INVESTIGATION OF ANTIBACTERIAL COMPOUNDS PRESENT IN COMBRETUM WOODII DUEMMER

JAMES OLUSANYA FAMAKIN
B. Pharm (O.A.U, Ile-Ife, Nigeria)

Dissertation submitted to the Faculty of Health Sciences (Department of Pharmacology), University of Pretoria, in partial fulfillment of the requirements for the degree of MAGISTER SCIENTIAE

Promoter : Prof J. N. Eloff
Co-Promoter : DR D. R. P. Katerere

Date of Submission : January, 2002
The experimental work described in this dissertation was carried out by me in the Department of Pharmacology, Faculty of health science, University of Pretoria, Pretoria, under supervision of Prof. J. N. Eloff and Dr. D. R. P. Katerere.

These studies represent the work done by the author and have not otherwise been submitted in any form of degree or diploma to any other University. Where use has been made of the work of others it is duly acknowledged in the text.

Deepest gratitude is due to Professor J. N. Eloff for his invaluable assistance throughout the work. Special thanks are due to Dr. D. R. P. Katerere for his patient and inspiring guidance.

My sincere thanks go to Mrs. A. V. Naicker for her help and Mrs. S. van der Westhuizen for her untiring efforts.

Ms. Helen Nthiwa, my constant companion, is also acknowledged.

James Olusanya Famakin
ACKNOWLEDGEMENTS

First and foremost, I am grateful to Almighty God, The father of our lord Jesus Christ, who has given me the grace to complete this programme.

I hereby express my profound appreciation to the following people:

Prof. J. N. Eloff, my supervisor, for his relentless efforts and guidance towards the successful completion of this programme.

Dr. D. R. P. Katerere, my co-supervisor, for his invaluable assistance.

Mrs. Abolarinwa Famakin, my wife, for her love, prayers and inspiration.

Mr. Austin Ayo, for his help and moral support.

Ms. Ingrid Starke, for her motherly role.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>i</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>ii</td>
</tr>
<tr>
<td>Table of contents</td>
<td>iii</td>
</tr>
<tr>
<td>List of tables</td>
<td>vi</td>
</tr>
<tr>
<td>List of figures</td>
<td>vii</td>
</tr>
<tr>
<td>Glossary of abbreviations</td>
<td>xii</td>
</tr>
<tr>
<td>Abstract</td>
<td>1</td>
</tr>
<tr>
<td>Samewatting</td>
<td>3</td>
</tr>
<tr>
<td>Chapter 1</td>
<td></td>
</tr>
<tr>
<td>1. Introduction</td>
<td></td>
</tr>
<tr>
<td>1.1 Resistance to antibiotics - A world-wide problem</td>
<td></td>
</tr>
<tr>
<td>1.2 Possible solution</td>
<td></td>
</tr>
<tr>
<td>1.3 Medicinal Plants - As source of Antibacterial drugs.</td>
<td></td>
</tr>
<tr>
<td>1.3.1 Plants as sources of medicines.</td>
<td></td>
</tr>
<tr>
<td>1.3.2 Plant and Antibacterial production</td>
<td></td>
</tr>
<tr>
<td>1.4 Antimicrobial activity of some plant constituents - An overview</td>
<td></td>
</tr>
<tr>
<td>1.4.1 Tannins</td>
<td></td>
</tr>
<tr>
<td>1.4.2 Flavones, flavonoids, and flavonols</td>
<td></td>
</tr>
<tr>
<td>1.4.3 Terpenoids and essential oils</td>
<td></td>
</tr>
<tr>
<td>1.4.4 Alkaloids</td>
<td></td>
</tr>
<tr>
<td>1.5. Combretaceae</td>
<td></td>
</tr>
<tr>
<td>1.5.1 Introduction.</td>
<td></td>
</tr>
<tr>
<td>1.5.2 Taxonomy</td>
<td></td>
</tr>
<tr>
<td>1.5.3 Use of Combretaceae in traditional medicine</td>
<td></td>
</tr>
<tr>
<td>1.5.4 Ethnopharmacology of Combretaceae</td>
<td></td>
</tr>
<tr>
<td>1.5.5 Phytochemistry of Combretaceae</td>
<td></td>
</tr>
<tr>
<td>1.5.6 Selection of C. woodii</td>
<td></td>
</tr>
<tr>
<td>1.6 An overview of methods that have been employed to isolate compounds from plants</td>
<td>21</td>
</tr>
</tbody>
</table>
1.6.1 Plant materials
1.6.2 Extraction techniques
1.6.3 Isolation and Analysis of Constituents
1.6.4 Assay of plant extracts
1.7 Problem statement and Hypothesis
1.8 Aim and Objectives of the study.

