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Abstract

In this thesis, we investigate the stochastic three dimensional Navier-Stokes-α model and the

stochastic three dimensional Leray-α model which arise in the modelling of turbulent flows of

fluids.

We prove the existence of probabilistic weak solutions for the stochastic three dimensional

Navier-Stokes-α model. Our model contains nonlinear forcing terms which do not satisfy the

Lipschitz conditions. We also discuss the uniqueness. The proof of the existence combines the

Galerkin approximation and the compactness method. We also study the asymptotic behavior

of weak solutions to the stochastic three dimensional Navier-Stokes-α model as α approaches

zero in the case of periodic box. Our result provides a new construction of the weak solutions

for the stochastic three dimensional Navier-Stokes equations as approximations by sequences of

solutions of the stochastic three dimensional Navier-Stokes-α model.

Finally, we prove the existence and uniqueness of strong solution to the stochastic three dimen-

sional Leray-α equations under appropriate conditions on the data. This is achieved by means

of the Galerkin approximation combines with the weak convergence methods. We also study

the asymptotic behavior of the strong solution as alpha goes to zero. We show that a sequence

of strong solution converges in appropriate topologies to weak solutions of the stochastic three

dimensional Navier-Stokes equations.

All the results in this thesis are new and extend works done by several leading experts in both

deterministic and stochastic models of fluid dynamics.
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Frequently used notation

a.e. almost everywhere

a.s. almost surely

a ∧ b min(a,b)

a ∨ b max(a,b)

→ strong convergence in the sense of functional analysis

⇀ weak convergence in the sense of functional analysis

N set of positive integers

R set of real numbers

V ′ dual space of the reflexive Banach space V

B(V ) σ-algebra of all Borel measurables sets of V

V ⊗m the product of m copies of the set V

IA indicator function for the set A

(Ω,F , {Ft}, P ) filtered probability space

E mathematical expectation with respect to P

σ(Xs : 0 ≤ s ≤ t) The smallest σ-field with respect to the random variable Xs is measurable for

all s ∈ [0, t]

D(D) the set of infinitely differentiable functions with compact support in D

L(X, Y ) space of linear bounded operator from the Banach

space X to the Banach space Y

C([0,T]; X) the space of all continuous function on [0, T ] with values in X

D′(0, T ; X) the space of distributions on ]0, T [ with values in X

σT the transpose matrix of the matrix σ

3

 
 
 



Chapter 1

Introduction

1.1 The Navier-Stokes equations and turbulence

The flows of most commonly encountered fluids in nature and engineering applications are

turbulent. Their prediction remains one of the greatest challenge in applied sciences. The

mathematical theory of the Navier-Stokes equation is of fundamental importance to a deep un-

derstanding, prediction and control of turbulence in nature and in technological applications

such as weather prediction, the dynamic of atmosphere, ocean and in aviation.

The classical three dimensional Navier-Stokes equations describe the time evolution of an in-

compressible fluid and are given by

∂tu(t) = ν∆u(t)− (u(t).∇)u(t) +∇p(t) + f(t)

and

div u(t) = 0

where u(t, x) = (u1(t, x), u2(t, x), u3(t, x)) represents the velocity field, ν is the viscosity con-

stant, p(t, x) denotes the pressure, and f is an external force field acting on the fluid.

It was stated in [36] that the Navier-Stokes equations capture the characteristic features of a

turbulent flow (the distribution of eddy sizes, shapes, speeds, vorticity, circulation, nonlinear

convection and viscous dissipation) and correctly predict how the cascade of turbulent kinetic

energy and vorticity accelerate. Nevertheless, even with knowledge of the mathematical model,

the problem of turbulence remains one of the last great unsolved problems of physics.

The existence of global in time regular solutions or the uniqueness of weak solutions are

classical examples of persisting open problems of mathematical analysis [30]. The Clay Mathe-

4

 
 
 



CHAPTER 1. INTRODUCTION 5

matics Institute has called this one of the seven most important open problems in mathematics

and offers a US$ 1,000,000 prize for a solution or a counter-example.

From the numerical point of view, only direct numerical simulation at moderate Reynolds num-

bers are possible. The direct numerical simulation for many physical applications with high

Reynolds number flows is intractable even using state of the art numerical methods on the

most advanced supercomputer available (see [31],[64]). Over the last decades, researchers have

developed turbulence models as an attempt to solve this simulation barrier. The objective of

turbulence models is to capture certain statistical features of the physical phenomenon of tur-

bulence at computably low resolution by modelling the effect of the small scales in terms of the

large scales.

In this thesis, we are going to study two such models: the Navier-Stokes-α model and the

Leray-α model.

1.2 The Navier-Stokes-α model and the Leray-α model

1.2.1 Derivation and their relation to the turbulence

The study of the averaged motion of an incompressible fluid is motivated by the numerical

inability in resolving small spatial scales. There are two approaches to modelling the averaged

motion of an incompressible fluid. The first approach is the Reynolds averaging which suppose

that the velocity of the fluid is a random variable which can be represented by the Reynolds

decomposition

u(t, x) = U(t, x) + u′(t, x) (1.1)

where u′(t, x) denotes a random variable with mean value zero and U(t, x) the average value of

the velocity. The derivation of the averaged Navier-Stokes model is obtained by substituting

the decomposition (1.1) into the Navier-Stokes equations and then averaging. This procedure

produces the Reynolds averaged Navier-Stokes equations which are given by

∂tU + (U.∇)U + Div u′ ⊗ u′ = −gradP + ν∆U. (1.2)

The tensor u′ ⊗ u′ is called the Reynolds stress which is given by

u′ ⊗ u′ = νE(t, x,Def U).Def U,

where νE is the eddy viscosity and Def U is the rate of deformation tensor defined as

Def U =
1
2

[∇U + (∇U)T
]
.

 
 
 



CHAPTER 1. INTRODUCTION 6

As a result of such an averaging, artificial viscosity is added into the system to remove energy

which is contained in the small scales at which u′ resides. Since it is still necessary to guess

the form of νE , an improvement to the procedure of modelling the averaged motion of a fluid is

needed.

