10 Appendices

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1</td>
<td>Appendix A: Interviews</td>
</tr>
<tr>
<td>10.2</td>
<td>Appendix B: Frameworks</td>
</tr>
<tr>
<td>10.3</td>
<td>Appendix C: Environmental Context</td>
</tr>
<tr>
<td>10.4</td>
<td>Appendix D: Demolition</td>
</tr>
<tr>
<td>10.6</td>
<td>Appendix E: Analysis Methodology</td>
</tr>
<tr>
<td>10.7</td>
<td>Appendix F: Baseline Document</td>
</tr>
<tr>
<td>10.8</td>
<td>Appendix G: List of Figures</td>
</tr>
<tr>
<td>10.11</td>
<td>Appendix H: Bibliography</td>
</tr>
</tbody>
</table>
10.1 Appendix A : Interviews

10.1.1 CITY OF TSHWANE

INTERVIEW WITH ESTA PRINS
Town Planner
estap@tshwane.gov.za
(012) 358 7942
15.03.2006
10:30

Site: Remainder and portion 7 of ERF 1161, Arcadia.
Current use: Educational.
Implication: Rezoning necessary and likely to be approved.
Possible developers:
Mandela Development Company.
Atterbury Property.
Current/historic use of buildings:
Contact institutions, SAHRA and Alf Vorster.
Ancillary supports:
Nelson Mandela Corridor Framework.
GAPP Framework.
Atterbury Property.
Urban Development Zone.
Parking – Table H.
Demand: Create facility to attract people.
Establish upmarket development along Nelson Mandela.
Must be a prime property development:
i.e. such as the DTI or new BMW showroom in Vermeulen Street
Rents/Yields: If land is state owned, it can be leased for private use.
Contact evaluation office.

Planning controls:
Rezoning required to allow for commercial or amusement use on the site.
Amusement (theatres) only allowed within general business zones with consent from the City of Tshwane.
Subsidies:
Public-private partnership: only if land is not government owned one can apply for a tax break or rebates on building fees.

Note:
Implementation of GAPP Framework very likely!
Money to be poured into development and improvement of Church and Paul Kruger Street.

10.1.2 CLIMATRON

INTERVIEW WITH PEPE STEDMAN
39 Webber Street
Selby
Johannesburg
082 458 3335
13.09.2006
10:00
10.1.3 INNOVATION HUB

INTERVIEW WITH NKHULU MABOYA
nmaboya@theinnovationhub.com
(012) 844 0027
072 808 3162
08.05.2006
09:00

Land parcels were sold and developed by purchaser.

Aim: To bring like minded people together.

Incubation concept:

Students set up business plans and apply to become part of the pre-incubation process. Graduates are selected according to the innovative level of their ideas. Pre-incubation allows the graduates with 6 months free rent with mentors provided in their particular field of study. The innovation hub recruits experts in that field to work as mentors. After the pre-incubation period and if the industry makes use of your idea you graduate to the incubation period where you may rent an office for a period of 2 years while you set up your business.

Blue IQ:

The hub is one of the 11 provincial Blue IQ developments and serves as the first Science and Technology Park in South Africa. It is envisioned to be completed before 2010 with all land parcels being sold off and developed. The hub owns the Innovation Centre Building as well as the Enterprise Building. These buildings contain offices and conference facilities that can be rented by graduates or the greater public. A system of hot offices exists where people can rent an office on a weekly basis.

State of the art facilities are provided with the latest in technical support. Europa@hub is the restaurant provided on the campus. It is thought that bringing like minded people together one can generate innovative ideas from within.
The College:

Tshwane North College is a FET (Further Education and Training) college operating as a vocational training college. After grade 9 (Standard 7) students can enrol in various programmes. The college has three campuses: the main campus located in Church Street and two more at Soshanguve and Mamelodi. The college is state-owned but has to raise its own funds to cover running costs.

The Students:

There are currently 18 000 students on the main campus. The college is unique in that students gather for assembly every morning at 07:30. They spend on average about R3 000 per day at the cafeteria alone! Space is limited on the campus but students are reluctant to attend classes at the other campuses. Students refer to the students at the main campus as ‘coconuts’ – white on the inside and black on the outside. Due to its stately appearance the principal attraction to the college is the historic main building of sandstone. On occasion potential students have applied for admittance without knowing anything about the college but just because they wanted to study there.

The College Building:

As previously stated, the college is state owned. The main college building requires a lot of maintenance and upkeep for which additional funds have to be raised, as monies received from the state may only be used for specific purposes. This leaves the college with a dilemma where funds are desperately needed for student facilities and where an historical building is falling into disrepair due to lack of maintenance.

Fund-raising:

The college is incredibly innovative in finding means to survive. It appears that this institution does not play the victim in any situation and rises to the occasion in all spheres. The college runs a number of businesses on its campus and two satellite businesses in the city – the Reserve Bank coffee shop and the restaurant for AVBOB. The satellite businesses are run by permanent staff, while the campus businesses are run by students.

Job Opportunities:

The students in the catering and hospitality programmes are in high demand and places such as Sun City would even employ someone with little or no experience for a salary up to R8 000 a month! This poses a problem for the college as students get offered jobs and leave without obtaining any qualifications. The spin side is that students who have talent in various other fields such as jewellery design often find themselves at a loss after completing their studies. Some, having won various accolades for their designs while studying, are barely able to make a living and end up doing nothing after their studies have been completed.

Long-term Plans:

The main problem at the college is the disorganization of departments since they merged to form the Tshwane North College. This has resulted in a great need for bigger facilities. The long-term plan is to consolidate departments and divide them up amongst the three campuses.
10.1.5 TSHWANE UNIVERSITY OF TECHNOLOGY

INTERVIEW WITH PIET ENGELBRECHT
Buildings and Estates/Geboue en Terreine
engelbrecht@tut.ac.za
(012) 382 4501
10.05.2006
09:00

Views:

Public-private partnership unlikely.
Collaboration between tertiary institutions highly improbable.

