

Risk and reliability of exploration methods used to define a heavy mineral sand deposit in Kwa-Zulu Natal, South Africa

By

Karina Boekhoud

Submitted in partial fulfilment of the requirements for the degree Masters of

Earth Science Practice and Management in the

Department of Geology

Faculty of Natural and Agricultural Science

University of Pretoria

Pretoria

February 2012

© University of Pretoria

Table of content

1	The	proble	m and its setting1	ļ
	1.1	Introd	uction1	ł
	1.2	The P	roblem 2	2
	1.2.	1 Sub	problems	3
	1	.2.1.1	Sub problem 1	3
	1	.2.1.2	Sub problem 2	3
	1.	.2.1.3	Sub problem 3	3
	1.3	Hypot	hesis	ł
	1.4	Limits	of Research	5
	1.5	The in	nportance of the study	7
	1.6	Metho	dology)
	1.6.	1 Sub	problem 1)
	1.6.2	2 Sub	problem 2 10)
	1.6.3	3 Sub	problem 3 12	2
	1.7	Definit	tion of terms	2
2	Geo	logy ar	nd exploration15	5
	2.1	Regio	nal and local geology15	5
2	2.2	Exploi	tation 20)
	2.2.7	1 Min	ing 20)

2.2.2 Beneficiation
2.2.2.1 Primary Wet Plant 24
3 Sampling methodology 27
3.1 Exploration Drilling
3.1.1 Reverse Circulation Drilling
3.1.2 Aircore drilling
3.2 Logging and Sampling
3.2.1 Geological Logging 35
3.2.2 Survey
3.2.3 Sample Preparation 39
3.2.4 Analysis 42
3.2.4.1 Carpco® analyses 42
3.2.4.2 Mineralogical and Chemical Composite samples
4 Comparative Drillhole values per drilling method
4.1 Summary statistics for drilling methods
4.2 Mineral resource classification approaches in the mining industry 62
4.3 Drillhole spacing
4.3.1 Drillhole spacing confidence
4.4 Drilling costs versus geological Knowledge
4.5 Conclusion on the drilling methods 81
5 Estimation technique

5.1 Database 84
5.1.1 Geological data validation – database
5.1.2 Database Inventory 85
5.2 Estimation methods 89
5.2.1 Kriging (Wallis Aircore Data) 89
5.2.1.1 Domaining / anisotropy and search parameters
5.2.1.2 3D model creation
5.2.2 Inverse distance (Reverse Circulation)
5.3 Relative density determinations
5.4 Comparative blockmodels
5.5 Reconciliation 101
5.6 Conclusion on estimation techniques 105
6 Resource model risk 107
6.1 Sources of Risk 110
6.2 Cost of Risk 110
6.3 Treatment of Risk 115
6.3.1 Exploration drilling Quality assurance and quality control 119
6.3.2 Laboratory Control 120
6.3.3 Control Samples 122
6.3.4 Repeat Samples 124
6.3.5 Drilling Method Risk 126

	6.3.6 Drillhole Spacing Risk 126
6	4 Conclusion on risk 127
7	Overall conclusions 129
8	Reference
9	Addendum A 1
10	Addendum B 1
11	Addendum C 1
12	Addendum D 1
13	Addendum E 1

Summary

Risk and reliability of exploration methods used to define a heavy mineral sand deposit in Kwa-Zulu Natal, South Africa.

Author: Karina Boekhoud

Supervisor: Mr C C Callaghan

Co-Supervisor: Dr F. Camisani-Calzolari

Department: Department of Geology, Faculty of Natural and Agricultural Sciences, University of Pretoria

Degree: MSc in Earth Science Practice and Management

The objective of the treatise is to review the sample methodology and the exploration methods at a heavy mineral sands deposit. The level of confidence and the risk associated with the resource calculations will be established based on the sample methodology.

Two drilling methods used at Hillendale are compared statistically and visually. It is clear from the comparison that the Wallis Aircore (WAC) method is significantly better than the Reverse Circulation (RCN) method. This is evident also when comparing results of the two methods with the

recovery from the mined out areas. The WAC drilling method reduces the risk of downhole contamination due to the change in the drilling method allowing air to be forced back in an inner tube after the sample is collected compared to the air blowout of the RCN method. The WAC method reduces the variability introduced in the sample collection as compared to the RCN method. The average calculated value (for total heavy minerals (THM) and Ilmenite) of the global population for the two methods is similar. The reduced variability in the sample population of the WAC method results in a lower population being required for the confidence interval about the mean at a 95% confidence level. The lower number of required samples results in a lowering of project cost.

Blockmodels created from the two drilling methods are compared statistically (mode, median, standard deviation). The global mean of the input data compares well with the global mean of the estimated blockmodel. In reconciling the resource blockmodels with actual production data, the variability as introduced by the RCN drilling method is clear. The WAC drilling information produces a blockmodel with an acceptable level of variance (deviation of the geological model from the actual values obtained during mining) as defined by Hillendale mine management of less than 10%. This is determined by reconciling the estimated geological blockmodel for a specific mined out area against the actual tonnages and plant recovery values achieved in the same area. Ultimately, because the drill spacing is

standard in the mining operation under study, the required confidence in the mean might not be achieved by either of the two drilling methods in certain portions of the mine, but the results from the WAC method will be closer to the reality than the RCN method with the same number of drillholes.

Three main risks are identified in the sample methodology; they have a high probability to occur or have a high cost impact. The risk inherent in sampling and analysis is the most important of the risks identified in this study. The risk can be effectively reduced by implementing a quality assurance and quality control programme (QAQC). The other high risks are introduced by the drilling method and drillhole spacing. The risk can be reduced by continuous improvement and keeping up to date with new developments in the industry such as improved drilling techniques and by improved knowledge of the ore-body. The knowledge will help in understanding the risk - It may become clear in the text how this can reduce the risk.

In conclusion, the improvement and implementation of systems such as improved drilling technique and quality assurance and quality control programmes enables one to establish an acceptable confidence level in the resource calculation as well as reducing the inherent risk to an acceptable level for future decisions.

List of abbreviations

CPC	-	Central processing centre
DTM	-	Digital terrain models
EOH	-	End of hole
HMC	-	Heavy mineral concentrate
KZN	-	Kwa-Zulu Natal
LIMS	-	Laboratory Information Management System
MSP	-	Mineral separation plant
Му	-	Million Years
PWP	-	Primary wet plant
QAQC	-	Quality Assurance and Quality Control
RCN	-	Reverse Circulation
ROM	-	Run of mine
SABLE	-	Standardised Approach to Drillhole Logging for Exploration

SAMREC Code	- The South African code for the reportin	
		exploration results, Mineral Resources and
		Mineral Reserves.
SMU	-	Smallest mining unit
SQL	-	Standard Query Language
TBE	-	tetrabromoethane
THM	-	total heavy minerals
VHM	-	valuable heavy minerals
WAC	-	Wallis Aircore
XRF	-	X-ray fluorescence

List of figures

Figure 1. Investment risk at the various stages of project development (McKenzie, 2009)
Figure 2. Locality map of Hillendale mine and other Exxaro heavy mineral deposits (image created by author)
Figure 3. Mining at Hillendale mine with hydraulic monitor guns 22
Figure 4. Hydraulic monitor gun at Hillendale mine 23
Figure 5. PWP beneficiation process (illustration from Exxaro KZN Sands) 25
Figure 6. Hillendale mine drilling grid – WAC and RCN drilling methods 28
Figure 7. Hillendale mine drilling grid - RCN drilling method
Figure 8. Hillendale mine drilling grid - WAC drilling method
Figure 9. Schematic representation of reverse circulation drilling (http://www.globalsecurity.org/military/library/policy/army/fm/5-484/Ch5.htm)
Figure 10. Schematic representation of aircore drilling after (Ryan et al., 2004)
Figure 11. Exxaro drilling reference chart (from MSA consultants, consulting for Exxaro, unpublished)
Figure 12. Carpco® - high-intensity induced-roll magnetic separator 44
Figure 13. Separated fractions produced by the Carpco® high-intensity induced-roll magnetic separator
Figure 14. Hillendale mine comparative downhole RCN and WAC drillholes 49

Figure 28. Simplified database structure with database checks (image
created by author)
Figure 29. RCN drilling, inverse distance squared blockmodel
Figure 30. Histogram of THM% for WAC, Kriging
Figure 31. Histogram of THM% for RCN, ID2 (plan 4)
Figure 32. Histogram of THM% for RCN, ID ² (plan 2)
Figure 33. Histogram of THM% for RCN, ID ² (area 1B) 100
Figure 34. Reconciliation of RCN Geological model and primary wet plant output (PWP), with 1.00 being 100% reconciliation
Figure 35. Reconciliation of WAC Geological model and primary wet plant output
Figure 36. Five step risk management process from Smith and Merritt (2002)
Figure 37. Indicative resource risk chart for expected sample methodology risks
Figure 38. Indicative resource risk chart showing order-of-magnitude improvement that the mine management would like to achieve to be within their risk threshold
Figure 39. Method for creating reference material (image by author) 123
Figure 40. Illustration of Placement of Control and Repeat Samples in drillholes (image by author)

List of tables

Table 1. Drillhole spacing as used at Hillendale Mine
Table 2. Magnetic separation fractions (Carpco® Fractions) 46
Table 3. Absolute elevation difference of comparative twinned holes
Table 4. Percentage difference for the THM% for comparative downholedrillholes
Table 5. Percentage difference for the silt% for comparative downholedrillholes
Table 6. Summary statistics of composite drillholes - Reverse Circulation . 60
Table 7. Summary statistics of composite drillholes - Wallis Aircore
Table 8. Potential precision levels at 80 or 90% confidence as described byDominy et al (2002)
Table 9. Confidence intervals used at the mine for the three SAMRECclassification Categories67
Table 10. Approximate sample size of WAC drilling at Hillendale formeasured resources70
Table 11. Approximate sample size of RCN drilling at Hillendale based formeasured resources70
Table 12. Table indicating the theoretical number of drillholes for WACdrilling to reach the required confidence level77
Table 13. Table indicating the theoretical number of drillholes for RCNdrilling to reach the required confidence level77
Table 14. Resource Risk Inventory Table 87

Table 15.	Resource Representative table
Table 16.	Summary statistics for Hillendale mine WAC – Kriging blockmodel
Table 17.	Summary statistics for Hillendale mine - area 1 B blockmodel 95
Table 18.	Summary statistics for Hillendale mine - area 2 blockmodel 96
Table 19.	Summary statistics for Hillendale mine - area 4 blockmodel 96
Table 20.	Costs for exploration of Hillendale based on the minimum required
number of	samples 111
Table 21.	Sampling Methodology risks identified with probability and
expected	loss
Table 22.	Risk treatment and risk treatment strategy 116
Table 23.	Magnetic separation equipment check parameters 121

1 The problem and its setting

1.1 Introduction

The heavy mineral industry has, through the years, used numerous exploration and estimation methods considered to be accurate and precise for the deposit. Accurate and reliable geological information is critical as it forms the basis of resource calculation and of the geological model. The geological model forms the basis of production planning, marketing forecasts, operating expenses (OPEX) and capital expenditure (CAPEX) budgets, and the business plan. It is of utmost importance that the geological information is accurate and has a high level of confidence before extraction of the mineral deposit commences.

As described by de Jager (2005), traditionally risk evaluation in the mining industry has been on health and safety in relation to occupational hygiene and hazard identification and mitigation. Financial risk is evaluated through the establishment of a financial model. The financial model looks at the economics of the mineral deposit and relates this to a net present value (NPV) considering some economic risk factors within the financial model. Risk quantification for resources in terms of ore body definition is aided by the introduction and implementation of the SAMREC and Joint Ore Reserve

Committee (JORC) codes (de Jager, 2005). Very little research has been found on the application of a risk management strategy relating to factors contributing to exploration and the classification of a mineral resource.

The thesis will look at the various steps followed during the exploration of a heavy mineral sands mine with the aim of defining the risks of the consequences these have on the mineral resource estimate.

1.2 The Problem

In the modern era, there are numerous ways of collecting information about a possible mineral deposit. This document will focus on collecting information for a possible heavy mineral deposit. The problem, however, is which sampling method or method of data interpretation (statistical analysis) to apply at the beginning of an exploration programme to ensure that a resource calculation and geological model with a high confidence level in the global average total heavy minerals (THM) is produced. It is also of critical importance that the sampling methodology does not jeopardise the financial viability of the proposed project, but equally that it does not only focus on short term cost saving so that sampling of the deposit has to be repeated due to incomplete or insufficient sampling.

It is important to understand the effect of the sampling methodology on the reliability of the mineral sands exploration results. In addition, the risks involved, and how they relate to the project viability must be fully clarified.

1.2.1 Sub problems

1.2.1.1 Sub problem 1

Can the sampling methodology improve the confidence in the values produced by a mineral resource model without escalating project cost to the point where project viability is affected?

1.2.1.2 Sub problem 2

Does the estimation technique used to determine the mineral resource model affect the overall confidence of the project?

1.2.1.3 Sub problem 3

Will the addition of a quality assurance, quality control (QAQC) programme increase the overall confidence levels in an estimated mineral resource model to ensure the best local grade estimate from the total information, therefore decreasing the project risk?

1.3 Hypothesis

The first hypothesis is that the resource estimation risk in heavy mineral sand deposits can be minimized by improving sampling methodology. If the sampling process is not correct, the sampling operation cannot be accurate regardless of how good the sampling methodology is (Pitard, 1993). The costs of the sampling methodology used should be balanced against the expected costs inherent in the risk.

The second hypothesis is that the resource estimation method used for the heavy mineral sand deposit is dependant to the original input data. The resource estimation alone cannot improve the overall confidence level in the mineral resource. If the input data is not accurate, the overall confidence of the values produced by a mineral resource model cannot be high, irrespective of what the statistics might indicate.

The third hypothesis is that the risk associated with estimation of mineral distribution in heavy mineral sand deposits can be minimized and controlled by improving or implementing quality parameters and controls at the various stages the project.

1.4 Limits of Research

The study is limited to a specific mining operation on the north coast of Kwa-Zulu Natal and the information available at that operation, including drilling methods used and geological models built at the time of exploration. This includes the Reverse Circulation (RCN) drilling method that used Inverse Distance squared estimation at Hillendale and the Wallis Aircore (WAC) drilling method that used the Kriging estimation method. No additional estimation will be done.

The study focuses on the major components constituting the HMC as determined by the sampling and analyses process and will not focus on the chemical, mineralogical analyses and downstream beneficiation.

Downhole drillhole sample values are composited to represent a single sample. The single sample will be used to determine the theoretical number of samples.

The reconciliation portion of the thesis will be limited to areas with overlapping drilling methods within a corresponding mining timeframe.

The risk assessment is done according to the process set out by Smith and Merritt (2002) in Proactive Risk Management: Controlling Uncertainty in Product Development.

The summary of probabilities for the total project loss is not included in the thesis and only the individual risks identified as part of the exploration sample methodology are discussed.

Due to confidentiality the drilling costs will not be presented in the document and will be available on request.

1.5 The importance of the study

Prospecting and exploration is a high-risk business and the profit margin for companies doing exploration must be high enough to cover all risks and thus ensure exploitation. Adequate beneficiation, product, and market information is required to ensure success. Companies strive for the maximum benefit at minimum cost and therefore the "cost of gathering information has to be weighed up against the potential cost of uncertainty". (Snowden, 2003).

History has shown that the largest contributing factor to mine failure is the inadequate definition and understanding of the geological resources for a mining project (McKenzie, 2009). The investment risk in relation to the geological resources is illustrated in Figure 1.

When developing the geologic resource model, three main components need to be considered in order to effectively limit the risk that the resource model will have on downstream processes.

The first is the collection of samples from the deposit for which geologic information is obtained. The second is that the sample data must be sufficient to allow for the development of a reasonable geologic understanding and interpretation of the deposit which can be incorporated into a resource model. The third is the use of a reasonable grade estimation methodology in the

resource model, in conjunction with the relevant geologic controls (Stevens, 2001). Continuous technological improvement in the mining industry includes improvement of drilling techniques. The implementation of improved processes can improve operational effectiveness (Bender, 2005). Technological improvements can therefore lower project risks that errors can occur in the set-up of a resource model and increase the confidence in the estimated resource.

1.6 Methodology

1.6.1 Sub problem 1

Downhole logs of the drillholes situated in relatively close proximity of one another will be plotted against one another to visualize the difference in downhole sample distribution of the two drilling methods. Drillholes situated within a distance of 50 metres of one another where the two drilling methods overlap will be considered. The distance is guided by the 50 x 50 drilling grid for a measured resource.

Descriptive statistical analyses to determine the distribution of the two datasets will be done. This includes the median, spread, symmetry, and peakedness of the population as well as the mean, mode, and kurtosis. The

results will be reviewed using the required confidence interval of the mean at a 95% confidence level (central) for various drillhole spacing. Different drillhole spacing has been implemented during the various stages of exploration from target generation with an initial spacing of 400m x 200m through to production drilling of 50m x 50m. Selected drillhole spacing as listed in Table 1 is used to determine the confidence around the mean by using the central limit theorem.

Project stage	Drillhole spacing
Exploration Phase	200 x 200
Infill Drilling Phase (after positive exploration	100 x 100
phase)	
Production Drilling	50 x 50

Table 1. Drillhole spacing as used at Hillendale Mine

Comparative cost analysis for the required number of samples to achieve a 95% confidence level in the calculated mean of the population will be done for both the RCN and WAC drilling techniques.

1.6.2 Sub problem 2

The RCN blockmodel and the WAC blockmodel used at the project area with the respective estimation techniques applied at the project area will be statistically compared. Estimation methods used at Hillendale have progressed from inverse distance cubed (ID³), as initially prescribed for the companies' Australian operations, to inverse distance squared (ID²) and more recently ordinary kriging.

Estimation is the interpolation of neighbouring samples to determine the values at an un-sampled location. Inverse distance uses the relationship between the values of the variable to estimate the value at a specific location between the two sample points. The distance function is a function of the relationship between values. The larger the distance between samples the more unrelated their grades become. As the distance increases, the relationship between the samples becomes more tenuous (Clarke, 1979). Kriging uses a variogram to find the optimum set of weights used to estimate the grade at unsampled locations. The variogram is a graph that describes the spatial relationship between pairs of samples in a chosen direction (Clarke, 1979). The weights of the samples are derived from the distance between the samples and the block to be estimated as well as between the samples themselves.

1.6.3 Sub problem 3

The influence of mitigation steps, such as the introduction of a quality assurance programme, on the project will be determined. The various stages of the sampling methodology and the associated risk will be identified, as will the probability of that risk to occur. Costs will be determined for the WAC base case of Hillendale mine for a specific sample methodology thereafter the costs relating to the mitigation of the risk, or subsequent risk profile will be plotted. The risk profile will visually assist with determining the risks requiring mitigation if above the accepted risk threshold value.

1.7 Definition of terms

Carpco® analyses: first pass high intensity dry magnetic separation of a heavy mineral sample into distinct groups based on their inherent properties. The separator places all materials in contact with the magnetic field into zones of steepest gradient and utilizes magnetic force and gravity to capture weakly magnetic materials. The running roll provides a centrifugal force for separating the magnetic and nonmagnetic materials (University of Vermont, 2006).

Sampling methodology: The process of drilling, sampling, and analysis as defined by the company exploration procedures.

HS Mags (magn): The first fraction removal of Carpco® analysis. It is the high susceptibility magnetic fraction, which consists mainly of magnetite.

0.8Amp (mags): The second fraction removal of Carpco® analysis. The material consists mainly of ilmenite (98%).

Magnetic Others (mago): The third fraction removal of Carpco® analyses and is 'waste' material such as garnet, epidote and tourmaline.

Non – magnetic (nmag): The final fraction of Carpco® analyses. It consists mainly of zircon, rutile and leucoxene.

Quality Assurance is defined as: "All of those planned or systematic actions necessary to provide adequate confidence in the data collection and estimation process". (CIM, 2003).

Quality Control: "the systems and mechanisms put in place to provide the Quality Assurance. The four steps of quality control include; setting standards; appraising conformance; acting when necessary and planning for improvements". (CIM, 2003).

2 Geology and exploration

2.1 Regional and local geology

The KwaZulu-Natal coastline developed during the second phase of Gondwanaland break-up (150 - 130 Million years [My] ago) as sediments were deposited seaward of the Early Cretaceous shoreline on the Mozambique coastal plain, which extends from northern Mozambique to south of Durban. The Mozambique coastal plain reaches a width of approximately 8 km in the vicinity of Hillendale but broadens considerably to almost 80 km in southern Mozambique (Botha, 1997). It narrows quite suddenly to less than 3 km immediately south of Mtunzini and continues as a narrow coastal strip towards the south.

Marine sedimentation occurred along the coastal zone during the major marine transgression of the Cretaceous period and continued into the Early Tertiary period, but all previously deposited material higher than the presentday ±100 m contour was eroded during the slow regression, which followed during Tertiary times (McCarthy, 1988). On the Mozambique coastal plain, the unconformity below the Tertiary shoreline strata is tilted and it truncates the underlying continental slope sediments of the Cretaceous period.

During the Miocene epoch of the Tertiary period (26 – 7 My ago), a more rapid drop in sea level left stranded beach sediments inland of the shore. As the coastal plain developed dune sediments covered the beach deposits. Concomitant with this regression was the lowering of river base levels, which promoted the incision of deep gorges along the coastal river valleys and increased sediment influx into the sea. The drop in sea level occurred in a number of pulses and resulted in the formation of several stranded wave-cut platforms, beach deposits and associated back-dune aeolianites during each period of still stand (McCarthy, 1988). Transgression, regression and progradation during each of these pulses occurred repeatedly at similar relative elevations above sea level, resulting in the formation of a number of stacked, heavy minerals bearing, lenses within these coastal sediments.

At the beginning of the Pleistocene epoch, about 2 My ago, changes in sea level were also rapid and coincided with periods of glaciation and deglaciation. These changes in sea level allowed for continued sediment reworking in the coastal zone and the overall regression, which occurred from Early Cretaceous through to Late Quaternary times, led to the widening of the coastal plain upon which later beach and other sediments accumulated.

Four formations were deposited sporadically and at different locations along the coast during the Pleistocene epoch, viz. the Muzi, Port Durnford, Bluff and Berea Formations.

- The Muzi Formation (Pliocene to Pleistocene) consists of mottled, brown, clayey sand and is generally covered by aeolian sands derived from the Bluff Formation.
- The Port Durnford Formation (Late Middle Pleistocene) is comprised of mudstone/shale, sandstone, lignite, and sand deposits associated with a barrier lagoon complex.
- The Bluff Formation (Middle to Late Pleistocene) consists of coastal dune cordons and offshore deposits of calcarenite.
- The Berea Formation (Early Late Pleistocene) comprises inland dune cordons (ancient dunes) mainly composed of decalcified red sand.

The Hillendale dune deposit is comprised almost entirely of older (Pliocene parent) Berea-type red sands. This is suggested by the relative position of the dune to the present-day coast and its elevation above the current sea level. Berea-type red sands were formed by the intense weathering of parent aeolianites originally deposited during the Late Tertiary-Early Quaternary marine regression as suggested by Belderson (1961).

Silt values of the Hillendale Berea-type red sands fluctuate between 15% and 45% with an average of 23.57%. The thickness of these Berea-type sands varies from 3m to 42m with an average thickness between 18m and 21m (Sibiya et al., 2005).

There are sporadic occurrences of a medium- to coarse-grained, yellowish to dark orange, low silt (3-8%) sands in the central western and north western parts of the Hillendale dune. Individual grains in these sands are generally sub-rounded to angular in shape. The sand is less cohesive than the Berea-type sands due to the lower silt content. No specific stratigraphic correlation between these sands and the Berea-type red sands has been made, but these sands can possibly represent younger sediments associated with local post-Pliocene river flooding and/or Pleistocene dune sand migration (Sibiya et al, 2005).

A grey-brown, fine-grained, semi-cemented sand/sandstone unit occurs intermittently between 9 and 30m below surface in the central parts of the dune.

A kaolinitic clay unit, varying in colour from yellow-brown and brown in the south to greenish in the north, underlies the entire Hillendale dune deposit. This possibly represents part of the weathered remains of a lagoonal

complex which developed landward of the coastal dune system. The Hillendale heavy mineral deposit formed during early Late Pleistocene epoch (2-0.1 My ago) (Sibiya et al., 2005).

Heavy minerals, derived from inland rocks and sediments, concentrated because of progressive enrichment in the swash zones of several beaches, which developed along the large coastal beach / dune system (Whitmore et al., 2003).

Ilmenite, zircon, rutile and leucoxene form the valuable heavy minerals (VHM) of this deposit as defined by the company's internal document business strategy (Exxaro internal report, 2010).

The locality of Hillendale mine in relation to other Exxaro heavy minerals deposits on the north coast of Kwa-Zulu are illustrated in Figure 2. The other heavy mineral sand deposits are indicated in green.

Figure 2. Locality map of Hillendale mine and other Exxaro heavy mineral deposits (image created by author)

2.2 Exploitation

2.2.1 Mining

Hillendale mine is an opencast mine operation using hydraulic monitor guns for mining. There are four permanent hydraulic guns functional at any given time, with two additional monitor guns on standby to ensure uniform feed if any hydraulic gun movements need to be made or for maintenance issues. During mining the area is cleared of vegetation (mainly sugarcane). The topsoil is removed and stockpiled for rehabilitation.

The maximum face height for safe operations is 10m. Mining block sizes are measured at 10m x 10m x 10m. The mining method allows for flexibility since the operations are highly dependable on the amount of silt. There is both a minimum constraint of silt of 13% for mining purposes as well as a total maximum constraint of silt for the month of mining to deposit onto the residue dam. Mining can take place on different levels as well as in different directions. The actual mining varies considerably from the scheduled mining to accommodate the variability in mining method and percentage silt. The flexibility of the mining method is achieved by the two sets of hydraulic monitor guns operating at any given time Figure 3). The arrows in Figure 3 indicate the different mining directions.

Figure 3. Mining at Hillendale mine with hydraulic monitor guns

The monitor guns propel water at a pressure of 40 bar onto a mining face, undermining the face and causing it to collapse (Figure 4). The face material is broken up and forms slurry. The slurry needs a minimum of 13% silt to keep the heavy minerals in suspension. It gravitates in channels to the pump stations and is transported to the primary wet plant through surge bins at the caisson area. The surge bins guarantee a constant supply to the primary wet plant (PWP) as well as controlling the density that is kept at 35% - 45% solids.

Figure 4. Hydraulic monitor gun at Hillendale mine

The mining process is optimum for Hillendale since it caters for the characteristic 'high silt', as well as allowing for flexibility in the mining process when areas of low grade / high grade material are intersected.

The accurate estimation of silt within the mining area is of crucial importance since the silt forms part of the mining operation. Inaccurate and insufficient information will inhibit the mining operation, increasing the risk and cost.

Mining is currently constrained to an elevation higher than10m above mean sea level (AMSL) due to the water table level.

Hillendale mine is designed to produce 1200 tonnes of slurry per hour to the rougher spiral feed of the PWP.

2.2.2 Beneficiation

The run of mine (ROM) to final product is done in phases. The heavy mineral concentrate (HMC) is produced at the PWP. The smelter feed, zircon and rutile is produced at the mineral separation plant (MSP) and the low manganese pig iron and slag are produced at the furnaces.

2.2.2.1 Primary Wet Plant

Figure 5 is an illustration of the PWP beneficiation as described in the text below.

Figure 5. PWP beneficiation process (illustration from Exxaro KZN Sands)

The slurry from the mine is separated into three different streams. The first stream is the heavy mineral concentrate that is stockpiled for further processing. The second stream is the silt (slimes) which was separated from the ROM. The slimes are predominantly pumped to the slimes dam. The third stream is the sand (inclusive of the magnetite). The sand that is produced in the primary wet plant is pumped back to the mining void as backfill material. The sand is stacked with de-watering cyclones at an angle of 15°.

The heavy minerals are separated from the sand by means of gravity separation with spirals. Lastly, the magnetite is removed from the heavy minerals with low intensity magnetic separators.

The PWP plant is sensitive to mineralogical changes, especially for minerals within the magnetic-other (mago) group. The mago group is the third fraction of Carpco® analysis and is defined as 'waste' material such as garnet, epidote and tourmaline. It is essential that adequate geological information is gathered and appropriate planning takes place to ensure the correct spiral settings are achieved in the PWP to ensure optimum plant recoveries.

3 Sampling methodology

A grid spacing of approximately 50m x 50m (based on infill drilling) is used to establish a proven reserve for the production plan at Hillendale mine (Figure 6). The sampling plan is based on the accessibility of land area and therefore the 50m x 50m is not an exact grid size.