Chapter 2
2 Materials and Methods
2.1 Plant Material
2.2 Preparation and extraction
2.3 TLC analysis of extract
2.4 Bioautographic assay
2.4.1 Preparation of TLC plates for bioautography
2.4.2 Preparation of bacteria
2.4.3 Bioassay method
2.5 Determination of minimum inhibitory concentration
2.5.1 Dilution of extract
2.5.2 Addition of bacteria
2.6 Solvent-Solvent fractionation
2.6.1 Analysis and bioautographic assay fractions
2.7 Isolation of bioactive compounds
2.7.1 TLC analysis
2.7.2 Isolation by column chromatography
2.7.3 Bioassay work on isolated compounds
2.8 Spectroscopic analysis of isolated compounds

Chapter 3
Results and discussion on extraction
3.1 Introduction
3.1.1 Quantity extracted with initial extractants
3.1.2 Profiling of extracts
3.1.3 Bioautography
3.1.4 Quantity of antibacterial compound present and MIC values of extract 42
3.2 Solvent-Solvent extraction 45
3.2.1 Extraction of C. woodii and solvent-solvent fractionation 46
3.2.2 Complexity of fractions 47
3.2.3 Bioautography of fractions 50
3.2.4 Antibacterial activity of fractions 53
Chapter 4 58
Results and discussion on isolation of compound 58
4.1 Isolation of active compound 58
4.1.1 Method development 58
4.1.2 Column chromatography of chosen fraction 58
4.1.3 Analysis of collected fractions by TLC. 60
4.1.4 Combination of collected fractions 64
4.1.5 TLC analysis of CF1 and column chromatography 65
4.1.6 Minimum inhibitory concentration of isolated active compound 69
4.1.7 Bioautography of isolated active compound 70
Chapter 5 72
Spectroscopic analysis of isolated active compound 72
Discussion and Conclusion 80
Appendix 1 83
References 84
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>Major mechanisms of resistance to antimicrobial agents</td>
<td>5</td>
</tr>
<tr>
<td>Table 2</td>
<td>Some plant-derived preparations for medicinal use</td>
<td>7</td>
</tr>
<tr>
<td>Table 3</td>
<td>The subgeneric classification of genus Combretum in South Africa</td>
<td>15</td>
</tr>
<tr>
<td>Table 4</td>
<td>Traditional uses of some Combretum species</td>
<td>16</td>
</tr>
<tr>
<td>Table 5</td>
<td>Type of phytochemicals extracted by different solvents used</td>
<td>22</td>
</tr>
<tr>
<td>Table 6</td>
<td>Examples of colour detected under UV for some phytochemical preparation.</td>
<td>23</td>
</tr>
<tr>
<td>Table 7</td>
<td>Pharmacopoeia methods for microbiological assay of some antibacterial agents</td>
<td>25</td>
</tr>
<tr>
<td>Table 8</td>
<td>Quantity in mg extracted using various solvent systems</td>
<td>35</td>
</tr>
<tr>
<td>Table 9</td>
<td>Percentage of total extracted from C. woodii leaves after different periods</td>
<td>35</td>
</tr>
<tr>
<td>Table 10</td>
<td>Quantity extracted, MIC values in mg/ml and total activity in ml of C. woodii per gram leaves extracted with hexane, diisopropyl ether, diethyl ether, methylene dichloride, ethyl acetate, tetrahydrofuran, acetone, ethanol, methanol and water.</td>
<td>43</td>
</tr>
<tr>
<td>Table 11</td>
<td>Quantity [in g] and percentage of total initial mass [140g] of C. woodii leaves extracted by each solvent-solvent fractionation process.</td>
<td>47</td>
</tr>
<tr>
<td>Table 12</td>
<td>The minimum inhibitory concentration in mg/ml of different fractions obtained by solvent-solvent extraction of C. woodii leaves</td>
<td>54</td>
</tr>
<tr>
<td>Table 13</td>
<td>MIC in mg/ml and total activity in ml of acetone extract of C. woodii leaves in different fractions obtained by solvent-solvent fractionation</td>
<td>55</td>
</tr>
<tr>
<td>Table 14</td>
<td>Quantity in mg of grouped fractions from column chromatography of CF1</td>
<td>68</td>
</tr>
<tr>
<td>Table 15</td>
<td>MIC values in mg/ml of CF1b compared with ampicillin and chloramphenicol</td>
<td>70</td>
</tr>
<tr>
<td>Table 16</td>
<td>1H-NMR (300 MHz) and 13C-NMR (75 MHz) spectra data for isolated compounds. Data obtained in CDCl$_3$.</td>
<td>72</td>
</tr>
<tr>
<td>Table 17</td>
<td>Typical chemical shifts of hydrogen attached to various types of functional groups</td>
<td>83</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Fig. 1 Synthesis of plant secondary compounds 9

