List of references

Arden, P. 2003. *It's not how good you are, it's how good you want to be*. Phaidon Press Limited, London, UK.

Bell, S. *Landscape Patterns, Perceptions and Process*. E&FN Spon, London, UK

Eales, H.V. 2001. *A first introduction to the Geology of the Bushveld Complex and those aspects of South African geology that relate to it*. Council for Geoscience, Pretoria, RSA.

GDACE. 2002. *Information layers and buffer zones for industries, sewage treatment works, landfill sites and mine dumps*. Gauteng Department of Agriculture Conservation and Environment, Gauteng, RSA.

Mphephu, N.F. *Geotechnical environmental evaluation of mining impacts on the Central Rand*. PhD Thesis. Faculty of Science, University of the Witwatersrand, Johannesburg, RSA.

Vivier, K. 2006. Tailings impoundment – analytical mass flux model. Personal communication. AGES, Pretoria, RSA.

List of acronyms and abbreviations

°C
Degree Celsius

μ
Micro (x10^{-6})

µg/m³
micrograms per cubic metre

AMD
Acid mine drainage

AQA
Air Quality Act No. 39 of 2004

ASLA
American Society of Landscape Architects

ASTM
American Society for Testing and Materials

ATSDR
Agency for Toxic Substances and Disease Registry

Au
gold

BAM
Betta attenuation monitor

CARA
Conservation of Agricultural Resources Act No. 43 of 1983

CBD
Central business district

CDSM
Chief Directorate: Surveys and Mapping

CIL
Carbon-in-leach

CM
Chamber of Mines of South Africa

COD
Chemical oxygen demand

CPI
Consumer price index

CSIR
Council for Scientific and Industrial Research

DEAT
Department of Environment and Tourism, Republic of South Africa

DME
Department of Minerals and Energy, Republic of South Africa

DME (QLD)
Department of Minerals and Energy, Queensland, Australia

DSS
Decision-support system

DST
Decision-support tool
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEPD</td>
<td>Integrated environmental planning and design</td>
</tr>
<tr>
<td>IIED</td>
<td>International Institute for Environment and Development</td>
</tr>
<tr>
<td>IP</td>
<td>Inhalable particulates</td>
</tr>
<tr>
<td>Ir</td>
<td>Iridium</td>
</tr>
<tr>
<td>IUCN</td>
<td>International Union for the Conservation of Nature and Natural Resources</td>
</tr>
<tr>
<td>k</td>
<td>Permeability</td>
</tr>
<tr>
<td>kg</td>
<td>Kilogram</td>
</tr>
<tr>
<td>kt</td>
<td>Kiloton</td>
</tr>
<tr>
<td>LDO</td>
<td>Land development objectives</td>
</tr>
<tr>
<td>LI</td>
<td>Landscape Institute</td>
</tr>
<tr>
<td>m</td>
<td>Metre</td>
</tr>
<tr>
<td>M</td>
<td>Mega (10^6)</td>
</tr>
<tr>
<td>m.a.s.l.</td>
<td>Metres above sea level</td>
</tr>
<tr>
<td>m/s</td>
<td>Metre per second</td>
</tr>
<tr>
<td>m3</td>
<td>Cubic metre</td>
</tr>
<tr>
<td>MA</td>
<td>Minerals Act No. 50 of 1991</td>
</tr>
<tr>
<td>MAA</td>
<td>Multiple accounts analysis</td>
</tr>
<tr>
<td>MAC</td>
<td>Mining Association of Canada</td>
</tr>
<tr>
<td>mm</td>
<td>Millimetre</td>
</tr>
<tr>
<td>MMSD</td>
<td>Mining, Minerals and Sustainable Development</td>
</tr>
<tr>
<td>MPRDA</td>
<td>Minerals and Petroleum Resources Development Act No. 28 of 2002</td>
</tr>
<tr>
<td>MRD</td>
<td>Mine residue deposit</td>
</tr>
<tr>
<td>Mt</td>
<td>Mega tonne</td>
</tr>
<tr>
<td>Mtpm</td>
<td>Mega tonne per month</td>
</tr>
<tr>
<td>NA</td>
<td>Not available</td>
</tr>
<tr>
<td>NCHM</td>
<td>National Cultural History Museum</td>
</tr>
</tbody>
</table>
NEDLAC National Economic Development and Labour Council
NEMA National Environmental Management Act No. 107 of 1998
NGT Nominal group technique
NHMRC National Health and Medical Research Council
NPV Net present value
NR Not relevant
NRF National Research Foundation
NSW EPA New South Wales Environmental Protection Agency
NWA National Water Act No. 36 of 1998
Os Osmium
OVA Objective valuation approaches
ozt Troy ounce (32,151 ozt = 1000 g)
p. Page
Pd Palladium
PGE Platinum group element
PGM Platinum group metal
PM$_{10}$ Fine particles with aerodynamic diameters less than 10 µm
PM$_{2.5}$ Fine particles with aerodynamic diameters less than 2.5 µm
pp. Pages
Pt Platinum
q Darcy flux
RA Risk assessment
Rh Rhodium
RO Reverse osmosis
RP Respirable particulates
RPM Rustenburg Platinum Mines (Pty) Ltd
VAC Visual absorption capacity
VIA Visual impact assessment
Vol. Volume
WDCS Waste discharge charge system
WHO World Health Organisation
WRC Water Research Commission
WSSD World Summit on Sustainable Development
WWCW Waste water care works
ZVI Zone of visual influence
List of technical terms

acid mine drainage
Also referred to as acid mine drainage (AMD) or acid rock drainage (ARD). Acid drainage is the seepage of sulphuric acid solutions from mines and tailings, produced by the interaction of oxygen in ground and surface water with sulphide minerals exposed by mining (DME, 2006:4).

aquifer
Bear (1979) and NWA (1998) describes an aquifer as a geologic formation, or group of formations such as porous, water-saturated layers of sand, gravel, or bed rock which contains water and permits significant amounts of water to move through it under ordinary field conditions. Parsons (2004) describes it as strata or a group of interconnected strata comprising of saturated earth material capable of conducting groundwater and of yielding useable quantities of groundwater to borehole(s) and/ or springs (a supply rate of 0,1 L/s is considered a useable quantity). The emphasis of UNEP's definition is on a geologic formation's ability to yield an economically significant amount of water (UNEP, 2005:80).

bulk density
The mass of dry soil per unit bulk volume. The bulk volume is determined before drying to constant mass at 105°C. Values range roughly from 1000 - 1800 kg/m³, although higher values may be found in compacted soils (van der Walt and van Rooyen, 1990: 20).

chemical oxygen demand
Chemical oxygen demand (COD) is an indicator of the potential environmental impact of effluent to water. The COD is a laboratory measure of the quantity of oxygen required to oxidise the constituents of a liquid effluent. The lower the COD, the lower the potential for reduction in the concentration of dissolved oxygen in the receiving water (UNEP, 2005:80).

closure
A process which begins during the pre-feasibility phase of a mining project, and continues through operations to lease relinquishment. It sets clear objectives and guidelines, makes financial provision and establishes effective stakeholder engagement leading to successful relinquishment of lease (DME, 2006:4).

concentrate
Concentrate is the product of ore treatment and contains metal at a higher concentration than the source ore. In metallurgical processes for the production of nickel and copper, concentrate is smelted to produce a metallic compound suitable for further refining (UNEP, 2005:80).
concentration

The purpose of concentration is to separate those particles with high values (concentrate) from those with lower values (tailings). Methods for concentration vary according to ore type, but three general classes are in use: gravity separation, magnetic separation, and froth flotation (Vick, 1983:6).

configuration

Configuration is the term used to refer to a particular combined arrangement of embankment side slope and cover for an impoundment which can result in several configurations.

confined aquifer

A confined aquifer is a formation in which the groundwater is isolated from the atmosphere at the point of discharge by impermeable geologic formations; confined groundwater is generally subject to pressure greater than atmospheric.

conservation

The management of the biosphere so that it may yield the greatest sustainable benefit to present generations while maintaining its potential to meet the needs and aspirations of future generations. The wise use of natural resources to prevent loss of ecosystem function and integrity.

contamination

The introduction of any poisonous or polluting substance into the environment (Parsons, 2004 and Oxford, 2002).

cumulative effects

The summation of effects that result from changes caused by a development on conjunction with other past, present or reasonably foreseeable actions (LI, 2002:119).

dam

The term includes any settling dam, slurry dam, evaporation dam, catchment or barrier dam and any other form of impoundment used for the storage of unpolluted water or water containing waste (DWAF, 1999).

decision

A decision is defined as an action that must be taken when there is no more time for gathering facts (Moody, 1983:4).

decision-making

The sequence of steps, actions or procedures that result in decisions, at any stage of a scheme (DEAT, 2002:21).

decision-support system

A decision-support system (DSS) is a system that supports decision making by assisting in the organisation of factors and relations between the latter within a rational framework (Sage, 1991:1).

decommissioning

The activity or process that begins after cessation of mineral production (including metallurgical plant production) and ends with closure. It involves, inter alia, the removal of unwanted infrastructure, the making safe of dangerous excavations and surface rehabilitation with a view to minimising the adverse environmental impacts of mining activities remaining after cessation of mineral production. It includes the aftercare or maintenance that may be needed until closure (CM, 1996:1).
deposit A dump, heap, pile or filling which usually projects above the natural ground surface. Deposits can be formed by mechanical or hydraulic deposition of material. Deposit includes terms such as slimes dams, tailings impoundments, and mineral, tailings, course waste and waste-rock dumps (CM, 1996:1).