Primary exploration is done on an approximate grid of 200m x 400m. Hillendale mine is completely drilled with primary exploration holes using the RCN drilling method as illustrated in Figure 7. Infill drilling takes place to refine the information obtained of the mineral resource from 200m x 400m, to 200m x 200m to 100m x 100m with the drilling grid being completed for mine planning and production at 50m x 50m.

Infill drilling of the north eastern area of Hillendale was completed with WAC drilling (Figure 8) after the mineral resource was completely drilled by RCN due to replacement of the drilling technique. Due to the phase out of the RCN drilling method for the WAC drilling method, the two drilling methods predominate in specific areas as illustrated in Figure 6.

Figure 6. Hillendale mine drilling grid – WAC and RCN drilling methods

Figure 7. Hillendale mine drilling grid - RCN drilling method

Figure 8. Hillendale mine drilling grid - WAC drilling method

The deposit is explored by drilling the identified mineral resource and analysing it by magnetic separation. The magnetic separation produces four characteristic magnetic fractions. This is done by using a Carpco[®] lift machine (model MLH(13)111-5). The Carpco[®] lift machine separates materials in contact with the magnetic field into zones of steepest gradient and utilizes magnetic force and gravity to capture weakly magnetic materials. The running roll provides a centrifugal force for separating the magnetic and nonmagnetic materials (University of Vermont, 2006).

Selective, composite mineralogical and chemical analyses are done on the primary magnetic fractions on a larger grid size. In general, composite mineralogy and chemical analysis will be done on a 200m x 200m grid if the Carpco[®] is done a 50m x 50m grid. The composite is done to achieve a minimum sample size for especially the smaller fractions such as non-magnetic fraction. The larger grid size is largely due to cost constraints.

3.1 Exploration Drilling

Two drilling methods are used at Hillendale for exploration and resource estimation. The RCN and WAC drilling methods are discussed below. All drillhole samples are 3 metre long. With the latest drilling campaign the WAC drilling method changed the approach to stopping depth. The drillhole is only

stopped if it intersects bedrock or if the last sample did not contain any heavy mineral concentrate as determined by panning, with another drill rod length added. The additional rod length is to ensure that the hole is not stopped in ore. With the RCN method and at the beginning of using the WAC method, drilling stopped if it was estimated that there was less than 1.5 % THM with panning. This is a very subjective approach and was therefore revised.

3.1.1 Reverse Circulation Drilling

RCN rotary drilling uses a dual tube drill pipe string, with the flushing medium going down the annulus, between the inner and outer tubes with the drill cuttings returning to the surface between the drill pipe and the wall of the hole as illustrated in Figure 9 (Ryan et al., 2004).

Figure 9. Schematic representation of reverse circulation drilling (http://www.globalsecurity.org/military/library/policy/army/fm/5-484/Ch5.htm)

3.1.2 Aircore drilling

Aircore drilling (AC) uses an open centre bit that cuts a core using air as a flushing medium. The drilling principal for WAC and RCN methods is the same in that the presence of an inner tube allows air to be pumped down the outer tube to the drill bit and the sample to be retrieved through the inner tube. The Aircore method use much less air and incorporates a sucking action for the inner tube so that the sample is 'vacuumed' into the inner tube instead of 'blown' in, as is the case with the RCN method. The key to the

system is the 'turn around' near the face of the bit and best performance is

obtained if there is a slight vacuum at the face (Ryan et al., 2004).

Figure 10. Schematic representation of aircore drilling after (Ryan et al., 2004)

The WAC method was introduced at Hillendale to potentially replace the RCN method as the WAC method has been successfully implemented at the company's Australian operation, Ti-West. The implementation of the drilling method was subsequently rolled out to all the companies' heavy mineral sand deposits (personal communication, Botha, 2006).

The main difference between the RCN and WAC drilling methods is that the air that blows back into the drilling tube the WAC method, while the RCN method the air is blown out.

3.2 Logging and Sampling

3.2.1 Geological Logging

All geological logging is done in the field as the drilling programme produces samples. Logging is done in accordance to the drilling reference chart (Figure 11) and all information is recorded on standardised logging sheets as follows:

 colour – according to a standard simplified colour chart (guided by Munsell[®] colour chart);

- grain size, roundness and sorting according to standard geological charts;
- moisture content subjective estimate of wet, damp, slightly damp or dry;
- sample mass is recorded as sample is received by using a field scale
- drilling hardness subjective estimate of hardness of formation, especially applicable for RCN drilling; non-standard and not particularly appropriate for WAC drilling because almost all drilling occurs at the same rate, irrespective of formation hardness;
- panning of a standard-sized sub-sample (approximately the size of a teaspoon) is done for a visual, subjective estimate of the silt and THM contents;
- comments especially for recording anything out of the ordinary that may be significant, e.g. concretions or indurated lumps of sand, excessive vegetation, water strikes, bedrock chips, etc.

Three of the six geological information collected are subjective. The

standardised logging sheet maximises data collection consistency.

Figure 11. Exxaro drilling reference chart (from MSA consultants, consulting for Exxaro, unpublished)

Logging data is captured regularly during a drilling program, although, given the limited resources, data capture on a daily basis is impossible. Based on past performance, all logging data has been captured within a month after a drilling program has been completed.

Use of the standardised drilling reference chart for logging of all KZN Sands heavy mineral exploration projects, results in minimizing the subjectivity of interpretation by geologists.

3.2.2 Survey

Both the RCN and WAC drillholes are surveyed using survey instruments or a dual-frequency global positioning system (GPS). Although the accuracy of the two systems are not the same, all the drillholes are plotted against the original surface topography done by surveying department on a 2 metre interval using survey instruments.

Drillholes are rated against the distance from the original surface topography as part of resource risk for estimation. Elevations with an elevation variation of greater than 15 metres are rated 3 and an elevation variation less than 5 is rated 1. Surface elevation variations of between 5 and 15 metres are rated 2. Due to the rapid topographical change on the dune, an acceptable variation of 5 meters was deemed adequate.

Drillholes moved due to physical constraints such as steep slope, power lines or fencing is resurveyed at the drilled positions and the coordinates are updated in the database.

3.2.3 Sample Preparation

Samples consist of the returns from 3 metres of drilling. This is a standard drill rod length. The 3 metre interval was decided on to ensure a standard sample size is drilled with the original RCN drilling method. This procedure was followed through with the WAC drilling.

Drilling samples are collected in a 480mm x 700mm x 200µm new plastic sample bag and weighed. The weight of a 3 metre sample is between 12 and 20 kg for WAC samples. Sample weight for reverse circulation is a lot more variable, sometimes with no sample being recovered from some 3 metre intervals due to the air blowout method of the RCN drilling (Sibiya et al., 2005).

With completion of logging and field panning the sample bag is sealed and marked. Since only a small portion of the drillhole material is used to estimate the silt and heavy mineral percentages. The sample used for estimating the slime and heavy mineral content is not returned to the original sample bag to avoid contamination. Plastic labels are inserted in the bag that is also labelled on top. An aluminium tag is placed inside the sample bag. The aluminium tag is added in the sample tray when drying the sample for tracking purposes. All data logged are captured into the SABLE®

39

database. It is the field geologist's responsibility to ensure the data is captured accurately and validated. Analytical data are imported into the SABLE® database once all analyses are completed and validated by the laboratory.

During the RCN drilling campaign and the WAC drilling campaign the dry samples were split in the field with a riffle splitter, while wet samples were transported to the mine for further preparation.

All samples currently drilled are transported back to the sample preparation facility at Hillendale mine. Wet samples are dried by either oven or gas burners. The dried sample consolidates and is subsequently crushed before being split into four bags. Splitting takes place with a riffle splitter similar to the field splitting. The sample split for laboratory submission consists of two bags of approximately 1.5 to 2kg of sample each. The remainder of the sample is combined for a 'zone work' sample (geometallurgical test work). One sample is submitted to the laboratory for analysis, while the sample other is kept as a backup. The samples are assigned a sample number consisting of a prefix 'EXP' followed by the date drilled, time and a sequential sample number, i.e. EXP061201_0900_1. This is followed for the day and restarts the next day.

The aim of the geometallurgical test work is to simulate the production process from the PWP through to the MSP. It was identified with the beneficiation of the Hillendale deposit that some mining units behave differently when processed. The ore body has been divided into specific zones based on similar characteristics that may behave in a similar way in the beneficiation process. Processing of these zones is simulated through a pilot plant and the results studied to highlight potential problems that might occur during beneficiation and further downstream processes.

Zones are delineated using the 0.8Amp (mags) fraction as the primary criteria. The 0.8Amp consist mainly of ilmenite on which the mining business case is based and is therefore used as the primary criteria for defining zones.

The 0.8Amp fraction is relationally compared with the downhole magneticother mineral fraction. The magnetic-other mineral fraction has proved to be a major problem in all downstream processes. It has been identified during current mining operations that a ratio of 1:4 mags:mago is a problem for the processing plant. The selected downhole areas are compared with the geological logging to assist with the selection of particular zone, specifically focussing on the estimated silt.

Drillholes falling into a specific zone are compared vertically and similar samples are composited into a bulk sample for test work.

The metallurgical test work provides information on size of materials and products, expected recoveries for the various processes and expected qualities of products.

3.2.4 Analysis

3.2.4.1 Carpco® analyses

Both RCN and WAC samples are analysed by the same process. Hillendale samples are analysed at the in-house laboratory at the CPC. The laboratory is not accredited for Carpco® fraction analyses (magnetic separation fraction analyses) as used with the exploration samples, but accredited for final product X-ray fluorescence (XRF). There were no accredited laboratories for Carpco ® fractions at the time of exploration.

Although there is no laboratory accreditation for the Carpco® analyses used for exploration samples, the analytical results are deemed to be acceptable

and representative of the ore body as presented in section 5.5, Reconciliation.

Once received by the CPC laboratory, the sample number is logged into 'Laboratory Information Management System' (LIMS) where after the sample is dried for approximately 12 hours. After the sample is cooled, it is crushed and reduced to a sample mass of approximately 500g by a rotary splitter.

The second step consists of recovering the <-1mm material by screening. Material coarser than 1mm is classified as oversize. The remaining material is screened using a 45 μ m screen. The +45 μ m –1mm fraction is analysed for its total THM by dense medium separation using tetrabromoethane (TBE).

The tetrabromoethane has a specific gravity of ± 2.96 , which is checked daily as a control measure. Samples with THM content greater than 1.5% as determined by dense medium separation process are magnetically separated by using a Carpco® lifting machine. The fraction values for samples that have a THM content of less than 1.5% are recorded as 0% by the laboratory since they cannot be analysed further.

The Carpco® lifting machine divides the THM into four electrostatically different fractions. The Carpco® lifting machine is a high-intensity induced-roll magnetic separator that is top fed (Figure 12). It is designed to separate paramagnetic materials from non-magnetic materials (University of Vermont, 2006).

Figure 12. Carpco® - high-intensity induced-roll magnetic separator.

The first fraction removed is the high susceptibility magnetic fraction (HS Mags), which is mainly magnetite. The material is passed twice through the Carpco® machine with the settings to 0.05 ampere and a magnetic field strength of approximately 257 – 300 gauss. The second fraction removed is

defined as mags (magnetically susceptible) and contains mainly of ilmenite (98%). The machine is set to 0.8 Ampere and 3000 – 5200 Gauss. The 0.8Amp fraction is passed five times through the Carpco® machine to ensure depletion. Magnetic 'others' consisting of 'waste' material such as garnets, epidote and tourmalines are removed with an ampere setting between 0.8amp and 2.4amp (10000 and 14000 gauss). The material is passed five times through the Carpco® machine to ensure depletion. The final fraction (with an ampere setting of greater than 2.4 ampere) is defined as the non-magnetic fraction and contains mainly of zircon and rutile (Figure 13).

Figure 13. Separated fractions produced by the Carpco® high-intensity induced-roll magnetic separator.

A summary of the magnetic fraction specifications as defined by KZN sands

is listed in Table 2.

Fraction		Description
HS mags	-	Mainly magnetite. Split at 0.05A.
0.8A mags	-	Used for estimation of in-situ ilmenite content (>0.05A<0.8A).
Magnetic others	-	Kyanite, amphiboles, epidote, garnets, tourmaline (>0.8A<24A).
Non-magnetic	-	Contains zircon, rutile and leucoxene (>2.4A).

Table 2. Magnetic separation fractions (Carpco® Fractions)

After completing the Carpco ® split, the various fractions are back calculated to give the percentages of each fraction as a proportion of the total THM.

3.2.4.2 Mineralogical and Chemical Composite samples

XRF and mineralogy composites are combined based on Carpco ® analyses results and geological boundaries, similar to the metallurgical test work composite. Due to the analytical costs, composite samples are selected on a larger grid size than the drilling grid used for generating the Carpco ® fractions. The composites are prepared per drillhole on a larger, approximate

200m x 200m drilling grid from the Carpco® drillhole analyses grid of 50m x 50m. The 0.8Amp, and non-magnetic fractions are composited over intervals of at least 9 metres, depending on facies changes as observed during geological logging and assay results (magnetic other mineral fraction % in THM, magnetic other:0.8 Amp fraction ratio). The composited samples are first send for grain counting (mineralogical analyses) where after XRF analysis is conducted on the samples.

4 Comparative Drillhole values per drilling method

RCN and Wallis WAC drilling data in the project area is reviewed statistically by means of descriptive statistical analyses (mean, mode, standard deviation) as part of the sample methodology for the exploration campaign to determine the sample distributions required of the two drilling methods.

Twinned drillholes of both the RCN and WAC drilling methods, situated relatively closely to one another (within a block model dimension (i.e. 50 meters)) are selected for comparison. Looking at the selected twin holes elevation (Table 3), are all within 3 meters horizontally from one another. Considering the survey rating as described previously, the elevation difference is acceptable.

Table 3. Absolute elevation difference of comparative twinned holes.

RCN	RCN Z	WAC	WAC Z	ABS Z DIFF
HE0052	72.78	HE0385	69.49	3.29
HE0414	84.00	HE0418	82.05	1.95
HE0060	58.16	HE0462	60.18	2.02
HE0047	87.29	HE0467	85.57	1.72
HE0059	53.91	HE0406	51.64	2.27
HE0538	69.12	HE0658	66.67	2.45
HE0004	66.82	HE0483	65.62	1.20
HE0551	61.12	HE0659	63.53	2.41
Average				2.16

Comparative downhole values of both silt % and THM % are plotted against one another to visualize the downhole sample distribution for each 3 metre length sample. Each sample interval is linked to visually illustrate the downhole variation of the actual sample value relative to the subsequent sample with a straight line. The twinned holes are illustrated in Figure 14. The end-of-hole (EOH) variation between the WAC and the RCN is due to the subjective method of determining the EOH with panning where there is an estimated THM of less than 3%. The EOH determination has subsequently been updated in later drilling campaigns to continue one drillrod length after no heavy minerals have been seen after panning.

Figure 14. Hillendale mine comparative downhole RCN and WAC drillholes

Figure 15 to Figure 21 is the graphically representation of the twinned drillhole downhole variation of the silt% and THM%.

The individual sample values are listed in Addendum A.

Figure 15. Comparative downhole drillhole analyses of silt% and THM% for RCN - HE0052 and WAC - HE0385

Figure 16. Comparative downhole drillhole analyses of silt% and THM% for RCN - HE0060 and WAC - HE0462

Figure 17. Comparative downhole drillhole analyses of silt% and THM% for RCN - HE0047 and WAC - HE0467

Figure 18. Comparative downhole drillhole analyses of silt% and THM% for RCN - HE0059 and WAC - HE0406

Figure 19. Comparative downhole drillhole analyses of silt% and THM% for RCN - HE0538 and WAC - HE0658

Figure 20. Comparative downhole drillhole analyses of silt% and THM% for RCN - HE0004 and WAC - HE0483

Figure 21. Comparative downhole drillhole analyses of silt% and THM% for RCN - HE0551 and WAC - HE0659

Comparing the analytical values of the silt% and the THM% of the downhole data for the two drilling methods at each corresponding depth interval of three metres, the analysed values of the samples vary considerably between the downhole sample plots for silt% and THM% of closely situated drillhole pairs. This is shown in Table 4 and Table 5, which gives the percentage difference (PD) for THM% and silt% of the comparative drillholes of the RCN and WAC drilling methods on each 3 metre interval. The percentage difference is calculated by:

$$PD = \left(\frac{WAC - RCN}{WAC}\right) \times 100$$

The variance of the two drilling methods is in general more than 10%. This indicates that there is no real comparison between the individual down hole samples for the two drilling methods.

Table 4. Percentage difference for the THM% for comparative downhole drillholes

PER	PERCENTAGE DIFFERENCE OF THE THM % FOR COMPARATIVE DOWN HOLE DRILL HOLES FOR RCN AND WAC DRILLHOLES AT HILLENDALE MINE													
	HE0052 vs. HE0385	HE0060 vs. HE0462	HE0047 vs. HE0467	HE0059 vs. HE0406	HE0538 vs. HE0658	HE0004 vs. HE0483	HE0551 vs. HE0659							
DEPTH	тнм	тнм	тнм	тнм	тнм	тнм	тнм							
3	-32%	3%	38%	1%	5%	0%	24%							
6	28%	36%	51%	31%	20%	2%	2%							
9	-73%	41%	45%	25%	-9%	6%	7%							
12	31%	14%	35%	50%	-244%	0%	18%							
15	-67%	76%	-15%	76%	58%	42%	-87%							
18	-748%	56%	3%	84%		66%	-659%							
21	-266%	70%	75%	-19%										
24		12%	24%	32%										
27		13%	64%	24%										
30		-51%	32%	92%										
33		100%	-112%	73%										
36		100%		13%										
39		100%		-71%										
42		100%												
45		100%												
48		100%												
51														
54		100%												

Table 5. Percentage difference for the silt% for comparative downhole drillholes

PER	PERCENTAGE DIFFERENCE OF THE SILT% FOR COMPARATIVE DOWN HOLE DRILL HOLES FOR RCN AND WAC DRILLHOLES AT HILLENDALE MINE													
	HE0052 vs. HE0385	HE0060 vs. HE0462	HE0047 vs. HE0467	HE0059 vs. HE0406	HE0538 vs. HE0658	HE0004 vs. HE0483	HE0551 vs. HE0659							
DEPTH	silt	silt	silt	silt	silt	silt	silt							
3	34%	-32%	13%	33%	25%	-20%	-6%							
6	-30%	-83%	-54%	7%	7%	-14%	10%							
9	-111%	-14%	-31%	14%	-69%	-253%	0%							
12	18%	58%	1%	-1%	-121%	40%	-36%							
15	28%	-57%	-60%	6%	-125%	-36%	-91%							
18	-111%	-22%	-10%	-24%		-57%	-107%							
21	-182%	38%	26%	-26%										
24		47%	-124%	-62%										
27		2%	-194%	-226%										
30		16%	-318%	-11%										
33		100%	-404%	-111%										
36		100%		-196%										
39		100%		-107%										
42		100%												
45		100%												
48		100%												
51														
54		100%												

The comparisons of the downhole data gives an indication of the variability introduced between the two drilling methods downhole. Although inconsistent, it can be seen that in general the variation increases down the hole, rather than on surface with comparing the two drilling method results.

4.1 Summary statistics for drilling methods

Comparative descriptive statistics of the composite drillhole data for the two drilling methods and is listed in Table 6 and Table 7.

SUMMAR	(STATISTICS I	FOR HILLEND	ALE MINE CO	MPOSITE - RI	EVERSE CIRC	ULATION
	SLIME %	THM %	MAGN %	MAGS %	MAGO %	NMAG %
N	539	539	539	539	539	539
Min	4.10	0.76	0.00	0.00	0.00	0.00
Max	47.30	26.95	3.61	13.04	13.90	2.47
Average	24.92	6.24	0.73	3.62	1.22	0.89
Range	43.20	26.19	3.61	13.04	13.90	2.47
Mode	27.70	3.00	0.60	2.48	0.46	0.70
Median	25.74	4.97	0.54	3.23	0.61	0.81
Variance	50.94	18.12	0.38	4.23	3.29	0.22
Std. Dev	7.14	4.26	0.61	2.06	1.81	0.47
Skewness	-0.37	1.81	1.83	1.22	3.43	0.83
Kurtosis	3.31	6.61	6.47	5.06	16.20	3.52
CoV	0.29	0.68	0.84	0.57	1.48	0.52

Table 6. Summary statistics of composite drillholes - Reverse Circulation

Note: THM sample containing less than 1.5% THM is not magnetic separated due to laboratory procedure.

SUMMARY STATISTICS FOR HILLENDALE MINE COMPOSITE - WALLIS AIRCORE													
	SLIME %	THM %	MAGN %	MAGS %	MAGO %	NMAG %							
N	752	752	752	752	752	752							
Min	0.00	0.00	0.00	0.00	0.00	0.00							
Max	61.52	23.62	2.48	8.81	12.06	2.62							
Average	23.79	5.39	0.54	3.20	0.92	0.83							
Range	61.52	23.62	2.48	8.81	12.06	2.62							
Mode	24.60	2.74	0.68	2.82	0.22	0.75							
Median	22.46	4.83	0.48	2.95	0.39	0.77							
Variance	87.28	8.47	0.12	2.39	1.73	0.15							
Std. Dev	9.34	2.91	0.34	1.55	1.31	0.39							
Skewness	1.05	1.57	1.13	0.80	3.43	1.00							
Kurtosis	4.66	7.16	5.08	3.45	19.61	4.70							
CoV	0.39	0.54	0.62	0.48	1.43	0.46							

Table 7. Summary statistics of composite drillholes - Wallis Aircore

Note: THM sample containing less than 1.5% THM is not magnetic separated due to laboratory procedure

It can be seen that the data distribution of the sample populations for the two drilling methods are similar in terms of average values. The average is used as a guideline since the central limit theorem will be used to determine a theoretical number of drillholes required for resource classification.

The RCN drilling method induces more variability than the WAC method for the THM% and Carpco® fractions as seen with the variance and standard deviation. The opposite is true when considering the silt%, since the variability of the THM% is lower when using the WAC drilling method.

From the data statistics the RCN is slightly negatively skewed for silt. The THM and the Carpco® fraction are positively skewed. The WAC data is positively skewed.

The coefficient of variation is all below one for both drilling methods, except for 'mago'. There is a large degree of variation for 'mago'. The remaining analyses all have a relatively low to low degree of variance.

4.2 Mineral resource classification approaches in the mining industry

In the SAMREC code mineral resources are classified in three categories depending on the increasing level of geoscientific knowledge and confidence (SAMREC, 2009), this and is illustrated in Figure 22.

Figure 22. SAMREC Classification (SAMREC, 2009)

Mineral resources are classified focussing on three different aspects namely geological continuity, data quality and technical feasibility (Dominy et al., 2002). There are a number of classification methods for defining the resource for different commodities. One approach, as applied in some of the Witwatersrand gold deposits and presented by Camisani (2009), is based on the confidence in the mean of the small mining unit (SMU) with Kriging. A confidence in the kriged estimate is determined to define the resource into Measured, Indicated and Inferred using:

At a 90% confidence level the SMU resource is classified as Measured, Indicated or Inferred depending on which of the following relations is true:

Measured	-	1.645σ _k < 0.2Τ [*]

Indicated - $1.645\sigma_{k} < 0.4T^{*}$

Inferred - $1.645\sigma_{k} > 0.4T^{*}$

Similarly Dominy et al., (2002) suggests potential precision levels at a determined confidence level (suggested at 80% or 90%) for classifying mineral resources and ore reserves using the following criteria (based on gold) as listed in Table 8:

Mineral Resource Precision											
Category Developed Undeveloped											
Measured	±5-10%	± 10-15%									
Indicated	±15-25%	± 25-35%									
Inferred	rred ±35-100%										

Tahlo 8	Potential	nrocision	lovals at 8	0 or 90%	confidence a	e doecribod b	v Dominy	v ot al (20021	
	i otentiai	precision	10 10 13 41 0			a described b		y ci ai i	2002)	

The above mentioned table indicates that a drilled out proved ore mining block could lie within potentially 10 - 15% potential precision level while the same block fully developed mining block lies within a 5 - 10% potential precision level.

Using the approach as described by Camisani (2009) mine management can decide to continue with mining at any stage of prospecting with a defined percentage of mineral resources classified as measured (say 10%), indicated (say 20%) and inferred (70%). The resources is converted to reserves as defined by SAMREC code with the measured resources converting to proved reserves. The percentage reserves converted from resources should be adequate for mining business case.

Figure 23 is an illustration as presented by Feldman (2007) for resource categorisation as used at Thabazimibi mine. The resource is classified into a measured, indicated and Inferred category based on the variogram where measured resource equates to information being within 2/3 of the range of the variogram, indicated resources when the information is up to the range of the variogram and inferred where information is extended outside the range of the variogram. This approach is based on a process as described by

Snowden, V. (2003). In 'Practical interpretation of mineral resource and ore reserve classification guidelines'.

Figure 23. Resource categorization as used at Thabazimbi mine (Feldman, 2007)

4.3 Drillhole spacing

Exploration is done in various stages. With positive results, more exploration is done until there is enough confidence in the continuity of mineralisation for the establishment of a mine. During the first stages of exploration there is not necessarily enough resources or data to complete an in depth geostatistical analysis of the potential ore body. Using the central limit

theorem is an alternative approach compared to using the above descriptions such as the SMU or the semi-variogram using geostatistics, already in advanced stages of exploration. The central limit theorem can use the first stage analytical results of the exploration data to calculate a theoretical number of drillholes required to convert the resources to a measured category. At Hillendale, each SAMREC category is traditionally assigned a statistical level of confidence as indicated in Table 9. The decision on the statistical level of confidence was subjective and deemed adequate for the deposit.

	Confidence in the mean measured as
SAMREC Category	deviation from the mean at the 95%
	Confidence level (Central)
Inferred	10% - 32%
Indicated	5% - 10%
Measured	<u>≤</u> 5%

Table 9. Confidence intervals used at the mine for the three SAMREC classification Categories

The minimum number of drillholes required (n) for a specific SAMREC category is determined as a percent deviation from the mean at a certain confidence level (95% Central) (see above Table 9).

The following formula from the Central Limit Theorem (CLT) is used:

$$\mu \pm 1.96 \left(\tfrac{\sigma}{\sqrt{n}} \right)$$

where:

 μ =mean1.96=95% confidence level (Central) σ =standard deviationn=no. of samples (i.e. the number of drillholes), which is the

variable in this case, and where:

A measured resource would be defined by: **1.96** [σ /sqrt(n)] being equal or less than 0.05µ (equivalent in the mining jargon to "95% confidence").

An indicated resource would be defined by **1.96** [σ /sqrt(n)] being equal or less than 0.10 μ (equivalent in the mining jargon to "90% confidence").

Taking into consideration the planned production area over which a SAMREC category is defined, e.g. measured for first 5 years of production,

the drillhole spacing is determined in order to obtain the level of confidence required.

The central limit theorem states that the mean of a sufficiently large number of independent random variables with a finite mean and variance will be approximately normally distributed (Rice, 1995). Using the central limit theorem taking the mean and variance of the completed drilling campaign into consideration, the optimal sample size (n) can be determined for an assigned confidence.

From the central limit theorem it is derived that although the sample distribution will never be normal, it will, with a large enough sample size, tend to normal.

Descriptive statistics for the composite sample analyses of the drillholes on various grid intervals for the two main exploration methods are listed in Table 10 and Table 11. The required number of samples for measured resources is determined based on the statistical analyses of the data.

Table 10. Approximate sample size of WAC drilling at Hillendale for measured resources

	0.8 Amp Fraction												
RMATION	Grid	Count	Min	Max	Average	Variance	Std Dev	Maximum drillholes per drilling grid	Theoretical number of drillholes to reach confidence				
Б.	50 grid	435	0.00	8.81	3.55	2.09	1.44	1 031	707				
5	100 grid	105	1.02	7.23	3.58	1.79	1.34	258	594				
L I	200 grid	38	1.03	7.23	3.17	2.55	1.60	64	1083				
RIL													
WACE	ТНМ %												
LENDALE	Grid	Count	Min	Max	Average	Variance	Std Dev	Maximum drillholes per drilling grid	Theoretical number of drillholes to reach confidence				
토	50 grid	435	0.00	23.62	5.62	6.28	2.51	1 031	848				
	100 grid	105	2.07	12.40	5.79	4.12	2.03	258	524				
	200 grid	38	1.93	12.40	5.28	5.23	2.29	64	799				

Table 11. Approximate sample size of RCN drilling at Hillendale based for measured resources

		0.8 Amp Fraction												
RMATION	Grid	Count	Min	Max	Average	Variance	Std Dev	Maximum drillholes per drilling grid	Theoretical number of drillholes to reach confidence					
ΓO	50 grid	282	0.70	13.04	3.99	4.35	2.08	1 031	1164					
<u>د</u>	100 grid	84	0.62	10.71	3.65	4.53	2.13	258	1449					
LIN	200 grid	32	0.62	8.37	3.52	2.70	1.64	64	930					
RIL														
RCN D	THM %													
LENDALE	Grid	Count	Min	Max	Average	Variance	Std Dev	Maximum drillholes per drilling grid	Theoretical number of drillholes to reach confidence					
Ŧ	50 grid	282	0.98	26.95	6.33	18.87	4.34	1 031	2013					
	100 grid	84	0.98	21.31	5.94	18.12	4.26	258	2193					
	200 grid	32	1.74	18.64	5.99	12.03	3.47	64	1430					

The theoretical required number of samples are based on the THM and the 0.8Amp. The analyses are still the first phase Carpco® analyses where the 0.8Amp represents the mostly ilmenite fraction. The determination of the theoretical number of drillholes uses the THM and 0.8Amp fractions since they are the basis for the business case. The original aim for most heavy mineral sand mining operations was as ilmenite producers.