Fig. 2 Structure of a condensed tannin 11

Fig. 3 Structure of a flavone 12

Fig. 4 Structure of a terpenoid 13

Fig. 5 Structure of an alkaloid 13

Fig. 6 Combretum woodii from which leaves were collected in Lowveld National Botanical Garden 20

Fig. 7 Distribution of C. woodii in Southern Africa 20

Fig. 8 The procedure used for the solvent-solvent fractionation of the components in C. woodii leaves extracts. 31

Fig. 9 Quantity (mg) extracted from 0.5 g of powdered dried leaves of C. woodii with 5 ml of hexane, diisopropyl ether, diethyl ether, methylene dichloride, ethyl acetate, tetrahydrofuran, acetone, ethanol, methanol and water. 36

Fig. 10 Separation of components present in 50 μg of 10 different extracts with BEA as eluent and vanillin-sulphuric acid spray reagent. Lanes from left to right: hexane, diisopropyl ether, diethyl ether, methylene dichloride, ethyl acetate, tetrahydrofuran, acetone, ethanol, methanol and water. 37

Fig. 11 Separation of components present in 50 μg of 10 different extracts using CEF as eluent and vanillin-sulphuric acid spray reagent. Lanes from left to right: hexane, diisopropyl ether, diethyl ether, methylene dichloride, ethylacetate, tetrahydrofuran, acetone, ethanal, methanol and water. 37

Fig. 12 Separation of components present in 50 μg of 10 different extracts using EMW as eluent and vanillin-sulphuric acid spray reagent. Lanes from left to right: hexane, diisopropyl ether, diethyl ether, methylene dichloride, ethylacetate, tetrahydrofuran, acetone, ethanol, methanol and water. 38

Fig. 13 Separation of compound present in 50 μg of 10 different extracts with BEA as eluent and p-anisaldehyde-sulphuric acid spray reagent. Lanes from left to right: hexane, diisopropyl ether, diethyl ether, methylene dichloride, ethylacetate, tetrahydrofuran, acetone, ethanol, methanol and water. 38

Fig. 14 Separation of compounds present in 50 μg of 10 different extracts using CEF as eluent and p-anisaldehyde-sulphuric acid spray reagent. Lanes from left to right: hexane, diisopropyl ether, diethyl ether, methylene dichloride, ethylacetate, tetrahydrofuran, acetone, ethanol, methanol and water.
ethylacetate, tetrahydrofuran, acetone, ethanol, methanol and water.

