.5

0.4

0.3

0.2

0.1

0
1086420

0.5

0.4

0.3

0.2

0.1

0
1086420

0.5

0.4

0.3

0.2

0.1

0

τ̂AP = 0
σ̂τ̂AP = 0

τ̂AP = 0
σ̂τ̂AP = 0

τ̂AP = 0
σ̂τ̂AP = 0

−0.091
0.007

50-59
1086420

0.5

0.4

0.3

0.2

0.1

0
1086420

0.5

0.4

0.3

0.2

0.1

0
1086420

0.5

0.4

0.3

0.2

0.1

0

τ̂AP = 0
σ̂τ̂AP = 0

τ̂AP = 0
σ̂τ̂AP = 0

τ̂AP = 0
σ̂τ̂AP = 0

−0.273
0.022

τ̂P

σ̂τ̂P

−0.228
0.021

−0.440
0.021

0.668
0.028

2.872
0.017
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8.3.4 Model 4: Regression model with interaction

Since the PREMIUM of the three products do not change at the same rate over the categories of

AGE, different slopes for each PRODUCT will be introduced leading to the model

ν = Y4γ4

=




1 24.5 1 0 24.5 0

1 24.5 0 1 0 24.5

1 24.5 −1 −1 −24.5 −24.5
1 34.5 1 0 34.5 0

1 34.5 0 1 0 34.5

1 34.5 −1 −1 −34.5 −34.5
1 44.5 1 0 44.5 0

1 44.5 0 1 0 44.5

1 44.5 −1 −1 −44.5 −44.5
1 54.5 1 0 54.5 0

1 54.5 0 1 0 54.5

1 54.5 −1 −1 −54.5 −54.5







γ1

γ2

γ3

γ4

γ5

γ6




=
(
1 z̃A ZP

(
z̃A � ZP

) )




γ1

γ2

γ3

γ4

γ5

γ6




(8.59)

where z̃A is defined in (8.52) and Zp is previously defined in Table 8.5. The vector of constraints

to be imposed in the ML estimation procedure is

g (π) =


 glog (π)

gmod4 (π)


 = 0 (8.60)

where gmod4 (π) = Q4ν with Q4 = I−Y4 (Y
′
4Y4)

−1
Y′
4 the projection matrix orthogonal to Y4.

A total of 6 linear independent constraints are included in gmod4 (π) bringing the total number of
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linear independent constraints in g (π) to 30.

Employing the ML estimation procedure with the vector of constraints (8.60) the ML estimate for

γ̂4 is

γ̂4 = (Y′
4Y4)

−1
Y′
4ν̂ =




γ̂1

γ̂2

γ̂3

γ̂4

γ̂5

γ̂6




=




3.4879

−0.01532
−0.39227
0.33708

0.00447

−0.01963




(8.61)

implying that the overall trend in PREMIUM over AGE is

ν̂i· = γ̂1 + γ̂2z
A
i = 3.4879− 0.01532zAi . (8.62)

Due to the interaction that exists between AGE and PRODUCT, the three regression equations for

PREMIUM are as follows:

PRODUCT I:

ν̂i1 = (3.4879 + γ̂3) + (−0.01532 + γ̂5) z
A
i

= (3.4879− 0.39227) + (−0.01532 + 0.00447) zAi

= 3.0956− 0.01085zAi (8.63)

PRODUCT II:

ν̂i2 = (3.4879 + γ̂4) + (−0.01532 + γ̂6) z
A
i

= (3.4879 + 0.33708) + (−0.01532− 0.01963) zAi

= 3.8250− 0.03496zAi (8.64)

PRODUCT III: For PRODUCT III the effect on the overall intercept (8.62) is

− (γ̂3 + γ̂4) = − (−0.39227 + 0.33708) = 0.05519

and the effect on the overall slope (8.62) is

− (γ̂5 + γ̂6) = − (0.00447− 0.01963) = 0.01516
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leading to the regression line

ν̂i3 = (3.4879 + 0.05519) + (−0.01532 + 0.01516) zAi

= 3.5431− 0.00016zAi (8.65)

See Table 8.16 where all the estimated medians are tabulated. For each product the estimated

medians follow an unique trend over AGE. For PRODUCT I the premium drops with an estimated

R1.09 per year, while for PRODUCT II the premium drops with an estimated R3.50 per year. For

PRODUCT III no real trend over AGE is evident with a slope that is practically equal to zero.

Investigating the effects in Table 8.17, the marginal and the partial trend over AGE may be examined.

Overall, the PREMIUM starts with R23 above the overall median of R288.30 and drops down linearly,

with an estimated R15.30 per age category, to R23 below the overall median. It is interesting to note

that this overall drop in PREMIUM seen by the τ̂A-values is cancelled out by the interaction effects

for PRODUCT III, the τ̂AP -values, implying no trend over AGE for PRODUCT III. For PRODUCT

II the effect of AGE on PREMIUM is rather drastic. Starting with R29.40 above the marginal effect

for the youngest policy holders and dropping to R29.40 below the marginal effects for the oldest

policy holders.

According to Table 8.15 the fit of Model 4 is much better than that of Model 5 indicating different

trends in PREMIUM over AGE for the three products. This satisfactory fit further explained in Table

8.18 where the observed and expected frequencies are reported.

Table 8.15: Goodness of fit statistics for regression model with interaction.

Pearson Wald

Model df Statistic p-value Statistic p-value

4 30 49.9 0.0127 50.0 0.0122
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Table 8.16: Descriptive statistics for regression model with interaction.

PRODUCT
AGE P1 P2 P3

20-29
1086420

0.5

0.4

0.3

0.2

0.1

0
1086420

0.5

0.4

0.3

0.2

0.1

0
1086420

0.5

0.4

0.3

0.2

0.1

0

µ̂ = 3.084 ν̂ = 2.830
σ̂ = 1.422 σ̂ν̂ = 0.033

µ̂ = 3.279 ν̂ = 2.969
σ̂ = 1.654 σ̂ν̂ = 0.046

µ̂ = 4.142 ν̂ = 3.539
σ̂ = 2.874 σ̂ν̂ = 0.068

30-39
1086420

0.5

0.4

0.3

0.2

0.1

0
1086420

0.5

0.4

0.3

0.2

0.1

0
1086420

0.5

0.4

0.3

0.2

0.1

0

µ̂ = 3.090 ν̂ = 2.721
σ̂ = 1.836 σ̂ν̂ = 0.022

µ̂ = 2.879 ν̂ = 2.619
σ̂ = 1.406 σ̂ν̂ = 0.027

µ̂ = 4.199 ν̂ = 3.538
σ̂ = 3.117 σ̂ν̂ = 0.042

40-49
1086420

0.5

0.4

0.3

0.2

0.1

0
1086420

0.5

0.4

0.3

0.2

0.1

0
1086420

0.5

0.4

0.3

0.2

0.1

0

µ̂ = 2.972 ν̂ = 2.613
σ̂ = 1.782 σ̂ν̂ = 0.028

µ̂ = 2.532 ν̂ = 2.269
σ̂ = 1.359 σ̂ν̂ = 0.026

µ̂ = 4.111 ν̂ = 3.536
σ̂ = 2.761 σ̂ν̂ = 0.044

50-59
1086420

0.5

0.4

0.3

0.2

0.1

0
1086420

0.5

0.4

0.3

0.2

0.1

0
1086420

0.5

0.4

0.3

0.2

0.1

0

µ̂ = 2.860 ν̂ = 2.504
σ̂ = 1.753 σ̂ν̂ = 0.045

µ̂ = 2.210 ν̂ = 1.920
σ̂ = 1.411 σ̂ν̂ = 0.043

µ̂ = 4.246 ν̂ = 3.534
σ̂ = 3.332 σ̂ν̂ = 0.072
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Table 8.17: Effects for regression model with interaction.

PRODUCT τ̂A

AGE I II III σ̂τ̂A

20-29
1086420

0.5

0.4

0.3

0.2

0.1

0
1086420

0.5

0.4

0.3

0.2

0.1

0
1086420

0.5

0.4

0.3

0.2

0.1

0

τ̂AP = −0.067
σ̂τ̂AP = 0.031

τ̂AP = 0.294
σ̂τ̂AP = 0.034

τ̂AP = −0.227
σ̂τ̂AP = 0.042

0.230
0.026

30-39
1086420

0.5

0.4

0.3

0.2

0.1

0
1086420

0.5

0.4

0.3

0.2

0.1

0
1086420

0.5

0.4

0.3

0.2

0.1

0

τ̂AP = −0.022
σ̂τ̂AP = 0.010

τ̂AP = 0.098
σ̂τ̂AP = 0.011

τ̂AP = −0.076
σ̂τ̂AP = 0.014

0.077
0.009

40-49
1086420

0.5

0.4

0.3

0.2

0.1

0
1086420

0.5

0.4

0.3

0.2

0.1

0
1086420

0.5

0.4

0.3

0.2

0.1

0

τ̂AP = 0.022
σ̂τ̂AP = 0.010

τ̂AP = −0.098
σ̂τ̂AP = 0.011

τ̂AP = 0.076
σ̂τ̂AP = 0.014

−0.077
0.009

50-59
1086420

0.5

0.4

0.3

0.2

0.1

0
1086420

0.5

0.4

0.3

0.2

0.1

0
1086420

0.5

0.4

0.3

0.2

0.1

0

τ̂AP = 0.067
σ̂τ̂AP = 0.031

τ̂AP = −0.294
σ̂τ̂AP = 0.034

τ̂AP = 0.227
σ̂τ̂AP = 0.042

−0.230
0.026

τ̂P

σ̂τ̂P

−0.216
0.021

−0.438
0.022

0.654
0.028

2.883
0.017
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Table 8.18: Observed and expected frequencies for regression model with interaction.

