Table A1 Total rainfall in mm per month at Tygerhoek over years for the period 2003-2007

<table>
<thead>
<tr>
<th>Month</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>58.4</td>
<td>324.4</td>
<td>236.1</td>
<td>77.0</td>
<td>4.3</td>
</tr>
<tr>
<td>February</td>
<td>477.7</td>
<td>0</td>
<td>840.9</td>
<td>4.0</td>
<td>13.5</td>
</tr>
<tr>
<td>March</td>
<td>0</td>
<td>14.4</td>
<td>22.4</td>
<td>36.0</td>
<td>11.6</td>
</tr>
<tr>
<td>April</td>
<td>32.0</td>
<td>29.8</td>
<td>22.4</td>
<td>79.0</td>
<td>21.6</td>
</tr>
<tr>
<td>May</td>
<td>36.8</td>
<td>1.8</td>
<td>78.6</td>
<td>44.4</td>
<td>31.2</td>
</tr>
<tr>
<td>June</td>
<td>14.6</td>
<td>16.6</td>
<td>2.5</td>
<td>24.2</td>
<td>22.5</td>
</tr>
<tr>
<td>July</td>
<td>11.2</td>
<td>17.6</td>
<td>3.3</td>
<td>83.8</td>
<td>36.1</td>
</tr>
<tr>
<td>August</td>
<td>16.2</td>
<td>6.6</td>
<td>26.3</td>
<td>83.3</td>
<td>11.7</td>
</tr>
<tr>
<td>September</td>
<td>24.0</td>
<td>65.6</td>
<td>0.6</td>
<td>8.4</td>
<td>9.5</td>
</tr>
<tr>
<td>October</td>
<td>25.2</td>
<td>73.6</td>
<td>1.4</td>
<td>16.2</td>
<td>28.9</td>
</tr>
<tr>
<td>November</td>
<td>4.2</td>
<td>233.2</td>
<td>54.2</td>
<td>18.1</td>
<td>205.7</td>
</tr>
<tr>
<td>December</td>
<td>281.0</td>
<td>236.4</td>
<td>7.2</td>
<td>17.3</td>
<td>73.1</td>
</tr>
</tbody>
</table>

Total annual rainfall 981.3 1020.0 1295.9 491.7 469.7

Figure A1 Crop residue plots in the field
Figure A2 Crops grown in residue plots in the field

Figure A3 Petri dishes with seeds to obtain leachates in the incubator
Figure A4 Arrangement of donor pots to obtain leachates in the greenhouse

Figure A5 Arrangement of acceptor pots for treatment with leachates in the greenhouse
Table A2 Genetic and morphological analyses of *Lolium* spp in Area A

<table>
<thead>
<tr>
<th>Italian rye grass</th>
<th>Rye grass hybrid type</th>
<th>Perennial rye grass</th>
<th>Rigid rye grass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genetic analysis</td>
<td>Morphological analysis</td>
<td>Genetic analysis</td>
<td>Morphological analysis</td>
</tr>
<tr>
<td>A1</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>A2</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>A3</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>A4</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>A5</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>A6</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>A7</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>A8</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>A9</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>A10</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

Table A3 Genetic and morphological analyses of *Lolium* spp in Area B

<table>
<thead>
<tr>
<th>Italian rye grass</th>
<th>Rye grass hybrid type</th>
<th>Perennial rye grass</th>
<th>Rigid rye grass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genetic analysis</td>
<td>Morphological analysis</td>
<td>Genetic analysis</td>
<td>Morphological analysis</td>
</tr>
<tr>
<td>B1</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>B2</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>B3</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>B4</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>B5</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>B6</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>B7</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>B8</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>B9</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>B10</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