Fig. 15 Separation of compounds present in 50 μg of 10 different extracts using EMW as eluent and p-anisaldehyde-sulphuric acid spray reagent. Lanes from left to right hexane, diisopropyl ether, diethyl ether, methylene dichloride, ethylacetate, tetrahydrofuran, acetone, ethanol, methanol and water.

Fig. 16 Bioautograms of C. woodii leaves extracted by 10 different extractants. TLC developed in BEA (left) and EMW (right) and sprayed with S. aureus culture, incubated overnight then sprayed with INT. Growth inhibition indicated by colourless zone on TLC plates. Lanes from left to right: hexane, diisopropyl ether, diethyl ether, methylene dichloride, ethyl acetate, tetrahydrofuran, acetone, ethanol, methanol and water.

Fig. 17 Bioautograms of C. woodii leaves extracted by 10 different extractants. TLC developed in BEA (left) and EMW (right) and sprayed with E. faecalis culture, incubated overnight then sprayed with INT. Growth inhibition indicated by colourless zone on TLC plates. Lanes from left to right: hexane, diisopropyl ether, diethyl ether, methylene dichloride, ethyl acetate, tetrahydrofuran, acetone, ethanol, methanol and water.

Fig. 18 Total antibacterial activity of C. woodii extracts on four test organisms. From left to right: hexane, diisopropyl ether, diethyl ether, methylene dichloride, ethyl acetate, tetrahydrofuran, acetone, ethanol, methanol and water.

Fig. 19 Total antibacterial activity of C. woodii extracts on four tested organisms

Fig. 20 Quantity extracted in each solvent fraction by solvent-solvent fractionation process

Fig. 21 Separation of components present in the different fractions obtained by solvent-solvent extraction by BEA and sprayed with vanillin-sulphuric acid. Lanes from left to right: hexane, chloroform, carbon tetrachloride, 35 % methanol in water, butanol and water fractions. In each case 50 μg was chromatographed.

Fig. 22 Separation of components present in the different fractions obtained by solvent –solvent extraction by CEF and sprayed with vanillin-sulphuric acid. Lanes from left to right: hexane, chloroform, carbon tetrachloride, 35 % methanol in water, butanol and water fractions. In each case 50 μg was chromatographed.

Fig. 23 Separation of components present in the different fractions obtained by solvent - solvent extraction by EMW and sprayed with vanillin-sulphuric acid. Lanes from left to right: hexane, chloroform, carbon tetrachloride, 35 % methanol in water, butanol and water fractions. In each case 50 μg was chromatographed.

Fig. 24 Separation of components present in the different fractions obtained by
solvent–solvent extraction by BEA, CEF and EMW (from left to right) and sprayed with vanillin-sulphuric acid. Lanes at the bottom in each TLC plate from left to right: insoluble water fractions (IW), insoluble butanol fractions (IB) and insoluble 35% water in methanol fractions and interphase in chloroform (GR).

Fig. 25 Bioautogram of acetone extract of *C. woodii* leaves separated into different fractions by solvent-solvent extraction. TLC plate developed in BEA and sprayed with S. aureus culture incubated overnight and then sprayed with INT. Growth inhibition indicated by colourless zones on TLC plate. Lane from left to right: chloroform, carbon tetrachloride, 35% methanol in water, butanol and water fractions.

Fig. 26 Bioautogram of acetone extract of *C. woodii* leaves separated into different fractions by solvent-solvent extraction. TLC plate developed in CEF and sprayed with S. aureus culture incubated overnight and then sprayed with INT. Growth inhibition indicated by colourless zones on TLC plate. Lane from left to right: chloroform, carbon tetrachloride, 35% methanol in water, butanol and water fractions.