PRODUCT

AGE I II III

20-29

Premium f m

R51-R200 157 166

R201-R300 371 359

R301-R400 232 239

R401-R500 93 96

R500+ 77 70

Premium f m

R51-R200 49 68

R201-R300 148 144

R301-R400 101 109

R401-R500 62 51

R500+ 55 44

Premium f m

R51-R200 69 61

R201-R300 108 108

R301-R400 103 107

R401-R500 81 73

R500+ 100 112

30-39

Premium f m

R51-R200 267 271

R201-R300 400 378

R301-R400 212 237

R401-R500 115 109

R500+ 111 109

Premium f m

R51-R200 213 194

R201-R300 328 317

R301-R400 147 174

R401-R500 71 66

R500+ 41 49

Premium f m

R51-R200 132 145

R201-R300 249 235

R301-R400 211 226

R401-R500 156 155

R500+ 269 256

40-49

Premium f m

R51-R200 241 229

R201-R300 278 289

R301-R400 167 167

R401-R500 84 74

R500+ 62 72

Premium f m

R51-R200 302 289

R201-R300 275 283

R301-R400 117 117

R401-R500 40 42

R500+ 30 33

Premium f m

R51-R200 73 84

R201-R300 168 155

R301-R400 151 155

R401-R500 94 105

R500+ 170 156

50-59

Premium f m

R51-R200 135 139

R201-R300 150 155

R301-R400 89 83

R401-R500 40 36

R500+ 34 35

Premium f m

R51-R200 205 223

R201-R300 130 120

R301-R400 49 43

R401-R500 18 16

R500+ 14 15

Premium f m

R51-R200 77 73

R201-R300 121 112

R301-R400 98 106

R401-R500 76 73

R500+ 118 126
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Bivariate normal distribution
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Chapter 9

Bivariate grouped data

Consider a bivariate data set with n observations classified in a two-way contingency table with I

rows and J columns. The frequencies of the IJ cells are denoted by fij in Table 9.1.

Table 9.1: Contingency table with I rows and J columns.

X

Y (−∞, y1] (y1, y2] · · · (yJ−2, yJ−1] (yJ−1, yJ ]

(−∞, x1] f11 f12 · · · f1,J−1 f1J

(x1, x2] f21 f22 · · · f2,J−1 f2J
...

...
... · · · ...

...

(xI−2, xI−1] fI−1,1 fI−1,2 · · · fI−1,J−1 fI−1,J

(xI−1, xI ] fI1 fI2 · · · fI,J−1 fIJ

The objective is to fit a bivariate distribution curve to the two-way grouped data set in Table 9.1.
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9.1 Formulation

The vectors of upper class boundaries are

x =




x1

x2
...

xI−1




and y =




y1

y2
...

yJ−1




(9.1)

with

F =




f11 f12 · · · f1,J−1 f1J

f21 f22 · · · f2,J−1 f2J
...

... · · · ...
...

fI1 fI2 · · · fI−1,J−1 fI−1,J

fI1 fI2 · · · fI,J−1 fIJ




(9.2)

the matrix of frequencies listed in Table 9.1.

Define

f = vec (F) (9.3)

as the column vector where the elements of F are stacked row by row below each other. It is

assumed that f has a multinomial distribution i.e.

f ∼mult (n,π0) .

Let

p0 =
1

n
f (9.4)

denote the vector of relative frequencies. Hence

E (p0) = π0 (9.5)

and

Cov (p0) =
1

n
(diag (π0)− π0π′0)

= V0 . (9.6)
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Define the matrix of relative frequencies

P0 =
1

n
F (9.7)

where F is given in (9.2). The matrix with cumulative relative frequencies may be obtained from

P = CI ·P0 ·CJ (9.8)

where

CI : (I × I) =




1 0 0 · · · 0

1 1 0 · · · 0

1 1 1 · · · 0
...
...
...
. . .

...

1 1 1 · · · 1




and CJ : (J × J) =




1 1 1 · · · 1

0 1 1 · · · 1

0 0 1 · · · 1
...
...
...
. . .

...

0 0 0 · · · 1




. (9.9)

From Muirhead (1982) (p.74) it follows that

vec (P) = vec (CI ·P0 ·CJ)

= (C′J ⊗CI) vec (P0)

= (C′J ⊗CI)p0 (9.10)

From (9.10) the random vector of cumulative relative frequencies is

p = Cp0 (9.11)

with

C = (C′J ⊗CI) . (9.12)

The expected value and covariance matrix of the random vector p is

E (p) = E (Cp0)

= Cπ0

= π (9.13)
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and

Cov (p) = Cov (Cp0)

=
1

n
C {diag(π0)−π0π′0}C′

=
1

n

{
Cdiag

(
C−1π

)
C′ − ππ′

}

= V . (9.14)

9.2 Estimation

Estimation of the bivariate distribution curve F (x, y), is obtained such that

P (X ≤ xi, Y ≤ yj) = πij (9.15)

for i = 1, 2, · · · , I and j = 1, 2, · · · , J where πij is the expected cumulative relative frequency in

(9.13). The complete set of expected cumulative relative frequencies is given in Table 9.2.

Table 9.2: Expected cumulative relative frequencies for a bivariate grouped data set.

Y

X (−∞, y1] (y1, y2] · · · (yJ−2, yJ−1] (yJ−1, yJ ]

(−∞, x1] π11 π12 · · · π1,J−1 π1J

(x1, x2] π21 π22 · · · π2,J−1 π2J
...

...
... · · · ...

...

(xI−2, xI−1] πI−1,1 πI−1,2 · · · πI−1,J−1 πI−1,J

(xI−1, xI ] πI1 πI2 · · · πI,J−1 πIJ

Imposing the restriction (9.15) in the ML estimation procedure, leads to the ML estimate of π under

constraints, that will satisfy the characteristics of the specified bivariate continuous distribution.

 
 
 



Chapter 10

The bivariate normal distribution

In this chapter a few of the basic concepts of the bivariate normal distribution will be discussed.

These concepts are of importance in the estimation of the bivariate normal distribution to a two-way

contingency table. It will also be shown how to calculate bivariate normal probabilities by making use

of a series of gamma functions. The one-to-one relationship between the correlation coefficient and

the bivariate normal probabilities is explained in detail since it plays a major role in the estimation

of the bivariate normal distribution discussed in the next chapter.

10.1 Joint distribution

The bivariate normal distribution with pdf

f(x, y) =
1

2πσxσy

√
1− ρ2

· exp
{
− 1

2 (1− ρ2)

[(
x− µx

σx

)2

−2ρ
(
x− µx

σx

)(
y − µy

σy

)
+

(
y − µy

σy

)2]}
(10.1)

where −∞ < µx, µy < ∞, 0 < σx, σy < ∞ and −1 ≤ ρ ≤ 1 is to be fitted to the two-way

contingency table in Table 9.1. The pdf of the bivariate normal distribution involves 5 parameters

and a special notation for this joint distribution is

(x, y) ∼ BVN
(
µx, µy, σ

2
x, σ

2
y, ρ

)
.
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10.2 Marginal distributions

When x and y are jointly normally distributed, each of the two marginal distributions by itself is

normally distributed. The marginal distribution of x is normal with mean µx and standard deviation

σx, i.e.

f(x) =
1√
2πσx

· exp
{
−1

2

(
x− µx

σx

)2}
. (10.2)

The marginal distribution of y is normal with mean µy and standard deviation σy, i.e.

f(y) =
1√
2πσy

· exp
{
−1

2

(
y − µy

σy

)2}
. (10.3)

10.3 Standard bivariate normal distribution

By making use of standardisation it is possible to obtain the standard bivariate normal distribution

f(zx, zy) =
1

2π
√
1− ρ2

· exp
{
− 1

2 (1− ρ2)

[
z2x − 2ρzxzy + z2y

]}
(10.4)

where zx =

(
x− µx

σx

)
and zy =

(
y − µy

σy

)
. In this case

(zx, zy) ∼ BVN(0, 0, 1, 1, ρ)

with

ρ =
σxy

σxσy
(10.5)

where σxy = Cov(x, y), the only parameter determining the shape of the bivariate normal distribu-

tion.

The standard bivariate normal curve is displayed in Table 10.1 to illustrate the effect of the correlation

coefficient ρ.
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Table 10.1: The effect of the correlation coefficient ρ.

Case 1: ρ = 0

2
0

-2

2
0

-2

0.15

0.1

0.05

0

x

y

z

x

y

z

Case 2: ρ = 0.7

2
0

-2

20-2

0.2

0.1

0

x

y

z

x

y

z

Case 3: ρ = −0.7

2
0

-2

20-2

0.2

0.1

0

x

y

z

x

y

z
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Table 10.1 is summarised as follows:

Case 1: ρ = 0

The contour curves are circles, indicating no relationship between x and y. For all other values

of ρ the contour curves are ellipses.

Case 2: ρ = 0.7

When x and y are positively related so that ρ > 0, the principal axis has a positive slope,

implying that the surface tends to run along a line with a positive slope. It is clear that high

x values are related with high y values and visa versa.