Current Situation:

Campus at maximum capacity, with a student body of over 2500. Van Aswegens building across the road is being rented for a further 1500 students. Library inadequate; need exists for study space and internet access. Student interaction is poor. Crime is viewed by students and staff to be internally driven by students and staff and comprises mostly theft. The campus would never be opened to the public.

Green Building on the corner of Nelson Mandela and Church:

Currently owned by TUT but not occupied due to present condition. Originally used as a brothel when purchased by TUT for R 750 000. Adjacent sites, Jeka Foams and Carburetor City, on the market for R 3 000 000 and R 5 000 000 respectively. Suggested to be demolished and redeveloped but due to lack of funds will be refurbished only to house the SRC.

Long-term plans:

Relocation of various departments and housing of SRC in Green Building. Deed of transfer is in TUT’s name but any changes to the site have to be approved by the Department of Education. Any development required by the dean of the campus needs to be privately funded as TUT is lacking in funds and the Government only provides a subsidy of 40%. The owner of Metro (Cassim) would snatch up any opportunity to purchase the land.

Eaton Buildings:

Norman Eaton buildings are merely viewed as buildings and was refurbished between 1995 and 2000. Architect approached – Derick Stedall.

Businesses run by TUT:

Guest houses – NZASM and Cosmos.

All in all not a positive response to the idea of an incubation project as proposed, probably due to being in the business for 25 years and having typical Afrikaner mentality. Wants to know what’s in it for TUT without giving anything back.
10.2 Appendix B : Frameworks

GAPP FRAMEWORK

Guidelines for the Mandela Corridor Precinct:

The built form in this precinct should be a mix of higher-quality modern retail, office and residential buildings, to move away from the existing lower quality edge-type built form. The key directives are as follows:

- All buildings should address the public spaces.
- The architecture should comply with the architectural guidelines.
- The general built form should be of the courtyard type.
- Height of buildings should relate to the public space dimensions and should attempt to highlight the Caledonian Sports Ground, and elsewhere attempt to create a consistent height of between 6-10 stories.
- The CTMM’s current plans for the Apies River Walk and the Caledonian Sports Grounds should be considered as part of these guidelines.
- Materials to be used – sandstone, slate, concrete, glass, timber, transparent materials, plaster.

(GAPP 2006:158)

10.3 Appendix C: Environmental Context

Fig. 10.1 Site Area - Environmental Context
10.3.1 Natural Systems

- The structure of the city is determined by a system of ridges, with the inner city cradled between the Langeberge and the Witwatersberge.
- The site is located within the inner city in close proximity to the Apies River, which indicates a shallow water table.
- The site is developed in its entirety with a garden surrounding the existing administration building and planted trees in courtyards and along Vermeulen and Nelson Mandela.

10.3.2 Topography

- The site slopes north-eastwards towards the Apies River but development has almost levelled it. Redevelopment of the site would require minimal cut and fill.

10.3.3 Existing Vegetation

- The trees bordering the site on Vermeulen Street are considered to have an important aesthetic value as they frame and soften the campus in contrast to the harsh edge provided by the Metro building on the Northern sidewalk.
- It is proposed that existing indigenous trees be kept in tact and maintained as far as possible.
- The vegetation planted in and around historic buildings are of particular importance and can be restored in many instances to its original state.

10.3.4 Climate

- Tshwane falls in the temperate eastern plateau region of Gauteng. Generally, this area predominantly consists grassland with scattered trees in the wetter parts. Summers are warm to hot, with fairly dry air, relieved by thunderstorms generated by thermal air movement. Hail is not uncommon. Winter days are pleasantly sunny with clear cold to very cold nights (Geel 2005: 27).
- The climate of temperate Eastern Plateau region is moderate and does not necessitate extreme governing principles for the design of buildings (Geel 2005:27).

10.3.5 Rain

- The rainy season occurs from November to March, peaking in January.
- Fifty to eighty days of rain can be expected annually.
- The high rainfall in the area can be harvested and stored for domestic use. Because of the possibility of hail in the area, the design of gutters need to be considered if rainwater is to be harvested (Geel 2005:27).

10.3.6 Climate Facts

- January temperatures: 20 to 25 °C
- June temperatures: 10 to 15 °C
- Prevailing winds: N-E in summer and N-E to N-W in winter.
- Relative humidity: 30%
- Hours sunshine: 660
- Average rainfall: 674 mm
- Winter solstice: 22 June - 44°
- Summer solstice: 22 December - 87° (Geel 18:2005).
10.5 Appendix C: Demolition

10.5.1 BUILDING 1

ADDRESS: North Western corner of Nelson Mandela Boulevard and Church Street.

ERF #: 1161

OWNED BY: Tshwane University of Technology.

CURRENT USE: Retail on street level along Church Street, upper levels unoccupied.

Fig. 10.2: Legal Context – Diagram depicting buildings to be demolished

Fig. 10.3: Legal Context – Building 1
The Tshwane University of Technology purchased the land for R 750 000 but has not been able to occupy the building due to its dilapidated state. The building was previously used as a brothel and was extended without approval from the City Council of Tshwane. The structure is deemed unsafe by the Facilities Manager mr Piet Engelbrecht and has been severely vandalized. He proposes that the building be demolished, but due to lack of funds this would not be possible at the moment. Extensive renovations would have to be made and is envisioned to house the Tshwane University of Technology’s Student Representative Council.

CONCLUSION: Demolition advisable.

10.5.2 BUILDING 2

Fig.10.5: Legal Context – Building 2
ADDRESS: 440 Church Street
ERF #:
OWNED BY: Jeka Foam and Plastics.
CURRENT USE: Retail.