Fig. 27 Bioautogram of acetone extract of *C. woodii* leaves separated into different fractions by solvent-solvent extraction. TLC plate developed in EMW and sprayed with S. aureus culture incubated overnight and then sprayed with INT. Growth inhibition indicated by colourless zones on TLC plate. Lane from left to right: chloroform, carbon tetrachloride, 35% methanol in water, butanol and water fractions.

Fig. 28 Bioautogram of acetone extract of *C. woodii* leaves separated by CEF (left) and EMW (right) and *E. faecalis* as a test organism. White or yellowish brown areas indicated growth inhibition.

Fig. 29 Bioautogram of acetone extract of *C. woodii* leaves separated by CEF (left) and EMW (right) and *E. coli* as a test organism. White or yellowish brown areas indicated growth inhibition.

Fig. 30 Bioautogram of acetone extract of *C. woodii* leaves separated by CEF (the left) and EMW (right) and *P. aeruginosa* as a test organism. White or yellowish brown areas indicated growth inhibition.

Fig. 31 Total antibacterial activity to four test organisms of *C. woodii* leaves extracted with solvent fractions. Fractions from left to right: hexane (H), chloroform (CHCl₃), carbon tetrachloride (CCl₄), 35% water in methanol (35% W/M), butanol (B) and water (W).

Fig. 32 The relative quantities obtained by solvent-solvent fractionation and the relative antibacterial activities of the different fractions. Solvent fractions from the top to the bottom: hexane (H), chloroform (CHCl₃), carbon tetrachloride (CCl₄), butanol, 35% water in methanol (35% W/M) and water (W).
Fig. 33 TLC of chloroform fraction using different ratios of chloroform and ethyl acetate combination as solvent systems. From left to right: ratios 2 : 1, 1 : 2, 1 : 1, 1 : 5. Lines indicate fluorescing compounds.

Fig. 34 TLC of chloroform fraction using different ratios of chloroform and tetrahydrofuran combination as solvent systems. From left to right: ratios 1.1, 1.2. Lines represent fluorescing compounds.

Fig. 35 TLC of chloroform fraction using different ratios of chloroform and methanol combination as solvent systems. From left to right: ratios 1 : 2, 2 : 1. Lines represent fluorescing compounds.

Fig. 36 TLC of every fourth fraction collected separated by CEF and sprayed with vanillin-sulphuric acid reagent. Lanes from left to right: fractions 4, 8, ..., 60, 64.

Fig. 37 TLC of collected fractions separated by CEF and sprayed with vanillin-sulphuric acid reagent. Lanes from left to right: fractions: 1, 2, 3, ..., 24, 25.

Fig. 38 TLC of collected fractions separated by CEF and sprayed with vanillin-sulphuric acid reagent. Lanes from left to right: fractions 26, 27, 28, ..., 53, 54.

Fig. 39 TLC of column chromatography fractions separated by CEF and sprayed with vanillin-sulphuric acid reagent. Lanes from left to right: fractions 55, 56, ..., 78, 79.

Fig. 40 TLC of collected fractions separated by EMW and sprayed with vanillin-sulphuric acid reagent. Lanes from left to right: fractions 26, 27, 28, ..., 53, 54.

Fig. 41 TLC of collected fractions separated by EMW and sprayed with vanillin-sulphuric acid reagent. Lanes from left to right: fractions 107, 108, ..., 122, 123.

Fig. 42 TLC of collected fractions separated by CEF and sprayed with a vanillin-sulphuric acid reagent. Lanes from left to right: fractions 4, 5, ..., 11, 12.

Fig. 43 TLC of some of CF2 extracted into three different solvent using CEF (left) and EMW (right) as the solvent systems. From left to right: acetone (ACN), chloroform (CHC), and methanol (MEOH) components. Lines indicate fluorescing compounds.