The second approach to modelling the averaged motion of an incompressible fluid is the La-

grangien averaging. The Navier-Stokes-α model ( also known in the literature as the viscous

Camassa-Holm equations, or the Lagrangien averaged Navier-Stokes alpha model) is the first

turbulence closure model produced by Lagrangien averaging, from which it derives its name. The

inviscid Navier-Stokes-α (also called Euler-α) equations first appeared in [43] as a n-dimensional

generalization of the one dimensional Camassa-Holm equations. The one dimensional Camassa-

Holm equations describes shallow water with nonlinear dispersion and admits solitons solutions

called ”peakons”[9]. Holm, Marsden and Ratiu in [43] used variational asymptotics to obtain the

Euler-α equations on all of Rn, using an approximation of Hamilton’s principle for the Euler’s

equations. Dissipation was added to the Euler-α equations to produce the Navier- Stokes-α

equations. The extension of this approach to bounded domains was made in [55] by averaging

over the set of solutions uε of the Euler equations with initial data uε
0 in a phase- space ball of

radius α. This extension was improved in [4]. The derivation of the Euler-α in [4] consists of

expanding the original Lagrangian with respect to a perturbation parameter ε which is giving

by

l(uε) =
1
2

∫

D
|uε|2 dx

where D is the space filled by the fluid, truncating the expansion to O(ε2) terms and then tak-

ing average. The Euler-α equations is then derived by applying the Hamilton’s principle to the

averaged Lagrangian (See[4], for more details).

The study in ([15]-[17],[60], [38],[39],[18]) mentioned that there is a connection between the so-

lutions of the Navier-Stokes-α model and turbulence. It was proved that the explicit steady

analytical solutions of the Navier-Stokes-α model compare successfully with empirical and nu-

merical experimental data for a wide range of Reynolds numbers in turbulent channel and pipe

flows. The numerical study of the Navier-Stokes-α model in [60] shows that this model, indeed,

captures most of the large scale features of a turbulent flow.

Pioneering investigation of this model were undertaken at the Los Alamos National Laboratory

(USA).

Motivated by the remarkable performance of the Navier-Stokes-α model, the Leray-α model has

been studied in [21] [42],[38],[39]. It was mentioned in [21] that by using this model as a closure

 
 
 



CHAPTER 1. INTRODUCTION 7

model in turbulent channels and pipes, one obtains the same reduced system of equations as

those produced by the Navier Stokes-α model, whose solutions give excellent agreement with

empirical data for a wide range of large Reynolds numbers. Therefore the Leray-α has similar

properties as the Navier-Stokes-α model. Other approximate α-models (Clark-α model, Mod-

ified Leray- α, Simplified Bardina-α model) for the three dimensional Navier-Stokes equations

also show good agreement with empirical data. The Leray-α model is given by the following

system of partial differential equations




∂tv − ν∆v + (u.∇)v = ∇p + f,

∇.u = ∇.v = 0,

v = u− α2∆u,

u(x, 0) = u0(x).

(1.3)

Formally, the above system is the Navier-Stokes equations system when α=0, that is u =

v. In order to study the question of existence of solutions to the Navier-Stokes equations,

Leray considered in his pioneering work [50] a general regularization form of the Navier-Stokes

equations in which the relationship between u and v in (1.3) is given by u = φα ∗ v, where φα

is an arbitrary smoothing kernel and ∗ denotes the convolution such that u converges to v, in

some sense, as α tends to zero. In the particular case of system (1.3), the kernel φα is noting

other than the Green’s function associated with the Helmholtz operator (I − α2∆). For this

reason, system (1.3) is called the Leray-α model.

1.2.2 Previous analytical results: Deterministic and Stochastic.

In [34], the deterministic Cauchy problem for the three dimensional Navier-Stokes-α model

subject to periodic boundary conditions was studied. The global existence and uniqueness of

weak solutions were established, the regularity of weak solutions was proved and the global

attractor for this model was constructed. Moreover, upper bounds for the dimension of the

global attractor were found in terms of the relevant physical parameters. It has been also

proved that the solutions of the Navier-Stokes-α model converge to certain solutions of the three

dimensional Navier-Stokes equations as α approaches zero. These results were extended to the

case of Dirichlet-type boundary conditions in [25]. The authors of [25] used a sequence of classical

solutions in [54],to prove that this sequence converges in C([0, T ];H1) to a H1-weak solution

of the Navier-Stokes-α model for all T > 0. They also proved the existence of a nonempty,

compact, convex, and connected global attractor. The authors of [20] study the connection
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between the long-time dynamics of the three dimensional Navier-Stokes-α model and the three

dimensional Navier-Stokes equations as α approaches zero. In particular, they showed that the

trajectory attractor of the Navier-Stokes-α model converges to the trajectory attractor of the

three dimensional Navier-Stokes system when α approaches zero. Similar results were proved in

[19],[75],[21] for the Leray-α model.

The mathematical literature for the stochastic Navier-Stokes equations is extensive and dates

back to early 1970’s with the work of Bensoussan and Temam [3]. It is well known that there

exists a probabilistic weak solution (also called martingale solution) for the stochastic three

dimensional Navier-Stokes equations (see [32],[57] just to cite a few). But uniqueness is open.

Brzeźniak and Peszat in [8], Mikulevicius and Rozovskii in [58], obtained the existence and

uniqueness of a strong maximal local solution in W 1
p with p > 3. Recently, Glatt and Ziane [40],

Mikulevicius[59] have established the existence and uniqueness of local strong H1-solution. Here

the word ”strong” means ”strong” in the sense of the theory of stochastic differential equations;

that is a complete probability space and a Wiener process are given in advance. All these results

are global in two dimensions. Breckner [5] as well as Menaldi and Sritharan [56] established the

existence and uniqueness of strong global L2-solution for the two dimensional stochastic Navier-

Stokes equations. The proof in [56] used the local monotonicity of the nonlinearity to obtain

the solution.

The authors of [10] proved the existence and uniqueness of probabilistic strong solutions for

the three dimensional stochastic Navier-Stokes-α model under the Lipschitz assumptions on

the coefficients. The proof of the existence uses the Galerkin approximation and the weak

convergence methods. The asymptotic behavior for the three dimensional stochastic Navier-

Stokes-α model was proved in [11]. To the best of our knowledge, there is no systematic work

for the three dimensional stochastic Leray-α model.

