
Particle swarm optimization and differential

evolution for multi-objective multiple machine

scheduling

by

Jacomine Grobler

Submitted in partial fulfillment of the requirements for the degree

Master of Engineering (Industrial Engineering)

in the Faculty of Engineering, Built Environment and Information Technology

University of Pretoria, Pretoria

September 2008

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Publication data:

Jacomine Grobler. Particle swarm optimization and differential evolution for multi-objective multiple machine schedul-

ing. Master’s dissertation, University of Pretoria, Department of Industrial and Systems Engineering, Pretoria, South

Africa, September 2008.

Electronic, hyperlinked versions of this dissertation are available online, as Adobe PDF files, at:

http://cirg.cs.up.ac.za/

http://upetd.up.ac.za/UPeTD.htm

http://cirg.cs.up.ac.za/
http://upetd.up.ac.za/UPeTD.htm

Particle swarm optimization and differential evolution for

multi-objective multiple machine scheduling

by

Jacomine Grobler

E-mail: jacomine.grobler@gmail.com

Abstract

Production scheduling is one of the most important issues in the planning and operation

of manufacturing systems. Customers increasingly expect to receive the right product

at the right price at the right time. Various problems experienced in manufacturing,

for example low machine utilization and excessive work-in-process, can be attributed

directly to inadequate scheduling.

In this dissertation a production scheduling algorithm is developed for Optimatix,

a South African-based company specializing in supply chain optimization. To address

the complex requirements of the customer, the problem was modeled as a flexible job

shop scheduling problem with sequence-dependent set-up times, auxiliary resources and

production down time.

The algorithm development process focused on investigating the application of both

particle swarm optimization (PSO) and differential evolution (DE) to production schedul-

ing environments characterized by multiple machines and multiple objectives. Alter-

native problem representations, algorithm variations and multi-objective optimization

strategies were evaluated to obtain an algorithm which performs well against both exist-

ing rule-based algorithms and an existing complex flexible job shop scheduling solution

strategy.

Finally, the generality of the priority-based algorithm was evaluated by applying it

to the scheduling of production and maintenance activities at Centurion Ice Cream and

Sweets. The production environment was modeled as a multi-objective uniform parallel

machine shop problem with sequence-dependent set-up times and unavailability intervals.

file:jacomine.grobler@gmail.com

A self-adaptive modified vector evaluated DE algorithm was developed and compared

to classical PSO and DE vector evaluated algorithms. Promising results were obtained

with respect to the suitability of the algorithms for solving a range of multi-objective

multiple machine scheduling problems.

Keywords: Flexible job shop scheduling problem, evolutionary multi-objective opti-

mization, particle swarm optimization, differential evolution.

Supervisors : Prof. V. S. S. Yadavalli

Prof. A. P. Engelbrecht

Department : Department of Industrial and Systems Engineering

Degree : Master of Engineering (Industrial Engineering)

Acknowledgements

“Alone we can do so little; yet together we can do so much.”

Helen Keller

There are a number of people and institutions which I would like to acknowledge for

their help and support during the completion of this dissertation:

• Prof. Sarma Yadavalli for always believing in me and encouraging me to do better.

• Prof. Andries P. Engelbrecht for his excellent mentorship and financial support.

• Prof. Schalk Kok for the numerous insightful conversations and encouraging words.

• Leon Beetge from Optimatix and Charles Meeser from Centurion Ice Cream for

their data, helpful comments and general support.

• The staff of the Department of Industrial and Systems Engineering for their en-

couragement and interest in my work.

• All my friends and colleagues in and outside of the Computational Intelligence

Research Group for their patience and valuable comments.

• The Automated Scheduling Optimization and Planning research group at the Uni-

versity of Nottingham for hosting me at their university.

• The University of Pretoria for their financial support enabling me to attend various

national and international conferences.

• The National Research Foundation for their financial assistance towards this re-

search. Opinions expressed in this dissertation and conclusions arrived at, are

those of the author and not necessarily to be attributed to the National Research

Foundation.

• My parents and grandmother for their unwavering love and support.

• My Creator for His blessing during the completion of this dissertation.

Contents

List of Figures v

List of Algorithms vii

List of Tables viii

1 Introduction 1

1.1 Objectives . 2

1.2 Contributions . 3

1.3 Dissertation Outline . 4

2 Literature review 5

2.1 Classification according to flow pattern and number of machines (α) . . . 5

2.2 Classification according to job constraints (β) 9

2.3 Classification according to objective function (γ) 14

2.4 The Optimatix problem . 15

2.5 Summary . 18

3 Selecting an appropriate solution strategy 20

3.1 An overview of existing solution strategies 20

3.1.1 Optimal solution strategies . 22

3.1.2 Heuristic methods . 23

3.1.3 Metaheuristics . 26

3.1.4 Selecting a suitable solution strategy 29

3.2 Particle swarm optimization . 30

i

3.2.1 The basic algorithm . 30

3.2.2 The guaranteed convergence PSO algorithm 32

3.2.3 Algorithm parameters . 33

3.2.4 Variations on the basic PSO algorithm 35

3.3 Differential evolution . 38

3.3.1 The basic algorithm . 39

3.3.2 Algorithm parameters . 41

3.3.3 Variations on the basic DE algorithm 41

3.4 A brief analysis of existing PSO- and DE-based scheduling algorithms . . 43

3.4.1 General observations . 43

3.4.2 Addressing more complex scheduling problems 46

3.5 Summary . 48

4 Solving the single objective Optimatix problem 49

4.1 Alternative particle representations . 49

4.1.1 The priority-based PSO algorithm 50

4.1.2 The random keys PSO algorithm 57

4.1.3 The rule-based PSO algorithm . 58

4.1.4 Comparative analysis of alternative particle representations 59

4.2 Investigating alternative PSO topologies and DE base vector selection

strategies . 66

4.2.1 Comparative analysis of alternative PSO and DE strategies 66

4.3 Benchmarking the priority-based algorithm against alternative solution

strategies . 72

4.3.1 The existing Optimatix algorithms 72

4.3.2 Norman and Bean’s random keys genetic algorithm 75

4.3.3 Comparative analysis of alternative benchmark algorithms 76

4.4 Summary . 81

5 The multi-objective priority-based algorithm 82

5.1 Introductory concepts and related literature 82

5.1.1 Multi-objective optimization . 83

ii

5.1.2 Multi-objective multiple machine scheduling 84

5.2 Alternative multi-objective PSO and DE-based scheduling strategies . . . 85

5.2.1 The vector evaluated approach 86

5.2.2 Modified goal programming . 87

5.2.3 Comparative analysis of alternative MOO strategies 90

5.3 A further investigation of the VEPSO algorithm 96

5.3.1 Variations on the basic VEPSO algorithm 97

5.3.2 Comparative analysis of alternative VEPSO algorithms 99

5.4 A further investigation of the VEDE algorithm 102

5.4.1 Variations on the basic VEDE algorithm 103

5.4.2 Comparative analysis of alternative VEDE strategies 103

5.5 Summary . 106

6 Investigating the generality of priority-based metaheuristic algorithms107

6.1 The Centurion Ice Cream scheduling problem 108

6.2 An overview of related scheduling literature 109

6.2.1 The classical parallel machine scheduling problem 110

6.2.2 The parallel machine scheduling problem with sequence-dependent

set-up times . 110

6.2.3 The parallel machine scheduling problem with unavailability con-

straints . 111

6.2.4 Summary . 112

6.3 Vector evaluated algorithms for the Centurion Ice Cream problem 112

6.4 Self-adaptive algorithms for the Centurion Ice Cream problem 118

6.4.1 Self-adaptive differential evolution 119

6.4.2 A comparative analysis of VEDE and S-VEDE 119

6.5 Summary . 123

7 Conclusion 126

7.1 Summary . 126

7.2 Future research opportunities . 128

7.3 Last words . 131

iii

A Acronyms 149

B Symbols 151

C Derived Publications 158

iv

List of Figures

2.1 Classification of scheduling systems based on resource environments [154] 6

2.2 Flow patterns of “single resource per operation” models 8

2.3 Flow patterns of “multiple resources per operation” models 8

2.4 A classification of common variations on the classical JSSP 10

2.5 A schematic representation of the Optimatix problem 17

3.1 Solution strategies of the classical job shop scheduling problem [57] . . . 21

3.2 A classification of popular search methodologies [43] 22

3.3 An example of the disjunctive graph formulation [57] 25

3.4 A number of common metaheuristics . 26

3.5 Particle velocity as resultant of three components 31

3.6 Variations on the basic PSO algorithm [39] 37

3.7 The gbest and Von Neumann topologies. 38

3.8 Applications of PSO to machine scheduling literature 44

3.9 Applications of DE to machine scheduling literature 45

4.1 A small example problem and possible solution 51

4.2 Calculating the set of possible operation starting times 54

4.3 An example P-PSO implementation . 54

4.4 An example RKPSO implementation . 58

4.5 An example RBPSO implementation . 59

4.6 Results of the investigation into alternative particle representations . . . 64

4.7 Results of the investigation into alternative PSO and DE strategies . . . 68

4.8 Benchmarking results . 77

v

4.9 Investigating scalability . 80

5.1 T’Kindt and Billaut [136] define three main strategies for addressing mul-

tiple conflicting objectives . 84

5.2 Results of the investigation into alternative MOO strategies 94

5.3 A graphical comparison of the VEPSO(1) and VEPSO(2) algorithms . . 98

5.4 Results of the investigation into alternative VEPSO-based strategies . . . 100

5.5 Results of the investigation into alternative VEDE-based strategies . . . 104

6.1 The Centurion Ice Cream production process 109

6.2 Results of the application of VEPSO and VEDE to the Centurion Ice

Cream problem . 115

6.3 Results of the investigation into the use of self-adaptive differential evolution121

6.4 An example Pareto front for the large-sized Centurion Ice Cream problem,

as obtained by the VEDE(4) algorithm 125

vi

List of Algorithms

3.1 The basic gbest PSO algorithm [39] . 32

3.2 The guaranteed convergence PSO (GCPSO) algorithm [138] 34

3.3 The classic DE algorithm [114] . 40

4.1 The priority-based PSO mapping mechanism 53

4.2 Calculating operation finishing time . 55

4.3 Allocation of operations to auxiliary resources 56

4.4 The random keys PSO sorting mechanism as applied to particle i 58

4.5 The rule-based PSO mapping mechanism 60

4.6 The rule-based benchmarking algorithms 74

5.1 The vector evaluated particle swarm optimization (VEPSO) algorithm . 88

5.2 The vector evaluated differential evolution (VEDE) algorithm 89

5.3 The modified GP approach . 91

vii

List of Tables

2.1 Popular job constraints [136] . 11

2.2 Commonly used job shop scheduling measurements 15

4.1 There are a number of parameters which have a significant effect on the

performance of PSO . 63

4.2 Experimental results of alternative mapping strategies and particle repre-

sentations with respect to makespan and earliness/tardiness 63

4.3 Experimental results of alternative mapping strategies and particle repre-

sentations with respect to queue time and the aggregated objective function 65

4.4 PSO and DE parameter derivation results 69

4.5 A comparison of the performance of various DE base vector selection

strategies and PSO topologies with respect to makespan and earliness/tardiness 70

4.6 A comparison of the performance of various DE base vector selection

strategies and PSO topologies with respect to queue time and the ag-

gregated objective function . 71

4.7 RKGA algorithm parameters as selected for benchmarking purposes . . . 76

4.8 Experimental comparison of alternative solution strategies with respect

to makespan and earliness/tardiness . 78

4.9 Experimental comparison of alternative solution strategies with respect

to queue time and the aggregated objective function 79

5.1 Multiple machine, multi-objective scheduling literature 85

5.2 The reference vectors used for each of the problems 92

viii

5.3 Investigating alternative multi-objective optimization strategies for the

56-operation problem . 93

5.4 Investigating alternative multi-objective optimization strategies for the

100-operation problem . 95

5.5 Investigating alternative multi-objective optimization strategies for the

256-operation problem . 95

5.6 Investigating alternative VEPSO-based strategies for the 56-operation

problem . 101

5.7 Investigating alternative VEPSO-based strategies for the 100-operation

problem . 101

5.8 Investigating alternative VEPSO-based strategies for the 256-operation

problem . 102

5.9 Investigating alternative VEDE-based strategies for the 56-operation prob-

lem . 105

5.10 Investigating alternative VEDE-based strategies for the 100-operation prob-

lem . 105

5.11 Investigating alternative VEDE-based strategies for the 256-operation prob-

lem . 106

6.1 VEDE and VEPSO algorithm parameters 114

6.2 The reference vectors associated with each of the three data sets 116

6.3 Investigating alternative VEPSO and VEDE-based strategies for the small-

sized Centurion Ice Cream problem . 116

6.4 Investigating alternative VEPSO and VEDE-based strategies for the medium-

sized Centurion Ice Cream problem . 117

6.5 Investigating alternative VEPSO and VEDE-based strategies for the large-

sized Centurion Ice Cream problem . 117

6.6 Investigating self-adaptive differential evolution for the small-sized Cen-

turion Ice Cream problem . 120

6.7 Investigating self-adaptive differential evolution for the medium-sized Cen-

turion Ice Cream problem . 122

ix

6.8 Investigating self-adaptive differential evolution for the large-sized Centu-

rion Ice Cream problem . 122

x

Chapter 1

Introduction

Production scheduling is commonly considered to be one of the most important issues

in the planning and operation of manufacturing systems [55]. Many production related

problems, including low machine utilization and excessive work in process, can be as-

signed directly to inadequate scheduling. Addressing these problems through improved

scheduling can, on the other hand, have a significant impact on cost reduction, customer

satisfaction, profitability, and overall competitive advantage.

In addition, recent customer demand for higher variety products have contributed to

an increase in product complexity. Subsequently, the number of parts being produced

in job shop environments has dramatically increased during the past decade [55]. This

increased complexity further emphasizes the need for improved planning and scheduling.

This need has resulted in numerous research papers being published in the field of

production scheduling during the last fifty years. It is interesting to note that many

researchers ignore the multi-objective nature of the production environment. Loukil et

al. [85], however, provide a strong motivation for considering production scheduling

problems to be multi-objective. More than one decision maker is often involved in de-

cision making in a manufacturing environment resulting in conflicting objectives. For

example, the marketing manager is interested in maximizing customer satisfaction by

minimizing expected tardiness, while the production manager is concerned with minimiz-

ing makespan and work in progress. To accommodate all stake holders, the availability of

a set of feasible solutions representing trade-offs between the various objective functions,

1

Chapter 1. Introduction 2

can be quite valuable. However, due to the extreme complexity of multiple machine

multi-objective scheduling problems, very little research has been done in this field.

A large number of solution strategies have also been developed over the years for solv-

ing production scheduling problems. The aim of this dissertation is to investigate the ap-

plication of particle swarm optimization (PSO) [64] and differential evolution (DE) [131]

to multiple machine multi-objective scheduling problems. Since the development of PSO

and DE in 1995, these algorithms have shown to be effective in solving a large range

of problem types. Many production scheduling applications of PSO and DE also exist.

However, these tend to consider simple problems while significant research opportunities

exist in applying PSO and DE to more complex scheduling scenarios.

The production scheduling problem faced by Optimatix, a South African company

specializing in supply chain optimization, can be considered a good example of a complex

production scheduling problem. The design and development of a production scheduling

algorithm for Optimatix provides an excellent opportunity for investigating the appli-

cation of PSO and DE in a multi-objective multiple machine environment. Alternative

problem representations, variations on the classical PSO and DE algorithms, and multi-

objective optimization strategies can be easily investigated. All of these aspects, as well

as a number of other aspects, are considered in this dissertation.

The first objective of this introductory chapter was to provide a rationale for the

development of real world production scheduling algorithms. The objectives and contri-

butions of this dissertation are further highlighted in Sections 1.1 and 1.2 before a brief

outline of the rest of this dissertation is provided in Section 1.3.

1.1 Objectives

To investigate the application of PSO and DE to multiple machine multi-objective en-

vironments, the following sub-objectives have been defined:

• To contextualize the Optimatix problem with respect to existing literature to enable

the formulation of a realistic yet tractable model of the production environment.

• To develop PSO and DE-based scheduling algorithms capable of addressing the

Optimatix scheduling requirements.

Chapter 1. Introduction 3

• To investigate the impact of alternative problem representations on the perfor-

mance of the developed algorithms.

• To investigate the impact of parameter values and alternative PSO topologies and

DE variations on algorithm performance.

• To benchmark the developed algorithms against existing solution strategies.

• To compare alternative multi-objective optimization approaches.

• To investigate the generality of the developed algorithms by applying the algo-

rithms to a different, yet related, multi-objective machine scheduling problem.

1.2 Contributions

The main contributions of this dissertation can be summarized in a similar fashion.

These contributions include:

• The first attempt at solving the multi-objective flexible job shop scheduling prob-

lem with sequence-dependent set-up times, auxiliary resources and production

down times.

• The first attempt at solving the multi-objective uniform parallel machine shop

problem with sequence-dependent set-up times and unavailability intervals.

• The first application of a vector evaluated Von Neumann guaranteed convergence

PSO (GCPSO) algorithm in the scheduling domain.

• The first application of particle swarm optimization and differential evolution to a

flexible job shop scheduling problem with additional constraints.

• The development of priority-based vector evaluated PSO and DE algorithms suit-

able for solving a range of multiple machine multi-objective scheduling problems.

• The development and application of an adaptive vector evaluated DE algorithm.

Chapter 1. Introduction 4

1.3 Dissertation Outline

Chapter 2 contextualizes the Optimatix problem with respect to existing literature. This

is achieved by means of Graham et al.’s three-field scheduling notation [51]. This analysis

leads to the problem being modeled as a multi-objective flexible job shop scheduling

problem with sequence-dependent set-up times, auxiliary resources, and production down

time.

An overview and analysis of existing solution strategies which have already been used

effectively to solve job shop scheduling problems is provided in Chapter 3. PSO and DE

are identified as solution strategies of choice and a detailed introduction of these two

paradigms is provided.

Chapter 4 documents the algorithm development process associated with the single

objective Optimatix algorithm. Alternative problem representations, PSO topologies,

and DE based vector selection strategies are investigated. An in depth parameter deriva-

tion study is also performed and the priority-based algorithms are benchmarked against

existing solution strategies.

The multi-objective nature of the Optimatix problem is further investigated in Chap-

ter 5. Alternative multi-objective optimization strategies are investigated before an ad-

ditional investigation into alternative information exchange strategies in the context of

Parsopolous et al.’s vector evaluated algorithms [108, 109] is conducted.

The purpose of Chapter 6 is to investigate the performance of the multi-objective

priority-based algorithms when applied to a different, yet related, scheduling environ-

ment. The Centurion Ice Cream and Sweets scheduling problem is modeled as a multi-

objective uniform parallel machine shop problem with sequence-dependent set-up times

and unavailability intervals.

Chapter 7 concludes the dissertation with a summary of the major findings and

future research opportunities identified during the completion of this study. Finally, the

definitions of all symbols and acronyms used, as well as publications derived from this

dissertation, is described in the three appendices.

Chapter 2

Literature review

Production scheduling has been fascinating researchers since the 1950s [57]. Since then

a large number of scheduling models and algorithms have been developed, capable of

addressing a wide range of customer requirements. Various mechanisms exist to con-

textualize complex scheduling problems with respect to existing literature. Problem

classification is an important prerequisite to the selection of a suitable solution strat-

egy since information regarding problem complexity and existing algorithms provide

useful points of departure for new algorithm development [136]. One of the most well

known scheduling classification mechanisms is Graham et al.’s three field scheduling no-

tation, (α/β/γ) [51], which classifies models according to the flow pattern and number

of machines (α), the constraints placed on the jobs (β), and the scheduling criteria (γ).

The rest of this chapter describes each of these components in more detail with the aim

of identifying possible problem characteristics which is useful in modeling and solving

the Optimatix problem which is discussed in more detail in Section 2.4.

2.1 Classification according to flow pattern and num-

ber of machines (α)

The first field of Graham et. al ’s three field notation [51] is mostly concerned with

the configuration of primary resources (usually machines) and the flow of jobs on the

production floor. Recently, Zandieh et al. [154] have documented a classification for a

5

Chapter 2. Literature review 6

number of common scheduling problem classes. Since all models differ with respect to

the associated resource environments and follow the same convention as Graham et al.’s

notation, this taxonomy may be considered as a further breakdown of the α component.

As can be seen from Figure 2.1, the models range from more generic formulations, for

example the job shop scheduling problem with duplicate machines, to more specific

formulations, i.e. the single machine shop problem. The various models are primarily

classified according to:

• the characteristics of the routings of each of the jobs,

• the number of operations of each of the jobs,

• and the number of resources available to perform the required operations.

Open shop
Job shop with

duplicate
machines

Job shop

Flow shop

Permutation
flow shop

Single
machine

shop

Hybrid flow
shop

Parallel
machine

shop

Identical routings
defined for each job

Identical routings per
job & single resource
per operation

Single
operation
defined
for each job

Specific routings
defined for each job

Identical routings per job ,
single resource per operation
and “no-passing” constraints

Specific identical routings
defined for each job

Identical routings
defined for each job

Single resource per
operation

Single resource
per operation

Single operation per job &
single resource per operation

Figure 2.1: Classification of scheduling systems based on resource environments [154]

The most well known scheduling model in the classification is the classical job shop

scheduling problem (JSSP). Due to its intractability, the JSSP has been used extensively

Chapter 2. Literature review 7

to test the performance of a wide range of solution strategies, ranging from neural net-

works to mixed integer linear programming. The purpose of this section is not to provide

a detailed review of job shop scheduling. For that the reviews of Blazewicz et al. [18]

and Jain and Meeran [57] should be consulted. However, due to the importance of the

problem, a brief definition is provided nonetheless.

Jain and Meeran [57] describe the problem as consisting of a finite set, JJJ , of nj jobs,

i.e. JJJ =
{
Jv

}nj

v=1
to be processed on a finite set, MMM , of nm machines,

{
Ml

}nm

l=1
. Each

job Jv must be processed on every machine and consists of a chain of nv operations,

ov1, ov2, . . . , ovnv , that have to be scheduled in a predetermined sequence. There are n

operations in total, where n =
∑nj

v=1 nv. ovl is the operation of job Jv which has to be

processed on machine Ml for an uninterrupted processing time pvl. No operation may

be interrupted. Each job has its own independent and individual flow pattern through

the machines. Each machine can process only one job at a time and each job can be

processed by only one machine at a time.

Upon closer inspection of Zandieh et al.’s classification [154], all of the models can,

in fact, be described as either generalizations of, or specific instances of the classical job

shop scheduling problem. This fact becomes evident when the flow patterns supported

by each of the models is compared.

The single machine scheduling problem (SMP), which is indicated in Figure 2.2, is

merely a job shop scheduling problem (JSSP) with only one operation per job. The flow

shop scheduling problem (FSSP), which is indicated in Figure 2.3, is restricted to specific

applications where identical routings are defined for each of the jobs. Thus the problem

consists of finding the order in which jobs should be processed on each resource. Closely

related to the FSSP, the permutation flow shop scheduling problem (PFSSP) boasts, in

addition to identical routings, the addition of a “no passing” constraint. This constraint

ensures that the same job sequence is followed for each of the resources.

In contrast, the parallel machine shop problem is limited to jobs consisting of only

one operation, which can be performed on any one of a number of resources. Yet another

close relation of the FSSP, the hybrid flow shop scheduling problem allows for identical

routings along with multiple resources per operation.