Fig. 44 Separation of CF1 by different solvent systems using vanillin as the spray reagent. The TLC plates from left to right were developed in acetonitrile : water (1 : 1), 5% acetonitrile in water, 2% acetonitrile in water and 1% acetonitrile in water. Lines represent fluorescing compounds.

Fig. 45 Separation of CF1 by different solvent systems using vanillin-sulphuric acid
as the spray reagent. The TLC plates from left to right were developed in different chloroform and ethyl acetate combinations (2:1, 1:5, 1:3, 4:1).

Fig. 46 Separation of CF1 by different solvent systems using vanillin-sulphuric acid as the spray reagent. The TLC plates from left to right were developed in methanol-water (1:1), 5% methanol in chloroform and 1% methanol in water.

Fig. 47 TLC separation of fractions obtained from column chromatography of CF1 by CEF and using vanillin-sulphuric acid spray reagent. From left to right: fractions 1, 2, ..., 29, 30.

Fig. 48 TLC separation of grouped fractions from column chromatography of CF1 by CEF and using vanillin-sulphuric acid spray reagent. From left to right: A, B,, K, L.

Fig. 49 Bioautograms of CF1b (left) and CF2C (right). TLC developed in EMW and sprayed with growing S. aureus culture and later with INT. Brownish-yellow colour indicated growth inhibition zone.

Fig. 50 Proposed structure for isolated compound

Fig. 51 The isolated active compound and its fragmentation into two tropylium ions.

Fig. 52 The isolated active compounds with its two aromatic rings labeled as 'A' and 'B'.
GLOSSARY OF ABBREVIATIONS

1. ACN Acetone (extractant)
2. ATCC American type Culture Collection
3. B Butanol (extractant or fraction)
4. 13C Carbon 13
5. BEA Benzene:Ethanol:Ammonium hydroxide [36:5.4:4]
6. CC Column chromatography
7. CCl$_4$ Carbon tetrachloride (extractant or fraction)
9. CF Column chromatography fraction
10. CHCl$_3$ Chloroform (extractant or fraction)
11. EA Ethyl acetate extractant.
12. *E. coli* Escherichia coli
13. EE Diethyl ether (extractant)
14. *E. faecalis* Enterococcus faecalis
15. EMW Ethanol : methanol : water [40:5.4:4]
16. ET Ethanol (extractant)
17. H Hexane (extractant or fraction)
18. 1H Proton
19. IB Insoluble butanol fraction
20. INT p-iodonitrotetrazolium violet
21. IW Insoluble water fraction
22. IWM Insoluble 35% water in methanol (fraction)
23. M Methanol extractant
24. MDC Methylene dichloride
25. MS Mass spectroscopy
26. 35% W/M 35% water in methanol (fraction)
27. NMR Nuclear magnetic resonance
28. *Ps. aeruginosa* Pseudomonas aeruginosa
29. R$_f$ Fractional movement of a solute band, relative to the distance moved by solvent front.
30. *S. aureus* Staphylococcus aureus
31. THF Tetrahydrofuran extractant
32. TLC Thin layer chromatography
33. UV Ultra-violet light
34. W Water (extractant)
ABSTRACT

Dried ground leaves of *Combretum woodii* were extracted with 10 different solvents (hexane, diisopropyl ether, diethyl ether, methylene dichloride, ethyl acetate, tetrahydrofuran, acetone, ethanol, methanol and water) to determine the best extractant for isolating and characterizing any compound(s) with antibacterial activity present. The antibacterial activity of all the extracts was tested against *Staphylococcus aureus*, *Pseudomonas aeruginosa*, *Escherichia coli* and *Enterococcus faecalis*. All the extracts, with exception of the water extract, inhibited the growth of *S. aureus* and *E. faecalis* using bioautography of thin layer chromatography plates. Two major inhibitory compounds with Rf values of 0.74 and 0.88 were visible on the bioautograms of extracts sprayed with *S. aureus* and *E. faecalis* respectively in ethanol:methanol:water (40:5.4:4) solvent systems. There were at least three more polar inhibitory compounds against *E. faecalis* separated in benzene:ethanol:ammonium hydroxide (36:4:0.4) solvent system.