1.3 Main Results and Organization of the thesis

The aim of this thesis is twofold. Firstly, we study the existence of probabilistic weak solutions

for the stochastic three dimensional Navier-Stokes-α model under continuity and linear growth

conditions on the coefficients, extending the result of Caraballo, Real and Taniguchi in [10].

We also discuss the uniqueness and study the asymptotic behavior of weak solutions as α ap-

proaches zero in the case of periodic boundary conditions. Secondly, we establish the existence

and uniqueness of the probabilistic strong solution for the three dimensional stochastic Leray-
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alpha model and study the asymptotic behavior of strong solution as α approaches zero.

The thesis contains five chapters (including the current one which deals with the introduction).

In Chapter 2, we prove the existence of probabilistic weak solutions for the stochastic three

dimensional Navier-Stokes-α model under weak assumptions on the coefficients. The proof is

different from the one used in [10]. The techniques used here are the construction of the Galerkin

approximation of the solutions, some a priori estimates which enable us to obtain some com-

pactness properties of the probability measures generated by these solutions. The uniqueness

result for the probabilistic weak solution is derived under strong assumptions. This uniqueness

together with the famous Yamada-Watanabe theorem enable us to derive the existence of path-

wise strong solution. This chapter has been the object of publication in Abstract and Applied

Analysis.

In Chapter 3, we deal with the asymptotic behavior of probabilistic weak solutions of the stochas-

tic three dimensional Navier-Stokes-α model as α approaches zero in the case of periodic bound-

ary conditions. We approximate the solutions of the stochastic three dimensional Navier-Stokes

equations by a sequence of weak solutions for the stochastic Navier-Stokes-α equations. For

this, we study the tightness of probability measures induced by the weak solutions of the three

dimensional Stochastic Navier-Stokes-α model. We prove that a sequence of solutions of the

Navier-Stokes-α model converge in suitable topologies to weak solutions for the three dimen-

sional stochastic Navier-Stokes equations. This provides us with another proof of existence of

weak solutions for the stochastic Navier-Stokes equations. This chapter has been accepted for

publication in Journal Mathematical Analysis and Applications.

Chapter 4 is devoted to the existence and uniqueness of a strong solution to the three dimen-

sional stochastic Leray-α equations. Moreover, we study the asymptotic behavior of the strong

solution as α goes to zero. We show that a sequence of strong solutions converges in appro-

priate topologies to weak solutions of the three dimensional stochastic Navier-Stokes equations.

For the proof of the existence, we use the Galerkin method. The techniques applied are the

properties of stopping times and some basic convergence principles from Functional Analysis.

Another result is that the Galerkin approximation converges in mean square to the solution of

the three dimensional stochastic Leray-α model. This chapter has been the object of publication

in Boundary Value Problems.

The final chapter of the thesis contains an appendix with useful properties from functional and

stochastic analysis. We included them for the convenience of the reader and because we often

make use of them.

 
 
 



Chapter 2

On the Stochastic 3D

Navier-Stokes-α Model

2.1 Introduction

In this chapter, we are interested in the study of probabilistic weak solutions of the 3D Navier-

Stokes- α model (also known as the Lagrangien averaged Navier-Stokes-α model or the viscous

Camassa-Holm equations) with homogeneous Dirichlet boundary conditions in a bounded do-

main in the case in which random perturbations appear. To be more precise, let D be a connected

and bounded open subset of R3 with C2 boundary ∂D, and let T > 0 be a final time. We denote

by A the Stokes operator and consider the system




∂t(u− α∆u) + ν(Au− α∆(Au)) + (u.∇)(u− α∆u)− α(∇u)T . ∆u +∇p

= F (t, u) + G(t, u)dW
dt , in D × (0, T ),

∇.u = 0, in D × (0, T ),

u = 0, Au = 0, on ∂D × (0, T ),

u(0) = u0, in D,

(2.1)

where u = (u1, u2, u3) and p are unknown random fields on D× (0, T ), representing respectively,

the large-scale velocity and the pressure, in each point of D × (0, T ). The constant ν > 0

and α > 0 are given, and represent, respectively, the kinematic viscosity of the fluid, and the

square of the spatial scale at which fluid motion is filtered. The terms F (t, u) and G(t, u)dW
dt

10

 
 
 



CHAPTER 2. ON THE STOCHASTIC 3D NAVIER-STOKES-α MODEL 11

are external forces depending on u, where W is an Rm-valued standard Wiener process. Finally

u0 is a given non random velocity field.

The deterministic version of (2.1), i.e. when G = 0 has been the object of intense investi-

gations over the last years ([15]- [18], [33]). In view of many interesting futures, it was stated

in [51] that the numerical study in [60], shows that this model, captures most of the large scale

features of a turbulence flow, in particular those scales of motion larger than the length scale

α, while the scales of motion smaller than alpha follow a faster decay of energy when compared

with the energy of the Navier Stokes equations making it a more computable analytical large

eddy simulation model of turbulence. Many important analytical results have been obtained in

the deterministic case. In the case of periodic boundary conditions, Foias, Holm and Titi in [34]

proved the global well posedness of H1- weak solutions in dimension three. They also proved that

the solutions of the Navier-Stokes-α equations converge to certain solutions of the Navier-Stokes

equations as α approaches zero. Marsden and Shkoller in [54] proved the global well posedness

of classical solutions in dimension three in the case of non-slip boundary condition. The authors

of [25] proved the global in time existence, uniqueness and regularity of H1- weak solutions ,

extending the result of Foias, Holm and Titi to the case of non-slip boundary data. The proof

in [25] uses a sequence of classical solutions from [54] which is shown to converge to an H1-

weak solution of the Navier-Stokes-α equations. They also proved the existence of a nonempty

compact, convex and connected global H1-attractor in both two and three dimensions.