Chapter 2. Literature review 8

Entrance Exit

Flow Shop Scheduling Problem
Job Shop Scheduling Problem
Single Machine Shop Scheduling Problem

Figure 2.2: Flow patterns of “single resource per operation” models

Entrance Exit

Hybrid Flow Shop Scheduling Problem
Flexible Job Shop Scheduling Problem
Parallel Machine Shop Scheduling Problem

Figure 2.3: Flow patterns of “multiple resources per operation” models

The job shop scheduling problem with duplicate machines can be considered a gen-

eralization of the classical JSSP, the only addition being the allowance of more than one

resource per operation. This problem is also known as the flexible job shop scheduling

problem (FJSP), Kacem et al. [62] provide a more formal definition. Consider a finite set,

J, of nj jobs,
{
Jv

}nj

v=1
, to be processed on a finite set, M, of nm machines,

{
Ml

}nm

l=1
. Each

job represents a number, nv, of nonpreemptable ordered operations ov1, ov2, . . . , ovnv . The

execution of each operation of a job requires one resource or machine selected from a set

of available machines, QQQk ⊆ M, where k is a unique operation index. The assignment

of the operation k to the machine Ml, where Ml ∈ QQQk, entails the occupation of this

machine during a processing time pkl.

Chapter 2. Literature review 9

The uniqueness of the FJSP results in making provision for the inclusion of additional

primary resources such that each operation does not have to be performed on a machine

specifically dedicated to it. A selection can be made from any of the available resources

belonging to a predefined set of resources. It is important to note, however, that each

operation may still only be assigned one resource from the set. The option of alternative

resources ensures that the FJSP is useful for scheduling in a wider range of production

systems including flexible manufacturing systems and parallel machine shops [35].

Finally, for most of the problem types in Figure 2.1, operations are performed ac-

cording to a predefined sequence which is derived from the product routing. However,

one exception exists in the form of the open shop problem. This formulation results from

a relaxation of the operation sequencing constraint. In other words, no specific sequence

is specified in which the operations of each of the jobs should be performed.

2.2 Classification according to job constraints (β)

Brucker [21] and T’Kindt and Billaut [136] have done significant work in identifying

various types of constraints on the job characteristics, which, when included, may sig-

nificantly affect the realism of the scheduling model. A number of job constraints listed

in Table 2.1, and elsewhere, have already been used in a job shop environment. The

purpose of Figure 2.4 is to provide the reader with a glimpse into some of the most

common job constraint variations of the classical JSSP. For each variation, just two or

three of the solution strategies which have already been effectively employed to solve the

specific problem, are mentioned. The variations are further organized into four groups

depending on the implications of the extension.

Variations which affect the length of the processing time of operations include the

preemptive JSSP, where operations may be interrupted and continued at a later stage [3,

69, 152] and the JSSP with sequence-dependent set-up times [32, 50, 72, 159]. The JSSP

with controllable processing times allow the assignment of different processing times to

operations, where a pre-determined cost is associated with each process time-reduction

alternative [58]. Processing times in the JSSP with batching is determined by the number

of similar products which are produced simultaneously as a single operation [111, 112,

Chapter 2. Literature review 10

F
le

xi
bl

e
JS

S
P

1.
 G

A
-S

hi
ft

in
g

bo
tt

le
ne

ck
 h

eu
ris

tic
 [

46
]

2.
 E

vo
lu

tio
na

ry
 a

lg
or

ith
m

 (
E

A
)-

fu
zz

y
lo

gi
c

hy
br

id
 [

62
]

3.
 P

S
O

-s
im

ul
at

ed
 a

nn
ea

lin
g

hy
br

id

[1
44

]

M
ul

tip
le

 re
so

ur
ce

 c
on

st
ra

in
ed

JS

S
P

 a
nd

 m
ul

tip
le

 p
ro

ce
ss

or

ta
sk

 J
S

S
P

1.
 P

ol
yn

om
ia

l-
tim

e
al

go
rit

hm
 [

23
]

2.
 H

eu
ris

tic
 [4

5
]

M
ul

tip
le

-c
ap

ac
ita

te
d

JS
S

P
1.

 C
on

st
ra

in
t

pr
og

ra
m

m
in

g
2.

 T
ab

u
se

ar
ch

 [
14

0
]

JS
S

P
 w

ith
 te

m
po

ra
l r

el
ax

at
io

n
of

 c
ap

ac
ity

 c
on

st
ra

in
ts

 d
ue

 to

su
bc

on
tra

ct
in

g
1.

 H
eu

ris
tic

 [3
4

]

N
o-

w
ai

t a
nd

 b
lo

ck
in

g
JS

S
P

1.
 G

A
 [2

0
]

2.
 V

ar
ia

bl
e

ne
ig

hb
ou

rh
oo

d
se

ar
ch

[1
25

]
3.

 B
ra

nc
h

an
d

bo
un

d
[8

7
]

4.
 R

ol
lo

ut
 m

et
ah

eu
ris

tic
 [

92
]

A
ss

em
bl

y
JS

S
P

1.
 H

eu
ris

tic
 [9

5
]

2.
 T

ab
u

se
ar

ch
 [

14
1

]

R
ee

nt
ra

nt
 J

S
S

P
1.

 H
eu

ris
tic

 [6
]

2.
 I

nt
eg

er
 p

ro
gr

am
m

in
g

[3
1

]

C
yc

lic
 J

S
S

P
1.

 T
ab

u
se

ar
ch

 [
22

]
2.

 E
vo

lu
tio

na
ry

 p
et

ri
-n

et
s

[9
4

]
3.

 G
A

 [
30

]

D
yn

am
ic

 J
S

S
P

1.
 R

ei
nf

or
ce

m
en

t
le

ar
ni

ng
 a

lg
or

ith
m

[1

1
]

2.
 G

A
 [

11
4

]

JS
S

P
 w

ith
 p

re
em

pt
io

n
1

. G
en

et
ic

 a
lg

or
ith

m
 (

G
A

)-
fu

zz
y

lo
gi

c
hy

br
id

 [
15

1
]

2
. C

on
st

ra
in

t
pr

og
ra

m
m

in
g

[6
9

]
3

. S
to

pw
at

ch
 a

ut
om

at
a

[3
]

JS
S

P
 w

ith
 d

ue
 d

at
es

1
. B

ra
nc

h
an

d
bo

un
d

[1
28

]
2

. G
en

et
ic

 lo
ca

l s
ea

rc
h

[4
3

]

JS
S

P
 w

ith
 b

at
ch

in
g

1
. D

yn
am

ic
 p

ro
gr

am
m

in
g

[1
11

]
2

. P
ol

yn
om

ia
l-

tim
e

al
go

rit
hm

 [
11

2
]

3
. G

A
-f

uz
zy

 lo
gi

c
hy

br
id

 [1
10

]

JS
S

P
 w

ith
 s

eq
ue

nc
e-

de
pe

nd
en

t s
et

-u
p

tim
es

1
. H

eu
ris

tic
 [5

0
]

2
. I

m
m

un
e

al
go

rit
hm

 [
15

8
]

3
. G

A
 [

33
]

4
. M

at
he

m
at

ic
al

 p
ro

gr
am

m
in

g
[7

2
]

JS
S

P
 w

ith
 c

on
tro

lla
bl

e
pr

oc
es

si
ng

 ti
m

es
1

. H
eu

ris
tic

 [5
8

]

E
xp

an
de

d
JS

S
P

1
. G

A
-n

eu
ra

l n
et

w
or

k
hy

br
id

 [
15

0
]

S
to

ch
as

tic
 J

S
S

P
1.

 H
eu

ris
tic

 [
12

7
]

2.
 G

A
-M

on
te

 C
ar

lo
 m

et
ho

d
[1

49
]

3.
 M

ul
ti

-o
bj

ec
tiv

e
E

A
 [

74
]

F
ig

u
re

2.
4:

A
cl

as
si

fic
at

io
n

of
co

m
m

on
va

ri
at

io
ns

on
th

e
cl

as
si

ca
l

JS
SP

Chapter 2. Literature review 11

Table 2.1: Popular job constraints [136]

Constraint Explanation

pmtn Preemption is authorized, i.e. jobs may be interrupted

split Jobs may be split for simultaneous processing

prec Operations are connected by precedence relations

batch Operations are grouped into predefined batches

no-wait No waiting time is allowed between operations

prmu Operations are processed on all machines in the same order

dv = d All due dates are identical

pv = p All processing times are equal

snsd Sequence-independent resource set-up times are significant

rnsd Sequence-independent resource removal times are significant

ssd Sequence-dependent resource set-up times are significant

rsd Sequence-dependent resource removal times are significant

ak1,k2 A minimum time lag is required between operations k1 and k2

blcg Parallel operations must be completed simultaneously

block The inventory storage area between machines is limited

recrc A job may be processed several times on the same machine

unavailp Significant resource unavailability intervals are present

113]. Minimizing a function of job due dates, as in the JSSP with due dates, indirectly

places restrictions on the processing times of jobs [42, 129]. Operation starting and

finishing times in an expanded JSSP are restricted by release dates, due dates, and

technological enabling constraints [151, 158].

The second group of variations affect the flow of jobs on the shop floor. The no-wait

and blocking JSSP consists of a JSSP where at least two operations are constrained

such that the second operation has to start immediately upon completion of the first

operation [20, 87, 92, 126]. The reentrant JSSP allows the processing of two operations

from the same job on the same machine [6, 30], while the cyclic job shop consists of

operations which are repeated in a cyclic fashion [22, 29, 94]. When two or more jobs

Chapter 2. Literature review 12

need to be completed before a third may be scheduled, the system can be considered an

example of an assembly JSSP [95, 142].

In terms of changes made to the resource requirements of operations, the multiple-

capacitated JSSP [100, 141] and JSSP with temporal relaxation of capacity constraints

due to subcontracting [33], allow the processing of more than one operation at a time

on a single resource. The multiple resource constrained JSSP or multiple processor task

JSSP, in turn, requires that an operation be processed simultaneously on two or more

resources [23, 44]. The FJSP [45, 63, 145] also belongs to this group.

The dynamic JSSP and stochastic JSSP belong to the final group since both of

these variations allow the scheduler to take into account uncertainty in the scheduling

process. The dynamic JSSP incorporates uncertainty with respect to the number of

jobs and the release dates associated with the jobs which are to be scheduled [11, 115],

while the stochastic JSSP focuses on incorporating uncertainty into the process time

estimates [74, 128, 150].

Three of the constraints described in this section justify more in depth explanations

due to their relevance to the problem considered in this dissertation. These constraints

include the addition of sequence-dependent set-up times, availability intervals, and aux-

iliary resources.

Sequence-dependent set-up times

The inclusion of set-up times is one of the most frequent additional complications

in scheduling, and incorporation of set-up times into traditional scheduling models has

already been attempted as early as the 1970s [83]. Yang and Liao [149] define set-up

times as the times of the tasks which need to be performed before a job can be processed

immediately after another job on the same resource. This additional complexity is partic-

ularly useful in modeling situations where cleaning operations and tool changes play an

important role in production. A typical example includes the manufacturing of different

colours of paint.

In the most complex case, sequence-dependent set-up times, where the set-up time

depends on the job previously scheduled, as well as the machine on which the current

operation is performed, a n × n (operation × operation) matrix of set-up time data is

required for each resource dk. The set-up time of operation k is defined by Sκkkdk
where

Chapter 2. Literature review 13

κk is the index of the previous operation scheduled on machine dk. If the set-up times

are machine independent, as is fortunately the case for the Optimatix problem, Sκkkdk

can be simplified to Sκkk [21].

A large number of solution strategies, ranging from genetic algorithms to integer pro-

gramming, have already been applied to production scheduling problems with sequence-

dependent set-up times. Detailed reviews can be found in Allahverdi et al. [7, 8] and

Yang and Liao [149].

Availability intervals

The advent of production calendars, holidays, preventative maintenance and unex-

pected breakdowns have a significant impact on machine availability and subsequently

the scheduling of production resources. If no pre-emption is allowed, the inclusion of ma-

chine availability constraints results in the planning horizon being divided into a number

of disconnected time windows [10].

Lee [70] differentiates between three types of unavailability intervals, namely resum-

able, non-resumable, and semiresumable unavailable intervals. When the unavailability

intervals are resumable all interrupted operations may continue when the resource is

available again without the incurrence of any time penalties. When the unavailability

intervals are nonresumable, all interrupted operations need to be reprocessed from the

start. Finally, in the semiresumable case, either additional work needs to be performed

proportional to the finished part of the operation, or an additional set-up is required.

Careful consideration resulted in resumable nonavailability intervals being identified as

most appropriate to the Optimatix environment [53].

With respect to the available solution strategies, Lee [70] refers to a number of ap-

plications in the one machine, parallel machine, and flow shop environments. White

and Rogers [143] address a job shop scheduling problem with unavailability intervals

by means of a disjunctive graph formulation. Scheduled maintenance is regarded as an

operation and is assigned a processing time corresponding to the required maintenance

time.

Auxiliary resources

In a complex manufacturing environment, it can happen that the scheduling of opera-

tions are constrained by more than one resource type. In addition to machine availability,

Chapter 2. Literature review 14

tooling and labour requirements also play a vital role in the efficient generation of realistic

schedules. Studies performed by Mason [88] indicate that 16% of scheduled production

cannot be met because tooling is typically not available. Additionally, 40% to 80% of

a foreman’s time is spent looking for and expediting materials and tools. Therefore in-

corporating the assignment of workers and tools into the schedule can have a significant

effect on production performance.

Gargeya and Deane [46] describe the multiple resource constrained job shop schedul-

ing problem: a job shop in which two or more resource types constrain output. This

formulation allows the simultaneous scheduling of machines, labour, and other auxiliary

resources, such as tools and jigs. If only two resource types are involved in the schedul-

ing scenario, the problem is referred to as a dual resource constrained JSSP. The two

most common dual resource problems are the labour constrained job shop (for scheduling

workers and machines) and the auxiliary resource constrained job shop (for scheduling

tools and machines).

Brucker [21] defines a class of problems that is very similar to the multiple resource

constrained JSSP: the multiprocessor task job shop scheduling problem. This problem

requires that a set of resources is linked to each operation. During a processing period

pkQQQk
, each operation k requires all resources belonging to the set QQQk ⊆ MMM . Two tasks

which require the same resource cannot be processed simultaneously and are referred to

as incompatible tasks.

Relatively little information is available with respect to solution strategies. Excep-

tions include Brucker [21], who converts a JSSP with multiprocessor tasks, unit process-

ing times, release dates, and precedence constraints between jobs into a shortest path

problem and Patel et al. [110] who follow a genetic algorithm approach for solving a dual

resource constrained scheduling problem.

2.3 Classification according to objective function (γ)

A large number of standard objective functions have already been used to evaluate

schedule quality. The final field of Graham et al.’s notation [51] focuses on this aspect

of schedule optimization. There are obviously an infinite number of variations of cost-

Chapter 2. Literature review 15

related objective functions which may be used. However, accurate cost information is not

always available in the Optimatix environment and thus the more standardized objective

functions were considered to be more suitable.

Brucker [21] provides a list of the most common measurements which can be used

for objective function formulation. Any of the five measures in Table 2.2 can be used to

formulate at least four different objective functions of the form: max{qv | v = 1 . . . , nj},∑nj

v=1 qv,
∑nj

v=1 wvqv and max{wvqv | v = 1 . . . , nj}, where qv denotes the measurement

associated with job v, wv and dv denote the weight and the due date of job v, and nj

is the total number of jobs to be scheduled. For example, the following four objective

functions can be formulated for job completion time, where Cv denotes the completion

time of job v: makespan (max{Cv | v = 1 . . . , nj}), total flow time (
∑nj

v=1 Cv) and

weighted total flow time (
∑nj

v=1 wvCv).

Table 2.2: Commonly used job shop scheduling measurements
JSSP measurement Formulation

Lateness Lv = Cv − dv

Earliness Ev = max{0, dv − Cv}
Tardiness Tv = max{0, Cv − dv}
Absolute deviation D1v =| Cv − dv |
Squared deviation D2v = (Cv − dv)2

The description of the this final field of Graham’s three field notation concludes the

analysis of existing job shop based scheduling literature. The next section will introduce

the Optimatix problem in more detail before attempting to contextualize the problem

within existing literature.

2.4 The Optimatix problem

Optimatix is a South African company which can be best described as a best-of-breed

software vendor specializing in supply chain optimization. The focus is on providing

clients with customized demand and supply planning solutions for addressing various

strategic, tactical and operational issues which may arise during the day-to-day running

of a business.

Chapter 2. Literature review 16

The software consists of a number of modules. This dissertation focuses on the

scheduling module: Tactix Scheduling. Classified as a forwards finite capacity production

scheduling tool, Optimatix boasts a number of successful implementations in low-volume-

high-variety manufacturing environments.

Currently, the underlying algorithms of this module consists of rule-based heuristic

methods. Priority rules are the most frequent heuristic method applied to job shop

scheduling problems, due to their ease of implementation and low time complexity [18].

However, recent customer requirements have resulted in the investigation of more sophis-

ticated solution techniques for the Optimatix problem. Opportunities for improvement

exist in terms of solution quality and model formulation. Furthermore, management is

specifically interested in the potential use of metaheuristics to obtain improved sched-

ules. Any improvements made should retain the functionality of the existing production

scheduling algorithms, but a compromise may be made with respect to the time required

to obtain a solution.

The Optimatix scheduling requirements can be described most effectively by means

of the generic example indicated in Figure 2.5. Here two parts, namely subassembly

A and subassembly B, have to be manufactured and assembled to produce a specific

product. If each subassembly is defined as a different job, each job consists of a number

of operations which denote the manufacturing processes through which each job has to be

routed. Each operation can be performed on any machine from a set of primary resources.

Tools and labour may be required and can be selected from a set of auxiliary resources.

The processing time of an operation includes sequence-dependent set-up times and is

dependent on the resource on which it is produced. Scheduled maintenance, machine

breakdowns and production calendars also need to be incorporated into the schedule.

Additional requirements in terms of problem size and algorithm generality also exist.

The average number of operations and the maximum number of auxiliary and primary

resources which need to be considered have, respectively, been estimated at 100 and

216. Furthermore, definite variations exists between the various production environ-

ments serviced by Optimatix. Since it would be beneficial to reduce the development

time associated with adapting the existing algorithms to each new client environment,

algorithm generality is an additional important requirement.

Chapter 2. Literature review 17

Auxilliary
Resource

Set for
O21

Primary
Resource

Set for
O21

O31 O32 O33

O21 O22 O23

O11 O12 O13

Subassembly A

Subassembly B

Figure 2.5: A schematic representation of the Optimatix problem

An analysis of the business requirements of Optimatix and a consideration of exist-

ing literature, resulted in the job shop with duplicate machines problem, the parallel

machine scheduling problem and the single machine scheduling problem identified as

suitable points of departure. However, by solving a problem belonging to the class

of job shop scheduling problems, all three of the identified problem instances can be

addressed by means of judicial selection of the input parameters. The Optimatix prob-

lem can thus be classified as a job shop with duplicate machines. More specifically,

the problem may be modeled as a flexible job shop scheduling problem with

sequence-dependent set-up times, auxiliary resources, and unavailability in-

Chapter 2. Literature review 18

tervals. Minimum makespan, earliness/tardiness, and queue time were defined to be the

most important objective functions. To address the multi-objective nature of the client

schedule environments, all three of these functions need to be minimized simultaneously.

Combining a number of JSSP variations to meet specific scheduling requirements,

as is required for the Optimatix problem, is fortunately not new. In fact, as scheduling

models have become more and more complex, this practice is quite common. Hoitomt et

al. [55] solve a JSSP with a number of additional constraints by means of an augmented

Lagrangian formulation. Bertel and Billaut [15] develops both a greedy algorithm and a

genetic algorithm for a hybrid flow shop scheduling problem with re-entrance and release

dates. Hwang and Sun [56] uses a dynamic programming formulation for a re-entrant

JSSP with sequence-dependent set-up times. Numerous examples of complex job shop

scheduling problems also exist in the semi-conductor manufacturing industry [89, 90].

However, incorporation of auxiliary resources along with a relatively large number of

additional constraints and problem features, as is the case with the proposed problem, is

not commonly found in literature. One notable exception is the work done by Norman

and Bean [99] in the application of a random keys genetic algorithm to a complex pro-

duction problem, which is in many respects similar to the problem faced by Optimatix.

Multiple machines, ready times, sequence-dependent set-up times, machine down time,

and scarce tools are addressed.

It is important to note that most of the existing algorithms mentioned in Figure 2.4

specializes in solving only the specific variation for which it was developed. Based on this

observation, this dissertation will follow a similar strategy and the algorithms developed

should subsequently be considered as specialized algorithms for the FJSP with sequence-

dependent set-up times, auxiliary resources, and machine down time.

2.5 Summary

The most important contribution of this chapter lies in the identification of a job shop-

based scheduling model which adequately addresses the unique business requirements of

Optimatix. Now that the problem has been suitably described, the next step is to select

an appropriate solution strategy. Numerous research papers propose solution strategies

Chapter 2. Literature review 19

ranging from complex metaheuristic implementations to simple rule-based approaches.

Every solution strategy has its merits — the challenge is to find the best one for the

purpose at hand.

Chapter 3

Selecting an appropriate solution

strategy

The design of a suitable algorithm requires the identification of the most appropriate

solution strategy for the given scheduling problem. This chapter provides an overview of

existing solution strategies which have already been employed effectively in a job shop

environment. Based on this information a suitable strategy is selected for the Optimatix

environment.

3.1 An overview of existing solution strategies

Figure 3.1 shows that a large number of solution strategies have already been applied

to the classical job shop scheduling problem over the last 50 years. A more generic

classification of the various search methodologies is, however, more useful for the purposes

of this dissertation. Feoktistov [43] differentiates between optimal solution strategies

and approximate methods (refer to Figure 3.2). The approximate methods are again

categorized into heuristics and metaheuristics. This section is aimed at providing a brief

introduction into each of these strategies and describing a number of popular examples of

each strategy. Comments are also made regarding the suitability of the different search

methodologies for solving job shop-based scheduling problems.

20

Chapter 3. Selecting an appropriate solution strategy 21

T
he

 c
la

ss
ic

al
 jo

b
sh

op
 s

ch
ed

ul
in

g
pr

ob
le

m

A
rt

ifi
ci

al

in
te

lli
g

en
ce

M
at

h
em

at
ic

al

G
en

er
al

 A
lg

o
ri

th
m

s
(it

er
at

iv
e

m
et

h
o

d
s

)
A

p
p

ro
xi

m
at

io
n

T
ai

lo
re

d
 a

lg
o

ri
th

m
s

(c
o

n
st

ru
ct

iv
e

m
et

h
o

d
s)

B
o

tt
le

n
ec

k
b

as
ed

h

eu
ri

st
ic

s

In
se

rt
io

n

al
g

o
ri

th
m

s
P

ri
o

ri
ty

d

is
p

at
ch

 r
u

le
s

E
n

u
m

er
at

iv
e

m
et

h
o

d
s

S
ur

ro
ga

te

du
al

ity

La
gr

an
gi

an

re
la

xa
tio

n

D
ec

om
po

si
tio

n
m

et
ho

ds

In
te

ge
r l

in
ea

r
pr

og
ra

m
m

in
g

M
ix

ed
 in

te
ge

r
lin

ea
r

pr
og

ra
m

m
in

g

O
p

tim
is

at
io

n

S
im

ul
at

ed

an
ne

al
in

g

Ite
ra

tiv
e

im
pr

ov
em

en
t

G
en

et
ic

lo

ca
l s

ea
rc

h

E
vo

lu
tio

n
ar

y
co

m
p

u
ta

tio
n

S
P

T

LR
M

M
W

R

T
h

re
sh

o
ld

ac

ce
p

tin
gT

h
re

sh
o

ld

al
g

o
ri

th
m

s

P
ro

bl
em

 a
nd

he

ur
is

tic
 s

pa
ce

G
R

A
S

P

G
en

et
ic

al

go
rit

hm
s

R
ei

ns
er

tio
n

al
go

rit
hm

s

V
ar

ia
bl

e
de

pt
h

se
ar

ch

T
ab

u
se

ar
ch

La
rg

e
st

ep

op
tim

is
at

io
n

L
o

ca
l

se
ar

ch

P
ro

b
le

m
 s

p
ac

e
m

et
h

o
d

s

B
ea

m
 s

ea
rc

h
B

ra
nc

h
an

d
bo

un
d

E
ffi

ci
en

t
m

et
ho

ds

G
re

at
 d

el
ug

e
al

go
rit

hm
 a

nd

re
co

rd
-to

-r
ec

or
d

tra
ve

l

S
hi

fti
ng

bo

ttl
en

ec
k

pr
oc

ed
ur

e

N
eu

ra
l

ne
tw

or
ks

E
xp

er
t

sy
st

em
s

A
nt

op

tim
is

at
io

n

C
on

st
ra

in
t

sa
tis

fa
ct

io
n F
ig

u
re

3.
1:

So
lu

ti
on

st
ra

te
gi

es
of

th
e

cl
as

si
ca

l
jo

b
sh

op
sc

he
du

lin
g

pr
ob

le
m

[5
7]

Chapter 3. Selecting an appropriate solution strategy 22

Optimization

CombinatorialContinuous

Exact methods
Approximate

methodsNonlinearQuadraticLinear

Heuristics

Global
methods

Local methods

Metaheuristics
Classical
methods

Population-
based

Neighbour-
hood

Figure 3.2: A classification of popular search methodologies [43]

3.1.1 Optimal solution strategies

During the 1960s significant emphasis was placed on finding exact solutions by means of

elaborate and sophisticated mathematical constructs. The most widely used enumerative

strategy is the branch-and-bound algorithm [68] which entails an implicit search of a tree

structure representing the solution space. A number of procedures have been developed

to exclude large portions of the tree to speed up the search process. Unfortunately, apart

from the excessive computational burden, this strategy’s performance is also relatively

problem dependent and is sensitive to the initial upper or lower bound values [57].