According to thin layer chromatography using p-anisaldehyde-sulphuric acid as spray reagent, most solvents extracted at least seven compounds but water extracted only one visible compound.

Tetrahydrofuran, methylene dichloride, and acetone extracted the largest quantity. The methylene dichloride and acetone extracts had the highest antibacterial activity against all the four test organisms. However, acetone was selected for extraction of *C. woodii* dried ground leaves because of its relatively low toxicity to test organisms and the ease of removal after extraction.

Acetone extracted 11% of 140 g of dried ground leaves. Group separation by solvent-solvent extraction was applied to the acetone extract. The complex extract was simplified by separating into six fractions and an interphase. The highest number of non-polar compounds was in the hexane fraction, followed by carbon tetrachloride and chloroform fractions. The highest quantity of extract, 32%, was also in the hexane fraction followed by chloroform (25.6%), butanol (11.7%), water (7.2%), 35% water in methanol (6.5%), and carbon tetrachloride (6.4%) fractions. The carbon tetrachloride fraction had the most complex mixture of compounds. The six fractions obtained inhibited the four test organisms to different degrees. Most of the bioactive compounds were in the chloroform and hexane fractions. The chloroform fraction had the highest relative antibacterial activity (almost 33 times higher than the water fraction). Generally, *S. aureus* was the most sensitive, followed by *E. faecalis*, *Ps. aeruginosa* and *E. coli*. There were at least six growth inhibitors of pathogenic
bacteria. A major active compound with R_f value of 0.67 in chloroform:ethylacetate:formic acid (20:16:4) and 0.74 in ethanol:methanol:water (40:5.4:4) solvent systems was present in all the fractions (except water fraction). Attempts were made to isolate and characterize this major active compound.

The chloroform fraction was subjected to silica gel 60 (63–200 μm) column chromatography using a chloroform and ethyl acetate mixture and 10% methanol in acetone to elute the column fractions. Further TLC analyses and column chromatographic procedures on the collected fractions led to the isolation of this compound. This was identified by nuclear magnetic resonance and mass spectroscopy as combretastatin B5 (2', 3', 4-trihydroxy, 3, 5, 4'-trimethoxybienzyl) previously isolated from the seeds of C. kraussii. This compound has been found to have antimitotic activity. The closely related combretastatin A4, the first of a new class of anticancer agents, is currently undergoing clinical trials.

The antibacterial activity of combretastatin B5 showed significant activity against S. aureus, Ps. aeruginosa, E. faecalis and slight activity against E. coli. The MIC values of the isolated active compound for S. aureus was 16 μg/ml, which compares favourably to the MIC values of 80 μg/ml and 160 μg/ml for ampicillin and chloramphenicol in this test respectively.

The results obtained validate the use of Combretum species for the bacterial infections in traditional medicine. Further work, needs to be done to investigate the possible clinical value of combretastatin B5 and isolate and characterize other antibacterial compounds in C. woodii.
SAMEVATTING