However, in order to consider a more realistic model of the problem, it is sensible to in-

troduce some kind of noise in the equations. This may reflect, some environmental effects on

the phenomena, some external random forces, etc. To the best of our knowledge, the existence

and uniqueness of solutions of the problem (2.1) in the strong probabilistic sense has only been

analyzed in [10] (see also [11],[12] ) in the case of Lipschitz assumptions on F and G. The case

of non Lipschitz assumptions on the coefficients F and G, is the main concern of the present

chapter. This question has been opened till now. We merely assume continuity of F (., u) and

G(., u) in u and some linear growth. In this case, the appropriate notion of solution is that of

probabilistic weak solution also refered as martingale solution.

In this chapter, we shall establish the existence of probabilistic weak solutions for the prob-

lem (2.1) under appropriate conditions on the data. The approach used for the proof of our

existence results is different from the one in [10]. To prove the existence, we use the Galerkin ap-

proximation method employing special bases, combined with some deep compactness theorems

of probabilistic nature due to Prokhorov [65] and Skorokhod [68].

 
 
 



CHAPTER 2. ON THE STOCHASTIC 3D NAVIER-STOKES-α MODEL 12

The chapter is organized as follows. In Section 2.2, we establish some properties of nonlinear

term appearing in our equations. The rigorous statement of our problem as well as the main

results are included in Section 2.3 and we show how our problem can be reformulated as an

abstract stochastic model. Section 2.4 is devoted to the proof of our main results.

2.2 Properties of the nonlinear terms

Following [10], we establish some properties of the nonlinear term (u.∇)(u−α∆u)−α(∇u)T . ∆u

appearing in (2.1).

We denote by (., .) and |.|, respectively, the scalar product and associated norm in (L2(D))3,

and by (∇u,∇v) the scalar product in ((L2(D))3)3 of the gradients of u and v. We consider the

scalar product in (H1
0 (D))3 defined by

((u, v)) = (u, v) + α(∇u,∇v), u, v ∈ (H1
0 (D))3, (2.2)

where its associated norm ‖.‖ is, in fact, equivalent to the usual gradient norm. We denote by

H the closure in (L2(D))3 of the set

V = {v ∈ (D(D))3 : ∇. v = 0 in D},

and by V the closure of V in (H1
0 (D))3. Then H is a Hilbert space equipped with the inner

product of (L2(D))3, and V is a Hilbert subspace of (H1
0 (D))3.

Denote by A the Stokes operator, with domain D(A) = (H2(D))3 ∩ V, defined by

Aw = −P1(∆w), w ∈ D(A),

where P1 is the projection operator from (L2(D))3 onto H. Recall that as ∂D is C2, |Aw| defines

in D(A) a norm which is equivalent to the (H2(D))3 norm, i.e. there exists a constant c1(D),

depending only on the domain D, such that

‖w‖(H2(D))3 ≤ c1(D)|Aw|, ∀w ∈ D(A), (2.3)

and so D(A) is a Hilbert space with respect to the scalar product

(v, w)D(A) = (Av, Aw).

For u ∈ D(A) and v ∈ (L2(D))3, we define (u.∇)v as the element of (H−1(D))3 given by

〈(u.∇)v, w〉−1 =
3∑

i,j=1

〈∂ivj , uiwj〉−1, ∀w ∈ (H1
0 (D))3 (2.4)
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where by 〈u, v〉−1 we denote either the duality product between (H−1(D))3 and (H1
0 (D))3 or

between H−1(D) and H1
0 (D).

(2.4) is meaningful, since H2(D) ⊂ L∞(D), and H1
0 (D) ⊂ L6(D), with continuous injections

since dim D =3. This implies that uiwj ∈ H1
0 (D), and there exists a constant c2(D) > 0,

depending only on D, such that

|〈(u.∇)v, w〉−1| ≤ c2(D)|Au||v|‖w‖, ∀(u, v, w) ∈ D(A)× (L2(D))3 × (H1
0 (D))3. (2.5)

If v ∈ (H1(D))3, then the definition above coincides with the definition of (u.∇)v as the vector

function whose components are
∑3

i=1 ui∂ivj , for j = 1, 2, 3. However, as it not known whether

the solutions of the stochastic problem (2.1) have the same regularity as the deterministic case(we

only can ensure H2 instead of H3), the present extension is necessary.

Now, if u ∈ D(A), then (∇u)T ∈ (H1(D))3×3 ⊂ (L6(D))3×3, and consequently, for v ∈
(L2(D))3, we have that (∇u)T . v ∈ (L

3
2 (D))3 ⊂ (H−1(D))3, with

〈(∇u)T . v, w〉−1 =
3∑

i,j=1

∫

D
(∂jui)viwj dx, for all w ∈ (H1

0 (D))3.

It follows that there exists a constant c3(D), depending only on D, such that

|〈(∇u)T . v, w〉−1| ≤ c3(D)|Au||v|‖w‖, for all (u, v, w) ∈ D(A)× (L2(D))3 × (H1
0 (D))3.

(2.6)

We have the following results

Proposition 1. For all (u,w) ∈ D(A)×D(A) and all v ∈ (L2(D))3, it follows that

〈(u.∇)v, w〉−1 = −〈(∇w)T . v, u〉−1. (2.7)

Proof. If (u,w) ∈ D(A) ×D(A), then for each i, j = 1, 2, 3, we have uiwj ∈ H1
0 (D) and conse-

quently

〈∂ivj , uiwj〉−1 = −
∫

D
vj∂i(uiwj) dx

= −
∫

D
vjwj∂iui dx−

∫

D
vjui∂iwj dx

using ∇. u = 0, we have (2.7).

Consider now the trilinear form defined by

b∗(u, v, w) =〈(u.∇)v, w〉−1 + 〈(∇u)T .v, w〉−1,

(u, v, w) ∈ D(A)× (L2(D))3 × (H1
0 (D))3.
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Proposition 2. The trilinear form b∗ satisfies

b∗(u, v, w) = −b∗(w, v, u), ∀(u, v, w) ∈ D(A)× (L2(D))3 ×D(A), (2.8)

and consequently,

b∗(u, v, u) = 0, ∀(u, v) ∈ D(A)× (L2(D))3. (2.9)

Moreover, there exists a constant c(D) > 0, depending only on D, such that

|b∗(u, v, w)| ≤ c(D)|Au||v|‖w‖,

∀(u, v, w) ∈ D(A)× (L2(D))3 × (H1
0 (D))3, (2.10)

|b∗(u, v, w)| ≤ c(D)‖u‖|v||Aw|

∀(u, v, w) ∈ D(A)× (L2(D))3 ×D(A). (2.11)

Thus, in particular, b∗ is continuous on D(A)× (L2(D))3 × (H1
0 (D))3.