dirty water system The term includes any dam, other form of impoundment, canal, works, pipeline, residue deposit and any other structure or facility constructed for the retention or conveyance of water containing waste (DWAF, 1999).

dispersion (groundwater) Dispersion is the measure of spreading and mixing of chemical constituents in groundwater caused by diffusion and mixing due to microscopic variations in velocities within and between pores.

disposal versus deposition From a larger point of view, it is only tailings deposition i.e. placement that ceases at the end of the operation stage and not the disposal thereof. Tailings management will and must continue until such time as the deposited tailings is assured to be permanently stable and environmentally innocuous (Vick, 1983:324).

dolerite A fine-grained gabbro. In RSA usage, the preferred term for what is called diabase in the U.S.A. Etymol. Greek doleros, deceitful, in reference to the fine-grained character of the rock which makes it difficult to identify megascopically (van der Walt et al., 1990: 43).

ecosystem Organisms together with their abiotic environment, forming an interacting system, inhabiting an identifiable space.

effective soil depth The depth of soil material that plant roots can penetrate readily to obtain water and plant nutrients. The depth to a layer that differs sufficiently from the over-lying material in physical or chemical properties to prevent or seriously retard the growth of roots (van der Walt et al., 1990: 47).

effluent Liquid fraction of the tailings slurry or pulp with soluble chemicals.

environment Environment has a number of definitions depending on the context:

- environment means the aggregate of surrounding objects, conditions and influences that influence the life and habits of man or any other organism or collection of organisms (ECA, 1989);

- environment means the surroundings within which humans exist and that are made up of:-
 - the land, water and atmosphere of the earth;
 - micro organisms, plant and animal life;
 - any part or combination of the afore-mentioned and the interrelationships among and between them; and
 - the physical, chemical, aesthetic and cultural properties and conditions of the foregoing that influence human health and well-being (NEMA, 1998);

- environment means the associated cultural, social, soil, biotic,
atmospheric, surface and ground water aspects associated with landfill that are, or could potentially be, impacted on by the landfill (DWAF, 1998:G-4);

• or the environment is defined as those parts of the socio-cultural, biophysical and economic environment affected by the scheme (DEAT, 2002:20).

environmental impact An environmental impact is any change in a state of any component of the environment, whether adverse or beneficial, such as water, air, land, natural resources, flora, fauna, and that wholly or partially results from activities, projects or developments (DEAT, 2002:20 and SABS, 1998:5).

erosion Erosion includes a group of processes by which soil are entrained and transported across a given surface through the action of water, wind, ice or other agents, including the subsidence of soil (CARA, 1983; Galetovic, 1998:1-1).

facility The term "facility", in relation to an activity, includes any installation and appurtenant works for the storage, stockpiling, disposal, handling or processing of any substance (DWAF, 1999:2).

fatal flaw Any problem, issue or conflict (real or perceived) that could result in a scheme being rejected or stopped (DEAT, 2002:21).

fault A fault is a fracture or a zone of fractures along which there has been displacement.

fauna The animal life of a region.

flora The plant life of a region.

flux Flow of energy, fluid, or particles per unit of area per unit of time (Park, 2007).

forb A herbaceous plant other that grasses.

freeboard The vertical height difference between the lowest point on the perimeter wall and the supernatant water level on the dam at any time (SABS, 1998:5).

geographical information system Computerised database of geographical information that can be easily updated and manipulated (LI, 2002:119).

gradation Gradation refers to the grain size distribution.

grassland A natural vegetation formation type in which grasses and forb species are dominant.

groundwater Also known as subsurface water is water occurring below the ground in the saturated zone. (Bear, 1979). Water found in the subsurface in the saturated zone below the water table or piezometric surface, i.e. the water table marks the upper surface of groundwater systems (Parsons, 2004).
groundwater resource Subterranean water that occurs naturally or that can be obtained from below the ground surface, of such quality and in such quantities as would be required to sustain a recognised water use (SABS, 1998:5).

groundwater table Groundwater table is the surface between the zone of saturation and the zone of aeration – i.e. the surface of an unconfined aquifer.

gully erosion The erosion process whereby water accumulates in narrow channels and, over short periods, removes the soil from this narrow area to considerable depths, ranging from 300 mm to 600 mm to more than 20 m (van der Walt et al., 1990:50).

habitat Type of environment in which fauna and flora lives.

hazard Hazard refers to the capacity of a substance, a structure, an activity or an event to produce an adverse effect on life or property, including health, safety or environment (DME (QLD), 1995).

hydraulic conductivity Hydraulic conductivity (k) is a measure of the amount of water transmitted through a porous medium in unit time under a unit hydraulic gradient through a unit area measured perpendicular to the area (Vick, 1983:257). Also known as permeability.

hydraulic gradient The term hydraulic gradient can imply a hydraulic potential gradient, hydraulic pressure gradient or hydraulic head gradient. In each case the gradient is the change in magnitude (of potential, pressure or head) per unit of distance in the direction of maximum rate of increase thereof. The hydraulic gradient generally determines the rate and direction of water flow in soil (van der Walt et al., 1990:148).

hydraulic head The elevation with respect to a specified reference level at which water stands in a piezometer connected to the point in question in the soil. Its definition can be extended to soil above the water table if the piezometer is replaced by a tension meter. The hydraulic head in systems under atmospheric pressure may be identified with a potential expressed in terms of the height of a water column. More specifically it is the sum of the gravitational and hydrostatic pressure (or metric) potentials, expressed as a head ($H = hg + hp$) (van der Walt et al., 1990:148).

hypothesis A supposition or proposed explanation made on the basis of limited evidence as a starting point for further investigation (Oxford, 2002:570).

indigenous Any species of plant, shrub or tree that occurs naturally in South Africa.
land capability
This is the extent to which land can meet the needs of one or more uses under defined conditions of management, including climate, on the total suitability for use without damage for crops that require regular tillage, for grazing, for woodland, and for wildlife. Land capability involves consideration of (i) the risks of land damage from erosion and other causes and (ii) the difficulties in land use owing to physical land characteristics, including climate (van der Walt et al., 1990: 79).

land use
The primary use of the land, including both rural and urban activities (LI, 2002:120). Land use is not a feature of the environment as such but represents the current status of the land surface as a whole and therefore also reflects the condition of the environment (van Riet et al., 1997:13)

landform
An element of and within the landscape with specific shape characteristics. This may also refer to an artificial element which can be compared to a natural landform and is subject to the same geomorphologic processes (Rademeyer and van den Berg, 2005; Park, 2007). It is the combinations of slope and elevation that produce the shape and form of the land (LI, 2002:120).

landscape
Depending on the context, landscape can have any of the following meanings:

- Scenery, either natural or modified by human activities which is often used to refer to scenery that can be seen from a single viewpoint (Park, 2007).
- All the natural features, such as fields, hills, forests, and water that distinguish one part of the earth's surface from another pad; usually, that portion of land or territory which the eye can comprehend in a single view (van der Walt et al., 1990: 81).
- Landscape is made up of a landform component (topography), landcover (vegetation, built form, soil colour, water and other man-made infrastructure), and atmospheric conditions.
- A tract of land with its distinguishing characteristics and features, especially considered as a product of shaping processes and agents (DME, 2006:4).
- Human perception of the land conditioned by knowledge and identity with a place (LI, 2002:120).

leaching
Leaching involves removal of minerals from the ground particles by direct contact with solvent, usually a strong acid or alkaline solution depending on the type of ore (Vick, 1883:8).

mine residue
Mine residue includes any debris, discard, tailings, slimes, screenings, slurry, rock, foundry sand, beneficiation plant waste, ash and any other waste product derived from or incidental to the operation of a mine or activity and which is stockpiled, stored or accumulated for potential re-use or recycling or which is disposed of (DWAF, 1999:2).
mine residue deposit
Mine residue deposit includes any dump, tailings impoundment, slimes dam, ash dump, rock dump, in-pit deposit and any other heap, pile or accumulation of residue remaining at termination, cancellation or expiry of a prospecting right, mining right, mining permit, exploration right or production right (MPRDA, 2002).

mine residue deposit
The term Mine Residue Deposit (MPRDA, 2002:16) is the generic term used for describing mining waste to the panel of visual experts participating in the research, whereas the terms Tailings Disposal Facility (TDF), tailings dam and tailings impoundment are interchangeably used throughout this thesis.

mine residue stockpile
Mine residue stockpile means any debris, discard, tailings, slimes, screening, slurry, rock, foundry sand, beneficiation plant waste, ash or any other product derived from or incidental to a mining operation and which is stockpiled, stored or accumulated for potential re-use, or which is disposed of, by the holder of a mining right, mining permit or production right (MPRDA, 2002).

mineral
A mineral includes inter alia sand, soil, clay, gravel, rock, ore, coal and tailings. A mineral occurs in, on or under the earth, water or tailings, as a liquid, solid or gas (DME, 2000).

mineral waste
Mineral wastes comprise of; mined rock, which has no economic ore, tailings, which are the fine sand like residue after the mineral has been extracted from the rock and slag, which is the solid residue from the smelting process. The generation of mineral wastes is directly related to ore type, economic grade and the type of mine (DME, 2006:4).

mineral waste deposits
Mined rock particles, varying in size, that contain no economically viable ore (DME, 2006:4).

mineral waste residues
Refers to tailings impoundments, slimes dams, rock dumps and sand dumps (DME, 2006:4).

mining
Mining is the making of any excavation for the purpose of winning a mineral, and it includes any other associated activities and processes (DME, 2000).

mitigation
Measures including any process, activity or design to avoid, reduce, remedy or compensate for adverse landscape and visual effects of a development project (LI, 2002:121).