The amount of theoretical drillholes required to achieve a measured resource is estimated by using the actual drilling information. The borehole information of Hillendale mine is used to select the determined grid sizes of approximately 50m x 50m, 100m x 100m and 200m x 200m (illustrated in Figure 24 and Figure 25). This is done for each drilling method. The drillholes are composited by length with no selected cut-off values. The drillholes are composited using SUPRAC ® downhole compositing function weighting the analytical sample by length. The composite value of the drillholes are used instead of the individual sample value. Each drillhole represents a sample. The specific methodology is followed to determine the grid size required to achieve a specific resource classification confidence.

DRILLING GRIDS USED TO DETERMINE THE SAMPLE SIZE (n) FROM THE CENTRAL LIMIT THEOREM

50m x 50m DRILLING GRID 100m x 100m DRILLING GRID 200m x 200m DRILLING GRID

DRILLING GRIDS USED TO DETERMINE THE SAMPLE SIZE (n) FROM THE CENTRAL LIMIT THEOREM

50m x 50m DRILLING GRID 100m x 100m DRILLING GRID 200m x 200m DRILLING GRID

The average depth of boreholes at Hillendale, using the 50m x50m grid is 56 meters relating to approximately 19 samples per calculated drillhole. The number of samples required is however dependent on the topography of the dune and the underlying mineralisation.

Statistical analysis is done on the selected downhole composite drillholes falling within the chosen grid sizes to determine the minimum, maximum, average, range, and standard deviation. The theoretical number of drillholes required is calculated as follows, for measured resources:

$$n = \left(\frac{1.96 \ \sigma}{0.05 \mu}\right)^2$$

Where:

1.96 = 95% confidence level for a normal distribution

 σ = standard deviation

n = number of drillholes.

The available surface area is a constraint when determining the maximum drillholes required on Hillendale mine. The adjustments necessitated by the area constraint signify that at times the mine area is too small for the number of drillholes required to obtain the required confidence for the chosen

74

SAMREC category. Consequently a slight adjustment in the drillhole spacing with regard to the rigid 200m x 200m grid, 100m x100m grid and 50m x 50m may be required from time to time.

Table 10 indicates the theoretical number of drillholes required for Hillendale mine based on a 95% confidence using the WAC drilling method. The theoretical number of drillholes required was determined for both the THM% and the 0.8 Amp fraction. The THM% carries the complete package of heavy mineral sand fractions and the 0.8 Amp fraction was used for the original business case to decide if a mining operation will be viable for the deposit.

Following the sequence of exploration and therefore looking at the 0.8 Amp analyses for the 200m x 200m grid, the RCN drilling method requires less theoretic samples than the WAC to achieve the required confidence level with 930 samples required by RCN and 1083 for WAC. A maximum number of 64 drillholes based on the area extend of the mining operations for a 200m x 200m grid can be drilled. Neither of the drilling methods achieves the required confidence level to classify a measured resource due to the surface constraint of the mining property.

With continuous infill drilling to achieve a 100m x 100m grid size, the RCN drilling method requires 1149 theoretical samples compared to the 594

75

theoretical samples required by WAC. A maximum number of 258 drillholes based on the areal extent of the mining operations for a 100m x 100m grid can be drilled. The required confidence level for a measured category is not achieved.

For the final stages of drilling to achieve a drilling grid suitable for production planning currently set at 50m x 50m, the RCN drilling method requires a theoretical sample size of 1164 while the WAC requires a sample size of 707. The surface area allows for a maximum number of samples of 1031.

The RCN is close to achieving the required level of confidence with the theoretical number or samples while the WAC can probably achieve the required level of confidence with a wider spacing than the 50m x 50m grid.

4.3.1 Drillhole spacing confidence

The confidence level from 10% to 99% is calculated using the actual drillhole information as illustrated below in Table 12 and Table 13. The achieved level of confidence for the data is established when the theoretical number of drillhole samples are the closest to the number of drillholes required to achieve the required level of confidence. This is subject to the constraint of

the areal extent of the block being drilled, which can only contain a certain number of drillholes per grid.

Table 12. Table indicating the theoretical number of drillholes for WAC drilling to reach the required confidence level

		Theoretical number of drillholes to reach the required confidence												
LLING INFORMATION	Central Co	Central Confidence level		1.960	1.645	1.280	1.030	0.840	0.674	0.525	0.385	0.253	0.126	
	WAC / 0.8 Amp	Maximum drillholes per drilling grid	99%	95%	90%	80%	70%	60%	50%	40%	30%	20%	10%	
	50 grid	1031	1224	707	498	301	195	130	84	51	27	12	3	
	100 grid	258	1030	594	419	254	164	109	70	43	23	10	2	
DRI	200 grid	200 grid 64		1083	763	462	299	199	128	78	42	18	4	
AC														
N N N														
ILLENDAL	WAC / THM	Maximum drillholes per drilling grid	99%	95%	90%	80%	70%	60%	50%	40%	30%	20%	10%	
T	50 grid	1031	1470	848	598	362	234	156	100	61	33	14	3	
	100 grid	258	908	524	369	224	145	96	62	38	20	9	2	
	200 grid	64	1385	799	563	341	221	147	95	57	31	13	3	

Note: The green shading indicates the where the level of confidence is achieved for specific drilling grid.

Table 13. Table indicating the theoretical number of drillholes for RCN drilling to reach the required confidence level

	Theoretical number of drillholes to reach the required confidence													
NO	Central Confidence level		2.580	1.960	1.645	1.280	1.030	0.840	0.674	0.525	0.385	0.253	0.126	
IFORMAT	RCN / 0.8 Amp	Maximum drillholes per drilling grid	99%	95%	90%	80%	70%	60%	50%	40%	30%	20%	10%	
<u>∠</u> ບ	50 grid	1031	2016	1164	820	496	321	214	138	83	45	19	5	
HILLENDALE RCN DRILLIN	100 grid	258	2510	1449	1020	618	400	266	171	104	56	24	6	
	200 grid	64	1612	930	655	397	257	171	110	67	36	16	4	
	RCN / THM	Maximum drillholes per drilling grid	99%	95%	90%	80%	70%	60%	50%	40%	30%	20%	10%	
	50 grid	1031	3488	2013	1418	859	556	370	238	144	78	34	8	
	100 grid	258	3801	2193	1545	936	606	403	259	157	85	37	9	
	200 grid	64	2479	1430	1008	610	395	263	169	103	55	24	6	

The data is graphically presented in Figure 26.

Figure 26. Drilling grid size versus level of confidence

For RCN a 30% level of confidence is achieved using the 200m x 200m grid spacing. WAC also achieves a 30% confidence level on the 200m x 200m grid spacing.

For the 100m x 100m grid spacing, RCN achieves a 50% confidence level while WAC achieves an 80% confidence level.

The 50m x 50m drillholes spacing as used for production achieves a 90% confidence for RCN and 95% confidence for WAC.

Using the theoretical approach, Hillendale mine can be classified into an indicated resource category by using a 100m x 100m grid with the WAC drilling technique, while the resource will be classified as Inferred with using the RCN drilling technique with the same drilling grid.

4.4 Drilling costs versus geological Knowledge

The drilling costs (actual costs as per confidential information made available to the author) of the minimum required number of drillholes to achieve the required level of confidence is calculated for both the RCN and WAC drilling techniques. Figure 27 illustrates the cost order estimate of both the RCN and WAC drilling methods. The cost for the theoretical number of drillholes for RCN increases markedly compared to the WAC costs.

Figure 27. Drilling costs on drillhole spacing grids for two drilling techniques

Figure 27 graphically indicates the cost variation with using the WAC compared to the RCN drilling methods. Based on the number of holes required, initial costs for using RCN is lower with using the 200m x 200m drilling grid due to the higher 'overhead' costs related to the drilling. The actual rate per metre is very similar for both the RCN and the WAC. For a smaller grid size the cost for the RCN increases more compared to the WAC since there is a smaller number of drillholes required to for WAC to achieve the required confidence.

4.5 Conclusion on the drilling methods

During the life of Hillendale project, two drilling methods are used. Due to technological improvements in drilling methods management was enabled to convert to the WAC method, thus increasing the overall confidence in the data acquired and decreasing the costs.

RCN methods yield inconsistent sample sizes because sample recovery is dependent on the competency of the unit being drilled – the softer the sand formation, the lower the sample recovery because more air is required for drilling (Sibiya et al., 2005). Air is lost to the surrounding unconsolidated sand more readily than in harder formations. This loss of air into the surrounding ground leaves insufficient air available for the sample to be effectively blown into the inner tube for recovery. Another disadvantage of RCN drilling is that the method typically requires the addition of water if drilling high-silt units. The addition of water is not considered good sampling practice due to the increased potential of obtaining contaminated samples from wet equipment. Additionally, estimating the in situ moisture content of the unit is not possible. The WAC method does not require the addition of water.

With both the drilling methods contamination can play a part in reducing sample quality and information. Contamination can be caused by wall material falling down and being picked up as the drilling progresses as well as material being abraded from the walls of the hole as it returns to the surface. The material from which the bit or other in-hole components are manufactured may also cause contamination of the samples.

Twin hole comparisons between the downhole drillholes from the two drilling methods comparing the individual sample silt% and THM% do not correspond very well on a detailed level. Summary statistics indicate that the average of the analytical drillhole information for the project area correlates.

Using the population properties of the datasets as determined by the descriptive statistics with the central limit theorem, the number of samples required to produce the necessary confidence on the mean at a 95% confidence level is determined. Both the RCN and WAC drilling methods produce a cumulative sample. The WAC indicates a lower variance than the RCN drilling method for the same cumulative sample and therefore the drillhole spacing to define a 95% confidence level is wider. Due to the drillhole spacing it is more economical to use the WAC method than the RCN drilling method.

5 Estimation technique

Two interpolation methods are used through the life of mine (LOM) of Hillendale to determine the available mineral resources. The inverse distance to the power 3 (ID³) interpolation method was initially used but the factor was updated to inverse distance to the power 2 (ID²). Inverse distance is used with the RCN drilling data. Recent resource estimation uses kriging as interpolation method with WAC drilling data. WAC is the only method currently used at the mine.

Initially the ID³ was introduced due to the affiliation with the Australian company Ti-West where the specific estimation method was used. This method was found inappropriate at Hillendale since it localises the estimation around the sample value. For the ID² method was subsequently introduced and used for the RCN drilling. This was mostly due accessibility and user constraints at the time of mining. With the WAC drilling method, improved technology (both hardware and software) kriging was implemented at Hillendale mine.

The process of estimation for all the methods is similar and is described below.

5.1 Database

The geological database is setup to capture the relevant primary information obtained from the drilling campaign. Hillendale uses SABLE[®] data warehouse as the geological database. The databases use a flexible database structure to ensure and enhance data validations and checks while assuring confidence in the data (Figure **28**). Ore body modelling assumes that mineralisation occurs within discrete units and these assumptions are further used in the evaluation of a mineral resource (Van Aswegen, 2005). SABLE[®] uses the principle of standardised logging and capturing to ensure consistency in data while reducing the complexity in the problem domain through defining discrete parts. The database is structured on a SQL Server database with one person as the super user. Functionality is built into the database to ensure the data is validated while captured. Additional controls include lookup tables for fields with standardised information as well as mandatory fields for compulsory but variable information.

Figure 28. Simplified database structure with database checks (image created by author)

5.1.1 Geological data validation – database

All geological information is stored within the SABLE ® Dataworks database

on a SQL platform.

5.1.2 Database Inventory

A comprehensive assay database inventory for the resource evaluation is created. The inventory sheet is comprised of two evaluation columns with an assigned rating to determine 'Resource Risk' as listed in Table 14. The 'Resource Risk' establishes whether a drillhole is representative for use in the resource estimation. The inventory was implemented because of the different drilling methods and stopping distance methodologies applied historically. Table 14 in conjunction with other information such as the survey method the database inventory is used to determine the resource representativeness listed in Table 15.

Differences in Table 14 are largely brought by missing values compared to intentional stopping short of the drillholes, as well as the ore grade (floor, low grade or ore).

For evaluation purposes 'low grade' ore is defined as below 3% ilmenite. Floor is defined as any ilmenite value below 1.5% and ore is defined as an ilmenite value above 1.5%.

Table 14. Resource Risk Inventory Table

Flag Rating	Analysis Accuracy	Drillhole Intersection
1	Accurate - All samples included	Standard Ore Intersection': Ore / Low Grade / Floor
2	Lower grade samples missing	Ore / Low Grade / Floor Intersection
3	Ore and Lower grade samples missing	Ore / Floor / Ore Intersection
4	Ore Samples missing at end of drillhole	Drillhole intersection stopped in Ore
5	Ore Samples missing at beginning of drillhole	Ore / Low Grade / Ore - Drillhole Intersection stopped in ore
6	Accurate samples – drillhole stopped short	Drillhole Intersection stopped in Ore > 3% Ilmenite (drillhole stopped short)
7	Accurate samples	Low Grade Drillhole
8	Accurate samples	Ore / Low Grade / Floor / Low Grade
9	No Analysis Data	

Table 15 lists the representativeness of a drillhole based on the evaluations above where the resource risk increases from 1 to 5.

Analyses data represented in Table 14 as accurate with all samples included and normal facies (ore, low grade, floor) is related to Table 15 as the most representative and assigned '1'. Drillholes stopped short or with missing ore in Table 14 has a lower representativeness and is therefore assigned '2' in Table 15. Least representative samples are listed in Table 15 as '5' and is defined in Table 14 as no analyses data available (although drilled) or samples stopped in ore.

Drillhole data with a flag of 5 is not exported and not used for information. The other flags from 1 - 4 are exported and used, but assist with the resource classification. A flag number of '1' has the highest confidence while a flag number of '4' has the lowest confidence.

Representativeness			
Flag	Representativeness	Description	
1	Yes	All analyses available	
		All analyzes available but drillbale standed short	
		All analyses available but uninole stopped short	
2	Yes - drillhole stopped short	in Low Grade Ore - Not used for floor	
		determination	
3		Low Grade Ore analysis missing	
	Yes - Low Grade Analysis		

Table 15. Resource Representative table

Representativeness			
Flag	Representativeness	Description	
	Missing		
	Yes - Low Grade and Ore	Low Grade Ore and Ore analysis missing.	
4	analysis Missing but representative	Sufficient data throughout drillhole to interpolate information	
5	Not representative	No data or limited amount of data available	

5.2 Estimation methods

5.2.1 Kriging (Wallis Aircore Data)

5.2.1.1 Domaining / anisotropy and search parameters

No domaining is done at Hillendale mine and the complete orebody is composited and estimated as a whole. A single pass search strategy is used for the resource estimation. The major axis, as described in SURPAC ®, is defined at 45° with a maximum horizontal search radius of 750m on the major axis. A maximum of 25 samples is to be used and a minimum of 5 samples. A maximum of 9 metre search radius is defined for the vertical axis. The major axis of 45° is determined by the predominant direction of the ore deposit as situated on the north coast.

The horizontal search radius was chosen to ensure that the complete orebody drilled with the selected drilling method would be estimated.

5.2.1.2 3D model creation

A single geological block model is created for Hillendale mineral resources using WAC drilling information. The block model is created with all WAC drilling drillhole information. The Wallis Aircore Block model is created using SURPAC ® geological software. Data is exported from SABLE ® Dataworks and re-imported into SURPAC ® database, giving each sample individual coordinate points. A 10m x 10m x 5m geological block model is created using the ore boundary string to define the block model. Subcell splitting of 5m x 5m x 2.5m is defined for smaller block cells. The block model is not rotated.

All drillhole intersections are composited into 3 metre intervals using the 'Composite, Downhole' function in SURPAC ®. No grade constraints are used at this time, since this function gives a total composite value for the drillhole intersection, smoothing the drillhole values. Digital terrain models (DTM) from the original surface topography and from the floor contours are used to define the ore section of the geological block model. The floor

contours are based on a 1.5% 0.8 Amp (98% ilmenite) cut off from both drillhole intersections and floor updates during production. Due to the 3 metre sampling interval for the majority of the resource, there is an inherent inaccuracy with the floor definition with production.

5.2.2 Inverse distance (Reverse Circulation)

The inverse distance estimation is described in the 2005 Ticor South Africa, Heavy Mineral Operations, Reserve and Resource Statement (Sibiya et al., 2005). A 3D solid model is constructed by combining the 1m-interval aerial survey digital terrain model (DTM) with the topographically defined dune structure and the 1.5% THM cut-off limit. Potential 'ore' polygons are created on sections throughout the deposit, where sections are drawn every 50m if grid lines were 50m apart or 100m if they were100m apart. Each polygon is created on-screen by snap digitising the area encompassed by the surface (1m-interval aerial survey contours), the edges of the dune (defined by the topography) and the 1.5% THM cut-off limit (from drillhole on the section). Joining the 1.5% THM potential 'ore' polygons from each section within a deposit thus creates the 3D solid for that deposit.

A drillhole occurring at the edge of a dune, in which the cumulative THM content of all samples within the drillhole is <1.5% THM, is excluded from the

3D solid volume. Similarly, drillhole within the dune structure that have thick (up to 9m) bands of waste material between ore zones are included in the 1.5% resource outline only if the cumulative THM% of the drillhole remains >1.5.

It is significant that the cut-off grade for estimating the potential mineral resource volume is 1.5% THM, but the cut-off used to report the final, oregrade mineral resources within this volume is 3% THM. The volume difference between the two cut off grades that defines the 1.5%THM ore volume and the 3% THM cut-off grade ($3\% \ge$ THM grade >1.5%) is classified as low-grade ore.

The search radii defined by the geostatistical investigations are used to fill the blocks in the grade model. Blocks ($10m \times 10m \times 5m$) are first filled using ID^3 and then checked by being filled using kriging. There are only minor differences between the results and conducting two runs serves as a good check that mineral resource grade estimations are as accurate as possible.

In a similar way that confidence levels are assigned to drillhole co-ordinates according to how accurately they have been surveyed, confidence levels are assigned to blocks within the grade model according to which estimation run filled each block. If a block was filled using the specific search radii on the

first run, then the estimation for that block is assigned the highest level of confidence (3); if it was only filled on the last run (nearest neighbour method), the estimation is assigned the lowest confidence level (1). The different search parameters are considered when classifying the mineral resource.

5.3 Relative density determinations

A sand replacement study was done on various colour zones in the mining area during 2003. The densities varied from 1.68 g/cm³ to 1.72 g/cm³. Thereafter an average density of 1.70 g/cm³ is applied to the resource estimations and block models. The relative density value is used for both inverse distance and Kriging blockmodels.

5.4 Comparative blockmodels

The estimated resource blockmodels are statistically compared to establish the central tendancy of the data spread. The RCN drilling blockmodels are divided into three separate areas due to computer hardware constraints at the time the blockmodels where built. The three areas are illustrated in Figure 29. The whole ore body of Hillendale mine area is used to estimate the WAC blockmodel and represented in a single resource blockmodel using kriging.

Figure 29. RCN drilling, inverse distance squared blockmodel

The statistical data of the blockmodels are listed in Table 16 to Table 19.

SUMMARY STATISTICS FOR HILLENDALE MINE - WALLIS AIRCORE DRILLING							
	SILT %	THM %	MAGN %	MAGS %	MAGO %	NMAG %	
Min	6.10	0.45	0.00	0.02	0.03	0.02	
Мах	73.68	23.40	2.58	11.94	10.05	3.10	
Average	26.33	6.06	0.63	3.51	0.93	0.92	
Range	67.58	22.95	2.58	11.92	10.02	3.08	
Mode	19.35	4.55	0.48	3.06	0.22	0.76	
Median	27.21	5.68	0.58	3.43	0.44	0.92	
Variance	123.20	10.06	0.15	3.03	1.59	0.19	
Std. Dev	11.10	3.17	0.38	1.74	1.26	0.43	
Skewness	0.52	0.99	0.95	0.61	2.66	0.59	
Kurtosis	2.59	4.12	3.85	3.22	11.03	3.36	
CoV	0.42	0.52	0.60	0.50	1.35	0.47	

Table 16. Summary statistics for Hillendale mine WAC – Kriging blockmodel

Table 17. Summary statistics for Hillendale mine - area 1 B blockmodel

SUMMARY STATISTICS FOR HILLENDALE MINE - REVERSE CIRCULATION - ID area 1B								
	SILT %	THM %	ILM %	MAGN %	MAGO %	NMAG %		
Min	0.00	0.00	0.00	0.00	0.00	0.00		
Max	44.93	39.73	13.47	2.89	22.11	5.72		
Average	23.16	7.73	4.60	0.67	1.30	1.16		
Range	44.93	39.73	13.47	2.89	22.11	5.72		
Mode	0.00	0.00	0.00	0.00	0.00	0.00		
Median	25.23	7.05	4.52	0.57	0.48	1.12		
Variance	81.12	13.67	3.84	0.15	4.79	0.21		
Std. Dev	9.01	3.70	1.96	0.39	2.19	0.46		
Skewness	-0.62	1.85	0.36	1.20	3.53	0.90		
Kurtosis	2.56	9.86	3.24	4.94	17.57	6.48		
CoV	0.39	0.48	0.43	0.59	1.68	0.40		

Table 18. Summary statistics for Hillendale mine - area 2 blockmodel

SUMMARY STATISTICS FOR HILLENDALE MINE - REVERSE CIRCULATION - ID area 1B								
	SILT %	THM %	ILM %	MAGN %	MAGO %	NMAG %		
Min	0.00	0.00	0.00	0.00	0.00	0.00		
Max	44.93	39.73	13.47	2.89	22.11	5.72		
Average	23.16	7.73	4.60	0.67	1.30	1.16		
Range	44.93	39.73	13.47	2.89	22.11	5.72		
Mode	0.00	0.00	0.00	0.00	0.00	0.00		
Median	25.23	7.05	4.52	0.57	0.48	1.12		
Variance	81.12	13.67	3.84	0.15	4.79	0.21		
Std. Dev	9.01	3.70	1.96	0.39	2.19	0.46		
Skewness	-0.62	1.85	0.36	1.20	3.53	0.90		
Kurtosis	2.56	9.86	3.24	4.94	17.57	6.48		
CoV	0.39	0.48	0.43	0.59	1.68	0.40		

Table 19. Summary statistics for Hillendale mine - area 4 blockmodel

SUMMARY STATISTICS FOR HILLENDALE MINE - REVERSE CIRCULATION - ID area 4								
	SILT %	THM %	ILM %	MAGN %	MAGO %	NMAG %		
Min	1.82	0.00	0.00	0.00	0.00	0.00		
Max	47.67	46.31	22.30	7.69	23.56	4.78		
Average	23.25	10.07	5.64	1.34	1.78	1.32		
Range	45.85	46.31	22.30	7.69	23.56	4.78		
Mode	28.44	1.85	1.24	0.22	0.29	0.39		
Median	23.42	8.27	4.87	1.02	0.86	1.17		
Variance	55.73	37.23	10.15	1.00	6.92	0.47		
Std. Dev	7.47	6.10	3.19	1.00	2.63	0.68		
Skewness	-0.15	1.03	0.88	1.14	3.53	0.84		
Kurtosis	2.79	3.91	3.48	4.04	17.03	3.46		
CoV	0.32	0.61	0.57	0.75	1.48	0.52		

Histograms of the various blockmodels for both RCN area 1B, 2 and 4 as well as the WAC blockmodel of the THM % are represented from Figure 30

to Figure 33. Histograms of the other components and mineral fractions of the analyses are listed in the Addendum B.

The individual composite drillhole information for WAC is listed in Addendum C and for RCN is listed in Addendum D.

Figure 30. Histogram of THM% for WAC, Kriging

Figure 31. Histogram of THM% for RCN, ID2 (plan 4)

Figure 32. Histogram of THM% for RCN, ID² (plan 2)

Figure 33. Histogram of THM% for RCN, ID² (area 1B)

Reviewing the histograms, it is seen that all are slightly positively to positively skewed. The silt% histogram for the kriged WAC drilling data and the inverse distance squared 'area 2' RCN data indicates a bimodal structure. The bimodal distribution indicates that there are two populations and that domaining is required in the 'area 2'.

All the histograms are in Addendum A

5.5 Reconciliation

Mine reconciliation is used to determine the quality and the performance of the geological resource model against the production results of the operation. The resource grade is compared to the production grade (Schofield, 1998). Reconciliation is a historical process that aims to improve the performance of the operation and therefore increasing confidence.

Figure 34 shows the reconciliation figures of the geological blockmodel for the RCN drilling method compared to the actual production tonnages from the PWP at Hillendale mine for the period March 2005 to November 2005.

Figure 34. Reconciliation of RCN Geological model and primary wet plant output (PWP), with 1.00 being 100% reconciliation.

Figure 35 shows the reconciliation figures for the WAC drilling method for the corresponding period.

Figure 35. Reconciliation of WAC Geological model and primary wet plant output

The reconciliation is done by constraining the geological blockmodel with the specific DTM files for the months mine production. The tonnages, silt%, THM% and Carpco® fractions as determined by the estimation process for the geological model are extracted for the specific month. The extracted values are compared against the actual tonnages as processed by the plant and actual plant silt%, THM% and Carpco® fractions.

Comparing the reconciliation information of the two drilling methods at Hillendale mine during similar periods as indicated in Figure 34 and Figure 35, the RCN blockmodel resource grades reconciliation deviates more from the actual plant grades compared to the WAC blockmodel reconciliation.

The WAC resource estimation is mostly within 10% for the main products of Hillendale mine of the actual recovered grade from the plant. The RCN resource estimation for the main products varies with up to 40% from the actual recovered grade. The mine however accepts a maximum discrepancy of 10%.

Comparing the process of deriving a resource block model for Hillendale mine within the thesis, the two differences are the drilling method and the estimation technique. The sampling methodology for both drilling methods are the same. RCN uses ID² as estimation technique while WAC uses kriging. These processes as done on the mine was adequate for the time as WAC was only developed later and human/technology resources constrained the use of other estimation methods. Looking at the improvement the reconciliation data of the estimated values compared to the actual plant performance, viewing that the largest change in the process is the drilling method, one can deduct that the WAC drilling method is the largest contributor to the improvement of the resource estimation. This also explains while the WAC method is currently the only method used at the mine.

5.6 Conclusion on estimation techniques

Inverse distance squared and Kriging interpolation methods are used for the estimation of the geological resource model at Hillendale mine. The estimation process in terms of data selection, compositing, search and estimation parameters are similar. Two different datasets are used. Inverse distance uses the RCN drilling method dataset and the kriging uses the WAC drilling method dataset. The global data distribution for both datasets are however similar. The RCN drilling introduces more variability to the population.

Looking at the statistical data distribution of the block models there is a similar data spread to all block models with both datasets. This also correlates to the original drillhole information.

Reconciliation of the geological resource model with the mining production data clearly indicates that the RCN produces a geological model with elevated variability. This is based on the original input data that already has a high level of variability introduced by the sampling methodology.

The confidence and accuracy of the overall geological resource model is therefore dependant on the original data. The variability introduced from the drilling method is incorporated in the estimation of the geological blockmodel. Improving the resource estimate by changing interpolation methods, will not increase the overall confidence in the calculated values of the ore-body.

6 Resource model risk

Risk is defined as: "the chance of something happening that will have an impact upon objectives. It is measured in terms of consequences and likelihood." (MDG 1010, 1997).

Risk associated with the resource estimation is controlled by the activities that are prerequisites for estimating resources with a high confidence level. If the risks that can lead to an unreliable resource model are not managed properly, it will have a huge effect on the rest of the project.

This section identifies and reviews resource risks associated with the sampling methodology, taking into consideration that a single risk can cause multiple effects (Duncan, 1996). The identified risk is cumulated to illustrate the effect of the risk on the overall project with time.