The suitability of optimal solution strategies is also highly dependent on the complex-

ity of the problem. Research from the 1970s clearly highlights the extreme intractability

of the job shop scheduling problem [21]. The problem can be classified as strongly NP -

hard. Therefore, only a small number of special instances of the JSSP are solvable within

Chapter 3. Selecting an appropriate solution strategy 23

polynomial time and optimal solution strategies are probably of limited use. Approxi-

mation methods, on the other hand, becomes an attractive alternative. Even though the

optimality of the solutions cannot be guaranteed, larger problems can be solved more

efficiently.

3.1.2 Heuristic methods

In general, heuristic methods simply aim to obtain a “good enough” solution by selecting

decision variables to obtain solutions which continuously progress towards a superior so-

lution. The general local search procedure, the shifting bottleneck heuristic, and various

priority-based rules are often applied to job shop scheduling problems.

General local search procedure

The simplest heuristic method for solving the JSSP is the general local search procedure.

This method consists of iteratively evaluating the current solution and determining the

direction in which movement should take place to improve the objective function. Search

directions and step lengths can be determined using conjugate gradients, newton meth-

ods, or steepest gradient descent [39].

Priority dispatch rules

One of the earliest heuristic methods developed for scheduling applications, priority

dispatch rules (PDRs) [107], is based on the assignment of priorities to all operations

available for sequencing. These priorities can be assigned according to a large number

of heuristic rules, for example, shortest processing time (SPT) and earliest due date

(EDD). Although very easy to implement with a low computational burden, PDRs are

highly problem dependent and solution quality degrades significantly as dimensionality

increases [57].

Chapter 3. Selecting an appropriate solution strategy 24

The shifting bottleneck heuristic

The shifting bottleneck heuristic (SBH) [4] is commonly considered to have had the

greatest influence on approximation methods for production scheduling applications.

This is largely due to its exploitation of the well-developed algorithms for the single

machine shop scheduling problem. The strategy involves relaxing the problem into a

number of single machine problems, which are solved one at a time and ranked according

to objective function value. The schedule for the more complex job shop scheduling

problem can then be generated by sequentially scheduling each machine based on its

rank [57].

The SBH heuristic is often used in conjunction with the disjunctive graph formulation,

which consists of a set of nodes representing all the operations to be processed on the

set of machines. Two fictitious nodes are also added, namely the source node (at the

beginning of the network) and the sink node (at the end of the network). The set of nodes

are indicated by V. A weight, proportional to the processing time of the operation, is

assigned to each of the nodes. Precedence relationships between operations are indicated

by means of a set of directed arcs denoted by C. Capacity constraints ensure that

two jobs which require the same machine cannot be processed simultaneously. These

constraints are enforced by means of a set of undirected arcs, D. Potential feasible

solutions are obtained by defining directions for each of the disjunctive arcs [21]. When

solving a makespan minimization problem, shortest path algorithms are traditionally

used to find the optimal solution. An example of a disjunctive graph formulation for a

3 machine 4 job problem is illustrated in Figure 3.3.

Although the shifting bottleneck heuristic with disjunctive graph representation is

robust and useful for solving real life job shop problems, concurrent or parallel processing

and indefinite cyclical process flows cannot be modelled directly [143]. Feasibility of

solutions can also be a problem since an acyclic graph is required for schedule feasibility.

However, even though these difficulties exist, Mason et al. [89, 90] have documented a

number of successful applications of a modified SBH in the semi-conductor manufacturing

industry.

Chapter 3. Selecting an appropriate solution strategy 25

0

O11

O31

O42

O23

O12

O33

O43

O21

O13

O32

O41

O22

S

0

5 8 2

7 3 9

1 7 10

4 11 7

0

Source Sink

Ovl Operation l of job v with processing time

Disjunctive arcs which enforce the capacity
constraints associated with machine 1

Conjunctive arcs which indicate the precedence
constraints between operations

Disjunctive arcs which enforce the capacity
constraints associated with machine 2

Disjunctive arcs which enforce the capacity
constraints associated with machine 3

p
vl

p
vl

Figure 3.3: An example of the disjunctive graph formulation [57]

Chapter 3. Selecting an appropriate solution strategy 26

3.1.3 Metaheuristics

The inability of heuristic methods to escape local optima have resulted in the develop-

ment of metaheuristics. These “intelligent heuristics” temporarily allow non-improving

feasible moves which have a positive impact on the algorithm’s ability to explore the

search space [119]. For reference purposes a number of the more common metaheuristics

are indicated in Figure 3.4.

Metaheuristics

Neighbour-
hood-based
algorithms

Population-
based

algorithms

Tabu search
Simulated
annealing

Swarm
intelligence

Evolutionary
computation

Particle swarm
optimization

Ant colony
optimization

Genetic
algorithm

Genetic
programming

Evolutionary
strategies

Differential
evolution

Evolutionary
programming

Figure 3.4: A number of common metaheuristics

Neighbourhood metaheuristics refer to those search methodologies where a single so-

lution is transformed over time by making use of predefined neighbourhoods. Population-

based metaheuristics, on the other hand, are characterized by a population of candidate

solutions which are adapted over time. The candidate solutions in an evolutionary al-

gorithm compete for survival [27], whereas the agents in a swarm communicate and

Chapter 3. Selecting an appropriate solution strategy 27

cooperate with each other by acting on the environment [39].

Of the listed examples, simulated annealing (SA), tabu search (TS), and genetic

algorithms (GAs) have been most frequently applied to job shop scheduling problems [49].

However, it will become evident throughout the rest of this section that each of these

search methodologies have their own advantages and disadvantages.

Tabu search

TS can be defined as an algorithm which deals with cycling by temporarily forbidding

moves that would return to a solution recently visited [48]. This is accomplished by

means of a tabu list which records the most recent solutions and prevents the search

from continuing with these now non-feasible moves. This list can act as both a recency-

based memory (where the list classifies solutions according to the length of time they have

spent in the list) and frequency-based memory (where the number of times a solution

occurs has an influence). Additionally, an incumbent solution [155] is used to keep track

of the best solution found thus far and certain aspiration criteria can also be defined to

override the tabu list if this should become necessary. This solution strategy has led to

a number of successful solutions of job shop scheduling problems [57].

Simulated annealing

SA is an optimization process based on the cooling process of liquids and solids. As a

substance cools, the molecules tend to align themselves in a crystalline structure associ-

ated with the minimum energy state of the system. This is analogous to the algorithm

converging to the optimal solution of an optimization problem. As the temperature of

the metals decrease, the alignment of the atoms in the structure continually changes.

This alignment is analogous to the fitness of the solution: an alignment which results

in a lower energy state also results in an improved solution. Alignments of atoms are

probabilistically accepted based on the Boltzmann–Gibbs distribution:

Pi1i2(t) ,

1 if f(xxxi2) < f(xxxi1)

e
f(xxxi2

)−f(xxxi1
)

aΥ otherwise,
(3.1)

Chapter 3. Selecting an appropriate solution strategy 28

where Pi1i2(t) is the probability of moving from point xxxi1 to xxxi2 , a is a positive constant

and Υ is the temperature of the system [39].

Jain and Meeran [57] describe SA as a generic technique requiring excessive com-

putational effort due to its inability to achieve good solutions quickly. However, the

hybridization of SA with other solution strategies, including genetic algorithms, has

greatly improved its competitiveness.

Evolutionary algorithms

Evolutionary algorithms attempt to mimic the process of biological evolution to find bet-

ter and better solutions [119]. A number of operators (for example selection, crossover,

mutation, and cloning) act upon a population of randomly initialized individuals to

transform these individuals into better solutions.

Opinions seem to be conflicting with respect to the success of evolutionary algo-

rithms (EA)s in solving complex scheduling problems. Jain and Meeran [57] criticize

GAs for being inefficient, stating that GAs are unable to successfully represent the clas-

sical job shop scheduling problem since traditional crossover operators cannot generate

feasible schedules. Yet many successful JSSP applications of modified EAs have been

recorded [62, 91, 99].

Particle swarm optimization

PSO can be classified as a stochastic population-based optimization technique [64], which

was developed as a model of the flocking behaviour of birds. Since its development, the

algorithm has established itself as a competitive solution strategy for a wide range of

real-world problems. However, due to its relatively recent development, very few complex

scheduling applications have been documented.

Ant colony optimization

The first ant colony optimization (ACO) algorithm was developed to model the foraging

behaviour of ants [39]. This search methodology is traditionally associated with discrete

combinatorial optimization problems which can be modeled as decision graphs [27]. Each

Chapter 3. Selecting an appropriate solution strategy 29

ant is tasked with constructing a candidate solution or path through the decision graph.

Good solutions are marked with a high pheromone concentration, which ensures that

they are revisited with a higher probability. As an ant is progressing through the graph,

the transition probability, Pi1i2(t), associated with visiting node i2 immediately after

node i1 at time t is given by

Pi1i2(t) =
πa

i1i2
(t)∑

i2∈Ni1
πa

i1i2
(t)

(3.2)

where πi1i2 denotes the pheromone concentration of the link between node i1 and node

i2, a is a positive constant used to amplify the pheromone influence, and Ni1 is the set

of feasible nodes connected to node i1. Although this technique has been used success-

fully in solving simpler scheduling problems [13, 19, 36], not many complex scheduling

applications have been reported.

3.1.4 Selecting a suitable solution strategy

Based on the above analysis, a population-based metaheuristic was selected for further

investigation. Apart from the metaheuristic’s ability to escape from local minima, there

are distinct advantages associated with using a population-based algorithm for optimiz-

ing multiple conflicting objectives. Since a population of candidate solutions is adapted

over time, different individuals can simultaneously converge to different regions of the

objective space. This results in significantly less effort required to generate a set of

trade-off solutions.

Of all the population-based algorithms, genetic algorithms seem to be the most suc-

cessful at addressing complex scheduling problems. However, as a direct result of the

no free lunch theorem [144], there is no way of predicting that a GA would indeed be

the best solution strategy for the Optimatix problem. Technically, any of the search

methodologies in Figure 3.4 could be used.

For the purposes of this dissertation, the two latest additions to the metaheuristics

depicted in Figure 3.4, namely particle swarm optimization and differential evolution,

were selected for further investigation. The inherent simplicity [64, 114] and proven

success on simpler scheduling problems have further added to the desirability of the

Chapter 3. Selecting an appropriate solution strategy 30

two algorithms. Further research opportunities are also present in investigating the use

of continuous optimization algorithms for solving discrete combinatorial optimization

problems.

3.2 Particle swarm optimization

Kennedy and Eberhart [64] trace the origins of the particle swarm optimization (PSO)

algorithm back to Reynold’s “boid” simulations [121]. The initial objectives of this

study and the other collective behaviour studies of the late 80s was to simulate the

graceful, unpredictable choreography of collision-proof birds in a flock [37]. However,

the optimization potential, of what was at that stage only a conceptual model, soon

became apparent. Simplification and parameter derivation resulted in the first simplistic

implementation by Kennedy and Eberhart [64] in 1995.

Since its humble beginnings, PSO has established itself as a simple and computa-

tionally efficient optimization method in both the fields of artificial intelligence and

mathematical optimization. Applications range from more traditional implementations

such as training artificial neural networks [40, 137] and task allocation [124], to more

specific applications, such as the design of aircraft wings [140] and the generation of

interactive, improvised music [17]. The rest of this section introduces the basic concepts

of PSO before the actual algorithm, associated algorithm parameters, and variations are

discussed in more detail.

3.2.1 The basic algorithm

The PSO algorithm represents each potential problem solution by the position of a

particle in multi-dimensional hyperspace. Throughout the optimization process velocity

and displacement updates are applied to each particle to move it to a different position

and thus a different solution in the search space.

The velocity update is often thought to be the most critical component of the PSO

algorithm since it incorporates the concepts of emergence and social intelligence. Fig-

ure 3.5 illustrates that the magnitude and direction of a particle’s velocity at time t is

Chapter 3. Selecting an appropriate solution strategy 31

considered to be the resultant of three vectors: the particle velocity vector at time t− 1,

the cognitive component (pbest), which is a vector representation of the best solution

found to date by the specific particle, and the social component (gbest), which is a vector

representation of the best solution found to date by all the particles in the swarm. The

gbest model [64] calculates the velocity of particle i in dimension j at time t+ 1 using

vij(t+ 1) =wvij(t) + c1r1j(t)[x̂ij(t)− xij(t)] + c2r2j(t)[x
∗
j(t)− xij(t)] (3.3)

where vij(t) represents the velocity of particle i in dimension j at time t, c1 and c2 are

the cognitive and social acceleration constants, x̂ij(t) and xij(t) respectively denotes the

personal best position (pbest) and the position of particle i in dimension j at time t. x∗
j(t)

denote the global best position (gbest) in dimension j, w refers to the inertia weight, and

r1j(t) and r2j(t) are sampled from a uniform random distribution, U(0, 1).

v(t+1)
v(t)

pbest

gbest

j
j

Figure 3.5: Particle velocity as resultant of three components

The displacement of particle i at time t is simply derived from the calculation of

vij(t+ 1) in equation (3.3) and is given as

xij(t+ 1) =xij(t) + vij(t+ 1) (3.4)

This simultaneous movement of particles towards their own previous best solutions

(pbest) and the best solution found by the entire swarm (gbest) results in the particles

Chapter 3. Selecting an appropriate solution strategy 32

converging to one or more good solutions in the search space. For the sake of complete-

ness, pseudocode of the basic PSO algorithm is provided in Algorithm 3.1.

Initialize an nx-dimensional swarm of ns particles

t = 1

while t < Imax do

for All particles i do

if f(xxxi(t)) < f(x̂̂x̂xi) then

x̂̂x̂xi = xxxi(t)

end

if f(x̂̂x̂xi) < f(xxx∗) then

xxx∗ = x̂̂x̂xi

end
end

for All particles i do

Update the particle velocity using equation (3.3)

Update the particle position using equation (3.4)
end

t = t+ 1
end

Algorithm 3.1: The basic gbest PSO algorithm [39]

3.2.2 The guaranteed convergence PSO algorithm

Unfortunately, the basic PSO algorithm has a potentially dangerous property. The

algorithm is “driven” by the fact that as a particle moves through the decision space,

it is always attracted towards its pbest value and the flock’s gbest value. If any of the

particles reach a position in the search space where

x̂̂x̂x =xxx(t) = xxx∗ (3.5)

Chapter 3. Selecting an appropriate solution strategy 33

only the momentum term (wvij(t) in equation (3.3)) remains to act as a driving force for

the specific particle to continue exploring the rest of the search space. However, if the

condition described in equation (3.5) persists, it can result in the swarm stagnating on

a solution which is not necessarily a local optimum [138]. The guaranteed convergence

particle swarm optimization (GCPSO) algorithm [138] has been shown to address this

problem effectively and have thus been used for all simulations in this dissertation. This

algorithm (Algorithm 3.2) requires that different velocity and displacement updates,

defined as

vτj(t+ 1) =− xτj(t) + x∗
j(t) + wvτj(t) + ρ(t)(1− 2rj(t)) (3.6)

and

xτj(t+ 1) =x∗
j(t) + wvτj(t) + ρ(t)(1− 2rj(t)), (3.7)

are applied to the global best particle, where ρ(t) is a time-dependent scaling factor,

rj(t) is sampled from a uniform random distribution, U(0, 1), and all other particles are

updated by means of equations (3.3) and (3.4). This algorithm forces the gbest particle

into a random search around the global best position. The size of the search space

is then adjusted on the basis of the number of consecutive successes or failures of the

particle, where success is defined as an improvement in the objective function value. In

Algorithm 3.2, the number of consecutive successes is denoted by ζ and the number of

consecutive failures are denoted by η.

3.2.3 Algorithm parameters

A section on PSO would not be complete without discussing the various parameters

which have an effect on algorithm performance. Eberhart et al. [65] and Engelbrecht [39]

provide a detailed description of each of the PSO parameters. Thus this dissertation

focuses only on those parameters which directly impacts on scheduling performance.

• The swarm size, ns, and maximum number of iterations, Imax, largely determined

the amount of time available to produce a scheduling solution.

Chapter 3. Selecting an appropriate solution strategy 34

Initialize an nx-dimensional swarm of ns particles

t = 1

ρ(t) = 1

ζ = 0

η = 0

while t < Imax do

for All particles i do

if f(xxxi(t)) < f(x̂̂x̂xi) then

x̂̂x̂xi = xxxi(t)

end

if f(x̂̂x̂xi) < f(x∗x∗x∗) then

ζ = ζ + 1

η = 0

xxx∗ = x̂̂x̂xi

else

η = η + 1

ζ = 0
end

end

for All particles i|i 6= τ do

Update the particle velocity using equation (3.3)

Update the particle position using equation (3.4)
end

Update the gbest particle velocity using equation (3.6)

Update the gbest particle position using equation (3.7)

t = t+ 1
end

Algorithm 3.2: The guaranteed convergence PSO (GCPSO) algorithm [138]

Chapter 3. Selecting an appropriate solution strategy 35

• Vmax places an upper bound on the maximum velocity that a particle may obtain.

This parameter was incorporated into the PSO algorithm to prevent the particle

velocities from becoming excessively large as particles move further away from the

gbest and pbest positions.

• The inertia weight, w, is important in ensuring that a suitable trade-off is obtained

between exploration of different areas of the search space and further exploitation

of good areas. As can be seen from equation (3.3), w weighs the contribution of

the previous velocity. Large values of w thus encourage exploration while smaller

values encourage exploitation.

• The two acceleration coefficients, c1 and c2, also have a significant impact on the

exploration-exploitation trade-off of the algorithm, since they control the stochastic

influence of the cognitive and social components on particle velocity [39].

3.2.4 Variations on the basic PSO algorithm

In order to address the inherent limitations and requirements of the PSO algorithm, a

number of variations on the gbest PSO algorithm have been developed over the years. As

described in Engelbrecht [39] these variations, indicated in Figure 3.6, can be organized

into six main categories:

• Social-based algorithms use different social topologies or network structures. Al-

gorithms using alternative means of calculating pbest and gbest are also classified

as social-based algorithms.

• Hybrid algorithms refer to all PSO variations that incorporate concepts from other

metaheuristics. Examples include the use of EA-based concepts such as selection,

reproduction, and mutation.

• Sub-swarm-based algorithms are based on some explicit or implicit grouping of

particles in sub-swarms and can be divided into cooperative and competitive sub-

swarm-based algorithms.

Chapter 3. Selecting an appropriate solution strategy 36

• Memetic algorithms incorporate local search procedures within the standard PSO

to enhance the exploitation ability of the algorithm.

• Multi-start algorithms inject chaos into the swarm to increase diversity through

random initialization of particles.

• Algorithms which utilize various repelling methods also have as their main objec-

tive the diversification of the swarm. This class of algorithms include all variations

where specific mechanisms are employed to avoid particle collisions or where adja-

cent particles are repelled.

Of all the PSO variations developed over the past decade, the degree of social interac-

tion between particles has probably received the most attention. A number of alternative

social network structures have been developed to explore different information exchange

mechanisms between the particles within a swarm. Kennedy and Mendes [66] have al-

ready empirically evaluated a number of these social network structures, including the

gbest, lbest, pyramid, star and Von Neumann structures. The gbest and Von Neumann

topologies (refer to Figure 3.7) are the most important variations for the purposes of this

dissertation.

It is well known in PSO literature that the gbest PSO algorithm converges fairly

quickly [65], since all particles are partially attracted to the best position found by the

swarm. Depending on the problem, this relatively fast loss of diversity can result in the

algorithm finding a suboptimal solution within relatively few iterations.

The Von Neumann PSO organizes the particles into a lattice according to the particle

indices. Each particle belongs to a neighbourhood consisting of its nearest neighbours

in the cubic structure. Instead of being partially attracted to gbest, the velocity of

a particle is influenced by the best solution found by the other particles in the same

neighbourhood. Since these neighbourhoods overlap, information about good solutions

is eventually propagated throughout the swarm, but at a much slower rate. In so doing

more diversity and subsequent slower convergence is obtained, leading to significantly

improved chances of finding a good solution.

Chapter 3. Selecting an appropriate solution strategy 37

V
ar

ia
tio

ns
 o

n
th

e
ba

si
c

P
S

O
 a

lg
or

ith
m

S
oc

ia
l-b

as
ed

P

S
O

 a
lg

or
ith

m
s

S
o

ci
al

 N
et

w
o

rk

S
tr

u
ct

u
re

s

G
ro

w
in

g
ne

ig
hb

ou
r-

ho
od

s

F
itn

es
s-

ba
se

d
sp

at
ia

l
ne

tw
or

ks

S
pa

tia
l s

oc
ia

l
ne

tw
or

ks

S
m

al
l-w

or
ld

so

ci
al

ne

tw
or

ks

H
yp

er
cu

be

st
ru

ct
ur

e

H
ie

ra
rc

hi
ca

l
so

ci
al

 n
et

w
or

k

In
fo

rm
at

io
n

 s
h

ar
in

g

st
ra

te
g

ie
s

F
itn

es
s-

di
st

an
ce

 ra
tio

P

S
O

F
ul

ly
 in

fo
rm

ed

P
S

O

S
te

re
ot

yp
in

g

B
ar

eb
on

es

P
S

O

S
ub

-s
w

ar
m

ba

se
d

P
S

O

al
go

rit
hm

s

C
om

pe
tit

iv
e

P
S

O

ap
pr

oa
ch

es

M
ul

ti-
st

ar
t P

S
O

al

go
rit

hm
s

M
em

et
ic

 P
S

O

al
g

o
ri

th
m

s

G
ra

di
en

t
ba

se
d

P
S

O

S
to

ch
as

tic

lo
ca

l
se

ar
ch

es

H
ill

-c
lim

bi
ng

P

S
O

R
ep

el
lin

g
 m

et
h

o
d

s

C
ha

rg
ed

 P
S

O

P
ar

tic
le

s
w

ith

sp
at

ia
l

ex
te

ns
io

n

C
oh

er
en

ce

ve
lo

ci
ty

H
yb

ri
d

 a
lg

o
ri

th
m

s

E
vo

lu
tio

na
ry

S

tra
te

gy

ba
se

d
P

S
O

E
vo

lu
tio

na
ry

P

ro
gr

am
m

in
g

ba
se

d
P

S
O

G
en

et
ic

A

lg
or

ith
m

ba

se
d

P
S

O

D
iff

er
en

tia
l

E
vo

lu
tio

n
ba

se
d

P
S

O

C
ul

tu
ra

l
sw

ar
m

s

A
nt

 c
ol

on
y

ba
se

d
P

S
O

C
o

o
p

er
at

iv
e

P
S

O

ap
p

ro
ac

h
es

C
oo

pe
ra

tiv
e

sp
lit

 P
S

O

C
lu

st
er

 b
as

ed

P
S

O

M
ul

ti-
ph

as
e

P
S

O

F
ig

u
re

3.
6:

V
ar

ia
ti

on
s

on
th

e
ba

si
c

P
SO

al
go

ri
th

m
[3

9]

Chapter 3. Selecting an appropriate solution strategy 38

Gbest

1

7

8

2

6

5

3

4

3

12

7

16

1

6

2

98

10

15

11

1817

4

13

5

14

Von Neumann

Figure 3.7: The gbest and Von Neumann topologies [39]. The lines between particles indicate

the propagation of information through the swarm.

