Statistical analysis of grouped data

by

Gretel Crafford

Submitted in partial fulfillment of
the requirements for the degree

Philosophiae Doctor

in the
Faculty of Natural & Agricultural Sciences
University of Pretoria
Pretoria

February 2007
Declaration

I declare that the thesis that I hereby submit for the degree Philosphiae Doctor at the University of Pretoria has not previously been submitted by me for degree purposes at any other university.

Signature __________________________ Date ____________________

Acknowledgements

I am grateful to Professor NAS Crowther for encouraging me to embark on this study. His guidance played a major role in the accomplishment of this challenging research.

I would also like to thank Professor CF Smit for all the valuable discussions and for suggesting helpful improvements.

I am grateful for a grant awarded to me by the University of Pretoria, which provided financial assistance required to complete this research.

To my colleagues, my sincere appreciation for your help and understanding.

Finally, I would like to thank my family for their love, support and encouragement.
Summary

The maximum likelihood (ML) estimation procedure of Matthews and Crowther (1995: *A maximum likelihood estimation procedure when modelling in terms of constraints*). South African Statistical Journal, 29, 29-51) is utilized to fit a continuous distribution to a grouped data set. This grouped data set may be a single frequency distribution or various frequency distributions that arise from a cross classification of several factors in a multifactor design. It will also be shown how to fit a bivariate normal distribution to a two-way contingency table where the two underlying continuous variables are jointly normally distributed. This thesis is organized in three different parts, each playing a vital role in the explanation of analysing grouped data with the ML estimation of Matthews and Crowther.

In Part I the ML estimation procedure of Matthews and Crowther is formulated. This procedure plays an integral role and is implemented in all three parts of the thesis. In Part I the exponential distribution is fitted to a grouped data set to explain the technique. Two different formulations of the constraints are employed in the ML estimation procedure and provide identical results. The justification of the method is further motivated by a simulation study. Similar to the exponential distribution, the estimation of the normal distribution is also explained in detail. Part I is summarized in Chapter 5 where a general method is outlined to fit continuous distributions to a grouped data set. Distributions such as the Weibull, the log-logistic and the Pareto distributions can be fitted very effectively by formulating the vector of constraints in terms of a linear model.

In Part II it is explained how to model a grouped response variable in a multifactor design. This multifactor design arise from a cross classification of the various factors or independent variables to be analysed. The cross classification of the factors results in a total of T cells, each containing a frequency distribution. Distribution fitting is done simultaneously to each of the T cells of the multifactor design. Distribution fitting is also done under the additional constraints that the parameters
of the underlying continuous distributions satisfy a certain structure or design. The effect of the
factors on the grouped response variable may be evaluated from this fitted design. Applications of a
single-factor and a two-factor model are considered to demonstrate the versatility of the technique.

A two-way contingency table where the two variables have an underlying bivariate normal distribution
is considered in Part III. The estimation of the bivariate normal distribution reveals the complete
underlying continuous structure between the two variables. The ML estimate of the correlation
coefficient ρ is used to great effect to describe the relationship between the two variables. Apart
from an application a simulation study is also provided to support the method proposed.
Contents

1 Introduction ... 1

1 Fitting distributions to grouped data 3

2 The ML estimation procedure 4
 2.1 Formulation .. 4
 2.2 Estimation .. 6
 2.3 Goodness of fit 8

3 The exponential distribution 9
 3.1 Direct set of constraints 10
 3.2 Constraints in terms of a linear model 15
 3.3 Simulation study 19

4 The normal distribution 21
 4.1 Direct set of constraints 22
 4.2 Constraints in terms of a linear model 28
4.3 Simulation study ... 32

5 The Weibull, log-logistic and Pareto distributions 35
 5.1 The Weibull distribution ... 35
 5.2 The log-logistic distribution ... 38
 5.3 The Pareto distribution ... 41
 5.4 Generalization ... 43