Om te bepalen wat die beste ekstraheermiddel is vir gedroogde *C. woodii* blare is, is tien vloeistowwe (heksaan, di-isopropyleter, dietieleter, metileendichloryd, etielasetaat, tetrahidrofuraan, aseton, etanol, metanol en water) gebruik om antibakteriese verbindings te isolateer en karakteriseer. Die toetsorganismes was *Staphylococcus aureus*, *Pseudomonas aeruginosa*, *Escherichia coli* en *Enterococcus faecalis*. Volgens bio-otografieresultate, het al die ekstrakte behalwe die waterekstrak die groei van *S. aureus* en *E. faecalis* onderdruk. Daar was twee belangrike inhibeerders met Rₐ waarde van 0.74 en 0.88 in bio-otogramme ontwikkel in etanol:metanol:water (40:5:4:4). Daar was ten minste drie meer polère inhibeerders van *E. faecalis* volgens bio-otogramme ontwikkel in benseen:etanol:ammoniumhdroksieds (36:4:0.4). Met die uitsondering van die waterekstrak kon ten minste sewe verbindings na dunlaagchromatografie (DLC) en spuit met p-anysaldehid-swawelsuur aangetoon word.

Tetrahidrofuraan, metileen dichloryd en aseton het die grootste hoeveelheid ge-ekstraheer en laasgenoemde twee het die hoogste antibakterielse aktiwiteit teen die vier toetsorganismes gehad. Aseton is gekies as ekstraheermiddel omdat dit 'n relatiewe lae toksiteit vir die toetsorganismes gehad en maklik verwys kon word na ekstraksie.

Aseton het 11% van die 140 g gedroogde fyngegemaalde blare ge-ekstraheer. Die ekstrak is deur vloeistof-vloeistof groepskeiding vereenvoudig na ses fraksies en 'n interfase. Die grootste getal nie-polère verbindings was in die heksamfraksie gevolg deur die koolstofetetrachlorieder- en chloroformfraksies. Die grootste hoeveelheid, 32% van die totaal, was ook in die heksafraksie gevolg deur die chloroform- (25.6%), butanol- (11.7%), water- (7.2%), 35% water in metanol- (6.5%), en koolstofetetrachloriederfraksies (6.4%). Die koolstofetetrachloriederfraksie het die kies kompleks omstelsetting gehad en al ses fraksie het die groei van die toetsorganismes tot 'n mindere of meerdere mate geïnhibeer. Oor die algemene was *S. aureus* die sensitiefste gevolg deur *E. faecalis*, *Ps. aeruginosa* en *E. coli*. Daar was ten minste ses groei-inhibeerders van die bakterieë teenwoordig. Die sterkste inhibeerder het 'n Rₐ-waarde van 0.67 in chloroform:etielasetaat: mieresuur (20:16:4) en 0.74 in etanol:metanol:water (40:5:4:4) gehad. Hierdie verbinding was teenwoordig in al die fraksies behalwe die waterfraksie. Pogings is aangewend om hierdie verbinding te isolateer.

Die komponente van die chloroformfraksie is deur silikagel chromatografie (silika gel 60 (63-200 μm) met 'n gradiënt van chloroform-etielasetaat en later 10% metanol in aseton geskei. Die suiwier verbinding is deur verdere DLC analise en kolomchromatografie geïsoleer. Die verbinding is deur kernmagneetse resonansepektroskopie en massaspektroskopie geïdentifiseer as combretastatin B5 (2’3’,4-trihidroksiel, 3,5,4’-trimethysiebensielt) wat voorheen geïsoleer is uit die saad van *C. krausii*. Hierdie verbinding het antimitotiese aktiwiteit gehad. Die navewarte combretastatin A4, die eerste van 'n nuwe klas antikanker agense ondergaan tans kliniese proewe.

Combretastatin B5 het sterk antibakterielse aktiwiteit teen *S. aureus*, *Ps. aeruginosa*, *E. faecalis* en laer aktiwiteit teen *E. coli* gehad. Die MIC-waardes vir *S. aureus* was 16 μg/ml, teenoor MIC waardes van 80 μg/ml en 160 μg/ml vir amispillen en chlooramfenikol in hierdie eksperimente.

Die resultate ondersteun die etnobotaniese gebruik van *Combretum* speties vir bakteriële infeksies. Verdere werk behoort uitgeoer te word op die moontlike kliniese waarde van combretastatin B5 en die isolering van ander antibakteriële verbindings in *C. woodii*.