The following risks are identified with the exploration phase and sample methodology as accepted by researchers such as Annels and Dominy (2003) and Morley, Snowden, and Day (1999) and adapted for KZN Sands exploration and Hillendale mine:

- Drilling Method
- Drillhole spacing
- Logging
- Sample preparation and analyses
- Database
- Estimation technique

A probabilistic analyses of the risk is used to determine the likelihood for the specific risk to occur and the possible financial impact on the exploration project by following the process of proactive risk management as set out by Smith and Merritt (2002) and indicated in Figure 36.

Figure 36. Five step risk management process from Smith and Merritt (2002)

The probability for each of the risks identified to occur was determined through an internal KZN Sand workshop for the Port Durnford exploration project in 2007 / 2008 (Addendum E). A determination of historic exploration practices at KZN properties, considering historic information at Hillendale, was used to establish the probability of the event to occur based on the best available knowledge from the workshop team. The values are applied and adapted for Hillendale since it is the adjacent property that formed from the same dune environment.

Although Hillendale is an operating mine the risk is viewed as a total project risk from initial exploration to production.

6.1 Sources of Risk

The risks identified have both internal and external sources, ranging from technology (drilling method) to human factor (sample preparation).

6.2 Cost of Risk

Estimated cost for the identified risks are determined based on the cost of the required number of samples (the cost is determined on actual figures as per confidential information made available to the author). The cost is determined for a minimum 50 m x 50 m grid and is based on the theoretical number of drillholes required for the WAC. For RCN the number of holes needed to reach the required confidence level is often too high to fit the available area with a 50m x 50m grid and in those circumstances the number of drillholes that would entirely cover the surface area at the same drill spacing is chosen. The RCN is selected based on the limit to areal extent and the WAC is selected based on the achieved confidence level. The calculated costs are presented in Table 20. Since the thesis is about risk and reliability in exploration, the operational revenue is not used to calculate the total loss.

Description		wac cost for the theoretical number of samples required		theoretical number of samples required	
Drilling Method	R	2,855,000.00	R	5,842,920.00	
Sample Location (Survey)		6,240.00	R	6,240.00	
Sample Preparation including QAQC	R	4,595,500.00	R	7,566,000.00	
Geological Model	R	560,000.00	R	560,000.00	
Logging	R	285,500.00	R	584,292.00	
	R	8,302,240.00	R	14,559,452.00	

Table 20. Costs for exploration of Hillendale based on the minimum required number of samples

Comparing the cost of a theoretical exploration project using WAC and RCN drilling there is a significant increase in cost when using the RCN. In addition to RCN drilling method being more costly, it is also limited by the area constraint of Hillendale mine and does not reach the required confidence level. The WAC does achieve the required confidence level for all cases.

The probability and the expected loss for the identified risks for the sample methodology are listed in Table 21 and are determined using the proactive risk management approach as set out by Smith and Merritt (2002). Each identified event has a probability of 0 to 1 to occur with 0 indicating no risk and 1 a total certainty of the risk.

All risks are listed as independent of one another as determined by the workshop. For the first two risks identified as drilling method and drillhole spacing. Snowden (2003) describes the drilling method to contribute to the data quality and risk associated with achieving the required data quality while the drillhole spacing relates to sufficient continuity of geological confidence in relation to the risk threshold the company is willing to take at the specific project stage and is therefore seen as independent. The sample preparation and analyses is independent of both the drilling method and drillhole spacing, although it uses the sample that is derived from the drilling method, the preparation method, for the purpose of the risk evaluation, is not influenced by the way the sample is generated. The risk is only focused on the specific action of the event i.e. drilling method, sample preparation etc.

Nr	Risk	Assumed Probability risk factors as determined by workshop (adapted for Hillendale Mine)	Total Loss if risk occurs	Expected loss (EMV) with risk taking	
1	Drilling Method	0.5	R 2,828,000.00	R 1,414,000.00	
2	Drillhole Spacing	0.4	R 2,828,000.00	R 1,131,200.00	
3	Logging	0.1	R 14,140.00	R 1,414.00	
4	Sample preparation & Analysis	0.6	R 4,595,500.00	R 2,757,300.00	
5	Database	0.4	R 268,660.00	R 107,464.00	
6	Estimation	0.2	R 560,000.00	R 112,000.00	

Table 21. Sampling Methodology risks identified with probability and expected loss

The event sequence is the relative process of exploration as done at Hillendale, starting with selecting a drilling method, determining the drillhole spacing and subsequent drilling, logging of the sample, where after the sample preparation and analyses takes place. Lastly the database and database management takes place followed by the estimation.

The risk type is the risk as previously listed and identified by the workshop held for Port Durnford and adapted for Hillendale. The assumed probability is the probability of the risk event to occur. The total loss is the loss that occurs if the risk realises and the expected loss is the 'average' loss associated with the risk and is the anticipated accepted loss associated with the event. The expected loss can also be seen as the expected monetary value (EMV) (Smith and Merritt, 2002). The expected loss used in the criteria to determine the risk mitigation strategy since this is the actual damage that can be expected from each individual risk identified in the project (Smith and Merritt, 2002). The total loss is used to establish the resource risk chart (Figure 37) since the risk, if not considered after expected loss is mitigated, might have catastrophic consequences.

Figure 37. Indicative resource risk chart for expected sample methodology risks

The resource risk chart displays the total risk against the likelihood of the risk to occur as established in Table 21.

The graph presented in Figure 37 indicates the risks identified (risks plot, red points) in relation to the company's accepted risk threshold, which is indicated with the green line. The risk threshold is a constant level of expected loss separating the risk which requires active management against the risks that can be managed later (Smith and Merritt, 2002) and is the level of risk the company is willing to take as determined by costs versus time and knowledge.

The risk identified with the highest probability of occurring is inadequate sample preparation and analyses (point 4 in Figure 37), the next anticipated highest risk is an inadequate drilling method (point 1 in Figure 37), and thereafter insufficient drillhole spacing (point 2 in Figure 37).

The theoretical amount of drillholes is determined by the central limit theorem for the specific drilling method under consideration. Additional variability introduced by the selected drilling method will in addition influence the inherent data variability.

6.3 Treatment of Risk

As described by the Australian/New Zealand Standards ® Risk Management, Appendix G, risk can be treated by the following means:

- 1. Risk avoidance
- 2. Risk reduction
- 3. Risk acceptance
- 4. Transfer of risk

- 5. Contingency planning
- 6. Knowledge and research

The three main risks identified from the probability plots to have a significant influence on the resource confidence as well as falling outside the acceptable risk threshold are re-evaluated to determine the probability of the risk to occur once treated. The risks identified for the exploration phase and sample methodology are treated by risk reduction followed by knowledge and research to decrease the probability of the risk to occur. For the specific task and the type of risk, risk reduction is the best suited mitigation strategy. The risk treatment strategies and implications on the assessed probability are listed in Table 22.

Risk Type	Treatment Method	Process of Treatment	Assumed Probability that one would like to achieve	Total loss if risk occurs	Expected loss if risk occurs
Sample preparation & analysis	Risk reduction	By implementing and managing a QA/QC system to produce accurate ad reputable results	0.15	R 4,595,500.00	R 689,325.00
Drilling Method	Risk reduction / Knowledge and Research	By studying & understanding the geology to motivate correct drilling techniques. Understand the effect & recovery of various methods on the sampling	0.2	R 2,828,000.00	R 565,600.00
Drillhole spacing	Risk reduction / Knowledge and Research	Continuously evaluate drillhole spacing required to accomplish confidence required	0.1	R 2,828,000.00	R 282,800.00

Table 22. Risk treatment and risk treatment strategy

By treating the three anticipated anomalous risks, the probability of them occurring is expected to decrease as well as the cost associated with the expected loss. It is generally accepted in mining and strongly advocated by the undersigned that the probability of the risk associated with sample preparation and analyses would decreases with the implementation of a QAQC programme.

The Company would like to mitigate the risk to below or close to the established risk threshold. In order to achieve the required risk reduction, the risk associated with sampling preparation and sample analyses needs to be reduced from 0.6 to 0.15 as illustrated in Figure 38 point 4. Currently the only method economically acceptable for this is the introduction and monitoring of an adequate QAQC programme. The undersigned has no prove that the introduction of such programme would achieve the results hoped for by the mine, though obviously a QAQC would contribute to reduce the risk. No published literature on risk reduction and improvement with the introduction of QAQC has been found.

Similarly, the probability of the risk occurring by selecting the incorrect drilling method is lowered by improving the understanding of the geology of the ore body and the effect of better sample recovery using a more appropriate

drilling method (Figure 38 point 1). The company would like to lower the risk probability associated to incorrect drilling method from 0.5 to 0.2.

For the third risk identified - inadequate drillhole density in certain areas -, the company would like to lower this risk from 0.4 to 0.1 (Figure 38 point 2). A contribution to reducing such risk would be to monitor the effect of changes of the drillhole spacing and, subject to mine management being flexible, optimise the spacing for each area to be mined to obtain a better reconciliation with the plant output within the boundaries of the confidence required by the mine.

Whether these approaches are sufficient to lower the risks (No 1, 2 and 4) to the acceptable threshold or whether additional routes have to be investigated and implemented cannot be established now and only time will tell. It is however envisaged that the corrective actions suggested in the paragraphs above would lower these anomalous risks and in any event to a more comfortable level than would otherwise be the case had the status quo been maintained.

Figure 38. Indicative resource risk chart showing order-of-magnitude improvement that the mine management would like to achieve to be within their risk threshold

6.3.1 Exploration drilling Quality assurance and quality control

The quality assurance and quality control are similar for both the RCN and WAC drilling methods under review. These include field procedures, laboratory control, duplicate samples and control samples.

Measures are taken to ensure sample quality and control by ensuring that basic procedures are adhered to in the field. These include:

- Flushing the rods and cyclone of the drilling equipment after each 3 m section drilled to prevent contamination of samples;
- Not riffling wet samples;
- Ensuring that sampling equipment is clean before splitting;
- Checking the sample numbers after every completed drillhole;
- Verifying the final depth of the drillhole with the drilling contractor;
- Comparing lab sample numbers with drillhole numbers to ensure correct analysis results are paired with the correct drillhole.

6.3.2 Laboratory Control

The laboratory has its own quality assurance and quality control measures as defined by the Service Level Agreement (SLA) between exploration and the laboratory.

 The laboratory does twice daily checks at the start of shift change on the 45µm screens ensuring that they are kept in a good condition and performing as expected.

- The specific gravity of the TBE is checked once daily at the beginning of shift change, with an allowable variance of the specific gravity between 2.90 and 2.98
- The magnetic separation equipment is checked for amperage, pole gaps and gauss readings at the start, halfway through and at the end of each batch of 60 samples as listed in Table 23

AMPS	ROLL SPEED (RPM)	POLE GAP	GAUSS READING KGauss	NO. OF PASSES	CARPCO® EFFICIENC Y
0.05	237	4mm	0.421	2	99%
0.8	237	4mm	4.06	5	98-100%
2.40	287	4mm	13.03	5	

 Table 23. Magnetic separation equipment check parameters

A control sample is used to monitor the Carpco® instruments performance. Magnetic separation for the drilling programme is done only on the Primary Wet plant (PWP) Carpco® (Orange Carpco) machine to ensure uniformity. Each sample has a predefined amount of passes within a specific magnetic separation as listed in Table 23.

Laboratory checks are done every working shift and structured feedback is a formal meeting once a week. Any deviances are reported immediately by the laboratory shift head and corrected before continuing with the sample preparation and analyses.

6.3.3 Control Samples

Control samples are inserted at every 20th sample within the sequential exploration sample numbering system, starting at sample number ten. Control samples are created from ore material acquired from the current Hillendale Mining operations. The material is homogenised with a rotary splitter at the CPC laboratory after and approximately twenty samples are submitted to the CPC laboratory to determine the statistical average and deviation of the material. The process of creating control samples is illustrated in Figure 39. It should be noted that the control samples are not certified by an accredited laboratory and therefore not referred to as Standard Reference material.

Figure 39. Method for creating reference material (image by author)

Various control samples are created with a variety of silt and THM values. The range in values indicates the efficiency of the process with high / low silt and high / low THM values. The control samples are rotated in the submission sequence.

The control samples are evaluated daily by using quality control charts. Control limits are set at ± 1 standard deviation and ± 2 standard deviations from the mean as determined by the original statistics.

6.3.4 Repeat Samples

Repeat samples are inserted after every 19th sample. This is a direct repeat of the previous sample. In future, this will be revised so that the duplicate sample will be within another batch of analysis to assess the repeatability of the analysis throughout the exploration programme.

Figure 40. Illustration of Placement of Control and Repeat Samples in drillholes (image by author)

Repeat samples exceeding the predetermined allowable percentage deviation of control intervals (10%) will require a batch to be repeated. The repeat samples are evaluated by using repeat graphs.

6.3.5 Drilling Method Risk

Keeping up to date with technological improvements and industry specific discoveries with understanding the geology of the ore body can reduce the risk associated with determining the true value of the resource. The WAC drilling method proved through the reconciliation with the plant output to be effective at Hillendale and is now used throughout the mining area. It is important to keep up with technology to ensure that the drilling method used in still the best for the resource. Currently new development introduced sonic drilling, although with high cost it is not viable to have a complete resource model based on sonic drilling. This should be continuously reviewed to implement when viable.

6.3.6 Drillhole Spacing Risk

A geological ore body is generally not homogeneous. It is important to continuously update and review the required information to achieve an acceptable level of confidence as defined by the competent person for a specific purpose such as exploration or mining production. Additional drilling can often better define the geological complexity of an ore body that would have been missed otherwise. The information on local variability is ultimately essential for the smooth running of the plant.

6.4 Conclusion on risk

A number of risks are identified in the sample methodology of Hillendale. The risks are affected by both internal and external factors. A probabilistic review of the risks identifies the combination sampling- analyses (Risk No 4) as the risk with the highest probability of occurring.

Two other risks with a high probability to occur are the drilling method (Risk No 1) and drillhole spacing (Risk No 2). Both these risks can be mitigated against by continuous improvement of the understanding and knowledge of the industry and the ore body.

Whether the approaches suggested in the chapters above are sufficient to lower the risks (No 1, 2 and particularly 4) to the acceptable threshold or whether additional routes have to be investigated and implemented cannot be established now and only time will tell. It is however envisaged that the corrective actions suggested here would lower these anomalous risks and in any event to a more comfortable level than would otherwise be the case had the status quo been maintained.

The three other risks namely logging, database management and estimation are not reduced through mitigation due to the relative low probability of occurring compared to drilling method, drilling spacing and sample methodology, since their occurrence is limited through the data validation process. The risks can be controlled by the effective training and monitoring of personnel since these risks are largely controlled by human factor.

7 Overall conclusions

The purpose of the thesis is to review the risk associated with the exploration techniques used at Hillendale mine. The process was aided through the following three hypotheses:

- Improving the sampling methodology, the resource estimation risk can be minimised:
- The quality of the input data has a greater influence on the statistical confidence of the mean of the mineral resource than the estimation method will have.
- The implementation of quality assurance and quality control systems can minimize or control the risk through the various stages of the deposit.

For the first hypothesis:

Improving the sampling methodology, the resource estimation risk can be minimised.

Hillendale project has used two drilling methods namely reverse circulation and Wallis Aircore. The sample methodology for both methods is similar through the various drilling phases with minor differences such as the criteria for the final depth of the drillhole (EOH).

Comparing similar sample depth between the two drilling techniques of downhole sample information in closely situated drillholes, there is no clear correlation between the similar depth sample intervals.

Descriptive statistical analyses of the area drilled by both drilling methods correspond in general, although the RCN drilling method samples have a larger variance. This is expected due to the drilling method of air blow out.

The population properties of the datasets are used with the central limit theorem to determine the number of samples required for a 95% confidence on the mean. This 95% confidence relates to a measured resource classification. Due to the variability introduced by the RCN drilling method, the ore body cannot be drilled to a measured resource classification due to the area constraint and the number of drillholes required. The WAC method can be used to explore the ore body to a 95% confidence and achieve a measured resource classification.

The second hypothesis:

The quality of the input data has a greater influence on the statistical confidence of the mean of the mineral resource than the estimation method will have.

Inverse distance squared and Kriging interpolation techniques are now routinely used at Hillendale. The inverse distance squared is used with RCN drilling technique and the Kriging with the WAC information. The general statistics for both the drilling technique sample data are similar which translates to the estimated mean of the global geological blockmodel being similar. Comparing the model to the production, the RCN method shows the higher level of variability of the two drilling methods. The estimated blockmodel grades of the RCN, once taken individually, differ by more than 10% when compared to the actual production grades. This exceeds the company's criteria that are set to a maximum discrepancy of 10%.

The geological blockmodel confidence relates to the drilling method confidence and the variability introduced with the drilling method is conveyed to the geological blockmodel.

The variability introduced by the drilling method cannot be reduced by changing estimation techniques.

The third hypothesis:

The implementation of quality assurance and quality control (QAQC) systems can lower or control the risk through the various stages of prospecting and sampling of the deposit.

Exploration has inherent risks associated with any method chosen for the exploration process and sample methodology. Reviewing the various risks and identifying the risks with the highest probability of occurring, a decision on improving the reliability of the methods used can be made. Each risk is viewed as an independent event.

At Hillendale mine, sampling and analysis are identified as the risk with the highest probability to occur as determine by a workshop held for Port Durnford. Risk mitigation for the sample analysis is achievable in most instances through quality assurance and quality control.

The second and third highest risks to occur are identified as the drilling method and drillhole spacing. These risks are mitigated through the

132

knowledge of the lithological and depositional characteristics of deposit that will enable to understand the influence and relevance of the drilling method on sample recovery. The continuous improvement on the deposit knowledge using the newly available information will allow more accurate decisions for the deposit exploitation.

8 Reference

Annels, A. E. and Dominy, S. C., (2003). Core recovery and quality: Important factors in mineral resource estimation. Transactions of the Institution of Mining and Metallurgy, 112, p. B305 – B312.

Australian/New Zealand® Risk Management. (1995). AS/NZS 4360:1995, pp.32

Belderson, R. H. (1961). in Maud, R. R (1968). Quaternary geomorphology and soil formation in coastal Natal. Annals of Geomorphology 7, pp. 155-199 GAB876.

Bender, W. (2005). Mineral resource management principles that need to be incorporated in Anglogold Ashanti Ltd. east and west Africa region. MSc thesis (unpublished). Johannesburg:University of Witwatersrand.

Botha, B. W. (2006). Mineral Resource Manager, Hillendale Mine. Personal Communication.

Botha, G. A., (1997). The Maputaland Group: A provisional lithostratigraphy for coastal KwaZulu-Natal in Maputaland: Focus on the Quaternary evolution of the south-east African coastal plain, field guide and abstracts (Botha, G.A. editor), INQUA Commission on Quaternary Shorelines, Africa subcommission, pp. 21–26

Camisani, F. (2009). South African General Practices in the Estimation of Mineral Resources and Reserves. Committee for Mineral Reserves International Reporting Standards. Presentation: 23 October 2009, Beijing.

CIM (Canadian Institute of Mining and Metallurgy and Petroleum) (2003), Estimation of mineral resources and mineral reserves. Best practice guidelines. prepared by the Canadian Institute of Mining and Metallurgy and Petroleum (CIM) led Estimation Best Practices Committee. pp55

Clarke, I., (1979). Practical Geostatistics. Geostokos Limited, Alloa Business Centre, Whins Road, Alloa, Central Scotland FK10 3SA, pp. 151

De Jager, C. P. (2005). Risk Management in Mining and Minerals economics as well as mineral resources management. MSc thesis (unpublished). University of Witwatersrand, Johannesburg, South Africa.

Dominy, S. C. Noppe, M. A., Annels, A. E. (2002). Errors and Uncertainty in Mineral Resource and Ore Reserve Estimation: The Importance of Getting it right. Explor. Mining Geol., Vol. 11, Nos. 1-4, pp. 77–98.

Duncan, W. R., (1996). A guide to the project management body of knowledge. Project Management Institute, PMI Standards Committee, pp. 182

Exxaro internal report, Powerdocs number #184420, 2010, unpublished report.

Feldman, J. (2007) Resource & Reserve Reporting At Thabazimbi Iron Ore Mine – And The Way Forward. Reserve estimation and reporting Africa 2007. May 2007, Johannesburg, Sandton Convention Centre.

Maud, R. R (1968). Quaternary geomorphology and soil formation in coastal Natal. Annals of Geomorphology 7, pp. 155-199 GAB876.

McCarthy, M. J. (1988). Late Gondwana to recent geology of the Natal Coast. In: Extended Abstracts of Geocongress Symposium 1988, pp. 405a - 405e

McKenzie, A. (2009). How important is ore variability. The ethics of feasibility studies. MINTEK Presentation. 5 June 2009, Johannesburg, Mintek.

MDG 1010 (1997). Risk management handbook for the mining industry. How to conduct a risk assessment of mine operations and equipment and how to manage the risk. NSW Department of Primary industries. pp. 102

Morley, C. M. Snowden, V and Day, D. (1999). Financial impact of resource/reserve uncertainty. The Journal of The South African Institute of Mining and Metallurgy., pp. 293 – 302.

Pitard, F. F. (1993). Pierre Gy's Sampling Theory and Sampling Practice. Heterogeneity, Sampling Correctness, and Statistical Process Control, second edition, CRC Press.

Rice, J. (1995). Mathematical Statistics and Data Analysis (Second Edition). Duxbury Press. ISBN 0-534-20934-3.

Ryan, R. Fraser, B. Chapman, M. and Stevens, D. (2004), Field guide for geoscientists and technicians. A practical guide to working in the bush. Spectrum Series Volume Number 12. Published by The Australian institute of Mining and Metallurgy. pp. 418

SAMREC Code. (2009). The South African code for the reporting of exploration results, Mineral Resources and Mineral Reserves – Prepared by the South African Mineral Resource Committee.

Schofield, N. A. The myth of mine reconciliation. Mineral Resource and Ore Reserve Estimation: the AusIMM Guide to Good Practice. Melbourne, The Australasian Institute of Mining and Metallurgy, 2001. pp. 601–610

Sibiya, D. van Graan, J. Botha, B. W. (2005). Ticor South Africa, Heavy Mineral Operations, Reserve and Resource Statement. (unpublished report). pp.94

Snowden, V. (2003). Practical interpretation of mineral resource and ore reserve classification guidelines. Mineral Resource and Ore Reserve Estimation. The AusIMM Guide to Good Practice (Monograph 23), pp. 21

Smith, P.G. & Merritt G.M. (2002). Proactive risk management: Controlling uncertainty in product development, Productivity Press, New York.

Stevens, M. (2001). Geologic Resource Risk in Mine Development, Issue 15. February 2001. Pincock Perspectives. Pincock Allen & Holt., pp 4.

University of Vermont, (2006). Carpco model MIH(13)111-5 Laboratory highintensity induced-roll magnetic separator. Revision: 03-2, SERIAL NUMBER, 221-06., pp. 47

Van Aswegen, M. (2005) Increasing confidence in geoscientific knowledge for the industry and investor. (unpublished). pp. 9

Ware, C. Whitmore, G. Uken, R. (2003). A weathering model for the northern Kwa-Zulu Natal coastal dune cordon, South Africa. South African Institute for Mining and Metallurgy. pp 229 – 235.

Whitmore, G., Armstrong, R., Sudan, P., and Ware, C. (2003) A model for economic accumulation of zircon, northern KwaZulu-Natal. Heavy Minerals. South African Institute of Mining and Metallurgy, 2003., pp. 237 – 242.

9 Addendum A

Downhole comparative boreholes

BHID	То	Slime	тнм	MAGN	MAGS	MAGO	NMAG	BHID	То	Slime	тнм	MAGN	MAGS	MAGO	NMAG
HE0052	3	8.43	7.82	1.02	4.66	1.02	1.05	HE0385	3	12.8	5.94	0.6	4.14	0.26	0.93
HE0052	6	17.21	4.18	0.46	2.53	0.56	0.53	HE0385	6	13.28	5.84	0.43	4.23	0.2	0.96
HE0052	9	16.1	3.68	0.4	2.27	0.47	0.51	HE0385	9	7.63	2.13	0.22	1.43	0.12	0.35
HE0052	12	13.77	3.05	0.21	1.88	0.42	0.5	HE0385	12	16.86	4.41	0.33	3.06	0.19	0.81
HE0052	15	12.72	3.16	0.27	2.52	0.14	0.24	HE0385	15	17.73	1.89	0.13	1.04	0.15	0.56
HE0052	18	27.28	5.68	0.41	3.64	0.66	0.91	HE0385	18	12.9	0.67				
HE0052	21	34.51	5.01	0.38	3.18	0.73	0.9	HE0385	21	12.25	1.37				
HE0052	24	29.69	4.98	0.35	3.28	0.89	0.73	HE0385	24						
HE0052	27	17.89	2.57	0.15	1.5	0.48	0.37	HE0385	27						
HE0052	30	12.48	1.5	0	0	0	0	HE0385	30						
HE0052	33	11.37	1.21	0	0	0	0	HE0385	33						
HE0052	36	22.08	3.15	0.23	1.75	0.66	0.43	HE0385	36						
HE0052	39	21.21	1.44	0	0	0	0	HE0385	39						
HE0052	42	10.37	0.65	0	0	0	0	HE0385	42						
HE0052	45	11.27	0.55	0	0	0	0	HE0385	45						
HE0060	3	18.86	10.25	0.83	4.77	3.81	0.79	HE0462	3	14.25	10.62	0.78	4.2	4.77	0.85

BHID	То	Slime	ТНМ	MAGN	MAGS	MAGO	NMAG	BHID	То	Slime	тнм	MAGN	MAGS	MAGO	NMAG
HE0060	6	7.3	10.93	0.53	2.46	7.51	0.43	HE0462	6	3.99	17.08	0.77	5.95	9.4	0.96
HE0060	9	4.49	8.15	0.24	1.24	6.19	0.38	HE0462	9	3.94	13.76	0.42	3.68	9.1	0.55
HE0060	12	3.31	12.74	0.21	1.76	10.49	0.28	HE0462	12	7.82	14.78	0.28	3.18	10.87	0.45
HE0060	15	5.42	2.47	0.07	0.24	1.98	0.1	HE0462	15	3.46	10.27	0.18	2.1	7.45	0.54
HE0060	18	4.58	2.32	0	0	0	0	HE0462	18	3.75	5.27	0.12	1	3.79	0.33
HE0060	21	3.24	2.07	0	0	0	0	HE0462	21	5.24	6.79	0.17	1.86	4.3	0.45
HE0060	24	2.93	2.62	0.03	0.34	2.05	0.07	HE0462	24	5.51	2.99	0.09	0.65	1.79	0.43
HE0060	27	3.6	4.08	0.1	0.45	3.43	0.1	HE0462	27	3.68	4.7	0.15	1.49	2.54	0.48
HE0060	30	5.85	7.19	0.21	1	5.5	0.41	HE0462	30	6.99	4.75	0.23	1.84	2.16	0.47
								HE0462	33	12.12	4.11	0.28	1.39	1.91	0.47
								HE0462	36	3.56	13.05	1.26	4.68	6.1	1
								HE0462	39	2.19	8.61	0.52	2.43	4.93	0.74
								HE0462	42	2.96	6.6	0.28	1.77	3.79	0.76
								HE0462	45	3.74	10.7	0.66	4.16	5	0.89
								HE0462	48	8.15	6.69	0.29	1.86	3.93	0.61
								HE0462	51						
								HE0462	54	21.88	1.63	0.13	0.79	0.44	0.27
HE0047	3	28.77	8.84	0.53	5.83	1.21	1.21	HE0467	3	32.89	14.36	0.93	10.18	0.95	2.19
HE0047	6	43.2	7.46	0.62	4.98	0.83	1.08	HE0467	6	28.05	15.12	2.07	10.33	0.61	2.1
HE0047	9	31.38	9.9	1.48	5.79	1.19	1.36	HE0467	9	23.89	18.01	3.26	11.13	1.19	2.39
HE0047	12	19.8	9.33	1.8	4.45	1.87	1.18	HE0467	12	20.01	14.28	2.46	8.98	0.86	1.96
HE0047	15	27.6	10.51	1.69	5.71	1.73	1.3	HE0467	15	17.26	9.13	1.8	5.33	0.77	1.23
HE0047	18	16.42	4.85	1	2.29	0.94	0.59	HE0467	18	14.95	4.98	0.96	2.48	0.85	0.67