Proof. The proof is straightforward consequence of (2.5), (2.6), (2.7). See [10]

2.3 Statement of the problem and the main result

We now introduce some probabilistic evolutions spaces.

Let (Ω, F, {Ft}0≤t≤T , P ) be a filtered probability space and let X be a Banach space.

For r, q ≥ 1, we denote by

Lp(Ω, F, P ; Lr(0, T ; X))

the space of functions u = u(x, t, ω) with values in X defined on [0, T ]× Ω and such that:

1) u is measurable with respect to (t, ω) and for almost all t, u is Ft measurable,

2)

‖u‖Lp(Ω,F,P ;Lr(0,T ;X)) =

[
E

(∫ T

0
‖u‖r

Xdt

) p
r

] 1
r

< ∞,

where E denote the mathematical expectation with respect to the probability measure P .

The space Lp(Ω, F, P ; Lr(0, T ;X)) so defined is a Banach space.

When r = ∞ , the norm in Lp(Ω, F, P ;L∞(0, T ; X)) is given by

‖u‖Lp(Ω,F,P ;L∞(0,T ;X)) =

(
E ess sup

0≤t≤T
‖u‖p

X

) 1
p

.
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We make precise our assumptions on problem (2.1).

We start with the nonlinear functions F and G. We assume that:

F : (0, T )× V → (H−1(D))3, measurable

a.e.t, u 7→ F (t, u) : continuous from V to (H−1(D))3

‖F (t, u)‖(H−1(D))3 ≤ C1(1 + ‖u‖), (2.12)

G : (0, T )× V → (
(L2(D))3

)m
, measurable

a.e.t, u 7→ G(t, u) : continuous from V to
(
(L2(D))3

)m

|G(t, u)|((L2(D))3)m ≤ C2(1 + ‖u‖). (2.13)

The constants C1 and C2 are independent of t and u.

We now define the concept of weak solution of the problem (2.1) namely

Definition 1. By a weak solution of problem (2.1), we shall mean a system (Ω,F , {Ft}0≤t≤T ,P,W, u)

such that

1) (Ω,F ,P)is a probability space, ({Ft}, 0 ≤ t ≤ T )is a filtration,

2) W is an m-dimensional {Ft}standard Wiener process,

3) u(t) is Ft adapted for all t ∈ [0, T ]

u ∈ Lp(Ω,F ,P; L2(0, T, D(A))) ∩ Lp(Ω,F ,P;L∞(0, T, V )) for all 1 ≤ p < ∞,

4) For all t ∈ [0, T ], the following equation holds P- a.s.

((u(t), Φ)) + ν

∫ t

0
(u(s) + αAu(s), AΦ)ds +

∫ t

0
b∗(u(s), u(s)− α∆u(s),Φ) ds

= ((u0, Φ)) +
∫ t

0
〈F (s, u(s)), Φ〉−1 ds +

(∫ t

0
G(s, u(s)) dW (s),Φ

)
(2.14)

for all Φ ∈ D(A).

Our main result is the following

Theorem 1. (Existence) We assume that the above condition on F and G hold and u0 ∈ V .

Then there exists a weak solution (Ω,F , {Ft}0≤t≤T ,P,W, u) of problem (2.1) in the sense of

Definition 1.

Moreover u ∈ Lp(Ω,F ,P;C([0, T ];V )), and there exists p̃ ∈ L2(Ω,Ft,P; H−1(0, t; H−1(D)), for
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all t ∈ [0, T ], such that P − a.s.

∂t(u− α∆u) + ν(Au− α∆(Au)) + (u.∇)(u− α∆u)− α(∇u)T . ∆u +∇p̃

= F (t, u) + G(t, u)
dW

dt
, in (D′((0, T )×D))3,

∫

D
p̃ dx = 0, in D′(0, T ),

(2.15)

where G(t, u)dW
dt denotes the time derivative of

∫ t
0 G(s, u(s)) dWs, that is, by definition

G(t, u)
dW

dt
= ∂t

(∫ .

0
G(s, u(s)) dWs

)
, in D′(0, T ; (L2(D))3), P − a.s..

Corollary 1. (Uniqueness) We assume that F and G are Lipschitz with respect to the second

variable, u0 ∈ V . Then there exist a unique weak solution of problem (2.1) in the sense of

Definition 1.

Moreover, two strong solutions on the same Brownian stochastic basis coincide a.s..

2.3.1 Abstract formulation of problem (2.1)

We are going to rewrite our model as an abstract problem.

We identify V with its topological dual V ′ and we have the Gelfand triple D(A) ⊂ V ⊂ D(A)′.

We denote by 〈., .〉 the duality product between D(A)′ and D(A). We define

〈Ãu, v〉 = ν(Au, v) + να(Au, Av), u, v ∈ D(A).

It is clear that for all v ∈ D(A),

2〈Ãu, v〉 = 2ν(Av, v) + 2να(Av,Av) ≥ 2να|Av|2,

and, if we denote by λk and wk, k ≥ 1, the eigenvalues and their corresponding eigenfunctions

associated to A, then

〈Ãwk, v〉 = νλk((wk, v)).

Thus, taking

α̃ = 2να,

we have:
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(a) Ã ∈ L(D(A), D(A)′), such that

(a1) Ã is self-adjoint

(a2) there exists α̃ > 0, such that

2〈Ãv, v〉 ≥ α̃‖v‖2
D(A) for all v ∈ D(A). (2.16)

Next, we define the operators B̃ and F̃

〈B̃(u, v), w〉 = b∗(u, v − α∆v, w), (u, v, w) ∈ D(A)×D(A)×D(A),

((F̃ (t, u), w)) = 〈F (t, u), w〉−1, (u,w) ∈ V × V. (2.17)

Thus it is straightforward to check that if we take

γ = (1 + α)c1(D)c(D),

then we obtain that

(b) B̃ : D(A)×D(A) → D(A)′ is a bilinear mapping such that

(b1) 〈B̃(u, v), u〉 = 0 for all u, v ∈ D(A), (2.18)

(b2) ‖B̃(u, v)‖D(A)′ ≤ γ‖u‖‖v‖D(A), for all u, v ∈ D(A)×D(A), (2.19)

(b3) |〈B̃(u, v), w〉| ≤ γ‖u‖D(A)‖v‖D(A)‖w‖, for all u, v, w ∈ D(A). (2.20)

The constants c1(D) and c(D) are from (2.3) and (2.10).