Double-storey face-brick building used for retail; owner requests R3 000 000 for purchase.

CONCLUSION: Demolition advisable.
10.5.3 BUILDING 3

ADDRESS: 436 Church Street

ERF #:

OWNED BY: Auto Spares Pretoria, Carburettor City.

CURRENT USE: Service and repair of vehicles.

Provision of spares on Church Street and workshops leading to Nelson Mandela Boulevard. Double-storey face-brick with ramp on Nelson Mandela.

CONCLUSION: Demolition advisable.

10.5.4 BUILDING 4

ADDRESS: Arcadia Campus 175 Nelson Mandela Drive

ERF #: 1161

OWNED BY: Tshwane University of Technology.

CURRENT USE: Sasol Library.

Opened in 1995 (Oberholzer: p176), the library functions more as a social and study area for the current campus situation rather than a library. For this reason the facility is at maximum capacity and does not meet the needs of the students.

CONCLUSION: Facility inadequate, demolition advisable.
10.5.5 BUILDING 5

ADDRESS: Arcadia Campus, 175 Nelson Mandela Drive
ERF #: 1161
OWNED BY: Tshwane University of Technology.
CURRENT USE: Administration Building.

Added to the campus in 1995 (Oberholzer: p177), this building serves as offices for the administration staff. These functions could easily be accommodated in a new development as they require no direct interface with the street.

CONCLUSION: Facility can be easily relocated.

10.5.6 BUILDING 6

ADDRESS: Arcadia Campus, 175 Nelson Mandela Drive
ERF #: 1161
OWNED BY: Tshwane University of Technology.
CURRENT USE: Examination hall.

Added to the campus in 1995 (Oberholzer: p177), the single-storey hall serves as an examination facility.

CONCLUSION: Facility can be easily relocated.
10.5 Appendix D : Analysis Methodology

PHASE 1
- Site Description
- Site Visit

DISCUSSION
- Location
- History
- VISION

- Contextual Analysis
- Aerial Photographs
- Land Use Analysis
- Urban Form Analysis
- Urban Conservation Analysis
- Urban Design Concept

INTERPRETATION
- Interpret the information gathered into a legible form through maps and diagrams.
- Local authority & organizations
- Local estate agents
- VISION

APPLICATION
- Analyze uses to arrive at a spatial arrangement of compatible uses.
- Zoning areas for use.
- VISION

CONTEXT ANALYSIS FILE 2
- Historical Context File 2
- Consumer Theory File 2
- Harmsworth Guide to Shopping

PHOTO'S FILE 2
- Mornie's Thesis File 2

CONTEXT ANALYSIS FILE 2
- Pro Forma File 3
- Council File 2
- Tshwane Framework File 1
- MDC
- Amanda Jacobs
- TOWN PLANNER
- Ernst Pretorius
- Tshwane University of Technology

PHOTOGRAPH AT DIFFERENT TIMES OF THE DAY.

FINEARTS PHOTOGRAPHY

EXISTING DIGITAL PLANS
- Architect
- Town Planner
- Demographics
- GIS

TSHWANE UNIVERSITY OF TECHNOLOGY
- School
- Postgraduate

TSHWANE NORTH COLLEGE
- Rael Pretorius
- (012) 401 1600
- 082 868 2546
ZONE ANALYSIS

• Consider each zone to locate the position of magnets and secondary functions.

VISION

*PROPOSED LAND USE
*PROPOSED PUBLIC FACILITIES
*URBAN CONSERVATION
*PROPOSED CIRCULATION & ACCESS
*PROPOSED LANDSCAPE & OPEN SPACE
*STRATEGIC COMPONENTS

FEASIBILITY CHECK

• Set up spreadsheets to continually monitor viability while designing.

* VISION

STREETS

• Residential
• All purpose
• Design streets according to use intensity.
• Consider the junctions
• Design the junctions to close traffic & allow pedestrian movement
• Critically analyse pedestrian movement

*current value
*value after development
*feasibility of the project
*possibility of implementation

BLOCKSIZE

• Check that blocks are of adequate size to house the proposed use.

* set up accommodation list
* model current situation
* model changes

SUMMARY

• Summarise the scheme after considering permeability and variety.
• Shown on a map with relevant diagrams and text.

VISION

VISION

PHASE 2

• Spreadheets classification check
• Consider each zone to locate the position of magnets and secondary functions.

"PROPOSED LAND USE"
"PROPOSED PUBLIC FACILITIES"
"URBAN CONSERVATION"
"PROPOSED CIRCULATION & ACCESS"
"PROPOSED LANDSCAPE & OPEN SPACE"
"STRATEGIC COMPONENTS"

EVALUATION DEPARTMENT
Highest and best use.
Ben-Espach
(012) 368 8376

GS

TRAFFIC DEPARTMENT
Linday Prescott (Campus Viewing)
(012) 318 4501

INNOVATION HUB
Dr Neville Comins (CEO)
(012) 844 0026

TSHWANE UNIVERSITY OF TECHNOLOGY
Piet Engelbrecht
(012) 318 4501
10.6 Appendix E: Baseline Document

SUSTAINABLE BUILDING ASSESSMENT TOOL (SBAT-P) V1

<table>
<thead>
<tr>
<th>PROJECT</th>
<th>ASSESSMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project title: The Refinery</td>
<td>Date: 14/10/2006</td>
</tr>
<tr>
<td>Location: Tshwane</td>
<td>Undertaken by: Natalie Moore</td>
</tr>
<tr>
<td>Building type (specify): Educational/Commercial</td>
<td>Company / organisation: Tshwane University of Technology</td>
</tr>
<tr>
<td>Internal area (m²):</td>
<td>Telephone:</td>
</tr>
<tr>
<td>Number of users:</td>
<td>Fax:</td>
</tr>
<tr>
<td>Building life cycle stage (specify): Design/Construction/Operation</td>
<td>Email:</td>
</tr>
</tbody>
</table>