BHID	То	Slime	ТНМ	MAGN	MAGS	MAGO	NMAG	BHID	То	Slime	тнм	MAGN	MAGS	MAGO	NMAG
HE0047	21	12.49	2.91	0.48	1.69	0.44	0.29	HE0467	21	16.85	11.83	2.08	7.07	1.15	1.51
HE0047	24	25.57	7.12	0.97	3.3	2	0.83	HE0467	24	11.41	9.38	1.82	4.94	1.54	1.07
HE0047	27	26	6.3	1.24	3.26	1.16	0.6	HE0467	27	8.84	17.36	2.84	8.22	4.79	1.48
HE0047	30	30.59	9.59	1.44	3.28	3.96	0.76	HE0467	30	7.32	14.03	1.64	4.21	6.77	1.38
HE0047	33	26.81	8.54	0.95	2.98	3.87	0.77	HE0467	33	5.32	4.03	0.23	1.05	2.31	0.44
HE0047	36	17.46	3.33	0.4	1.41	1.16	0.36								
HE0047	39	14.3	1.9	0	0	0	0								
HE0047	42	13.57	1.46	0	0	0	0								
HE0047	45	16.04	1.27	0	0	0	0								
HE0059	3	21.68	10.76	0.37	7.35	0.97	1.56	HE0406	3	32.57	10.89	0.69	7.58	0.92	1.68
HE0059	6	20.98	5.15	0.46	3.01	1.14	0.46	HE0406	6	22.61	7.47	0.72	4.23	1.46	1.03
HE0059	9	18.06	6.46	0.48	3.73	1.26	0.96	HE0406	9	20.95	8.58	0.9	4.31	2.21	1.12
HE0059	12	17.9	4.47	0.33	1.92	1.66	0.52	HE0406	12	17.76	8.99	0.88	4.53	2.49	1.09
HE0059	15	15.34	3.33	0.24	1.56	1.05	0.37	HE0406	15	16.28	14.17	1.57	7.47	3.38	1.71
HE0059	18	14.54	1.16	0	0	0	0	HE0406	18	11.69	7.19	0.61	3.54	2.01	1.03
HE0059	21	15.34	2.44	0	0	0	0	HE0406	21	12.22	2.05	0.19	0.74	0.77	0.34
HE0059	24	13.07	1.28	0	0	0	0	HE0406	24	8.09	1.89	0.13	0.45	1.01	0.31
HE0059	27	17.81	1.87	0	0	0	0	HE0406	27	5.46	2.47	0.13	0.48	1.56	0.29
HE0059	30	11.09	1.11	0	0	0	0	HE0406	30	9.99	14.73	2.16	5.62	5.42	1.48
HE0059	33	14.61	2.49	0.25	0.55	1.54	0.18	HE0406	33	6.94	9.38	1.21	3.1	4.17	0.87
HE0059	36	20.72	6.39	1.14	1.79	2.87	0.53	HE0406	36	7.01	7.36	0.65	2.44	3.47	0.79
HE0059	39	12.88	7.6	1.41	2.48	3.02	0.63	HE0406	39	6.22	4.45	0.27	1.19	2.47	0.53
HE0059	42	13.53	4.21	0.4	1.05	2.54	0.22								

BHID	То	Slime	тнм	MAGN	MAGS	MAGO	NMAG	BHID	То	Slime	тнм	MAGN	MAGS	MAGO	NMAG
HE0059	45	19	5.04	0.22	1.05	3.33	0.44								
HE0059	46	15.34	5.68	0.47	1.4	3.3	0.47								
HE0538	3	29.46	10.05	0.71	6.99	0.58	1.77	HE0658	3	39.15	10.63	0.76	7.82	0.36	1.67
HE0538	6	37.85	8.66	0.81	5.8	0.48	1.53	HE0658	6	40.88	10.87	0.86	7.9	0.4	1.69
HE0538	9	33.14	5.82	0.7	3.67	0.32	1.1	HE0658	9	19.59	5.36	0.55	3.62	0.32	0.87
HE0538	12	30.46	3.65	0.59	2.1	0.28	0.69	HE0658	12	13.77	1.06				
HE0538	15	29.05	0.58					HE0658	15	12.91	1.39	0.13	0.82	0.18	0.25
HE0538	18	23.15	0.89												
HE0538	21	19.35	0.6												
HE0538	24	23.71	0.37												
HE0538	27	30.64	1.05	0.14	0.54	0.11	0.26								
HE0538	30	22.53	0.46												
HE0538	33	18.51	0.28												
HE0538	36	25.73	0.71												
HE0538	39	17.74	2.12	0.08	0.41	1.23	0.4								
HE0538	42	12.54	1.51	0.05	0.2	0.94	0.32								
HE0538	45	23.21	2.58	0.12	0.78	1.05	0.62								
HE0538	48	20.66	0.75												
HE0004	3	38.52	8.86	0.56	6.22	0.59	1.44	HE0483	3	32.18	8.86	0.57	6.58	0.28	1.43
HE0004	6	38.79	9.06	0.78	6.13	0.77	1.36	HE0483	6	33.96	9.29	0.74	6.72	0.28	1.54
HE0004	9	47	10.67	1.05	7.26	0.78	1.56	HE0483	9	13.31	11.3	1.79	7.5	0.41	1.58
HE0004	12	28.14	7.25	0.85	4.52	0.9	0.95	HE0483	12	46.71	7.26	0.65	5.2	0.23	1.15
HE0004	15	23.03	1.06	0	0	0	0	HE0483	15	16.94	1.84	0.22	1.15	0.16	0.31

BHID	То	Slime	ТНМ	MAGN	MAGS	MAGO	NMAG	BHID	То	Slime	тнм	MAGN	MAGS	MAGO	NMAG
HE0004	18	24.9	0.67	0	0	0	0	HE0483	18	15.87	1.97	0.19	1.26	0.17	0.34
HE0004	21	21.91	0.52	0.04	0.2	0.2	0.1								
HE0551	3	31.93	7.38	0.44	5.16	0.48	1.29	HE0659	3	30.04	9.68	1.42	6.31	0.51	1.43
HE0551	6	31.29	9	0.64	6.34	0.45	1.55	HE0659	6	34.59	9.14	0.75	6.67	0.26	1.43
HE0551	9	36.73	8.59	0.59	5.81	0.68	1.49	HE0659	9	36.9	9.19	0.76	6.56	0.36	1.49
HE0551	12	35.43	9.89	0.99	6.69	0.53	1.66	HE0659	12	26.03	12.04	1.42	8.21	0.44	1.95
HE0551	15	34.21	11.01	1.27	7.13	0.65	1.93	HE0659	15	17.91	5.89	0.8	3.69	0.44	0.94
HE0551	18	30.41	11.38	1.61	7.02	0.83	1.88	HE0659	18	14.66	1.5	0.15	0.91	0.16	0.27
HE0551	21	31.43	7.71	1.22	4.61	0.57	1.27								
HE0551	24	28.42	3.33	0.48	1.88	0.3	0.63								
HE0551	27	29.53	1.06												
HE0551	30	30.08	1.73	0.2	1	0.19	0.32								

10 Addendum B

WAC Blockmodel Histograms

RCN Blockmodel Histograms – Area 1B

RCN Blockmodel Histograms – Area 2

RCN Blockmodel Histograms - Plan 4

11 Addendum C

Wallis Aircore drillhole information

BHID	XCOORD	YCOORD	ZCOORD	LENGTH	SLIME %	THM %	MAGN %	MAGS %	MAGO %	NMAG %
HE0562	3191493.290	-91264.350	43.580	12.00	33.30	5.23	0.37	3.76	3.76	0.23
HE0780A	3190698.610	-91665.970	48.890	24.00	23.47	6.08	0.78	4.64	4.64	0.35
HE0369	3191251.390	-90599.940	71.420	33.00	18.39	1.91	0.26	1.74	1.74	0.21
HE0372	3191118.500	-90648.340	54.120	27.00	11.92	2.29	0.47	2.11	2.11	0.55
HE0376	3191165.020	-90669.170	65.730	36.00	15.42	3.88	0.38	2.74	2.74	0.34
HE0386	3191074.700	-90683.130	47.090	24.00	11.30	2.46	0.27	1.25	1.25	0.59
HE0387	3191120.450	-90706.000	53.650	39.00	13.65	4.87	0.60	2.65	2.65	1.09
HE0402	3191165.280	-90725.330	63.430	24.00	11.16	4.98	0.23	2.02	2.02	2.08

BHID	XCOORD	YCOORD	ZCOORD	COMPOSITE LENGTH	SLIME %	THM %	MAGN %	MAGS %	MAGO %	NMAG %
HE0403	3191210.630	-90746.430	74.060	15.00	11.97	4.87	0.47	2.85	2.85	0.78
HE0404	3191030.740	-90717.670	37.970	36.00	12.67	3.00	0.35	2.05	2.05	0.45
HE0405	3191076.210	-90738.990	44.050	27.00	13.03	7.65	0.65	3.44	3.44	2.60
HE0406	3191122.900	-90757.880	51.640	39.00	13.68	7.66	0.78	3.51	3.51	2.41
HE0417	3191165.180	-90763.860	63.040	21.00	11.44	7.45	0.41	3.03	3.03	2.83
HE0420	3191077.680	-90794.910	41.130	15.00	8.92	7.07	0.46	2.86	2.86	2.97
HE0431	3191123.060	-90815.930	49.890	24.00	9.77	8.95	0.77	4.58	4.58	2.49
HE0434	3191213.720	-90858.180	79.630	27.00	14.20	10.15	0.82	6.17	6.17	1.58
HE0442	3191258.990	-90879.250	81.500	69.00	5.64	8.61	0.54	3.51	3.51	4.01
HE0463	3191173.060	-90894.970	76.520	21.00	13.61	17.07	1.31	7.19	7.19	5.97
HE0464	3191215.200	-90914.080	82.330	36.00	7.27	17.77	1.60	7.50	7.50	6.81
HE0465	3191260.490	-90935.090	77.020	21.00	11.53	17.15	1.86	8.33	8.33	5.01

BHID	XCOORD	YCOORD	ZCOORD	COMPOSITE LENGTH	SLIME %	THM %	MAGN %	MAGS %	MAGO %	NMAG %
HE0467	3191126.140	-90927.730	85.570	33.00	16.98	12.05	1.83	6.72	6.72	1.98
HE0468	3191171.480	-90948.660	81.470	30.00	18.41	8.28	1.31	5.50	5.50	0.92
HE0477	3191216.700	-90969.990	74.510	15.00	18.09	12.01	1.94	6.44	6.44	2.18
HE0479	3191082.260	-90962.510	80.920	27.00	10.78	12.19	1.10	6.92	6.92	2.47
HE0480	3191127.590	-90983.590	80.910	15.00	18.22	6.34	0.74	5.42	5.42	0.41
HE0481	3191172.910	-91004.740	74.740	15.00	22.29	2.98	0.39	2.22	2.22	0.23
HE0482	3191218.210	-91025.850	70.200	12.00	24.75	3.80	0.43	4.80	4.80	0.21
HE0483	3191263.600	-91046.970	65.620	18.00	26.50	6.75	0.69	4.74	4.74	0.26
HE0484	3191040.940	-90988.460	85.330	27.00	8.91	3.10	0.96	1.29	1.29	0.50
HE0485	3191083.840	-91018.310	80.020	18.00	20.64	4.25	0.34	3.50	3.50	0.26
HE0495	3191129.240	-91039.420	74.320	12.00	27.35	3.84	0.39	3.48	3.48	0.22
HE0496	3191174.530	-91060.520	70.300	15.00	20.61	6.83	0.47	7.23	7.23	1.69

BHID	XCOORD	YCOORD	ZCOORD	COMPOSITE LENGTH	SLIME %	THM %	MAGN %	MAGS %	MAGO %	NMAG %
HE0497	3191219.770	-91081.710	66.520	15.00	27.15	5.03	0.51	4.41	4.41	0.22
HE0498	3191265.050	-91102.790	62.780	21.00	29.26	10.32	1.24	7.11	7.11	0.37
HE0500	3191310.470	-91123.900	58.220	33.00	24.84	6.27	0.71	5.28	5.28	0.25
HE0501	3191355.760	-91145.080	54.020	54.00	20.84	4.32	0.56	4.16	4.16	0.32
HE0534	3191401.110	-91166.150	50.530	27.00	23.61	5.59	0.52	3.88	3.88	0.29
HE0535	3191446.400	-91187.380	48.470	27.00	24.03	5.12	0.44	3.47	3.47	0.29
HE0536	3191491.710	-91208.450	46.170	30.00	23.66	4.47	0.45	3.39	3.39	0.22
HE0547	3191040.040	-91053.110	82.790	18.00	14.85	4.81	1.59	3.07	3.07	0.27
HE0548	3191085.430	-91074.130	75.090	9.00	30.46	5.36	0.38	3.93	3.93	0.17
HE0550	3191175.960	-91116.420	67.580	24.00	23.56	4.92	0.41	3.94	3.94	0.20
HE0556	3191221.330	-91137.660	62.670	21.00	24.35	4.32	0.35	4.05	4.05	0.23
HE0557	3191266.720	-91158.710	58.700	30.00	24.49	7.94	0.88	6.09	6.09	0.35

BHID	XCOORD	YCOORD	ZCOORD	COMPOSITE LENGTH	SLIME %	THM %	MAGN %	MAGS %	MAGO %	NMAG %
HE0558	3191311.980	-91179.830	55.110	30.00	26.43	7.21	0.71	5.02	5.02	0.29
HE0559	3191357.240	-91200.930	52.860	24.00	27.78	6.75	0.64	4.71	4.71	0.35
HE0560	3191402.660	-91222.060	49.090	30.00	26.97	4.78	0.42	3.34	3.34	0.20
HE0561	3191447.870	-91243.210	45.890	24.00	26.22	5.06	0.54	3.51	3.51	0.21
HE0562A	3191493.980	-91265.570	43.490	42.00	20.87	3.90	0.39	2.52	2.52	0.27
HE0565	3191038.050	-91108.060	75.100	27.00	19.85	2.77	0.19	2.60	2.60	0.21
HE0566	3191086.820	-91130.070	71.180	15.00	25.06	4.16	0.25	3.64	3.64	0.19
HE0567	3191132.210	-91151.270	67.820	66.00	16.41	2.14	0.37	2.95	2.95	0.33
HE0572	3191177.540	-91172.330	64.720	18.00	24.45	4.14	0.24	3.50	3.50	0.20
HE0573	3191222.960	-91193.520	59.660	24.00	29.21	8.77	0.76	6.27	6.27	0.32
HE0574	3191262.690	-91215.940	57.210	39.00	25.16	5.90	0.67	4.64	4.64	0.27
HE0575	3191313.570	-91235.600	55.590	33.00	23.13	5.40	0.46	4.00	4.00	0.35

BHID	XCOORD	YCOORD	ZCOORD	COMPOSITE LENGTH	SLIME %	THM %	MAGN %	MAGS %	MAGO %	NMAG %
HE0576	3191358.860	-91256.820	51.800	33.00	26.77	5.16	0.42	3.91	3.91	0.30
HE0577	3191404.080	-91277.950	46.440	42.00	24.10	3.84	0.44	2.83	2.83	0.28
HE0578	3191449.490	-91299.150	43.190	30.00	24.29	4.49	0.54	3.37	3.37	0.19
HE0579	3190907.210	-91101.490	87.720	42.00	10.71	5.04	1.03	3.18	3.18	0.95
HE0581	3190997.870	-91143.700	76.470	18.00	13.16	3.75	0.24	2.37	2.37	0.61
HE0582	3191043.190	-91164.800	74.100	15.00	18.71	3.36	0.20	2.30	2.30	0.27
HE0583	3191095.380	-91189.620	66.860	15.00	22.50	2.78	0.16	2.36	2.36	0.21
HE0584	3191133.750	-91207.090	64.870	21.00	20.95	3.57	0.29	4.03	4.03	0.26
HE0585	3191179.090	-91228.120	61.610	27.00	26.70	6.43	0.48	5.20	5.20	0.25
HE0586	3191224.410	-91249.330	57.110	33.00	25.35	7.70	0.67	6.01	6.01	0.34
HE0587	3191269.700	-91270.560	53.190	33.00	25.55	6.07	0.52	4.27	4.27	0.28
HE0588	3191315.020	-91291.570	50.980	33.00	26.37	5.25	0.42	4.05	4.05	0.23

BHID	XCOORD	YCOORD	ZCOORD	COMPOSITE LENGTH	SLIME %	THM %	MAGN %	MAGS %	MAGO %	NMAG %
HE0589	3191360.350	-91312.700	45.330	30.00	24.29	4.77	0.47	3.69	3.69	0.22
HE0590	3191405.680	-91333.840	42.330	36.00	21.37	4.52	0.50	3.31	3.31	0.25
HE0592	3190954.050	-91178.500	77.210	18.00	7.73	4.70	0.17	1.66	1.66	2.42
HE0593	3190999.370	-91199.610	72.340	21.00	8.77	5.19	0.18	1.87	1.87	2.13
HE0594	3191044.610	-91220.670	68.390	9.00	19.60	4.74	0.32	4.70	4.70	0.34
HE0595	3191089.930	-91241.820	63.900	12.00	20.82	5.76	0.51	3.81	3.81	0.38
HE0596	3191135.290	-91263.000	60.210	12.00	20.48	10.23	1.36	8.38	8.38	1.18
HE0597	3191180.590	-91284.090	59.310	36.00	24.25	8.85	0.77	6.56	6.56	0.59
HE0598	3191225.880	-91305.220	55.820	60.00	22.25	4.83	0.47	4.19	4.19	0.37
HE0599	3191271.210	-91326.370	51.190	30.00	25.99	5.39	0.40	3.85	3.85	0.21
HE0600	3191316.610	-91347.460	45.630	27.00	27.83	5.61	0.52	3.87	3.87	0.29
HE0601	3191361.910	-91368.540	41.800	30.00	26.28	4.31	0.49	3.61	3.61	0.27

BHID	XCOORD	YCOORD	ZCOORD	COMPOSITE LENGTH	SLIME %	THM %	MAGN %	MAGS %	MAGO %	NMAG %
HE0603	3190910.240	-91213.260	77.240	18.00	7.38	8.73	0.33	3.07	3.07	4.45
HE0604	3190955.610	-91234.280	71.920	18.00	11.14	5.99	0.31	2.56	2.56	2.39
HE0605	3191000.940	-91255.480	66.990	18.00	17.35	4.36	0.43	3.07	3.07	0.85
HE0606	3191046.150	-91276.690	62.860	18.00	20.74	5.96	0.66	4.83	4.83	0.43
HE0607	3191091.520	-91297.670	58.810	24.00	25.00	10.63	1.14	8.48	8.48	0.50
HE0608	3191136.920	-91318.920	57.320	36.00	26.14	8.43	0.73	6.52	6.52	0.41
HE0609	3191182.210	-91339.930	57.110	33.00	25.25	7.54	0.57	5.19	5.19	0.48
HE0610	3191227.500	-91361.080	53.020	36.00	25.59	5.28	0.35	3.86	3.86	0.44
HE0611	3191272.800	-91382.280	48.310	30.00	25.91	6.14	0.52	4.29	4.29	0.32
HE0626	3190866.050	-91247.930	77.240	30.00	12.41	5.19	0.32	2.62	2.62	1.46
HE0627	3190911.980	-91269.070	72.400	69.00	8.62	4.63	0.24	2.02	2.02	2.67
HE0628	3190954.810	-91288.210	67.530	15.00	17.85	3.32	0.31	2.56	2.56	0.35

BHID	XCOORD	YCOORD	ZCOORD	COMPOSITE LENGTH	SLIME %	THM %	MAGN %	MAGS %	MAGO %	NMAG %
HE0629	3191002.000	-91311.390	64.200	18.00	20.35	4.33	0.44	3.28	3.28	0.36
HE0630	3191048.040	-91332.530	60.080	33.00	23.77	7.34	0.83	6.20	6.20	0.45
HE0632	3191138.000	-91374.730	54.980	36.00	26.66	7.48	0.59	5.81	5.81	0.33
HE0633	3191184.650	-91394.530	53.010	33.00	27.22	6.55	0.42	4.49	4.49	0.45
HE0634	3191226.060	-91422.280	48.340	30.00	24.38	5.11	0.40	3.87	3.87	0.38
HE0640	3190822.990	-91282.700	78.560	24.00	9.92	6.63	0.29	2.68	2.68	2.30
HE0641	3190867.990	-91303.830	74.380	12.00	20.26	5.19	0.33	2.82	2.82	1.24
HE0642	3190912.940	-91324.990	67.890	18.00	16.61	4.12	0.42	3.33	3.33	0.33
HE0643	3190958.940	-91346.150	63.070	24.00	22.92	6.21	0.69	4.80	4.80	0.43
HE0644	3191004.360	-91365.800	59.810	27.00	28.11	9.65	0.91	7.66	7.66	0.49
HE0645	3191049.020	-91388.320	56.980	36.00	23.86	8.19	0.80	6.23	6.23	0.43
HE0646	3191095.050	-91409.410	53.720	33.00	25.09	7.73	0.58	5.46	5.46	0.38

BHID	XCOORD	YCOORD	ZCOORD	COMPOSITE LENGTH	SLIME %	THM %	MAGN %	MAGS %	MAGO %	NMAG %
HE0647	3191140.650	-91431.580	51.770	33.00	26.08	5.20	0.35	4.49	4.49	0.33
HE0648	3191184.130	-91456.090	45.770	27.00	26.72	4.04	0.25	3.11	3.11	0.36
HE0656	3190098.760	-91306.310	62.060	48.00	9.85	6.57	0.41	2.35	2.35	3.28
HE0657	3190196.890	-91387.940	87.120	30.00	22.83	6.46	0.61	4.20	4.20	0.62
HE0674	3190779.030	-91317.490	78.960	27.00	9.33	10.23	0.58	3.67	3.67	4.00
HE0675	3190824.010	-91338.510	74.000	18.00	13.62	7.22	0.54	3.11	3.11	2.30
HE0676	3190870.020	-91359.670	67.700	21.00	18.99	4.16	0.90	4.01	4.01	0.65
HE0677	3190915.020	-91380.890	61.780	24.00	22.06	5.75	0.73	5.12	5.12	0.39
HE0678	3190953.830	-91406.910	57.310	57.00	21.20	4.75	0.86	5.81	5.81	0.39
HE0679	3191005.040	-91423.030	54.420	30.00	25.82	7.08	0.68	6.27	6.27	0.38
HE0680	3191050.920	-91444.150	52.640	33.00	25.75	7.70	0.53	6.70	6.70	0.49
HE0681	3191095.980	-91465.350	51.510	27.00	30.42	6.53	0.22	5.22	5.22	0.60

BHID	XCOORD	YCOORD	ZCOORD	COMPOSITE LENGTH	SLIME %	THM %	MAGN %	MAGS %	MAGO %	NMAG %
HE0682	3191140.980	-91486.410	45.750	27.00	29.99	4.51	0.11	3.39	3.39	0.61
HE0688	3190735.030	-91352.200	79.270	24.00	15.78	9.72	0.78	5.16	5.16	2.56
HE0689	3190779.310	-91376.880	75.120	27.00	17.71	7.29	0.80	4.63	4.63	1.71
HE0690	3190825.990	-91394.360	67.570	21.00	19.35	5.64	0.89	4.85	4.85	0.60
HE0691	3190871.020	-91415.510	61.540	18.00	26.85	7.35	0.78	6.13	6.13	0.39
HE0692	3190915.940	-91436.670	57.250	24.00	31.48	7.29	0.72	5.76	5.76	0.34
HE0693	3190961.950	-91457.860	53.730	24.00	27.20	7.62	0.72	6.26	6.26	0.29
HE0694	3191007.020	-91478.870	51.990	33.00	24.63	7.00	0.57	5.93	5.93	0.43
HE0695	3191052.020	-91500.100	50.600	30.00	26.25	5.57	0.19	4.46	4.46	0.32
HE0696	3191098.000	-91521.270	46.250	15.00	31.17	5.86	0.24	3.77	3.77	0.69
HE0702	3190691.000	-91387.000	75.610	48.00	18.04	3.74	0.45	3.30	3.30	0.78
HE0703	3190736.270	-91408.430	75.580	21.00	16.75	5.51	0.64	4.93	4.93	0.52

BHID	XCOORD	YCOORD	ZCOORD	COMPOSITE LENGTH	SLIME %	THM %	MAGN %	MAGS %	MAGO %	NMAG %
HE0704	3190781.930	-91429.210	68.450	21.00	25.25	8.88	1.20	5.60	5.60	0.73
HE0705	3190830.370	-91453.710	61.120	24.00	27.61	8.25	1.13	6.25	6.25	0.46
HE0706	3190873.050	-91471.520	57.580	21.00	29.96	8.45	0.88	6.57	6.57	0.73
HE0707	3190918.020	-91492.630	55.080	30.00	24.56	7.67	0.61	5.11	5.11	0.67
HE0708	3190962.990	-91513.740	52.100	30.00	25.80	7.23	0.53	5.36	5.36	0.63
HE0709	3191008.950	-91534.840	50.100	24.00	27.67	5.63	0.35	3.96	3.96	0.31
HE0716	3190647.000	-91421.300	74.990	30.00	21.78	4.48	0.62	3.48	3.48	0.43
HE0717	3190691.950	-91442.460	71.640	30.00	22.27	5.42	0.64	4.25	4.25	0.59
HE0718	3190737.900	-91463.620	69.720	36.00	20.39	5.91	0.65	3.85	3.85	0.46
HE0719	3190782.980	-91484.690	62.380	24.00	29.50	7.13	0.93	5.09	5.09	0.69
HE0720	3190827.970	-91505.760	56.760	24.00	30.61	8.48	0.92	5.32	5.32	0.80
HE0721	3190874.030	-91526.910	53.330	33.00	26.28	6.98	0.73	5.02	5.02	0.57

BHID	XCOORD	YCOORD	ZCOORD	COMPOSITE LENGTH	SLIME %	THM %	MAGN %	MAGS %	MAGO %	NMAG %
HE0722	3190919.100	-91548.010	50.470	30.00	24.60	5.87	0.40	4.55	4.55	0.31
HE0723	3190963.990	-91569.270	49.090	39.00	24.11	5.06	0.37	3.47	3.47	0.35
HE0728	3190557.910	-91434.910	79.030	27.00	12.64	8.09	1.09	4.43	4.43	1.65
HE0729	3190603.170	-91456.110	75.590	18.00	15.73	9.43	1.30	5.39	5.39	1.63
HE0730	3190648.550	-91477.150	69.900	18.00	17.64	4.22	0.57	2.71	2.71	0.33
HE0731	3190693.880	-91498.310	66.060	18.00	22.07	5.92	0.78	3.89	3.89	0.37
HE0732	3190739.170	-91519.440	61.070	21.00	23.06	6.02	1.02	4.11	4.11	0.67
HE0733	3190784.520	-91540.500	54.600	24.00	18.53	6.93	1.07	3.98	3.98	0.81
HE0734	3190829.860	-91561.680	51.100	27.00	25.04	5.77	0.66	4.43	4.43	0.30
HE0735	3190875.170	-91582.890	48.230	30.00	24.60	6.58	0.72	4.92	4.92	0.39
HE0736	3190920.440	-91603.890	47.830	36.00	24.97	5.12	0.56	3.68	3.68	0.57
HE0738	3190423.570	-91427.530	89.340	57.00	11.38	5.94	0.54	2.33	2.33	2.41

BHID	XCOORD	YCOORD	ZCOORD	COMPOSITE LENGTH	SLIME %	THM %	MAGN %	MAGS %	MAGO %	NMAG %
HE0739	3190468.850	-91448.580	87.660	30.00	13.37	11.95	1.19	5.75	5.75	3.89
HE0740	3190514.050	-91469.710	80.550	27.00	16.02	7.28	1.18	4.34	4.34	0.88
HE0741	3190559.400	-91490.880	76.010	24.00	20.60	7.00	1.07	3.99	3.99	0.84
HE0742	3190604.700	-91511.980	69.710	21.00	22.07	6.46	0.90	3.90	3.90	0.61
HE0743	3190650.020	-91533.020	64.110	27.00	20.31	5.06	0.75	2.98	2.98	0.51
HE0744	3190695.300	-91554.190	57.840	27.00	27.36	7.63	1.18	4.95	4.95	0.44
HE0745	3190740.440	-91575.320	53.200	24.00	24.91	8.25	1.07	5.43	5.43	0.46
HE0746	3190785.940	-91596.480	49.440	27.00	22.17	6.12	0.88	3.98	3.98	0.78
HE0747	3190831.350	-91617.610	47.570	21.00	25.95	7.84	0.99	5.10	5.10	0.50
HE0748	3190876.690	-91638.670	46.750	18.00	27.33	6.11	0.80	4.75	4.75	0.46
HE0751	3190151.770	-91336.730	69.660	12.00	11.77	5.40	0.45	2.15	2.15	2.17
HE0752	3190243.880	-91399.020	84.520	27.00	23.99	6.94	0.59	3.97	3.97	1.43