(c) F̃ : (0, T )× V → V, measurable such that

(c1) a.e.t, u 7→ F̃ (t, u) : continuous from V to V

(c2) ‖F̃ (t, u)‖ ≤ C1(1 + ‖u‖). (2.21)

The constant C1 is from (2.12).

Now, let I denote the identity operator in H, and define G̃(t, u) as

G̃(t, u) = (I + αA)−1 ◦ P1 ◦G(t, u), u ∈ V. (2.22)

I + αA is bijective from D(A) onto H, and

(((I + αA)−1f, w)) = (f, w), for all f ∈ H, w ∈ V.
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Thus, for each f ∈ H,

‖(I + αA)−1f‖2 = (f, u) ≤ |f ||u|,

where u = (I + αA)−1f ;

that is (u,wk) + α(Au,wk) = (f, wk), for all k ≥ 1. And

(1 + αλk)(u, wk) = (f, wk).

This implies

(u,wk) =
1

(1 + αλk)
(f, wk) ≤ 1

1 + αλ1
(f, wk),

|u|2 =
∞∑

k=1

(u,wk)2 ≤ 1
(1 + αλ1)2

∞∑

k=1

(f, wk)2 =
1

(1 + αλ1)2
|f |2.

Therefore,

‖(I + αA)−1f‖2 ≤ 1
1 + αλ1

|f |2.

And consequently, taking

C̃ =
C2√

1 + αλ1
, (2.23)

we see that G̃ satisfies the following conditions:

(d) G̃ : (0, T )× V → V ⊗m, measurable such that

(d1) a.e.t, u 7→ G̃(t, u) : continuous from V to V ⊗m

(d2) ‖G̃(t, u)‖V ⊗m ≤ C̃(1 + ‖u‖). (2.24)

Next, for all (t, u,Φ) ∈ (0, T )× V ×D(A), we have

(G(t, u),Φ) = ((I + αA)G̃(t, u), Φ) = ((G̃(t, u),Φ)).

Furthermore, for all u ∈ L2(Ω,F ,P; L∞(0, T ;V )), (t,Φ) ∈ (0, T )×D(A), we have

(∫ t

0
G(s, u(s)) dW (s),Φ

)
=

d∑

j=1

∫ t

0
(Gj(s, u(s)), Φ) dWj(s)

=
d∑

j=1

∫ t

0

((
G̃j(s, u(s),Φ)

))
dWj(s)

=
((∫ t

0
G̃(s, u(s)) dW (s),Φ

))
.

Consequently, we have the following version of the definition of a weak solution of problem (2.1)

in the abstract setting as
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Definition 2. (Ω,F , {Ft}0≤t≤T ,P, W, u) is a probabilistic weak solution of problem (2.1) if it

satisfies properties 1), 2), 3) of Definition 1 and

4) For all t ∈ [0, T ], the following equation holds P- a.s.

u(t)+
∫ t

0
Ãu(s) ds +

∫ t

0
B̃(u(s), u(s)) ds

= u0 +
∫ t

0
F̃ (s, u(s)) ds +

∫ t

0
G̃(s, u(s)) dW (s), (2.25)

as equality in D(A)′.

Remark 1. The equation (2.25) implies that u ∈ C(0, T ; D(A)′) then u is weakly continuous in

V (see[72], p.263) and the initial condition is meaningful.

2.4 Proof of the main result

2.4.1 Proof of Theorem 1

We make use of the Galerkin approximation combined with the method of compactness.

We will split the proof into six steps.

Step 1 : Construction of an approximating sequence

As the injection D(A) ↪→ V is compact, we consider an orthonormal basis {ej}j=1,2,...in D(A)

which is orthogonal in V such that ej are eigenfunctions of the spectral problem

(ej , v)D(A) = βj((ej , v)), for all v ∈ D(A)

where (., .)D(A) denotes the scalar product in D(A). For each N ∈ N, let VN be the span of

{e1, ..., eN}.
We consider the following stochastic ordinary differential equations in VN

d((uN , ej)) +
(
〈ÃuN (t), ej〉+ 〈B̃(uN (t), uN (t)), ej〉

)
dt (2.26)

= ((F̃ (t, uN (t)), ej)) dt + ((G̃(t, uN (t)), ej)) dW, j = 1, 2, ..., N

uN (0) = uN
0 ,

where uN
0 ∈ VN and is chosen with the requirements that

uN
0 → u0 in V as N →∞. (2.27)
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By the result in [69], this system has a probabilistic weak solution (ΩN ,FN , {FN
t }0≤t≤T , PN ,WN , uN ).

We have the following Fourier expansion

uN (t) =
N∑

j=1

(uN (t), ej)D(A)ej =
N∑

j=1

βj((uN (t), ej))ej , (2.28)

and

‖uN (t)‖2 =
N∑

j=1

βj((uN (t), ej))2.

Step 2. A priori estimates

Throughout C and Ci(i = 1, ...) denote positive constants independent of N and α. The same

symbol will be used for different constants.

We have

Lemma 1. uN satisfies the following a priori estimates

EN sup
0≤t≤T

‖uN (s)‖2 + 2α̃EN

∫ T

0
‖uN (s)‖2

D(A) ds ≤ C1, (2.29)

where C1 is a constant independent of N and α. EN is the mathematical expectation with respect

to the probability space (ΩN ,FN , PN ).