Table A4 Genetic and morphological analyses of *Lolium* spp in Area C

<table>
<thead>
<tr>
<th>Italian rye grass</th>
<th>Rye grass hybrid type</th>
<th>Perennial rye grass</th>
<th>Rigid rye grass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genetic analysis</td>
<td>Morphological analysis</td>
<td>Genetic analysis</td>
<td>Morphological analysis</td>
</tr>
<tr>
<td>C1</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>C2</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>C4</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>C5</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Carbon source</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>C1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>β-Methyl-D-Glucoside</td>
<td>C2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Carbon source</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-Asparagine</td>
<td>C8</td>
</tr>
<tr>
<td>Tween 40</td>
<td>C9</td>
</tr>
<tr>
<td>D-Erythritol</td>
<td>C10</td>
</tr>
<tr>
<td>Hydroxy-Benzoic Acid</td>
<td>C11</td>
</tr>
<tr>
<td>Phenylalanine</td>
<td>C12</td>
</tr>
<tr>
<td>Tween 80</td>
<td>C13</td>
</tr>
<tr>
<td>Mannitol</td>
<td>C14</td>
</tr>
<tr>
<td>Hydroxy Benzolic Acid</td>
<td>C15</td>
</tr>
<tr>
<td>Serine</td>
<td>C16</td>
</tr>
<tr>
<td>Cellodextrin</td>
<td>C17</td>
</tr>
<tr>
<td>N-Acetyl-D-Glucosamine</td>
<td>C18</td>
</tr>
<tr>
<td>γ-Hydroxibutyric Acid</td>
<td>C19</td>
</tr>
<tr>
<td>L-Threonine</td>
<td>C20</td>
</tr>
<tr>
<td>Glycogen</td>
<td>C21</td>
</tr>
<tr>
<td>D-Glucosaminic Acid</td>
<td>C22</td>
</tr>
<tr>
<td>Itaconic Acid</td>
<td>C23</td>
</tr>
<tr>
<td>Glycyl-L-Glutamic Acid</td>
<td>C24</td>
</tr>
<tr>
<td>D-Cellobiose</td>
<td>C25</td>
</tr>
<tr>
<td>Glucose-1-Phosphate</td>
<td>C26</td>
</tr>
<tr>
<td>α-Ketobutyric Acid</td>
<td>C27</td>
</tr>
<tr>
<td>Phenylethylamine</td>
<td>C28</td>
</tr>
<tr>
<td>α-D-Lactose</td>
<td>C29</td>
</tr>
<tr>
<td>D.L-α-Glycerol Phosphate</td>
<td>C30</td>
</tr>
<tr>
<td>D-Mallic Acid</td>
<td>C31</td>
</tr>
<tr>
<td>Putrecine</td>
<td>C32</td>
</tr>
</tbody>
</table>

Table A5 Genetic and morphological analyses of *Lolium* spp in Area D

<table>
<thead>
<tr>
<th>Carbon source</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>C1</td>
</tr>
<tr>
<td>β-Methyl-D-Glucoside</td>
<td>C2</td>
</tr>
</tbody>
</table>

L-Asparagine	C8
Tween 40	C9
D-Erythritol	C10
Hydroxy-Benzoic Acid	C11
Phenylalanine	C12
Tween 80	C13
Mannitol	C14
Hydroxy Benzolic Acid	C15
Serine	C16
Cellodextrin	C17
N-Acetyl-D-Glucosamine	C18
γ-Hydroxibutyric Acid	C19
L-Threonine	C20
Glycogen	C21
D-Glucosaminic Acid	C22
Itaconic Acid	C23
Glycyl-L-Glutamic Acid	C24
D-Cellobiose	C25
Glucose-1-Phosphate	C26
α-Ketobutyric Acid	C27
Phenylethylamine	C28
α-D-Lactose	C29
D.L-α-Glycerol Phosphate	C30
D-Mallic Acid	C31
Putrecine	C32

Table A6 Carbon sources used by the Biolog EcoPlate™ for micro-organism community analysis
Table A7 Soil analyses for soils collected at Langgewens or Tygerhoek