BHID	XCOORD	YCOORD	ZCOORD	COMPOSITE LENGTH	SLIME %	THM %	MAGN %	MAGS %	MAGO %	NMAG %
HE0753	3190289.250	-91419.970	83.270	24.00	38.85	5.92	0.48	4.03	4.03	0.42
HE0754	3190334.580	-91441.140	86.630	30.00	26.70	5.43	0.60	3.61	3.61	0.38
HE0755	3190379.800	-91462.240	86.400	18.00	19.31	6.61	1.13	4.05	4.05	0.51
HE0756	3190425.130	-91483.440	84.370	33.00	12.96	4.89	0.72	2.42	2.42	1.11
HE0757	3190470.460	-91504.430	80.380	42.00	16.15	4.41	0.67	2.82	2.82	0.52
HE0758	3190515.610	-91525.590	74.170	30.00	19.95	5.47	1.00	3.69	3.69	0.46
HE0759	3190560.910	-91546.720	68.020	21.00	23.49	6.01	1.09	4.47	4.47	0.41
HE0760	3190606.300	-91567.830	62.800	33.00	23.04	5.08	0.74	3.28	3.28	0.33
HE0761	3190651.610	-91589.000	57.990	33.00	22.06	4.83	0.74	3.06	3.06	0.33
HE0762	3190697.070	-91610.100	52.940	24.00	19.76	5.28	0.91	3.30	3.30	0.37
HE0763	3190742.200	-91631.330	49.520	24.00	23.26	6.12	0.78	4.06	4.06	0.33
HE0764	3190787.580	-91652.300	47.570	18.00	22.98	5.21	0.75	3.93	3.93	0.44

BHID	XCOORD	YCOORD	ZCOORD	COMPOSITE LENGTH	SLIME %	THM %	MAGN %	MAGS %	MAGO %	NMAG %
HE0765	3190832.900	-91673.530	45.820	24.00	29.89	4.97	0.40	3.51	3.51	0.65
HE0770	3190245.370	-91454.780	83.240	18.00	22.87	4.02	0.58	2.55	2.55	0.30
HE0771	3190290.740	-91475.900	82.940	21.00	22.47	4.40	0.56	2.82	2.82	0.36
HE0772	3190336.110	-91497.000	82.950	30.00	20.53	5.15	0.80	3.26	3.26	0.37
HE0773	3190381.370	-91518.100	81.480	33.00	18.35	8.57	1.23	5.03	5.03	1.24
HE0774	3190426.490	-91539.190	77.300	24.00	16.29	6.30	1.08	3.82	3.82	0.58
HE0775	3190471.990	-91560.420	71.870	24.00	22.24	7.35	1.28	5.19	5.19	0.60
HE0776	3190517.310	-91581.560	65.940	15.00	23.08	7.10	1.35	5.60	5.60	0.57
HE0777	3190562.670	-91602.620	60.650	33.00	20.35	4.31	0.92	4.01	4.01	0.39
HE0778	3190607.930	-91623.820	56.550	24.00	21.06	5.47	0.92	3.37	3.37	0.38
HE0779	3190653.280	-91644.800	52.190	18.00	21.11	6.17	0.87	4.01	4.01	0.39
HE0781	3190743.970	-91687.180	46.920	24.00	24.28	5.53	0.53	4.29	4.29	0.35

BHID	XCOORD	YCOORD	ZCOORD	COMPOSITE LENGTH	SLIME %	THM %	MAGN %	MAGS %	MAGO %	NMAG %
HE0787	3190156.510	-91467.780	81.490	27.00	24.25	6.12	0.72	3.98	3.98	0.49
HE0788	3190201.530	-91489.610	79.900	9.00	27.57	4.99	0.66	3.24	3.24	0.33
HE0789	3190246.930	-91510.640	79.680	12.00	20.93	7.21	1.03	4.65	4.65	0.50
HE0790	3190292.250	-91531.730	80.020	15.00	25.66	7.64	1.10	5.01	5.01	0.39
HE0791	3190337.550	-91552.900	78.630	12.00	28.45	8.87	1.38	5.61	5.61	0.61
HE0792	3190382.800	-91574.030	74.890	12.00	19.05	6.11	1.09	3.73	3.73	0.44
HE0794	3190473.490	-91616.330	63.760	12.00	19.83	6.85	1.09	4.37	4.37	0.39
HE0796	3190564.170	-91658.530	54.890	15.00	20.76	5.83	0.78	3.90	3.90	0.27
HE0797	3190609.440	-91679.580	51.540	6.00	20.65	8.35	1.37	5.10	5.10	0.63
HE0798	3190654.810	-91700.730	47.820	15.00	22.38	5.57	0.60	3.70	3.70	0.38
HE0799	3190700.180	-91721.860	45.270	9.00	23.94	4.22	0.47	2.61	2.61	0.43
HE0801	3190112.770	-91502.590	78.870	75.00	17.79	4.01	0.59	3.00	3.00	0.68

BHID	XCOORD	YCOORD	ZCOORD	COMPOSITE LENGTH	SLIME %	THM %	MAGN %	MAGS %	MAGO %	NMAG %
HE0802	3190159.900	-91520.550	77.950	30.00	27.10	5.65	0.67	3.80	3.80	0.35
HE0803	3190203.370	-91544.800	77.210	21.00	20.58	3.85	0.55	2.69	2.69	0.41
HE0804	3190248.480	-91566.500	76.690	18.00	19.11	5.56	1.26	5.03	5.03	0.50
HE0805	3190293.730	-91587.670	75.790	27.00	17.00	8.19	1.02	4.36	4.36	1.81
HE0806	3190339.060	-91608.760	72.530	27.00	18.87	6.21	1.04	3.42	3.42	0.98
HE0807	3190384.470	-91629.930	67.480	24.00	24.60	6.99	1.16	4.33	4.33	0.55
HE0808	3190429.890	-91651.030	61.160	30.00	21.53	5.54	0.95	3.44	3.44	0.38
HE0809	3190475.000	-91672.270	56.540	27.00	22.16	5.73	0.66	3.85	3.85	0.33
HE0810	3190520.390	-91693.280	53.030	15.00	15.88	3.80	0.55	2.48	2.48	0.21
HE0811	3190565.690	-91714.310	49.480	24.00	21.29	3.96	0.51	2.60	2.60	0.27
HE0812	3190611.080	-91735.530	46.610	15.00	24.07	4.69	0.46	3.20	3.20	0.29
HE0813	3190656.690	-91756.630	44.420	18.00	27.37	4.26	0.34	2.72	2.72	0.45

BHID	XCOORD	YCOORD	ZCOORD	COMPOSITE LENGTH	SLIME %	THM %	MAGN %	MAGS %	MAGO %	NMAG %
HE0814	3190023.630	-91516.290	75.830	24.00	27.61	5.94	0.69	3.75	3.75	0.55
HE0815	3190069.030	-91537.330	76.960	21.00	28.20	6.62	0.85	4.21	4.21	0.56
HE0816	3190114.060	-91559.110	75.420	24.00	26.28	4.94	0.59	3.25	3.25	0.33
HE0817	3190159.650	-91579.530	74.710	18.00	32.17	5.25	0.61	3.57	3.57	0.27
HE0818	3190204.750	-91601.260	74.150	24.00	28.04	5.65	0.68	3.76	3.76	0.34
HE0819	3190249.960	-91622.400	73.020	48.00	16.77	4.42	0.70	2.75	2.75	0.80
HE0821	3190340.710	-91664.620	65.550	27.00	27.18	5.87	0.99	3.49	3.49	0.52
HE0822	3190385.900	-91685.810	59.080	24.00	26.39	6.35	0.96	3.94	3.94	0.50
HE0823	3190431.260	-91706.900	54.460	30.00	16.64	4.56	0.77	2.85	2.85	0.31
HE0824	3190476.590	-91728.030	50.910	21.00	24.52	4.37	0.49	2.99	2.99	0.21
HE0825	3190521.910	-91749.100	48.460	21.00	27.00	4.73	0.54	3.12	3.12	0.21
HE0826	3190567.150	-91770.300	45.740	24.00	18.51	2.07	0.32	1.30	1.30	0.13

BHID	XCOORD	YCOORD	ZCOORD	COMPOSITE LENGTH	SLIME %	THM %	MAGN %	MAGS %	MAGO %	NMAG %
HE0827	3190612.610	-91791.440	42.480	45.00	0.00	0.00	0.00	0.00	0.00	0.00
HE0828	3189979.850	-91550.980	75.890	75.00	14.92	4.82	0.45	2.36	2.36	1.54
HE0829	3190024.800	-91572.330	74.950	24.00	25.57	5.31	0.68	3.99	3.99	0.39
HE0830	3190070.550	-91593.270	73.560	24.00	26.47	4.45	0.55	2.89	2.89	0.31
HE0831	3190115.540	-91614.920	72.570	21.00	29.95	3.70	0.42	2.78	2.78	0.33
HE0832	3190160.880	-91636.030	71.820	21.00	25.80	3.94	0.60	3.10	3.10	0.27
HE0833	3190206.310	-91657.200	70.800	27.00	23.34	3.89	0.63	3.09	3.09	0.32
HE0834	3190251.550	-91678.280	68.030	18.00	20.78	8.53	1.54	5.35	5.35	0.54
HE0835	3190296.850	-91699.420	63.530	21.00	21.76	5.24	0.80	3.34	3.34	0.35
HE0836	3190342.190	-91720.500	57.610	27.00	21.48	5.08	0.76	3.20	3.20	0.37
HE0837	3190387.490	-91741.670	53.190	21.00	24.71	4.67	0.73	2.99	2.99	0.28
HE0838	3190432.800	-91762.850	49.630	21.00	25.15	4.45	0.63	3.39	3.39	0.28

BHID	XCOORD	YCOORD	ZCOORD	COMPOSITE LENGTH	SLIME %	THM %	MAGN %	MAGS %	MAGO %	NMAG %
HE0839	3190478.110	-91783.870	47.370	21.00	20.04	2.70	0.40	2.31	2.31	0.19
HE0840	3190523.460	-91805.110	44.340	15.00	17.52	2.26	0.43	1.54	1.54	0.24
HE0841	3190568.810	-91826.190	40.370	15.00	23.02	2.06	0.20	2.21	2.21	0.67
HE0842	3190026.740	-91628.030	71.750	24.00	24.86	3.69	0.40	2.35	2.35	0.25
HE0843	3190072.070	-91649.010	70.660	21.00	28.06	2.83	0.18	1.71	1.71	0.20
HE0844	3190117.130	-91670.840	69.760	18.00	20.48	4.01	0.52	2.34	2.34	0.49
HE0845	3190162.600	-91691.250	68.950	21.00	26.50	5.03	0.64	3.31	3.31	0.30
HE0846	3190207.990	-91712.400	66.510	15.00	29.04	6.37	1.01	3.95	3.95	0.43
HE0847	3190253.120	-91734.160	60.870	18.00	24.49	4.50	0.61	2.95	2.95	0.26
HE0848	3190298.570	-91754.620	56.330	18.00	23.13	4.95	0.60	3.27	3.27	0.28
HE0849	3190343.990	-91775.740	52.530	21.00	25.43	5.83	0.85	3.71	3.71	0.35
HE0850	3190389.260	-91796.960	49.210	18.00	29.80	3.86	0.53	2.44	2.44	0.32

BHID	XCOORD	YCOORD	ZCOORD	COMPOSITE LENGTH	SLIME %	THM %	MAGN %	MAGS %	MAGO %	NMAG %
HE0851	3190434.390	-91818.630	46.240	21.00	25.41	2.38	0.23	1.52	1.52	0.17
HE0852	3190479.790	-91839.150	42.360	18.00	30.70	3.61	0.37	2.23	2.23	0.35
HE0854	3190028.240	-91683.790	68.740	24.00	25.46	1.98	0.24	2.20	2.20	0.22
HE0855	3190073.500	-91704.970	67.920	24.00	28.15	2.91	0.32	2.59	2.59	0.25
HE0856	3190118.900	-91726.100	67.300	18.00	20.67	2.74	0.46	2.31	2.31	0.31
HE0857	3190164.220	-91747.170	65.560	15.00	19.14	3.84	0.77	2.75	2.75	0.39
HE0858	3190209.800	-91768.360	60.150	18.00	15.67	3.24	0.48	1.74	1.74	0.52
HE0859	3190254.850	-91789.480	54.920	18.00	16.01	3.11	0.45	1.89	1.89	0.29
HE0860	3190300.220	-91810.590	50.840	27.00	19.70	3.72	0.58	2.61	2.61	0.26
HE0861	3190345.470	-91831.660	47.960	15.00	17.64	2.74	0.47	1.69	1.69	0.19
HE0862	3190390.890	-91852.730	44.570	15.00	18.56	3.15	0.42	2.46	2.46	0.18
HE0863	3190436.050	-91873.880	41.000	15.00	17.40	1.23	0.22	1.28	1.28	0.11

BHID	XCOORD	YCOORD	ZCOORD	COMPOSITE LENGTH	SLIME %	THM %	MAGN %	MAGS %	MAGO %	NMAG %
HE0864	3190075.120	-91760.870	65.860	24.00	21.33	3.60	0.46	2.23	2.23	0.27
HE0866	3190165.720	-91803.040	57.280	36.00	13.29	7.13	0.74	3.28	3.28	2.33
HE0867	3190211.090	-91824.190	53.300	27.00	19.38	5.55	0.71	3.49	3.49	0.53
HE0868	3190256.260	-91845.330	48.890	21.00	18.78	3.49	0.47	2.18	2.18	0.27
HE0869	3190301.750	-91866.460	45.750	21.00	21.16	3.88	0.63	2.37	2.37	0.25
HE0870	3190347.020	-91887.580	40.240	18.00	22.78	3.33	0.33	2.11	2.11	0.22
HE0871	3190392.300	-91908.630	40.240	21.00	22.69	2.33	0.15	1.49	1.49	0.12
HE0872	3189986.000	-91774.570	64.880	69.00	21.07	3.95	0.48	2.78	2.78	0.39
HE0873	3190076.590	-91816.650	63.950	27.00	22.90	5.13	0.77	3.11	3.11	0.41
HE0874	3190121.960	-91837.900	56.310	27.00	18.42	5.33	0.80	3.27	3.27	0.51
HE0875	3190165.150	-91859.080	52.390	30.00	17.91	5.72	0.77	3.59	3.59	0.54
HE0876	3190212.650	-91880.040	47.870	18.00	18.30	4.94	0.79	3.78	3.78	0.40

BHID	XCOORD	YCOORD	ZCOORD	COMPOSITE LENGTH	SLIME %	THM %	MAGN %	MAGS %	MAGO %	NMAG %
HE0877	3190257.910	-91901.250	44.590	18.00	19.17	2.17	0.45	2.49	2.49	0.29
HE0878	3190303.160	-91922.430	42.110	18.00	22.63	3.30	0.53	3.49	3.49	0.25
HE0879	3190348.440	-91943.460	39.890	21.00	26.30	2.58	0.37	2.64	2.64	0.20
HE0880	3189987.550	-91830.300	65.270	27.00	23.49	3.05	0.38	1.83	1.83	0.25
HE0881	3190032.900	-91851.500	61.260	24.00	26.50	6.95	0.88	4.31	4.31	0.73
HE0882	3190078.150	-91872.620	54.960	30.00	17.77	6.26	1.01	3.35	3.35	1.11
HE0883	3190123.440	-91893.810	52.180	54.00	15.55	7.00	0.79	3.50	3.50	1.88
HE0884	3190168.820	-91914.850	49.180	33.00	21.99	4.92	0.63	3.14	3.14	0.31
HE0885	3190211.580	-91933.340	46.240	18.00	22.63	3.04	0.42	1.77	1.77	0.22
HE0886	3190259.530	-91957.070	42.830	18.00	20.51	2.58	0.25	1.52	1.52	0.25
HE0887	3190304.820	-91978.140	40.190	45.00	19.03	2.13	0.27	1.33	1.33	0.15
HE0888	3189989.060	-91886.150	57.850	27.00	22.32	4.44	0.57	2.82	2.82	0.39

BHID	XCOORD	YCOORD	ZCOORD	COMPOSITE LENGTH	SLIME %	THM %	MAGN %	MAGS %	MAGO %	NMAG %
HE0889	3190034.450	-91907.400	54.740	36.00	19.51	5.09	0.75	2.82	2.82	0.84
HE0890	3190079.770	-91928.460	52.120	39.00	20.93	5.17	0.76	3.23	3.23	0.43
HE0891	3190125.010	-91949.650	51.150	39.00	20.20	4.90	0.61	3.14	3.14	0.42
HE0892	3190170.400	-91970.770	49.220	24.00	22.79	3.19	0.35	2.03	2.03	0.17
HE0893	3190215.670	-91991.940	45.230	21.00	22.55	2.74	0.36	2.39	2.39	0.18
HE0894	3190261.020	-92013.030	42.330	18.00	24.59	2.43	0.34	1.93	1.93	0.18
HE0895	3189987.480	-91939.020	53.490	30.00	18.41	5.96	0.95	3.71	3.71	0.45
HE0896	3190033.290	-91960.590	52.970	39.00	21.07	5.71	0.83	3.67	3.67	0.41
HE0897	3190078.670	-91981.630	50.930	30.00	24.32	4.58	0.53	3.08	3.08	0.28
HE0898	3190123.930	-92002.790	49.660	33.00	20.49	3.99	0.46	2.61	2.61	0.27
HE0899	3190169.240	-92023.960	47.940	24.00	23.81	3.07	0.30	2.08	2.08	0.20
HE0901	3189989.010	-91994.950	51.800	54.00	22.11	4.82	0.69	3.11	3.11	0.33

BHID	XCOORD	YCOORD	ZCOORD	COMPOSITE LENGTH	SLIME %	THM %	MAGN %	MAGS %	MAGO %	NMAG %
HE0902	3190034.810	-92016.430	49.430	39.00	20.59	3.97	0.55	2.53	2.53	0.27
HE0903	3190080.130	-92037.560	47.840	27.00	22.59	3.94	0.45	2.55	2.55	0.24
HE0904	3190125.530	-92058.750	48.280	45.00	21.31	3.24	0.38	2.12	2.12	0.23
HE0906	3191215.790	-90801.040	79.930	30.00	5.77	23.62	1.12	8.81	8.81	12.06
HE0907	3191209.100	-90690.500	72.830	27.00	16.38	6.92	0.57	4.35	4.35	0.96
HE0934	3189483.173	-91374.948	39.882	90.00	14.60	8.73	0.47	3.49	3.49	3.56
HE0996	3189196.642	-91523.315	30.930	42.00	37.00	2.24	0.07	1.52	1.52	0.12
HE0954	3189620.551	-91494.471	62.999	90.00	20.56	5.71	0.59	3.67	3.67	0.57
HE0955	3189666.245	-91515.240	58.576	90.00	25.90	5.36	0.58	3.50	3.50	0.40
HE0956	3189714.814	-91539.691	67.054	108.00	23.08	5.88	0.69	3.77	3.77	0.52
HE0967	3189576.331	-91528.497	67.576	117.00	20.67	7.11	0.74	4.85	4.85	0.41
HE0968	3189622.216	-91549.656	59.194	117.00	23.36	6.53	0.78	4.34	4.34	0.38

BHID	XCOORD	YCOORD	ZCOORD	COMPOSITE LENGTH	SLIME %	THM %	MAGN %	MAGS %	MAGO %	NMAG %
HE0969	3189667.328	-91570.776	63.690	117.00	24.68	6.72	0.91	4.29	4.29	0.50
HE0625	3189832.544	-91271.713	53.891	162.00	11.59	11.40	0.64	5.26	5.26	4.03
HE0699	3189614.402	-91270.783	39.058	108.00	18.66	3.85	0.35	1.93	1.93	0.88
HE0916	3189526.902	-91340.138	40.030	99.00	18.15	9.41	0.49	3.75	3.75	3.85
HE0919	3189667.269	-91405.317	65.434	141.00	17.65	10.31	0.94	5.61	5.61	2.28
HE0937	3189627.210	-91440.395	65.489	153.00	17.27	9.29	0.90	5.64	5.64	1.35
HE0667	3189658.232	-91235.941	35.779	90.00	17.82	7.61	0.48	3.52	3.52	2.51
HE0768	3189570.641	-91305.425	40.359	90.00	12.56	7.76	0.45	3.35	3.35	2.82
HE0950	3189439.557	-91409.086	38.451	90.00	19.72	9.69	0.51	3.93	3.93	3.86
HE0666	3189612.968	-91214.861	29.057	108.00	25.29	2.16	0.14	1.19	1.19	0.18
HE0698	3189523.602	-91228.421	30.421	117.00	21.83	5.47	0.27	2.44	2.44	1.79
HE0766	3189480.147	-91263.232	32.456	108.00	26.68	4.70	0.31	2.44	2.44	1.06

BHID	XCOORD	YCOORD	ZCOORD	COMPOSITE LENGTH	SLIME %	THM %	MAGN %	MAGS %	MAGO %	NMAG %
HE0767	3189528.741	-91281.950	35.829	81.00	18.18	8.59	0.44	2.52	2.52	3.67
HE0914	3189436.375	-91298.296	33.087	81.00	34.67	5.10	0.30	2.63	2.63	1.27
HE0932	3189392.263	-91332.481	33.600	90.00	35.19	5.24	0.34	3.05	3.05	0.95
HE0930	3189301.739	-91290.377	23.674	63.00	36.74	6.20	0.21	4.56	4.56	0.28
HE0947	3189303.342	-91346.267	25.920	90.00	41.32	3.70	0.24	2.50	2.50	0.16
HE0948	3189348.889	-91366.759	29.349	72.00	29.06	6.77	0.51	4.61	4.61	0.62
HE0949	3189395.778	-91388.680	34.467	81.00	20.77	9.55	0.92	5.43	5.43	1.84
HE0951	3189484.680	-91430.706	42.896	99.00	12.79	7.63	0.43	2.92	2.92	3.10
HE0962	3189350.473	-91422.768	29.656	90.00	33.39	6.01	0.52	4.10	4.10	0.32
HE0964	3189441.178	-91464.730	38.324	90.00	23.45	5.88	0.54	3.52	3.52	0.82
HE0965	3189485.108	-91486.851	47.262	117.00	24.20	7.38	0.60	4.21	4.21	1.41
HE0920	3189708.436	-91424.536	56.211	45.00	15.61	11.33	0.96	6.78	6.78	2.14

BHID	XCOORD	YCOORD	ZCOORD	COMPOSITE LENGTH	SLIME %	THM %	MAGN %	MAGS %	MAGO %	NMAG %
HE0921	3189754.353	-91445.775	51.242	33.00	17.44	10.57	1.07	6.91	6.91	1.02
HE0938	3189663.680	-91462.963	59.271	36.00	18.39	7.33	0.78	4.95	4.95	0.49
HE0939	3189710.343	-91480.325	57.006	33.00	17.64	6.31	0.76	4.14	4.14	0.43
HE0940	3189754.464	-91489.809	59.896	39.00	19.26	5.67	0.70	3.38	3.38	0.68
HE0616	3190057.450	-91303.684	52.300	54.00	13.11	2.94	0.23	1.17	1.17	0.91
HE0685	3190066.206	-91426.067	49.189	51.00	9.49	4.90	0.29	1.28	1.28	2.36
HE0724	3189984.007	-91441.490	39.606	39.00	12.48	4.68	0.38	1.77	1.77	1.58
HE0725	3190015.880	-91453.769	49.250	78.00	10.28	5.32	0.37	1.66	1.66	2.46
HE0865	3189887.983	-91457.598	49.929	51.00	11.13	3.47	0.24	1.29	1.29	1.23
HE0909	3189932.153	-91475.736	51.593	51.00	10.82	6.73	0.39	2.52	2.52	2.98
HE0655	3190190.341	-91396.571	86.992	69.00	18.15	4.69	0.49	2.70	2.70	0.64
HE0923	3189838.218	-91492.991	70.880	60.00	16.34	6.57	0.48	3.38	3.38	1.54

BHID	XCOORD	YCOORD	ZCOORD	COMPOSITE LENGTH	SLIME %	THM %	MAGN %	MAGS %	MAGO %	NMAG %
HE0925	3189935.384	-91530.224	74.839	63.00	18.83	5.97	0.56	3.34	3.34	1.12
HE0942	3189838.376	-91539.808	71.538	60.00	16.91	7.10	0.41	2.79	2.79	2.62
HE0917	3189572.128	-91361.305	46.930	33.00	14.01	10.19	0.64	4.96	4.96	3.40
HE0935	3189528.344	-91395.936	44.785	33.00	20.03	8.62	0.61	4.47	4.47	2.22
HE0936	3189562.885	-91411.733	50.287	33.00	10.73	12.40	0.86	6.21	6.21	3.87
HE0952	3189530.098	-91451.215	49.332	30.00	14.78	9.70	0.87	5.49	5.49	2.01
HE0712	3189799.696	-91357.188	54.644	42.00	18.62	8.88	0.80	5.19	5.19	1.70
HE0793	3189752.396	-91389.900	56.103	48.00	16.95	9.38	0.79	5.29	5.29	1.97
HE0926	3189980.400	-91551.427	75.772	60.00	17.63	5.47	0.41	2.44	2.44	2.03
HE0927	3190016.432	-91571.252	74.978	60.00	18.08	3.35	0.41	1.90	1.90	0.37
HE0943	3189891.506	-91564.842	73.568	63.00	16.84	3.99	0.39	2.25	2.25	0.67
HE0621	3190104.589	-91339.322	57.017	57.00	10.36	4.37	0.34	1.63	1.63	1.66

BHID	XCOORD	YCOORD	ZCOORD	COMPOSITE LENGTH	SLIME %	THM %	MAGN %	MAGS %	MAGO %	NMAG %
HE0910	3189985.874	-91500.138	61.122	63.00	13.19	4.24	0.39	1.86	1.86	1.14
HE0613	3190146.798	-91306.232	56.808	60.00	8.89	5.88	0.30	2.00	2.00	2.60
HE0980	3189576.828	-91582.019	60.183	60.00	24.47	4.97	0.61	3.01	3.01	0.47
HE1000	3189399.991	-91611.735	48.624	54.00	29.41	6.09	0.63	2.82	2.82	1.53
HE1002	3189490.728	-91653.894	51.447	60.00	31.99	5.36	0.62	3.20	3.20	0.55
HE1010	3189401.775	-91667.671	45.660	51.00	29.80	5.49	0.61	3.05	3.05	0.84
HE1011	3189447.023	-91688.750	47.274	54.00	34.89	4.99	0.50	3.25	3.25	0.34
HE1016	3189264.824	-91657.198	36.668	39.00	44.02	4.68	0.49	3.04	3.04	0.34
HE1007	3189265.837	-91604.101	39.390	39.00	42.33	5.28	0.44	3.62	3.62	0.31
HE1008	3189298.333	-91614.035	41.435	48.00	42.86	5.36	0.54	3.05	3.05	0.78
HE1021	3189216.210	-91689.839	31.569	33.00	43.35	4.37	0.34	2.97	2.97	0.31
HE1028	3189206.256	-91742.774	29.418	33.00	43.91	4.13	0.29	2.74	2.74	0.22

BHID	XCOORD	YCOORD	ZCOORD	COMPOSITE LENGTH	SLIME %	THM %	MAGN %	MAGS %	MAGO %	NMAG %
HE0978	3189484.639	-91524.079	53.140	36.00	11.89	11.71	1.02	5.21	5.21	4.02
HE1030	3189342.461	-91811.262	41.495	36.00	31.64	8.34	0.65	3.76	3.76	2.76
HE1052	3189182.906	-91952.973	24.832	33.00	45.21	1.41	0.06	0.75	0.75	0.15
HE1056	3189177.041	-92008.459	24.514	33.00	43.80	1.49	0.09	0.93	0.93	0.06
HE1014	3189174.205	-91614.887	32.400	36.00	40.49	2.95	0.17	1.93	1.93	0.14
HE1034	3189168.510	-91772.226	26.444	39.00	41.50	4.98	0.38	3.39	3.39	0.28
HE1040	3189133.526	-91806.791	23.059	39.00	49.22	2.92	0.15	1.99	1.99	0.16
HE0638	3190018.909	-91347.571	30.837	33.00	13.14	3.16	0.22	1.15	1.15	0.99
HE0960	3189257.391	-91370.052	26.102	42.00	38.19	3.52	0.28	2.38	2.38	0.17
HE0972	3189206.109	-91402.515	27.050	33.00	40.54	3.63	0.14	2.49	2.49	0.14
HE0983	3189161.667	-91451.921	27.014	39.00	44.74	2.01	0.10	1.24	1.24	0.12
HE0992	3189579.653	-91640.203	55.027	99.00	24.81	7.14	0.94	4.74	4.74	0.38

