Geochemical exploration for base metal sulphide deposits in an arid environment (eastern Namaqua Metamorphic Province), South Africa

by

Reza Ghavami-Riabi

Submitted in partial fulfilment of the requirements for the degree

DOCTOR OF PHILOSOPHY

in the Faculty of Natural & Agricultural Science
University of Pretoria

Pretoria

August 2006
ABSTRACT

The massive sulphide deposits at Areachap and Kantienpan Cu-Zn Mine are hosted by a ~1600 Ma old volcano sedimentary succession known as the Areachap Group, in the eastern part of Namaqua Metamorphic Province, South Africa. The deposits were affected by a complex deformation and metamorphic history and represent examples of upper amphibolite to granulite grade metamorphosed volcanic-hosted massive sulphide (VHMS) deposits. The host rocks of both ore deposits are peraluminous-gneisses and the dominant sulphide minerals in the ore zone are pyrite, pyrrhotite sphalerite, and chalcopyrite and trace amounts of galena. Other ore related minerals include barite and anhydrite. The metamorphic minerals in the alteration zones at the Areachap and Kantienpan VHMS deposits are characterized by the presence of plagioclase, almandine and pyrope, enstatite and clinoenstatite, cummingtonite and gedrite, cordierite, sillimanite, and retrograde chlorite and chamosite.

Lithogeochemical methods are widely used in exploration geochemistry to identify the primary alteration zones related to VHMS mineralization, as these zones are often exposed, while the massive sulphide ore body itself may be concealed. Especially in areas that were not affected by high grade metamorphism and intensive deformation. Some of these methods include the variation in the relative abundance of major element concentrations throughout the rock successions, mineral chemistry of silicates and spinel minerals near the ore zone, and normative compositions of the rock successions. However, the application of these methods is limited by complex geology in regional metamorphic terranes, such as the Namaqua Metamorphic Province. Therefore, in addition, three of the more advanced lithogeochemical approaches, known as the Isocon method, the Box Plot and Pearce Elemental Ratios, are combined here and adapted for application in such regions.
Based on the mineral chemistry, it is evident that plagioclase is more Ca-rich adjacent to the ore zone, pyroxene has the highest relative Mg* ratio (Mg* ratio = 100 x cationic ratio of Mg / (Mg + Fe + Ca)), the almandine and pyrope components of garnet are high and the spessartine and grossular components are low. In addition, the Mg-rich variety of mica (phlogopite) is more common near the ore zone and the peraluminous nature of the footwall zone is revealed by the presence of gahnite. Cordierite and retrograde chlorites show the highest Mg#’s (Mg# = Mg/ (Mg + Fe)) in the ore zone. In addition to the above, Pearce Element Ratio analyses of cordierite, pyroxene and garnet may be used to define proximity to sulphide mineralization.

Geochemically, the ore zone and alteration zones at Areachap and Kantienpan VHMS ore deposits display a high peraluminous ratio (Al2O3 / (Na2O+K2O+CaO)) confirming the peraluminous nature of these zones as indicated by the mineral chemistry discussed above. The intervals identified in sampled borehole core with low CaO and Na2O and with high MgO and K2O contents represent the alteration zone in the original footwall rocks of the deposit. Isocon studies have shown that the alteration zones at the Areachap and Kantienpan deposits are enriched in Mg, Fe (total), S, Zn, Si, Co and F and depleted in Na, Ca, Sr, Ni, V and La. Elements that behaved relatively immobile include Zr, Ti, P, Mn, Al, Y, and U.

The box plot, alteration index versus the chlorite-carbonate-pyrite index, was originally proposed to illustrate the combined effects of hydrothermal and diagenetic alteration and is based on characteristic primary mineral reactions in regions not affected by regional metamorphism. It is demonstrated here that these primary mineral reactions are preserved in a unique set of metamorphic minerals, and that the box plot can be modified for high-grade metamorphic rock types. When samples with very high Mg contents (MgO>>K2O, AI>90% and CCPI>98%) are plotted in the box plot they may be classified as representative of anomalous areas that are highly prospective. Samples with high Mg contents (MgO>K2O, AI>64% and CCPI>93%) may be considered representative of areas that may be classified as of moderate priority in an exploration programme.

The findings of the mineral chemical and geochemical investigations of the footwall alteration at the Kantienpan, Areachap and Prieska Cu-Zn ore bodies are used to
define various statistical factors. The applicability of these factors in lithogeochemical exploration is demonstrated by calculating the respective factor scores for a regional lithogeochemical data set. It is demonstrated how these factors could be used to identify samples collected from localities that are highly prospective for the discovery of concealed VHMS style mineralization.

Based on the statistical analyses of the regional data set, the altered rocks may be distinguished from the metapelitic rocks by their high scores for the alteration factor and low scores for the peraluminous factor. The peraluminous rocks may be separated from the hornblende-gneisses by their high scores for the peraluminous factor, and from the amphibolites by their very low ortho-amphibolite factor scores and high peraluminous factor scores.

The variation, of trace elements in the surface calcrete layer that conceals the mineralization in the studied areas, displays the geochemical signature of mineralization, but the concentrations of Cu, Zn and Pb are much lower at and near surface and increase down depth within the profiles. The absolute concentrations and peak to background ratios of the elements of interest at the surface therefore depend on the thickness of the underlying calcrete layer in the area.