![Sustainable Building Assessment Tool (SBAT-P) V1 Chart]

Social 3.3 Economic 4.4 Environmental 2.0

Overall 3.2
<table>
<thead>
<tr>
<th>Criteria</th>
<th>Indicative performance measure</th>
<th>Measured</th>
<th>Points</th>
<th>Quantified modelled or measured performance data</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO 1 Occupant Comfort</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SO 1.1 Daylighting</td>
<td>% of occupied spaces that are within distance 2H from window, where H is the height of the window or where there is good daylight from skylights</td>
<td></td>
<td>20</td>
<td>0.2 http://greenbuilding.ca/</td>
</tr>
<tr>
<td>SO 1.2 Ventilation</td>
<td>% of occupied spaces have equivalent of opening window area equivalent to 10% of floor area or adequate mechanical system, with unpoluted air source</td>
<td></td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>SO 1.3 Noise</td>
<td>% of occupied spaces where external/internal/reverberation noise does not impinge on normal conversation (50dBa)</td>
<td></td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>SO 1.5 Thermal comfort</td>
<td>Temperature of occupied space does not exceed 28 or go below 19°C for less than 5 days per year (100%)</td>
<td></td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>SO 1.5 Views</td>
<td>% of occupied space that is 6m from an external window (not a skylight) with a view</td>
<td></td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>SO 2 Inclusive Environmen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SO 2.1 Public Transport</td>
<td>% of building(s) within 400m of disabled accessible (20%) and affordable (80%) public transport</td>
<td></td>
<td>100</td>
<td>1.0</td>
</tr>
<tr>
<td>SO 2.2 Information</td>
<td>Comprehensive signage provided (50%), Signage high contrast, clear print signage in appropriate locations and language(s) / use of understandable symbols / manned reception at all entrances (50%)</td>
<td></td>
<td>70</td>
<td>0.7</td>
</tr>
<tr>
<td>SO 2.3 Space</td>
<td>% of occupied spaces that are accessible to ambulant disabled / wheelchair users</td>
<td></td>
<td>100</td>
<td>1.0</td>
</tr>
<tr>
<td>SO 2.4 Toilets</td>
<td>% of occupied space with fully accessible toilets within 50m along easily accessible route</td>
<td></td>
<td>90</td>
<td>0.9</td>
</tr>
<tr>
<td>SO 2.5 Fittings & Furniture</td>
<td>% of commonly used furniture and fittings (reception desk, kitchenette, auditorium) fully accessible</td>
<td></td>
<td>90</td>
<td>0.9</td>
</tr>
<tr>
<td>SO 3 Access to Facilities</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SO 3.1 Children</td>
<td>All users can walk (100%) / use public transport (50%) to get to their childrens' schools and creches</td>
<td></td>
<td>50</td>
<td>0.5</td>
</tr>
<tr>
<td>SO 3.2 Banking</td>
<td>All users can walk (100%) / use public transport (50%) to get to banking facilities</td>
<td></td>
<td>100</td>
<td>1.0</td>
</tr>
<tr>
<td>SO 3.3 Retail</td>
<td>All users can walk (100%) / use public transport (50%) to get to food retail</td>
<td></td>
<td>100</td>
<td>1.0</td>
</tr>
<tr>
<td>SO 3.4 Communication</td>
<td>All users can walk (100%) / use public transport (50%) to get to communication facilities (post/telephone/internet)</td>
<td></td>
<td>100</td>
<td>1.0</td>
</tr>
<tr>
<td>SO 3.5 Exercise</td>
<td>All users can walk (100%) / use public transport (50%) to get to recreation/exercise facilities</td>
<td></td>
<td>50</td>
<td>0.5</td>
</tr>
<tr>
<td>SO 4 Participation & Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SO 4.1 Environmental control</td>
<td>% of occupied space able to control their thermal environment (adjacent to openable windows/thermal controls)</td>
<td></td>
<td>75</td>
<td>0.8</td>
</tr>
<tr>
<td>SO 4.2 Lighting control</td>
<td>% of occupied space able to control their light (adjacent to controllable blinds etc/local lighting control)</td>
<td></td>
<td>75</td>
<td>0.8</td>
</tr>
<tr>
<td>SO 4.3 Social spaces</td>
<td>Social informal meeting spaces (parks / staff canteens / cafes) provided locally (within 400m) (100%)</td>
<td></td>
<td>100</td>
<td>1.0</td>
</tr>
<tr>
<td>SO 4.4 Sharing facilities</td>
<td>5% or more of facilities shared with other users / organisations on a weekly basis (100%)</td>
<td></td>
<td>75</td>
<td>0.8</td>
</tr>
<tr>
<td>SO 4.5 User group</td>
<td>Users actively involved in the design process (50%) / Active and representative management user group (50%)</td>
<td></td>
<td>60</td>
<td>0.6</td>
</tr>
<tr>
<td>SO 5 Education, Health & S.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SO 5.1 Education</td>
<td>Two percent or more space/facilities available for education (seminar rooms / reading / libraries) per occupied space (75%). Construction training provided on site (25%)</td>
<td></td>
<td>75</td>
<td>0.8</td>
</tr>
<tr>
<td>SO 5.2 Safety</td>
<td>All well used routes in and around building well lit (25%), all routes in and around buildings visually supervised (25%), secure perimeter and access control (50%), No crime (100%)</td>
<td></td>
<td>50</td>
<td>0.5</td>
</tr>
<tr>
<td>SO 5.3 Awareness</td>
<td>% of users who can access information on health & safety issues (ie HIV/AIDS), training and employment opportunities: easily (posters/personnel/intranet site)</td>
<td></td>
<td>100</td>
<td>1.0</td>
</tr>
<tr>
<td>SO 5.4 Materials</td>
<td>All materials/components used have no negative effects on indoor air quality (100%)</td>
<td></td>
<td>60</td>
<td>0.6</td>
</tr>
<tr>
<td>SO 5.5 Accidents</td>
<td>Process in place for reconding all occupational accidents and diseases and addressing these</td>
<td></td>
<td>100</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Building Performance - Economic