Proof. By Itô’s formula, we obtain from (2.18) and (2.26) that

d‖uN (t)‖2 + 2〈ÃuN (t), uN (t)〉 dt =


2((F̃ (t, uN (t)), uN (t))) +

N∑

j=1

λj((G̃(t, uN (t)), ej))2


 dt

+ 2((G̃(t, uN (t)), uN (t))) dWN . (2.30)

Integrating (2.30) with respect to t, and using (2.16) and (2.21), we have

‖uN (t)‖2 + 2α̃

∫ t

0
‖uN (s)‖2

D(A) ds ≤ ‖uN
0 ‖2 + C + C

∫ t

0
‖uN (s)‖2 ds+

+ 2
∫ t

0
((G̃(s, uN (s)), uN (s))) dWN (s). (2.31)

For each integer n ≥ 1, consider the FN
t - stopping time λN

n defined by

λN
n = inf

{
t ∈ [0, T ]; ‖uN (t)‖2 +

∫ t

0
‖uN (s)‖2

D(A) ds ≥ n2

}
∧ T.

From (2.31), we have

sup
s∈[0,t∧λN

n ]

‖uN (s)‖2 + 2α̃

∫ t∧λN
n

0
‖uN (s)‖2

D(A) ds ≤ ‖u0‖2 + C + C

∫ t

0
sup

r∈[0,s∧λN
n ]

‖uN (r)‖2 ds

+ 2 sup
s∈[0,t∧λN

n ]

∫ s

0
((G̃(r, uN (r)), uN (r))) dWN (r) (2.32)
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∀t ∈ [0, T ] and all N , n ≥ 1. Let us estimate the stochastic integral in this inequality. By

Burkholder-Davis Gundy’s inequality [45], we have

EN sup
s∈[0,t∧λN

n ]

∣∣∣∣
∫ s

0
((G̃(s, uN (s)), uN (s))) dWN (s)

∣∣∣∣

≤ CEN

(∫ t∧λN
n

0
((G̃(s, uN (s)), uN (s)))2 ds

) 1
2

≤ εEN sup
s∈[0,t∧λN

n ]

‖uN (s)‖2 + CεEN

∫ t∧λN
n

0
(1 + ‖uN (s)‖2) ds. (2.33)

Here we have used Hölder′s and Young’s inequalities; ε is an arbitrary positive number.

Taking expectation in (2.32), and using (2.33), we obtain

EN sup
s∈[0,t∧λN

n ]

‖uN (s)‖2 + 2α̃EN

∫ t∧λN
n

0
‖uN (s)‖2

D(A) ds ≤ ‖u0‖2 + C + 2εEN sup
s∈[0,t∧λN

n ]

‖uN (s)‖2

+ Cε

∫ t

0
EN sup

r∈[0,s∧λN
n ]

‖uN (r)‖2 ds. (2.34)

Using (2.34) together with appropriate choice of ε, we obtain

EN sup
s∈[0,t∧λN

n ]

‖uN (s)‖2+2α̃EN

∫ t∧λN
n

0
‖uN (s)‖2

D(A) ds ≤ ‖u0‖2+C+C

∫ t

0
EN sup

r∈[0,s∧λN
n ]

‖uN (r)‖2 ds.

Using Gronwall’s lemma and the fact that (λN
n )n is increasing to T when n goes to ∞, it follows

that

EN sup
0≤t≤T

‖uN (s)‖2 + 2α̃EN

∫ T

0
‖uN (s)‖2

D(A) ds ≤ C1

where C1 is independent of N and α.

The following result is related to the higher-integrability of uN .

Lemma 2. We have

EN sup
0≤s≤T

‖uN (s)‖p ≤ Cp for all 1 ≤ p < ∞.

Proof. By Itô’s formula, it follows from (2.30) that for p ≥ 4, we have

d‖uN (t)‖ p
2 =

p

2
‖uN (t)‖ p

2
−2

[
− 〈ÃuN (t), uN (t)〉 − 2〈B̃(uN (t), uN (t)), uN (t)〉+ 2((F̃ (t, uN (t)), uN (t)))

+
1
2

N∑

i=1

λi((G̃(t, uN (t)), ei))2 +
p− 4

4
((G̃(uN (t), uN (t))))2

‖uN (t)‖2

]
dt

+
p

2
‖uN (t)‖ p

2
−2((G̃(t, uN (t)), uN (t))) dWN .
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Using the assumptions (2.18),(2.21),(2.24), it follows that

sup
0≤s≤t

‖uN (s)‖ p
2 ≤ ‖uN

0 ‖
p
2 + C

∫ t

0
(1 + ‖uN (s)‖ p

2 ) ds

+
p

2
sup

0≤s≤t

∣∣∣∣
∫ s

0
‖uN (s)‖ p

2
−2((G̃(s, uN (s)), uN (s))) dWN

∣∣∣∣ .

Squaring the both sides of this inequality and passing to mathematical expectation, we deduce

from the martingale inequality that

EN sup
0≤s≤t

‖uN (s)‖p ≤ C

(
‖uN

0 ‖p + T + EN

∫ t

0
‖uN (s)‖p ds

)
.

From the Gronwall’s inequality, we deduce that

EN sup
0≤s≤t

‖uN (s)‖p ≤ Cp

for all 1 ≤ p < ∞.

We also have

Lemma 3. uN satisfies

EN

(∫ T

0
‖uN (s)‖2

D(A) ds

)p

≤ Cp

αp

for all 1 ≤ p < ∞.

Proof. From (2.31), we have

α̃p

(∫ T

0
‖uN (s)‖2

D(A) ds

)p

≤ Cp

(
‖uN

0 ‖2p + 1 +
(∫ T

0
‖uN (s)‖2 ds

)p
)

+ Cp sup
t∈[0,T ]

∣∣∣∣
∫ t

0

((
G̃(s, uN (s)), uN (s)

))
dWN

∣∣∣∣
p

. (2.35)

By Burkholder-Gundy’s inequality, we have

EN sup
t∈[0,T ]

∣∣∣∣
∫ t

0

((
G̃(s, uN (s)), uN (s)

))
dWN (s)

∣∣∣∣
p

≤ CpEN

(∫ T

0

((
G̃(s, uN (s)), uN (s)

))2
ds

) p
2

≤ Cp

(
EN sup

t∈[0,T ]
‖uN (s)‖2p

)
+ CpT. (2.36)

Thus from (2.35) and Lemma 2, we have

EN

(∫ T

0
‖uN (s)‖2

D(A) ds

)p

≤ Cp

αp
.
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Lemma 4. We have1

EN sup
0≤|θ|≤δ≤1

∫ T

0
‖uN (t + θ)− uN (t)‖2

D(A)′ dt ≤ Cδ

α
+ Cδ

Proof. We note that the functions {βjej}j=1,2,.. form an orthonormal basis in the dual D(A)′ of

D(A). Let PN be the orthogonal projection of D(A)′ onto the span {β1e1, ..., βNeN} that is

PNh =
N∑

j=1

βj〈h, ej〉ej .