Two methods, a total analysis (x-ray fluorescence, XRF) and partial extraction (NH₄EDTA solution), were applied in to evaluate results, which would be successful and commercially viable in a general exploration programme, using regolith samples. The results of the two methods above were then compared to another patented partial extraction method (mobile metal ion, MMI) on a data set previously reported on by Rossouw (2003). At Kantienpan, where the sand cover is very shallow to absent, dispersion appears to be more related to the secondary redistributions of gossaniferous clasts, than to dispersion of mobile metal ions on the surface of sand particles. The XRF method shows a wider dispersion halo here than methods based on partial extraction. Whereas, at Areachap, where a relatively thick sand (approximately one metre) covers the calcrete layer, partial extraction (based on a NH₄EDTA solution extraction) results in a larger, recognizable, dispersion halo than that detected by XRF. The MMI results show a larger span for Zn, followed by NH₄EDTA and finally

III
XRF. For Cu, the NH₄EDTA method exhibits the largest span followed by XRF and then MMI.

The anomalous Cu, Zn and Pb contents extracted by partial extraction methods from the wind blown sand deposits indicate that these elements were derived from the ore minerals related to the massive sulphide deposits. However, Mn and Fe contents analysed by XRF also show high values that could not be only related to derivation from massive sulphide ores. Some of the high concentrations of these elements in the sand cover is ascribed to the weathering of other iron-rich rock forming minerals.
CONTENTS

<table>
<thead>
<tr>
<th>Chapter 1: Introduction</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1. Purpose of the investigation</td>
<td>1</td>
</tr>
<tr>
<td>1.2. Locality of the study area</td>
<td>1</td>
</tr>
<tr>
<td>1.3. The method of investigation</td>
<td>3</td>
</tr>
<tr>
<td>1.4. Acknowledgements</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 2: Geology of the Upington Terrane, Eastern Namaqua Province</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1. Introduction</td>
<td>5</td>
</tr>
<tr>
<td>2.2. Tectonic setting and regional geological succession</td>
<td>6</td>
</tr>
<tr>
<td>2.3. Regional metamorphism and tectonism</td>
<td>9</td>
</tr>
<tr>
<td>2.4. Regional data set</td>
<td>11</td>
</tr>
<tr>
<td>2.5. Local geology</td>
<td>12</td>
</tr>
<tr>
<td>2.5.1. Lithological succession at Areachap mine</td>
<td>12</td>
</tr>
<tr>
<td>2.5.2. Metamorphism in Areachap Mine</td>
<td>16</td>
</tr>
<tr>
<td>2.5.3. The sulphide minerals in defunct Areachap mine</td>
<td>16</td>
</tr>
<tr>
<td>2.5.4. Lithological succession of the Kantienpan deposit</td>
<td>17</td>
</tr>
<tr>
<td>2.6. Geomorphological evolution</td>
<td>19</td>
</tr>
<tr>
<td>2.7. Calcrete environments</td>
<td>22</td>
</tr>
<tr>
<td>2.7.1. Definition of calcrete</td>
<td>22</td>
</tr>
<tr>
<td>2.7.2. Calcrete classification</td>
<td>23</td>
</tr>
<tr>
<td>2.7.3. Mineralogy of calcretes</td>
<td>24</td>
</tr>
<tr>
<td>2.7.4. Mechanism of carbonate accumulation</td>
<td>25</td>
</tr>
<tr>
<td>2.7.5. Calcrete in the study area</td>
<td>26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 3: Literature review of VHMS deposits and related lithogeochemical alteration</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1. Introduction</td>
<td>29</td>
</tr>
<tr>
<td>3.2. Classification and geological setting of VHMS deposits</td>
<td>29</td>
</tr>
<tr>
<td>3.3. Classification of metamorphosed massive sulphide deposits of the Namaqua Province</td>
<td>31</td>
</tr>
<tr>
<td>3.4. Hydrothermal Models for Formation of VHMS deposits</td>
<td>32</td>
</tr>
<tr>
<td>3.4.1. Convection cell model</td>
<td>32</td>
</tr>
<tr>
<td>3.4.2. Stratal aquifer model</td>
<td>32</td>
</tr>
<tr>
<td>3.4.3. Magmatic hydrothermal model</td>
<td>33</td>
</tr>
<tr>
<td>3.5. Mineral zonation in the alteration pipe and ore zone</td>
<td>33</td>
</tr>
<tr>
<td>3.5.1. Mineral variation in the ore zone</td>
<td>33</td>
</tr>
<tr>
<td>3.5.2. Wall rock alteration</td>
<td>35</td>
</tr>
<tr>
<td>3.5.3. Metamorphism of VHMS deposits and their alteration zones</td>
<td>37</td>
</tr>
</tbody>
</table>
3.6. Quantification of chemical changes in altered rocks37
3.6.1. The isocon method ..37
3.6.2. The alteration index and the Chlorite-Carbonate-Pyrite index40
3.6.3. The mineralogical variation index (Pearce Element Ratio (PER) analysis) ...43

Chapter 4: Lithogeochemical investigation ...45
4.1. Introduction ...45
4.2. Sampling, Sample preparation and analytical methods47
4.3. Major element variation near the ore zone ...48
4.3.1. Interpretation of major elements variation adjacent to the ore zone in borehole AP5 (Areachap) ...48
4.3.2. Interpretation of major elements variation near the ore zone in borehole KN11 (Kantienpan) ..52
4.4. Mineral chemistry near the ore zone ..55
4.4.1. The retrograde chlorite ...59
4.5. Identification of Peraluminous rocks close to the ore zone using normative calculations ...60
4.6. Quantification of the degree of alteration in the precursor rocks65
4.7. Development of alteration box plot for high-grade metamorphic rocks73
4.7.1. The location of rock forming minerals in the box plot74
4.7.2. Whole rock analysis and box plot ...76
4.7.3. Combination of isocon results and the box plot80
4.8. Refinement of chemical structure in the upper right corner of the box plot ...81

