PREPARATION AND CHARACTERISATION OF GRAPHITISABLE CARBON FROM COAL SOLUTION

By

Bethuel Lesole Kgobane

Thesis submitted in partial fulfilment of the requirements for the degree

DOCTOR OF PHILOSOPHY

To the faculty of Natural and Agricultural Sciences Department of Chemistry Institute of Applied Materials University of Pretoria Republic of South Africa

> Promoter: Prof D Morgan August 2006

DEDICATION

This research work is dedicated to my late brother Thabo Martin Makoe, my mother, grandmother, Kagiso, and the rest of the family for their unwavering support through thick and thin.

ACKNOWLEDGEMENT

I am greatly indebted to my research supervisor, Prof. D Morgan, for his invaluable guidance and encouragement, which made this work possible. I would like to extend my appreciation to the steering committee for this project and to the Director of the Institute of Applied Materials, Prof. W Focke, for their valuable suggestions and recommendations. Special thanks go to Pravina Maharaj for her moral and administrative support.

Special thanks are extended to Prof. R Merkle for teaching and allowing me the use of the optical microscope, to the Geology Department for providing polishing facilities, to Dr Verryn for XRD analysis of the results, to Prof. D de Waal and Mrs L C Prinsloo for teaching and allowing me the use of the Raman microscope, and to the Petrology Section of Coal and Mineral Technologies (Pty) Ltd at the SABS, in particular Mrs V Du Cann for analysis of the coal samples. Further appreciation goes to the Department of Chemical Engineering for miscellaneous support. Many thanks go to Prof. R Falcon for her valuable suggestions for this thesis.

The financial support for this research, from the National Research Foundation (NRF), Eskom-PBMR, Suprachem and the Department of Chemistry is gratefully acknowledged. My sincere thanks also go to Kumba Resources Ltd for providing the coal samples. I further extend special thanks to Ferro Industrial Chemicals Ltd and SA Dow (Pty) Ltd for providing the carbon additives.

I wish to take this opportunity to thank all my friends at the University of Pretoria for their warmth and hospitality, which made my work at the University a wonderful experience. Sincere thanks goes to Mr M Mthembi for his contribution to the work and to all co-researchers in the Institute of Applied Materials who were so kind and supportive in my work. Lastly, I would like to acknowledge the support of Dr T Mathe, Mr M Phaladi and my family throughout this process.

ABSTRACT

The energy demands by the industrial world are continuing to rise, while the rate of new oil discoveries is falling. Within the next 30 years, available petroleum supplies are likely to fail to meet the demand, and oil will no longer be able to serve as the world's major energy source. Coal, being relatively abundant worldwide and potentially adaptable for use in existing plants that have been engineered for petroleum use, can serve as an inexpensive substitute for, or successor to, the more expensive oil fuels in use today. Graphitisable carbon is one of the high-value products from petroleum as its value lies partly in the nuclear industry. Making graphitisable isotropic carbon from well-purified coal is therefore a primary motivation for this study. However, its purity is far too low.

Substantial purification is obtained by dissolving the organic part of coal in dimethylformamide with the addition of a little alkali. Results indicated that more than 90 % of the organic part of a 10 % ash flotation product dissolved in N, N-dimethylformamide on addition of 10 % NaOH. The bulk of the impurities are removed by centrifugation and the dissolved organic material is recovered by water precipitation. Subsequently, the ash level is lowered from 10 % in the coal to < 1.60 % in the coal extracts at a washing efficiency of 33 %. The addition of Na₂S (the molar ratio of NaOH to Na₂S was 1:1) lowered the ash level further to 0.70 %.

The coal extract solution obtained showed an absorbance of 1.00 with an organic content of 8 %. However, addition of sodium sulphide to the extraction medium at 25 ± 1 °C lowered the organic content to 5.6 %. At high temperature of 90 ± 2 °C, the organic content was further lowered to 2.6 % with subsequent loss in colour.

The coal extract obtained by water precipitation showed low C/H atomic ratio on the addition of S^{-2} . Nucleophiles such as cyanide, thiosulphate made no substantial change to the hydrogen content nor the degree of extraction.