3.3 Differential evolution

Originally developed from work done on Chebyshev’s polynomial fitting problems, dif-

ferential evolution (DE) finds its roots in the genetic annealing algorithm of Storn and

Price [131]. Classified as a parallel direct search method [130], DE achieved third place

on benchmark problems at the first international contest on evolutionary optimization

in 1996. Since then, the number of DE research papers increased significantly every year

and DE is now well-known in the evolutionary computation community as an alterna-

tive to traditional EAs. The algorithm is considered to be easy to understand, simple to

implement, reliable, and fast [114]. Application areas are just as diverse as is the case

for the PSO algorithm and range from function optimization [131] to the determination

of earthquake hypocenters [123].

Similar to the previous section, the rest of this section first introduces the basic con-

cepts of DE before the actual algorithm, associated algorithm parameters, and variations

Chapter 3. Selecting an appropriate solution strategy 39

are discussed in more detail.

3.3.1 The basic algorithm

The success of DE can be mainly attributed to the use of a difference vector which

determines the step size of the algorithm as the population, consisting of vectors of

floating point numbers, moves through the search space. Information regarding the

difference between two existing solutions is, in other words, used to guide the algorithm

towards better solutions [131].

More specifically, for each individual, i, in the population, a base vector, xxxi1(t),

as well as two other vectors, xxxi2(t) and xxxi3(t), are randomly selected from the current

population, where xij(t) denotes the jth dimension of individual i of generation t and

i 6= i1 6= i2 6= i3. The target vector, TTT i, can then be obtained through the application of

a differential mutation operator defined as

Tij(t) =xi1j(t) + F (xi2j(t)− xi3j(t)) (3.8)

Then, for all dimensions, j, if r ∼ U(0, 1) ≤ pr or j = ν ∼ U(1, ..., nx)

cij(t) =Tij(t) (3.9)

otherwise cij(t) = xij(t), where pr is the probability of reproduction, nx is the number

of dimensions, F is the scaling factor, and ccci is known as the trial vector.

An individual may only be replaced by an individual with a better fitness function

value. In other words, if the fitness of ccci(t) is better than the fitness of the ith individual

of the original population, this individual is replaced by ccci(t) [38]. For the sake of

completeness, pseudocode of the basic DE algorithm is provided in Algorithm 3.3.

The differential mutation operator in equation (6.4) has the desirable property that

it allows the step sizes of the algorithm to automatically adapt to the objective function

landscape [114]. For example, before the population has converged around a specific

optimum, the randomly sampled individuals could still be far apart in different areas

of the search space. This allows for larger step sizes during the initial iterations of the

optimization algorithm when greater exploration of the search space and the ability to

escape from local optima is desirable. Later on, when all of the individuals are converging

Chapter 3. Selecting an appropriate solution strategy 40

Initialize an nx-dimensional population of ns individuals

t = 1

i1, i2, i3 = 0

while t < Imax do

for All individuals i do

Randomly select an individual, i1, from the population

Randomly select an individual, i2, from the population

while i1 = i2 do

Randomly select an individual, i2, from the population

end

Randomly select an individual, i3, from the population

while i2 = i3 or i1 = i3 do

Randomly select an individual, i3, from the population

end

Randomly select a dimension, ν

for All dimensions j do

if r ∼ (0, 1) ≤ pr or j = ν then

Calculate cij(t) using equation (6.4)

else

cij(t) = xij(t)

end
end

end

for All individuals i do

if f(ccci(t)) ≤ f(xxxi(t)) then

xxxi(t+ 1) = ccci(t)

end
end

t = t+ 1
end

Algorithm 3.3: The classic DE algorithm [114]

Chapter 3. Selecting an appropriate solution strategy 41

around a single optimum, smaller step sizes are automatically taken since all individuals

are close to each other in the search space. This strategy allows the algorithm to more

effectively exploit the area around the optimum in search of a better solution.

3.3.2 Algorithm parameters

DE has surprisingly few parameters when compared to PSO. Since the population size

and maximum number of iterations have already been considered in Section 3.2.3, only

the scaling factor, F , and reproduction probability, pr, are discussed below:

• Price et al. [114] define F as a positive real-valued number that controls the rate

at which the population evolves. Large F values tend to allow larger step sizes

which are traditionally considered to be better for exploration purposes, whereas

smaller F values are better for exploitation.

• The reproduction probability controls the fraction of parameter values that are

inherited from the target vector. Larger values of pr are associated with improved

exploration capability, whereas smaller pr values focus on intensifying the search

around good solutions.

3.3.3 Variations on the basic DE algorithm

The number of DE research papers increases exponentially each year and as the algorithm

is refined, results continue to improve and additional research opportunities become

visible. As a result, several variants of DE have been defined over the years. This

section describes a number of these variants according to Storn and Price’s DE/x/y/z

notation [131], where x refers to the method used to select the target vector, y refers to

the number of difference vectors used and z denotes the crossover mechanism used.

Alternative base vector selection mechanisms

Storn [130] identifies three different base vector selection mechanisms: DE/rand/y/z,

DE/best/y/z and DE/rand-to-best/y/z (DE/R2B/y/z):

Chapter 3. Selecting an appropriate solution strategy 42

• A randomly selected population member serves as the base vector in DE/rand/y/z.

• The base vector is selected as the population member with the best fitness function,

i.e. the best individual, in DE/best/y/z. Incorporating the best individual into

the equation is meant to enable faster convergence, with a subsequent decrease in

population diversity.

• DE/R2B/y/z aims to address the limitations of DE/best/y/z in terms of potential

premature convergence. A linearly or exponentially decreasing value (γ ∈ (0, 1))

is incorporated into the equation used to calculate the base vector. This ensures

that more emphasis is placed on random base vector selection at the start of the

optimization run when population diversity is important. Towards the end, the

DE/best/y/z strategy is emphasized when convergence to the best solution is de-

sirable. The adjusted target vector equation becomes

Tij(t) =γxτj(t) + (1− γ)xi1j(t) + F (xi2j(t)− xi3j(t)), (3.10)

where xτj(t) denotes the jth component of the best individual in the population at

time t.

Alternative difference vector selection strategies

Storn [130] defines an additional variant which uses y difference vectors to “shift the

random variation slightly into a gaussian direction”. Preliminary results have indicated

that this seems to be beneficial for a large number of functions. As an example, the trial

vector for DE/x/2/z is given as

Tij(t) =xi1j(t) + F (xi2j(t) + xi3j(t)− xi4j(t)− xi5j(t)), (3.11)

where i1 6= i2 6= i3 6= i4 6= i5.

Alternative cross-over mechanisms

Two different crossover mechanisms, namely exponential and binomial crossover, have

also been employed effectively in DE-based algorithms. Exponential crossover operators

Chapter 3. Selecting an appropriate solution strategy 43

are applied to each of the nx dimensions until ν ∼ U(0, 1) ≥ pr. Binomial crossover

operators are applied per dimension whenever ν ∼ U(0, 1) ≤ pr. For high values of pr,

the exponential and binomial crossovers thus yield similar results [12].

The identification of a large number of DE variants is important because different

strategies perform differently on different problems. Since no single strategy can be

proved to outperform all other strategies for all problems, finding the best performing

algorithm variation for each data set may result in significant performance improvements.

However, it is not always practical to test all strategies, thus careful consideration should

be given to determine which strategies result in the greatest improvement for a specific

problem. For the purposes of this dissertation, an investigation into alternative base

vector selection mechanisms was considered to be the most useful. This investigation is

described in more detail in Section 4.2.

3.4 A brief analysis of existing PSO- and DE-based

scheduling algorithms

The number of papers where PSO and DE are applied to scheduling has dramatically

increased over the past few years [73]. This section provides an overview of PSO and

DE machine scheduling literature before making a number of interesting observations.

3.4.1 General observations

Effective production scheduling requires solving a complex combinatorial and discrete op-

timization problem. Subsequently, two main approaches for solving scheduling problems

by means of continuous optimization algorithms, such as PSO and DE, can be identified

from literature [73]. Figures 3.8 and 3.9 firstly organize the relevant machine scheduling

literature into the two main approaches followed, and then also distinguishes between

different types of scheduling models which have been solved by these two approaches.

The first approach is based on redefining the standard operators of the classical PSO

and DE algorithms, allowing the algorithms to function in a discrete domain. Secondly,

Chapter 3. Selecting an appropriate solution strategy 44

PSO
scheduling
applications

Discrete PSO
scheduling
algorithms

Continuous
PSO

scheduling
algorithms

Single
machine

scheduling
[9, 102]

Flow shop
scheduling
[76, 104, 105]

Job shop
scheduling

[75]

Job shop
scheduling

Flow shop
scheduling

[77, 78, 79, 134]

JSSP
[126, 145, 146]

FJSP
[59, 60, 80, 81,

144]

Figure 3.8: Applications of PSO to machine scheduling literature

the scheduling problem may be converted into a continuous problem which can be solved

easily by means of a continuous optimization algorithm.

According to Lei [73], the redefinition of the standard PSO operators often lead to

poor performance in scheduling. Although the structure of the problem can be more

easily exploited, it is quite difficult to retain the trade-off between social and individual

learning which is largely responsible for the success of the continuous PSO. The inherent

structure of the information exchange between particles is, after all, changed. A similar

argument may be used for DE. The definition of the difference vector may be problem-

atic when the continuous DE operators are discretized. Nonetheless, as can be seen from

Figure 3.8, discrete PSO algorithms have already been applied successfully to single ma-

chine scheduling [9, 103], flow shop scheduling [76, 105, 106], and job shop scheduling [75].

Discrete DE algorithms have been used to solve flow shop scheduling [5, 104, 133] and

Chapter 3. Selecting an appropriate solution strategy 45

DE
scheduling
applications

Discrete DE
scheduling
algorithms

Continuous
DE

scheduling
algorithms

Single
machine

scheduling
[131]

Flow shop
scheduling

Single
machine

scheduling
[29]

Flow shop
scheduling

Job shop
scheduling

FSSP
[29, 101, 156]

PFSSP

No-wait FSSP
[132]

PFSSP
[103]

Assembly
FSSP with

setups
[5]

Single-
objective

[156]

Multi-
objective

[117]

Real-world
flow shops

Hybrid FSSP
with add.

constraints
[121]

Resource-
constrained

FSSP with add.
constraints

[25]

Single-
objective

[115]

Multi -
objective

[116]

Figure 3.9: Applications of DE to machine scheduling literature

single machine scheduling problems [132].

In this dissertation, the second approach will be followed where the scheduling prob-

lem is converted to a continuous problem which can be solved directly by the PSO and

DE algorithms. Following this approach requires the algorithms to be able to operate

effectively in two separate search spaces: (1) The schedule allocation space, SSSs, which

consists of all the feasible schedules associated with the problem to be addressed, and

(2) the particle space, PPP s, which consists of all the possible positions of the particles

within the search space. To evaluate the fitness of a particle, the solution xxx ∈ PPP s must

first be mapped to yyy ∈ SSSs before the fitness function value fff ∈zzz (where zzz denotes the

Chapter 3. Selecting an appropriate solution strategy 46

objective space) can be calculated.

In the PSO domain this approach has already been applied successfully to var-

ious flow shop [77, 78, 79, 135], job shop [127, 146, 147], and multiprocessor task

scheduling problems [41]. Continuous DE implementations, on the other hand, have fo-

cused on the single machine scheduling problem (SMP) [97, 96, 134], flow shop schedul-

ing problem (FSSP) [25, 97, 102, 116, 117, 122, 157], and job shop scheduling prob-

lem (JSSP) [118, 157].

3.4.2 Addressing more complex scheduling problems

It is obvious from the analysis of Section 3.4.1 that PSO and DE are establishing them-

selves as solution strategies of note for simpler scheduling problems. The applications to

more complex production scheduling problems are still, however, considered to be rela-

tively sparse. This is especially true for scheduling problems where both the sequencing

of operations and the allocation of these operations to resources need to be addressed.

All the PSO and DE scheduling applications discussed in Section 3.4.1 can be reduced

effectively to the problem of finding an “optimal” sequence of operations subject to a

number of problem-specific constraints. However, when the processing of operations on

alternative resources can lead to a reduction in the overall processing time, for example

as in the case of a flexible job shop scheduling problem, the allocation of operations

to resources becomes an important part of the optimization problem. This additional

complexity understandably creates a number of additional challenges for the scheduling

algorithm.

To the best of the author’s knowledge no applications of differential evolution to a

flexible job shop scheduling problem exist. However, five papers addressing flexible job

shop scheduling problems by means of PSO could be identified:

• Xia and Wu [145] developed a simulated annealing-PSO-based hybrid solution

strategy. It is notable that only the allocation of operations to resources is done

by means of PSO. The actual sequencing of the assigned operations is performed

by a simulated annealing (SA) algorithm and the multiple objectives are addressed

by combining all relevant objectives into a single weighted sum objective.

Chapter 3. Selecting an appropriate solution strategy 47

• Liu et al. [80, 81] solved the multi-objective flexible job shop scheduling problem

with minimum makespan and flowtime by means of a variable neighbourhood PSO

algorithm, which employed a variable neighbourhood-based local search mechanism

to enhance the exploitation ability of the swarm. Dynamic weighted aggregation

is used to simultaneously minimize the two objective functions.

• Jia et al. [59] have minimized makespan, total workload, and maximum workload

by means of a PSO algorithm employing a chaotic local search around the gbest

particle. The multiple objectives are addressed by further minimizing the objective

with the smallest fitness value at each function evaluation.

• Jia et al. [60] used a fully informed pareto-based PSO algorithm to minimize the

makespan and maximum lateness in a flexible job shop (FJSP) environment. A

problem-specific mutation operator was also defined to improve the diversity of the

swarm.

A number of interesting observations can be made from this brief analysis. Firstly, it

can indeed be confirmed that PSO and DE do not seem to be considered as established

solution strategies for more complex scheduling environments when compared to, for

example, genetic algorithms. Real world scheduling problems, where a large number

of additional scheduling-specific constraints need to be addressed, have not been solved

frequently by means of either PSO or DE. In fact, no additional constraints are even

considered in the listed examples.

Secondly, the largest problem attempted by any of these PSO-based algorithms only

consider the scheduling of 56 operations on at most 15 resources, which is currently

considered to be a problem of “great size” in FJSP scheduling literature [63]. This is in

sharp contrast with the Optimatix problem where a multi-objective FJSP consisting of

up to 256 operations on 216 resources, need to be considered.

Thirdly, apart from the PSO-SA hybrid of Xia and Wu [145], all the algorithms

make use of a two-part particle representation and resource allocation is addressed by

means of rounding off the continuous PSO particle dimensions to the nearest integer

value representing a resource index.

Chapter 3. Selecting an appropriate solution strategy 48

Finally, a number of the algorithms [59, 80, 81] employ complex local search mecha-

nisms. Apart from the increased computational complexity, extending these algorithms

to include sequence-dependent set-up times, auxiliary resources, and production down

time, as is required in the proposed problem, would require that major structural changes

be made to the algorithms currently in use at Optimatix.

3.5 Summary

This chapter documented the process of selecting a suitable solution strategy. Particle

swarm optimization and differential evolution were selected as the solution strategies of

choice. A brief introduction to each one of these search methodologies was provided

before the existing PSO and DE scheduling work was described in more detail. The

next chapter focuses on describing the actual implementation of these two strategies in

a scheduling environment.

Chapter 4

Solving the single objective

Optimatix problem

A large number of options are available when particle swarm optimization (PSO) and

differential evolution (DE) are applied to a complex production scheduling problem such

as the problem faced by Optimatix. The focus of this chapter is to motivate the initial

“design choices” which were made during algorithm development. Investigations into

appropriate problem representations are conducted within the context of PSO, suitable

parameter values are derived and alternative PSO topologies and DE base vector selec-

tion mechanisms are implemented. Finally, the resulting PSO and DE algorithms are

benchmarked against existing solution strategies.

4.1 Alternative particle representations

It is well known that the existence of separate search spaces have a significant impact on

the performance of optimization algorithms [99], thus justifying research into alternative

problem representations for the Optimatix problem. In the context of PSO and DE, the

performance of problem representations may be considered to be relatively independent

of search methodology. The purpose of this section is, thus, to investigate alternative

problem representations and mapping mechanisms in the context of PSO. To achieve

49

Chapter 4. Solving the single objective Optimatix problem 50

this objective, three PSO-based heuristics, namely the priority-based PSO (P-PSO), the

random keys PSO (RKPSO), and the rule-based PSO (RBPSO), were developed.

Although all empirical performance evaluations throughout this and the next chapter

were conducted on data sets ranging from 56 to 256 operations, a smaller problem, similar

in complexity to the Optimatix problem, can be used to compare the various algorithms

on a conceptual level. Four operations, indicated by means of the network diagram in

Figure 4.1, need to be scheduled. Precedence constraints, denoted by arrows between the

operations, are also present. Each operation needs to be scheduled on a single resource

from a set of primary resources and a single auxiliary resource may also be required.

The primary and auxiliary resource sets associated with each operation are respectively

denoted by oval and rectangular blocks linked to each operation. Consider the fourth

operation in Figure 4.1 as an example. This operation may be scheduled on either

the first or second resource (primary resource allocation), but also requires the third

resource as an auxiliary resource. The network diagram can, subsequently, be converted

to a particle representation. The final solution (before the inclusion of production down

time) can then be converted into the feasible schedule indicated by means of a gantt

chart.

Throughout the rest of this section each of the three PSO-based heuristics are de-

scribed and illustrated by means of the example problem. The experimental conditions

of the empirical analysis are also described and the results of the investigation are pre-

sented.

4.1.1 The priority-based PSO algorithm

The priority-based algorithm is based on the idea that evolving operation priorities

over time may lead to superior operation sequences. The particle representation of the

priority-based PSO (P-PSO) algorithm consists of a (2n−ϕ)-dimensional vector, where

ϕ is the number of operations which may be processed on only one primary resource

and n is the total number of operations which need to be scheduled. The allocation of

auxiliary resources are enforced as additional problem constraints.

Dimensions n + 1 to 2n − ϕ are used to represent the allocation of operations to

primary resources. This is done by discretizing the search space as follows: For each

Chapter 4. Solving the single objective Optimatix problem 51

1 2

3
4

1,
 2

4

1

1,
 2

1
, 2

3

x,
 y

P
rim

ar
y

re
so

ur
ce

 s
et

z
A

ux
ili

ar
y

re
so

ur
ce

 s
et

R
es

ou
rc

es
M

ay
 2

00
8

1 2 3 4

O
pe

ra
tio

n
1

O
pe

ra
tio

n
1

O
pe

ra
tio

n
2

O
pe

ra
tio

n
3

O
pe

ra
tio

n
4

O
pe

ra
tio

n
4

Ti
m

e
(d

ay
s)

P
ar

tic
le

re

pr
es

en
ta

tio
n

P
ro

bl
em

 m
ap

pi
ng

m
ec

ha
ni

sm
R

es
ou

rc
e

1 2 3 4

F
ig

u
re

4.
1:

A
sm

al
l

ex
am

pl
e

pr
ob

le
m

an
d

po
ss

ib
le

so
lu

ti
on

Chapter 4. Solving the single objective Optimatix problem 52

operation k, the kth dimension of the PPP s space is divided into |QQQk| intervals, where |QQQk|
denotes the number of primary resources on which operation k can be processed. Since

each interval is associated with a unique integer number or resource index, dimensions

n + 1 to 2n − ϕ of the position vector can easily be interpreted as resource allocation

variables.

Figure 4.1 shows that operation 1 may be scheduled on either resource 1 or resource

2. The first dimension of the PPP s space is subsequently divided into two intervals, namely

{−1500, 0} and {0, 1500}, given that xxx ∈ {−1500, 1500}. In the example particle repre-

sentation i in Figure 4.3, xi5 = 10.2, where xij denotes the jth dimension of particle i.

Since 10.2 ∈ {0, 1500} operation 1 is scheduled on resource 2. Similarly, operation 2 and

4 are also scheduled on resource 2 and operation 3 is scheduled on resource 1.

The sequencing variables of dimensions 1 to n denote the priority values of each

of the operations. These priorities are used as input to a schedule-building heuristic

which attempts to schedule each operation at the earliest available time on its associated

resource. In this dissertation, Giffler and Thompson’s heuristic [47] (initially developed

in 1960 and since then successfully used by Sha and Hsu [127] and Gao et al. [45]) was

extended to include the unique problem characteristics of the Optimatix environment.

The modified Giffler and Thompson heuristic is given in Algorithm 4.1. The basic idea

of the algorithm is to maintain two sets of operations. As can be seen in the pseudocode,

the first set, ΘΘΘ, stores all operations which are available for scheduling at a specific time.

The operations in ΘΘΘ are inserted one by one into the partial schedule, ΦΦΦ, according to

their associated priority values. Inserting the operation with the highest priority, k,

into ΦΦΦ involves considering each element in a set of possible starting times, ΨΨΨk (refer

to Figure 4.2). The earliest starting time which allows for a feasible auxiliary resource

allocation determines the position of operation k in the partial schedule. As soon as an

operation is scheduled all its successors, which have no other unscheduled predecessors,

become available for scheduling. These operations can be inserted into ΘΘΘ before the next

operation is scheduled. As an example, consider the priorities of the example problem in

Figure 4.3. These priorities can be converted into the job permutation: {1, 4, 3, 2}. The

application of the modified Giffler and Thompson’s heuristic [47] results in the schedule

in Figure 4.3 being obtained.