Chapter 5: Lithogeochemistry as an exploration tool84
5.1. Introduction ...84
5.2. Lithogeochemical interpretation of borehole information85
5.3. Economic element vectors of mineralization86
5.4. Peraluminous, gneiss, and amphibolite factors87
5.4.1. Peraluminous factors ...87
5.4.2. Gneiss factors ...89
5.4.3. Amphibolite factors ..91
5.5. Application of factors to the regional data set92
5.6. Prioritization of the anomalous samples in the regional data set104

Chapter 6: Regolith geochemistry ...117
6.1. Introduction ...117
6.2. The concept of mobile metal ions and selective extraction techniques118
6.2.1. Mobile Metal Ions (MMI) concept ...119
6.2.2. Selective extraction techniques ...121
6.3. Sampling programme ..123
6.4. Selection of the most appropriate extraction reagent124
6.5. Calculation of the threshold value for the anomalous population124
6.5.1. The threshold value for NH4EDTA extraction126
6.5.2. The threshold value for Ca(H2PO4)2 extraction129
6.5.3. The threshold value for MMI-A analyses results133
6.5.4. The threshold value for total analyses (XRF method)134
6.6. Discrimination of concealed ore zones in the surface samples140
6.6.1. Comparison of partial extraction techniques with total analysis method …140
6.6.2. Discrimination of the secondary dispersion haloes in other traverses …156
6.6.3. Discrimination of the secondary dispersion haloes (MMI results, Kantienpan) ……………………………………………………………………………………………………..166
6.6.4. The comparison of NH₄EDTA, MMI and XRF methods ………………….169
6.7. Dispersion of the elements of the interest in the calcrete environment ………..170
6.7.1. Kantienpan calcrete samples ………………………………………………….171
6.7.2. Areachap calcrete samples …………………………………………………..……174
6.7.3. Comparison of calcretes close to the ore zone and further away …………179

Chapter 7: Discussion and conclusion ………………………………………………182
7.1. Lithogeochemical characteristics of the hydrothermal alteration zones in VHMS deposits and vectors for further exploration ………………………………………182
7.2. The Suitability a regolith geochemical survey of non-residual sand deposit cover for detecting concealed mineralization ………………………………………186
7.3. Signature of the mineralization in the calcrete regolith …………………….....187
7.4. An integrated approach to geochemical exploration of arid areas …………..188

References …………………………………………………………………………………191

Appendix A: Cross sections and extra figure ………………………………………...209
Extra Figures ………………………………………………………………………………..219

Appendix B: Microprobe Analysis ………………………………………………………220

Appendix C: Sample preparation and whole rock analysis …………………..…….232
C.1. Sample preparation for XRF Analysis …………………………………………..232
C.1.1. Calibration ……………………………………………………………………….233
C.3. XRF analytical precision and accuracy …………………………………………233
C.4. Results of XRF analyses …………………………………………………………….233

Appendix D: Analytical methods and results of regolith analyses ……………….261
D.1. Regolith samples ………………………………………………………………………261
D.1.1. NH₄NO₃ extraction …………………………………………………………………262
D.1.2. NH₄OAC extraction ……………………………………………………………….264
D.1.3. NH₄EDTA extraction …………………………………………………………….266
D.1.4. Ca (H₂PO₄)₂ extraction …………………………………………………………..270
D.1.5. XRF total analyses ……………………………………………………………..273
D.1.6. Regolith data set of the Kantienpan traverses ………………………………..275
D.1.7. Regolith data set of the Areachap traverses ………………………………..279
D.2. Calcrete samples ………………………………………………………………………282

Appendix E: XRD analyses results ……………………………………………………..300

Appendix F: Confidential agreement with Kumba Resources Limit…………………..306
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Location map</td>
<td>2</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>The location of Namaqua-Natal Province (After Moen, 1999) and the study area</td>
<td>6</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Geological map of the Areachap Group in the eastern part of Namaqua Sub-province</td>
<td>8</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>A cross-section of lithology at Areachap mine including the borehole AP5</td>
<td>14</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Geological map of the Areachap area (after Voet and King, 1986)</td>
<td>14</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Geology map of the Kantienpan area (after Rossouw, 2003) (TDEM: Time domain electro-magnetic conductor)</td>
<td>18</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>Cross-section of borehole KN11 (after Rossouw, 2003)</td>
<td>18</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>The genetic calcrete classification (after Carlisle, 1980)</td>
<td>23</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>An isocon diagram for sample AP5/35 (least altered biotite-gneiss) and AP5/23 (altered biotite-gneiss) from drill hole AP5 in the Areachap area</td>
<td>40</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Field for hydrothermal alteration described in the text (modified after Large et al., 2001)</td>
<td>41</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Field for diagenetic alteration described in the text (after Large et al., 2001)</td>
<td>42</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>K/Ti versus Al/Ti PER diagram of Elura Zn-Pb-Ag deposit (adopted from Whitbread and Moore, 2004)</td>
<td>44</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>A cross-section of lithology at Areachap mine including the borehole AP5 (adopted from Voet and King, 1986) (Sil: sillimanite; Crd: cordierite and Hbl: hornblende)</td>
<td>49</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Variation of CaO through the lithological successions adjacent to the ore zone, at the Areachap deposit (Gneiss1: normal quartzo feldspathic gneiss; Gneiss2: peraluminous rocks; Hbl: Hornblende; Crd: cordierite; Sil: sillimanite)</td>
<td>50</td>
</tr>
</tbody>
</table>
Figure 4.3: Variation of Na$_2$O through the lithological successions hosting the ore zone, at the Areachap deposit (Gneiss1: normal quartzo feldspathic gneiss; Gneiss2: peraluminous rocks; Hbl: Hornblende; Crd: cordierite; Sil: sillimanite) ...50