On coking by step heating under nitrogen to 480 °C at a rate of 10 °C min⁻¹ for 1 h, then to 900 °C with a soaking period of 2 h, the coal extracts melt, then reorganise into a liquid crystal phase around 500 °C, which then solidifies into a semi-coke on further heat treatment. The heat-treatment of the coal extracts produced 75 % carbon yield. When polished specimens of the cokes were observed by reflectance microscopy, flow textures with domain sizes of a few to many microns were observed. Isotropic, poorly graphitising cokes showed little or no structure. Anisotropic cokes were produced when these domains of liquid crystal grew and coalesced. The cokes were found to be highly graphitisable. However, in the heat-treated coal extracts prepared at high temperature, the liquid crystal domains were graphitisable but appeared not to have coalesced. Nevertheless, the random orientation of the domains allowed isotropic blocks to be formed with extremely low crystallinity. The precursors that form these liquid crystals are generally materials known to have a high aromatic carbon content. The precursors that form these liquid crystals are generally materials with a high purity and aromatic carbon content, and low in heteroatoms.

Optical microscopy of the polished samples prepared at 90 \pm 2 °C revealed surfaces with much less ordered coke, having smaller crystalline domains than the heat-treated coal extracts derived at room temperature. Essentially, isotropic graphites were obtained. Addition of S⁻² produced an extensive flowing texture, and a highly crystalline domain cokes. The carbon yield lowered. The graphitisability of the carbon improved. The X-ray diffraction data on the graphitised carbon showed that the degree of graphitisation decreased in the following order: high S⁻² coal extracts derived at room temperature (GSF-25RT) > high S⁻² coal extracts derived at high temperature (GSF-25HT) and no S⁻² coal extracts derived at room temperature derived at room

high temperature (GSF-0HT), corresponding to 79 > 75 % and 67 > 25 % respectively. The interlayer spacing (d_{002} -value) of the graphites follows the order GSF-25RT (3.37Å) < GSF- 25HT (3.38 Å) and GSF-0RT (3.38 Å) < GSF-0HT (3.42 Å). Subsequently, the Raman spectroscopy, consistent with the X-ray diffraction data, showed the ratio of the d-peak (degenerate) to g-peak (graphitic) in the order: GSF-0HT < GSF-0RT and GSF-25HT < GSF-25RT, corresponding to 1.26 < 1.75 < and 6.7 < 7.0 respectively.

Because the quality of the coke depends on the nature and quality of the starting material, addition of the carbon additives in the starting material prior heattreatment affected the flow texture of the coke. The carbon black, which has a spherical shape, forms aggregates that disperse much more easily than the flat chains of aggregates of acetylene black. The difficulty in dispersing the carbon additives was, however, overcome by using a high-shear mixer. Analysis of the coal extracts revealed that the hydrogen content in the coal extracts decreased linearly on addition of the carbon additives, favoring dehydrogenative polymerisation. The addition of carbon additives in the coal extract solution produced an isotropic carbon on heat treatment. Optical microscopy of the resinmounted cokes revealed decreasing size of the crystalline domain with increasing dosage of the carbon additives. The optimum amount of carbon additives required was found no to exceed 0.44 %. Beyond this threshold, the anisotropy of the cokes could not be observed through the resolution of the optical microscope. In addition, the amounts of volatiles released were found to decrease with increasing dosage of the carbon additives.

At low dosage of the carbon additives, the heat-treated coal extracts produced graphitisable isotropic carbon with low level of crystallinity. However, at high dosage of the carbon additives, the cokes did not graphitise. The temperature of graphitisation decreased from 2976 to 2952 °C with increasing dosage of the carbon additives. The decreasing order of graphitisation was 69 > 61 > 62 %, corresponding to 0.44 > 0.88 > 1.60 acetylene black. With the addition of carbon

black, the decreasing order of graphitisation was 57.7 > 56.5 > 51.5 %, corresponding to 0.44 > 0.88 > 1.60 wt % respectively. The interlayer spacing d₀₀₂, increased in the same order, suggesting a shift towards a turbostratic and formation of a poorly graphitised, and turbostratic carbon. Raman spectroscopy revealed that the intensity ratio R of the g to the d peak decreased with increasing dosage of the carbon additive.