Case 3: ρ = −0.7
When x and y are negatively related, ρ < 0, the principal axis has a negative slope and the

surface runs along a line with a negative slope.

10.4 Conditional distributions

The density function of the conditional distribution of x for any given value of y is

f(x|y) = f(x, y)

f(y)

where f(x, y) is the joint density function of x and y and f(y) is the marginal density function of

y. When x and y are jointly normally distributed the conditional pdf of x for any given y is

f(x|y) = 1√
2πσx|y

exp

[
−1

2

(
x− µx|y

σx|y

)2]
(10.6)

where

µx|y = µx +

(
ρ
σx

σy

)
(y − µy)

σ2x|y = σ2x(1− ρ2)

The parameter αx|y = µx −
(
ρ
σx

σy

)
µy is the intercept of the line of regression of x on y and the

parameter βx|y = ρ
σx

σy
is the slope of this line.
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The conditional distribution of y for any given x follows similarly with

f(y|x) = 1√
2πσy|x

exp

[
−1

2

(
y − µy|x

σy|x

)2]
(10.7)

where

µy|x = µy +

(
ρ
σy

σx

)
(x− µx)

σ2y|x = σ2y(1− ρ2)

The parameter αy|x = µy −
(
ρ
σy

σx

)
µx is the intercept of the line of regression of y on x and the

parameter βy|x = ρ
σy

σx
is the slope of this line.

10.5 Bivariate normal probabilities

10.5.1 Calculation of bivariate normal probabilities

The probability

Φ(a, b; ρ) =

∫ b

−∞

∫ a

−∞

1

2π
√
1− ρ2

exp

(
− 1

2 (1− ρ2)

[
z2x − 2ρzxzy + z2y

])
dzxdzy (10.8)

corresponds to the volume under the surface of the standard bivariate normal distribution over the

region −∞ < zx ≤ a and −∞ < zy ≤ b. The lines zx = 0 and zy = 0 divide the domain in 4

so-called quadrants. See Table 10.2.

Table 10.2: The four quadrants of the bivariate normal distribution.

Quadrant Region

Q1 −∞ < zx < 0 −∞ < zy < 0

Q2 −∞ < zx < 0 0 ≤ zy <∞
Q3 0 ≤ zx <∞ −∞ < zy < 0

Q4 0 ≤ zx <∞ 0 ≤ zy <∞
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Define

Φ0(a, b; ρ) =

∫ b

0

∫ a

0

1

2π
√
1− ρ2

exp

(
− 1

2 (1− ρ2)

[
z2x − 2ρzxzy + z2y

])
dzxdzy (10.9)

as the integral where integration of the standard bivariate normal distribution takes place in the

positive quadrant, Q4. See Figure 10.1.

1.510.50-0.5-1

1.5

1

0.5

0

-0.5

-1

-1.5

x

y

Figure 10.1: Integration region of Φ0(a, b; ρ)

Due to the symmetry of the bivariate normal distribution, any bivariate normal probability Φ(a, b; ρ)

in (10.8) can be calculated as a linear combination of Φ0(a, b; ρ)-values in (10.9), summarised in

Table 10.3.
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and therefore

Φ0(a, b; ρ) =
∞∑

i=0

1

2π
√
1− ρ2

(
ρ

1− ρ2

)i
1

i!
· 2i−1

(
1− ρ2

)i+1
Γ2

(
i+ 1

2

)

·G
(

a2

2 (1− ρ2)
,
i+ 1

2

)
·G

(
b2

2 (1− ρ2)
,
i+ 1

2

)

=
∞∑

i=0

(2ρ)i
√
1− ρ2

4πi!
Γ2

(
i+ 1

2

)
·G

(
a2

2 (1− ρ2)
,
i+ 1

2

)
·G

(
b2

2 (1− ρ2)
,
i+ 1

2

)

The probability Φ0(a, b; ρ) can be calculated by making use of the SAS program Phi0.SAS listed

in the Appendix. The probability Φ(a, b; ρ) can be obtained by making use of the SAS function

PROBBNRM(a,b,ρ) or by making use of the SAS program Phi.SAS also listed in the Appendix.

10.5.2 Calculation of ρ

Integration over each of the four quadrants tabulated in Table 10.2 leads to the definition of the

following four probabilities or so-called volumes

VOL1 =

∫∫

Q1

1

2π
√
1− ρ2

· exp
{
− 1

2 (1− ρ2)

[
z2x − 2ρzxzy + z2y

]}
dzxdzy (10.13)

VOL2 =

∫∫

Q2

1

2π
√
1− ρ2

· exp
{
− 1

2 (1− ρ2)

[
z2x − 2ρzxzy + z2y

]}
dzxdzy (10.14)

VOL3 =

∫∫

Q3

1

2π
√
1− ρ2

· exp
{
− 1

2 (1− ρ2)

[
z2x − 2ρzxzy + z2y

]}
dzxdzy (10.15)

VOL4 =

∫∫

Q4

1

2π
√
1− ρ2

· exp
{
− 1

2 (1− ρ2)

[
z2x − 2ρzxzy + z2y

]}
dzxdzy (10.16)

The probability or the total volume of the positive quadrant Q4 may be expressed in terms of the

correlation coefficient
arcsin ρ

2π
= VOL4− 1

4
(10.17)

which is referred to as Sheppard’s theorem on median dichotomy (1898). (See Kendall and Stuart

(1958) p.351). Due to the symmetry of the bivariate normal distribution i.e.

VOL1 = VOL4 and VOL2 = VOL3
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and the property

VOL1 + VOL2 + VOL3 + VOL4 = 1

it follows that
2

π
arcsin ρ = (VOL1 + VOL4)− (VOL2 + VOL3)

which leads to the expression of ρ

ρ = sin
(π

2
[(VOL1 + VOL4)− (VOL2 + VOL3)]

)
. (10.18)

As an illustration of the one-to-one relationship between the volumes of the respective quadrants

of the bivariate normal distribution and the correlation coefficient ρ consider Table 10.4 and Table

10.5.

Table 10.4: Relationship between ρ and the four volumes of the bivariate normal distribution.

(VOL1 + VOL4) (VOL2 + VOL3) ρ

1 0 sin (π/2) = 1

0.9 0.1 sin (π/2(0.8)) = 0.951 06

0.8 0.2 sin (π/2(0.6)) = 0.809 02

0.7 0.3 sin (π/2(0.4)) = 0.587 79

0.6 0.4 sin (π/2(0.2)) = 0.309 02

0.5 0.5 sin (π/2(0)) = 0.0

0.4 0.6 sin (π/2(−0.2)) = −0.309 02
0.3 0.7 sin (π/2(−0.4)) = −0.587 79
0.2 0.8 sin (π/2(−0.6)) = −0.809 02
0.1 0.9 sin (π/2(−0.8)) = −0.951 06
0 1 sin (−π/2) = −1

In the case where ρ = 0

VOL1 = VOL2 = VOL3 = VOL4 = 0.25 ,

resulting in an even distribution of the volumes over the four quadrants.

 
 
 



130

Table 10.5: Contours of bivariate normal distribution with ρ.

ρ = 0 ρ = 0.2

ρ = 0.5 ρ = −0.5

ρ = 0.9 ρ = −0.9
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For a slight positive relationship of ρ = 0.2 (see Table 10.5), the volumes of the positive and negative

quadrants are slightly higher than the two mixed quadrants. Comparing ρ = 0.5 with ρ = −0.5 it
is clear that the two graphs are mirror images of each other. Further, it is also clear that a stronger

positive relationship is associated with higher volumes in the positive and negative quadrants, while

a stronger negative relationship is associated with higher volumes in the two mixed quadrants. (See

Table 10.5.)

 
 
 



Chapter 11

Estimating the bivariate normal

distribution

In this chapter the estimation procedure to fit a bivariate normal distribution (10.1) to the two-way

contingency table in Table 9.1 is described.

11.1 Bivariate normal probabilities

After standardising the vector of upper class boundaries x in (9.1), the vector of standardised upper

class boundaries is

zx =
x− µx1

σx

=
(
x −1

)



1

σx
µx

σx




= Xαx (11.1)

with

X =
(
x −1

)
and αx =




1

σx
µx

σx


 . (11.2)

132
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Similarly it follows from standardising y in (9.1) that

zy =
y− µy1

σy

=
(
y −1

)



1

σy
µy

σy


 .

= Yαy (11.3)

with

Y =
(
y −1

)
and αy =




1

σy
µy

σy


 . (11.4)

The vectors αx in (11.2) and αy in (11.3) are referred to as the vectors of so-called natural

parameters.

The bivariate normal probabilities

Φij = F
(
zxi , zxj

)
= P (Zx ≤ zxi , Zy ≤ zyj) (11.5)

with corresponding standardised upper class boundaries are tabulated in Table 11.1.

Table 11.1: Bivariate normal probabilities.

zy1 zy2 · · · zyJ�1 zyJ

zx1 Φ11 Φ12 · · · Φ1,J−1 Φ1J

zx2 Φ21 Φ22 · · · Φ2,J−1 Φ2J
...

...
... · · · ...

...

zx(I�1) ΦI−1,1 ΦI−1,2 · · · ΦI−1,J−1 ΦI−1,J

zxI ΦI1 ΦI2 · · · ΦI,J−1 ΦIJ

To fit a bivariate normal distribution to the contingency table in Table 9.1 it is required that the

bivariate normal probabilities should equal the corresponding cumulative relative frequencies i.e.