<table>
<thead>
<tr>
<th>Locality</th>
<th>Langgewens</th>
<th>Tygerhoek</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil properties</td>
<td>Value</td>
<td>Unit</td>
</tr>
<tr>
<td>pH</td>
<td>6.3</td>
<td>Ohms</td>
</tr>
<tr>
<td>Resistance</td>
<td>850</td>
<td>Ohms</td>
</tr>
<tr>
<td>Texture</td>
<td>Sandy loam</td>
<td></td>
</tr>
<tr>
<td>Acidity</td>
<td>0.89</td>
<td>cmol(+)/kg</td>
</tr>
<tr>
<td>Calcium</td>
<td>3.96</td>
<td>cmol(+)/kg</td>
</tr>
<tr>
<td>Magnesium</td>
<td>0.75</td>
<td>cmol(+)/kg</td>
</tr>
<tr>
<td>Potassium</td>
<td>220</td>
<td>mg/kg</td>
</tr>
<tr>
<td>Sodium</td>
<td>23</td>
<td>mg/kg</td>
</tr>
<tr>
<td></td>
<td>Value 1</td>
<td>Unit 1</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>P (citric acid)</td>
<td>99</td>
<td>mg/kg</td>
</tr>
<tr>
<td>Total cations</td>
<td>5.38</td>
<td>cmol(+)kg</td>
</tr>
<tr>
<td>Copper</td>
<td>1.63</td>
<td>mg/kg</td>
</tr>
<tr>
<td>Zinc</td>
<td>5.59</td>
<td>mg/kg</td>
</tr>
<tr>
<td>Manganese</td>
<td>191.3</td>
<td>mg/kg</td>
</tr>
<tr>
<td>Sulphur</td>
<td>3.61</td>
<td>mg/kg</td>
</tr>
<tr>
<td>Boron</td>
<td>0.32</td>
<td>mg/kg</td>
</tr>
<tr>
<td>Carbon</td>
<td>0.98</td>
<td>%</td>
</tr>
</tbody>
</table>