II Linear models for grouped data 48

6 Multifactor design 49
 6.1 Formulation ... 50
 6.2 Estimation ... 53

7 Normal distributions 56
 7.1 Estimation of distributions ... 56
 7.2 Equality of variances .. 62
 7.3 Multifactor model .. 64
 7.4 Application: Single-factor model 66
 7.4.1 Model 1: Unequal variances .. 67
 7.4.2 Model 2: Equal variances .. 72
 7.4.3 Model 3: Ordinal factor ... 74
 7.4.4 Model 4: Regression model .. 77
8 Log-logistic distributions

8.1 Estimation of distributions ... 82
8.2 Multifactor model ... 85
8.3 Application: Two-factor model .. 88
 8.3.1 Model 1: Saturated model .. 89
 8.3.2 Model 2: No interaction model 98
 8.3.3 Model 3: Regression model with no interaction 103
 8.3.4 Model 4: Regression model with interaction 109

III Bivariate normal distribution

10 The bivariate normal distribution

 10.1 Joint distribution ... 120
 10.2 Marginal distributions .. 121
 10.3 Standard bivariate normal distribution 121
 10.4 Conditional distributions .. 123
 10.5 Bivariate normal probabilities 124
 10.5.1 Calculation of bivariate normal probabilities 124
10.5.2 Calculation of ρ ... 128

11 Estimating the bivariate normal distribution 132

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>Bivariate normal probabilities</td>
<td>132</td>
</tr>
<tr>
<td>11.2</td>
<td>Parameters</td>
<td>135</td>
</tr>
<tr>
<td>11.2.1</td>
<td>Marginal distribution of x</td>
<td>135</td>
</tr>
<tr>
<td>11.2.2</td>
<td>Marginal distribution of y</td>
<td>136</td>
</tr>
<tr>
<td>11.2.3</td>
<td>Joint distribution of x and y</td>
<td>137</td>
</tr>
<tr>
<td>11.3</td>
<td>Vector of constraints</td>
<td>138</td>
</tr>
<tr>
<td>11.3.1</td>
<td>Marginal distribution of x</td>
<td>139</td>
</tr>
<tr>
<td>11.3.2</td>
<td>Marginal distribution of y</td>
<td>139</td>
</tr>
<tr>
<td>11.3.3</td>
<td>Joint distribution of x and y</td>
<td>140</td>
</tr>
<tr>
<td>11.4</td>
<td>Matrix of Partial Derivatives</td>
<td>141</td>
</tr>
<tr>
<td>11.4.1</td>
<td>Marginal distribution of x</td>
<td>141</td>
</tr>
<tr>
<td>11.4.2</td>
<td>Marginal distribution of y</td>
<td>142</td>
</tr>
<tr>
<td>11.4.3</td>
<td>Joint distribution of x and y</td>
<td>143</td>
</tr>
<tr>
<td>11.5</td>
<td>Iterative procedure</td>
<td>149</td>
</tr>
<tr>
<td>11.6</td>
<td>ML estimates</td>
<td>150</td>
</tr>
<tr>
<td>11.6.1</td>
<td>ML estimates of the natural parameters</td>
<td>151</td>
</tr>
<tr>
<td>11.6.2</td>
<td>ML estimates of the original parameters</td>
<td>152</td>
</tr>
<tr>
<td>11.7</td>
<td>Goodness of fit</td>
<td>153</td>
</tr>
</tbody>
</table>
12 Application 154

12.1 ML estimation procedure .. 155

12.1.1 Unrestricted estimates .. 157

12.1.2 ML estimates .. 162

13 Simulation study 168

13.1 Theoretical distribution ... 169

IV 172

14 Résumé 173

V Appendix 178

A SAS programs: Part I 179

A.1 EXP1.SAS ... 179

A.2 EXP2.SAS ... 180

A.3 EXPSIM.SAS .. 182

A.4 NORM1.SAS .. 184

A.5 NORM2.SAS .. 185

A.6 NORMSIM.SAS ... 187

A.7 FIT.SAS ... 190
B SAS programs: Part II

B.1 FACTOR1.SAS ... 195
B.2 FACTOR2.SAS ... 200

C SAS Programs: Part III

C.1 Phi0.SAS ... 206
C.2 Phi.SAS ... 207
C.3 BVN.SAS ... 209
C.4 BVNSIM.SAS ... 218