[Φ]ij = [Π]ij for i = 1, 2, · · · , I and j = 1, 2, · · · , J (11.6)
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where

Φ =




Φ11 Φ12 · · · Φ1,J−1 Φ1J

Φ21 Φ22 · · · Φ2,J−1 Φ2J
...

... · · · ...
...

ΦI−1,1 ΦI−1,2 · · · ΦI−1,J−1 ΦI−1,J

ΦI1 ΦI2 · · · ΦI,J−1 ΦIJ




(11.7)

is the matrix with bivariate normal probabilities defined in (11.5) and

Π =




π11 π12 · · · π1,J−1 π1,J

π21 π22 · · · π2,J−1 π2,J
...

... · · · ...
...

πI−1,1 πI−1,2 · · · πI−1,J−1 πI−1,J

πI1 πI2 · · · πI,J−1 πIJ




(11.8)

is the corresponding matrix with expected cumulative relative frequencies defined in (9.15).

It follows from (11.6), that the following three conditions must hold:

1. Marginal distribution of x:

Φx = πx


Φ1J

Φ2J
...

ΦI−1,J




=




π1,J

π2,J
...

πI−1,J




(11.9)

(First (I − 1) elements of last columns of Φ (11.7) and Π (11.8).)

2. Marginal distribution of y:

Φy = πy(
ΦI1 ΦI2 · · · ΦI,J−1

)′
=

(
πI1 πI2 · · · πI,J−1

)′
(11.10)

(First (J − 1) elements of last rows of Φ (11.7) and Π (11.8).)
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3. Joint distribution of x and y:

Φxy = πxy

vec




Φ11 Φ12 · · · Φ1,J−1

Φ21 Φ22 · · · Φ2,J−1
...

... · · · ...

ΦI−1,1 ΦI−1,2 · · · ΦI−1,J−1




= vec




π11 π12 · · · π1,J−1

π21 π22 · · · π2,J−1
...

... · · · ...

πI−1,1 πI−1,2 · · · πI−1,J−1




(11.11)

(First (I − 1) (J − 1) elements of Φ (11.7) and Π (11.8).)

In Φxy and πxy the elements of the joint bivariate probabilities and the elements of the joint

cumulative relative frequencies are stacked row by row as a single column vector.

11.2 Parameters

The bivariate normal distribution depends on five parameters i.e.

(x, y) ∼ BVN
(
µx, µy, σ

2
x, σ

2
y, ρ

)

where −∞ < µx, µy < ∞, 0 < σx, σy < ∞ and −1 < ρ < 1. The parameters µx and σx are

functions of the marginal distribution of x, while the parameters µy and σy are functions of the

marginal distribution of y. The parameter ρ is a function of the joint distribution of x and y.

11.2.1 Marginal distribution of x

From the properties of the bivariate normal distribution it follows that the marginal cumulative

relative frequencies

πx =




π1,J

π2,J
...

πI−1,J




(11.12)
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follow a cumulative N(µx, σ
2
x) distribution curve at the upper class boundaries of x and hence

Φ−1 (πx) = zx

= Xαx (11.13)

which leads to

αx =




1

σx
µx

σx


 = (X′X)

−1
X′Φ−1 (πx) . (11.14)

Under normality (11.13), the standardised upper class boundaries zx, is a function of the natural

parameters αx. By substituting (11.14) in (11.13) it follows that zx is the projection of Φ
−1 (πx)

on the vector space of X i.e.

zx = PXΦ
−1 (πx) (11.15)

where

PX = X (X′X)
−1
X′ (11.16)

is the projection matrix of the vector space generated by the columns of X.

11.2.2 Marginal distribution of y

The cumulative relative frequencies

πy =
(

πI1 πI2 · · · πI,J−1

)′
(11.17)

follow a cumulative N
(
µy, σ

2
y

)
distribution curve at the upper class boundaries of y and hence

Φ−1 (πy) = zy

= Yαy (11.18)

which leads to

αy =




1

σy
µy

σy


 = (Y′Y)

−1
Y′Φ−1 (πy) . (11.19)
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Under normality (11.18), the standardised upper class boundaries zy, is a function of the natural

parameters αy. By substituting (11.19) in (11.18) it follows that zy is the projection of Φ
−1 (πy)

on the vector space of Y i.e.

zy = PYΦ
−1 (πy) (11.20)

where

PY = Y (Y′Y)
−1
Y′ . (11.21)

11.2.3 Joint distribution of x and y

The one-to-one relationship between the correlation coefficient and the volumes of the four quadrants

of the bivariate normal distribution

ρ = sin
(π

2
[(VOL1 + VOL4)− (VOL2 + VOL3)]

)
(11.22)

is explained in the previous chapter. The four quadrants of the bivariate normal distribution are

denoted byQ1, Q2, Q3 andQ4 and by adding the relative frequencies in the 4 quadrants it is possible

to calculate the volume for each quadrant. In matrix notation the vector of relative frequencies is

π0 = C
−1π . (11.23)

(See (9.12) for an explanation of the matrix C.)

The expressions for the 4 volumes are as follows:

VOL1 = v′1π0 = v
′
1C

−1π (11.24)

VOL2 = v′2π0 = v
′
2C

−1π (11.25)

VOL3 = v′3π0 = v
′
3C

−1π (11.26)

VOL4 = v′4π0 = v
′
4C

−1π (11.27)

where

vq = vec (Vq) for q = {1, 2, 3, 4} (11.28)

and Vq is an (I × J) indicator matrix such that:
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1. [Vq]ij = 1 if the (i, j)-th cell ∈ Qq for q = {1, 2, 3, 4}

2. [Vq]ij = 0 if the (i, j)-th cell /∈ Qq for q = {1, 2, 3, 4}

3. Cells containing the lines zx = 0 or zy = 0, i.e. belonging to more than one quadrant, should

be allocated proportionately to the standard bivariate normal distribution, depending on the

value of ρ.

This implies that
4∑

q=1

vq = 1 (11.29)

and following from (11.22) it is now possible to express ρ as

ρ = sin
(π

2
[(v′1 + v

′
4)− (v′2 + v

′
3)]C

−1π
)

. (11.30)

11.3 Vector of constraints

The vector of constraints, g (π) = 0, with

g (π) =




gx (π)

gy (π)

gxy (π)


 (11.31)

consists out of three sets of constraints.
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11.3.1 Marginal distribution of x

gx (π) = Φx − πx (11.32)

= Φ (zx)− πx

=




Φ1J

Φ2J
...

ΦI−1,J



−




π1J

π2J
...

πI−1,J




The (I − 1) constraints in gx (π) refer to the marginal cumulative relative frequencies πx, that has

to follow a cumulative normal distribution curve at the standardised upper class boundaries x. This

follows from the properties of the bivariate normal distribution, since the marginal distribution of x

is

x ∼ N
(
µx, σ

2
x

)
.

11.3.2 Marginal distribution of y

gy (π) = Φy − πy (11.33)

= Φ (zy)− πy

=




ΦI1

ΦI,2

...

ΦI,J−1



−




πI1

πI,2

...

πI,J−1




The (J − 1) constraints in gy (π) refer to the marginal cumulative relative frequencies πy, that has

to follow a cumulative normal distribution curve at the upper class boundaries y. This follows since

the marginal distribution of y is

y ∼ N
(
µy, σ

2
y

)
.
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11.3.3 Joint distribution of x and y

gxy (π) = Φxy − πxy (11.34)

The (I − 1) (J − 1) constraints in gxy (π) refer to the joint cumulative relative frequencies πxy,

that has to follow a cumulative bivariate normal distribution curve at the intersections of the upper

class boundaries x and y. The bivariate normal distribution to be fitted is such that

(x, y) ∼ BVN
(
µx, µy, σ

2
x, σ

2
y, ρ

)
.

The elements of

Φxy = vec
(
Φ

(
zx, z

′
y

))

= vec




Φ11 Φ12 · · · Φ1,J−1

Φ21 Φ22 · · · Φ2,J−1
...

... · · · ...

ΦI−1,1 ΦI−1,2 · · · ΦI−1,J−1




are the cumulative probabilities from the standard bivariate normal distribution at the intersections

of the class boundaries zx and zy stacked row by row below each other as a single column vector

and the elements of

πxy = vec




π11 π12 · · · π1,J−1

π21 π22 · · · π2,J−1
...

... · · · ...

πI−1,1 πI−1,2 · · · πI−1,J−1




are the cumulative relative frequencies, also stacked row by row below each other.
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11.4 Matrix of Partial Derivatives

As in the case of the vector of constraints, the matrix of partial derivatives of g (π) with respect to

π

Gπ =
∂g (π)

∂π
=




∂gx (π)

∂π

∂gy (π)

∂π

∂gxy (π)

∂π




(11.35)

also consists out of three sets and will be derived below.