Table A8 Pearson correlation matrix used for principal component analysis (PCA) to determine the correlation among growth rate and effects of root leachate treatments on physiological profiling of soil micro-organisms for *H. vulgare* and *T. aestivum* for Langgewens and Tygerhoek soils
Table A9 Pearson correlation matrix used for principal component analysis (PCA) to determine the correlation among growth rate and the effects of root leachate treatments on physiological profiling of soil micro-organisms for *L. albus* v. Tanjil and *L. albus* v. Quilinock for Langgewens and Tygerhoek soils.
<table>
<thead>
<tr>
<th>Carbon source</th>
<th>L. albus v. Tanjil Langgewens</th>
<th>Tygerhoek</th>
<th>L. albus v. Quillnock Langgewens</th>
<th>Tygerhoek</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2_1</td>
<td>0.502</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3_1</td>
<td>0.117</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5_1</td>
<td>0.531</td>
<td>0.810</td>
<td>-0.020</td>
<td>0.399</td>
</tr>
<tr>
<td>C6_1</td>
<td>0.762</td>
<td>0.281</td>
<td>0.629</td>
<td>-0.086</td>
</tr>
<tr>
<td>C7_1</td>
<td>0.531</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C10_1</td>
<td></td>
<td></td>
<td></td>
<td>0.469</td>
</tr>
<tr>
<td>C11_1</td>
<td>-0.256</td>
<td>0.037</td>
<td></td>
<td>0.888</td>
</tr>
<tr>
<td>C12_1</td>
<td>-0.256</td>
<td>0.037</td>
<td></td>
<td>0.888</td>
</tr>
<tr>
<td>C13_1</td>
<td>0.117</td>
<td></td>
<td></td>
<td>0.528</td>
</tr>
<tr>
<td>C14_1</td>
<td></td>
<td>-0.152</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C15_1</td>
<td></td>
<td>-0.552</td>
<td></td>
<td>-0.339</td>
</tr>
<tr>
<td>C16_1</td>
<td>0.117</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C17_1</td>
<td>0.502</td>
<td>0.427</td>
<td></td>
<td>-0.045</td>
</tr>
<tr>
<td>C18_1</td>
<td>0.531</td>
<td>-0.190</td>
<td></td>
<td>0.120</td>
</tr>
<tr>
<td>C19_1</td>
<td></td>
<td>0.179</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C20_1</td>
<td>0.502</td>
<td>0.110</td>
<td></td>
<td>-0.339</td>
</tr>
<tr>
<td>C22_1</td>
<td>0.608</td>
<td>0.810</td>
<td>0.359</td>
<td>-0.086</td>
</tr>
<tr>
<td>C23_1</td>
<td>0.762</td>
<td>-0.255</td>
<td></td>
<td>-0.086</td>
</tr>
<tr>
<td>C24_1</td>
<td>-0.034</td>
<td>0.607</td>
<td></td>
<td>-0.229</td>
</tr>
<tr>
<td>C25_1</td>
<td>0.502</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C28_1</td>
<td>0.502</td>
<td>0.594</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C29_1</td>
<td>0.502</td>
<td>0.594</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C31_1</td>
<td>0.430</td>
<td>-0.147</td>
<td>0.229</td>
<td></td>
</tr>
<tr>
<td>C32_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2_2</td>
<td>0.762</td>
<td></td>
<td></td>
<td>0.597</td>
</tr>
<tr>
<td>C4_2</td>
<td>-0.281</td>
<td>0.243</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5_2</td>
<td>-0.174</td>
<td>-0.443</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C6_2</td>
<td>0.359</td>
<td>0.173</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C7_2</td>
<td></td>
<td>-0.380</td>
<td>0.317</td>
<td>0.229</td>
</tr>
<tr>
<td>C9_2</td>
<td></td>
<td></td>
<td></td>
<td>0.243</td>
</tr>
<tr>
<td>C10_2</td>
<td></td>
<td>-0.793</td>
<td></td>
<td>-0.216</td>
</tr>
<tr>
<td>C12_2</td>
<td>-0.250</td>
<td></td>
<td></td>
<td>0.229</td>
</tr>
<tr>
<td>C14_2</td>
<td>0.454</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C16_2</td>
<td>0.117</td>
<td></td>
<td></td>
<td>0.038</td>
</tr>
<tr>
<td>C17_2</td>
<td>-0.693</td>
<td></td>
<td></td>
<td>0.071</td>
</tr>
<tr>
<td>C18_2</td>
<td>-0.359</td>
<td>0.110</td>
<td></td>
<td>0.261</td>
</tr>
<tr>
<td>C19_2</td>
<td>-0.174</td>
<td>-0.387</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C21_2</td>
<td></td>
<td>0.071</td>
<td></td>
<td>-0.339</td>
</tr>
<tr>
<td>C22_2</td>
<td>0.052</td>
<td>-0.442</td>
<td>0.261</td>
<td></td>
</tr>
<tr>
<td>C23_2</td>
<td>0.217</td>
<td>0.179</td>
<td>-0.092</td>
<td>0.359</td>
</tr>
<tr>
<td>C24_2</td>
<td>-0.079</td>
<td>-0.441</td>
<td>-0.092</td>
<td>0.359</td>
</tr>
<tr>
<td>C25_2</td>
<td>-0.174</td>
<td></td>
<td></td>
<td>0.339</td>
</tr>
<tr>
<td>C28_2</td>
<td>-0.243</td>
<td>0.953</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C29_2</td>
<td>0.247</td>
<td>0.029</td>
<td>-0.085</td>
<td></td>
</tr>
<tr>
<td>C30_2</td>
<td>-0.255</td>
<td>-0.281</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C31_2</td>
<td>-0.161</td>
<td></td>
<td></td>
<td>0.038</td>
</tr>
<tr>
<td>C32_2</td>
<td>0.410</td>
<td>-0.128</td>
<td>0.261</td>
<td>0.212</td>
</tr>
</tbody>
</table>