Chapter 4. Solving the single objective Optimatix problem 53

Initialize ΦΦΦ = ∅∅∅

Initialize ΘΘΘ to contain all operations without any predecessors

while ΘΘΘ 6= ∅∅∅ do

Select k from ΘΘΘ as the operation with the highest priority

Determine ΨΨΨk (the set of possible starting times for operation k on resource dk)

while k ∈ ΘΘΘ do

Set tk = min{ΨΨΨk}

Calculate the finishing time associated with tk: zk = Finish(tk)

(Refer to Algorithm 4.2)

Determine feasibility of schedule with respect to auxiliary resources

(Refer to Algorithm 4.3)

if tk results in a feasible schedule then

Delete k from ΘΘΘ

else

Delete tk from ΨΨΨk

end
end

Insert k into ΦΦΦ

for All successors m of k do

if All other predecessors of operation m ∈ ΦΦΦ then

Insert m into ΘΘΘ

end
end

end

Algorithm 4.1: The priority-based PSO mapping mechanism

The most involved step of the modified Giffler and Thompson algorithm is determin-

ing whether a feasible auxiliary resource allocation exists for a specific operation starting

time. A two step process is required. Firstly, the effect of the resource-specific down

time intervals on the operation duration needs to be determined in order to obtain an

Chapter 4. Solving the single objective Optimatix problem 54

Time

Resource
d(i) Operation i - 3 Operation

i - 2
Operation

i - 1

Release date
of operation i A B C

Figure 4.2: When operations k− 3,k− 2 and k− 1 are already scheduled on resource dk, the

possible starting times of operation k, ΨΨΨk, are A, B and C

Resources
May 2008

1

2

3

4

Operation 1

Operation 1

Operation 2

Operation 3 Operation 4

Operation 4

Time (days)
Resource

1

2

3

4
12

Sequencing variables :
dimensions 1 to n

12 16.2 19.1 10.2 1054 -450

Allocation variables :
dimensions n + 1 to 2n

Figure 4.3: An example PPSO particle representation and corresponding solution to the

example problem

accurate finishing time. Secondly, the availability of the required auxiliary resources

during the operation processing time needs to be evaluated.

More detail with respect to the inclusion of production down time into the sched-

ule is provided in Algorithm 4.2. Depending on the available data, either a sequence-

independent resource-dependent set-up time or a sequence-dependent resource-indepen-

dent set-up time may be used to calculate the processing time of an operation. Here

Sκkk denotes the sequence-dependent set-up time if operation k is processed immediately

after operation κk on the same resource.

The second half of the pseudocode of Algorithm 4.2 describes the procedure followed

to incorporate the down time intervals into the operation processing time. The starting

times, ψψψ, and ending times, χχχ, of all the resource down time intervals of resource dk

needs to be provided as input data. If the proposed starting time of operation k falls

within any of the predefined down time intervals, the operation will only start once the

resource is available again. If a resource is expected to become unavailable in the midst

Chapter 4. Solving the single objective Optimatix problem 55

of an operation’s processing time, the operation will be scheduled to resume on the same

resource once it becomes available again. The processing time of the operation is then

adjusted to allow for this period of inactivity.

for All operations k do

zk = tk + pkdk
+ Sκkk

for All downtime intervals p do

if zk ≤ ψp or tk ≥ χp then

Interval p is an intersected downtime interval of operation k

end
end

for Intersected downtime intervals p of operation k do

if ψp ≤ zk and tk ≤ χp then

zk = zk + χp − ψp

end

if ψp < tk and tk ≤ χp then

zk = zk + χp − tk
end

end

for All downtime intervals q from p to P do

if zk > ψq then

zk = zk + χq − ψq

else

Break to operation k + 1

end
end

end

Algorithm 4.2: Calculating the finishing time associated with starting time tk of operation

k (Finish(tk))

Once an accurate idea of the operation processing time on the required primary

Chapter 4. Solving the single objective Optimatix problem 56

resources is obtained, the pseudocode of Algorithm 4.3 can be applied. For each auxiliary

resource in the set of available auxiliary resources, VVV k, the algorithm checks whether an

auxiliary resource is available during the proposed processing time of operation k. If no

such resource exists, operation k cannot be scheduled at the proposed starting time and

needs to be rescheduled on its associated primary resource.

for All operations k do

if VVV k 6= ∅ then

for All resources l ∈ VVV k do

for All scheduled intervals p do

if zk ≤ χpl or tk ≥ ψpl then

Operation k will overlap interval p

end
end

if Operation k overlaps any intervals then

Operation k cannot be scheduled on resource l ∈ VVV k

if l = |VVV k| then

Operation k is infeasible

Break to operation k + 1
else

Break to resource l + 1

end
else

Schedule operation k on resource l ∈ VVV k

end
end

end
end

Algorithm 4.3: Allocation of operations to auxiliary resources

The P-PSO algorithm is considered useful since the continuous nature of the PSO

algorithm can be exploited to solve a very complex, discrete combinatorial optimization

problem [127]. However, Sha and Hsu [127] also mention a characteristic of concern for

Chapter 4. Solving the single objective Optimatix problem 57

scheduling algorithms which utilize a priority-based fitness function evaluation mecha-

nism. A very small change in the position of the particle within the PPP s space may result

in a very large change in the SSSs space. The algorithm, additionally, has the property

that many different solutions within PPP s map to the same solution in SSSs.

The last problematic aspect of a priority-based mapping mechanism is the effect

which the schedule-building heuristic has on the simultaneous optimization of the specific

set of multiple objectives required by Optimatix. Since the schedule-building mechanism

attempts to position each operation at the earliest possible time, the algorithm is, in fact

biased towards the minimization of makespan. However, this statement is also heavily

dependent on the characteristics of the problem being solved. As an example, consider

the scheduling of a single operation on a single resource while simultaneously minimizing

earliness/tardiness and makespan. If the earliest starting time is larger than the due

date of the job to which the operation belongs, minimizing makespan also minimizes the

earliness/tardiness objective. However, if the earliest starting time is smaller than the

due date of the associated job, the two objectives become conflicting, and the solution

and subsequent fitness calculation is distorted.

4.1.2 The random keys PSO algorithm

The random keys PSO (RKPSO) algorithm is a direct application of Norman and Bean’s

random keys genetic algorithm (RKGA) [99] to the PSO paradigm. The gene represen-

tation of the RKGA consists of an n-dimensional vector in contrast with the 2n − ϕ

dimensions required for the P-PSO algorithm. A sorting mechanism (which is given

in Algorithm 4.4) is used to decode the real-valued n-dimensional vector into its corre-

sponding resource indices and priorities. The mechanism simply interprets the integer

component of the particle dimension as a primary resource index. The decimal com-

ponent is taken to be the priority of the associated operation for sequencing purposes.

Giffler and Thompson’s heuristic [47] can then be applied directly. The example in

Figure 4.4 shows that the resource allocation decision is again addressed through dis-

cretization of the search space. However, now xij ∈ {0, 1}, where xij is the jth dimension

of the ith particle representation.

The RKPSO has the important advantage that the dimensionality of the PPP s space is

Chapter 4. Solving the single objective Optimatix problem 58

for All operations k do

l = (|bxikc| mod |QQQk|) +1

dk = Qkl

tk = xik − |bxikc|
end

Algorithm 4.4: The random keys PSO sorting mechanism as applied to particle i

Resources
May 2008

1

2

3

4

Operation 1

Operation 1

Operation 2

Operation 3 Operation 4

Operation 4

Time (days)
Resource

1

2

3

4

Sequencing and
allocation variables :
dimensions 1 to n

1.22 2.12 1.62 1.45

Figure 4.4: An example RKPSO particle representation and corresponding solution to the

example problem

halved. However, the limitations of Giffler and Thompson’s heuristic [47], as identified in

the previous section, are still applicable. Furthermore, in most traditional optimization

applications one dimension is used to denote one unique and separate concept. Here

both operation sequence and resource allocation is represented by a single dimension,

which could have significant implications for algorithm performance.

4.1.3 The rule-based PSO algorithm

The rule-based PSO (RBPSO) algorithm [53] is another attempt at reducing the PPP s

space. This strategy was inspired by both the rule-based algorithms currently used

by Optimatix, as well as elements of Kacem et. al ’s genetic algorithm-based approach

to flexible job shop scheduling [62]. Similar to the RKPSO, the particle representation

consists of one n-dimensional vector which represents the sequencing variables. However,

the resource allocation is now performed within the schedule-building mechanism as

described in Algorithm 4.5.

The only difference between Algorithm 4.5 and Algorithm 4.1 is that the resource

Chapter 4. Solving the single objective Optimatix problem 59

allocation now involves considering each primary resource in the set, QQQk. The resource

allocation, lmin, which results in the smallest finishing time, zklmin
, is subsequently se-

lected. An illustration of the algorithm is, again, provided in Figure 4.5.

Resources
May 2008

1

2

3

4

Operation 1

Operation 1

Operation 2

Operation 3 Operation 4

Operation 4

Time (days)
Resource

1

2

3

4

Sequencing and
allocation variables :
dimensions 1 to n

225 1250 625 450

Figure 4.5: An example RBPSO particle representation and corresponding solution to the

example problem

It should, however, be noted that even though the dimensionality of the PPP s space is

reduced, this is done at the cost of a more computationally complex algorithm since an

explicit search of all possible resource allocations are performed for each particle during

the schedule construction phase.

4.1.4 Comparative analysis of alternative particle representa-

tions

The purpose of this section is to evaluate alternative particle representations by compar-

ing the performance of the P-PSO, RKPSO, and RBPSO algorithms. However, for an

investigation into algorithm performance to be most effective, it is important to conduct

such an experimental analysis under the same conditions under which the algorithms

will eventually be used. It should be noted that this study is not only focused on im-

proving the existing scheduling algorithms of Optimatix, but rather in identifying those

requirements that if addressed will best meet the needs of Optimatix ’ clients and then

to develop an effective solution which addresses all of these requirements. To achieve

these objectives, three test problems corresponding to actual problem size and complex-

ity were derived from actual customer data and were adapted, as described in the rest

of this section, to incorporate the changing customer requirements of Optimatix. Un-

Chapter 4. Solving the single objective Optimatix problem 60

Initialize ΦΦΦ = ∅∅∅

Initialize ΘΘΘ to contain all operations without any predecessors

while ΘΘΘ 6= ∅∅∅ do

Select i from ΘΘΘ as the operation with the highest priority

for All resources l ∈ QQQk on which operation k may be scheduled do

Determine ΨΨΨk (the set of possible starting times for operation k on resource dk)

while k ∈ ΘΘΘ do

Set tkl = min{ΨΨΨk}

Calculate the finishing time associated with tkl: zkl = Finish(tkl)

(Refer to Algorithm 4.2)

Determine feasibility of schedule with respect to auxiliary resources

(Refer to Algorithm 4.3)

if tkl results in a feasible schedule then

Delete k from ΘΘΘ

else

Delete tkl from ΨΨΨk

end
end

Insert k into ΘΘΘ
end

zklmin
← minl∈QQQk

{zkl}

Set tk = tklmin

Delete k from ΘΘΘ

Insert k into ΦΦΦ

for All successors m of k do

if All other predecessors of operation m ∈ ΦΦΦ then

Insert m into ΘΘΘ

end
end

end

Algorithm 4.5: The rule-based PSO mapping mechanism

Chapter 4. Solving the single objective Optimatix problem 61

less otherwise indicated, all performance analyses in this dissertation were conducted on

these data sets.

The effectiveness of a scheduling solution is, furthermore, highly dependent on the

realism of the solution. In other words, it is important that the actual solution obtained

corresponds to the requirements of the production environment which is to be sched-

uled. By effectively modeling the actual production environment, the number of times

rescheduling is required as well as the disruptions associated with frequent reschedul-

ing, can be drastically reduced. The time required to customize scheduling algorithms

for each client’s unique production environment can also be reduced when the level of

generality of a consulting firm’s scheduling algorithms is increased. To achieve these

objectives, the existing customer data sets were extended to include resource-dependent

processing times and sequence-dependent set-up times.

The variation, σ2
B, of all operation process times processed on different resources was

calculated from Kacem et. al ’s benchmark data set for flexible job shop scheduling prob-

lems [63], which address both the allocation of operations to resources and the sequencing

of these operations on their associated resources. Subsequently, the processing times and

set-up times of the data sets used in this dissertation were randomly generated within

the interval [µB−σB, µB +σB], where µB denotes the operation-dependent data point as

obtained from the original customer data set. In alignment with customer requirements,

half of the sequence-dependent set-up times were initialized to zero. The data sets range

in size from 56 to 256 operations which are to be scheduled on 216 resources and are

available for comparison purposes from the author.

The results of the performance evaluation for the three PSO-based heuristics were

recorded over 30 independent simulation runs over each of the three data sets. Both

accuracy and computational complexity were considered to be important performance

measurements. Throughout the rest of this dissertation, f1 denotes makespan, f2 the

earliness/tardiness criteria, and f3 the queue time. In this chapter, goal programming,

which minimizes the weighted deviation between each fitness function value and a target

value set for it, was used to address the multiple objectives. The aggregated fitness

Chapter 4. Solving the single objective Optimatix problem 62

function, f4, is given as

f4 =
3∑

s=1

|(fs − gs)|+ υfs (4.1)

where gs denotes the target value of the sth fitness function, fs, and υ is selected as

sufficiently small. Throughout the rest of this dissertation, µ and σ respectively denote

the mean and standard deviation associated with the corresponding performance mea-

surement and CICICI0.05 is a 95% confidence interval on µ. Finally, g1 and g2 were set to

250, and g3 was set to 0.

Analysis of the behaviour of the priority-based PSO on the 56-operation problem

resulted in the parameter values listed in Table 4.1 being defined as suitable for initial

comparison purposes. The number of particles in the swarm is denoted by ns and the

size of the discretization intervals, δk, of operation k is dependent on λ, where

δk =
2λ

|QQQk|
. (4.2)

|QQQk| is the number of resources on which operation k may be scheduled, λ is the number

of discretization intervals which are allocated to a single operation-resource pair, and

a −→ b indicates that the associated parameter is decreased linearly from a to b over 95%

of the total number of iterations, Imax. Finally, the sequencing and resource allocation

variables were initialized from a rectangular distribution within the intervals {−500, 500}
and {−1500, 1500}.

The actual results of the investigation into alternative problem mapping mechanisms

and particle representations are recorded in Tables 4.2 and 4.3 and Figure 4.6. The

RBPSO outperformed both the RKPSO and P-PSO with respect to all four objective

functions for the two larger problem instances. No statistically significant difference could

be identified between the RBPSO and the P-PSO on the 56 operation problem when the

aggregated objective function was considered. The RBPSO did, however, outperform

the P-PSO with respect to the makespan objective.

Even though the RBPSO was clearly the best algorithm with respect to solution

quality, this was not the only criterion which had to be considered for the Optimatix

environment. During the empirical evaluation, it was evident that the RBPSO algorithm

Chapter 4. Solving the single objective Optimatix problem 63

Table 4.1: There are a number of parameters which have a significant effect on the performance

of PSO

Parameter Value used

ns 27

λ 3

Imax 200

c1 2.0 −→ 1.0

c2 2.8− c1

w 0.8 −→ 0.4

took significantly longer to return a solution than the other two algorithms. An analysis

of the complexity of the three algorithms was subsequently performed.

Table 4.2: Experimental results of alternative mapping strategies and particle representations

with respect to makespan and earliness/tardiness

Pro- Algo- f1f1f1 f2f2f2

blem rithm µµµ σσσ CICICI0.05 µµµ σσσ CICICI0.05

56-op P-PSO 1582.37 7.76 ± 2.90 3563.24 316.19 ± 118.05

RKPSO 2086.04 109.26 ± 3.83 4060.96 353.53 ± 132.00

RBPSO 1567.71 0.00 ± 0 3546.47 331.85 ± 123.90

100-op P-PSO 1862.46 13.90 ± 5.19 7045.34 378.46 ± 141.31

RKPSO 2271.42 128.58 ± 48.01 8024.63 809.16 ± 302.11

RBPSO 1799.55 50.99 ± 19.04 6431.98 369.90 ± 138.11

256-op P-PSO 5059.85 153.17 ± 57.19 39007.07 2789.33 ± 1041.44

RKPSO 6191.17 731.57 ± 273.14 38382.25 4102.06 ± 1531.56

RBPSO 4922.67 62.13 ± 23.20 30892.79 3508.45 ± 1309.93

Assume that the complexity of the initialization of ΦΦΦ and ΘΘΘ (in Algorithm 4.1) is

Chapter 4. Solving the single objective Optimatix problem 64

0

1
0

00

2
0

00

3
0

00

4
0

00

5
0

00

6
0

00

7
0

00

56
10

0
2

5
6

P
ro

bl
e

m
 s

iz
e

 (
op

e
ra

tio
ns

)

Makespan

P
-P

S
O

R
K

P
S

O

R
B

P
S

O

0

5
0

00

10
0

00

15
0

00

20
0

00

25
0

00

30
0

00

35
0

00

40
0

00

45
0

00

56
1

0
0

2
56

P
ro

bl
em

 s
iz

e
 (o

pe
ra

tio
ns

)

Earliness/tardiness

P
-P

S
O

R
K

P
S

O

R
B

P
S

O

0

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

56
10

0
25

6

P
ro

b
le

m
 s

iz
e

 (
o

p
e

ra
tio

n
s)

Aggregated objective function

P-
PS

O

R
K

PS
O

R
B

PS
O

0

20
00

40
00

60
00

80
00

10
00

0

12
00

0

14
00

0

56
10

0
25

6

P
ro

b
le

m
 s

iz
e

 (
o

p
e

ra
tio

n
s)

Queue time

P-
PS

O

R
K

PS
O

R
B

PS
O

F
ig

u
re

4.
6:

R
es

ul
ts

of
th

e
in

ve
st

ig
at

io
n

in
to

al
te

rn
at

iv
e

pa
rt

ic
le

re
pr

es
en

ta
ti

on
s

Chapter 4. Solving the single objective Optimatix problem 65

Table 4.3: Experimental results of alternative mapping strategies and particle representations

with respect to queue time and the aggregated objective function

Pro- Algo- f3f3f3 f4f4f4

blem rithm µµµ σσσ CICICI0.05 µµµ σσσ CICICI0.05

56-op P-PSO 137.56 157.39 ± 58.76 4788.46 390.82 ± 145.92

RKPSO 389.39 302.35 ± 112.89 6042.93 609.69 ± 227.64

RBPSO 107.76 158.77 ± 59.30 4727.16 429.11 ± 160.21

100-op P-PSO 685.03 254.60 ± 95.06 9102.42 574.98 ± 214.68

RKPSO 1376.47 452.24 ± 168.85 11184.20 1248.05 ± 465.98

RBPSO 629.22 388.59 ± 145.09 8369.60 775.02 ± 289.36

256-op P-PSO 12760.31 2704.64 ± 1009.82 56384.06 5223.65 ± 1950.32

RKPSO 10539.85 3118.69 ± 1164.41 54668.49 7143.55 ± 2667.15

RBPSO 7504.28 2782.99 ± 1039.07 42863.06 5982.83 ± 2233.77

of order X and the complexity of determining the actual position where an operation

should be inserted into the schedule is of order Y . If the actual insertion process of an

operation is of order Z, then the complexity of the mapping mechanism of the P-PSO

algorithm can be shown to be of order nnQmax + X + nY + nZ, where nQmax is the

maximum number of primary resources on which an operation may be scheduled. The

complexity of the mapping mechanism associated with the RKPSO can then be shown

to be of order n+ nnQmax +X + nY + nZ.

It should be noted that both the RKPSO and P-PSO algorithms make use of a pre-

optimization process where the search space is discretized for the purposes of resource

allocation. However, this discretization, which is of order nnQmax , is only performed once

per simulation. The mapping mechanism, on the other hand, is executed once for every

individual during each iteration. The RBPSO does not make use of a pre-optimization

process, however, the mapping mechanism is of order X + nnQmaxY + nZ, which is

significantly more complex than the mapping mechanism of the P-PSO algorithm since

O(nnQmaxY) >> O(nY).

Chapter 4. Solving the single objective Optimatix problem 66

In summary, when both computational complexity and solution time is considered,

P-PSO is more suited to the Optimatix requirements since it is computationally much

less complex than the RBPSO algorithm, while still producing satisfactory results on

most of the tested problems.

4.2 Investigating alternative PSO topologies and DE

base vector selection strategies

From the previous section it became clear that the P-PSO was best suited to meeting the

Optimatix requirements. This investigation, however, led to a number of additional ques-

tions. For example: (1) Would a priority-based DE (P-DE) algorithm perform similarly?

(2) Which variation on the classic DE algorithm is best suited to the problem? and (3)

Will alternative PSO topologies have a positive impact on algorithm performance? To

answer these questions, this section compares the gbest guaranteed convergence priority-

based PSO (gbest GCP-PSO) algorithm of the previous section to a Von Neumann

guaranteed convergence priority-based PSO (Von Neumann GCP-PSO) algorithm. In

addition, a P-DE algorithm is implemented and an investigation into alternative base

vector selection strategies is performed. The base vector selection strategies which are

investigated include P-DE/best/bin, P-DE/rand/bin, and P-DE/rand-to-best/bin (P-

DE/R2B/bin) algorithms.

4.2.1 Comparative analysis of alternative PSO and DE strate-

gies

The selection of suitable algorithm parameters for performance evaluation purposes be-

comes even more important when algorithms with different characteristics and struc-

tures are compared. In this study the algorithm parameters were first optimized for each

algorithm-data set pair before attempting to comment on the relative performance of

different PSO and DE strategies. For each algorithm-data set pair, 144 uniformly dis-

tributed parameter combinations were selected for evaluation. Algorithm performance

Chapter 4. Solving the single objective Optimatix problem 67

was then recorded over 30 simulations for each unique parameter combination. Selecting

the “best” parameter combination from the 144 combinations was the most problematic,

since parameter optimization may be considered to be a multi-objective optimization

problem.

The purpose of multi-objective optimization is to find a set of trade-off solutions

referred to as the Pareto-optimal set, PFPFPF , where

PFPFPF ={xxx∗ ∈ fff | @ xxx ∈ fff : xxx∗ ≺ xxx}. (4.3)

The dominance relation, ≺, indicates that solution xxx∗ dominates solution xxx, i.e. xxx∗ is not

worse than xxx in all objectives and xxx∗ is strictly better than xxx in at least one objective.

Parameter derivation can be considered as an optimization problem with the purpose

of selecting suitable parameter values such that both solution quality and algorithm

robustness, as determined by the standard deviation, is maximized. To solve this multi-

objective optimization problem, all dominated solutions were first removed from the

set of 144 parameter combinations. A Pareto front of possible parameter combinations

which formed a trade-off curve between accuracy and robustness remained. With this

trade-off curve as input, the impact of different parameter combinations on the accuracy

and robustness of the different scheduling objectives could be considered and appropriate

parameter values could be selected. The best parameter combination for each algorithm-

data set pair is, subsequently, indicated in Table 4.4.

The next phase of the study compared each of the DE base vector selection strategies

and PSO topologies on the three Optimatix data sets. Apart from the parameter opti-

mization, the same experimental conditions, as described in the previous section, were

used. The results are recorded in Tables 4.5 and 4.6 and Figure 4.7.