non-renewable resources
Resources that exist in a fixed quantity in the earth’s crust and thus theoretically can be completely depleted are called non-renewable resources. It must be noted that these resources can be depleted much faster than they are formed.

ore
Metalliferous rock from which metallic compounds are extracted as valuables.
overburden
Material recently deposited by a transportation mode that occurs immediately adjacent to the surface horizon of a contemporaneous soil. A term used to designate disturbed or undisturbed material of any nature, consolidated or unconsolidated, that overlies a deposit of useful materials, ores, lignites, or coals, especially those deposits mined from the surface by open cuts (van der Walt et al., 1990: 100).

partial closure
The closure of a part, section or portion of a mine. The environmental management issues that need to be addressed for partial closure are the same, as those required for closure of the whole mine.

particulates
Fine solid particles which remain individually dispersed in air (UNEP, 2005:81).

permeability
A measure of the rate at which water can percolate through soil or rock, usually expressed in cubic metres per second (m³/s). Also known as hydraulic conductivity (Park, 2007).

phreatic aquifer
An aquifer in which a water table (= phreatic surface) serves as its upper boundary. A phreatic aquifer is directly recharged from the ground surface above it, except where impervious layers exist between the phreatic surface and the ground surface (Bear, 1979).

phreatic surface
The phreatic surface is the level of saturation in the impoundment and the embankment – i.e. the surface along which pressure in the fluid equals atmospheric pressure. In natural systems without flow it is often equal to the water table.

pioneer species
Hardened, annual plants, which can grow in very unfavourable conditions. Benefits of having these species include less runoff and more available moisture, cooler soil surfaces and less evaporation, protection against wind and build up of organic matter thereby increased enrichment of the soil.

piping
Piping refers to subsurface erosion along a seepage pathway within or beneath an embankment which results in the formation of a low-pressure conduit allowing concentrated flow.

pollution
Pollution is the contamination of resources such as water, air, soil and land with harmful or poisonous substances.

porosity
Porosity is the percentage of the bulk volume of a rock or soil that is occupied by interstices, whether isolated or connected.

post-closure after use
The use of which a mining site, or part of a site, is determined when mineral extraction is completed.

potentially renewable resource
A potentially renewable resource can be renewed fairly rapidly (hours to several decades) through natural processes. Examples of such resources include forest trees, grassland grasses, wild animals, fresh lake and stream water, fresh air, and fertile soil.
qualitative Relating to or involving comparisons based on qualities.
quantitative Expressible as a quantity or relating to or concerned with the measurement by quantity (Oxford, 2002:955).
rare species Species, which have naturally small populations, and species, which have been reduced to small (often unstable) populations by man's activities.
reclamation The return of a disturbed site to an agreed-upon land use.
red data A list of species, fauna and flora that require environmental protection. Based on the IUCN definitions.
rehabilitation The return of disturbed land to a stable, productive and self-sustaining condition, after taking into account beneficial uses of the site and surrounding land.
remediation The clean-up or mitigation of pollution or of contamination of soils or water by pre-determined methods.
renewable resources Solar, wind and wave energy is considered to be a renewable resource because on a human time scale it is essentially inexhaustible. It is expected to last at least 6,5 billion years while the sun completes its life cycle.
residue Residue includes any debris, discard, tailings, slimes, screenings, slurry, rock, foundry sand, beneficiation plant waste, ash and any other waste product derived from or incidental to the operation of a mine or activity and which is stockpiled, stored or accumulated for potential re-use or recycling or which is disposed of (DWAF, 1999:2).
residue deposit The term residue deposit, includes any dump, tailings impoundment, slimes dam, ash dump, rock dump, in-pit deposit and any other heap, pile or accumulation of residue (DWAF, 1999).
residue deposit Means any residue stockpile remaining at termination, cancellation or expiry of a prospecting right, mining right, mining permit, exploration right or production right (MPRDA, 2002).
residue stockpile means any debris, discard, tailings, slimes, screening, slurry, rock, foundry sand, beneficiation plant waste, ash or any other product derived from or incidental to a mining operation and which is stockpiled, stored or accumulated for potential re-use, or which is disposed of, by the holder of a mining right, mining permit or production right (MPRDA, 2002).
resource Resources whose location, grade and quality are known, or estimated from specific geological evidence, and includes economic, marginally economic and sub-economic components. It also encompasses demonstrated and inferred subdivisions (DME, 2000a).
restoration Recreating the original topography and re-establishing the previous land use in a self-sustaining condition.

rill erosion An erosion process in which numerous small channels a few centimetres deep are formed; occurs mainly on recently cultivated soils (van der Walt et al., 1990: 50).

ring dike impoundment layout The ring dike impoundment layout method is best suited for flat terrains and requires a relatively high quantity of embankment fill in relation to the storage volume produced. Also, ring-type impoundments are usually laid out with a regular geometry (Vick, 1983: 119).

risk Risk refers to a combination of the probability, or frequency, of occurrence of a defined hazard and the magnitude of the consequences of the occurrence. Hazard refers to an attribute or situation that in particular circumstances could lead to harm (DEFRA, 2000). Risk, in relation to tailings impoundments, includes the potential for failure leading to the flow of slurry or the discharge of tailings or seepage into the environment through mechanisms such as wind and water resulting in environmental impacts.

runoff That portion of the precipitation on an area which is discharged from the area through stream channels. That which is lost without entering the soil is called surface runoff and that which enters the soil before reaching the stream is called ground water runoff or seepage flow from ground water. (In soil science "runoff" usually refers to the water lost by surface flow; in geology and hydrology "runoff" usually includes both surface and subsurface flow) (van der Walt et al., 1990: 116).

saltation A mode of sediment transport in which the particles are moved progressively forward in a series of short intermittent leaps, jumps, hops or bounces from a surface; e.g. sand particles skipping downwind by impact and rebound along a desert surface, or bounding downstream under the influence of eddy currents that are not turbulent enough to retain the particles in suspension and thereby return them to the stream bed at some distance downstream (van der Walt et al., 1990: 116).

saturated zone The subsurface zone below the water table where interstices are filled with water under pressure greater than that of the atmosphere (Parsons, 2004).

scenario A picture of a possible feature (LI, 2002:121).
sediment (1) Any material carried in suspension by water, which would settle to the bottom if the water lost velocity.

(2) Fine water-borne matter deposited or accumulated in beds. Sediment is ordinarily transported as suspended sediment, by saltation or as bed load (van der Walt et al., 1990: 11p).

sediment yield The sediment yield from a surface is the sum of the soil losses minus deposition in macro-topographic depressions, at the toe of the hill slope, along field boundaries, or in terraces and channels sculpted into the hill slope (Galetovic, 1998:1-1).

sheet erosion The removal of a fairly uniform layer of soil from the land surface by runoff water (van der Walt et al., 1990: 50).

significance Impact magnitude is the measurable change, i.e. intensity, duration and likelihood. Impact significance is the value placed on the change by different affected parties, i.e. level of significance and acceptability. It is an anthropocentric concept, which makes use of value judgements and science-based criteria, i.e. socio-cultural, biophysical and economic. Such judgements reflect the political reality of impact assessment in which significance is translated into public acceptability of impacts (DEAT, 2002:21).

simulation Simulation is to create a representative and accurate two-dimensional image of a future or proposed scheme through the use of computer modified photographs and computer graphics.

slope The vertical difference in height between the highest and the lowest points of a portion of land. The ratio method defines slope as a ratio of the horizontal distance to the vertical elevation difference. The percentage method defines slope as a percentage, dividing the difference in the vertical elevation by the horizontal distance and converting this decimal to a percentage.

slope aspect or slope orientation The slope and direction of the land surface. Combines with the sun’s vertical angle and planar direction to determine the relative amount of solar radiation incident on the ground surface at any given time (Motloch, 2001).

soil A mixture of organic and inorganic substances, the composition and structure of the latter is derived from the parent rock material. Soil also contains bacteria, fungi, viruses and micro-arthropods, nematodes and worms.

soil loss Soil loss is that material actually removed from the particular hill slope or hill slope segment. The soil loss may be less than erosion due to on-site deposition in micro-topographic depressions on the hill slope (Galetovic, 1998:1-1).
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>species diversity</td>
<td>A measure of the number and relative abundance of species (see biodiversity).</td>
</tr>
<tr>
<td>species richness</td>
<td>The number of species in an area or habitat.</td>
</tr>
<tr>
<td>sphere of influence</td>
<td>Sphere of influence is the term used in this report to describe the three-dimensional mine residue storage or disposal facility zone of influence within which an effect on the environment is anticipated. This zone is the spatial overlay or sum of the different environmental aspect zones of influence and is also representative of a particular configuration at a specific moment in time.</td>
</tr>
<tr>
<td>spigotting discharge method</td>
<td>Spigotting accomplishes the deposition of an above-water tailings beach around the perimeter of a tailings impoundment and requires the tailings discharge pipe be relocated periodically to form a series of adjacent and overlapping deltas (Vick, 1983:10).</td>
</tr>
<tr>
<td>spoil</td>
<td>Bulk waste material produced along with the marketable mineral: production waste, substandard and unmarketable material, overburden, etc. that has to be disposed of.</td>
</tr>
<tr>
<td>stakeholders</td>
<td>A subgroup of the public whose interest may be positively or negatively affected by a proposal or activity and/or who are concerned with a scheme or activity and its consequences. The term therefore includes the proponent, authorities and all interested and affected parties (IAPs) (DEAT, 2002:23).</td>
</tr>
<tr>
<td>stockpile</td>
<td>The term "stockpile", includes any heap, pile, slurry pond and accumulation of any substance where such substance is stored as a product or stored for use at any mine or activity (DWAF, 1999).</td>
</tr>
<tr>
<td>subsoil</td>
<td>Subsoil means those layers of soil and weathered rock immediately beneath the topsoil that overlay the hard rock formation.</td>
</tr>
<tr>
<td>subsurface water</td>
<td>All water found below the surface of the earth, including soil water, capillary water and groundwater (Parsons, 2004:2-3).</td>
</tr>
<tr>
<td>sustainable development</td>
<td>Sustainable development means the integration of social, economic and environmental factors into planning, implementation and decision making so as to ensure that mineral and petroleum resources development serves present and future generations (MPRDA, 2002 and NEMA, 1998).</td>
</tr>
<tr>
<td>tailings</td>
<td>Tailings is any fine-grained waste materials from metallurgical processing including slimes and residue. It mainly comprises finely ground rock and may contain process chemical residues (DME, 2000; UNEP, 2005:80; Vermeulen, 2002).</td>
</tr>
<tr>
<td>tailings storage facility</td>
<td>TSF - The overall area used to confine tailings, and may include one or more tailings impoundment compartment. The facility’s functions are to provide a site for waste residue disposal, achieve solids settling and improve water quality.</td>
</tr>
</tbody>
</table>
threatened species
Species, which have naturally small populations, and species, which have been reduced to small (often unstable) populations by man's activities.