BHID	XCOORD	YCOORD	ZCOORD	COMPOSITE LENGTH	SLIME %	THM %	MAGN %	MAGS %	MAGO %	NMAG %
HE0961	3189307.381	-91421.007	30.451	45.00	33.03	3.46	0.26	2.22	2.22	0.14
HE0973	3189263.509	-91430.097	30.992	48.00	40.81	3.51	0.21	2.25	2.25	0.32
HE0981	3189623.577	-91605.467	58.396	90.00	24.75	11.32	1.36	7.08	7.08	1.41
HE1013	3189122.451	-91574.339	25.289	36.00	43.59	2.95	0.20	1.42	1.42	0.61
HE0974	3189308.029	-91469.580	35.207	42.00	33.40	5.98	0.66	3.68	3.68	0.51
HE0975	3189357.234	-91488.351	34.433	42.00	34.80	7.76	0.72	4.63	4.63	1.18
HE0985	3189262.967	-91492.085	35.180	42.00	36.33	4.76	0.44	3.19	3.19	0.14
HE0997	3189225.484	-91557.627	35.134	42.00	42.87	5.37	0.36	3.81	3.81	0.17
HE0713	3189839.114	-91374.257	35.842	45.00	14.12	3.46	0.28	1.61	1.61	0.72
HE0715	3189920.421	-91407.801	33.181	36.00	12.25	4.37	0.22	1.24	1.24	2.17
HE0795	3189793.582	-91435.945	49.259	48.00	16.30	6.87	0.60	3.98	3.98	1.06
HE0977	3189441.717	-91530.609	45.580	51.00	29.40	8.20	0.80	3.44	3.44	2.70

BHID	XCOORD	YCOORD	ZCOORD	COMPOSITE LENGTH	SLIME %	THM %	MAGN %	MAGS %	MAGO %	NMAG %
HE0986	3189308.798	-91513.326	40.982	45.00	36.92	6.74	0.65	4.41	4.41	0.51
HE0987	3189347.737	-91536.092	39.487	45.00	35.47	8.14	0.66	3.59	3.59	2.66
HE0673	3189963.419	-91352.177	24.451	24.00	15.47	4.92	0.35	2.62	2.62	1.11
HE0683	3189975.889	-91383.792	30.114	30.00	12.01	3.91	0.23	1.31	1.31	1.52
HE0988	3189398.479	-91555.847	42.469	42.00	33.57	8.43	0.49	4.07	4.07	2.87
HE0989	3189314.478	-91557.045	42.967	45.00	21.65	8.86	0.93	4.91	4.91	1.84
HE0749	3189389.423	-91220.804	24.166	27.00	39.43	4.59	0.30	3.10	3.10	0.27
HE0750	3189434.496	-91242.038	29.061	42.00	38.80	2.53	0.15	1.48	1.48	0.18
HE0913	3189391.044	-91276.813	28.028	42.00	37.71	3.22	0.19	2.12	2.12	0.15
HE0931	3189347.184	-91311.674	28.195	42.00	34.33	4.80	0.25	3.16	3.16	0.15
HE0990	3189440.662	-91625.383	50.817	45.00	27.65	8.12	0.90	4.12	4.12	1.89
HE0924	3189889.459	-91509.045	73.633	60.00	12.90	9.78	0.51	3.78	3.78	4.08

BHID	XCOORD	YCOORD	ZCOORD	COMPOSITE LENGTH	SLIME %	THM %	MAGN %	MAGS %	MAGO %	NMAG %
HE1093	3192007.142	-90108.618	50.541	117.00	22.39	4.62	0.47	2.99	2.99	0.23
HE1062	3191876.056	-90714.029	43.609	126.00	22.92	3.74	0.35	2.18	2.18	0.34
HE1065	3191971.216	-90704.064	40.389	126.00	23.45	3.18	0.31	1.94	1.94	0.19
HE1066	3191926.788	-90631.831	40.988	126.00	23.57	2.91	0.27	1.71	1.71	0.19
HE1067	3191967.647	-90496.444	40.695	126.00	23.35	2.76	0.22	1.61	1.61	0.16
HE1079	3191957.487	-90255.287	45.317	96.00	19.79	3.95	0.42	2.64	2.64	0.19
HE1084	3192004.932	-90225.825	47.044	90.00	19.81	4.08	0.42	2.69	2.69	0.26
HE1087	3192003.385	-90167.439	48.473	108.00	21.93	2.46	0.17	1.58	1.58	0.12
HE1088	3192061.820	-90190.522	44.217	90.00	22.46	2.86	0.31	1.83	1.83	0.19
HE1094	3192061.164	-90137.821	45.624	90.00	23.56	2.71	0.19	1.78	1.78	0.13
HE1110	3192061.042	-90080.415	47.931	108.00	24.78	3.62	0.26	2.40	2.40	0.17
HE1090	3192164.236	-90240.980	38.578	90.00	27.86	3.89	0.37	2.39	2.39	0.23

BHID	XCOORD	YCOORD	ZCOORD	COMPOSITE LENGTH	SLIME %	THM %	MAGN %	MAGS %	MAGO %	NMAG %
HE1098	3192265.647	-90229.596	40.347	90.00	24.25	3.78	0.27	2.40	2.40	0.27
HE1091	3192213.626	-90266.402	37.506	90.00	26.62	3.07	0.25	1.91	1.91	0.18
HE1096	3192161.486	-90185.366	40.820	90.00	21.04	2.93	0.27	1.82	1.82	0.21
HE1068	3192013.094	-90510.681	39.223	126.00	24.53	4.08	0.17	2.64	2.64	0.34
HE1076	3192010.421	-90336.677	39.483	108.00	24.26	3.49	0.38	2.11	2.11	0.24
HE1081	3192162.872	-90356.960	36.634	111.00	22.72	2.58	0.16	1.52	1.52	0.17
HE1082	3192219.990	-90374.047	36.576	108.00	27.24	2.00	0.09	1.13	1.13	0.14
HE1095	3192111.883	-90165.369	42.475	90.00	22.54	3.32	0.34	2.12	2.12	0.24
HE1111	3192108.533	-90107.801	48.441	108.00	22.11	4.57	0.42	2.85	2.85	0.26
HE1112	3192160.085	-90131.255	43.644	90.00	23.74	2.93	0.27	1.84	1.84	0.20
HE1113	3192212.614	-90158.821	42.908	99.00	24.21	3.45	0.27	2.20	2.20	0.25
HE1114	3192261.365	-90180.382	42.452	108.00	25.82	3.47	0.29	2.12	2.12	0.26

BHID	XCOORD	YCOORD	ZCOORD	COMPOSITE	SLIME %	THM %	MAGN %	MAGS %	MAGO %	NMAG %
HE1116	3192110.724	-90051.399	46.398	117.00	27.68	2.69	0.18	1.75	1.75	0.15
HE1117	3192159.130	-90074.279	43.489	108.00	25.16	3.58	0.34	2.16	2.16	0.27
HE1118	3192209.722	-90101.515	43.856	99.00	25.19	3.98	0.39	2.52	2.52	0.22
HE1119	3192259.567	-90123.608	39.709	90.00	23.90	3.16	0.26	2.01	2.01	0.17
HE1121	3192208.515	-90042.440	41.136	84.00	21.53	5.32	0.71	3.18	3.18	0.43
HE1122	3192258.149	-90067.234	39.377	90.00	23.60	3.59	0.37	2.20	2.20	0.22

12 Addendum D

Reverse Circulation drillhole information

BHID	XCOORD	YCOORD	ZCOORD	LENGTH	SLIME %	THM %	MAGN %	MAGS %	MAGO %	NMAG %
HE0293	3191748.71	-90831.80	44.61	21.00	35.37	5.28	0.29	3.66	0.35	0.95
HE0296	3191794.01	-90852.98	40.88	24.00	39.02	3.60	0.21	2.51	0.46	0.76
HE0297	3191509.820	-90279.180	0.000	33.00	29.44	6.96	1.41	5.71	0.52	1.35
HE0313	3191839.330	-90874.050	38.830	27.00	35.91	3.25	0.20	2.08	0.56	0.68
HE0331	3191690.620	-90422.200	58.510	18.00	36.25	2.58	0.31	2.31	0.22	0.55
HE0343	3191467.600	-90369.780	63.910	27.00	29.04	4.10	0.43	2.94	0.24	0.82
HE0347	3191514.350	-90388.050	62.703	24.00	31.59	3.28	0.43	2.75	0.26	0.70
HE0348	3191693.940	-90475.420	56.060	21.00	35.08	3.67	0.76	2.95	0.33	0.76

BHID	XCOORD	YCOORD	ZCOORD	COMPOSITE LENGTH	SLIME %	THM %	MAGN %	MAGS %	MAGO %	NMAG %
HE0349	3191739.020	-90496.630	51.676	9.00	33.70	3.12	0.77	3.55	0.32	0.82
HE0359	3191423.780	-90404.580	61.381	24.00	30.54	3.85	0.51	3.83	0.31	1.04
HE0360	3191472.760	-90421.480	63.990	30.00	29.66	2.55	0.38	1.76	0.24	0.55
HE0361	3191514.000	-90446.880	61.600	21.00	32.50	3.15	0.50	2.23	0.26	0.56
HE0363	3191604.950	-90489.100	61.008	21.00	31.35	3.73	0.71	2.99	0.39	0.83
HE0364	3191650.040	-90510.160	58.470	24.00	31.40	4.95	0.63	3.04	0.36	0.91
HE0377	3191425.580	-90460.500	65.430	21.00	31.81	3.09	0.46	2.27	0.22	0.58
HE0378	3191470.650	-90481.610	64.000	18.00	35.42	3.90	0.65	3.29	0.35	0.79
HE0379	3191515.940	-90502.760	63.956	21.00	27.60	3.02	0.80	2.10	0.33	0.54
HE0381	3191607.020	-90544.970	61.625	24.00	31.78	5.46	0.99	3.45	0.49	1.10
HE0391	3191384.130	-90490.480	66.620	18.00	31.68	3.92	0.67	2.80	0.31	0.73
HE0392	3191426.890	-90516.310	66.204	18.00	32.60	2.30	0.42	3.27	0.55	0.81

BHID	XCOORD	YCOORD	ZCOORD	COMPOSITE LENGTH	SLIME %	THM %	MAGN %	MAGS %	MAGO %	NMAG %
HE0398	3191471.430	-90539.310	66.380	18.00	26.52	4.00	0.58	2.48	0.30	0.62
HE0399	3191518.050	-90558.610	66.598	30.00	29.88	3.88	0.76	2.86	0.36	0.70
HE0400	3191563.010	-90579.790	62.994	24.00	29.03	3.84	0.72	2.47	0.33	0.66
HE0408	3191390.260	-90541.360	67.656	18.00	28.95	1.69	0.23	1.94	0.19	0.51
HE0409	3191434.120	-90562.930	67.111	18.00	31.19	1.86	0.29	1.25	0.20	0.34
HE0410	3191480.780	-90583.710	68.690	24.00	29.12	3.46	0.52	2.10	0.56	0.58
HE0411	3191524.460	-90606.810	66.550	24.00	27.86	3.95	0.50	2.54	0.44	0.79
HE0412	3191560.670	-90623.100	63.100	24.00	28.82	3.23	0.27	2.28	0.37	0.61
HE0413	3191610.150	-90660.940	59.560	24.00	24.99	4.08	0.37	2.71	0.31	0.67
HE0421	3191339.240	-90585.920	70.280	21.00	27.02	0.98	0.44	1.97	0.26	0.50
HE0422	3191384.690	-90606.990	71.278	15.00	25.59	4.67	0.91	3.43	0.40	0.86
HE0425	3191520.480	-90670.400	64.959	30.00	20.50	2.87	0.22	1.32	0.89	0.43

BHID	XCOORD	YCOORD	ZCOORD	COMPOSITE LENGTH	SLIME %	THM %	MAGN %	MAGS %	MAGO %	NMAG %
HE0426	3191565.870	-90691.390	61.651	29.00	22.36	3.61	0.37	1.91	0.77	0.54
HE0435	3191340.830	-90641.710	75.302	18.00	24.10	3.43	0.86	3.22	0.46	0.81
HE0502	3191392.010	-90886.460	69.800	30.00	27.21	6.05	0.97	3.92	0.61	1.03
HE0503	3191438.030	-90907.480	63.184	30.00	29.28	6.32	0.84	4.74	0.51	1.48
HE0516	3191348.990	-90921.150	72.930	30.00	26.35	7.12	0.81	4.00	0.92	1.37
HE0517	3191394.010	-90942.250	67.270	30.00	27.34	7.59	1.05	5.92	0.67	1.66
HE0518	3191439.010	-90963.470	60.478	30.00	33.33	6.00	0.52	4.11	0.30	1.05
HE0519	3191483.930	-90984.490	55.942	30.00	33.52	5.99	0.58	4.03	0.31	1.05
HE0520	3191530.040	-91005.570	51.570	27.00	34.29	4.85	0.48	3.18	0.30	0.86
HE0521	3191575.030	-91026.850	47.378	30.00	35.62	3.82	0.31	2.85	0.23	0.77
HE0522	3191620.010	-91047.840	44.576	24.00	35.04	3.96	0.31	2.66	0.26	0.72
HE0526	3191304.990	-90955.880	71.533	24.00	31.09	7.19	0.77	3.98	1.26	1.15

BHID	XCOORD	YCOORD	ZCOORD	COMPOSITE LENGTH	SLIME %	THM %	MAGN %	MAGS %	MAGO %	NMAG %
HE0527	3191350.050	-90976.970	64.470	27.00	31.54	7.56	0.72	5.02	0.48	1.31
HE0528	3191395.060	-90998.090	59.630	27.00	34.30	8.14	0.56	5.63	0.43	1.48
HE0529	3191440.960	-91019.340	55.143	27.00	33.16	6.57	0.58	4.53	0.34	1.09
HE0530	3191485.910	-91040.360	51.449	30.00	32.49	6.07	0.58	4.17	0.31	0.99
HE0531	3191531.020	-91061.520	48.838	30.00	31.02	5.23	0.42	3.58	0.28	0.94
HD0072	3192202.900	-90357.760	37.500	20.00	23.27	4.03	0.60	3.65	0.78	0.87
HD0073	3192104.700	-90324.300	38.500	19.00	26.87	4.14	0.43	2.78	0.72	0.70
HD0018A	3191913.400	-90486.030	45.080	26.60	34.38	5.28	0.56	3.53	0.85	0.85
HD0074	3192082.400	-90574.230	35.000	19.00	26.91	3.27	0.22	2.64	0.62	0.62
H0018A	3191673.800	-90832.520	47.000	18.00	26.89	6.43	0.58	4.52	1.02	0.99
H0019A	3191743.600	-90898.590	41.500	12.25	31.30	5.30	0.24	3.32	0.84	0.83
HD0079	3191886.500	-90823.260	40.000	16.50	23.05	6.57	0.70	3.62	1.35	0.93

BHID	XCOORD	YCOORD	ZCOORD	COMPOSITE LENGTH	SLIME %	THM %	MAGN %	MAGS %	MAGO %	NMAG %
HD0080	3191800.800	-90794.010	42.500	16.00	26.93	5.57	0.48	3.20	0.78	0.78
HD0005A	3191812.100	-89985.990	71.500	40.00	6.86	23.67	3.04	8.77	9.61	1.79
HD0081	3191963.900	-89925.200	64.000	30.00	16.34	15.91	2.43	8.22	2.95	1.78
HD0017A	3192002.590	-90271.530	44.000	27.00	22.62	4.80	0.00	0.00	0.00	0.00
HD0017B	3192002.590	-90271.530	44.000	21.00	22.91	6.73	1.29	3.76	0.76	0.91
HD0086	3192237.500	-89939.500	46.000	25.00	25.42	4.43	0.63	3.70	0.72	0.85
HD0088	3192078.100	-90038.250	49.000	28.00	28.24	6.54	0.75	4.94	0.93	1.03
HD0089	3192169.200	-90132.410	41.500	19.00	27.69	4.26	0.48	3.36	0.66	0.74
HD0118	3191759.200	-89936.780	77.830	56.00	5.86	19.39	1.72	6.82	9.45	1.32
HD0120	3191046.100	-90704.790	41.190	20.00	9.94	3.21	0.60	4.70	0.60	1.08
HD0121	3191647.600	-90628.950	56.310	28.00	23.98	4.44	0.68	3.88	0.59	0.85
HD0122	3191800.600	-90915.750	38.940	34.00	27.70	2.68	0.30	2.52	0.52	0.62

BHID	XCOORD	YCOORD	ZCOORD	COMPOSITE LENGTH	SLIME %	THM %	MAGN %	MAGS %	MAGO %	NMAG %
HD0123	3191579.300	-90989.570	46.900	32.00	26.79	5.17	0.54	4.66	0.45	1.08
HD0149	3191937.900	-89801.680	69.850	24.00	16.43	11.58	1.81	6.20	1.90	1.52
HD0129	3191674.990	-90029.230	76.470	32.00	16.65	16.54	2.49	7.06	5.00	1.80
HD0130	3191712.380	-90061.250	70.780	31.00	18.55	18.41	3.61	9.54	3.01	2.14
HD0131	3191749.310	-90094.520	67.300	33.00	24.92	16.08	2.67	9.09	2.09	2.03
HD0134	3191862.030	-90191.750	53.760	33.00	22.92	5.99	0.68	3.61	0.90	0.87
HD0140	3191718.860	-90131.660	67.260	30.00	25.76	17.56	2.40	10.73	1.83	2.37
HE0068	3191577.740	-91039.430	45.810	21.00	31.65	5.79	0.46	3.91	0.59	0.75
HE0004	3191257.380	-91030.024	66.820	21.00	31.76	5.44	0.47	3.48	0.46	0.77
HE0037	3191995.840	-90074.541	52.040	24.00	27.14	6.96	0.65	4.02	0.97	0.95
HE0040	3191799.760	-89660.806	34.640	20.00	16.46	2.99	0.23	1.12	0.53	0.46
HE0060	3191132.580	-90860.686	58.160	30.00	5.96	6.28	0.22	1.23	4.10	0.26

BHID	XCOORD	YCOORD	ZCOORD	COMPOSITE LENGTH	SLIME %	THM %	MAGN %	MAGS %	MAGO %	NMAG %
HE0256	3192046.320	-90082.259	48.590	21.00	31.71	5.76	0.47	3.66	0.46	0.87
HE0257	3192093.440	-90104.075	46.110	24.00	31.71	4.26	0.34	2.04	0.81	0.59
HE0258	3192136.300	-90124.642	43.410	15.00	35.74	5.26	0.68	2.50	1.32	0.82
HE0259	3192229.840	-90165.914	37.200	21.00	26.50	3.54	0.28	1.91	0.32	0.52
HE0229	3192170.000	-90036.000	45.000	21.00	24.16	4.69	0.33	3.04	0.25	0.79
HE0228	3192135.910	-90014.163	48.090	24.00	30.33	5.08	0.36	3.36	0.35	0.85
HE0196	3192224.130	-89945.333	47.400	18.00	28.78	5.62	0.48	3.67	0.49	0.98
HE0163	3192220.200	-89833.909	53.880	33.00	27.13	7.29	0.94	4.38	0.69	1.20
HE0162	3192174.900	-89810.831	55.880	33.00	31.34	7.71	0.92	4.48	0.86	1.31
HE0161	3192130.000	-89788.285	59.280	33.00	28.72	12.14	1.69	6.87	1.04	2.11
HE0194	3192132.300	-89901.103	54.220	30.00	27.37	10.11	1.01	6.67	0.86	1.56
HE0227	3192088.790	-89993.983	52.040	24.00	27.94	8.59	0.89	5.70	0.46	1.53

BHID	XCOORD	YCOORD	ZCOORD	COMPOSITE LENGTH	SLIME %	THM %	MAGN %	MAGS %	MAGO %	NMAG %
HE0226	3192042.140	-89971.496	56.650	30.00	29.12	12.54	1.49	8.30	0.72	2.05
HE0195	3192178.720	-89924.099	49.260	27.00	29.72	5.57	0.57	3.71	0.35	0.93
HE0197	3192269.480	-89966.138	43.120	15.00	27.34	5.00	0.41	3.42	0.30	0.86
HE0230	3192226.590	-90057.105	42.410	24.00	29.89	4.29	0.40	2.79	0.27	0.72
HE0231	3192271.280	-90077.334	40.230	18.00	30.65	4.75	0.45	3.01	0.38	0.86
HE0260	3192272.880	-90187.729	36.780	18.00	32.53	3.40	0.28	1.90	0.46	0.53
HE0261	3192318.560	-90208.579	35.050	18.00	31.88	3.07	0.15	1.59	0.29	0.40
HE0294	3192274.990	-90300.644	36.380	18.00	27.53	4.83	0.65	2.26	1.17	0.56
HE0102	3192286.750	-89587.349	57.900	18.00	22.87	7.00	0.69	4.33	0.69	0.98
HE0220	3192091.170	-90274.270	39.140	27.00	28.22	3.39	0.58	3.46	0.42	0.85
HE0221	3192136.820	-90295.270	38.250	27.00	29.92	3.83	0.53	3.38	0.43	0.77
HE0222	3192182.050	-90316.410	36.660	27.00	27.01	3.17	0.39	2.79	0.35	0.68

BHID	XCOORD	YCOORD	ZCOORD	COMPOSITE LENGTH	SLIME %	THM %	MAGN %	MAGS %	MAGO %	NMAG %
HE0223	3192227.120	-90337.660	36.570	27.00	28.03	2.58	0.38	2.80	0.28	0.55
HE0075	3192226.800	-90282.510	36.840	18.00	33.27	3.00	0.37	2.06	0.46	0.54
HE0237	3192045.190	-90307.790	39.160	21.00	31.57	4.47	0.57	3.25	0.48	0.78
HE0238	3192137.470	-90352.770	37.550	21.00	27.47	4.20	0.61	3.45	0.52	0.75
HE0255	3192050.650	-90367.790	38.860	21.00	31.97	5.07	1.74	2.88	0.36	0.68
HE0262	3192092.410	-90385.500	38.420	18.00	27.70	4.12	0.62	2.48	0.51	0.78
HE0263	3192139.860	-90407.010	36.290	18.00	33.55	3.45	0.31	2.65	0.34	0.64
HE0264	3192186.240	-90430.120	36.100	18.00	33.10	3.13	0.08	2.08	1.16	0.85
HE0287	3192099.760	-90443.840	36.090	21.00	30.02	3.16	0.38	2.98	0.52	0.76
HE0288	3192140.250	-90462.440	36.180	18.00	32.52	3.10	0.15	2.07	0.70	0.59
HE0326	3192052.050	-90532.210	36.410	27.00	26.71	2.06	0.22	2.00	0.29	0.51
HE0218	3192001.070	-90232.460	46.760	30.00	23.62	2.60	0.34	2.38	0.36	0.55

BHID	XCOORD	YCOORD	ZCOORD	COMPOSITE LENGTH	SLIME %	THM %	MAGN %	MAGS %	MAGO %	NMAG %
HE0324	3191962.570	-90484.230	41.610	30.00	26.71	3.03	0.30	2.03	0.44	0.53
HE0325	3192007.460	-90507.920	39.060	21.00	27.24	4.17	0.45	2.99	0.53	0.75
HE0217	3191955.890	-90211.290	48.590	30.00	25.46	2.53	0.40	3.19	0.44	0.74
HE0216	3191910.700	-90190.280	51.320	30.00	25.81	3.09	0.60	3.85	0.53	0.94
HE0199	3191772.600	-90071.140	67.000	57.00	19.94	13.86	2.46	7.88	1.70	1.83
HE0170	3191949.630	-89987.760	61.070	48.00	26.98	10.44	2.00	7.57	1.23	1.81
HE0076	3191994.960	-90008.710	56.550	39.00	23.17	10.86	1.44	6.81	0.91	1.69
HE0175	3191950.360	-90041.790	57.250	33.00	23.27	8.52	1.39	5.53	0.85	1.45
HE0187	3191951.890	-90099.230	55.030	33.00	25.85	8.05	1.04	5.08	0.67	1.27
HE0186	3191907.090	-90077.720	57.720	33.00	25.37	9.72	1.20	6.20	0.73	1.59
HE0188	3191997.140	-90120.660	51.800	30.00	24.47	4.40	0.56	4.55	0.43	1.09
HE0189	3192086.320	-90162.590	43.610	21.00	24.50	4.41	0.55	3.34	0.45	0.78

BHID	XCOORD	YCOORD	ZCOORD	COMPOSITE LENGTH	SLIME %	THM %	MAGN %	MAGS %	MAGO %	NMAG %
HE0201	3191863.260	-90112.670	58.200	33.00	26.10	8.25	1.02	5.82	0.68	1.34
HE0200	3191817.850	-90091.670	63.030	45.00	25.61	11.51	1.90	7.32	1.22	1.81
HE0202	3191908.800	-90132.440	54.420	27.00	22.49	6.30	0.84	4.53	0.55	1.07
HE0204	3191999.350	-90174.170	48.480	30.00	21.25	3.09	0.46	3.97	0.50	0.94
HE0205	3192045.160	-90195.240	45.440	21.00	25.43	4.37	0.44	2.87	0.36	0.71
HE0203	3191954.660	-90152.750	52.440	30.00	21.68	5.14	0.72	5.26	0.61	1.23
HE0327	3192097.460	-90555.240	34.660	18.00	25.93	3.32	0.23	2.52	0.53	0.63
HE0158	3191992.480	-89952.850	61.970	44.00	22.33	14.08	1.94	8.90	1.30	1.94
HE0300	3191734.810	-90328.860	57.730	21.00	20.77	3.26	0.40	2.69	0.44	0.67
HE0303	3191871.590	-90397.880	47.510	24.00	19.69	5.25	0.95	4.09	0.79	1.01
HE0323	3191917.600	-90469.340	45.670	24.00	26.50	5.43	0.54	3.90	0.66	0.90
HE0317	3191645.800	-90342.480	57.540	24.00	28.45	1.94	0.19	2.24	0.31	0.55

BHID	XCOORD	YCOORD	ZCOORD	COMPOSITE LENGTH	SLIME %	THM %	MAGN %	MAGS %	MAGO %	NMAG %
HE0318	3191691.180	-90363.520	58.040	24.00	28.15	2.26	0.26	2.69	0.43	0.70
HE0319	3191736.340	-90384.850	58.070	24.00	26.06	2.50	0.40	3.36	0.56	0.81
HE0320	3191781.730	-90406.010	53.600	21.00	26.94	2.16	0.42	2.79	0.34	0.63
HE0321	3191826.980	-90427.100	49.510	24.00	23.98	4.44	1.05	3.33	0.69	0.79
HE0322	3191872.210	-90448.190	48.210	24.00	26.60	5.89	0.76	4.22	0.65	1.03
HE0274	3191730.350	-90269.940	59.280	18.00	23.42	5.02	0.41	3.31	0.45	0.85
HE0299	3191689.620	-90307.650	57.730	21.00	23.29	2.86	0.22	2.48	0.42	0.64
HE0282	3191868.900	-90336.410	44.620	21.00	26.63	3.49	1.16	5.72	0.72	1.10
HE0245	3191731.820	-90217.160	59.110	36.00	25.78	6.99	0.79	4.59	0.55	1.06
HE0273	3191688.100	-90251.820	59.280	24.00	19.86	8.55	0.76	5.97	0.51	1.33
HE0298	3191644.240	-90286.670	57.860	24.00	26.19	5.04	0.44	3.88	0.99	0.90
HE0174	3191860.210	-90001.070	66.040	41.00	25.55	15.08	2.52	8.25	2.65	1.64

BHID	XCOORD	YCOORD	ZCOORD	COMPOSITE LENGTH	SLIME %	THM %	MAGN %	MAGS %	MAGO %	NMAG %
HE0185	3191816.360	-90035.880	66.190	60.00	25.39	11.64	1.95	6.71	1.49	1.49
HE0235	3191684.910	-90140.070	67.260	57.00	24.75	13.30	2.16	8.25	1.03	1.85
HE0244	3191686.500	-90196.030	63.120	48.00	23.66	7.16	1.02	4.55	0.56	1.03
HE0243	3191591.430	-90151.420	71.010	48.00	23.38	13.81	2.60	8.57	0.95	1.69
HE0198	3191727.190	-90049.410	70.300	48.00	20.33	15.82	2.83	9.25	1.95	1.79
HE0184	3191771.020	-90014.790	70.370	51.00	15.58	15.44	2.63	7.38	3.99	1.44
HE0082	3191813.300	-89924.090	75.550	42.00	10.69	26.95	2.94	12.37	9.29	2.34
HE0137	3192035.100	-89862.100	62.110	37.00	11.35	19.38	2.26	9.86	5.14	2.10
HE0169	3191903.850	-89966.360	65.510	45.00	15.57	14.49	2.83	7.81	2.08	1.77
HE0236	3191956.650	-90263.080	44.360	24.00	25.86	3.18	0.43	2.78	0.31	0.65
HE0253	3191909.940	-90303.820	44.640	15.00	28.58	4.96	0.67	3.18	0.40	0.73
HE0281	3191822.830	-90315.120	49.710	24.00	25.30	2.10	0.39	2.38	0.39	0.56