11.4.1 Marginal distribution of x

∂gx (π)

∂π
=

∂Φx

∂π
− ∂πx

∂π

=
∂Φ (zx)

∂π
− Ix (11.36)

where

Ix =
∂πx

∂π
: (I − 1)× IJ . (11.37)

Since zx = Xαx with αx = (X′X)−1X′Φ−1 (πx) it follows from the chain rule for matrix differen-

tiation

∂Φ (zx)

∂π
=

∂Φ (zx)

∂zx
· ∂zx
∂αx

· ∂αx

∂πx
· ∂πx

∂π
= diag [φ (zx)] · PX ·Dx · Ix (11.38)

where

Dx =
∂Φ−1 (πx)

∂πx
. (11.39)
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To solve (11.39) set ν = Φ−1 (πx) then Φ (ν) = πx and hence

Dx =
∂ν

∂πx

=

(
∂πx

∂ν

)−1

(
∂Φ (ν)

∂ν

)−1

= (diag [φ (ν)])−1

=
(
diag

[
φ
(
Φ−1(πx)

)])−1
. (11.40)

11.4.2 Marginal distribution of y

∂gy (π)

∂π
=

∂Φy

∂π
− ∂πy

∂π

=
∂Φ (zy)

∂π
− Iy (11.41)

where

Iy =
∂πy

∂π
: (J − 1)× IJ . (11.42)

Since zy = Xαy and αy = (Y′Y)−1Y′Φ−1 (πy) it follows from the chain rule for matrix differen-

tiation

∂Φ (zy)

∂π
=

∂Φ (zy)

∂zy
· ∂zy
∂αy

· ∂αy

∂πy
· ∂πy

∂π

= diag [φ (zy)] · PY ·Dy · Iy (11.43)

where

Dy =
∂Φ−1 (πy)

∂πy

=
(
diag

[
φ
(
Φ−1(πy)

)])−1
. (11.44)
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11.4.3 Joint distribution of x and y

From the chain rule for matrix differentiation it follows that

∂gxy (π)

∂π
=

∂Φxy

∂π
− ∂πxy

∂π

=
∂Φxy

∂




zx

zy

ρ




·

∂




zx

zy

ρ




∂π
− ∂πxy

∂π

=

(
∂Φxy

∂zx
(1)

∂Φxy

∂zy
(2)

∂Φxy

∂ρ
(3)

)
·




∂zx
∂π
(4)

∂zy
∂π
(5)

∂ρ

∂π
(6)




− Ixy (11.45)

where

Ixy =
∂πxy

∂π
: (I − 1) (J − 1)× IJ . (11.46)

A total of 6 derivatives that are labled in (11.45), are simplified in (1) to (6) below.
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1.

∂

∂zxi
F
(
zxi , zyj

)

=
∂

∂zxi

∫ zyj

−∞

∫ zxi

−∞

1

2π
√
1− ρ2

· exp
{
− 1

2 (1− ρ2)

(
z21 − 2ρz1z2 + z22

)}
dz1dz2

=

∫ zyj

−∞

1

2π
√
1− ρ2

· exp
{
− 1

2 (1− ρ2)

(
z2xi − 2ρzxiz2 + z22

)}
dz2

=
1

2π
√
1− ρ2

· exp
{
−
(
z2xi − ρ2z2xi

)

2 (1− ρ2)

}∫ zyj

−∞
exp

{
− 1

2 (1− ρ2)
(z2 − ρzxi)

2

}
dz2

=
1

2π
√
1− ρ2

· exp
{
−1

2
z2xi

}∫ zyj

−∞
exp



−

1

2

(
z2 − ρzxi√

1− ρ2

)2


 dz2

Set w =

(
z2−ρzxi√
1−ρ2

)
then

dw =
1√

1− ρ2
dz2

and consequentely

∂

∂zxi
F
(
zxi , zyj

)
=

1√
2π
· exp

{
−1

2
z2xi

}∫ zyj
�ρzxi√
1�ρ2

−∞

1√
2π

exp

{
−1

2
w2

}
dw

= φ (zxi)Φ

(
zyj − ρzxi√

1− ρ2

)

It now follows that

∂Φxy

∂zx
=

(
∂Φxy

∂zx1
,
∂Φxy

∂zx2
, · · · , ∂Φxy

∂zxI�1

)

= (vec (E1∆x) , vec (E2∆x) , · · · , vec (EI−1∆x)) (11.47)

where

∆x = diag (φ (zx)) ·Φ
((
z′y ⊗ 1I−1

)
− ρ

(
zx ⊗ 1′J−1

)
√
1− ρ2

)
(11.48)

and Ei : (I − 1× I − 1) , i = {1 · · · I − 1} is a matrix such that

[Ei]rs = 1 if i = r = s

[Ei]rs = 0 elsewhere. (11.49)
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2. Likewise
∂

∂zyj
F
(
zxi , zyj

)
= φ

(
zyj

)
Φ

(
zxi − ρzyj√

1− ρ2

)

and therefore it follows that

∂Φxy

∂zy
=

(
∂Φxy

∂zy1
,
∂Φxy

∂zy2
, · · · , ∂Φxy

∂zyJ�1

)

= (vec (∆yE1) , vec (∆yE2) , · · · , vec (∆yEJ−1)) (11.50)

where

∆y = Φ

((
zx ⊗ 1′J−1

)
− ρ

(
z′y ⊗ 1I−1

)
√
1− ρ2

)
· diag (φ (zy)) (11.51)

and Ej : (J − 1× J − 1) , j = {1, · · · , J − 1} is a matrix such that

[Ej]vw = 1 if j = v = w

[Ej]vw = 0 elsewhere. (11.52)

3.

∂F
(
zxi , zyj

)

∂ρ

=
∂

∂ρ

∫ zyj

−∞

∫ zxi

−∞

1

2π
√
1− ρ2

· exp
{
− 1

2 (1− ρ2)

[
z21 − 2ρz1z2 + z22

]}
dz1dz2

=

∫ zyj

−∞

∫ zxi

−∞

∂

∂ρ

{
1

2π
√
1− ρ2

}
· exp

{
− 1

2 (1− ρ2)

[
z21 − 2ρz1z2 + z22

]}
dz1dz2 +

∫ zyj

−∞

∫ zxi

−∞

1

2π
√
1− ρ2

· ∂

∂ρ
exp

{
− 1

2 (1− ρ2)

[
z21 − 2ρz1z2 + z22

]}
dz1dz2

=
ρ

1− ρ2

∫ zyj

−∞

∫ zxi

−∞

1

2π
√
1− ρ2

· exp
{
− 1

2 (1− ρ2)

[
z21 − 2ρz1z2 + z22

]}
dz1dz2 +

∫ zyj

−∞

∫ zxi

−∞

1

2π
√
1− ρ2

· exp
{
− 1

2 (1− ρ2)

[
z21 − 2ρz1z2 + z22

]}
·

∂

∂ρ

{
− 1

2 (1− ρ2)

[
z21 − 2ρz1z2 + z21

]}

︸ ︷︷ ︸
dz1dz2
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Simplification of the derivative above leads to

∂

∂ρ

(
− 1

2 (1− ρ2)

[
z21 − 2ρz1z2 + z22

])

=
z1z2

(1− ρ2)
− ρ

(1− ρ2)2
[
z21 − 2ρz1z2 + z22

]

= − ρ

(1− ρ2)2
z21 +

(1− ρ2) + 2ρ2

(1− ρ2)2
z1z2 −

ρ

(1− ρ2)2
z22

and therefore

∂F
(
zxi , zyj

)

∂ρ
=

ρ

1− ρ2
Ψ̃
(
zxi , zyj , 0, 0; ρ

)
− ρ

(1− ρ2)2
Ψ̃
(
zxi , zyj , 2, 0; ρ

)
+

1 + ρ2

(1− ρ2)2
Ψ̃
(
zxi , zyj , 1, 1; ρ

)
− ρ

(1− ρ2)2
Ψ̃
(
zxi , zyj , 0, 2; ρ

)
(11.53)

where

Ψ̃
(
zxi , zyj , k, l; ρ

)
=

∫ zyj

−∞

∫ zxi

−∞

1

2π
√
1− ρ2

zk1z
l
2︸︷︷︸ exp

(
− 1

2 (1− ρ2)

[
z21 − 2ρz1z2 + z22

])
dz1dz2

(11.54)

Define the integral

Ψ̃0
(
zxi , zyj , k, l; ρ

)
=

∫ zyj

0

∫ zxi

0

1

2π
√
1− ρ2

zk1z
l
2︸︷︷︸ exp

(
− 1

2 (1− ρ2)

[
z21 − 2ρz1z2 + z22

])
dz1dz2

(11.55)

where integration takes place from the origin. Depending on the specific location of
(
zxi , zyj

)
,

Ψ̃
(
zxi , zyj , k, l; ρ

)
(11.54) can be expressed in terms of Ψ̃0

(
zxi , zyj , k, l; ρ

)
(11.55) as follows:

Quadrant 1:
(
zxi < 0 , zyj < 0

)

Ψ̃
(
zxi , zyj , k, l; ρ

)
= Ψ̃0(∞,∞, k, l; ρ)− Ψ̃0(−zxi ,∞, k, l; ρ)−

Ψ̃0(∞,−zyj , k, l; ρ) + Ψ̃0(−zxi ,−zyj , k, l; ρ)

(11.56)

Quadrant 2:
(
zxi < 0 , zyj ≥ 0

)

Ψ̃
(
zxi , zyj , k, l; ρ

)
= Ψ̃0(∞,∞, k, l; ρ)− Ψ̃0(−zxi ,∞, k, l; ρ) +

(−1)k Ψ̃0(∞, zyj , k, l;−ρ)− (−1)k Ψ̃0(−zxi , zyj , k, l;−ρ)

(11.57)
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Quadrant 3:
(
zxi ≥ 0 , zyj < 0

)

Ψ̃
(
zxi , zyj , k, l; ρ

)
= Ψ̃0(∞,∞, k, l; ρ) + (−1)l Ψ̃0(zxi ,∞, k, l;−ρ)−

Ψ̃0(∞,−zyj , k, l; ρ)− (−1)l Ψ̃0(zxi ,−zyj , k, l;−ρ)

(11.58)

Quadrant 4:
(
zxi ≥ 0 , zyj ≥ 0

)

Ψ̃
(
zxi , zyj , k, l; ρ

)
= Ψ̃0(∞,∞; ρ, k, l) + (−1)l Ψ̃0(zxi ,∞,−ρ, k, l) +

(−1)k Ψ̃0(∞, zyj , k, l;−ρ) + Ψ̃0(zxi , zyj , k, l; ρ)

(11.59)

The integral Ψ̃0(zxi , zyj , k, l; ρ) is expressed as a series of gamma functions in Algorithm 2.