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Indicative performance measure</th>
<th>Measured</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC 1 Local economy</td>
<td></td>
<td></td>
<td>4.9</td>
</tr>
<tr>
<td>EC 1.1 Local contractors</td>
<td>% value of the building constructed by local (within 50km) small (employees<20) contractors</td>
<td>90</td>
<td>0.9</td>
</tr>
<tr>
<td>EC 1.2 Local materials</td>
<td>% of materials (sand, bricks, blocks, roofing material) sourced from within 50km</td>
<td>100</td>
<td>1.0</td>
</tr>
<tr>
<td>EC 1.3 Local components</td>
<td>% of components (windows, doors etc) made locally (in the country)</td>
<td>100</td>
<td>1.0</td>
</tr>
<tr>
<td>EC 1.4 Local furniture/fittings</td>
<td>% of furniture and fittings made locally (in the country)</td>
<td>100</td>
<td>1.0</td>
</tr>
<tr>
<td>EC 1.5 Maintenance</td>
<td>% of maintenance and repairs by value that can, and are undertaken, by local contractors (within 50km)</td>
<td>100</td>
<td>1.0</td>
</tr>
<tr>
<td>EC 2 Efficiency</td>
<td></td>
<td></td>
<td>4.6</td>
</tr>
<tr>
<td>EC 2.1 Capacity</td>
<td>% capacity of building used on a daily basis (actual number of users / number of users at full capacity*100)</td>
<td>100</td>
<td>1.0</td>
</tr>
<tr>
<td>EC 2.2 Occupancy</td>
<td>% of time building is occupied and used (actual average number of hours used / all potential hours building could be used (24)*100)</td>
<td>90</td>
<td>0.9</td>
</tr>
<tr>
<td>EC 2.3 Space per occupant</td>
<td>Space provision per user not more than 10% above national average for building type (100%)</td>
<td>100</td>
<td>1.0</td>
</tr>
<tr>
<td>EC 2.4 Communication</td>
<td>Site/building has access to internet and telephone (100%), telephone only (50%)</td>
<td>100</td>
<td>1.0</td>
</tr>
<tr>
<td>EC 2.5 Material & Components</td>
<td>Building design coordinated with material / component sizes in order to minimise wastage. Walls (50%), Roof and floors (50%)</td>
<td>70</td>
<td>0.7</td>
</tr>
<tr>
<td>EC 3 Adaptability</td>
<td></td>
<td></td>
<td>4.3</td>
</tr>
<tr>
<td>EC 3.1 Vertical heights</td>
<td>% of spaces that have a floor to ceiling height of 3000mm or more</td>
<td>100</td>
<td>1.0</td>
</tr>
<tr>
<td>EC 3.2 External space</td>
<td>Design facilitates flexible external space use (100%)</td>
<td>100</td>
<td>1.0</td>
</tr>
<tr>
<td>EC 3.3 Internal partition</td>
<td>Non loadbearing internal partitions that can be easily adapted (loose partitioning (100%), studwall (50%), masonry (25%))</td>
<td>25</td>
<td>0.3</td>
</tr>
<tr>
<td>EC 3.4 Modular planning</td>
<td>Building with modular stucture, envelope (fenestration) & services allowing easy internal adaptation (100%)</td>
<td>100</td>
<td>1.0</td>
</tr>
<tr>
<td>EC 3.5 Furniture</td>
<td>Modular, limited variety furniture - can be easily configured for different uses (100%)</td>
<td>100</td>
<td>1.0</td>
</tr>
<tr>
<td>EC 4 Ongoing costs</td>
<td></td>
<td></td>
<td>4.4</td>
</tr>
<tr>
<td>EC 4.1 Induction</td>
<td>All new users receive induction training on building systems (50%), Detailed building user manual (50%)</td>
<td>100</td>
<td>1.0</td>
</tr>
<tr>
<td>EC 4.2 Consumption & waste</td>
<td>% of users exposed on a monthly basis to building performance figures (water (25%), electricity (25%), waste (25%), accidents (25%))</td>
<td>75</td>
<td>0.8</td>
</tr>
<tr>
<td>EC 4.3 Maintenance & Cleaning</td>
<td>Easily monitored localised metering system for water (50%) and energy (50%)</td>
<td>80</td>
<td>0.8</td>
</tr>
<tr>
<td>SO 4.5 Procurement</td>
<td>% of building that can be cleaned and maintained easily and safely using simple equipment and local non-hazardous materials</td>
<td>80</td>
<td>0.8</td>
</tr>
<tr>
<td>EC 5 Capital Costs</td>
<td></td>
<td></td>
<td>3.4</td>
</tr>
<tr>
<td>EC 5.1 Local need</td>
<td>Five percent capital cost allocated to address urgent local issues (employment, training etc) during construction process (100%)</td>
<td>100</td>
<td>1.0</td>
</tr>
<tr>
<td>EC5.2 Procurement</td>
<td>Tender / construction packaged to ensure involvement of small local contractors/manufacturers (100%)</td>
<td>100</td>
<td>1.0</td>
</tr>
<tr>
<td>EC 5.3 Building costs</td>
<td>Capital cost not more than fifteen % above national average building costs for the building type (100%)</td>
<td>90</td>
<td>0.9</td>
</tr>
<tr>
<td>EC 5.4 Technology</td>
<td>3% or more of capital costs allocated to new sustainable/indigenous technology (100%)</td>
<td>50</td>
<td>0.5</td>
</tr>
<tr>
<td>EC 5.5 Existing Buildings</td>
<td>Existing buildings reused (100%)</td>
<td>0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Building Performance - Environmental