Cokes produced from the coal extracts prepared at 25 °C but without S⁻² showed also a remarkable degree of flow texture. Its crystalline domain units were relatively small. The resin-mounted coke samples observed under an optical microscope (objective x 25) showed reduced flow texture with the addition of carbon black. The graphitisability of the resultant cokes also decreased on addition of carbon black. The optimum dosage observed for reducing the flow texture without reducing the crystallinity was found to be < 0.22 %.

Improved degree of graphitisation of the carbon was studied on addition of iron (III) compounds. Iron (III) compounds showed a promising improvement in the graphitisability of the carbon when added in small amounts. The intracellular hard carbon is converted to soft carbon, thereby improving the degree of graphitisation. The overall effect was a more isotropic graphitic carbon but the degree of graphitisation obtained was far too low: on addition of 1 % and 3 % (by wt) of iron (III), the compounds were 21 % and 27 % respectively. Oxygen intrusion into the precursor's coal material prior to heat treatment is thought to have inhibited the degree of graphitisation. Increasing the amounts of the iron (III) compound and prohibiting the intrusion of oxygen during mixing could improve the graphitisability of carbon. However, the optimum amount to be used remains an important subject to be explored in future.

TABLE OF CONTENTS

			Pag	ie No
Dedic	cation			I
Ackn	owledge	ement		Ш
Abstr	act			Ш
Table	e of con	tents		VIII
List o	of figure	S		XIII
List o	f tables			XVII
List o	of schen	ne(s)		xvIII
List of	f abbrev	iations		xlx
Сна	PTER 1			
INTRC	DUCTIO	N		1
1.2	Aim o	f the study		5
1.3	Conte	ent of the stud	dy	5
СПУ	DTED 9			
				7
00AL	Coolif	ication proce		7
2.1	2 1 1	Biochemica		י 8
	2.1.1	Geochemic		о 8
22		hotical struct		12
23	Coalir	nacerals		15
2.0	Reflec	rtance of the	macerals	17
2.5	Volati	le matter		18
2.0	Disso	lution of coal		19
2.0	261	Theory on t	he mechanism of coal extraction	20
	262	Parameters	affecting solvent extraction	21
	2.0.2	2621	The nature and effect of solvent on extraction	22
		2622	The effect of moisture and oxygen	25
		2.6.2.3	The effect of particle size	26
		2.6.2.3	The effect of particle size	26

		2.6.2.4	The coal property affecting extraction	26
		2.6.2.5	The effect of sulphide on extraction	26
2.7	Efficie	ent coal solubi	lisation	27
	2.7.1	Extraction of	coal with N-methylpyrrolidone	28
	2.7.2	Extraction of	coal with N, N-dimethylformamide and NaOH	28
Chap	oter 3			
CARBO	ONISATI	ON		29
3.1	Mecha	anism of carb	onisation	30
	3.1.1	The pre-carb	onisation stage	30
	3.1.2	The mesoph	ase stage	36
3.2	The s	tructure of the	solid carbon	41
	3.2.1	The turbostra	atic model	41
	3.2.2	Determinatio	n of crystallite sizes.	46
	3.2.3	Tetrahedral of	carbon atoms in non-graphitic carbons	47
3.3	The ir	fluence of ox	ygen on carbonisation	48
3.4	The ir	fluence of ad	ditives on carbonisation	51
	3.4.1	The influence	e of sulphur on carbonisation	51
	3.4.2	The carbon s	solids and its influence on carbonisation	52
3.5	The c	hemistry of ca	rbonisation	55

Chapter 4

GRAF	PHITE	64
4.1	Crystalline forms of carbon.	64
4.2	Graphitisation process	66
4.3	The effect of heteroatoms and or additives	67
4.4	Catalytic graphitisation	69
	4.4.1 Mechanism of catalytic graphitisation	70
	4.4.2 Effect of additives in catalytic graphitisation	71
	4.4.3 The effect of side chain in graphitisation	73
4.5	Important properties of graphite to nuclear industry	75