Table A10 Pearson correlation matrix used for principal component analysis (PCA) to determine the correlation among growth rate and the effects of root leachate treatments on physiological profiling of soil micro-organisms for *L. multiflorum* v. Energa and *L. multiflorum x perenne* for Langgewens and Tygerhoek soils
<table>
<thead>
<tr>
<th>Carbon source</th>
<th>L. multiflorum v. Energa</th>
<th>L. multiflorum x perenne</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Langgewens</td>
<td>Tygerhoek</td>
</tr>
<tr>
<td>C2-1</td>
<td>-0.042</td>
<td></td>
</tr>
<tr>
<td>C4-1</td>
<td>0.016</td>
<td></td>
</tr>
<tr>
<td>C5-1</td>
<td>-0.422</td>
<td>-0.317</td>
</tr>
<tr>
<td>C6-1</td>
<td>0.453</td>
<td></td>
</tr>
<tr>
<td>C10-1</td>
<td>-0.127</td>
<td>-0.786</td>
</tr>
<tr>
<td>C12-1</td>
<td>-0.127</td>
<td>0.042</td>
</tr>
<tr>
<td>C15-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C17-1</td>
<td>-0.042</td>
<td>0.786</td>
</tr>
<tr>
<td>C18-1</td>
<td>0.453</td>
<td></td>
</tr>
<tr>
<td>C19-1</td>
<td>0.326</td>
<td></td>
</tr>
<tr>
<td>C20-1</td>
<td>-0.230</td>
<td></td>
</tr>
<tr>
<td>C21-1</td>
<td>-0.192</td>
<td>0.052</td>
</tr>
<tr>
<td>C22-1</td>
<td>-0.563</td>
<td>-0.517</td>
</tr>
<tr>
<td>C23-1</td>
<td>0.511</td>
<td>0.732</td>
</tr>
<tr>
<td>C24-1</td>
<td>0.155</td>
<td></td>
</tr>
<tr>
<td>C25-1</td>
<td>0.511</td>
<td>-0.690</td>
</tr>
<tr>
<td>C26-1</td>
<td>-0.785</td>
<td>-0.690</td>
</tr>
<tr>
<td>C28-1</td>
<td>0.515</td>
<td>0.103</td>
</tr>
<tr>
<td>C29-1</td>
<td>0.234</td>
<td>-0.437</td>
</tr>
<tr>
<td>C30-1</td>
<td>-0.451</td>
<td></td>
</tr>
<tr>
<td>C31-1</td>
<td>-0.142</td>
<td>-0.580</td>
</tr>
<tr>
<td>C32-1</td>
<td>-0.584</td>
<td>-0.362</td>
</tr>
<tr>
<td>C2-2</td>
<td>-0.162</td>
<td>0.275</td>
</tr>
<tr>
<td>C3-2</td>
<td>-0.098</td>
<td>0.255</td>
</tr>
<tr>
<td>C4-2</td>
<td>-0.098</td>
<td>-0.142</td>
</tr>
<tr>
<td>C5-2</td>
<td>0.321</td>
<td>-0.186</td>
</tr>
<tr>
<td>C6-2</td>
<td>0.050</td>
<td>0.203</td>
</tr>
<tr>
<td>C9-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C10-2</td>
<td>0.775</td>
<td></td>
</tr>
<tr>
<td>C12-2</td>
<td>0.899</td>
<td>0.671</td>
</tr>
<tr>
<td>C14-2</td>
<td>0.290</td>
<td></td>
</tr>
<tr>
<td>C15-2</td>
<td>0.290</td>
<td></td>
</tr>
<tr>
<td>C16-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C17-2</td>
<td>0.445</td>
<td>-0.153</td>
</tr>
<tr>
<td>C18-2</td>
<td>0.445</td>
<td>-0.783</td>
</tr>
<tr>
<td>C21-2</td>
<td>0.199</td>
<td>-0.153</td>
</tr>
<tr>
<td>C22-2</td>
<td>0.445</td>
<td>-0.584</td>
</tr>
<tr>
<td>C32-2</td>
<td>0.634</td>
<td></td>
</tr>
<tr>
<td>C25-2</td>
<td>0.599</td>
<td></td>
</tr>
<tr>
<td>C26-2</td>
<td>0.599</td>
<td></td>
</tr>
<tr>
<td>C28-2</td>
<td>-0.142</td>
<td>0.133</td>
</tr>
<tr>
<td>C29-2</td>
<td>0.505</td>
<td>0.509</td>
</tr>
<tr>
<td>C30-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C31-2</td>
<td>0.422</td>
<td>-0.304</td>
</tr>
<tr>
<td>C32-2</td>
<td>0.290</td>
<td>-0.142</td>
</tr>
</tbody>
</table>