Figure 4.4: Variation of K$_2$O through the lithological successions adjacent to the ore zone, at the Areachap deposit (Gneiss1: normal quartzo feldspathic gneiss; Gneiss2: peraluminous rocks; Hbl: Hornblende; Crd: cordierite; Sil: sillimanite) ...51

Figure 4.5: Variation of MgO through the lithological successions hosting the ore zone, at the Areachap deposit (Gneiss1: normal quartzo feldspathic gneiss; Gneiss2: peraluminous rocks; Hbl: Hornblende; Crd: cordierite; Sil: sillimanite) ...51

Figure 4.6: Cross-section of borehole KN11 in the Kantienpan area (Sil: sillimanite, Crd: cordierite and Hbl: hornblende) ...52

Figure 4.7: Variation of CaO through the lithological successions adjacent to the ore zone (Hbl: Hornblende; Crd: cordierite; Sil: sillimanite) ..53

Figure 4.8: Variation of Na$_2$O through the lithological successions hosting the ore zone (Hbl: Hornblende; Crd: cordierite; Sill: sillimanite) ..53

Figure 4.9: Variation of K$_2$O through the lithological successions adjacent to the ore zone (Hbl: Hornblende; Crd: cordierite; Sill: sillimanite) ..53

Figure 4.10: Variation of MgO through the lithological successions hosting the ore zone (Hbl: Hornblende; Crd: cordierite; Sill: sillimanite) ..54

Figure 4.11: Variation of Mg and Fe in mica at Areachap (A) and Kantienpan (B), (Ann: Annite and Phl: phlogopite) ...58

Figure 4.12: Variation of Mg, Fe and Ca in the pyroxene, Kantienpan (KN11), (En: enstatite and Fs: ferrosilite) ...56

Figure 4.13: Variation of the Mg number in cordierite, Kantienpan, (KN11), (Hbl: Hornblende; Stri. Sulp.: stringer sulphide; Sil: sillimanite; Crd: cordierite) ...57

Figure 4.14: Chemical components of garnet in the alteration and ore zones, Areachap (AP5), (FW: footwall) ...58

Figure 4.15: Variation of Na and Ca in plagioclase, Kantienpan (KN11) (Ab: albite and An: anorthite) ...56
Figure 4.15: The probability plot of peraluminous ratio based on AP5 and KN11 data set ..63

Figure 4.16: The variation of peraluminous ratio near the ore zone in borehole AP5 (Gneiss1: normal quartz feldspathic gneiss; Gneiss2: peraluminous rocks; Hbl: Hornblende; Crd: cordierite; Sil: sillimanite)64

Figure 4.17: The variation of peraluminous ratio near the ore zone in borehole KN11 (Hbl: Hornblende; Crd: cordierite; Sil: sillimanite)64

Figure 4.18: An isocon diagram between samples AP5/35, the least altered biotite-gneiss, and AP5/29, altered biotite-gneiss, from borehole AP5 in the Areachap area ...67

Figure 4.19: An isocon diagram between samples AP5/35, the least altered biotite-gneiss, and AP5/30, altered biotite-gneiss, from borehole AP5 in the Areachap area ...67

Figure 4.20: An isocon diagram for samples AP5/35 (the least altered biotite-gneiss) and AP5/32 (altered biotite-gneiss) from drill hole AP5 in the Areachap area ..68

Figure 4.21: An isocon diagram between the least altered sample AP5/42 and altered sample AP5/25, altered biotite-gneiss, from borehole AP5 in the Areachap area ..68

Figure 4.22: An isocon diagram for samples KN11/44 (the least altered biotite-gneiss) and KN11/40 (altered biotite-gneiss) from drill hole KN11 in the Kantienpan area ...70

Figure 4.23: Box Plot of mineral compositions from Areachap (AP5 and AP2)75

Figure 4.24: Box Plot of mineral compositions from Kantienpan (KN11 and KN12) ...75

Figure 4.25: Box Plot of whole rock samples from Kantienpan (KN11, KN12 and surface outcrop) ...77

Figure 4.26: The variation of AI and CCPI values in samples from Kantienpan (KN11). Massive sulphide zone indicated in black and alteration zone hatched ...77

Figure 4.27: Box Plot of whole rock samples from Areachap (AP2 and AP5)78
Figure 4.28: Inverted sequence see in drill hole AP5 (Areachap) showing the variation in the AI and CCPI values. Massive sulphide zone indicated in black and alteration zone hatched ...79

Figure 4.29: Box plot with isocon and microprobe results (Kantienpan area, KN1) ..80

Figure 4.30: Box plot with the isocon and microprobe results (Areachap area, AP5) ..81

Figure 4.31: PER analysis for samples from drill holes KN11 and KN12, Kantienpan area. The Mn content of gahnite, cordierite and garnet from the ore zone is higher than in the identified footwall alteration zone. Pyroxene has lower Mn and Fe contents in the ore zone and altered footwall (11/43: borehole KN11/ sample number) ...83

Figure 4.32: PER analysis of boreholes AP2 and AP5 in the Areachap area. The Mn content of Cordierite increases from the altered FW toward ore zone. The Mn content of garnets is higher in ore zone than in footwall alteration zone. No trend is evident in the composition of chlorite and chamosite (5/27: borehole AP5/ sample number) ...83

Figure 5.1: The tree diagram of the peraluminous rocks ..88

Figure 5.2: The tree diagram of the gneissic rocks ...90

Figure 5.3: The tree diagram of the amphibolite rocks ...91

Figure 5.4: The peraluminous factor (FPer) versus alteration factor (FAR), regional data set [189: Kantienpan (Boks); 92*: north west of Upington (UpUp); 426: south of Upington (BeUp)] ...96