Chapter 5

Grapi	HITE CH	HARACTERISATION METHOD	79
5.1	Deteri	mination of optical texture of the coke	79
5.2	X-ray	diffraction	84
	5.2.1	Measurement of interlayer spacing d ₀₀₂	85
	5.2.2	Measurement of crystallite size L_a and L_c	85
5.3	Rama	n spectrophotometer	86
	5.3.1	Raman microscope	86
	5.3.2	Raman spectroscopy and the optical characteristics	88
		of graphitisable carbon	

CHAPTER 6

EXPEF	RIMENTA	ιL	90
6.1	Chem	icals used	90
6.2	The so	olvent of choice	90
6.3	Coal s	studied	91
6.4	Appar	atus	92
6.5	Instru	ments used to analyse the results	93
	6.5.1	Spectronic genesis 5 uv spectrophotometer	94
	6.5.2	Optical Microscopy	94
	6.4.3	Thermogravimetry	95
	6.5.4	X-ray analysis	95
	6.5.5	Raman spectroscopy	96
	6.5.6	Scanning electron microscopy	97
6.6	Exper	imental procedures	97
	6.6.1	Measurement of the degree of extraction	97
	6.6.2	The scaled up extraction process	98
	6.6.3	Monitoring the progress of extraction	98
	6.6.4	Recovery of the coal extracts from solution	99
	6.6.5	Dissolution of coal into DMF, with NaOH, and Na_2S	99

	6.6.6 Dissolution of coal at room temperature	100
	6.6.7 Carbonisation of the coal extracts	100
6.7	Control of the flow texture of the coke obtained from pyrolysis of	101
	the S ⁻² derived coal extracts	
6.8	Addition of carbon black and iron (III) to the room temperature	102
	prepared coal extracts solution without addition of sodium sulphide	е
6.9	Graphitisation	102

CHAPTER 7

Resu	LTS	103
7.1	Major ash components and petrographic characteristics	103
7.2	The high temperature extraction runs with various	107
	dosage of sodium sulphide and carbonisation	
7.3	The control of coke flow texture on addition of carbon additives	133
	to the room temperature S ⁻² derived coal extracts	
7.3	The control of the coke flow texture on addition of carbon	153
	additives and iron (III compound to the coal extracts	

CHAPTER

Discu	SSION	160
8.1	The coal studied	160
	8.1.1 The coal dissolution process	160
	8.1.2 The coal extracts or Refcoal	163
8.2	Pyrolysis of the coal extracts or Refcoal	168
8.3	The optical texture of the coke	170
8.4	The graphitised cokes	172
8.5	Control of the coke texture	176
	8.5.1 The coal extracts prepared on addition of S^{-2}	176
	8.5.2 The coal extracts without S ⁻² additives	185
8.6	The coal extracts on addition of Iron (111) compound	186

Chapter 9

CONCLUSIONS	190
References	193
APPENDICES	209

LIST OF FIGURES

FIGURE		No
1.1	Fuel element design for PBMR	2
2.1	Physical changes in coalification from	10
	Bituminous coal to Anthracite	
2.2	Coalification of different macerals based on H/C and O/C	12
	atomic ratios	
2.3	Distribution of oxygen functionality in coals	14
2.4	Densities of coal macerals. • Vitrinites, 0 Exinites, Micrinites,	15
	x Fusinites	
2.5	Variations of maximum fluidity (ddpm:Gieseler) with volatile matter	19
3.1	Initial stages of carbonisation	33
3.2	The transformation process during coking of a single particle	37
	of coal	
3.3	Developments of a mesophase spheres in the transformation to	39
	a coke	
3.4	Schematic representation of carbon black cluster	42
3.5	The proposed models for structure of graphitising carbon	45
	(a) and (b) non-graphitising	
3.6	Reaction of oxygen with aromatic hydrocarbons during	49
	carbonisation	
3.7	Photomicrograph of polished surface of oxidised of coal	50
	carbonised at 300 °C (Oil Immersion)	