threshold
A specified level in grading effects, for example, of magnitude, sensitivity or significance (LI, 2002:121).

topsoil
The upper layer of soil which supports plant growth. Generally this layer contains nutrients, organic matter and seed (UNEP, 2005:82).

total dissolved solids
Total dissolved solids (TDS) is a term that expresses the quantity of dissolved material in a sample of water.

transmissivity
Transmissivity (T) is the rate at which groundwater can flow through an aquifer and is defined as the product of hydraulic conductivity and saturated aquifer thickness (Park, 2007; Vick, 1983:257).

upstream raising method
This raising method requires that a starter dike is constructed, and the tailings is discharged peripherally from the crest to form a beach. The beach then becomes the foundation for a second perimeter dike. This process continues as the embankment increases in height (Vick, 1983:71).

VAC
Visual Absorption Capacity is the capacity the surrounding environment has to camouflage or reduce the visual impact of the impoundment.

vadose zone
Vadose zone is the zone containing water under pressure less than that of the atmosphere, including soil water, intermediate vadose water, and capillary water. This zone is that between the land surface and the surface of the zone of saturation, that is, the water table.

variable
The term variable refers to whatever characteristic being investigated or analysed (Wisniewski, 1997:15).

visual absorption capacity
Visual Absorption Capacity is the capacity the surrounding environment has to camouflage or reduce the visual impact of the impoundment.

visual envelope
Extent of potential visibility to or from a specific area or feature (LI, 2002:121).

visual impact
Any positive or negative change in appearance of the landscape as a result of development (Park, 2007).

visualisation
Computer simulation, photomontage or other technique to illustrate the appearance of a development (LI, 2002:121).

water table
Water table is the surface between the vadose zone and the groundwater, that surface of a body of unconfined groundwater at which the pressure is equal to that of the atmosphere (Parsons, 2004).
wetlands Areas of land that are periodically or permanently waterlogged for a sufficient period of time to sustain aquatic processes and biological activity adapted to the wet environment. Wetlands include vleis, bogs, mires, swamps, marshes, dolomitic eyes and pans.

worst-case situation Principle applied where the environmental effects may vary, for example, seasonally to ensure the most severe potential impact is assessed (LI, 2002:121).

zone of visual influence Area within which a proposed development may have an influence or effect on visual amenity (LI, 2002:121).
APPENDIX A: VISUAL

Appendix A1: Details of the NGT participants

Appendix A2: Presentation of Visualisations to experts

Appendix A3: Presentation of Visualisations to experts

Appendix A4: Zone of visual perception results
Appendix A1: Details of the NGT study participants

The following people, listed alphabetically, were on the panel of experts for the visual perception study using the nominal group technique study method.

Bakker, K.A.
Breedlove, G.
Fisher, R.
Gäärtner, R.
Hindes, C.
Marais, V.
O'Rourke, E.
Rademeyer, B.
Rust, E.
Saidi, F.
Trichard, L.G.
van den Berg, M.J.
van Rensen, C.
van Wyk, F.H.
Vosloo, P.
Young, G.A.
CREDENTIALS

Bakker Karel A

Personal information
Nationality: South African
Parent Firm: University of Pretoria
Home language: English / Afrikaans

Educational qualifications
• PhD (Arch) - University of Pretoria (January 2001)
• M.Arch (cum laude) - University of Pretoria (1993)
• B.Arch - University of Pretoria (1981)

Registration
• Member of the SA Council of Architects
• Member South African Institute of Architects National Heritage Committee
• Member of the International Committee on Monuments and Sites (ICOMOS). (The International Committee on Monuments and Sites is an international conservation body)

Key areas of expertise
• Prof Bakker is a professor at the Department of Architecture at the University of Pretoria and also practices as an architect with Cultmatrix CC (Heritage Management Consultants). His main fields of research are: Archaic Greek architecture, African architecture and settlement, urban regeneration and heritage management.
CREDENTIALS

Breedlove Gwen

Personal information
Nationality: South African
Parent Firm: African EPA / University of Pretoria
Position: Associate Professor
Home language: English / Afrikaans

Educational qualifications
• PhD (Cultural landscape evaluations) – University of Pretoria (2003)
• ML.Arch - Texas A&M University (1986)
• BL.Arch - University of Pretoria

Registration
• Pr. LArch (SA)

Key areas of expertise
• Co-ordination, compilation, editing and review of Environmental Impact Assessments and Scoping Reports for linear and other type of projects regulated under the Environmental Conservation Act.
• Writing of Environmental Management Programme Reports (EMPRs), and Environmental Assessments and Environmental Management Programmes (EMPs) required by the Mineral and Petroleum Resources Development Act for platinum, coal, clay and aggregate mines.
• Master plan development.
• The compilation and editing of Scoping Reports.
• Visual impact assessments.
• Design and drawing of landscape plans, details, concepts and presentation perspectives for various projects.
• Art and Aesthetics in the Landscape.
• Cultural Landscape identification and classification.
• Social Ecology.
• Landscape classifications.
• Environmental Potential Atlas for South Africa with the Dept. of Env. Affairs and Tourism.
• Environmental Management Framework for South Africa with Dept. of Env. Affairs and Tourism.
• Tourism Potential Atlas for South Africa with Dept. of Env. Affairs and Tourism.
CREDENTIALS

Fisher Roger

Personal information

Nationality: South African
Parent Firm: University of Pretoria
Position: Professor in Architecture
Home language: English / Afrikaans

Educational qualifications

• PhD (Arch) - University of Pretoria (1993)
• M.Arch (cum laude) - University of Pretoria (1989)
• B.Arch - University of Pretoria (1982)

Registration

• Member of the SA Council of Architects

Key areas of expertise

• Prof Fisher is a professor at the Department of Architecture at the University of Pretoria and has been lecturing at the University for more than 20 years. He acted as Head of the Department of Architecture for the period April 2003 to August 2004. Prof Fisher has also published extensively in the fields of architecture, architectural conservation and heritage, and sustainability and the built environment.
CREDOENTS

Gärtner Renate

Personal information
Nationality: South African
Parent Firm: Strategic Environmental Focus (Pty) Ltd
Position: Project Advisor: Environmental Management Unit
Home language: German/English/Afrikaans

Educational qualifications
• Fasset Leadership and Management Course (2004)
• Course in Environmental Law, Policy, Assessment and Reporting (2000)
• Registered as Tour Guide for Gauteng (1997)
• BL.Arch - University of Pretoria (1991)

Registration
• Certified Environmental Assessment Practitioner of South Africa
• Registered as a Professional Landscape Architect with the South African Council for the Landscape Architectural Profession

Key areas of expertise
• Environmental Impact Assessment
 Project managed and undertook numerous Scoping Reports, Exemption applications and Environmental Management Plans, as required by the Environment Conservation Act No. 73 of 1989. Project experience includes the establishment of various housing typologies, infrastructure development (including roads and pipelines), resorts and filling stations as well as community development and social upliftment projects. Involved in various Blue IQ Projects funded by the Gauteng Provincial Government, which include the City Deep Industrial Development Zone, The Innovation Hub and the Automotive Supplier Park.

• Landscape Architecture
 Professional experience includes the development of master plans and landscape development plans for rezoning applications. Involved in landscape designs, concepts, construction details, site inspections and maintenance supervision. Production of sketch designs, design proposals, cost estimations and motivational reports. Worked in a team on the preparation of concepts, maps, sketches and a master plan for Gaborone. Gained international experience by working at various Landscape Architect companies in Germany.
CREDENTIALS

Hindes Clinton

Personal information

Nationality: South African
Parent Firm: University of Pretoria
Position: Lecturer
Home language: English / Afrikaans

Educational qualifications

• ML.Arch (cum laude) – University of Pretoria
• BL.Arch (cum laude) – University of Pretoria

Key areas of expertise

• Landscape architectural education and curriculum development
• Design theory of landscape architecture
• History of 20th C landscape architectural design
• Site planning and design
• PhD study commencing on the role and nature of design theory in landscape architecture practice and education
CREDENTIALS

Marais Vanessa

Personal information

Nationality: South African
Parent Firm: Galago Ventures
Position: Environmental Specialist
Home language: English/Afrikaans

Educational qualifications

• BL.Arch – University of Pretoria

Registration

• Registered as a Professional Landscape Architect with the South African Council for the Landscape Architectural Profession

Key areas of expertise

Vanessa Marais is a professional Landscape Architect and has specialized in the development of management processes and guidelines for the review of environmental impact assessments. She has been extensively involved in policy decisions relating to environmental impact management within the ambit of the national context. Her field of expertise is environmental impact management, evaluation and review with analysis of processes used for environmental impact management.