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Indicative performance measure</th>
<th>Measured</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN 1 Water</td>
<td></td>
<td></td>
<td>2.4</td>
</tr>
<tr>
<td>EN 1.1 Rainwater</td>
<td>% of water consumed sourced from rainwater harvested on site</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>EN 1.2 Water use</td>
<td>% of equipment (taps, washing machines, urinals showerheads) that are water efficient</td>
<td>40</td>
<td>0.4</td>
</tr>
<tr>
<td>EN 1.3 Runoff</td>
<td>% of carparking, paths, roads and roofs that have absorbant/semi absorbant/permeable surfaces (grassed/thatched/looselaid paving/ absorbant materials)</td>
<td>20</td>
<td>0.2</td>
</tr>
<tr>
<td>EN 1.4 Greywater</td>
<td>% of water from washing/relatively clean processes recycled and reused</td>
<td>90</td>
<td>0.9</td>
</tr>
<tr>
<td>EN 1.5 Planting</td>
<td>% of planting (other than food gardens) on site with low / appropriate water requirements</td>
<td>85</td>
<td>0.9</td>
</tr>
<tr>
<td>EN 2 Energy</td>
<td></td>
<td></td>
<td>2.4</td>
</tr>
<tr>
<td>EN 2.1 Location</td>
<td>% of users who walk / cycle / use public transport to commute to the building</td>
<td>100</td>
<td>1.0</td>
</tr>
<tr>
<td>EN 2.2 Ventilation</td>
<td>% of building ventilation requirements met through natural / passive ventilation</td>
<td>40</td>
<td>0.4</td>
</tr>
<tr>
<td>EN 2.3 Heating & Cooling</td>
<td>% of occupied space which relies solely on passive environmental control (no or minimal energy consumption)</td>
<td>40</td>
<td>0.4</td>
</tr>
<tr>
<td>EN 2.4 Appliances & fittings</td>
<td>% of appliances / lighting fixtures that are classed as highly energy efficient (ie energy star rating)</td>
<td>30</td>
<td>0.3</td>
</tr>
<tr>
<td>EN 2.5 Renewable energy</td>
<td>% of building energy requirements met from renewable sources</td>
<td>30</td>
<td>0.3</td>
</tr>
<tr>
<td>EN 3 Waste</td>
<td></td>
<td></td>
<td>1.3</td>
</tr>
<tr>
<td>EN 3.1 Toxic waste</td>
<td>% of toxic waste (batteries, ink cartridges, florescent lamps) recycled</td>
<td>80</td>
<td>0.8</td>
</tr>
<tr>
<td>EN 3.2 Organic waste</td>
<td>% of organic waste recycled</td>
<td>50</td>
<td>0.5</td>
</tr>
<tr>
<td>EN 3.3 Inorganic waste</td>
<td>% of inorganic waste recycled.</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>EN 3.4 Sewerage</td>
<td>% of sewerage recycled on site</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>EN 3.5 Construction waste</td>
<td>% of damaged building materials / waste developed in construction recycled on site</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>EN 4 Site</td>
<td></td>
<td></td>
<td>3.1</td>
</tr>
<tr>
<td>EN 4.1 Brownfield site</td>
<td>% of proposed site already disturbed / brownfield (previously developed)</td>
<td>100</td>
<td>1.0</td>
</tr>
<tr>
<td>EN 4.2 Neighbouring buildings</td>
<td>No neighbouring buildings negatively affected (access to sunlight, daylight, ventilation) (100%)</td>
<td>100</td>
<td>1.0</td>
</tr>
<tr>
<td>EN 4.3 Vegetation</td>
<td>% of area/area covered in vegetation (include green roofs, internal planting) relative to whole site</td>
<td>25</td>
<td>0.3</td>
</tr>
<tr>
<td>EN 4.4 Food gardens</td>
<td>Food gardens on site (100%)</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>EN 4.5 Landscape inputs</td>
<td>% of landscape that does not require mechanical equipment (ie lawn cutting) and or artificial inputs such as weed killers and pesticides</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>EN 5 Materials & Components</td>
<td></td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>EN 5.1 Embodied energy</td>
<td>Materials with high embodied energy (aluminium,plastics) make up less than 1% of weight of building (100%)</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>EN 5.2 Material sources</td>
<td>% of materials and components by volume from grown sources (animal/plant)</td>
<td>20</td>
<td>0.2</td>
</tr>
<tr>
<td>EN 5.3 Ozone depletion</td>
<td>No materials and components used requiring ozone depleting processes (100%)</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>EN 5.4 Recycled / reuse</td>
<td>% of materials and components (by weight) reused / from recycled sources</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>EN 5.5 Construction process</td>
<td>Volume/area of site disturbed during construction less than 2X volume/area of new building (100%)</td>
<td>80</td>
<td>0.8</td>
</tr>
</tbody>
</table>
10.10 Appendix F : List of Figures

Fig. 2.1: Thought map (author)

Fig. 3.1: City: Pretoria. Map of Gauteng (author)
Fig. 3.2: Campus: Arcadia. Aerial photograph of the inner city obtained from the Department of Geographical Information Systems at the University of Pretoria 2006 (author)
Fig. 3.3: The concept of Incubation. Diagram depicting the concept of incubation (author)
Fig. 3.4: Site. Aerial photograph of the Arcadia Campus obtained from the Department of Geographical Information Systems at the University of Pretoria 2006 (author)
Fig. 3.5: The logo of Tshwane University of Technology, obtained from their website www.tut.ac.za on the 15th of March 2006 at 18:25.
Fig. 3.6: The location of the three campuses of Tshwane University of Technology within Tshwane. Aerial photograph of the inner city obtained from the Department of Geographical Information Systems at the University of Pretoria 2006 (author)
Fig. 3.7: Current location of interested and affected parties on the city block. Aerial photograph of the inner city obtained from the Department of Geographical Information Systems at the University of Pretoria 2006 (author)