Figure 5.5: The pelitic factor (FPR) versus alteration factor (FAR), regional data set [189: south of Kantienpan (Boks); 903: south of Upington (BeUp)]96

Figure 5.6: The peraluminous factor (FPer) versus amphibolite factor (FOrtho-Amp1) for the regional data set [189:south of Kantienpan (Boks); 903:south of Upington (BeUp); 196/: north west of Boksputs (Kant)]98

Figure 5.7: The para-amphibolite factor (Fpara-amp3) versus ortho-amphibolite factor (Fortho-amp1), regional amphibolite and peraluminous data set [196/: north west of Boksputs (Kant); diamond filled: peraluminous and square filled: amphibolite] ...99
Figure 5.8: The para-amphibolite factor (Fpara-amp3) versus general amphibolite factor (Famp2) for the regional amphibolite data set99

Figure 5.9: Biotite-hornblende-gneiss factor (FHbl-Gn) versus peraluminous factor (FPer), combined data set of biotite-hornblende-gneiss and peraluminous samples, regional data set [diamond filled: peraluminous and square filled: biotite-hornblende-gneiss samples] ...100

Figure 5.10: The leucogneiss factor (FLeu-Gn) versus peraluminous factor (FPer), mixed of peraluminous and leuco-gneissic samples, regional data set [diamond filled: peraluminous and square filled: leucogneiss samples] .102

Figure 5.11: The probability plot of whole regional data set for the alteration factor (FAR) ..105

Figure 5.12: The probability plot of anomalous values of the last stage for the alteration factor (FAR), regional data set106

Figure 5.13: Box plot of the final results for the regional data set109

Figure 5.14: The probability plot of Zn contents based on the data in Table 5.9, regional data set ..110

Figure 5.15: The probability plot of Cu contents based on the data in Table 5.9, regional data set ..110

Figure 5.16: The probability plot of Ni contents based on the data in Table 5.9, regional data set ..110

Figure 5.17: Geology of the northern part of the Areachap Group, eastern Namaqua Province ...114

Figure 5.18: The alteration factor versus sample number in-prioritised Traverses, rank one ...115

Figure 5.19: The alteration factor versus sample number in-prioritised traverses, rank two ...115

Figure 6.1: Schematic model of convection cell in connection with mobile metal ions in the secondary environment (after Mann et al., 1997)119

Figure 6.2: Regolith traverses and geology map of the Kantienpan area (after Rossouw, 2003) ...125
Figure 6.3: Regolith traverses and geology map of the Areachap area (after Voet and King, 1986) ...125

Figure 6.4: Probability plot of the log values for Cu (A), Zn (B), Pb (C), Mn (D) and Ba (E), whole Kantienpan regolith data set (ICP-MS method, n=52 samples) ..128

Figure 6.5: Probability plot of the log values for Cu (A), Zn (B), Pb (C), Mn (D) and Fe (E), whole Areachap regolith data set (ICP-MS method, n=61 samples) ..130

Figure 6.6: Probability plot of S, Kantienpan (Ca (H2PO4)2, shaking time of 120-minutes, ICP-MS method) ...131

Figure 6.7: Probability plot of S, Areachap (Ca (H2PO4)2, shaking time 120-minutes, ICP-MS method) ...132

Figure 6.8: Probability plot of the normal and log values for Cu (A) and Zn (B) (MMI method, n=58 samples) ...134

Figure 6.10: Probability plot of Zn based on the regolith traverse KP12 data, Kantienpan, XRF method ...136

Figure 6.9: Probability plot of the normal and log values for Cu (A), Zn (B), Pb (C), MnO (D) and S (E), regolith traverse KP12, Kantienpan (XRF method, n=19 samples) ...137

Figure 6.12: Probability plot of Zn, regolith traverse T2 (XRF method, n=25 samples) ...138

Figure 6.11: Probability plot of the normal and log values for Cu (A), Zn (B), Pb (C), MnO (D), Fe2O3 (E) and S (F), regolith traverse T2, Areachap (XRF method, n=21 samples) ...139

Figure 6.13: Variation of Cu in regolith traverse KP12 based on ICP-MS (A, by using NH4EDTA and 180-minutes shaking times) and XRF analyses (B) ...141

Figure 6.14: Variation of Zn in regolith traverse KP12 based on ICP-MS (A, by using NH4EDTA and 180-minutes shaking times) and XRF analyses (B) ...142

Figure 6.15: Variation of Pb in regolith traverse KP12 based on ICP-MS (A, by using NH4EDTA and 180-minutes shaking times) and XRF analyses (B) ...143

Figure 6.16: Variation of Mn in regolith traverse KP12 based on ICP-MS (A, by using NH4EDTA and 180-minutes shaking times) and XRF analyses (B) ...144
Figure 6.17: Variation of S in regolith traverse KP12 based on ICP-MS (A, by using
NH₄EDTA and 180-minutes shaking times) and XRF analyses (B) ……145

Figure 6.18: Variation of Cu in the regolith traverse T2 based on ICP-MS (A)
(NH₄EDTA, 180-minutes shaking times) and XRF (B) analysis ………148

Figure 6.19: Variation of Zn in the regolith traverse T2 based on ICP-MS (A)
(NH₄EDTA, 180-minutes shaking times) and XRF (B) analysis ………149

Figure 6.20: Variation of Pb in the regolith traverse T2 based on ICP-MS (A)
(NH₄EDTA, 180-minutes shaking times) and XRF (B) analysis ………150