Algorithm 2

Ψ0
(
zxi , zyj , k, l; ρ

)
=

∫ zyj

0

∫ zxi

0

1

2π
√
1− ρ2

zk1z
l
2︸︷︷︸ exp

(
− 1

2 (1− ρ2)

[
z21 − 2ρz1z2 + z22

])
dz1dz2

=
2
k+l
2 (1− ρ2)

k+l+1
2

4π

∞∑

i=0

{
(2ρ)i

i!
Γ

(
i+ k + 1

2

)
Γ

(
i+ l + 1

2

)

·G
(

z2xi
2 (1− ρ2)

,
i+ k + 1

2

)
·G

(
z2yj

2 (1− ρ2)
,
i+ l + 1

2

)}
(11.60)

where G (x;κ) =

∫ x

0

1
Γ(κ)

tκ−1e−tdt is the gamma distribution with shape parameter κ.

Proof. Since

exp

(
ρz1z2

(1− ρ2)

)
=

∑∞
i=0

(
ρz1z2
1−ρ2

)i

i!

it follows that

Ψ̃0
(
zxi , zyj , k, l; ρ

)
=

∫ zyj

0

∫ zxi

0

1

2π
√
1− ρ2

zk1z
l
2︸︷︷︸ exp

(
− 1

2 (1− ρ2)

[
z21 − 2ρz1z2 + z22

])
dz1dz2

=
∞∑

i=0

1

2πi!
√
1− ρ2

(
ρ

1− ρ2

)i

·
∫ zxi

0

exp

(
− z21
2 (1− ρ2)

)
zi+k
1 dz1 ·

∫ zyj

0

exp

(
− z22
2 (1− ρ2)

)
zi+l
2 dz2
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from (10.12) it follows that

Ψ̃0
(
zxi , zyj , k, l; ρ

)
=

∞∑

i=0

1

2πi!
√
1− ρ2

(
ρ

1− ρ2

)i

·2 i+k�1
2

(
1− ρ2

) i+k+1
2 Γ

(
i+ k + 1

2

)
G

(
z2xi

2 (1− ρ2)
,
i+ k + 1

2

)

·2 i+l�12

(
1− ρ2

) i+l+1
2 Γ

(
i+ l + 1

2

)
G

(
z2yj

2 (1− ρ2)
,
i+ l + 1

2

)

=
2
k+l
2 (1− ρ2)

k+l+1
2

4π

∞∑

i=0

{
(2ρ)i

i!
Γ

(
i+ k + 1

2

)
Γ

(
i+ l + 1

2

)

·G
(

z2xi
2 (1− ρ2)

,
i+ k + 1

2

)
·G

(
z2yj

2 (1− ρ2)
,
i+ l + 1

2

)}

4. Since zx = Xαx and αx = (X′X)−1X′Φ−1 (πx) it follows that

∂zx
∂π

=
∂zx
∂αx

· ∂αx

∂πx
· ∂πx

∂π
= PX ·Dx · Ix (11.61)

See (11.38).

5. Similarly as in 4 above, zy = Yαy and αy = (Y′Y)−1Y′Φ−1 (πy) and therefore

∂zy
∂π

=
∂zy
∂αy

· ∂αy

∂πy
· ∂πy

∂π

= PY ·Dy · Iy (11.62)

See (11.43).

6. From (11.30) it follows that

∂ρ

∂π
=

∂

∂π

{
sin

(π

2
[(v′1 + v

′
4)− (v′2 + v

′
3)]C

−1π
)}

= cos
(π

2
[(v′1 + v

′
4)− (v′2 + v

′
3)]C

−1π
)
·
(π

2
[(v′1 + v

′
4)− (v′2 + v

′
3)]C

−1
)

.
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11.5 Iterative procedure

A very short outline of the iterative procedure is as follows and will be discussed briefly.

p† = observed cumulative relative frequencies

p = p†

DO OVER π

π = p

Calculate V = Cov (π)

Calculate zx_π, zy_π and ρπ from π.

Calculate Gπ (as a function of π)

p = p†

DO OVER p

Calculate zx_p, zy_p and ρp from p.

Calculate Gp (as a function of p)

g(p) =




Φ
(
zx_p

)

Φ
(
zy_p

)

vec
(
Φ

(
zx_p, zy_p, ρp

))


−




px

py

pxy




p = p− (GπV)′ (GπVGp)
∗
g (p)

END

END

The procedure starts off with the unrestricted vector of cumulative relative frequencies. Convergence

is first obtained over p utilizing

p = p− (GπV)′ (GπVGp)
∗
g (p) (11.63)

where the vectors of standardised upper class boundaries are calculated from

zx_p = PXΦ
−1 (px) and zy_p = PYΦ

−1 (py) (11.64)
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projectingΦ−1 (px) andΦ
−1 (py) into the respective vector spaces ofX andY. These standardised

upper class boundaries divide the cells of the contingency table into 4 so-called quadrants leading

to an estimate for

ρp = sin
(π

2
[(v′1 + v

′
4)− (v′2 + v

′
3)]C

−1p
)

. (11.65)

Care should be taken to the cells belonging to more than one quadrant, since allocation of the

relative frequencies p should be done proportionately to the bivariate distribution, thus depending

on the value of ρp. The calculation of ρp will therefore be done iteratively, starting at a value say,

ρ = 0, untill iteration over (11.65) leads to a unique estimate for ρp. (Explained in detail in the

next chapter.) The vector of constraints g(p) and the matrix of partial derivatives Gp are now all

functions of p and convergence over p ultimately leads to a new value for π.

For convergence over π the covariance matrix V and the matrix of partial derivatives Gπ are all

functions of π. Convergence over π leads to the restricted ML estimate of π, i.e. π̂ , that satisfies

all the properties of the bivariate normal distribution.

11.6 ML estimates

The ML estimates of the bivariate normal distribution can be obtained from the restricted ML

estimate π̂, discussed in the previous section. In matrix notation π̂ can be represented as

Π̂ =




π̂11 π̂12 · · · π̂1,J−1 π̂1J

π̂21 π̂22 · · · π̂2,J−1 π̂2J
...

... · · · ...
...

π̂I−1,1 π̂I−1,2 · · · π̂I−1,J−1 π̂I−1,J

π̂I1 π̂I2 · · · π̂I,J−1 π̂IJ




(11.66)

where π̂ij corresponds to the restricted ML estimate of the cumulative relative frequency for the

i-th row and the j-th column of the two-way contingency table. The asymptotic covariance matrix

of π̂ is

Cov (π̂) � V− (GπV)′ (GπVG
′
π)
∗
(GπV) .
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11.6.1 ML estimates of the natural parameters

The ML estimates of the vectors of natural parameters are functions of the restricted ML estimate

π̂ with

α̂x =


 α̂x1

α̂x2


 =




1

σ̂x
µ̂x

σ̂x


 = (X′X)

−1
X′Φ−1 (π̂x) (11.67)

and

α̂y =


 α̂y1

α̂y2


 =




1

σ̂y

µ̂y

σ̂y


 = (Y′Y)

−1
Y′Φ−1 (π̂y) (11.68)

where

π̂x =




π̂1J

π̂2J
...

π̂I−1,J




and π̂y =
(

π̂I1 π̂I2 · · · π̂I,J−1

)′
. (11.69)

See the last column and row of Π̂ (11.66).

The corresponding covariance matrices are

Cov (α̂x) =
{
(X′X)

−1
X′DxIx

}
Cov (π̂)

{
(X′X)

−1
X′DxIx

}′
(11.70)

Cov (α̂y) =
{
(Y′Y)

−1
Y′DyIy

}
Cov (π̂)

{
(Y′Y)

−1
Y′DyIy

}′
(11.71)

where

Dx =
(
diag

[
φ
(
Φ−1(πx)

)])−1
, Dy =

(
diag

[
φ
(
Φ−1(πy)

)])−1

and

Ix =
∂πx

∂π
, Iy =

∂πy

∂π
.
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11.6.2 ML estimates of the original parameters

The ML estimates of the original parameters namely µx, µy, σx, σy and ρ with their standard errors

are all functions of the restricted ML estimate π̂ and will be discussed briefly. The ML estimates for

the µ’s and σ’s follow from (11.67) and (11.68) and according to the multivariate delta theorem

β̂x =


µ̂x

σ̂x


 � N




µx

σx


 ,BxCov (α̂x)B

′
x


 (11.72)

and

β̂y =


µ̂y

σ̂y


 � N




µy

σy


 ,By Cov (α̂y)B

′
y


 . (11.73)

The matrices of derivatives in (11.72) and (11.73) are

Bx =
∂βx

∂αx
=


 −αx2

α2x1

1
αx1

− 1
α2x1

0




and

By =
∂βy

∂αy
=


 −αy2

α2y1

1
αy1

− 1
α2y1

0


 .