While working at a big engineering firm, her experience in the field of Environmental Impact Assessments (EIAs) has enabled her to develop mechanisms for determining impacts associated with developments as well as mitigating measures for environmental management plans (EMP). Her background as Landscape Architect is an advantage in the planning and management of environmental management frameworks (EMFs). She gained valuable experience in project management while contributing to various projects in the environmental field. This experience together with her extensive knowledge of Environmental Legislation acquired at the Department of Environmental Affairs and Tourism, makes her the ideal candidate for environmental manager. She was the project leader for the Mbombela State of the Environment Report that was undertaken in 2003 and 2004. She also used the vast experience in EIAs and EMPs and externally audited environmental conditions at three construction projects, including the Kruger Mpumalanga International Airport.

A significant project she was recently involved in is the Centurion Over-Arching Environmental Framework for which the team received a Merit Award from the Institute for Landscape Architects in South Africa (ILASA) for outstanding work in the environmental field of Landscape Architecture. She was also involved in the specialist studies for the Lesedi Environmental Framework 2005.
CREDENTIALS

O'Rourke Eamon

Personal information
Nationality: South African
Parent Firm: Strategic Environmental Focus (Pty) Ltd
Position: Unit Manager: Landscape Architecture
Home language: English / Afrikaans

Educational qualifications
• BL.Arch – University of Pretoria (1992)

Registration
• Registered as a Professional Landscape Architect with the South African Council for the Landscape Architectural Profession (SACLAP)
• Member on the SACLAP Council
• Professional member of the Institute of Landscape Architects of South Africa
• Council member on the Council for the Built Environment (CBE)
• Member on the Certification Board for the certification of Environmental Assessment Practitioners

Key areas of expertise
• Environmental Impact Assessment
• Landscape design including design frameworks, master plans, concept development and detail design
• Open space planning and management
• Environmental Management Plans
• Visual impact assessment for a variety of projects (power and transmission lines, national roads, buildings)
CREDENTIALS

Rademeyer Brian

Personal information

Nationality: South African
Parent Firm: University of Pretoria
Position: PhD research student
Home language: English / Afrikaans

Educational qualifications

- M.Sc. (Geography and Environmental Management) - Rand Afrikaans University (2001)
- BL.Arch - University of Pretoria (1997)

Registration

- Certified environmental practitioner of South Africa registered with the Certification Board of Environmental Assessment Practitioners of South Africa (EAPSA).

Key areas of expertise

- Writing of Environmental Management Programme Reports (EMPRs) and Environmental Assessments and Environmental Management Programmes (EMPs) required by the Mineral and Petroleum Resources Development Act 28 of 2002 (MPRDA) for platinum, coal, clay and aggregate mines.
- Master Plan development.
- Landscape design.
CREDENTIALS

Rust Eben

Personal information
Nationality: South African
Parent Firm: University of Pretoria
Position: Associate Professor of Geotechnical Engineering
Home language: English / Afrikaans

Educational qualifications
• PhD, Geotechnical Engineering - University of Surrey, UK (1997)
• M.Eng, (Cum Laude), Geotechnical Engineering - University of Pretoria (1991)
• B.Eng. (Hons), Civil Engineering - University of Pretoria (1985)
• B.Sc, Civil Engineering - University of Pretoria (1979)

Registration
• Engineer 89012 (1989)

Key areas of expertise
• Specialist knowledge of theoretical soil mechanics and advanced geotechnical design
• Geotechnical in situ testing and instrumentation,
• Numerical analysis and design
• Behaviour of tropical soils and soft clays
• Earth fill dam design
• Tailings dam analysis and design
• Risk analysis
• Environmental geo-technology
• Advanced soils laboratory testing
CREDENTIALS

Saidi Finzi

Personal information
Nationality: Zambian
Parent Firm: University of Pretoria
Position: Lecturer
Home language: English / Nyanja

Educational qualifications
- ML.Arch - University of Newcastle upon Tyne (1994)
- B.Arch - Copperbelt University (1991)

Key areas of expertise
- Lecturing in various Landscape and architectural course-modules
- Design of various buildings types
- Design Competition adjudication
- Design and drawing of landscape plans, details, concepts and presentation perspectives for various projects
CREDENTIALS

Trichard Louis G

Personal information

- Nationality: South African
- Parent Firm: LTLA Development Management
- Position: Founding member
- Home language: English / Afrikaans

Educational qualifications

- BL.Arch – University of Pretoria (1977)

Registration

- Pr. LArch (SA) 88033

Key areas of expertise

- Resource Development Strategies and Management
- Landscape Management and Maintenance
- Resort Site Utilization and Conservation
- Sports, Recreation and Public Open Space Planning
- Urban Landscaping, Design and Pedestrianization
- Cemeteries, Memorial Gardens and Memorial Parks
CREDDNTIALS

van den Berg Mader J

Personal information

Nationality: South African
Parent Firm: Strategic Environmental Focus / University of Pretoria
Position: Qualified landscape architect
Home language: English / Afrikaans

Educational qualifications

- ML.Arch (Prof) - University of Pretoria (2004)
- B.Sc Hons (Landscape Architecture) - University of Pretoria (2003)
- B.Sc (Landscape Architecture) - University of Pretoria (2002)

Key areas of expertise

- Environmental landscape planning and design
- Computer aided design
- Visual impact assessment
- Graphic design
- Rehabilitation planning
- Garden design and implementation
- Irrigation design and implementation
CREDENTIALS

van Rensen Chris

Personal information
Nationality: South African
Parent Firm: African EPA
Position: Director
Home language: English / Afrikaans

Educational qualifications
• B.Eng (Civil) – University of Pretoria

Key areas of expertise
• Environmental projects
• Mining related projects
• Other Engineering related projects
• Structural Engineering
• GIS systems
• Infrastructure development engineering
• Water related projects
• Roads
CREDENTIALS

van Wyk Frans H

Personal information
Nationality: South African
Parent Firm: University of Pretoria
Position: Lecturer – Department of Architecture
Home language: English/Afrikaans

Educational qualifications
• BL.Arch – University of Pretoria

Registration
• Pr. LArch (SA)

Key areas of expertise
• Landscape Architecture
• Open Space Conservation Planning
• Urban Design
• Landscape Heritage
CREDENTIALS

Vosloo Piet

Personal information
Nationality: South African
Parent Firm: KWP / University of Pretoria
Position: Director in charge of KWP Landscape Architecture Division
Senior Lecturer – Department of Architecture
Home language: English/Afrikaans

Educational qualifications
• ML. Arch (cum laude) - University of Pretoria (1990)
• B.Arch - University of Pretoria (1978)
• B.Sc (Building Science) - University of Pretoria (1974)

Registration
• Registered with the SA Council for the Architectural Profession as a Pr Arch since 1978
• Registered with the SA Council for the Landscape Architectural Profession as a Pr LArch since 1993

Key areas of expertise
• Commercial, industrial, and educational facilities
• Museums and related heritage facilities
• Landscape design in various fields
• Environmental impact assessments and scoping reports
• Environmental and urban ecological planning
• Site Master planning
CREDENTIALS

Young Graham A

Personal information
Nationality: South African
Parent Firm: Newtown Landscape Architects / University of Pretoria
Position: Member Newtown Landscape Architects
 Lecturer – Department of Architecture
Home language: English/Afrikaans

Educational qualifications
• BL.Arch - University of Toronto, Canada (1978)

Registration
• Pr. LArch (SA)

Key areas of expertise
• Landscape and urban design
• Ecological planning and design
• Environmental planning including environmental impact assessments and environmental management programmes
• Visual impact assessments
• Open space planning including frameworks, resort planning and detail urban park design
• Site and landscape design for domestic, commercial and industrial sites
• Landscape master planning for quarry end-use and landfill (solid waste) end-use plans
• Landscape rehabilitation and management
Appendix A2: Presentation of visual perception study
A Delphi exercise is a discussion by knowledgeable participants with the aim of reaching an acceptable level of agreement and consensus on the results.

The Delphi exercise concept is based on the premises that:
1. opinions of experts are justified as inputs to decision-making where absolute answers are unknown;
2. a consensus of experts will provide a more accurate response to a question than a single expert.

The general procedures for this exercise are as follows:
1. experts are polled on a series of visualisations;
2. responses are tabulated, analysed, and the results fed back to the experts; and
3. experts reconsider and evaluate their answers in light of the information generated by the aggregate responses. This process is repeated until consensus is reached.

The Nominal Group Technique (NGT):
1. employs face-to-face meetings and discussions by knowledgeable participants to obtain and combine expert opinion in the hope of reaching an agreeable conclusion; and
2. allows for information to be collected in less time whereas the Delphi technique is applied where experts are not readily available or within reasonable travelling distance.
Visual impact survey
25 August 2004

Click enter button to proceed with survey

Photo 1

Photo 2

Photo 3

Photo 4
The end. Thank you for your participation.
Appendix A3: Presentation of visual perception results
Problem statement

Need for rational decision-making with regard to tailings impoundment engineering costs and environmental impacts and costs
General model

The general model being developed comprises both the basic engineering costs and environmental impacts and costs.
Mining legislation requirements

Section 38(1)d of the MPRDA requires rehabilitation to either:
- a natural state;
- a predetermined state;
- a land use which conforms to the generally accepted principle of sustainable development.