BHID	XCOORD	YCOORD	ZCOORD	COMPOSITE LENGTH	SLIME %	THM %	MAGN %	MAGS %	MAGO %	NMAG %
HE0285	3192005.620	-90400.430	39.860	24.00	25.36	4.54	0.63	3.89	0.48	0.82
HE0306	3192005.480	-90456.760	39.340	24.00	24.30	3.51	0.41	2.83	0.42	0.70
HE0254	3191956.950	-90319.340	43.160	24.00	30.29	3.58	0.52	3.02	0.39	0.73
HE0283	3191916.210	-90358.820	44.550	24.00	23.39	4.18	0.82	4.19	0.56	0.91
HE0304	3191914.580	-90415.270	44.600	18.00	24.57	6.50	0.77	4.08	0.69	0.96
HE0305	3191959.080	-90433.010	44.580	24.00	23.05	5.51	0.61	4.09	0.62	0.97
HE0307	3192056.960	-90479.540	36.600	24.00	22.76	2.76	0.19	1.79	1.02	0.46
HE0316	3191600.410	-90321.480	60.040	24.00	27.90	4.61	0.40	3.38	0.41	0.82
HE0333	3191647.340	-90398.330	58.330	24.00	24.89	1.91	0.26	2.08	0.26	0.52
HE0168	3191858.640	-89945.220	71.020	48.00	15.01	21.31	2.82	9.35	7.24	1.89
HE0334	3191601.980	-90377.290	57.540	21.00	27.70	2.31	0.24	1.90	0.35	0.48
HE0119	3192077.670	-89771.700	63.290	33.00	21.95	9.60	1.15	6.09	1.01	1.33

BHID	XCOORD	YCOORD	ZCOORD	COMPOSITE LENGTH	SLIME %	THM %	MAGN %	MAGS %	MAGO %	NMAG %
HE0118	3192032.180	-89750.460	67.520	24.00	19.04	6.89	1.01	4.22	0.74	0.92
HE0136	3191989.820	-89840.990	67.290	42.00	14.28	23.56	2.90	13.04	5.16	2.47
HE0099	3191983.940	-89616.990	33.000	15.00	17.08	3.94	0.48	3.03	0.51	0.71
HE0104	3191897.390	-89630.670	29.290	15.00	17.92	3.18	0.33	1.81	0.59	0.47
HE0111	3191806.050	-89645.030	33.480	18.00	21.63	5.23	0.58	3.47	1.03	0.93
HE0110	3191770.770	-89620.880	29.120	15.00	28.90	2.58	0.21	1.58	0.37	0.43
HE0120	3191722.620	-89652.980	28.920	15.00	20.98	1.64	0.37	1.89	0.32	0.46
HE0140	3191629.380	-89727.750	33.180	15.00	22.28	3.14	0.48	1.85	0.36	0.47
HE0151	3191584.260	-89763.260	30.910	18.00	17.77	3.97	0.58	2.16	0.70	0.54
HE0344	3191558.180	-90412.050	59.880	21.00	27.37	3.16	0.62	2.63	0.30	0.59
HE0345	3191603.480	-90433.200	58.850	18.00	27.00	3.32	0.57	1.93	0.36	0.47
HE0346	3191648.870	-90454.240	59.070	21.00	25.77	4.89	1.15	3.64	0.48	0.85

BHID	XCOORD	YCOORD	ZCOORD	COMPOSITE LENGTH	SLIME %	THM %	MAGN %	MAGS %	MAGO %	NMAG %
HE0362	3191559.710	-90467.950	60.580	21.00	21.97	3.53	0.54	2.33	0.45	0.58
HE0380	3191561.250	-90523.710	63.630	21.00	25.37	8.04	1.87	5.28	0.71	1.16
HE0143	3191765.110	-89791.350	54.990	27.00	23.69	1.33	0.20	0.70	0.22	0.22
HE0144	3191810.440	-89812.240	62.280	21.00	15.74	7.99	1.00	4.94	1.00	1.05
HE0154	3191721.380	-89825.870	55.230	24.00	30.05	2.45	1.41	7.73	0.60	1.77
HE0155	3191766.620	-89847.010	60.580	24.00	16.84	8.03	1.21	5.68	0.87	1.22
HE0142	3191719.660	-89770.000	48.960	27.00	21.01	1.34	0.26	0.93	0.27	0.26
HE0153	3191676.030	-89804.860	49.070	27.00	25.48	3.08	0.52	2.30	0.35	0.60
HE0164	3191632.210	-89839.760	46.060	30.00	19.89	6.55	0.99	4.15	0.58	0.85
HE0165	3191677.410	-89860.680	52.410	27.00	27.58	7.17	1.37	6.78	0.66	1.33
HE0145	3191855.590	-89833.430	69.000	33.00	15.29	8.82	1.02	4.00	2.89	0.90
HE0156	3191812.130	-89867.630	65.620	33.00	13.45	11.52	1.38	5.02	4.13	0.99

BHID	XCOORD	YCOORD	ZCOORD	COMPOSITE LENGTH	SLIME %	THM %	MAGN %	MAGS %	MAGO %	NMAG %
HE0128	3191718.370	-89714.090	42.040	24.00	21.80	4.49	0.47	2.70	0.64	0.66
HE0129	3191763.610	-89735.260	48.770	21.00	21.57	5.19	0.95	4.99	0.62	1.26
HE0141	3191674.790	-89748.880	41.150	21.00	18.23	2.16	0.42	1.14	0.30	0.30
HE0152	3191630.490	-89783.700	42.580	21.00	16.47	4.41	0.61	2.42	0.78	0.59
HE0166	3191722.920	-89881.770	61.080	21.00	18.27	6.30	0.63	3.00	1.98	0.66
HE0159	3191540.460	-89794.480	25.900	15.00	19.26	2.80	0.30	1.34	0.70	0.47
HE0172	3191588.390	-89872.950	39.110	27.00	19.27	10.51	1.44	6.23	1.26	1.57
HE0173	3191679.900	-89915.980	60.910	39.00	17.52	8.74	1.00	5.16	1.49	1.09
HE0180	3191544.620	-89908.980	36.250	24.00	19.76	11.39	1.54	6.46	1.80	1.59
HE0171	3191497.380	-89832.227	23.690	21.00	18.54	9.50	1.53	4.91	1.05	2.01
HE0191	3191501.750	-89943.690	34.830	27.00	18.06	7.28	0.89	4.38	0.97	1.04
HE0208	3191457.670	-89978.530	33.390	24.00	14.79	4.14	0.45	2.13	0.90	0.67

BHID	XCOORD	YCOORD	ZCOORD	COMPOSITE LENGTH	SLIME %	THM %	MAGN %	MAGS %	MAGO %	NMAG %
HE0108	3191499.380	-89887.840	27.510	26.00	22.99	9.10	1.24	4.90	1.63	1.32
HE0190	3191455.590	-89922.890	26.420	21.00	19.85	3.97	0.47	1.99	0.90	0.63
HE0266	3191453.600	-89866.350	21.290	30.00	26.22	4.94	0.68	2.91	0.90	0.91
HE0234	3191549.220	-90076.614	59.430	53.00	11.66	15.12	1.39	5.54	6.88	1.37
HE0329	3191367.880	-90258.006	21.170	10.00	20.90	5.10	0.80	2.97	0.58	0.76
HE0335	3191781.670	-90458.611	50.100	24.00	25.34	3.49	0.41	2.22	0.31	0.55
HE0336	3191873.840	-90504.010	44.120	24.00	26.28	6.48	0.76	3.98	0.70	1.03
HE0337	3191919.120	-90525.120	41.610	24.00	27.21	5.75	0.57	3.68	0.58	0.94
HE0338	3191965.330	-90543.250	41.600	39.00	29.00	3.26	0.31	1.99	0.36	0.60
HE0394	3191604.420	-90596.739	59.340	30.00	26.42	3.50	0.42	2.29	0.46	0.66
HE0396	3191834.730	-90706.918	45.020	30.00	28.64	4.55	0.49	3.06	0.45	0.94
HE0395	3191744.170	-90663.949	49.100	27.00	27.29	5.44	0.78	3.27	0.51	0.86

BHID	XCOORD	YCOORD	ZCOORD	COMPOSITE LENGTH	SLIME %	THM %	MAGN %	MAGS %	MAGO %	NMAG %
HE0397	3191925.510	-90748.872	40.510	30.00	32.11	4.71	0.43	3.00	0.43	0.86
HE0427	3191746.730	-90775.710	46.410	36.00	27.95	4.37	0.39	2.82	0.41	0.73
HE0291	3191989.140	-89901.520	63.660	57.00	15.94	8.34	1.23	5.25	0.86	1.38
HE0373	3191775.960	-90182.354	59.940	45.00	25.30	7.28	1.02	4.54	0.54	1.19
HE0081	3192227.000	-90395.840	35.990	18.00	40.57	2.62	0.07	1.83	0.51	0.45
HE0003	3191307.430	-90837.988	78.990	45.00	23.23	9.71	1.11	4.56	2.82	1.21
HE0007	3191665.660	-91064.545	44.140	39.00	26.49	2.65	0.25	2.13	0.25	0.58
HE0310	3191684.440	-90025.779	76.460	60.00	20.18	12.26	1.64	6.55	2.79	1.29
HE0328	3191728.580	-90105.598	66.750	56.00	28.09	11.39	1.95	7.01	0.84	1.59
HE0239	3191611.170	-90712.500	57.710	30.00	30.22	7.56	1.06	6.15	0.55	1.55
HE0240	3191703.370	-90810.690	47.920	24.00	34.78	5.30	0.39	3.66	0.30	0.92
HE0532	3191577.000	-91082.640	46.099	27.00	28.63	4.80	0.37	3.28	0.27	0.86

BHID	XCOORD	YCOORD	ZCOORD	COMPOSITE LENGTH	SLIME %	THM %	MAGN %	MAGS %	MAGO %	NMAG %
HE0533	3191621.990	-91103.780	44.424	36.00	31.56	2.58	0.26	2.47	0.19	0.69
HE0538	3191261.070	-90990.700	69.118	48.00	24.86	2.51	0.40	2.56	0.62	0.84
HE0539	3191305.970	-91011.800	64.423	24.00	33.49	4.94	0.48	4.47	0.35	1.13
HE0540	3191352.030	-91032.970	60.070	27.00	33.03	6.45	0.60	5.57	0.48	1.40
HE0541	3191397.070	-91053.990	57.310	30.00	34.45	7.52	0.71	5.09	0.41	1.29
HE0542	3191442.000	-91075.100	54.910	30.00	35.10	6.98	0.61	4.72	0.36	1.26
HE0543	3191487.950	-91096.350	49.869	30.00	32.37	5.84	0.49	4.01	0.28	1.04
HE0544	3191532.980	-91117.410	48.543	27.00	36.28	4.46	0.34	2.98	0.25	0.87
HE0545	3191577.970	-91138.540	46.216	51.00	31.37	2.52	0.28	2.01	0.21	0.60
HE0551	3191308.000	-91067.750	61.123	30.00	31.95	7.11	0.83	5.07	0.52	1.34
HE0552	3191352.960	-91088.830	57.040	30.00	30.19	6.53	0.69	4.17	0.48	1.17
HE0553	3191397.990	-91109.940	54.742	48.00	31.31	4.14	0.49	3.56	0.28	0.99

BHID	XCOORD	YCOORD	ZCOORD	COMPOSITE LENGTH	SLIME %	THM %	MAGN %	MAGS %	MAGO %	NMAG %
HE0554	3191444.020	-91130.950	51.570	30.00	30.91	5.13	0.43	3.38	0.32	0.98
HE0555	3191489.010	-91152.230	49.016	30.00	33.68	3.91	0.33	2.58	0.20	0.79
HE0568	3192082.190	-89884.020	56.410	39.00	28.29	9.48	1.36	5.98	0.67	1.43
HE0100	3192072.500	-89659.330	55.370	27.00	20.03	2.92	0.21	1.70	0.52	0.48
HE0106	3191986.610	-89668.760	44.350	27.00	16.54	5.23	0.52	3.27	0.60	0.86
HE0107	3192034.690	-89697.760	59.370	27.00	19.72	2.86	0.29	2.57	0.58	0.76
HE0114	3191845.860	-89661.820	36.390	18.00	19.70	3.38	0.39	1.69	0.71	0.58
HE0115	3191900.540	-89683.720	41.850	24.00	19.63	2.78	0.35	1.78	0.47	0.49
HE0116	3191945.270	-89709.340	51.500	24.00	15.18	2.91	0.32	1.65	0.47	0.46
HE0123	3191942.650	-89767.680	67.730	42.00	12.21	4.22	0.45	1.43	1.72	0.63
HE0124	3191993.850	-89786.510	68.680	45.00	8.60	11.27	0.96	3.83	5.27	1.23
HE0127	3192037.200	-89807.310	65.200	42.00	13.63	12.74	1.74	5.72	3.61	1.67

BHID	XCOORD	YCOORD	ZCOORD	COMPOSITE LENGTH	SLIME %	THM %	MAGN %	MAGS %	MAGO %	NMAG %
HE0130	3191808.100	-89754.830	56.610	39.00	19.82	2.69	0.36	1.97	0.49	0.55
HE0131	3191856.630	-89780.440	67.350	42.00	15.61	3.41	0.63	3.48	0.97	0.96
HE0132	3191896.830	-89797.370	70.410	48.00	14.54	4.95	0.59	2.08	1.60	0.68
HE0133	3191943.740	-89817.700	71.420	42.00	11.29	14.52	2.07	6.62	4.72	2.13
HE0146	3191946.230	-89874.950	69.010	45.00	12.61	17.21	2.18	10.10	2.99	1.94
HE0157	3191902.660	-89910.620	70.120	51.00	10.62	17.05	2.12	7.01	5.87	2.06
HE0160	3191582.650	-89816.860	35.280	30.00	20.67	3.36	0.60	2.81	0.80	0.78
HE0167	3191768.610	-89897.660	71.500	51.00	13.46	8.26	0.73	2.27	4.41	0.84
HE0181	3191580.680	-89926.830	47.260	42.00	16.04	9.74	1.04	4.90	2.23	1.59
HE0182	3191631.370	-89948.790	62.090	48.00	11.44	8.35	0.85	3.56	2.61	1.32
HE0183	3191676.740	-89969.800	74.020	42.00	12.13	18.64	2.05	6.20	8.27	2.12
HE0192	3191544.940	-89963.970	43.600	27.00	19.19	8.19	0.84	3.88	1.77	1.71

BHID	XCOORD	YCOORD	ZCOORD	COMPOSITE LENGTH	SLIME %	THM %	MAGN %	MAGS %	MAGO %	NMAG %
HE0193	3191590.180	-89983.580	55.470	42.00	11.57	7.14	0.55	2.43	3.07	1.11
HE0215	3191547.030	-90019.530	52.240	45.00	14.63	7.01	0.56	2.57	3.02	0.86
HE0242	3191545.610	-90143.950	67.380	48.00	12.77	12.81	1.59	5.01	4.50	1.71
HE0252	3191773.100	-90230.950	57.170	36.00	19.09	4.93	0.78	4.27	0.41	1.02
HE0270	3191542.580	-90177.630	70.000	42.00	18.96	13.24	1.99	8.04	1.47	1.74
HE0271	3191592.130	-90208.390	66.760	33.00	24.03	14.45	2.46	8.35	1.55	2.09
HE0272	3191638.140	-90229.170	62.150	33.00	21.24	7.60	1.02	4.70	1.22	1.34
HE0280	3191771.400	-90290.020	56.600	24.00	21.98	3.56	0.33	2.72	0.32	0.62
HE0286	3191770.360	-89677.440	37.260	18.00	17.65	2.57	0.47	2.25	0.71	0.62
HE0292	3191861.740	-90057.440	63.700	48.00	22.49	13.03	2.07	8.37	1.45	1.96

13 Addendum E

Risk Workshop Outcome

 Method
 Expert
 Experience

 Panel
 Level

 Exploration
 Exploration

 Mineral
 Resource

 Management
 Production

 Problem
 Does the geological model predict resource estimates within 10%

 What influence the level of accuracy of the data?

What can Influence the 'Problem' in current Exploration

SAMPLE

METHODOLOGY

		RISK		FACTORS					
EXPLORATION ITEM	POTENTIAL	IDENTIFICATION	POTENTIAL RISK	INFLUENCING	RISK	MITIGATION	RESPONSIBLE	ACCEPTABLE	REASONING
	RISK		PROBABILITY				PERSON	RISK	
		AND ANALYSES		PROBABILITY					

Drilling	Method	IS THE INITIAL	ADDITIONAL	HILLENDALE	50%	UNDERSTANDING	ALL			
		DRILLING	DRILLING HAS	MINE		AND REVIEWING				
		METHOD USED	BEEN REQUIRED	CURRENTLY		DRILL				
		AT HILLENDALE	DUE TO THE	REDRILLED AT		TECHNOLOGIES				
		ADEQUATE FOR	HIGH	MORE THAN 50%				2004		
		PRODUCTION	VARIABLILITY					20%		
		PURPOSES	INTRODUCED							
			WITH THE INITIAL							
			DRILLING							
			METHOD							
	POTENTIAL	RISK	POTENTIAL RISK	FACTORS			RESPONSIBLE	ACCEPTABLE		
EXPLORATION ITEM	RISK	IDENTIFICATION	PROBABILITY	INFLUENCING	RISK	MITIGATION	PERSON	RISK	REASONING	
		AND ANALYSES		PROBABILITY						
		HAS THERE BEEN	MORE THAN 50	RECONCILIATION						
		ADDITIONAL	PERCENT OF	OF RCN WITH						
		DRILLING AT	THE OREBODY	PWP VARIES						
		HILLENDALE	HAS BEEN	BETWEEN 70%						
			REDRILLED	AND 10% WITH						
				AN AVERAGE OF						
				40%						
		WHAT IS THE								
		EXTEND OF THE								
		ADDITIONAL								
		DRILLING								
	-								-	
	Spacing	IS THE	ADEQUATE	LOCALISED	40%	CONTINOUS	Project Leader		Current	
		DRILLHOLE	INFORMATION	MINERALISATION		EVALUATION AND	(Exploration)		reconcilation	
		SPACING AT	FOR LEVEL OF			UPDATE			at Hillendale	
		HILLENDALE	INFORMATION					10%	withing	
		ADEQUATE FOR	REQUIRED						10%. Not	
		THE 'LEVEL' THE							only	
		INFORMATION IS							contributing	
									factor	

		REQUIRED FOR							therefore	
									used as	
									quideline	
									guidonno	
		IS THERE	LOCALISED	LOCALISED			MRM			
		CERTAINTY IN	VARIATION NOT	FLOOR			(Production)			
		THE	SEEN IN	VARIATION						
		CONTINUIATION	DRILLHOLE							
		OF THE	SPACING							
		OREBODY								
		WHAT								
		POTENTIAL								
		PROBLEMS ARE								
		ENVISAGED IF								
		THE DRILLHOLE								
		SPACING IS NOT								
		ADEQUATE								
	POTENTIAL	RISK	POTENTIAL RISK	FACTORS			RESPONSIBLE	ACCEPTABLE		
EXPLORATION ITEM	RISK	IDENTIFICATION	PROBABILITY	INFLUENCING	RISK	MITIGATION	PERSON	RISK	REASONING	
		AND ANALYSES		PROBABILITY						
Sampling	Sample	IS THE SAMPLE	SAMPLE		60%	0400	Project Leader		Laboratory	
Camping	Bronaration		METHODIS		0070	QAQU				
	Freparation								QAQC - 130	
		AND ANALISES							accredited	
			AMONITORING	SAMPLE						
			SYSTEM							
								15%		
		OF THE ORE								
		DEPOSIT								
	Sample	IS THE SAMPLE	SAMPLE	THE		MONITORING			Laboratory	
	intervals	PREP AND	HANDLING FROM	INACCURACIES					final product	
		ANALYSES	DRILLRIG TO	OF EACH					accredited	
			LABORATORY	INDIVIDUAL STEP						

		MONITORED	ANALYSES	FOR ANALYSES						
	Sample Size	HOW MUCH	•LOCAL LABOUR			TRAINING				1
		SAMPLE								
		HANDLING TAKES							Exploration Q	AQC
		PLACE								
	Sample	IS THERE	•SHIFT						Duplicates	Control
	Analyses	CONTROL	WORKERS							Limit
		SYSTEMS IN								within
		PLACE								10%
	QAQC	IS THE	SAMPLES						Control	Control
		ANALYTICAL	HANDLED AT						Samples	limit
		METHOD								within 2
		ADEQUATE FOR								Standard
		HM SAND								Deviation
		ANALYSES								
		AT WHAT STAGE	•DRILLRIG						External	Similar
		OF ANALYSES							laboratory	control
		CAN PROBLEMS							checks	limtis as
		ARISE								above
			•SAMPLE							
			PREPARATION							
			FACILITY							
		RISK		FACTORS					L	
EXPLORATION ITEM	POTENTIAL	IDENTIFICATION	POTENTIAL RISK	INFLUENCING	RISK	MITIGATION	RESPONSIBLE	ACCEPTABLE	REASONING	
	RISK	AND ANALYSES	PROBABILITY	PROBABILITY			PERSON	RISK		
			SAMPLE							
			TRANSPORATION							
	I	1	1	1	1					

		-				
		SEGGREGATION				
		WEIGHIN				
		DRYING				
		SPLITTING				
		•SAMPLE				
		DISPATCH				
		RECEIVED				
		 LABORATORY 				
		ANALIGES				
		WEIGING				
		DRYING				
		CRUSHING				
		SPLITTING				
		DESLIMING				
		TRE				
		IDE				
		CARPCO				
		(MAGNETIC				
		SEDARATION				

EXPLORATION ITEM	POTENTIAL RISK Database Accuracy	RISK IDENTIFICATION AND ANALYSES IS THE DATABASE SECURED IN TERMS OF NETWORK ACCESSIBILITY	POTENTIAL RISK PROBABILITY DATABASE IS ON SECURED SQL SERVER BACKED UP DAILY BY IT	FACTORS INFLUENCING PROBABILITY LARGE AMOUNT OF DATA ENTRY	RISK	MITIGATION STANDARD PROCEDURES	RESPONSIBLE PERSON Project Leader	ACCEPTABLE RISK	REASONING Low likelihood of risk due to validations set up and tracking options in database	
		IS THERE ONE RESPONSIBLE PERSON	ONE SUPERUSER, ONE DATAMANAGER AND 4 DATA CAPTURES (EACH INDIVUDUAL CAN BE TRACED)	NON CONTINOUS ENTRY OF DATA (ENTER IF YOU HAVE TIME)		VALIDATION PROCESS	Database superuser/ manageer	40%		
		IS THE DATABASE BACKED UP AS PART OF AN IT STRATEGY IS THE DATA ENTERED CONTROLED AND MONITORED	SPECIFIC DATA VALIDATIONS ON DATA ENTRY (LOOKUPS, MANDATORY FIELDS) DATA ENTRY NOT PRIORITY AND IMPORTING OF DATA CAN CONTRIBUTE TO ERRONEOUS	IMPORTING OF DATA FROM EXCEL		SIGNOFF PROCESS CROSS CHECK				

			DATA VALUES IN							
			DATABASE							
		IS THE DATA	VALIDATION IN			I RAINING AND				
		ENETERED	USE' OF DATA			DEVELOPMENT				
		VALIDATED								
		DIOL		5407050						
	POTENTIAL	RISK	POTENTIAL RISK	FACTORS			RESPONSIBLE	ACCEPTABLE		
EXPLORATION ITEM	RISK	IDENTIFICATION	PROBABILITY	INFLUENCING	RISK	MITIGATION	PERSON	RISK	REASONING	
	-	AND ANALYSES		PROBABILITY				-		
		WHAT ARE THE								
		POTENTIAL								
		PROBLEMS THAT								
		CAN ARISE FROM								
		THE DATABASE,								
		DATA ENTRY AND								
		VALIDATION?								
	Estimation	IS THE BEST	ESTIMATION	INADEQUATE	10%	STANDARD	Specialist			
	Methodology	SUITED METHOD	METHODOLOGY	INTERPOLOATION		PROCEDURES				
		USED								
				METHOD AND					۱ ا	
			CHECKED							
			CHECKED							
			CHECKED	SUBSEQUENT WRONGFUL						
			CHECKED	SUBSEQUENT WRONGFUL ESTIMATION						
		IS THE METHOD	CHECKED	METHOD AND SUBSEQUENT WRONGFUL ESTIMATION DEPENDANT ON		CROSS CHECK				
		IS THE METHOD	CHECKED SYSTEM OF	METHOD AND SUBSEQUENT WRONGFUL ESTIMATION DEPENDANT ON		CROSS CHECK		10%		
		IS THE METHOD TRANSPARENT	CHECKED SYSTEM OF VALIDATION AND	METHOD AND SUBSEQUENT WRONGFUL ESTIMATION DEPENDANT ON SOURCE DATA		CROSS CHECK		10%		
		IS THE METHOD TRANSPARENT AND AUDITED	CHECKED SYSTEM OF VALIDATION AND ANALYSES	METHOD AND SUBSEQUENT WRONGFUL ESTIMATION DEPENDANT ON SOURCE DATA ALREADY		CROSS CHECK		10%		
		IS THE METHOD TRANSPARENT AND AUDITED	CHECKED SYSTEM OF VALIDATION AND ANALYSES THROUGH HEAD	METHOD AND SUBSEQUENT WRONGFUL ESTIMATION DEPENDANT ON SOURCE DATA ALREADY CONSIDERED IN		CROSS CHECK		10%		
		IS THE METHOD TRANSPARENT AND AUDITED	CHECKED SYSTEM OF VALIDATION AND ANALYSES THROUGH HEAD OFFICE	METHOD AND SUBSEQUENT WRONGFUL ESTIMATION DEPENDANT ON SOURCE DATA ALREADY CONSIDERED IN RISK AND		CROSS CHECK		10%		
		IS THE METHOD TRANSPARENT AND AUDITED	CHECKED SYSTEM OF VALIDATION AND ANALYSES THROUGH HEAD OFFICE	METHOD AND SUBSEQUENT WRONGFUL ESTIMATION DEPENDANT ON SOURCE DATA ALREADY CONSIDERED IN RISK AND MITIGATION		CROSS CHECK		10%		
		IS THE METHOD TRANSPARENT AND AUDITED	CHECKED SYSTEM OF VALIDATION AND ANALYSES THROUGH HEAD OFFICE	METHOD AND SUBSEQUENT WRONGFUL ESTIMATION DEPENDANT ON SOURCE DATA ALREADY CONSIDERED IN RISK AND MITIGATION		CROSS CHECK		10%		
		IS THE METHOD TRANSPARENT AND AUDITED WHAT	CHECKED SYSTEM OF VALIDATION AND ANALYSES THROUGH HEAD OFFICE POTENTIAL	METHOD AND SUBSEQUENT WRONGFUL ESTIMATION DEPENDANT ON SOURCE DATA ALREADY CONSIDERED IN RISK AND MITIGATION		CROSS CHECK		10%		
		IS THE METHOD TRANSPARENT AND AUDITED WHAT POTENTIAL	CHECKED SYSTEM OF VALIDATION AND ANALYSES THROUGH HEAD OFFICE POTENTIAL PROBLEMS:	METHOD AND SUBSEQUENT WRONGFUL ESTIMATION DEPENDANT ON SOURCE DATA ALREADY CONSIDERED IN RISK AND MITIGATION		CROSS CHECK		10%		

		ARISE FROM THE								
		ESTIMATION								
		METHOD								
			•INITIAL DATA							
			VALIDATION							
			FROM SOURCE							
			DATA							
			•RECEIVING							
			SECONDARY							
			DATA (ALREADY							
			INTERPRETED							
			DATA)							
EXPLORATION ITEM	POTENTIAL RISK	TIAL IDENTIFICATION AND ANALYSES	POTENTIAL RISK PROBABILITY	FACTORS	RISK M	MITIGATION	RESPONSIBLE ACCEP PERSON RISK	ACCEPTABI F		
								RISK	REASONING	3
				PROBABILITY						
			•INADEQUATE							
			INTERPOLATION							
			METHOD							