A number of interesting observations could be made from the results. Firstly, no

statistically significant difference could be identified between the results obtained by

the alternative DE-based strategies. This was true for all three problems and all four

objective functions. Although it was disappointing that the use of alternative base

vector selection mechanisms did not lead to performance improvement, this is actually

a desirable algorithm characteristic. It indicates that, as long as appropriate algorithm

parameters are used, the priority-based DE algorithm is robust with respect to the use

Chapter 4. Solving the single objective Optimatix problem 68

0

1
0

00

2
0

00

3
0

00

4
0

00

5
0

00

6
0

00

5
6

1
0

0
2

5
6

P
ro

bl
em

 s
iz

e
(o

pe
ra

tio
ns

)

Makespan

P
-D

E
/b

es
t/b

in

P
-D

E
/ra

n
d

/b
in

P
-D

E
/R

2
B

/b
in

gb
e

st
 G

C
P

-P
S

O

VN
G

C
P

-P
S

O

0

50
00

10
00

0

15
00

0

20
00

0

25
00

0

30
00

0

35
00

0

40
00

0

45
00

0

1
2

3

P
ro

b
le

m
 s

iz
e

 (
o

p
e

ra
tio

n
s)

Earliness/tardiness

P-
D

E/
be

st
/b

in

P-
D

E/
ra

nd
/b

in

P-
D

E/
R

2B
/b

in

gb
es

t G
C

P-
PS

O

V
N

G
C

P-
PS

O

0

20
00

40
00

60
00

80
00

10
00

0

12
00

0

14
00

0

16
00

0

56
10

0
25

6

P
ro

b
le

m
 s

iz
e

 (
op

e
ra

tio
n

s
)

Queue time

P-
D

E/
be

st
/b

in

P-
D

E/
ra

nd
/b

in

P-
D

E/
R

2B
/b

in

gb
es

t G
C

P-
PS

O

V
N

G
C

P-
PS

O

0

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

70
00

0

56
10

0
25

6

P
ro

b
le

m
 s

iz
e

 (
op

e
ra

tio
n

s
)

Aggregated objective function

P-
D

E/
be

st
/b

in

P-
D

E/
ra

nd
/b

in

P-
D

E/
R

2B
/b

in

gb
es

t G
C

P-
PS

O

V
N

G
C

P-
PS

O

F
ig

u
re

4.
7:

R
es

ul
ts

of
th

e
in

ve
st

ig
at

io
n

in
to

al
te

rn
at

iv
e

P
SO

to
po

lo
gi

es
an

d
D

E
ba

se
ve

ct
or

se
le

ct
io

n
st

ra
te

gi
es

Chapter 4. Solving the single objective Optimatix problem 69

Table 4.4: PSO and DE parameter derivation results

Problem Algorithm pc/wpc/wpc/w F/c1F/c1F/c1 c2c2c2

56-op P-DE/best/bin 0.5 −→ 0.1 0.9 −→ 0.1 -

P-DE/rand/bin 0.5 −→ 0.3 0.7 −→ 0.1 -

P-DE/R2B/bin 0.5 −→ 0.3 0.7 −→ 0.1 -

100-op P-DE/best/bin 0.5 −→ 0.1 0.9 −→ 0.1 -

P-DE/rand/bin 0.5 0.5 −→ 0.3 -

P-DE/R2B/bin 0.5 −→ 0.3 0.7 −→ 0.5 -

256-op P-DE/best/bin 0.7 −→ 0.5 0.7 −→ 0.5 -

P-DE/rand/bin 0.5 −→ 0.1 0.7 −→ 0.3 -

P-DE/R2B/bin 0.7 −→ 0.1 0.5 -

56-op gbest GCP-PSO 0.9 −→ 0.5 2.2 −→ 1.0 1.0 −→ 2.2

VNGCP-PSO 1.1 −→ 0.72 1.8 −→ 0.2 0.2 −→ 1.8

100-op gbest GCP-PSO 0.9 −→ 0.3 2.6 −→ 1.4 1.4 −→ 2.6

VNGCP-PSO 0.9 −→ 0.3 2.6 −→ 0.2 0.2 −→ 2.6

256-op gbest GCP-PSO 1.1 −→ 0.5 1.4 −→ 0.6 0.6 −→ 1.4

VNGCP-PSO 1.1 −→ 0.3 1.4 −→ 0.2 0.2 −→ 1.4

of alternative base-vector selection strategies. This finding holds significant implications

for the effort required for algorithm customization.

The P-PSO algorithms were slightly more sensitive to the use of alternative topolo-

gies. The gbest GCP-PSO algorithm outperformed the VNGCP-PSO algorithm on the

56 operation problem. This difference in performance with respect to the aggregated ob-

jective function could be traced back to a difference in queue time obtained by the two

algorithms. Fortunately, no other statistically significant performance differences could

be identified indicating that the P-PSO algorithms also seem to be relatively robust with

respect to alternative PSO topologies.

The final phase of the analysis focused on directly comparing the use of P-PSO ver-

Chapter 4. Solving the single objective Optimatix problem 70

Table 4.5: A comparison of the performance of various DE base vector selection strategies

and PSO topologies with respect to makespan and earliness/tardiness

Pro- Algo- f1f1f1 f2f2f2

blem rithm µµµ σσσ CICICI0.05 µµµ σσσ CICICI0.05

56 P-DE/best/bin 1592.88 22.38 ± 8.36 3796.47 259.22 ± 96.78

P-DE/rand/bin 1588.30 4.56 ± 1.70 3907.23 192.41 ± 71.84

P-DE/R2B/bin 1594.19 24.71 ± 9.23 3861.50 231.19 ± 86.32

100-op P-DE/best/bin 2293.15 58.17 ± 21.72 9823.74 301.93 ± 112.73

P-DE/rand/bin 2282.50 54.65 ± 20.40 9666.55 248.23 ± 92.68

P-DE/R2B/bin 2276.37 66.72 ± 24.91 9754.20 227.96 ± 85.11

256-op P-DE/best/bin 5371.55 199.58 ± 74.52 31705.76 1493.80 ± 557.73

P-DE/rand/bin 5426.02 158.52 ± 59.19 31099.89 1082.29 ± 404.09

P-DE/R2B/bin 5343.74 143.92 ± 53.73 30931.67 1018.09 ± 380.12

56-op gbest GCP-PSO 1581.92 17.55 ± 6.55 3494.64 213.23 ± 79.61

VNGCP-PSO 1653.71 44.20 ± 16.50 3579.17 231.81 ± 86.55

100-op gbest GCP-PSO 1867.66 13.53 ± 5.05 6957.78 236.82 ± 88.42

VNGCP-PSO 1858.57 11.29 ± 4.22 7151.72 235.12 ± 87.79

256-op gbest GCP-PSO 5007.81 50.17 ± 18.73 39453.53 2618.41 ± 977.62

VNGCP-PSO 5010.93 45.57 ± 17.01 38169.64 3065.49 ± 1144.54

sus P-DE in the Optimatix environment. The best performing DE strategy and PSO

topology (defined as the algorithm with the lowest mean) was subsequently identified

for each of the problems and the two resulting algorithms were compared. The results

obtained from this comparison indicated that the gbest GCP-PSO algorithm was the

best performing algorithm for the two smaller problems, but the P-DE/R2B/bin out-

performed the Von Neumann P-PSO on the 256-operation problem. It was thus obvious

that no single DE or PSO strategy is superior for all three problems tested. Although

the actual version of PSO or DE which were used does not seem to be that important,

Chapter 4. Solving the single objective Optimatix problem 71

Table 4.6: A comparison of the performance of various DE base vector selection strategies

and PSO topologies with respect to queue time and the aggregated objective function

Pro- Algo- f3f3f3 f4f4f4

blem rithm µµµ σσσ CICICI0.05 µµµ σσσ CICICI0.05

56-op P-DE/best/bin 477.77 143.69 ± 53.65 5372.99 390.66 ± 145.86

P-DE/rand/bin 525.40 107.15 ± 40.01 5526.95 298.15 ± 111.32

P-DE/R2B/bin 497.38 122.14 ± 45.60 5459.02 328.29 ± 122.57

100-op P-DE/best/bin 1422.32 257.26 ± 96.05 13052.75 549.07 ± 205.00

P-DE/rand/bin 1467.37 228.83 ± 85.44 12929.83 453.37 ± 169.27

P-DE/R2B/bin 1408.47 214.59 ± 80.12 12952.48 418.30 ± 156.18

256-op P-DE/best/bin 5279.40 747.91 ± 279.24 41899.06 2008.35 ± 749.85

P-DE/rand/bin 5882.99 1089.47 ± 406.77 41951.31 1749.61 ± 653.24

P-DE/R2B/bin 5143.53 811.32 ± 302.92 40960.35 1392.98 ± 520.09

56-op gbest GCP-PSO 74.46 127.93 ± 47.76 4656.17 245.96 ± 91.83

VNGCP-PSO 90.64 129.21 ± 48.24 4828.84 202.77 ± 75.71

100-op gbest GCP-PSO 675.02 211.25 ± 78.87 9009.96 406.74 ± 151.86

VNGCP-PSO 675.70 214.73 ± 80.17 9195.67 367.53 ± 137.22

256-op gbest GCP-PSO 14764.70 2093.57 ± 781.66 58785.26 3927.42 ± 1466.36

VNGCP-PSO 12893.70 1788.01 ± 667.58 55630.34 4088.77 ± 1526.60

the choice of metaheuristic plays a more important role.

These findings makes sense from what is known about the problem-specific nature

of metaheuristics. It is well known that the same metaheuristics’s performance can

fluctuate significantly over different problem instances and algorithms customized for

specific problems usually tend to outperform more generally applicable algorithms. This

knowledge is helpful in explaining the relative performance of the PSO and DE-based

algorithms.

Deciding when to use which algorithm now becomes more important. The difference

Chapter 4. Solving the single objective Optimatix problem 72

in performance between the P-PSO and P-DE algorithms could be either due to poor

scalability on the part of one of the P-PSO algorithms or it could be that one algorithm

is more suited to solving problems with specific characteristics. This issue is addressed

in more detail in the next section. The algorithms are first benchmarked against existing

solution strategies before a more detailed scalability analysis is done.

4.3 Benchmarking the priority-based algorithm against

alternative solution strategies

To evaluate the significance of the previous results, it is important to compare the

priority-based algorithms against existing benchmark algorithms. In this section the

best P-PSO and P-DE algorithms for each data set, as determined in the previous sec-

tion, are compared against three benchmark algorithms. The first two algorithms are

existing Optimatix algorithms which are currently in use. Norman and Bean’s random

keys genetic algorithm (RKGA) [99] was identified as the most promising algorithm from

existing literature, and was thus selected as the third benchmark algorithm. The rest of

this section describes each of the benchmark algorithms in more detail before the results

of the comparison are stated and discussed.

4.3.1 The existing Optimatix algorithms

Two of the existing Optimatix algorithms were selected as benchmark algorithms: the

idea being to evaluate the improvements resulting from the use of the PSO-based heuris-

tics instead of the existing algorithms. Both of these rule-based algorithms function on

a very similar premise to the RBPSO discussed in the previous section, the only differ-

ences being the assignment of priorities to operations and the allocation of operations

to the first available resource. While the operation priorities are evolved over time by

a PSO-based algorithm in the RBPSO, the basic scheduling rule assigns priority values

randomly to operations. The earliest due date rule (EDD) assigns operation priorities

according to the earliest due date of the jobs corresponding to the operations under con-

sideration. For the sake of completeness, the pseudocode for these algorithms is provided

Chapter 4. Solving the single objective Optimatix problem 73

in Algorithm 4.6.

These rule-based benchmarking algorithms are based on the idea that a set, III ⊂ ΘΘΘ,

of high priority operations can be identified at any stage during schedule construction.

If, for example, the earliest due date rule (EDD) is used, this set includes all operations

which need to be completed in time for the first delivery date. For each operation k,

where k ∈ III the primary resource allocation is performed by selecting the first available

primary resource, lmin, from the set of primary resources, QQQk. The starting time, tkl,

associated with the allocation of operation k to resource lmin is then compared for all

operations k ∈ III. The operation which can be scheduled the soonest, denoted by kmin, is

then scheduled first. The rest of the algorithm functions on a similar basis to the P-PSO

and RBPSO algorithms.

It should be noted that the inclusion of the more complex customer requirements

defined and discussed in Section 4.1.4 required that certain changes had to be made to

the existing algorithms. If tk, pk, and sk, respectively denote the starting time, processing

time and set-up time of operation k, the actual finishing time is currently calculated using

zk = tk + pk + sk (4.4)

The new requirements resulted in the total processing time calculation changing to

zk = tk + pkdk
+ sk (4.5)

where

sk =

Sκkk if Sκkk > 0

hkdk
otherwise

(4.6)

as can be seen in Algorithm 4.1. Here pkdk
denotes the resource-dependent process-

ing time of operation k on resource dk. The set-up time, sk, can be either sequence-

dependent, Sκkk, where Sκkk denotes the set-up time of operation k if processed imme-

diately after operation κk on the same primary resource, or resource-dependent, hkdk
,

where hkdk
denotes the set-up time of operation k when processed on resource dk. These

changes resulted in the existing algorithms being suitable almost “as-is” for benchmark-

ing purposes and no additional structural changes to the existing Optimatix algorithms

were required.

Chapter 4. Solving the single objective Optimatix problem 74

Initialize ΦΦΦ = ∅∅∅

Initialize ΘΘΘ to contain all operations without any predecessors

while ΘΘΘ 6= ∅∅∅ do

Select III from ΘΘΘ as the set of operations with the highest priority

for All operations k ∈ III do

for All resources l ∈ QQQk on which operation k may be scheduled do

Determine ΨΨΨk (the set of possible starting times of operation k)

while k ∈ ΘΘΘ do

Set tkl = min{ΨΨΨk}

Calculate the finishing time associated with tk: zk = Finish(tk)

(Refer to Algorithm 4.2)

Determine feasibility of schedule with respect to auxiliary resources

(Refer to Algorithm 4.3)

if tkl results in a feasible schedule then

Delete k from ΘΘΘ

else

Delete tkl from ΨΨΨk

end
end

Insert k into ΘΘΘ
end

tklmin
← minl∈QQQk

{tkl}
end

tkminlmin
← mink∈III{tklmin

}

Delete kmin from ΘΘΘ

Insert kmin into ΦΦΦ

for All successors m of kmin do

if All other predecessors of operation m ∈ ΦΦΦ then

Insert m into ΘΘΘ

end
end

end

Algorithm 4.6: The rule-based benchmarking algorithms

Chapter 4. Solving the single objective Optimatix problem 75

4.3.2 Norman and Bean’s random keys genetic algorithm

When selecting a benchmark algorithm from literature it is important to select an algo-

rithm that addresses both the sequencing of operations and their allocation to resources.

By considering the classical FJSP literature, a number of potential benchmark algo-

rithms can be identified. These include the work of Kacem et al. [62, 63], Gao et al. [45],

and Xia and Wu [145]. However, these algorithms specialize in solving classical FJSPs

and it is the authors’ opinion that they cannot be extended easily to address more con-

strained problems without significantly changing the structure of the algorithms, even

when sequence-dependent set-up times and resource-dependent processing times are ex-

cluded from the problem. Furthermore, most of these algorithms are hybridizations of

two or more solution strategies [63] or employ complex local search mechanisms spe-

cific to the problem being solved [45]. These complexities greatly increase the time to

solution, while a fast solution time is considered to be an important requirement in

the South African manufacturing industry. For these reasons, the random keys genetic

algorithm (RKGA) [99] was identified as a more suitable alternative for benchmarking

purposes. This algorithm was developed for a more highly constrained problem and does

not make use of a local search mechanism.

As the name implies, the RKGA applies a genetic algorithm to the random keys

representation used for the RKPSO in the previous section. Elitism is incorporated by

automatically including the ι best individuals from the parent population into the new

population. The exploration ability of the algorithm is improved through the use of

immigration, i.e. ξ solutions of the new population are randomly re-initialized. After

the first ι+ ξ individuals of the new population have been obtained by means of elitism

and immigration, each of the remaining individuals are obtained through the application

of crossover and selection operators. For each individual i, where i ∈ {1, . . . , (ns− ι−ξ)}
random selection is used to select two individuals from the current population, namely

xxxi1(t) and xxxi2(t), where xij(t) denotes the jth dimension of individual i of generation t.

Then, Bernoulli crossover [99] is applied such that for all dimensions, nx, if r ∼ U(0, 1) ≤

Chapter 4. Solving the single objective Optimatix problem 76

pc,

ci1j(t) =xi1j(t) (4.7)

ci2j(t) =xi2j(t). (4.8)

Otherwise ci1j(t) = xi2j(t) and ci2j(t) = xi1j(t), where pc is the crossover probability. The

better of the two candidate solutions, ci1j(t) and ci2j(t), is subsequently incorporated into

the new population.

4.3.3 Comparative analysis of alternative benchmark algorithms

For each of the three data sets, the RKGA and P-DE results were evaluated over 30

independent simulation runs. However, due to the deterministic nature of the EDD rule,

only one simulation run was needed for each data set. Finally, in order to comply with

current Optimatix scheduling practice, the basic scheduling rule was used to construct

100 schedules of which the best was selected as the result of the simulation. To ensure

consistency between all stochastic algorithms this process was repeated 30 times. The

parameters of the RKGA were also optimized by means of the procedure described in

Section 4.2. The resulting parameters are indicated in Table 4.7.

Table 4.7: RKGA algorithm parameters as selected for benchmarking purposes

Problem ιιι ξξξ pcpcpc

56-op 14 1 0.5 −→ 0.1

100-op 10 5 0.5 −→ 0.3

256-op 10 1 0.5 −→ 0.5

The results in Tables 4.8 and 4.9 and Figure 4.8 show that the priority-based algo-

rithms performed significantly better than all the rule-based heuristics on every problem

instance indicating that a definite performance improvement can be attributed to the

priority-based metaheuristics over the existing algorithms. The P-PSO outperformed all

other algorithms for the first two problems. For the last problem the RKGA obtained a

lower fitness value, which was improved upon by the P-DE.

Chapter 4. Solving the single objective Optimatix problem 77

0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

56
10

0
25

6

P
ro

b
le

m
 s

iz
e

 (
op

e
ra

tio
n

s)

Makespan

B
as

ic
 r

ul
e

ED
D

R
K

G
A

P-
PS

O

P-
D

E

0

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

70
00

0

56
10

0
25

6

P
ro

bl
e

m
 s

iz
e

 (
o

pe
ra

tio
ns

)

Earliness/tardiness

B
as

ic
 r

ul
e

ED
D

R
K

G
A

P-
PS

O

P-
D

E

0

50
00

10
00

0

15
00

0

20
00

0

25
00

0

30
00

0

35
00

0

56
10

0
25

6

P
ro

b
le

m
 s

iz
e

 (
o

p
e

ra
tio

ns
)

Queue time

B
as

ic
 r

ul
e

ED
D

R
K

G
A

P-
PS

O

P-
D

E

0

20
00

0

40
00

0

60
00

0

80
00

0

10
00

00

12
00

00

56
10

0
25

6

P
ro

bl
e

m
 s

iz
e

 (
o

pe
ra

tio
ns

)
Aggregated objective function

B
as

ic
 r

ul
e

ED
D

R
K

G
A

P-
PS

O

P-
D

E

F
ig

u
re

4.
8:

B
en

ch
m

ar
ki

ng
re

su
lt

s

Chapter 4. Solving the single objective Optimatix problem 78

Table 4.8: Experimental comparison of alternative solution strategies with respect to

makespan and earliness/tardiness

Pro- Algo- f1f1f1 f2f2f2

blem rithm µµµ σσσ CICICI0.05 µµµ σσσ CICICI0.05

56-op Basic rule 2124.62 43.48 ± 16.23 3362.32 142.64 ± 53.26

EDD 2071.1 — — 4242.8 — —

RKGA 1652.57 59.80 ± 22.33 3578.04 331.49 ± 123.77

P-PSO 1581.92 17.55 ± 6.55 3494.64 213.23 ± 79.61

P-DE 1594.19 24.71 ± 9.23 3861.50 231.19 ± 86.32

100-op Basic rule 2266.31 51.20 ± 19.12 6969.04 188.56 ± 70.40

EDD 2381.34 — — 8168.33 — —

RKGA 2317.02 160.65 ± 59.98 9770.28 372.64 ± 139.13

P-PSO 1867.66 13.53 ± 5.05 6957.78 236.82 ± 88.42

P-DE 2276.37 66.72 ± 24.91 9754.20 227.96 ± 85.11

256-op Basic rule 6446.67 304.80 ± 113.80 49446 1329.76 ± 496.48

EDD 6360 — — 62380 — —

RKGA 5514.86 189.35 ± 70.70 31444.15 1240.96 ± 463.33

P-PSO 5010.93 45.57 ± 17.01 38169.64 3065.49 ± 1144.54

P-DE 5343.74 143.92 ± 53.73 30931.67 1018.09 ± 380.12

Due to the poor performance of the P-PSO on the 256-operation problem, a closer

investigation into the scalability of the RKGA, P-DE and P-PSO was performed. Algo-

rithm performance was investigated on two additional problems, namely a 146 operation

and a 200 operation problem. The results obtained in Figure 4.9 indicate that the

VNGCP-PSO is the best performing algorithm for problems containing approximately

125 operations or less. Since the average number of operations which need to be sched-

uled by Optimatix is 100, the P-PSO will be the most suitable alternative most of the

time. For larger problems the P-DE is the best performing algorithm of the three algo-

Chapter 4. Solving the single objective Optimatix problem 79

Table 4.9: Experimental comparison of alternative solution strategies with respect to queue

time and the aggregated objective function

Pro- Algo- f3f3f3 f4f4f4

blem rithm µµµ σσσ CICICI0.05 µµµ σσσ CICICI0.05

56-op Basic rule 328.47 136.77 ± 51.07 5321.22 80.04 ± 29.88

EDD 753.8 – — 6574.8 – —

RKGA 300.84 190.52 ± 71.13 5036.98 495.28 ± 184.92

P-PSO 74.46 127.93 ± 47.76 4656.17 245.96 ± 91.83

P-DE 497.38 122.14 ± 45.60 5459.02 328.29 ± 122.57

100-op Basic rule 323.13 155.44 ± 58.04 9522.51 378.58 ± 141.35

EDD 1330.92 – — 11392.47 -- —

RKGA 1379.68 321.07 ± 119.88 12980.46 724.83 ± 270.63

P-PSO 675.02 211.25 ± 78.87 9009.96 406.74 ± 151.86

P-DE 1408.47 214.59 ± 80.12 12952.48 418.30 ± 156.18

256-op Basic rule 24589.83 1304.41 ± 487.02 80062.98 1870.93 ± 698.54

EDD 33090 – — 101430 – —

RKGA 5475.59 873.54 ± 326.15 41977.04 1889.94 ± 705.64

P-PSO 12893.70 1788.01 ± 667.58 55630.34 4088.77 ± 1526.60

P-DE 5143.53 811.32 ± 302.92 40960.35 1392.98 ± 520.09

rithms tested. It is interesting to note that the poor scalability of the P-PSO algorithm

is mostly due to poor performance with respect to queue time and earliness/tardiness.

With respect to the makespan objective function, the P-PSO is always superior.

Finally, although the performance of the RKGA is very similar, though worse, than

the P-DE algorithm over all problem sizes, the fact that it does not ever outperform

the priority-based algorithms highlight the contribution made by the development of the

priority-based representation for the multi-objective flexible job shop scheduling problem

with sequence-dependent set-up times, auxiliary resources, and machine down time.

Chapter 4. Solving the single objective Optimatix problem 80

0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

56
10

0
14

6
20

0
25

6

P
ro

bl
em

 s
iz

e
(o

pe
ra

tio
ns

)

Makespan

R
G

K
A

P
-D

E

P
-P

S
O

0

50
00

10
00

0

15
00

0

20
00

0

25
00

0

30
00

0

35
00

0

40
00

0

45
00

0

56
10

0
14

6
20

0
25

6

P
ro

bl
em

 s
iz

e
(o

pe
ra

tio
ns

)

Earliness/tardiness

R
K

G
A

P
-D

E

P
-P

S
O

0

20
0

0

40
0

0

60
0

0

80
0

0

10
00

0

12
00

0

14
00

0

56
10

0
14

6
20

0
25

6

P
ro

bl
e

m
 s

iz
e

(o
pe

ra
tio

ns
)

Queue time

R
K

G
A

P
-D

E

P
-P

S
O

0

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

56
10

0
14

6
20

0
25

6

P
ro

bl
em

 s
iz

e
(o

pe
ra

tio
ns

)
Aggregated function value

R
K

G
A

P
-D

E

P
-P

S
O

F
ig

u
re

4.
9:

In
ve

st
ig

at
in

g
sc

al
ab

ili
ty

Chapter 4. Solving the single objective Optimatix problem 81

4.4 Summary

Three PSO-based heuristics, differing in terms of particle representation and problem

mapping mechanism, were developed in this chapter. The priority-based PSO (P-PSO)

algorithm was found to be the best performing PSO algorithm when both solution quality

and computational complexity were considered. The priority-based algorithm was also

extended to the differential evolution domain and alternative PSO topologies and DE

base vector selection mechanisms were investigated. Further benchmarks against exist-

ing rule-based algorithms and Norman and Bean’s RKGA [99] indicated that the P-PSO

algorithm outperformed all other tested benchmark algorithms when 125 operations or

less are to be scheduled. The P-DE algorithm was the best performing algorithm for

larger problems. These results are encouraging, since a well-designed single objective op-

timization algorithm is a good starting point for improved multi-objective optimization,

which is the focus of the next chapter.