Background

Visual impact assessment

Experiment impoundment site

Applying the predicted results
Visual impact assessment studies require two judgements:
- estimation of the size of the impact; and
- a determination of the necessity and extent of impact mitigation

Visual impact of a scheme influenced by the following factors:
- physical and visual characteristics of a scheme;
- visibility of scheme;
- distance of observer(s) from scheme;
- the environmental setting; and
- disposition and visual preference of viewers

Visual impact of a scheme may be estimated through:
- describing the visual characteristics of scheme;
- delineate zone of visual influence;
- identify and assess viewer characteristics; and
- assess impact of the scheme on the environment

Different geometries and covers can be used to camouflage or disguise a scheme.

The premise is that the visual effect may be reduced by changing the perceived appearance of the scheme.
Zone of visual influence

The zone of visual influence are the locations from which actual or proposed scheme or structure is visible and is generally shown on a ZVI map.

Visual distance zones

It is convenient to subdivide the zone of visual influence into subzones and these are defined as visual distance zones.

Visual perception

Visual perception is not just a seeing activity but an act of interpretation - albeit largely subconscious.

Although the process is the interpretation of a continuum in practice a series of thresholds occur which may be described as progressing from awareness through detection to recognition.
Experiment impoundment site

Impoundment characteristics
Photographing procedure
Manipulation of photographs
Assessment of visualisations
Results

The test impoundment site:
- abandoned scheme or in process of being closed
- within environment with low visual absorption capacity
- as many different covers possible
Photographing procedure

The test impoundment site:

- was photographed from distances ranging from 800 m and 8300 m
- GPS points were taken around the base of the impoundment
- photographs were taken to the nearest GPS point
- tried to limit interference from other structures and man-made elements
Manipulation of photographs

The manipulation of site photographs included the following steps:
- photographs were taken to include all sorts of textures
- texture were isolated at different distances
- the range of textures were superimposed on to the whole panoramic photograph
- the manipulated simulations could then be viewed on a computer screen – sized to what viewer would see

\[s_2 = s_1 \frac{d_2}{d_1} \]

Assessment of visualisations

The Nominal Group Technique (NGT) study method, an application from the Delphi technique, was used to assess the visualisations and develop the perception versus distance curves.

Delphi technique – general information

A Delphi exercise is a discussion by knowledgeable participants with the aim of reaching an acceptable level of agreement and consensus on the results.

Delphi technique – general information

The concept is based on the premises that:
- opinions of experts are justified as inputs to decision-making where absolute answers are unknown;
- a consensus of experts will provide a more accurate response to a question than a single expert; and
- process is repeatable and is used by researchers to produce defendable data.
Delphi technique – general information

The general procedures are as follows:

• experts are polled on a series of visualisations;
• responses are tabulated, analysed, and the results fed back to the experts; and
• experts reconsider and evaluate their answers in light of the information generated by the aggregate responses. This process is repeated until consensus is reached.

Nominal Group Technique

Application of the Delphi technique

The Nominal Group Technique (NGT):

• employs face-to-face meetings and discussions by knowledgeable participants to obtain and combine expert opinion in the hope of reaching an agreeable conclusion; and
• allows for information to be collected in less time whereas the Delphi technique is applied where experts are not readily available or within reasonable travelling distance.

Visualisations presented to panel

• Each scenario, i.e. impoundment configuration, has different viewing distances
• Viewing distances ranged from 1000 m to 8200 m
• 12 panellists rated the manipulated panoramic photographs
Results

The following slides indicate:

• the initial results from the experts’ ratings for the manipulated simulations before discussion and reaching consensus.
• the consensus results for the same visualisations after discussion.
• the envelope indicating the limits of the consensus results indicates the range of the maximum distances or each perception level.

Impoundment covered with grass and an overall side slope of 1:3
Applying the predicted results in the field

The following process was followed:

• locate suitable impoundment
• determine typical side slope and cover characteristics
• compile ZVI map using GIS
• use predicted maximum perception level versus viewing distance results to determine zones of influence
• 24 visual receptor view points were identified
• take panoramic photographs from pre-determined view points
Visual Perception Experiment
Managing the visual impact of tailings impoundments
RESULTS FROM PREDICTED VIEWING POINTS
5 October 2005
Panel discussion
Panel discussion

Points to be discussed:
- overall experimental procedure followed
- predicted results perception versus distance curves
- general observations
- applying the results in practice
- panoramic photographs taken in the field
- research gaps
The end
Appendix A4: Zone of visual perception results

List of figures

Figure A. 1: Scenario 1 visual perception zones of influence (VS1) A.51
Figure A. 2: Scenario 2 visual perception zones of influence (VS2) A.51
Figure A. 3: Scenario 3 visual perception zones of influence (VS3) A.52
Figure A. 4: Scenario 4 visual perception zones of influence (VS4) A.52
Figure A. 5: Scenario 5 visual perception zones of influence (VS5) A.53
Figure A. 6: Scenario 6 visual perception zones of influence (VS6) A.53
Figure A. 7: Scenario 7 visual perception zones of influence (VS7) A.54
Figure A. 8: Scenario 8 visual perception zones of influence (VS8) A.54
Figure A. 1: Scenario 1 visual perception zones of influence (VS1)

Legend
- Rivers
- Roads
Influence zones
- Tailings impoundment
- R - 1645
- D - 5400
- A - 2865

Figure A. 2: Scenario 2 visual perception zones of influence (VS2)

Legend
- Rivers
- Roads
Influence zones
- Tailings impoundment
- R - 4145
- D - 4095
- A - 1160
Figure A. 3: Scenario 3 visual perception zones of influence (VS3)

Figure A. 4: Scenario 4 visual perception zones of influence (VS4)
Figure A. 5: Scenario 5 visual perception zones of influence (VS5)

Figure A. 6: Scenario 6 visual perception zones of influence (VS6)
Figure A. 7: Scenario 7 visual perception zones of influence (VS7)

Figure A. 8: Scenario 8 visual perception zones of influence (VS8)
APPENDIX B: AIR

List of figures

Figure B. 2: 1:1.5 embankment side slope with no cover (AS1) B.2
Figure B. 3: 1:3 embankment side slope with no cover (AS2) B.2
Figure B. 4: 1:6 embankment side slope with no cover (AS3) B.3
Figure B. 5: 1:9 embankment side slope with no cover (AS4) B.3
Figure B. 6: 1:1.5 embankment side slope with 50% control efficiency (AS9) B.4
Figure B. 7: 1:3 embankment side slope with 50% control efficiency (AS10) B.4
Figure B. 8: 1:6 embankment side slope with 50% control efficiency (AS11) B.5
Figure B. 9: 1:9 embankment side slope with 50% control efficiency (AS12) B.5
Figure B. 10: 1:1.5 embankment side slope with 80% control efficiency (AS13) B.6
Figure B. 11: 1:3 embankment side slope with 80% control efficiency (AS14) B.6
Figure B. 12: 1:6 embankment side slope with 80% control efficiency (AS15) B.7
Figure B. 13: 1:9 embankment side slope with 80% control efficiency (AS16) B.7
Figure B. 1: 1:1.5 embankment side slope with no cover (AS1)

Figure B. 2: 1:3 embankment side slope with no cover (AS2)
Figure B. 3: 1:6 embankment side slope with no cover (AS3)

Figure B. 4: 1:9 embankment side slope with no cover (AS4)
Figure B. 5: 1:1.5 embankment side slope with 50% control efficiency (AS9)

Figure B. 6: 1:3 embankment side slope with 50% control efficiency (AS10)
Figure B. 7: 1:6 embankment side slope with 50% control efficiency (AS11)

Legend
- Rivers
- Roads
- Tailings impoundment
- PM10 concentration
- TSP

Figure B. 8: 1:9 embankment side slope with 50% control efficiency (AS12)
Figure B. 9: 1:1.5 embankment side slope with 80% control efficiency (AS13)

Figure B. 10: 1:3 embankment side slope with 80% control efficiency (AS14)
Figure B. 11: 1:6 embankment side slope with 80% control efficiency (AS15)

Figure B. 12: 1:9 embankment side slope with 80% control efficiency (AS16)
APPENDIX C: ENGINEERING COST MODEL

Appendix C1: Engineering specification sheets
C.1 Access and perimeter roads

SPECIFICATION SHEET FOR ACCESS ROAD CONSTRUCTION

![Typical Cross Section through Access Road](image)

Notes and Specifications

1. Access road width is a variable defined by user input, default value of 5.0m
2. Access road length is a variable either defined by user input or calculated by model
3. Topsoil depth to be removed is a variable defined by user input, default value 0.15m
4. Depth of box cut to access road is a variable defined by user input, default value 0.15m
5. Access road projection above NGL is a variable defined by user input, default value of 0.3m
6. Total fill thickness required is a variable dependant on user input, default value of 0.6m defined as depth of topsoil removal (0.15m) + depth of box cut (0.15m) + fill above NGL (0.3m)
7. Topsoil to be disposed within freehaul distance
8. Clear and grub material to be disposed of within freehaul distance
9. Topsoil to be stockpiled within freehaul distance for re-use
10. Material from box cut excavation to be stockpiled for re-use elsewhere
11. Suitable construction material to be sourced from borrow area or excavation or stockpile
12. Compaction effort required defined as minimum of four passes with one tonne vibratory roller

Known Dimensions / Parameters and Variables

<table>
<thead>
<tr>
<th></th>
<th>Unit</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Access road width</td>
<td>m</td>
</tr>
<tr>
<td>2</td>
<td>Access road length</td>
<td>m</td>
</tr>
<tr>
<td>3</td>
<td>Access road depth of topsoil to be removed</td>
<td>m</td>
</tr>
<tr>
<td>4</td>
<td>Access road depth of box cut</td>
<td>m</td>
</tr>
<tr>
<td>5</td>
<td>Access road fill above NGL thickness</td>
<td>m</td>
</tr>
</tbody>
</table>
C.2 Tailings delivery, ring main and distribution pipelines

SPECIFICATION SHEET FOR DELIVERY AND DISTRIBUTION PIPING

Notes and Specifications

1. Delivery pipeline diameter is a variable defined by user input, default value of 250NB.
2. Delivery pipeline specification: Grade B 6mm thick steel piping, rubber lined (6mm), in standard 9.144m lengths flanged at both ends.
3. Delivery pipelines number of is a variable defined by user input, default value of 2No.
4. Delivery pipeline route length is a variable defined by user input.
5. All delivery pipeline specials and non standard lengths are to be rubber lined.