3.8	The line diagram of carbon black	52
3.9	Polymerisation-condensation process in carbonisation	58
3.10	Reaction products from the pyrolysis of anthracene	59
3.11	Reaction products from the pyrolysis of naphthalene	60
3.12	Formation of stable odd-alternate free radical structures in	61
	carbonisation	
3.13	Two- dimensional polymerisation scheme for Zethrene	62
4.1	Structure of the graphite	65
4.2	Lattice structure of Hexagonal (with unit cell) and Rhombohedral	65
	structures in graphite	
4.3	Radiation-induced dimensional changes in isotropic graphite	77
	at various temperature	
5.1	General outline of the optical microscope	79
5.2	Extinction and reflection under cross-polars. Interference colours	80
	with the addition of a λ - plate	
5.3	Retardation parallel plates used to observe interference colours	81
5.4	Polarised light optical microscopy showing extinction angles	82
5.5	Variation of the coke optical texture with volatile matter content	83
	of the parent vitrains	
5.6	Schematic diagram of the X-ray diffraction system	84
5.7	Raman spectra evolution from carbonaceous material to graphite	86
5.8	Raman imaging microscopy	88
6.2.1	N, N-dimethylformamide (DMF)	90
6.4.1	The reactor used in coal dissolution	92
6.4.2	Furnace system used for pyrolysis	93
7.2.1	Reproducibility curves for various extraction runs at high	107
	temperature. The mass ratio of DMF: Coal: NaOH was 100:10:1	
7.2.2	Progress of extraction at high temperature. The mass ratio of	108
	DMF: Coal: NaOH was 100:10:1	

- 7.2.3 Comparison of separate high temperature extraction experiments 109 with the addition various amounts of Na₂S. The mass ratio of DMF: Coal: NaOH was 100 : 10: 1.
- 7.2.4 Progress of extraction at high temperature when the molar ratio of 110 NaOH: Na₂S was 1:1. The mass ratio of DMF: Coal: NaOH was 100:10:1
- 7.2.5 Comparison of the optical absorbance of the coal extract solution 111 obtained at high temperature to its organic solid content at various dosages of sodium sulphide.
- 7.2.6 Progress of extraction obtained at high temperature on addition of 113 different amounts of Na₂S only. The mass ratio of DMF: coal was 100:10

7.2.7	The absorbance/gram of coal dissolved for extraction at high	114
	temperature. The molar ratio of NaOH: Na ₂ S was 1:1	
7.2.8	Extent of purification of the Tshikondeni coal	115
7.2.9	Absorbance of the coal extracts solution obtained at room	117

- temperature to its organic solids content. 7.2.10 Comparison solubility of the coal at room temperature on addition 122
- of different amount of the nucleophiles
- 7.2.11 Carbon extraction yield (%) obtained at room temperature 123 on addition of different amounts of the nucleophiles
- 7.2.12 The average weight loss (%) of the heat-treated coal extracts124containing different amounts of the nucleophiles
- 7.2.13 Foamed coke obtained from carbonisation of the room 125 temperature derived coal extracts
- 7.2.14 Micrograph of the coke CSF-0RT 126

126

127

- 7.2.15 Micrograph of the coke CSF-0HT
- 7.2.16 Micrograph of the coke CSF-25 RT 127
- 7.2.17 Micrograph of the coke, CSF-25 HT
- 7.2.18 The weight loss (%) of the heat-treated S⁻² derived coal extracts 128 obtained at room temperature (RT) and high temperature (HT)