Fig. 4.1: Shopping = … (Loeng 2001:136)
Fig. 4.2: Shopping = Airport; Church (Loeng 2001:137)
Fig. 4.3: Shopping = Train Station (Loeng 2001:138)
Fig. 4.4: Shopping = Underground (Loeng 2001:139)
Fig. 4.5: Shopping = Education (Loeng 2001:141)
Fig. 4.6: Shopping = City (Loeng 2001:152)
Fig. 4.7: City = Mall (Loeng 2001:153)
Fig. 4.8: Government = Shopping (Loeng 2001:142)
Fig. 4.9: Shopping = Hospital; Military (Loeng 2001:143)
Fig. 4.10: Duanne Hanson – Young Shopper (Chung 2001:50)
Fig. 4.11: Architecture’s Elite. (Herman 2001:392)
Fig. 4.12: It’s not a mall… (Herman 2001:394)
Fig. 4.13: Shopping Projects by High Architects. (Herman 2001:394)

Fig. 4.14: Jane Jacobs on the Streets of New York. (McMorrough 2001:370)
Fig. 4.15: Conceptual Sketch of South Street Seaport, New York City. 1981. (McMorrough 2001:379)
Fig. 4.16: Conceptual Sketch of Madison Avenue Mall, New York City. 1971. (McMorrough 2001:375)

Fig. 5.1: Location of Gauteng in Africa (author)
Fig. 5.2: Location of Gauteng in South Africa (author)
Fig. 5.3: Location of the Tshwane Metropolitan in Gauteng (author)
Fig. 5.4: Location of Site in the Tshwane Metropolitan Region (author)
Fig. 5.5: Location of Site in the City Grid (author)
Fig. 5.6: Location of Site in Study Area (author)
Fig. 5.7: Structuring Elements. Aerial photograph of the inner city obtained from the Department of Geographical Information Systems at the University of Pretoria 2006 (author)
Fig. 5.8: Historical Fabric of the Inner City of Tshwane (Le Roux 1991)
Fig. 5.9: Building Block 2. (City of Tshwane 2005:18) (author)
Fig. 5.10: Site location within the GAPP framework (author)
Fig. 5.11: Site location within the MDC framework (Urban Solutions 2005:5)
Fig. 5.12: College Building. Photograph of the Southern Façade of the College Building Designed by Gordon Leith, 1929 (author)
Fig. 5.13: The College Building 1930 (Oberholzer 2002:37)
Fig. 5.14: The Main Building (Oberholzer 2002:51)
Fig. 5.15: Photograph of the North and Middle Blocks (author)
Fig. 5.16: Photograph of space between the South and Middle Block (author)
Fig. 5.17: Photograph of the East Block (author)
Fig. 5.18: Photograph of the East Block and Science Building (author)
Fig. 5.19: Photograph of Carburettor City and Science Building (author)
Fig. 5.20: Photograph of links between East Block and Science Building (author)
Fig. 5.21: National and Regional Connections to the Site (author)
Fig. 5.22: East Facing Photograph taken from the ABSA Building (author)
Fig. 5.23: Local Area – Movement and Access. Aerial photograph of the inner city obtained from the Department of Geographical Information Systems at the University of Pretoria 2006 (author)
Fig. 5.24: Local Area – Land-use, Activity and Features. Aerial photograph of the inner city obtained from the Department of Geographical Information Systems at the University of Pretoria 2006 (author)
Fig. 5.25: Historical Fabric surrounding the Site. (author)
Fig. 5.26: Site Area. Aerial photograph of the inner city obtained from the
 Department of Geographical Information Systems at the University
 of Pretoria 2006 (author)
Fig. 5.27: Site Area – Land Use and Activities (author)
Fig. 5.28: Site Area – Built Environment (author)
Fig. 5.29: Site Area – Pedestrian Movement (author)
Fig. 5.30: Site Area – Vehicular Movement (author)
Fig. 5.31: Site Area – Urban Design Informants (author)
Fig. 5.32: Figure ground of existing. Obtained from Morne Pienaar 2004.
Fig. 5.33: Existing (author)
Fig. 5.34: Figure ground of future vision. Obtained from Morne Pienaar 2004
 (author)
Fig. 5.35: Vision (author)

Fig. 6.1: Zoning Diagram (author)

Fig. 7.1: Main Courtyard @ 44 Stanley Avenue (author)
Fig. 7.2: Personalized signage and sun shading (author)
Fig. 7.3: Attention to detail (author)
Fig. 7.4: Staircases linking retail with offices (author)
Fig. 7.5: 44 Stanley Avenue (author)
Fig. 7.6: Secondary courtyard (author)
Fig. 7.7: Open toilets (author)
Fig. 7.8: Existing brickwork kept (author)
Fig. 7.9: Western courtyard (author)
Fig. 7.10: Creating windows of intrigue (author)
Fig. 7.11: Keeping and exposing the existing structure (author)
Fig. 7.12: Courtyard leading to tenant parking (author)
Fig. 7.13: View over main courtyard (author)
Fig. 7.14: Fingerprint identification system (author)
Fig. 7.15: Conference facilities (author)
Fig. 7.16: Tribute to innovation (author)
Fig. 7.17: Knowledge Centre (author)