- Delivery pipeline plinths have dimensions 1.25m width x 0.75m height x 0.3m thickness. Rate to include for excavation, formwork, concrete (Class 15Mpa), float finish, backfill and cast in items (16mm diameter mild steel guide rods 600mm long and skid plates, 80 x 4 flat bar 1.8m long).
- Spacing between delivery pipeline plinths is a variable defined by user input, default value of 3.05m.
- Delivery piping number of specials (bends, T-pieces) is a variable defined by user input, default value of 10No. Rate to be indicative only.
- Delivery piping number of non-standard lengths is a variable defined by user input, default value of 20No. Rate to be indicative only.
- Valves are specified as ATVAL Type KE pinch valve (closed body) with diameter equal to delivery pipeline diameter, rate to include for the supply and installation of hydraulic pack.

- Distribution pipeline diameter is a variable defined by user input, default value of 250NB.
- Distribution piping specification; Grade B 6mm thick steel piping, unlined, in standard 9.144m lengths flanged at both ends with 75mm stub ends at 2.5m centers (defined).
- Distribution piping number of specials (bends, T-pieces) is a variable defined by user input, default value of 20No. Rate to be indicative only.
- Distribution piping number of non-standard lengths is a variable defined by user input, default value of 40No. Rate to be indicative only.
- Distribution piping number of is a variable defined by user input, default value of 10No. Rate to be indicative only.
- Distribution piping route length is a variable defined by user input, default value equal to tailings dam perimeter.
- Distribution piping number of specials (bends, T-pieces) is a variable defined by user input, default value of 20No. Rate to be indicative only.
- Layflat hosing is specified as 75mm diameter, length of hosing required is calculated by model.

Known Dimensions / Parameters and Variables

<table>
<thead>
<tr>
<th>Unit</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>2.00</td>
</tr>
<tr>
<td>m</td>
<td>2000.00</td>
</tr>
<tr>
<td>No</td>
<td>10.00</td>
</tr>
<tr>
<td>No</td>
<td>20.00</td>
</tr>
<tr>
<td>m</td>
<td>3.05</td>
</tr>
<tr>
<td>m</td>
<td>2000.00</td>
</tr>
<tr>
<td>m</td>
<td>2.50</td>
</tr>
<tr>
<td>m</td>
<td>1000.00</td>
</tr>
<tr>
<td>m</td>
<td>7.00</td>
</tr>
<tr>
<td>Ratio</td>
<td>2.00</td>
</tr>
<tr>
<td>m</td>
<td>15.65</td>
</tr>
<tr>
<td>No</td>
<td>20.00</td>
</tr>
<tr>
<td>no</td>
<td>40.00</td>
</tr>
<tr>
<td>No</td>
<td>10.00</td>
</tr>
</tbody>
</table>
C.3 Starter wall

Notes and Specifications

1. Starter wall crest width is a variable defined by user input, default value of 5m
2. Starter wall length is a variable either defined by user input or calculated by model
3. Starter wall depth of box cut is a variable defined by user input, default value 0.15m
4. Starter wall inner slope gradient is a variable defined elsewhere by user input
5. Starter wall outer slope gradient is a variable defined elsewhere by user input
6. Starter wall height above NGL varies according to user input defined elsewhere; total fill volume, base area and outer side slope area are calculated by model
7. Starter wall crest capping thickness is a variable defined by user input, default value of 0.2m
8. Starter wall topsoil to outer slope thickness is a variable defined by user input, default value 0.15m
9. Starter wall cladding to outer slope thickness is a variable defined by user input, default value of 0.2m
10. Material from box cut excavation to be stockpiled for re-use as fill material
11. Suitable construction material to be sourced from borrow area or excavation or stockpile
12. All construction material available within 2km freehaul distance
13. Compaction effort required, defined as minimum of six passes with suitable vibratory roller

Known Dimensions / Parameters and Variables

<table>
<thead>
<tr>
<th>Unit</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>5.00</td>
</tr>
<tr>
<td>m</td>
<td>150000.00</td>
</tr>
<tr>
<td>m</td>
<td>0.15</td>
</tr>
<tr>
<td>m</td>
<td>12000.00</td>
</tr>
<tr>
<td>m</td>
<td>0.20</td>
</tr>
<tr>
<td>m²</td>
<td>15000.00</td>
</tr>
<tr>
<td>m</td>
<td>0.15</td>
</tr>
<tr>
<td>m</td>
<td>0.20</td>
</tr>
</tbody>
</table>
C.4 Toe wall

Notes and Specifications

1. Toe wall crest width is a variable defined by user input, default value of 2m.
2. Toe wall length is a variable either defined by user input or calculated by model.
3. Topsoil depth to be removed is a variable defined by user input, calculated elsewhere, default value 0.15m.
4. Toe wall depth of box cut is a variable defined by user input, default value 0.15m.
5. Toe wall height above GL is a variable defined by user input, default value of 1.0m.
6. Toe wall outer slope gradient is a variable defined by user input, default value of 1V : 2H.
7. Suitable construction material to be sourced from borrow area or excavation, or stockpile.
8. All construction material available within 2km free haul distance.
9. Nominal compaction effort required, defined as minimum of two passes with light vibratory roller.

Known Dimensions / Parameters and Variables

<table>
<thead>
<tr>
<th>Unit</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>2.00</td>
</tr>
<tr>
<td>m</td>
<td>1000.00</td>
</tr>
<tr>
<td>m</td>
<td>0.15</td>
</tr>
<tr>
<td>m</td>
<td>1.00</td>
</tr>
<tr>
<td>Ratio</td>
<td>2.00</td>
</tr>
</tbody>
</table>

Typical Cross Section through Toe Wall

- Toe Wall Crest Width
- Toe Wall Outer Slope Gradient (1V : 2H)
- Toe Wall Height above GL
- Box Cut to Toe Wall

SPECIFICATION SHEET FOR TOE WALL CONSTRUCTION

<table>
<thead>
<tr>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toe Wall Height above GL</td>
</tr>
<tr>
<td>Toe Wall Crest Width</td>
</tr>
<tr>
<td>Toe Wall Outer Slope Gradient</td>
</tr>
<tr>
<td>Box Cut to Toe Wall</td>
</tr>
</tbody>
</table>
C.5 Solution trench

Notes and Specifications
1. Length of solution trench is calculated by model
2. Solution trench depth is a variable defined by user input, default value 1m
3. Solution trench base width is a variable defined by user input, default value 1m
4. Solution trench side slope gradient is a variable defined by user input, default value 1V : 2H
5. Clear and grub material to be disposed of within freehaul distance (quantified elsewhere)
6. Topsoil to be stockpiled within freehaul distance for re-use (quantified elsewhere)
7. Material from excavation to be stockpiled for re-use as fill material

Known Dimensions / Parameters and Variables

<table>
<thead>
<tr>
<th>Unit</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solution trench length</td>
<td>m</td>
</tr>
<tr>
<td>Solution trench depth</td>
<td>m</td>
</tr>
<tr>
<td>Solution trench base width</td>
<td>m</td>
</tr>
<tr>
<td>Solution trench side slope gradient (1V : ?H)</td>
<td>Ratio</td>
</tr>
</tbody>
</table>

Quantification
1. Solution trench excavation

 Calculation \[\text{solution trench sectional area } \times \text{length of solution trench}\]

<table>
<thead>
<tr>
<th>Unit</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>m(^3)</td>
<td>5000.00</td>
</tr>
</tbody>
</table>

Base Rates

<table>
<thead>
<tr>
<th>Unit</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>R/m(^3)</td>
<td>5</td>
</tr>
</tbody>
</table>

Applicable CPI Factors to Base Rates

<table>
<thead>
<tr>
<th>Unit</th>
<th>CPI Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.1</td>
</tr>
</tbody>
</table>

Final Rates for Construction of Solution Trench

<table>
<thead>
<tr>
<th>Unit</th>
<th>Final Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>R/m(^3)</td>
<td>7.7</td>
</tr>
</tbody>
</table>

[Diagram of Solution Trench Cross Section]

- C.6 -
C.6 Catwalk

SPECIFICATION SHEET FOR INSTALLATION OF CATWALK WALKWAY AND PLATFORMS

Typical Sections through Catwalk Installation

- **Catwalk Platform Length**: 5.0m
- **Catwalk Platform Width**: 3.0m
- **2.4m Long x 0.2m Wide x 0.05m Thick Walkway Planking**
- **Safety Chain (At Ankle and Waist Height)**
- **150mm Diameter Gum Poles as Uprights (3.0m long)**
- **150mm Diameter Gum Poles as Bearers (1.0m long)**
- **150mm Diameter Split Gum Poles as Cross Bracing (3.0m long at 24.0m centers)**
- **Concrete Foundation (Class 15MPa)**
- **NGL**
- **Exterior Stays**
- **Uprights**
- **Penstock Intake Structure**