The only parameter that remains is ρ and is estimated from

ρ̂ = sin
(π

2

[(
V̂OL1 + V̂OL4

)
−

(
V̂OL2 + V̂OL3

)])

= sin
(π

2
[(v′1 + v

′
4)− (v′2 + v

′
3)]C

−1π̂
)

. (11.74)

In (11.74) the restricted ML estimates of the relative frequencies of the 4 quadrants are simply

added to obtain the ML estimates for the 4 so-called volumes. For the cells belonging to more

than one quadrant, the relative frequencies are added proportionately to the fitted bivariate normal

distribution. This requires that ρ̂ is to be solved iteratively over (11.74) beginning at any starting

point, say ρ̂ = 0 untill convergence leads to the unique ML estimate for ρ. The variance of ρ̂ follows

Var (ρ̂) =

(
∂ρ

∂p

)
V

(
∂ρ

∂p

)′
(11.75)

where

∂ρ

∂p
= cos

(π

2
[(v′1 + v

′
4)− (v′2 + v

′
3)]C

−1p
)
·
(π

2
[(v′1 + v

′
4)− (v′2 + v

′
3)]C

−1
)

.
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11.7 Goodness of fit

Since the vector of constraints in

g (π) =




gx (π)

gy (π)

gxy (π)


 = 0

consists out of (I − 1) + (J − 1) + (I − 2) (J − 2) linear independent constraints, the degrees of

freedom for the Pearson χ2 statistic

χ2 =
I∑

i=1

J∑

j=1

(pij − π̂ij)
2

π̂ij
(11.76)

and the Wald statistic

W = g(p)′(GpVG
′
p)
∗
g(p)

is

df = IJ − I − J + 2 . (11.77)

In (11.76) pij for i = 1, 2, · · · , I and j = 1, 2, · · · , J is the observed cumulative relative frequency
in the (i, j)-th cell (see (9.11)) and in matrix notation the observed cumulative relative frequencies

may be represented as

P =




p11 p12 · · · p1,J−1 p1J

p21 p22 · · · p2,J−1 p2J
...

... · · · ...
...

pI−1,1 pI−1,2 · · · pI−1,J−1 pI−1,J

pI1 pI2 · · · pI,J−1 pIJ




. (11.78)

The elements of P are also referred to as the unrestricted ML estimates of π. The elements of Π̂

in (11.66) are the restricted ML estimates of π obtained from the ML estimation procedure and

satisfies the properties of the bivariate normal distribution.

 
 
 



Chapter 12

Application

The association between Grade 12 Mathematics (MATHS) and first year Statistics (STATS) is

investigated. First year students who had Mathematics on HG and who were enrolled for Statistics

for the first time in 2004 were included in the sample. The results are shown in Table 12.1.

Table 12.1: Two-way contingency table of 746 first year students, row percentages in brackets.

MATHS STATS (y)

(x) 0-49 50-59 60-74 75-100 Total

0-59 106 90 35 5 236

(44.92%) (38.14%) (14.83%) (2.12%)

60-69 57 73 59 22 211

(27.01%) (34.60%) (27.96%) (10.43%)

70-79 15 40 57 27 139

(10.79%) (28.78%) (41.01%) (19.42%)

80-100 2 14 45 99 160

(1.25%) (8.75%) (28.13%) (61.88%)

Total 180 217 196 153 746

(24.13%) (29.09%) (26.27%) (20.51%) (100%)
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The row percentages in Table 12.1 reveal a definite interaction structure between MATHS and

STATS. Low MATHS marks correspond with low STATS marks and vice versa, identifying a positive

correlation between the two variables. The Pearson χ2 test of independence, χ2 = 326

(df = 9, p value<0.001), shows a very strong association between the two variables.

Traditionally researchers might have been tempted to use the class midpoint as an estimate for the

values within a particular class interval. By using this approach the sample correlation coefficient is

r = 0.5495 (12.1)

with an estimated regression line of

ŷ = 25.8 + 0.5187x . (12.2)

Since we are dealing with a bivariate grouped data set, the basic assumptions for applying these

statistical techniques are not met and the results obtained in (12.1) and (12.2) might be incorrect.

In this chapter a bivariate normal distribution will be fitted to the data in Table 12.1. It is justified to

assume that MATHS (x) and STATS (y) are jointly normally distributed and therefore the estimation

of the correlation structure between these two variables may be done more effectively by fitting a

bivariate normal distribution. By doing this, the complete underlying bivariate continuous structure

between the two variables will be taken into account.

12.1 ML estimation procedure

The vectors of upper class boundaries are

x =




59.5

69.5

79.5


 and y =




49.5

59.5

74.5


 (12.3)

respectively.

 
 
 



156

The projection matrix for

X =
(
x −1

)
=




59.5 −1
69.5 −1
79.5 −1




is

PX =




0.83333 0.33333 −0.16667
0.33333 0.33333 0.33333

−0.16667 0.33333 0.83333


 (12.4)

and the projection matrix for

Y =
(
y −1

)
=




49.5 −1
59.5 −1
74.5 −1




is

PY =




0.76316 0.39474 −0.15789
0.39474 0.34211 0.26316

−0.15789 0.26316 0.89474


 . (12.5)

These two projection matrices play a major role in the estimation of the bivariate normal distribution,

since the standardised upper class boundaries are estimated such that zx is in the vector space

generated by X and zy is in the vector space generated by Y.

A step by step explanation of the results during the iterative procedure will be presented to give

more insight into the ML estimation procedure.

• Firstly, the estimates for the unrestricted ML estimate p will be given. The vector p is the
observed vector of cumulative relative frequencies and is used as the starting point for the

iterative ML estimation procedure.

• Secondly the estimates for the restricted ML estimate π̂ will be given. The estimates obtained
from π̂ are the ML estimates for the bivariate normal distribution. This follows since the vector

π̂ is the ML estimate of π under the constraints (11.31), obtained iteratively from the ML

estimation procedure.
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12.1.1 Unrestricted estimates

The observed frequencies are elements of

F =




106 90 35 5

57 73 59 22

15 40 57 27

2 14 45 99




(12.6)

and the matrix with unrestricted (observed) cumulative relative frequencies is

P =




0.14209 0.26273 0.30965 0.31635

0.21850 0.43700 0.56300 0.59920

0.23861 0.51072 0.71314 0.78552

0.24129 0.53217 0.79491 1.00000




. (12.7)

Marginal distribution of MATHS

The unrestricted estimates for the marginal distribution of MATHS are tabulated in Table 12.2 and

will be discussed briefly.

Table 12.2: Unrestricted estimates obtained from the marginal distribution of x.

px α̂x µ̂x σ̂x ẑx


0.31635

0.59920

0.78552





 0.06345

4.22132


 66.535079 15.76167




−0.44634
0.18811

0.82256




Note: The elements of px are elements contained in the last column of P (12.7).

Since the marginal distribution for MATHS has to follow a normal distribution, the vector of stan-

dardised upper class boundaries for x follows by projecting Φ−1 (px) into the vector space of X

ẑx = PXΦ
−1 (px) (12.8)
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and is employed in the vector of constraints

gx(π) = Φ (ẑx)− πx = 0 . (12.9)

In SAS IML: Φ (zx) = PROBNORM(zx)

The unrestricted estimate for the vector of natural parameters

α̂x =




1

σ̂x
µ̂x

σ̂x


 = (X′X)

−1
X′Φ−1 (px) (12.10)

leads to the unrestricted estimates for µ̂x and σ̂x indicating that the average mark for MATHS is

66.5 with a standard deviation of 15.8.

Marginal distribution of STATS

The unrestricted estimates for the marginal distribution of STATS are tabulated in Table 12.3.

Table 12.3: Unrestricted estimates obtained from the marginal distribution of y.

py α̂y µ̂y σ̂y ẑy


0.24129

0.53217

0.79491





 0.06021

3.61002


 60.04601 16.63317




−0.63404
−0.03283
0.86899




Note: The elements of py are elements contained in the last row of P (12.7).

Following the same rationale for the standardised upper class boundaries for y, the vector of stan-

dardised upper class boundaries

ẑy = PyΦ
−1 (π̂y) (12.11)

is employed in the vector of constraints

gy(π) = Φ (zy)− πy = 0 . (12.12)
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In SAS IML: Φ (zy) = PROBNORM(zy)

At this initial step of the iterative procedure it follows from Table 12.3 that the average mark for

STATS is 60.5, with a standard deviation of 16.6.

Joint distribution of MATHS and STATS

From the estimates of the standardised upper class boundaries (see Table 12.2 and Table 12.3) it

follows that the origin (ẑx, ẑy) = (0, 0) is located in the second class interval for MATHS and the

third class interval for STATS. In Figure 12.1 a contour diagram of the bivariate normal distribution

with the four quadrants and the standardised upper class boundaries is shown.