Fig. 7.18: Enterprise Building (author)
Fig. 7.19: Display Panels (author)
Fig. 7.20: Europa@hub (author)
Fig. 7.21: Church Street Facade of Nedbank Building (author)
Fig. 7.22: Windows (author)
Fig. 7.23: Water Fountain (author)
Fig. 7.24: Three Tiers (author)
Fig. 7.25: Floating Roof (author)
Fig. 7.26: Inhyambane Market – Courtyard (Gary White)
Fig. 7.27: Inhyambane Market - Stalls under trees (Gary White)
Fig. 7.28: Inhyambane Market - Roofed areas (Gary White)
Fig. 7.29: Inhyambane Market - Displays of goods (Gary White)
Fig. 7.30: Inhyambane Market – Courtyard (Gary White)
Fig. 7.31: Law Faculty - Ground floor circulation (author)
Fig. 7.32: Law Faculty - South facade (library) (author)
Fig. 7.33: Law Faculty - Library circulation (author)
Fig. 7.34: Law Faculty - Suspended services (author)
Fig. 7.35: Law Faculty – Stairs (author)
Fig. 7.36: Law Faculty – Staircase (author)

Fig. 8.1: Palisade fencing surrounding the campus (author)
Fig. 8.2: Identification of Phase I & II (author)
Fig. 8.3: Land Use for Campus (author)
Fig. 8.4: Existing Connections through the site (author)
Fig. 8.5: Proposed Location of Public Square (author)
Fig. 8.6: Demolition (author)
Fig. 8.7: Elevation of existing (author)
Fig. 8.8: Site Forces (author)
Fig. 8.9: Section through site A (author)
Fig. 8.10: Section through site B (author)
Fig.8.11: General Strategy (author)
Fig.8.12: Exploration of movement patterns (author)
Fig.8.13: Investigating hierarchies (author)
Fig.8.14: Exploration of corner (author)
Fig.8.15: Exploration of urban gateway (author)
Fig.8.16: Conceptual plans of Market and Administration Block (author)
Fig.8.17: Conceptual Model (author)
Fig.8.18: Built Environment Before (author)
Fig.8.19: Built Environment After (author)
Fig.8.20: Pedestrian Network Before (author)
Fig.8.21: Pedestrian Network After (author)
Fig.8.22: Vehicular Network Before (author)
Fig.8.23: Vehicular Network After (author)

Fig.9.1: Conceptual Model of Design - Photo of Model (author)
Fig.9.2: Brickwork – Melrose Arch, Johannesburg (author)
Fig.9.3: Glazing - London (author)
Fig.9.4: Glazing - London (author)
Fig.9.5: Glazing - London (author)
Fig.9.6: Shop front – Design Quarter, Johannesburg (author)
Fig.9.7: Stairs – Law Faculty, University of Pretoria (author)
Fig.9.8: Stainless Steel Balustrade - Melrose Arch, Johannesburg (author)
Fig.9.9: Glazing Detail – Spider fixing, London (author)
Fig.9.10: Column Structure (author)
Fig.9.11: Beam Structure (author)
Fig.9.12: Slab Structure (author)
Fig.9.13: Stormwater Drainage (author)
Fig.9.14: Waterproofing (author)
Fig.9.15: Conceptual Model – Investigating Service Cores (author)
Fig.9.16: Conceptual Model – Investigating Service Cores (author)
Fig.9.17: Conceptual Model – Investigating Service Cores (author)
Fig.9.18: MCM Unit (author)

Fig.9.19: Split Units - Western block (author)
Fig.9.20: Split Units - Eastern block (author)
Fig.9.21: Hideaway Unit (author)
Fig.9.22: Hideaway Units - Study centre (author)
Fig.9.23: Extraction from kitchens (author)
Fig.9.24: Fire Strategy (author)

Fig.10.1: Site Area - Environmental Context. Aerial photograph of the site obtained from the Department of Geographical Information Systems at the University of Pretoria 2006 (author)
Fig.10.2: Legal Context – Diagram depicting buildings to be demolished (author)
Fig.10.3: Legal Context – Building 1 (author)
Fig.10.4: Building 1 – Corner of Church Street and Nelson Mandela Boulevard (author)
Fig.10.5: Legal Context – Building 2 (author)
Fig.10.6: Building 2 – Church Street Façade (author)
Fig.10.7: Legal Context – Building 3 (author)
Fig.10.8: Building 3 – Nelson Mandela Boulevard Entrance (author)
Fig.10.9: Legal Context – Building 4 (author)
Fig.10.10: Building 4 – View of building from Nelson Mandela entrance to the campus (author)
Fig.10.11: Building 4 – Church Street Façade (author)
Fig.10.12: Legal Context – Building 5 (author)
Fig.10.13: Building 5 – Church Street Façade (author)
Fig.10.14: Legal Context - Building 6 (author)
Fig.10.15: Building 6 – Wall dividing Tshwane North College and Tshwane University of Technology (author)
10.11 Appendix H : Bibliography

Articles

Books

Frameworks

Internet Sources

Interviews

- ENGELBRECHT, Piet. Interview conducted on the 10th of May 2006 at 09:00. *Buildings and Estates/Geboue en Terreine*
 E-mail: engelbrechtp@tut.ac.za
 Tel: 086 112 121
 Cell: 012 382 4501
- MABOYA, Nkhulu. Interview conducted on the 8th of May 2006 at 09:00.
 Contact Details:
 E-mail: nmaboya@theinnovationhub.com
 Tel: (012) 844 0027
 Cell: 072 808 3162
- PRINS, Esta. Interview conducted on the 15th of March 2006 at 10:30.
 Contact Details:
 E-mail: estap@tshwane.gov.za
 Tel: (012) 358 7942
- STEDMAN, Pepe. Interview conducted on the 13th of September 2006 at 10:00.
 Contact Details:
 Address: 39 Webber Street, Selby, Johannesburg.
 Cell: 082 458 3335
- VENTER, Ronel. Interview conducted on the 10th of May 2006.
 Cell: 082 868 2546