Figure 6.21: Variation of Mn in the regolith traverse T2 based on ICP-MS (A)
(NH₄EDTA, 180-minutes shaking times) and XRF (B) analysis ………151

Figure 6.22: Variation of Fe in the regolith traverse T2 based on ICP-MS (A)
(NH₄EDTA, 180-minutes shaking times) and XRF (B) analysis ………152

Figure 6.23: Variation of S in the regolith traverse T2 based on ICP-MS (A)
(NH₄EDTA, 180-minutes shaking times) and XRF (B) analysis ………153

Figure 6.24: Variation of Cu (A) and Zn (B) in the regolith traverse KP5 (Kantienpan)
based on ICP-MS analysis (using NH₄EDTA and 180-minutes shaking
times) …………………………………………………………………...157

Figure 6.25: Variation of Mn in the regolith traverse KP5 (Kantienpan) based on ICP-MS
analysis (using NH₄EDTA and 180-minutes shaking times) ………158

Figure 6.26: Variation of Cu (A) and Zn (B) in the regolith traverse KP8 based on
ICP-MS analysis (using NH₄EDTA solutions and 180-minutes shaking
times) …………………………………………………………………...159

Figure 6.27: Variation of Mn in the regolith traverse KP8 based on ICP-MS analysis
(using NH₄EDTA solutions and 180-minutes shaking times) ………160

Figure 6.28: Variation of Cu (A) and Zn (B) in the regolith traverse T1 based on ICP-MS
analysis (NH₄EDTA, 180-minutes shaking times) ………………..161

Figure 6.29: Variation of Pb (A) and Mn (B) in the regolith traverse T1 based on ICP-MS
analysis (NH₄EDTA, 180-minutes shaking times) ………………..162

Figure 6.30: Variation of Cu (A) and Zn (B) in the regolith traverse T3 based on ICP-MS
analysis (NH₄EDTA, 180-minutes shaking times) ………………..164

Figure 6.31: Variation of Pb (A) and Mn (B) in the regolith traverse T3 based on ICP-MS
analysis (NH₄EDTA, 180-minutes shaking times) ………………..165
Figure 6.32: Variation of Cu (A) and Zn (B) in the regolith traverse 7800NW, MMI method (Sil: sillimanite; Crd: cordierite and Hbl: hornblende)167

Figure 6.33: Variation of Cu (A) and Zn (B) in the regolith traverse 7700NW, MMI method ...168

Figure 6.34: The calcrete layer in an old excavation at Areachap. Calcrete profile Calc1 (A), Calc2 (B) and a gossan rock with malachite and calcrete-filled veinlets at the bottom of calcrete layer (C)175

Figure 6.35: Major oxides variation versus depth in the Areachap (visually cleaned samples referred to as Calc1) ...176

Figure 6.36: Variation of Cu, Zn, Pb and S versus depth in the calcrete layer, Areachap (visually cleaned samples referred to as Calc1)177

Figure 6.37: Major oxides variation versus depth (visually cleaned samples referred to as Calc2) in Areachap ..178

Figure 6.38: Variation of Cu, Zn, Pb and S versus depth in the calcrete layer, Areachap (visually cleaned samples referred to as Calc2)179

Figure 6.39: Variation of trace elements (A and B) and major components (C) of calcrete samples close to ore deposit and further away from the mineralized zone ...180

Figure A.1: Cross section includes borehole AP2 and sample locations210

Figure A.2: Cross section includes borehole AP5 and sample locations211

Figure A.3: Cross section includes borehole KN12 and sample locations212

Figure A.4: Cross section of KN11 and location of samples217

Figure A.5: Geology map of the Kantienpan area (after Rossouw, 2003) and locations of rock samples (TDEM: Time domain electro-magnetic conductor) ...219

Figure A.6: Box plot of final results of regional data set (Figure 5.18)219

Figure D.1: Optimization of the shacking times and concentrations for Zn (A and C), Cu (B and D) and Pb (E and F) within and outside of the halo, NH₄EDTA method ...269

Figure D.2: Optimization of the shacking times and concentrations of S for sample from inside of the halo, Ca (H₃PO₄)₂ method272

Figure D.3: Flow chart of the separation of magnetic and non-magnetic parts of calcrete samples [(in bracket): sample number for XRF analysis]283

Figure E.1: XRD result for original sample KPR12/4301
Figure E.2: XRD result for sample Non-Mag 1301
Figure E.3: XRD result for sample Non-Mag 2302
Figure E.4: XRD result for sample Non-Mag 3302
Figure E.5: XRD result for sample Mag 1303
Figure E.6: XRD result for sample Mag 2303
Figure E.7: XRD result for sample Mag 3304
Figure E.8: XRD result for sample Mag 4304
Figure E.9: XRD result for sample Mag 5305
List of Tables

Table 2.1: Regional succession of Copperton Formation ..7
Table 2.2: Regional succession of Jannelsepan Formation in Upington area8
Table 2.3: Regional succession of Boksputs Formation in Van Wykspan area9
Table 2.4: Summary of geomorphic events ..20
Table 2.5: Classification of calcrete based on the weather conditions (after Khadkikar et al., 2000) ..25
Table 2.6: Different Formations of the Kalahari Group. Data summarised from Malherbe (1984) ...27
Table 4.2: Chemical composition of spinel grains from Kantienpan59
Table 4.3: The chemical composition of chlorite grains near the ore zone from Areachap and Kantienpan ...60
Table 4.4: Peraluminous ratio, normative corundum value and minerals present in AP5 and KN11 ...62
Table 4.5: The number of population, percentage, and threshold value for peraluminous ratio ...63
Table 4.6: Percentage of gains and losses in borehole AP5 and Δ values for Areachap samples. Sample AP5/35 is assumed to be the malted precursor for altered samples AP5/23, 29, 30, and 32 (Isocon line based on Zr)69
Table 4.7: Percentage of gains and losses in borehole AP5 and Δ values for Areachap sample. Sample AP5/42 is assumed to be the malted precursor for altered sample AP5/25 (Isocon line based on Zr)71
Table 4.8: Percentages of gains and losses in borehole KN11 and Δ values for Kantienpan samples. Sample KN11/44 is considered to be the malted precursor for altered sample KN11/40 (Isocon line based on Zr)72
Table 4.9: The least altered and altered samples based on the isocon Analysis80
Table 5.1: Sorted data set based on the peraluminous factor (FPer) for the regional data set