Chapter 5

The multi-objective priority-based

algorithm

The multi-objective aspect of the production environment is an important, yet frequently

overlooked issue in production scheduling literature. This chapter focuses on extending

the “single objective” algorithms developed in the previous chapter to multi-objective

optimization algorithms capable of simultaneously optimizing a number of conflicting

objective functions. The first section introduces the basic concepts of multi-objective

optimization and provides an overview of existing multi-objective multiple machine lit-

erature. Section 5.2 is concerned with the analysis of various multi-objective strategies

for the Optimatix problem. Two vector evaluated approaches are compared to a modi-

fied goal programming approach. Sections 5.3 and 5.4 respectively focus on comparing

different variations of the vector evaluated PSO and DE approaches developed in the

previous section. Finally, the main findings of the chapter is summarized in Section 5.5.

5.1 Introductory concepts and related literature

Multi-objective optimization, in general, has been receiving increasing attention over the

last few years. This section provides a brief introduction into the field of multi-objective

optimization before considering a number of existing multi-objective multiple machine

82

Chapter 5. The multi-objective priority-based algorithm 83

scheduling algorithms.

5.1.1 Multi-objective optimization

A multi-objective optimization (MOO) problem can be formally defined as follows:

minimize fff(xxx)

subject to ςq(xxx) ≤ 0, q = 1, . . . , nς

%q(xxx) = 0, q = nς + 1, . . . , nς + n%

xxx ∈ [xxxmin,xxxmax]nx (5.1)

where fff(xxx) denotes the vector of objective functions to be minimized, ςq and %q are

respectively the inequality and equality constraints and xxx ∈ [xxxmin,xxxmax]nx represent the

boundary constraints. A solution to a MOO problem can thus be defined as a vector xxx

that satisfies the constraints and optimizes the vector function fff(xxx) [160].

A large number of approaches have already been used in literature to optimize mul-

tiple conflicting objectives. Fortunately, T’Kindt and Billaut [136] provide a generic

classification which differentiates between different MOO approaches depending on the

stage of the optimization process at which the decision makers’ preferences are incorpo-

rated (refer to Figure 5.1).

A priori MOO techniques incorporate the decision makers’ preferences at the start

of the optimization process. Examples of preference information include relative impor-

tance or targets for each objective function. This information is then incorporated into

the optimization process. Since most a priori techniques transform the multi-objective

problem into a single-objective problem, only one solution to the scheduling problem

can be obtained at a time. One of the most popular examples of this strategy include

weighted aggregation where all objective functions are combined into a linear combina-

tion of criteria [119].

Interactive MOO methods involve the decision makers throughout the optimization

process. Decision makers who specify weight changes at intermittent stages of the op-

timization process is an example of an interactive approach. This strategy is useful in

steering the algorithm to more desirable regions of the objective space. This disserta-

Chapter 5. The multi-objective priority-based algorithm 84

Module which
takes into account

the criteria

Module which
solves the
scheduling
problem

Module which
takes into account

the criteria

Module which
solves the
scheduling

problem

Module which
takes into account

the criteria

Module which
solves the
scheduling
problem

Parameter values

A pareto optimum

Parameter
values

A pareto
optimum

A pareto optimum

Parameter
values

A pareto
optimum

A SET of
pareto optima

A priori
optimization

Interactive
optimization

A posteriori
optimization

Figure 5.1: T’Kindt and Billaut [136] define three main strategies for addressing multiple

conflicting objectives

tion is more concerned with a priori versus a posteriori optimization, however, a more

detailed study of interactive methods can be found in Vanderpooten [139].

No user preferences are taken into account before or during the optimization process

in a posteriori MOO. The focus is on providing the decision makers with as diverse a

set of solutions as possible to facilitate the selection of the most suitable solution from

the set [136]. The purpose of a posteriori MOO can thus be summarized as finding a

set of trade-off solutions referred to as the Pareto optimal set, PFPFPF , which was defined in

equation (4.3).

5.1.2 Multi-objective multiple machine scheduling

The importance of multi-objective scheduling problems have long since been recognized

in literature and good overall reviews can be found in the works of Loukil and Teghem [84]

and T’Kindt and Billaut [136]. However, due to the extreme complexity of multiple

machine, multi-objective scheduling problems, little attention have been paid to these

combinatorial problems. Nonetheless a number of notable exceptions exist in recent

flexible job shop scheduling literature.

From the algorithms listed in Table 5.1, two important conclusions can be drawn with

Chapter 5. The multi-objective priority-based algorithm 85

Table 5.1: Multiple machine, multi-objective scheduling literature

Algorithm Reference

Multi-objective simulated annealing (MOSA) Loukil et al. [85]

Tabu search (TS) Dauzère–Pérès and Paulli [35]

Localization and evolutionary approach Kacem et al. [63]

Hybrid evolutionary algorithm and fuzzy logic Kacem et al. [62]

Simulated annealing-PSO algorithm Xia and Wu [145]

Multi-stage genetic algorithm (GA) Zhang and Gen [156]

GA-bottleneck shifting hybrid Gao et al. [45]

respect to the use of multi-objective optimization techniques in multiple machine, multi-

objective scheduling problems. Firstly, the use of the weighted aggregation approach is

quite common [45], and secondly, the more sophisticated MOO techniques are difficult to

understand and computationally complex [85]. There seems to be a research opportunity

in developing a multi-objective multiple machine scheduling algorithm which overcomes

the problems associated with weighted aggregation [39] while still being relatively simple

to understand and implement.

5.2 Alternative multi-objective PSO and DE-based

scheduling strategies

Over the years a number of papers have addressed the extension of both particle swarm

optimization (PSO) and differential evolution (DE) to multiple objectives [2, 86, 120,

148]. A comprehensive review of multi-objective PSO algorithms can be found in [120].

Three popular multi-objective DE algorithms, from the past few years, include the

Chapter 5. The multi-objective priority-based algorithm 86

Pareto-based multi-objective DE algorithms of Xue et al. [148], Abbas et al. [2], and

Madavan [86].

Goal programming (GP) [119], which attempts to minimize the deviation between

the objective function values and specific targets set for each function, was used in the

previous chapter to address the multi-objective aspects of the Optimatix problem. This

a priori strategy allowed the problem to be solved by means of single-objective PSO and

DE algorithms. However, in the Optimatix environment it can happen that target values

for each objective function are not available. The exploratory nature of an a posteriori

approach then seems to be more suitable, since valuable information with respect to the

objective space can be obtained from the set of Pareto optimal solutions. However, the

solution quality of an a priori optimization approach will in most cases be superior to

that of an a posteriori approach since a significantly simpler single objective optimization

problem simply needs to be solved repeatedly in the a priori case.

One of the key objectives of this chapter is to investigate the solution quality-

complexity trade-off of a posteriori versus a priori optimization in the Optimatix en-

vironment. Vector evaluated MOO was selected for comparison purposes against the

already developed GP approach, due to the high level of simplicity and subsequent re-

duced computational complexity of vector evaluated algorithms when compared to more

sophisticated a posteriori MOO techniques [109]. The two vector evaluated approaches,

as well as the modified goal programming approach, is described in more detail in Sec-

tions 5.2.1 and 5.2.2. The investigation into the relative performance of these three

algorithms is presented in Section 5.2.3.

5.2.1 The vector evaluated approach

The vector evaluated approach can be classified as a criterion-based multi-objective strat-

egy, where different stages of the optimization process consider different objectives [39].

The actual implementation involves assigning each objective function to one of multiple

populations for optimization. Information with respect to the different populations are

exchanged in an algorithm-dependent fashion resulting in the simultaneous optimization

of the various objective functions. As previously stated, the advantage of this approach

lies in reduced computational complexity, which is a desirable property when solving a

Chapter 5. The multi-objective priority-based algorithm 87

complex combinatorial problem where the fitness function evaluations are in themselves

computationally expensive.

The first vector evaluated algorithm was Schaffer’s vector evaluated GA (VEGA) [125].

A number of years later the concept was transferred to the PSO and DE domains by

Parsopoulos et al. [108, 109]. Their work focused on comparing the vector evaluated

PSO (VEPSO) algorithm to various aggregation-based approaches including bang-bang

and dynamic weighted aggregation. The vector evaluated DE (VEDE) algorithm proved

to compare well with Schaeffer’s VEGA. These studies used two-objective problems from

the well-known MOO benchmark set of Zitzler et al. [160].

The VEDE and VEPSO algorithms differ only with respect to the information ex-

change mechanism used. VEPSO (refer to Algorithm 5.1) makes use of an alternative

velocity update equation where (considering two swarms) the global best position of the

first swarm is used in the velocity equation of the second swarm and vice versa. Thus,

vijs(t+ 1) = wvijs(t) + c1r1j(t)[x̂ijs(t)− xijs(t)] + c2r2j(t)[x
∗
jms

(t)− xijs(t)] (5.2)

where vijs(t), xijs(t) and x̂ijs(t), respectively denote the velocity, position and personal

best position of the jth dimension of the ith particle of swarm s at time t, and x∗
jms

(t)

is the jth dimension of the global best position of swarm ms at time t. Although the

VEPSO was originally developed for optimizing bi-objective optimization problems, this

concept can be easily extended to the Optimatix problem which requires the simultaneous

minimization of three objective functions.

VEDE (refer to Algorithm 5.2) functions on a slightly different basis. The best

individual is migrated between different populations and an additional dominance-based

selection mechanism is used, i.e. an individual can only be replaced by a dominating

offspring.

5.2.2 Modified goal programming

Goal programming [119] is based on the assumption that a user has sufficient knowledge

of the problem domain to specify suitable target values for each of the objective functions

to be optimized. An aggregate objective function consisting of the sum of the deviations

between the actual values obtained and the specified targets is then minimized [119].

Chapter 5. The multi-objective priority-based algorithm 88

Initialize three swarms, XXX1,XXX2 and XXX3

Initialize the external archive as an empty set

t = 1

while t < Imax do

for All swarms s do

Evaluate the fitness function of each swarm w.r.t. its allocated objective:

f(x̂sx̂sx̂s(t)) = mini{fs(xsxsxs(t))}

for All individuals i in swarm XXXs do

if fs(xisxisxis(t)) < fs(x̂isx̂isx̂is(t)) then

Set the personal best position:

x̂isx̂isx̂is(t) = xisxisxis(t)
end

end

if mini{fs(x̂sx̂sx̂s(t))} < fs(x
∗
sx
∗
sx
∗
s(t)) then

Set the global best position of each swarm w.r.t. its allocated objective:

f(x∗
sx
∗
sx
∗
s(t)) = mini{fs(x̂sx̂sx̂s(t))}

end

Update the external archive to include all non-dominated solutions in XXXs

end

for All swarms s do

for The gbest particle τ do

for All dimensions j do

Update the gbest particle of each swarm:

vτjs(t) = −xτjs(t) + x∗
jms

(t) + wvτjs(t) + ρ(1− 2r2j)

xτjs(t) = x∗
js(t) + wvτjs(t) + ρ(1− 2r2j)

end
end

for All particles i such that i 6= τ do

for All dimensions j do

vijs(t) = wvijs(t) + c1r1j(x̂ijs(t)− xijs(t)) + c2r2j(x
∗
jms

(t)− xijs(t))

xijs(t) = xijs(t) + vijs(t)
end

end
end

t = t+ 1
end

Algorithm 5.1: The vector evaluated particle swarm optimization (VEPSO) algorithm

Chapter 5. The multi-objective priority-based algorithm 89

Initialize three populations, XXX1,XXX2 and XXX3

Initialize the external archive as an empty set

t = 1

while t < Imax do

for All populations s do

Evaluate the fitness function of each population w.r.t. its allocated objective:

f(x∗
sx
∗
sx
∗
s(t)) = mini{fs(xsxsxs(t))}

Update the external archive to include all non-dominated solutions in XXXs

end

for All populations s do

Move the best individual of population ms to population s:

x∗
sx
∗
sx
∗
s(t) = x∗

ms
x∗

ms
x∗

ms
(t)

end

for All populations s do

for All individuals i do

Randomly select 3 individuals from population s, xi1sxi1sxi1s(t), xi2sxi2sxi2s(t) and xi3sxi3sxi3s(t),

such that i1 6= i2 6= i3 6= i

Randomly select one of the dimensions ν

for All dimensions j do

if r ∼ U(0, 1) ≤ pc or j = ν then

cijs = xi3js(t) + F (xi1js(t)− xi3js(t))

else

cijs = xijs(t)

end
end

Only replace xisxisxis(t) by a dominating individual:

if cisciscis ≺ xisxisxis(t) then

xisxisxis(t) = cisciscis

end
end

end

t = t+ 1
end

Algorithm 5.2: The vector evaluated differential evolution (VEDE) algorithm

Chapter 5. The multi-objective priority-based algorithm 90

The user, in fact, attempts to direct a single objective optimization algorithm towards

a pre-specified point on the Pareto front. Due to the complexity of MOO problems it

can happen that the user defines targets which denote a position in the objective space

which is dominated by the Pareto front. In this case, it is desirable for the algorithm to

continue optimizing until convergence is obtained on a nearby solution located on the

actual Pareto front. The aggregated fitness function, f4, is thus given as

f4 =

np∑
s=1

|(fs − gs)|+ υfs, (5.3)

where fs denotes the sth fitness function, gs is the target value of the sth fitness function

and υ is a sufficiently small number.

For the sake of completeness the GP algorithm is described in Algorithm 5.3. Ap-

propriate minimum and maximum target values, denoted by gs
ref and f s

ref , are obtained

for each of the s objectives by minimizing each objective function individually. A user

defined required number of target points, , is used to divide the objective space into

a uniform grid. Here 4s denotes the size of the discretization intervals of dimension s

of the objective space. Finally, the set PFPFPF is populated by optimizing the aggregated

objective function f4 at each of the target points on the grid.

As previously mentioned, goal programming has the advantage that the algorithm

focuses explicitly on a single objective throughout the optimization process. However,

this algorithm characteristic results in only one solution being obtained at a time as

output to the scheduling algorithm. Obtaining the same number of solutions as can

be obtained during a single iteration of a vector evaluated algorithm is indeed a time-

consuming process. Furthermore, the performance of a GP-based MOO algorithm is

highly dependent on the type of single objective optimization algorithm used.

5.2.3 Comparative analysis of alternative MOO strategies

Measuring the performance of the vector evaluated algorithms to the modified goal pro-

gramming approach is significantly more complex than simply considering accuracy or

speed of convergence, which are commonly considered to be suitable measures of per-

formance for single objective algorithms. Instead, three aspects need to be considered,

Chapter 5. The multi-objective priority-based algorithm 91

Obtain the minimum and maximum target values of each objective:

for All criteria s do

gs
ref = min∀s′{fs(xxx

∗
s′)}

f s
ref = max∀s′{fs(xxx

∗
s′)}

4s =
fs

ref −gs
ref

end

Divide the objective space into a uniform grid:

g1 = g1
ref −41

for All points i1 do

g1 = g1 +41

g2 = g2
ref −42

for All points i2 do

g2 = g2 +42

g3 = g3
ref −43

for All points i3 do

g3 = g3 +43

Optimize the aggregated objective function f4 at each target point:

PFPFPF = PFPFPF ∪ {f4(xxx∗)}
end

end
end

Algorithm 5.3: The modified GP approach

namely the minimization of the distance between the solutions obtained and the actual

Pareto front, the maximization of the diversity of the Pareto front, and the ability to

maintain already found non-dominated solutions [39]. Comprehensive reviews of MOO

performance measures can be found in Zitzler et al. [161] and Engelbrecht [39].

Three performance measures were used in this chapter to compare the different MOO

strategies. The S metric [67, 161] measures the size of the region dominated by the Pareto

front based on a reference vector consisting of the maximum value in each objective. For

Chapter 5. The multi-objective priority-based algorithm 92

replication purposes the reference vectors which were used in this section is listed in

Table 5.2. The S metric provides information with respect to both solution quality and

Pareto front diversity. More specifically, the S metric of the set, PFPFPF , with respect to

fff ref can be described as the Lebesgue integral of the set R(PFPFPF ,fff ref), where

R(PFPFPF ,fff ref) = ∪∀fff∈P FP FP F R(fff,fff ref) (5.4)

and

R(fff,fff ref) ={f ′f ′f ′|f ′f ′f ′ ≺ fff ref and fff ≺ f ′f ′f ′, f ′f ′f ′ ∈ Rnp} (5.5)

Table 5.2: The reference vectors used for each of the problems

Problem Vector

56-operation problem {1000, 4000, 1000}

100-operation problem {2000, 5000, 2000}

256-operation problem {2500, 12000, 5000}

The other two measures include the size of the approximated Pareto front, N(PFPFPF),

as well as the extent of the Pareto front, χ(PFPFPF) [39], where

χ(PFPFPF) =

√√√√N(P FP FP F)∑
s=1

max{|fs(xxx)− f ′
s(xxx)| : fff,f ′f ′f ′ ∈ PFPFPF}. (5.6)

A DE/rand/bin algorithm was used as basis for the modified GP algorithm. Initial

experimentation with different algorithm parameter settings resulted in the probability

of reproduction, pr, being decreased linearly from 0.75 to 0.25 over 95% of the total

number of iterations, Imax. Similarly, the scaling factor, F , was decreased from 0.75 to

0.125. A population size, ns, of 27 individuals and a maximum number of iterations,

Imax, of 200 was used.

For the VEDE and VEPSO algorithms, the “best” parameter settings and PSO

topology or DE base vector selection strategy was retained from Section 4.2 for each

problem-algorithm pair. However, the vector evaluated algorithms each consists of np

Chapter 5. The multi-objective priority-based algorithm 93

swarms or populations each consisting of ns candidate solutions. For both the VEPSO

and VEDE algorithms an external archive of unlimited size [61] was used to store all

non-dominated solutions. The actual results of this investigation into alternative multi-

objective optimization strategies are recorded in Tables 5.3 through 5.5 and Figure 5.2.

Table 5.3: Investigating alternative multi-objective optimization strategies for the 56-

operation problem

Strategy VEPSO VEDE GP

S(PFPFPF) µ 9.63× 108 9.47× 108 1.04× 109

σ 2.72× 107 3.12× 107 1.00× 107

CICICI0.05 ±1.02× 107 ±1.16× 107 ±3.73× 106

N(PFPFPF) µ 45.53 8.97 17.47

σ 12.46 3.12 2.08

CICICI0.05 ± 4.65 ± 1.16 ± 0.78

χ(PFPFPF) µ 28.33 19.51 47.83

σ 2.36 2.45 2.47

CICICI0.05 ± 0.88 ±0.91 ±0.92

For two out of the three problems, the GP approach outperformed the vector eval-

uated algorithms with respect to the S metric. The GP approach also outperformed

the two vector evaluated algorithms with reference to the extent of the obtained Pareto

fronts. This was the case for all three data sets. These findings provide a good indication

of GP’s ability to generate diverse Pareto fronts consisting of high quality solutions.

However, the modified GP approach is extremely computationally expensive due to

the fact that a single objective optimization algorithm is, in fact, executed repeatedly.

In addition, a concerning aspect is evident from the results: For each simulation the GP

algorithm was executed 27 times, where each “execution” attempted to zoom in on a

different uniformly distributed point on the Pareto front. It can thus be expected that 27

non-dominated solutions, N(PFPFPF), would be obtained for each simulation. However, when

Chapter 5. The multi-objective priority-based algorithm 94

0.00E+00

5.00E+09

1.00E+10

1.50E+10

2.00E+10

2.50E+10

3.00E+10

3.50E+10

56 op 100 op 256 op

Problem size (operations)

S
 m

e
tr

ic GP

VEPSO

VEDE

0

50

100

150

200

56 op 100 op 256 op

Problem size (operations)

N
um

be
r

of
 s

ol
ut

io
ns

 (
N

)

GP

VEPSO

VEDE

0

20
40

60

80

100
120

140

160

56 op 100 op 256 op

Problem size (operations)

E
xt

en
t

(X
) GP

VEPSO

VEDE

Figure 5.2: Results of the investigation into alternative MOO strategies

Chapter 5. The multi-objective priority-based algorithm 95

Table 5.4: Investigating alternative multi-objective optimization strategies for the 100-

operation problem

Strategy VEPSO VEDE GP

S(PFPFPF) µ 8.33× 109 7.82× 109 8.44× 109

σ 7.36× 107 1.63× 108 8.01× 107

CICICI0.05 ±2.75× 107 ±6.09× 107 ±2.99× 107

N(PFPFPF) µ 132.27 31.13 24.70

σ 15.62 4.42 1.32

CICICI0.05 ± 5.83 ± 1.65 ±0.49

χ(PFPFPF) µ 44.70 35.73 58.52

σ 1.42 2.36 1.85

CICICI0.05 ± 0.53 ± 0.88 ± 0.69

Table 5.5: Investigating alternative multi-objective optimization strategies for the 256-

operation problem

Strategy VEPSO VEDE GP

S(PFPFPF) µ 3.28× 1010 2.36× 1010 3.17× 1010

σ 7.82× 109 1.02× 109 5.90× 108

CICICI0.05 ±2.92× 109 ±3.81× 108 ±2.20× 108

N(PFPFPF) µ 181.73 20.07 23.93

σ 36.54 5.31 1.93

CICICI0.05 ± 13.64 ± 1.98 ± 0.72

χ(PFPFPF) µ 102.35 65.07 137.01

σ 4.57 5.64 3.70

CICICI0.05 ± 1.71 ± 2.11 ± 1.38

Chapter 5. The multi-objective priority-based algorithm 96

all dominated solutions were removed from the resulting Pareto fronts, only 17.47, 24.70

and 23.93 non-dominated solutions were obtained on average over the 30 simulation runs

for the three problems tested. These figures indicate that on average, 9.53, 2.3 and 3.07

solutions which were expected to be non-dominated solutions, were actually dominated

by one or more other solutions in the Pareto front. This realization holds dramatic

implications for algorithm efficiency indicating that up to 35% of computational time is

“wasted” by the modified GP approach during optimization. This is probably due to

the the inability of GP to use information regarding previous non-dominated solutions

during the search for new non-dominated solutions.

For the purposes of this dissertation, a more computationally efficient approach is

desired. The VEPSO algorithm outperformed both of the VEDE and modified goal

programming algorithms in terms of the number of solutions obtained for each of the

three test problems. The VEPSO also performed well with respect to the S metric and

the extent of the obtained Pareto fronts. The VEPSO algorithm even outperformed GP

in terms of the S metric on the 256 operation problem, indicating that the algorithm

generally scales better than the VEDE and modified GP approaches. A closer inspection

of the actual scheduling solutions further supports the fact that VEPSO is an acceptable

alternative to the computationally complex modified goal programming approach.

Surprisingly, the VEDE algorithm performed relatively poor on the three data sets.

The Pareto fronts which were obtained consist of a small number of low quality solutions.

These results are interesting, since the single objective version of the DE algorithm

performed well in the experiments described in the previous chapter.

5.3 A further investigation of the VEPSO algorithm

Since the same algorithm can perform drastically different on different instances of the

same problem, it is desirable to reduce the effort associated with customizing an al-

gorithm for a specific data set. The use of alternative information exchange strate-

gies is thought to have an important impact on VEPSO and VEDE algorithm perfor-

mance [109]. The next two sections are aimed at investigating exactly how profound

this impact is in the Optimatix environment. To achieve this objective, four additional

Chapter 5. The multi-objective priority-based algorithm 97

VEPSO algorithms were developed. The rest of this section provides a brief descrip-

tion of each of the algorithms before an empirical analysis of algorithm performance is

conducted.