Notes and Specifications

1. Catwalk length is a variable defined by user input, default value equal to penstock pipeline length
2. Catwalk platforms number of is a variable defined by user input, default value of 4No
3. All timber is to be Tanolith treated prior to delivery to site
4. Installation rate is to be all inclusive for materials (timber, concrete, safety chain, nuts, bolts etc), excavation, fixing and backfill

Known Dimensions / Parameters and Variables

<table>
<thead>
<tr>
<th>Unit</th>
<th>Quantities</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>300.00</td>
</tr>
<tr>
<td>m</td>
<td>4.00</td>
</tr>
</tbody>
</table>

- C.7 -
C.7 Penstock

SPECIFICATION SHEET FOR CONSTRUCTION OF FINAL INTAKE STRUCTURES

Typical Cross Section through Final Intake Structures

- First Penstock Ring (Cast-In)
- Lost Shutter
- Final Intake Structure Height
- Final Intake Structure Width
- Final Intake Structure Length
- Penstock Pipeline
- Blinding Layer
- Pipe Plinths
- Holding Down Straps

Notes and Specifications

1. Number of final penstock intake structures is a variable defined by user input, default value of 1No.
2. Final penstock structure excavation width is a variable defined by user input, default value of 2.0m.
3. Final penstock structure excavation length is a variable defined by user input, default value of 3.0m.
4. Final penstock structure height is a variable defined by user input, default value of 1.2m.
5. Final penstock structure width is a variable defined by user input, default value of 1.5m.
6. Final penstock structure length is a variable defined by user input, default value of 2.5m.
7. Number of pipe plinths is a variable defined by user input, default value of 3No. Dimensions 800 x 200 x 200, rate to be all inclusive.
8. Number of penstock rings per structure is a variable defined by user input, default value of 2No. Rings to be SABS approved with 510mm diameter.
9. Blinding thickness is a variable defined by user input, default value of 75mm.
10. Anchor straps to be 80 x 5 mild steel, rate to include for HD bolts and is indicative only.
11. Lost shutter to be manufactured with 3mm mild steel with dimensions to suit inner diameter of penstock pipeline and penstock rings, rate to be indicative only.
12. All excavated material to be retained for backfill or disposed of within construction area.
13. Blinding layer to be constructed with 15MPa / 19mm concrete.
14. All concrete is specified as Class 30MPa / 19mm.
15. Compaction effort required defined as minimum of four passes with one tonne vibratory roller.

Known Dimensions / Parameters and Variables

<table>
<thead>
<tr>
<th>Unit</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>1.00</td>
</tr>
<tr>
<td>m</td>
<td>2.00</td>
</tr>
<tr>
<td>m</td>
<td>3.00</td>
</tr>
<tr>
<td>m</td>
<td>1.20</td>
</tr>
<tr>
<td>m</td>
<td>1.50</td>
</tr>
<tr>
<td>m</td>
<td>2.50</td>
</tr>
<tr>
<td>m</td>
<td>0.075</td>
</tr>
<tr>
<td>m</td>
<td>3.00</td>
</tr>
<tr>
<td>m</td>
<td>2.00</td>
</tr>
</tbody>
</table>

- C.8 -
C.8 Drains

Notes and Specifications

1. Elevated drain length that requires chimney outlets is a variable defined by user input or calculated by model, default value of length of starter wall.
2. Spacing between elevated drain chimneys is a variable defined by user input, default value of 50m.
3. Number of elevated drain chimneys is calculated by model.
4. Elevated drain chimneys average height is a variable defined by user input or calculated by model, default value of maximum height of starter wall.
5. Elevated drain chimney base has dimensions 1.5 x 1.5 x 0.35, rate to include for formwork, concrete (Class 25MPa), float finish and cast-in unslotted.
6. Elevated drain chimney to be constructed with pre-fabricated manhole rings 1.0m diameter, first ring to be cast into base.
7. Height of 6mm stone drainage layer is equal to chimney height.
8. Thickness of 19mm stone drainage layer is equal to base internal height defined as 0.25m.
9. Drainage piping is specified as 160mm diameter "Drainex" flexible HDPE unslotted piping, but is quantified elsewhere.
10. Geofabric is specified as Bidum A4.
11. 6mm stone is to be washed and must meet the following grading criteria:

<table>
<thead>
<tr>
<th>Sieve size (mm)</th>
<th>Percentage passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.50</td>
<td>100</td>
</tr>
<tr>
<td>6.70</td>
<td>85 - 100</td>
</tr>
<tr>
<td>4.75</td>
<td>0 - 30</td>
</tr>
<tr>
<td>3.35</td>
<td>0 - 5</td>
</tr>
<tr>
<td>Dust</td>
<td>Nil</td>
</tr>
</tbody>
</table>

12. 19mm stone is to be washed and must meet the following grading criteria:

<table>
<thead>
<tr>
<th>Sieve size (mm)</th>
<th>Percentage passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.50</td>
<td>100</td>
</tr>
<tr>
<td>19.00</td>
<td>85 - 100</td>
</tr>
<tr>
<td>13.20</td>
<td>0 - 30</td>
</tr>
<tr>
<td>9.50</td>
<td>0 - 5</td>
</tr>
<tr>
<td>Dust</td>
<td>Nil</td>
</tr>
</tbody>
</table>

13. All excavated material to be stockpiled for re-use.

SPECIFICATION SHEET FOR CONSTRUCTION OF ELEVATED DRAIN CHIMNEYS
C.9 Silt trap

SPECIFICATION SHEET FOR CONSTRUCTION OF SILT TRAP HEADWALL AND TRENCHES

Typical Cross Sections through Silt Trap

Notes and Specifications

1. Silt trap topsoil depth to be removed is a variable defined by user input, default value of 0.15m
2. Silt trap headwall length is a variable defined by user input, default value of 20m
3. Silt trap headwall height is a variable defined by user input, default value of 1.7m
4. Silt trap headwall thickness is a variable defined by user input, default value of 0.3m
5. Silt trap base width is a variable defined by user input, default value of 1.2m
6. Silt trap base thickness is a variable defined by user input, default value of 0.3m
7. Silt trap recess to headwall have dimensions 1.0 x 1.0m
8. Silt trap trench length is a variable defined by user input, default value of 20m
9. Silt trap trench base width is a variable defined by user input, default value of 2.0m
10. Silt trap trench side slope gradient is a variable defined by user input, default value of 1V : 2H
11. Silt trap trench depth is a variable defined by user input, default value of 1.5m
12. Silt trap length of handrail is calculated by model, specified as mild steel galvanised tubular 2 rail type. Hand rail size 34 x 2.5, ball type stanchion type 43 x 3.0, all connections to be welded. Rate to be indicative only
13. Clear and grub material to be disposed of within construction area
14. Topsoil removed is to be stockpiled for re-use within free haul distance
15. All excavated material to be retained for use as backfill or disposed of within the construction area
16. Blinding layer to be constructed with 15Mpa / 19mm concrete, thickness specified as 0.150m
17. All concrete is specified as Class 30Mpa / 19mm
18. Mass of rebar per volume of concrete is a variable defined by user input, default value of 120kg/m3
19. Compaction effort required defined as minimum of four passes with one tonne vibratory roller

Known Dimensions / Parameters and Variables

<table>
<thead>
<tr>
<th>Unit</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>0.15</td>
</tr>
<tr>
<td>m</td>
<td>20.00</td>
</tr>
<tr>
<td>m</td>
<td>1.70</td>
</tr>
<tr>
<td>m</td>
<td>0.30</td>
</tr>
<tr>
<td>m</td>
<td>1.20</td>
</tr>
<tr>
<td>m</td>
<td>0.30</td>
</tr>
<tr>
<td>m</td>
<td>1.00</td>
</tr>
<tr>
<td>m</td>
<td>20.00</td>
</tr>
</tbody>
</table>
C.10 Cover

SPECIFICATION SHEET FOR CLADDING OF TAILINGS DAM OUTER SLOPES

Typical Cross Section through Tailings Dam

Option One: Topsoil and Vegetate

Option Two: Clad with Rockfill

Notes and Specifications

1. Tailings dam outer slope area is calculated by model elsewhere.
2. Topsoil depth is a variable defined by user input, default value of 0.15m. Rate to be based on collection of topsoil from stockpile within 2 km's.
3. Vegetation of outer slopes is to be achieved by hand planting, species mix is as follows:

<table>
<thead>
<tr>
<th>Species Variety</th>
<th>Common Name</th>
<th>Variety</th>
<th>Rate (kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cenchrus ciliaris</td>
<td>Blue buffalo grass</td>
<td>Molopo</td>
<td>5</td>
</tr>
<tr>
<td>Chloris gayana</td>
<td>Rhodes grass</td>
<td>Katambora</td>
<td>3</td>
</tr>
<tr>
<td>Cynodon dactylon</td>
<td>Kweek</td>
<td>Bermuda</td>
<td>10</td>
</tr>
<tr>
<td>Digitaria eriantha</td>
<td>Smuts finger grass</td>
<td>Irene</td>
<td>5</td>
</tr>
</tbody>
</table>

4. Rockfill cladding thickness is a variable defined by user input, default value of 0.3m. Rate to be based on the free supply of material to be collection from within a 2 km radius.

Known Dimensions / Parameters and Variables

<table>
<thead>
<tr>
<th></th>
<th>Unit</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Tailings dam outer slope area</td>
<td>m</td>
<td>80000.00</td>
</tr>
<tr>
<td>2 Tailings dam topsoil cladding thickness</td>
<td>m</td>
<td>0.15</td>
</tr>
<tr>
<td>3 Tailings dam rockfill cladding thickness</td>
<td>m</td>
<td>0.30</td>
</tr>
</tbody>
</table>