Table 5.2: Sorted data set based on the alteration factor (FAR) for the regional data set

Table 5.3: Sorted data set based on the pelitic factor (FPR) for the regional data set

Table 5.4: Sorted data set based on peraluminous factor and calculation of amphibolite factor for the regional data set

Table 5.5: Sorted the peraluminous factor (FPer) and calculation of biotite-hornblende-gneiss factor for the regional data set

Table 5.6: Sorted the peraluminous factor (FPer) and calculation of the leucogneiss for the regional data set

Table 5.7: The threshold value for each factor, regional data set (n= 2016 samples)

Table 5.8: The threshold value for peraluminous and alteration factors, regional data set (n= 975 samples)

Table 5.9: The sample numbers and localities for anomalous samples with selected chemical data

Table 5.10: The threshold value for Zn, Cu and Ni, regional data set (n= 57 samples)

Table 5.11: Ranking the anomalous values based on MgO & K₂O contents, peraluminous ratio, AI, CCPI, FAR and FPer

Table 6.1: Different extractants classified be acidity (sequential leaching process and/or selective leaches)

Table 6.2: Some other extractants for selective leaching

Table 6.3: Selective extraction methods for Cu, Zn, Pb, Cd and S in the soil

Table 6.4: Results of the normality test for the data from Kantienpan (ICP-MS method, n = 52)

Table 6.5: The threshold values of elements in the Kantienpan data set (ICP-MS method, n=52 samples)
Table 6.6: The results of the normality test for the data set from Kantienpan (ICP-MS method, n = 52) ...129

Table 6.7: The threshold values for whole Areachap data set (NH₄EDTA method, n=61) ...129

Table 6.8: The normality test of distribution of S in Kantienpan data set (ICP-MS method, n = 33 samples) ...131

Table 6.9: S values for samples within and outside the halo and blank sample, Kantienpan and Areachap ...131

Table 6.10: The threshold values of S for the Kantienpan data set (ICP-MS method, n=33 samples) ...132

Table 6.11: The normality test for the distribution of S in the Areachap data set (ICP-MS method, n = 21 samples) ..132

Table 6.12: The threshold values of S for the Areachap data set (ICP-MS method, n=21 samples) ...133

Table 6.13: Results of the normality test (MMI method, n = 58 samples)133

Table 6.14: The threshold values of Cu and Zn (MMI method, n=58 samples)134

Table 6.15: Results of the normality test for regolith traverse of KP12 (XRF method, n = 19) ...135

Table 6.16: Threshold values for regolith traverse KP12 (XRF method, n=19)135

Table 6.17: The threshold value of Zn for regolith traverse KP12 (XRF analysis, n=19 samples) ...136

Table 6.18: Results of the normality test for regolith traverse of T2 (XRF method, n = 25) ...136

Table 6.19: Threshold values for regolith traverse T2 (XRF method, n=25)138

Table 6.20: Threshold values for Zn, regolith traverse T2 (XRF method, n=25 samples) ...138

Table 6.21: Anomaly to background ratio of different analytical methods for Cu, Zn, Pb, Mn and S ...169
Table 6.22: The comparison of major and trace elements in original, magnetic and non-magnetic parts of calcrete sample KP12/4, Kantienpan (A: ampere) ...172

Table 6.23: Mineralogical ratios of the more common minerals in magnetic and non-magnetic part of the calcrete ...173

Table 6.24: The comparison of major oxides and trace elements of interest in visually cleaned parts of calcrete samples in the Kantienpan (A: ampere; *: semi-quantitative analyses) ...174

Table 6.26: Chemical composition of visually cleaned calcretes near the ore zone (Calc1-3 and Calc2-3 at Areachap) and further away from the mineralized zone (Vcal2 and Vcal3) ...180