7.2.19	OXRD of the graphitised cokes	129
7.2.20	Raman spectra of the graphitized cokes showing bands at	131
	intensities of 1360.5 cm ⁻¹ and 1579.1 cm ⁻¹ for the d-peak and	
	g-peak respectively	
7.2.21	The average full width at half maximum (FWHM) of the E_{2g} mod	le 132
	(1580 cm ⁻¹) as a function of crystallite size (L_a) of the graphitised	I
	cokes	
7.3.1	SEM photomicrograph of the carbon additives	133
7.3.2	SEM photomicrograph of the carbon black dispersed cokes	135
7.3.3	SEM photomicrograph of the acetylene black dispersed cokes	136
7.3.4	Thermogravimetric analysis of the acetylene black	137
	dispersed coal extracts.	
7.3.5	Thermogravimetric analysis of the carbon black dispersed coal	138
	extracts.	
7.3.6	The TGA curve showing weight loss at 300-550 $^{\circ}\mathrm{C}$ of the	139
	heated coal extracts with acetylene black	
7.3.7	The TGA curve showing weight loss at $$ at 300-550 $$ °C	140
	for the heated coal extracts with carbon black	
7.3.8	The total weight loss (%) of the heat-treated S^{-2} derived coal	141
	extracts on addition of different amounts carbon additives	
7.3.9	Optical micrograph of the carbon black blended cokes	142
7.3.10	Optical micrograph of the acetylene black blended cokes	143
7.3.11	Raman spectra of the graphitised cokes prepared with the	144
	addition of carbon black showing intensity ratios of the area	
	under the peak.	
7.3.12	2 Raman spectra of the graphitised cokes prepared with the	145
	addition of acetylene black showing intensity ratios of the area	
	under the peak.	
7.3.13	3 The average full width at half maximum (FWHM) of the	146
	E_{2g} mode (1580 cm ⁻¹) as a function of crystallite size, L_a of the	
	graphites	

University of Pretoria etd - Kgobane, B L (2007)

	LIST OF TABLES	
	Compound	
7.4.6	Raman spectra of the graphitised cokes on addition of iron (III)	159
740	addition of carbon additives.	4 5 0
	graphites prepared from the coal extracts (without S ⁻²) on	
	mode (1580 cm ⁻¹) as a function of crystallite size, L_a of the	
7.4.5	The average full width at half maximum (FWHM) of the E_{2g}	158
	carbon black prepared from the coal extracts without S^{-2}	
7.4.4	X-ray diffraction spectra of the graphitised cokes on addition of	156
	iron (III) compound ²	
7.4.3	X-ray diffraction spectra of the graphitised cokes on addition of	155
7.4.2	Optical micrographs of the cokes containing iron (III) compound.	154
	without S ⁻²	
	obtained on pyrolysis of the room temperature coal extracts	
7.4.1	Optical micrographs of the acetylene black blended cokes	153
	coke	
7.3.18	The graphitisation behaviour of the carbon additives blended	152
	increased	
7.3.17	graphitised surface as the dosage of the carbon black is	131
7217	2 Ontic micrographs of the graphitised cokes showing poorly	151
7.3.16	Optic micrographs of the graphites showing poorly graphitised	150
7.3.15	ARD of the graphitised cokes on acetylene black	148
7.3.14	XRD of the graphitised cokes on addition of carbon black	147
7014	VDD of the superhitized values on addition of each on block	4 4 7

TABLE	PAGE	No
2.1	Coalification through time, pressure and heat, dry ash-free values	11
2.2	Chemical composition of wood, peat and various coal	14
4.1	Properties of nuclear graphites	76

6.2	Traces of elements present in of N, N-dimethylformamide	91
7.1.1	Proximate analysis	103
7.1.2	Ultimate analyses of the coals	104
7.1.3	Ash analysis of the coal used	105
7.1.4	Petrography characteristics of the coal	106
7.2.1	Characteristics of the coal solution or refcoal solution on	112
	Addition of different amounts of Na_2S . The mass ratio of	
	DMF: Coal: NaOH was 100:10:1	
7.2.2	Elemental analyses of the S ⁻² derived coal extracts obtained	116
	at high temperature on addition of different amounts of sodium	
	sulphide	
7.2.3	Elemental analyses of coal residues obtained at room temperatur	e 118
	on addition of different amounts of sodium sulphide	
7.2.4	Elemental analyses of coal residues obtained at room temperatur	e 119
	on addition of different amounts of potassium cyanide	
7.2.5	Elemental analyses of the coal residues obtained at room	120
	temperature on addition of different amounts of sodium	
	thiosulphate	
7.2.6	Characterisation of the S ⁻² derived coal extracts showing	121
	Geissler fluidity and foaming volume per gram of refcoal pyrolyse	d
7.2.7	The Raman and xrd results of the graphitised cokes listing the	130
	intensity ration R the interlayer thickness $d_{(002)}$ and	
	graphitisation factor, g.	
7.3.1	Elemental analysis of the blended coal extracts on addition	134
	of the carbon additive	
7.3.2	The effect of carbon additives on the properties of the	149
	graphitised coke	
7.4.1	Analysis of the graphitised cokes by Raman spectroscopy	157
	and x-ray diffraction with iron (III) compound, and carbon black	