5.3.1 Variations on the basic VEPSO algorithm

The four VEPSO-based algorithms can be described effectively with reference to Par-

sopoulos et al.’s VEPSO algorithm [109], which is denoted by VEPSO(1) in this section.

VEPSO(1) makes use of a ring structure for information exchange purposes. A spe-

cific swarm, XXXs, always uses information regarding the best solution from one specific

neighbouring swarm, XXX(s+1 mod s), to update its particle velocities. Since each swarm is

associated with the optimization of one specific criterion, this results in each swarm only

considering two criteria at a time. Fortunately, the connectedness of the ring structure

ensures that information with respect to the other criteria is eventually propagated to all

swarms. However, the fact that information exchange always occurs between the same

pairs of swarms could have a definite negative effect on the pace of this propagation.

VEPSO(2): The VEPSO(2) algorithm was developed to investigate algorithm per-

formance when the speed of the information exchange between different swarms is in-

creased. In this algorithm, each swarm randomly selects the second swarm, which may

be itself, from which gbest information is used to update the particle velocities. Equa-

tion (5.2) is thus updated such that ms ∼ U(1, ..., np) where np is the total number of

swarms. Even though only two criteria are still optimized at a time, the criteria change

during each iteration, leading to faster information propagation. There is a now a nonzero

probability that each swarm will be directly influenced by all objective functions.

A graphical comparison of VEPSO(1) and VEPSO(2) is provided in Figure 5.3. Here

the solid lines represent the possible sources from which gbest information can be obtained

by swarmXXXs in a single iteration. The dotted lines indicate possible paths of information

flow between the other swarms.

VEPSO(3): One of the disadvantages of VEPSO(1) is that the gbest particle of a

swarm is not incorporated into the velocity update equations of the particles of the same

swarm. This issue results in information regarding good solutions with respect to the

current “swarm objective” being lost in the optimization process. VEPSO(3) attempts

Chapter 5. The multi-objective priority-based algorithm 98

X

X

X

VEPSO(1) VEPSO(2)

s + 1

s s

Information flow associated
with swarm X
Other information flows

s

Figure 5.3: A graphical comparison of the VEPSO(1) and VEPSO(2) algorithms

to improve the exploitation ability of the VEPSO(1) algorithm by defining an additional

term in the velocity update equation:

vijs(t+ 1) = wvijs(t) + c1r1j(t)[x̂ijs(t)− xijs(t)] + c2r2j(t)[x
∗
jms

(t)− xijs(t)]

+ c2r2j(t)[x
∗
js(t)− xijs(t)] (5.7)

VEPSO(4): VEPSO(4) uses alternating velocity update equations. During each

even numbered iteration the standard gbest PSO velocity update is used to exploit

promising areas of the search space with reference to the assigned objective function.

Each odd numbered iteration makes use of the VEPSO(1) velocity update.

The aim of a swarm in a VEPSO-based algorithm is to obtain good solutions with

respect to its assigned objective function while simultaneously optimizing the objec-

tive function of a neighbouring swarm. VEPSO(4) uses principles of criterion-based

MOO, where different objectives are optimized during different phases of the optimiza-

tion process, to simultaneously achieve these conflicting aims. Since VEPSO(1) does not

make use of a swarm’s “own” gbest information, the exploitation ability of the algorithm

with respect to its assigned objective is adversely affected. VEPSO(4) addresses this

Chapter 5. The multi-objective priority-based algorithm 99

issue by alternating between the optimization of only the assigned objective and simul-

taneously optimizing the assigned objective along with a neighbouring objective function.

The disadvantages associated with VEPSO(1) is, however, still applicable since the ring

structure is used in this implementation of VEPSO(4). This results in only two criteria

being directly optimized at a time.

VEPSO(5): Parsopolous et al.’s VEDE algorithm [108] inspired the development

of VEPSO(5). The algorithm can be considered as a VEPSO(1) algorithm with the

addition of a dominance-based selection mechanism. To facilitate the inclusion of a

selection mechanism in a PSO-based algorithm, the conditions under which the pbest of

a particle is updated can be redefined. In this initial investigation, the pbest of each

particle was only updated if a dominating solution existed.

5.3.2 Comparative analysis of alternative VEPSO algorithms

The optimized parameters and PSO topologies as determined for each algorithm-data

set pair in Section 4.2, was again used for the purposes of comparing the variations on

the VEPSO(1) algorithm. The results of this investigation are recorded in Tables 5.6

through 5.8 and Figure 5.4.

No VEPSO-based algorithm could be identified as superior with respect to all criteria

over all three problem sizes. The VEPSO(2) algorithm significantly outperformed the

other four VEPSO variations with respect to the S metric and the number of solutions

obtained when the 56 operation problem was considered. No statistically significant

difference in performance could be identified between any of the algorithms tested on

the 100 operation problem. VEPSO(3) was found to be the best performing algorithm

for the largest sized problem when the S metric and extent of the obtained Pareto fronts

were considered. VEPSO(3) also performed well with respect to the number of non-

dominated solutions obtained since no difference in performance could be identified at

an alpha of 0.05 between the N(PFPFPF) values obtained by VEPSO(1) and VEPSO(3).

It is important to note that the different VEPSO variations differ largely with re-

spect to the emphasis placed on different objective functions during the optimization

process and the tempo of information propagation between the different swarms. It is

quite possible that different VEPSO-based algorithms is more suited to solving different

Chapter 5. The multi-objective priority-based algorithm 100

0.00E+00

1.00E+10

2.00E+10

3.00E+10

4.00E+10

5.00E+10

56 op 100 op 256 op

Problem size (operations)

S
 m

e
tr

ic

VEPSO(1)

VEPSO(2)

VEPSO(3)

VEPSO(4)

VEPSO(5)

0.00

50.00

100.00

150.00

200.00

56 op 100 op 256 op

Problem size (operations)

N
um

be
r

of
 s

ol
ut

io
ns

 (
N

)

VEPSO(1)

VEPSO(2)

VEPSO(3)

VEPSO(4)

VEPSO(5)

0.00

20.00

40.00

60.00

80.00

100.00

120.00

56 op 100 op 256 op

Problem size (operations)

E
xt

en
t (

X
)

VEPSO(1)

VEPSO(2)

VEPSO(3)

VEPSO(4)

VEPSO(5)

Figure 5.4: Results of the investigation into alternative VEPSO-based strategies

Chapter 5. The multi-objective priority-based algorithm 101

Table 5.6: Investigating alternative VEPSO-based strategies for the 56-operation problem

Strategy VEPSO(1) VEPSO(2) VEPSO(3) VEPSO(4) VEPSO(5)

S(PFPFPF) µ 9.63× 108 1.01× 109 9.05× 108 9.59× 108 9.17× 108

σ 2.72× 107 2.34× 107 2.53× 107 3.06× 107 2.78× 107

CICICI0.05 ±1.02× 107 ±8.74× 106 ±9.45× 106 ±1.14× 107 ±1.04× 107

N(PFPFPF) µ 45.53 60.17 41.20 47.20 35.63

σ 12.46 16.29 11.18 11.71 9.98

CICICI0.05 ± 4.65 ± 6.08 ± 4.17 ± 4.37 ± 3.73

χ(PFPFPF) µ 28.33 31.89 30.70 31.60 28.58

σ 2.36 2.40 1.98 2.61 2.46

CICICI0.05 ± 0.88 ± 0.90 ± 0.74 ± 0.97 ± 0.92

Table 5.7: Investigating alternative VEPSO-based strategies for the 100-operation problem

Strategy VEPSO(1) VEPSO(2) VEPSO(3) VEPSO(4) VEPSO(5)

S(PFPFPF) µ 8.33× 109 8.31× 109 8.15× 109 8.30× 109 8.10× 109

σ 7.36× 107 9.99× 107 5.38× 107 7.14× 107 8.66× 107

CICICI0.05 ±2.75× 107 ±3.73× 107 ±2.01× 107 ±2.67× 107 ±3.23× 107

N(PFPFPF) µ 132.27 125.93 99.77 122.97 104.53

σ 15.62 22.37 12.71 20.74 13.61

CICICI0.05 ± 5.83 ± 8.35 ± 4.75 ± 7.74 ± 5.08

χ(PFPFPF) µ 44.70 44.64 44.18 45.28 43.54

σ 1.42 1.50 1.16 1.37 1.25

CICICI0.05 ±0.53 ±0.56 ±0.43 ± 0.51 ± 0.47

classes of problems, depending on the size and complexity of the problems considered.

Interesting future research could focus on combining the promising characteristics of

VEPSO(1), VEPSO(2), VEPSO(3), and VEPSO(4) into an improved vector evaluated

Chapter 5. The multi-objective priority-based algorithm 102

Table 5.8: Investigating alternative VEPSO-based strategies for the 256-operation problem

Strategy VEPSO(1) VEPSO(2) VEPSO(3) VEPSO(4) VEPSO(5)

S(PFPFPF) µ 3.28× 1010 2.93× 1010 4.21× 1010 3.02× 1010 2.31× 1010

σ 7.82× 109 6.39× 109 1.05× 1010 6.08× 109 3.06× 109

CICICI0.05 ±2.92× 109 ±2.38× 109 ±3.92× 109 ±2.27× 1010 ±1.14× 109

N(PFPFPF) µ 181.73 130.93 166.67 131.97 76.20

σ 36.54 23.12 37.00 39.07 24.11

CICICI0.05 ± 13.64 ± 8.63 ±13.81 ±14.59 ±9.00

χ(PFPFPF) µ 102.35 97.51 108.96 95.07 87.27

σ 4.57 5.79 4.39 6.10 5.48

CICICI0.05 ± 1.71 ± 2.16 ± 1.64 ± 2.28 ± 2.05

PSO algorithm.

The results further indicated that the VEPSO(5) algorithm was unsuitable for solving

the Optimatix problem, since this algorithm performed significantly worse than the other

four VEPSO algorithms over all three test problems. This poor performance is most

probably due to the dominance-based selection mechanism used to update the pbest

values of the particles. Only updating pbest with dominating solutions could result in

infrequent updates and good solutions with respect to individual objective functions not

being used during the optimization process.

When scalability is considered, all algorithms generally scale well with respect to

the extent of the Pareto fronts obtained. More work is, however, required to improve

the scalability with respect to the S metric and number of non-dominated solutions

obtained.

5.4 A further investigation of the VEDE algorithm

Similar to the analysis conducted in the previous section with respect to the VEPSO

algorithm, the effect of alternative information exchange strategies on the performance

Chapter 5. The multi-objective priority-based algorithm 103

of the VEDE algorithm should also be investigated. This section introduces two varia-

tions on Parsopoulos et al.’s VEDE algorithm [108] before presenting the results of the

empirical comparison.

5.4.1 Variations on the basic VEDE algorithm

In this section, the basic VEDE algorithm is denoted by VEDE(1) and is used for

reference purposes throughout the rest of this section.

VEDE(2): Since the best solution of each population is migrated to a neighbouring

population in the VEDE(1) algorithm, information with respect to good solutions is

physically removed from the current population. This could result in important infor-

mation being lost. The VEDE(2) algorithm addresses this issue by retaining the best

solutions in their respective swarms. Alternative reproduction operators are defined in-

stead and DE/best/bin and DE/rand-to-best/bin (DE/R2B/bin) may be redefined as

DE/bestms/bin and DE/R2Bms/bin , where bestms refers to the best individual from

population ms.

VEDE(3): This algorithm employs the same strategy as the VEPSO(2) algorithm

to speed up the propagation of information throughout all populations. The “no-move

strategy” of VEDE(2) is retained and each population randomly selects another popu-

lation to use as basis for differential mutation. In other words, ms, is sampled from a

random uniform distribution, U(1, . . . , np), where np denotes the total number of popu-

lations.

5.4.2 Comparative analysis of alternative VEDE strategies

For comparison purposes the same experimental set-up as defined in Section 4.2, in

terms of parameters and base vector selection strategies, was used. The results of the

subsequent empirical evaluation is recorded in Tables 5.9 through 5.11 and Figure 5.5.

Similar to the results obtained by the investigation into alternative VEPSO algo-

rithms, the results of this section indicate that no statistically significant difference in

performance could be identified between any of the VEDE variations on any of the test

problems. These findings further support the conclusion of Section 4.2 that the priority-

Chapter 5. The multi-objective priority-based algorithm 104

0.00E+00

5.00E+09

1.00E+10

1.50E+10

2.00E+10

2.50E+10

56 op 100 op 256 op

Problem size (operations)

S
 m

e
tr

ic VEDE(1)

VEDE(2)

VEDE(3)

0

5

10

15

20

25

30

35

56 op 100 op 256 op

Problem size (operations)

N
um

be
r

of
 s

ol
ut

io
ns

 (N
)

VEDE(1)

VEDE(2)

VEDE(3)

0
10
20
30
40
50
60
70
80

56 op 100 op 256 op

Problem size (operations)

E
xt

en
t (

X
) VEDE(1)

VEDE(2)

VEDE(3)

Figure 5.5: Results of the investigation into alternative VEDE-based strategies

Chapter 5. The multi-objective priority-based algorithm 105

Table 5.9: Investigating alternative VEDE-based strategies for the 56-operation problem

Strategy VEDE(1) VEDE(2) VEDE(3)

S(PFPFPF) µ 9.47× 108 9.31× 108 9.60× 108

σ 3.12× 107 3.87× 107 2.44× 107

CICICI0.05 ±1.16× 107 ±1.44× 107 ±9.11× 106

N(PFPFPF) µ 8.97 11.10 11.70

σ 3.12 2.95 3.99

CICICI0.05 ± 1.16 ± 1.10 ± 1.49

χ(PFPFPF) µ 19.51 20.54 19.91

σ 2.45 2.86 2.70

CICICI0.05 ± 0.91 ± 1.07 ± 1.01

Table 5.10: Investigating alternative VEDE-based strategies for the 100-operation problem

Strategy VEDE(1) VEDE(2) VEDE(3)

S(PFPFPF) µ 7.82× 109 7.86× 109 7.82× 109

σ 1.63× 108 1.06× 108 1.22× 108

CICICI0.05 ±6.09× 107 ±3.96× 107 ±4.56× 107

N(PFPFPF) µ 31.13 30.27 30.03

σ 4.42 4.32 4.72

CICICI0.05 ± 1.65 ± 1.61 ± 1.76

χ(PFPFPF) µ 35.73 35.49 35.16

σ 2.36 1.85 2.06

CICICI0.05 ± 0.88 ± 0.69 ± 0.77

based DE algorithm with optimized control parameters is relatively robust. This implies

that no extensive customization is required to optimize the optimization exchange strat-

egy of VEDE-based algorithms.

Chapter 5. The multi-objective priority-based algorithm 106

Table 5.11: Investigating alternative VEDE-based strategies for the 256-operation problem

Strategy VEDE(1) VEDE(2) VEDE(3)

S(PFPFPF) µ 2.36× 1010 2.35× 1010 2.34× 1010

σ 1.02× 109 1.05× 109 1.07× 109

CICICI0.05 ±3.81× 108 ±3.92× 108 ±3.99× 108

N(PFPFPF) µ 20.07 18.77 19.97

σ 5.31 4.32 3.88

CICICI0.05 ± 1.98 ± 1.61 ± 1.45

χ(PFPFPF) µ 65.07 67.76 65.13

σ 5.64 6.45 6.83

CICICI0.05 ± 2.11 ± 2.41 ± 2.55

5.5 Summary

The aim of this chapter was to extend the single-objective algorithms developed in Chap-

ter 4 to multi-objective algorithms capable of simultaneously addressing a number of

conflicting objective functions. Two vector evaluated algorithms, namely the VEPSO

and VEDE, were compared to a DE-based modified goal programming approach. From

this empirical evaluation it was shown that the VEPSO algorithm is a suitable alterna-

tive to the computationally complex modified GP approach. A further investigation into

the effect of alternative information exchange strategies in the context of VEPSO and

VEDE was also conducted. This investigation highlighted the robustness of the vector

evaluated approach to multi-objective optimization. The next chapter focuses on further

reducing the effort associated with customization of optimization algorithms for different

production environments and the attainment of a suitable level of algorithm generality.

Chapter 6

Investigating the generality of

priority-based metaheuristic

algorithms

In recent years, much has been said about the problem dependent nature of metaheuristic

algorithms [16]. Algorithm performance often fluctuates dramatically between different

problem types and even different instances of the same problem. For example, consider

the experiments performed in the past two chapters. The priority-based particle swarm

optimization (PSO) algorithm was identified to be the best performing algorithm for

the 56 and 100 operation problems while the priority-based differential evolution (DE)

algorithm significantly outperformed the PSO algorithm on the 256 operation problem.

In fact, throughout the dissertation no single algorithm or algorithm variation could

be identified as being the best performing algorithm with respect to all performance

measures over all tested data sets.

As a direct result of the no free lunch theorem [144], this problem-dependence is

not unexpected. On the other hand, it is commonly thought that certain algorithms

are more suited to specific classes of problems. From a “general use” point of view it

certainly makes sense to reduce the amount of customization required when the same

algorithm is applied to different instances of the same problem. Moreover, the use of a

107

Chapter 6. Investigating the generality of priority-based metaheuristic algorithms 108

single algorithm in different, yet related, problem environments is an interesting emerging

research area.

The purpose of this chapter is to investigate the extent of algorithm customization

required to be able to solve a completely different production scheduling problem by

means of the same vector evaluated algorithms developed in the previous chapter. The

first section introduces the problem environment before Section 6.2 provides a brief

synopsis of related literature. The application of the vector evaluated PSO (VEPSO)

and vector evaluated DE (VEDE) algorithms to the proposed problem are described in

Section 6.3. Finally, in Section 6.4 a self-adaptive DE algorithm is investigated as a

mechanism for reducing the effort associated with algorithm customization.

6.1 The Centurion Ice Cream scheduling problem

Centurion Ice Cream and Sweets CC is a small family-owned business specializing in

the packaging and distribution of ice cream products. The company services more than

400 South African schools and the annual turnover is well in excess of $500 000 per

year. The establishment is thus the ideal size for investigating the performance of the

priority-based vector evaluated algorithms in a different, yet related environment.

The production process at Centurion Ice Cream consists of a number of simple steps

which are indicated in Figure 6.1. Firstly, ice cream in liquid form is mixed and trans-

formed into various ice-cream products ranging from 100ml cups of soft serve ice cream

to ice cream cones. After a 12 hour freezing period the dipping process, where ice cream

cones are dipped by hand, can commence. After dipping, the products are frozen again

before being individually packaged and packed into cardboard boxes, ready for distrib-

ution.

An investigation of the process resulted in the ice cream mixing process being iden-

tified as the bottleneck [54, 52]. Focusing the scheduling effort on this segment of the

process drastically reduces the computational requirements involved. Internal due dates

can be defined such that the final product due dates can be met easily by the downstream

processes where resources are not fully utilized.

The mixing process can occur on any one of four different ice cream machines, each

Chapter 6. Investigating the generality of priority-based metaheuristic algorithms 109

Figure 6.1: The Centurion Ice Cream production process

operated by a different operator with a unique work rate. The differing work rates only

affect the processing times of the various products since the washing of the machines

between processing of two products are not constrained by the work rate of each indi-

vidual employee but rather by machine capacity, which is equal for all four machines.

These set-up times are sequence-dependent since the amount of cleaning required for,

for example, processing vanilla flavoured ice cream immediately after chocolate flavoured

ice cream, is significantly less than the cleaning time required for processing vanilla im-

mediately after choc-toffee. The inclusion of production down time is also an important

requirement for this problem since the facility operates in fixed shifts. From a manager-

ial perspective it is important to minimize the deviation between product deliveries and

customer requirements, while simultaneously minimizing production lead time.

6.2 An overview of related scheduling literature

From the information provided in the previous section, the Centurion Ice Cream problem

can be described as a parallel machine scheduling problem. However, similar to the

Optimatix problem, a number of variations on the parallel machine scheduling problem

needs to be combined in order to address the specific complexities of the Centurion Ice

Cream problem. The two most critical additional complexities include the existence

of sequence-dependent set-up times and production down time. This section provides

a formal definition of the parallel machine scheduling problem, before the inclusion of

	Contents
	List of Figures
	List of Algorithms
	List of Tables
	1 Introduction
	1.1 Objectives
	1.2 Contributions
	1.3 Dissertation Outline

	2 Literature review
	2.1 Classification according to flow pattern and number of machines ()
	2.2 Classification according to job constraints ()
	2.3 Classification according to objective function ()
	2.4 The Optimatix problem
	2.5 Summary

	3 Selecting an appropriate solution strategy
	3.1 An overview of existing solution strategies
	3.1.1 Optimal solution strategies
	3.1.2 Heuristic methods
	3.1.3 Metaheuristics
	3.1.4 Selecting a suitable solution strategy

	3.2 Particle swarm optimization
	3.2.1 The basic algorithm
	3.2.2 The guaranteed convergence PSO algorithm
	3.2.3 Algorithm parameters
	3.2.4 Variations on the basic PSO algorithm

	3.3 Differential evolution
	3.3.1 The basic algorithm
	3.3.2 Algorithm parameters
	3.3.3 Variations on the basic DE algorithm

	3.4 A brief analysis of existing PSO- and DE-based scheduling algorithms
	3.4.1 General observations
	3.4.2 Addressing more complex scheduling problems

	3.5 Summary

	4 Solving the single objective Optimatix problem
	4.1 Alternative particle representations
	4.1.1 The priority-based PSO algorithm
	4.1.2 The random keys PSO algorithm
	4.1.3 The rule-based PSO algorithm
	4.1.4 Comparative analysis of alternative particle representations

	4.2 Investigating alternative PSO topologies and DE base vector selection strategies
	4.2.1 Comparative analysis of alternative PSO and DE strategies

	4.3 Benchmarking the priority-based algorithm against alternative solution strategies
	4.3.1 The existing Optimatix algorithms
	4.3.2 Norman and Bean's random keys genetic algorithm
	4.3.3 Comparative analysis of alternative benchmark algorithms

	4.4 Summary

	5 The multi-objective priority-based algorithm
	5.1 Introductory concepts and related literature
	5.1.1 Multi-objective optimization
	5.1.2 Multi-objective multiple machine scheduling

	5.2 Alternative multi-objective PSO and DE-based scheduling strategies
	5.2.1 The vector evaluated approach
	5.2.2 Modified goal programming
	5.2.3 Comparative analysis of alternative MOO strategies

	5.3 A further investigation of the VEPSO algorithm
	5.3.1 Variations on the basic VEPSO algorithm
	5.3.2 Comparative analysis of alternative VEPSO algorithms

	5.4 A further investigation of the VEDE algorithm
	5.4.1 Variations on the basic VEDE algorithm
	5.4.2 Comparative analysis of alternative VEDE strategies

	5.5 Summary

	6 Investigating the generality of priority-based metaheuristic algorithms
	6.1 The Centurion Ice Cream scheduling problem
	6.2 An overview of related scheduling literature
	6.2.1 The classical parallel machine scheduling problem
	6.2.2 The parallel machine scheduling problem with sequence-dependent set-up times
	6.2.3 The parallel machine scheduling problem with unavailability constraints
	6.2.4 Summary

	6.3 Vector evaluated algorithms for the Centurion Ice Cream problem
	6.4 Self-adaptive algorithms for the Centurion Ice Cream problem
	6.4.1 Self-adaptive differential evolution
	6.4.2 A comparative analysis of VEDE and S-VEDE

	6.5 Summary

	7 Conclusion
	7.1 Summary
	7.2 Future research opportunities
	7.3 Last words

	A Acronyms
	B Symbols
	C Derived Publications