Table A.1: Depth of samples in drill hole AP2, Areachap210
Table A.2: Depth of samples in drill hole AP5, Areachap211
Table A.3: Depth of samples in drill hole KN12, Kantienpan212
Table A.4: Lithological description of borehole KN12 (Rossouw, 2003)213
Table A.5: Lithological description of borehole KN7 (Rossouw, 2003)214
Table A.6: Lithological description of borehole KN3 (Rossouw, 2003)215
Table A.7: Lithological description of borehole KN2 (Rossouw, 2003)216
Table A.8: Depth of samples in drill hole KN11, Areachap217
Table A.9: Lithological description of borehole KN11 (Rossouw, 2003)218
Table B.1: Chemical composition of feldspar grains adjacent to the ore zone (Areachap and Kantienpan) ...221
Table B.2: Chemical composition of pyroxene grains near the ore zone (Areachap and Kantienpan) ...222
Table B.3: Chemical composition of cordierite grains close to the ore zone (Areachap and Kantienpan) ...223
Table B.4: Chemical composition of garnet grains adjacent to the ore zone (Areachap) ...224
Table B.5: Chemical composition of biotite grains near the ore zone (Areachap and Kantienpan) ...224
Table B.6: Chemical composition of gahnite (spinel group) grains close the ore zone (Kantienpan) ...225
Table B.7: Chemical composition of chlorite grains near the ore zone (Areachap and Kantienpan) ...225
Table B.8: Chemical composition and unit formulae of plagioclase grains close to the ore zone (Areachap and Kantienpan)226
Table B.9: Chemical composition and unit formulae of pyroxene grains close to the ore zone (Areachap and Kantienpan)227
Table B.10: Chemical composition and unit formulae of cordierite grains near the ore zone (Areachap and Kantienpan)229
Table B.11: Chemical composition and unit formulae of garnet grains near the ore zone (Areachap) ...230
Table B.12: Chemical composition and unit formulae of biotite grains near the ore zone (Areachap and Kantienpan) ...231
Table C.1: Standard deviation and detection limit of XRF analysis234
Table C.2: XRF analytical results for samples from borehole AP5 (Areachap)235
Table C.3: XRF analytical results for samples from borehole AP2 (Areachap)241
Table C.4: XRF analytical results from surface (Kantienpan)245
Table C.5: XRF analytical results for samples from borehole KN12 (Kantienpan) .247
Table C.6: XRF analytical results for samples from borehole KN11 (Kantienpan) .253
Table D.1: ICP-MS analytical results of wind blown sand samples (5 gram sample + 50 ml of 0.2 M NH₄NO₃ solution, 30 minute shaking times)263
Table D.2: Results of statistical analysis on duplicate samples and the null hypothesis (0.2 M NH₄NO₃ solution, 30 min shaking time, n=16)264
Table D.3: ICP-MS analytical results of sand samples (2.5 gram sample + 45 ml of 1 M NH₄OAC solution, different shaking times)265
Table D.4: Results of statistical analysis on duplicate samples and null hypothesis (1 M NH₄OAC solution, different shaking time, n=13)266
Table D.5: ICP-MS analytical results of sand samples (2 gram sample + 50 ml of 0.02 M NH₄EDTA solution, different shaking times)267
Table D.6: Results of statistical analysis on duplicate samples and null hypothesis (1 M NH₄EDTA solution, different shaking time, n=9)268
Table D.7: ICP-MS analytical results of sand samples for sulphur (5 grams sample + 50 ml of 0.02 M Ca (H₂PO₄)₂ solution, 120-minute shaking times)271
Table D.8: Results of statistical analysis on duplicate samples and null hypothesis (0.02 M Ca (H₂PO₄)₂ solution, different shaking times, n=12)271
Table D.9: ICP-MS analytical results of sand samples for S for different shaking times (5 gram sample + 50 ml of 0.02 M Ca (H₂PO₄)₂ solution)272
Table D.10: XRF analytical results of regolith sampling traverse KP12 for the <75 μ size fraction ...273
Table D.11: XRF analytical results of regolith sampling traverse T2 for the <75 μ finest size fraction ..274
Table D.12: ICP-MS results of regolith sampling traverse KP12 (0.02 M Ca (H₂PO₄)₂ solutions for S, shaking time: 120-minutes, and 0.02 M NH₄EDTA solutions for the rest of the elements shaking time 180-minutes)275
Table D.13: ICP-MS results of regolith sampling traverse KP5 (0.02 M NH₄EDTA solutions for Cu, Zn, Pb, Ba, Mn and Fe, shaking time: 180-minutes) ..276
Table D.14: ICP-MS results of regolith traverse KP8 (0.02 M NH₄EDTA solutions for Cu, Zn, Pb, Ba, Mn and Fe, shaking time: 180-minutes)277
Table D.15: MMI results of regolith traverses 7700NW and 7800NW for Cu and Zn (Rossouw, 2003) ...278
Table D.16: ICP-MS results of regolith sampling traverse T1 (0.02 M NH₄EDTA solutions for Cu, Zn, Pb, Ba, Mn and Fe, shaking time: 180-minutes; <75μ size fraction) ...279
Table D.17: ICP-MS results of regolith sampling traverse T3 (0.02 M NH₄EDTA solutions for Cu, Zn, Pb, Ba, Mn and Fe, shaking time: 180-minutes; <75μ size fraction) ...280
Table D.18: ICP-MS results of regolith sampling traverse T2 (0.02 M NH₄EDTA solutions for Cu, Zn, Pb, Ba, Mn and Fe, shaking time: 180-minutes; <75μ size fraction) ...281
Table D.19: XRF results of the magnetic, non-magnetic and visually cleaned parts of the calcrete sample KPR12/4, Kantienpan (major elements: wt. %)284
Table D.20: XRF results of calcrete samples and magnetic parts, Kantienpan (major elements: wt. %, A: ampere) ...286
Table D.21: XRF results of calcrete samples and magnetic parts, Kantienpan (major elements: wt. %, A: ampere) ...289
Table D.22: XRF results of calcrete samples and magnetic parts, Areachap (major elements: wt. %, A: ampere, Sample set Calc1)291
Table D.23: XRF results of calcrete samples and magnetic parts, Areachap (major elements: wt. %, A: ampere, Sample set Calc2)293
Table D.24: Chemical composition of calcretes near the ore zone (Calc1-3 and Calc2-3) and further away from ore zone (Vcal2 and Vcal3)295
Table D.25: Chemical composition of magnetic parts of calcretes near the ore zone (Calc1-3) and further away from ore zone (Vcal2 and Vcal3) (A: ampere in) ...297
Table D.26: Chemical composition of calcretes near and further away from ore zone analyzed by the XRF method (Vermaak, 1984)299
TABLE E.1: Instrument and data collection parameters300