1.510.50-0.5-1

1.5

1

0.5

0

-0.5

-1

-1.5

x

y

Figure 12.1: Contour diagram of the bivariate normal distribution with the four quadrants and

the standardised upper class boundaries.
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The ML estimator for ρ is obtained from

ρ̂ = sin
(π

2

[(
V̂OL1 + V̂OL4

)
−

(
V̂OL2 + V̂OL3

)])
. (12.13)

The volumes are estimated by the total of the observed relative frequencies located in each of the

four quadrants. In matrix notation the observed relative frequencies are

1

746
F =




0.14209 0.12064 0.04692 0.00670

0.07641 0.09786 0.07909 0.02949

0.02011 0.05362 0.07641 0.03619

0.00268 0.01877 0.06032 0.13271




. (12.14)

For those cells situated in only one quadrant, the relative frequencies can simply be added, but for

cells situated in more than one quadrant, allocation has to be done proportionately to the bivariate

normal distribution, thus depending on the value of ρ̂. Since ρ̂ is to be estimated, the value of ρ̂

is obtained iteratively over (12.13), starting at any value between -1 and 1. In Table 12.4 various

starting points for ρ̂ were being used, all leading to the same unique unrestricted estimate for ρ.

(Convergence criterion = 1e-10.)

Table 12.4: Unrestricted estimate for ρ obtained iteratively

Starting point Starting point Starting point

ρ̂ = −0.5 ρ̂ = 0 ρ̂ = 0.5

1. 0.6128852 1. 0.6383751 1. 0.6616935

2. 0.6708946 2. 0.6735298 2. 0.6761977

3. 0.6773286 3. 0.6776614 3. 0.6780025

4. 0.6781484 4. 0.6781915 4. 0.6782358

5. 0.6782547 5. 0.6782603 5. 0.6782661

6. 0.6782685 6. 0.6782692 6. 0.6782700

7. 0.6782703 7. 0.6782704 7. 0.6782705

8. 0.6782705 8. 0.6782706 8. 0.6782706

9. 0.6782706 9. 0.6782706 9. 0.6782706

10. 0.6782706 10. 0.6782706 10. 0.6782706

11. 0.6782706 18. 0.6782706 11. 0.6782706
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Evaluating the estimates for the 4 volumes of the bivariate normal distribution in Table 12.5, it is

clear that the property of symmetry has not been met and ρ is now estimated from the observed

frequencies (unrestricted ML estimate for π).

Table 12.5: Unrestricted estimates for the volumes of the four quadrants

Quadrant Unrestricted estimates for VOL

Q1 : zx < 0, zx < 0 V̂OL1 = 0.3979789

Q2 : zx < 0, zx > 0 V̂OL2 = 0.1177174

Q3 : zx > 0, zx < 0 V̂OL3 = 0.1450123

Q4 : zx > 0, zx > 0 V̂OL4 = 0.3392913

From Table 12.5 it follows that

ρ̂ = sin
(π

2
[(0.3979789 + 0.3392913)− (0.1177174 + 0.1450123)]

)

= sin
(π

2
[0.737 27− 0.262 73]

)

= sin
(π

2
[0.474 54]

)

= 0.678 27 (12.15)

indicating a positive relationship between MATHS and STATS.

This estimate for ρ is now being used in the vector of constraints gxy(π) = 0 where

gxy(π) = Φxy − pxy

= Φ ((ẑx ⊗ 14) , (14 ⊗ ẑy) , ρ̂)− vec




0.14209 0.26273 0.30965

0.21850 0.43700 0.56300

0.23861 0.51072 0.71314




In SAS IML: Φ (zx, zy, ρ) = PROBBNRM(zx, zy, ρ)
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12.1.2 ML estimates

After convergence of the ML estimation procedure the restricted ML estimate for π in matrix

notation is

Π̂=




0.17170 0.25637 0.31180 0.31869

0.22874 0.38802 0.53638 0.56766

0.25077 0.45896 0.70922 0.79166

0.25569 0.48298 0.81013 1.00000




(12.16)

and possesses all the properties of the bivariate normal distribution. The matrix of expected fre-

quencies is

M =




128.0903 63.1637 41.3464 5.1455

42.5489 55.6571 69.3300 18.1950

16.4324 36.4943 76.0140 38.1641

3.6702 14.2495 57.3636 80.1349




(12.17)

and according to the Pearson and Wald statistics tabulated in Table 12.6, the bivariate normal

distribution did not provide an extremely good fit.

Table 12.6: Goodness of fit statistics

Statistic Value df p-value

Pearson 45.191 10 2.0089E-6

Wald 44.994 10 2.1799E-6

However, taking into account the rather large sample size, the measure of discrepancy

D =
W

n
=

44.994

746
= 0.06 (12.18)

is only just higher than the cut off value of 0.05, suggesting that the fit is not too poor. This is

further motivated by comparing the observed frequencies in F (12.6) with the expected frequencies

inM (12.17).
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Marginal distribution of MATHS

The ML estimates obtained from the marginal distribution of x are tabulated in Table 12.7.

Table 12.7: ML estimates for the marginal distribution of x.

π̂x α̂x µ̂x σ̂x ẑx


0.31869

0.56766

0.79166





 0.06418

4.28995


 66.84445 15.58162




−0.47135
0.17043

0.81221




Note: The elements of π̂x are elements contained in the last column row of Π̂ (12.16).

The marginal cumulative relative frequencies π̂x follow a cumulative normal distribution at the upper

class boundaries x and therefore

Φ̂x = Φ (ẑx) = Φ




−0.47135
0.17043

0.81221


 =




0.31869

0.56766

0.79166


 = π̂x . (12.19)

The estimated standard errors for µ̂x and σ̂x are

σ̂µ̂x = 0.62047 and σ̂σ̂x = 0.67075 (12.20)

and therefore a 95% confidence interval for µx is

(65. 628, 68. 061) .
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Marginal distribution of STATS

The ML estimates obtained from the marginal distribution of y are tabulated in Table 12.8.

Table 12.8: ML estimates for the marginal distribution of y.

π̂y α̂y µ̂y σ̂y ẑy


0.25569

0.48298

0.81013





 0.06140

3.69619


 60.19482 16.28563




−0.65670
−0.04266
0.87839




Note: The elements of π̂y are elements contained in the last row of Π̂ (12.16).

Similarly to the marginal distribution of x, it follows that the marginal cumulative relative frequencies

π̂y follow a cumulative normal distribution at the upper class boundaries of y

Φ̂y = Φ (ẑy) = Φ




−0.65670
−0.04266
0.87839


 =




0.25569

0.48298

0.81013


 = π̂y . (12.21)

The estimated standard errors for µ̂y and σ̂y are

σ̂µ̂y = 0.63940 and σ̂σ̂y = 0.64606 . (12.22)

and may be used for inferential purposes.
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Joint distribution of MATHS and STATS

The joint cumulative relative frequencies at the intersections of the standardised upper class bound-

aries are equal to the probabilities of the bivariate normal distribution i.e.

Φ̂xy = vec
(
Φ

(
ẑx, ẑ

′
y

))
= vec




0.17170 0.25637 0.31180

0.22874 0.38802 0.53638

0.25077 0.45896 0.70922


 = π̂xy .

Note: The elements of π̂xy are the first (I − 1) (J − 1) elements contained in Π̂ (12.16).

The ML estimate for ρ is estimated by adding the appropriate relative frequencies under constraints

1

746
M =




0.17170 0.08467 0.05542 0.00690

0.05704 0.07461 0.09294 0.02439

0.02203 0.04892 0.10190 0.05116

0.00492 0.01910 0.07690 0.10742




(12.23)

(see (12.17)). The symmetrical nature of the fitted bivariate normal distribution is portrayed by

Table 12.9.

Table 12.9: ML estimates for the volumes of the four quadrants

Quadrant ML estimates for VOL

Q1 : zx < 0, zy < 0 V̂OL1 = 0.366415

Q2 : zx < 0, zy > 0 V̂OL2 = 0.133585

Q3 : zx > 0, zy < 0 V̂OL3 = 0.133585

Q4 : zx > 0, zy > 0 V̂OL4 = 0.366415
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The ML estimate for ρ is

ρ̂ = sin
(π

2
[2 (0.366415)− 2 (0.133585)]

)

= sin
(π

2
[0.732 83− 0.267 17]

)

= sin
(π

2
[0.465 66]

)

= 0.667 95 (12.24)

with a standard error of

σ̂ρ̂ = 0.0303 . (12.25)

Since

t =
ρ̂

σ̂ρ̂
= 22 (12.26)

the null hypothesis of H0 : ρ = 0 is rejected, indicating a significant association between MATHS

and STATS.

The estimated regression line of STATS (y)on MATHS (x) is

ŷy|x = α̂y|x + β̂y|xx

where

α̂y|x = µ̂y −
(
ρ̂
σ̂y

σ̂x

)
µ̂x

= 12.528

is the intercept and

β̂y|x = ρ̂
σ̂y

σ̂x

= 0.6981

is the slope, yielding the regression equation

ŷy|x = 13.5 + 0.70x . (12.27)

According to this regression line it is clear that for every increase of 1% in MATHS, the STATS

mark increases with 0.7%. The estimated correlation coefficient and regression equation for the
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fitted bivariate normal distribution, differ substantially from that where the class midpoint values

were used as an estimate for the values within a class interval emphasizing the importance of the

technique. Compare with (12.1) and (12.2).

All the results for this application were obtained from the SAS program BVN.SAS listed in Appendix

C3.
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