LIST OF SCHEMES

SCHEME PAGE N			
1.1 Project then to	outline of coal purification process, through coke formation of a graphitisable carbon	6	
LIST OF ABBREVIATIONS			
CSIR	Council for Scientific and Industrial Research		
CY	Carbon yield		
DBP	Dibutylphthalate		
DMA	Dimethylacetamide		
DMF	dimethylformamide		
DMSO	Dimethylsulphoxide		
ddpm	Dial divisions per minute		
FIC	Fibre-bundle image compression		
FWHM	Full width at half maximum		
HMPA	Hexamethyl phosphoramide		
ISO	International Organization for Standardisation		
NMP	N-methyl-pyrrolidinone		
NMR	Nuclear magnetic resonance spectroscopy		
NRF	National Research Foundation		
PBMR	Pebble Bed Modular Reactor		
pm	Picometer		
ppm	Parts per million		
SABS	South African Bureau of Standards		
SEM	Scanning electron microscope		
TGA	Thermogravimetric analysis		
TMU	Teramethyl urea		
UV	Ultra-violet		

SAMPLE CODES

Each photomicrograph is labelled with a code, e.g. RSF-25 RT, which signifies that it is representative of the sulphide-derived Refcoal (R), containing 25 g Na₂S (NaOH:Nu⁻¹ molar ratio of 1:1) and obtained at room temperature (RT). For the corresponding coke and graphite, the codes are CSF-25 RT and GSF-25 RT respectively. The other labels follow the same pattern. Room-temperature extraction means extraction at 25 \pm 1 °C, while high-temperature means extraction at 90 \pm 2 °C. Some of the selected codes are listed below:

- RCN-00RT Refcoal without cyanide and prepared at room temperature
- RCN-06RT Refcoal with cyanide content of 6g and prepared at room temperature
- RCT-00RT Refcoal without thiosulphate and prepared at room temperature
- RCT-06RT Refcoal with thiosulphate content of 6 g and prepared at room temperature
- CSF-0HT Coke with no sulphide obtained from high temperature prepared coal extracts
- CSF-0RT Coke with no sulphide obtained from room temperature prepared coal extracts
- CSF-25HT Coke with sulphide content of 25g obtained from high temperature prepared coal extracts
- CSF-25RT Coke with sulphide content of 25g obtained from room temperature prepared coal extracts
- GSF-0.0HT Graphite without sulphide and obtained from high temperature prepared coal extracts
- GSF-25HT Graphite with sulphide content of 25g and obtained from high temperature prepared coal extracts
- GSF-0.0RT Graphite without sulphide and obtained from room temperature prepared coal extracts

GSF-25RT	Graphite with sulphide content of 25g obtained from high temperature
	prepared coal extracts
GSF-0.44CB	Graphite withcarbon black of 0.44 % and prepared from room
	temperature derived suphide coal extracts
GSF-0.88CB	Graphite with carbon black of 0.88 % and prepared from room
	temperature derived suphide coal extracts.
GSF-0.44 AB	Graphite with acetylene black of 0.44 % and prepared from
	room temperature derived suphide coal extracts
GSF-0.88AB	Graphite with acetylene black of 0.88 % and prepared from
	room temperature derived suphide coal extracts
CCB-0.15	Coke prepaped from the room temperature derived coal
	extracts with the addition of 0.15 % carbon black
GCB-0.22	Graphite prepared from room temperature derived coal
	extracts with the addition of 0.22 % carbon black
Gfe-1	Graphite prepared from the room temperature derived coal
	extracts with the addition of 1 % of iron (III) compound
Gfe -3	Graphite prepared from the room temperature derived coal
	extracts with the addition of 3 % of iron (III) compound