Thus the equation (2.26) can be rewritten in an integral form as the equality between random

variables with values in D(A)′ as

uN (t) +
∫ t

0
PN

(
ÃuN (s) + B̃(uN (s), uN (s))− F̃ (s, uN (s))

)
ds

= uN
0 +

∫ t

0
PN G̃(s, uN (s)) dWN .

For any positive θ, we have

‖uN (t + θ)− uN (t)‖D(A)′

≤
∥∥∥∥
∫ t+θ

t
(ÃuN (s) + B̃(uN (s), uN (s))− F̃ (s, uN (s))) ds

∥∥∥∥
D(A)′

+
∥∥∥∥
∫ t+θ

t
G̃(s, uN (s)) dWN

∥∥∥∥
D(A)′

.

Taking the square and use the properties of Ã, B̃ and F̃ , we have

‖uN (t + θ)− uN (t)‖2
D(A)′ ≤ Cθ2+

C

(∫ t+θ

t
‖uN (s)‖2

D(A) ds

)2

+ C sup
0≤t≤T

‖uN (s)‖2

(∫ t+θ

t
‖uN (s)‖D(A) ds

)2

+ Cθ2 sup
0≤s≤T

‖uN (s)‖2 +
∥∥∥∥
∫ t+θ

t
G̃(s, uN (s)) dWN

∥∥∥∥
2

.

For fixed δ, taking the supremum over θ ≤ δ, integrating with respect to t and taking the

mathematical expectation, we have

EN sup
0≤θ≤δ

∫ T

0
‖uN (t + θ)− uN (t)‖2

D(A)′ dt ≤ Cδ2 + CEN

∫ T

0

(∫ t+δ

t
‖uN (s)‖2

D(A) ds

)2

dt

+ CEN sup
0≤s≤T

‖uN (s)‖2

∫ T

0

(∫ t+δ

t
‖uN (s)‖D(A) ds

)2

dt

+ Cδ2EN sup
0≤s≤T

‖uN (s)‖2 + EN

∫ T

0
sup

0≤θ≤δ

∥∥∥∥
∫ t+θ

t
G̃(s, uN (s)) dWN

∥∥∥∥
2

dt. (2.37)

1uN is extended by 0 outside [0,T]
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We estimate the integrals in this inequality.

We have by Hölder′s inequality

I1 = EN sup
0≤s≤T

‖uN (s)‖2

∫ T

0

(∫ t+δ

t
‖uN (s)‖D(A) ds

)2

dt

≤ δ2EN sup
0≤s≤T

‖uN (s)‖2

∫ T

0
‖uN (s)‖2

D(A) ds

Using the Hölder′s inequality and the estimates of Lemmas 2, 3, we have

I1 ≤ Cδ2

α
.

By martingale inequality, we have

I2 = EN

∫ T

0
sup

0≤θ≤δ

∥∥∥∥
∫ t+θ

t
G̃(s, uN (s)) dWN

∥∥∥∥
2

dt

≤ EN

∫ T

0

(∫ t+δ

t
‖G̃(s, uN (s))‖2 ds

)
dt.

Using the assumptions on G̃ and the estimate of Lemma 2, we have

I2 ≤ Cδ.

Collecting these results and proceeding similarly for the case θ < 0, we obtain from (2.37) that

EN sup
0≤|θ|≤δ

∫ T

0
‖uN (t + θ)− uN (t)‖2

D(A)′ ≤
Cδ

α
+ Cδ

The following compactness results is from [2] and represents a variation of the compactness

theorems in ([52] . Chap I, Section 5), and will be useful for us to prove the tightness property

of Galerkin’s solutions.

Proposition 3. For any sequences of positives real νm, µm which tend to 0 as m → ∞, the

injection of2

Yµn,νn =



y ∈ L2(0, T ; D(A)) ∩ L∞(0, T ; V )| sup

m

1
νm

sup
|θ|≤µm

(∫ T

0
‖y(t + θ)− y(t)‖2

D(A)′

) 1
2

< ∞




in L2(0, T ;V ) is compact.

Proof. See Appendix, Proposition 6 with B0 = B1 = D(A) and B2 = V .
2y is extended by 0 outside (0,T)
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Furthermore Yµn,νn is a Banach space with the norm

‖y‖Yµn,νn
= ess sup

0≤t≤T
‖y(t)‖+

(∫ T

0
‖y(t)‖2

D(A)dt

) 1
2

+

+ sup
n

1
νn

sup
|θ|≤µn

(∫ T

0
‖y(t + θ)− y(t)‖2

D(A)′dt

) 1
2

.

Alongside with Yµn,νn , we also consider the space Xp,µn,νn(1 ≤ p < ∞) of random variables

y defined on some probability space (we denote the expectation on that space by Ē) such that

Ē ess sup
0≤t≤T

‖y(t)‖p < ∞; Ē
(∫ T

0
‖y(t)‖2

D(A)dt

) p
2

< ∞; Ē sup
n

1
νn

sup
|θ|≤µn

∫ T

0
‖y(t+θ)−y(t)‖2

D(A)′dt < ∞.

Endowed with the norm

‖y‖Xp,νn,µn
=

(
Ē ess sup

0≤t≤T
‖y(t)‖p

) 1
p

+

(
Ē

(∫ T

0
‖y(t)‖2

D(A)dt

) p
2

) 2
p

+

+ Ē sup
n

1
νn

(
sup
|θ|≤µn

∫ T

0
‖y(t + θ)− y(t)‖2

D(A)′dt

) 1
2

Xp,µn,νn is a Banach space. The priori estimates of the preceding lemmas enable us to claim

that for any 1 ≤ p < ∞ and for µn, νn such that the series
∑∞

n=1

√
µn

νn
converges, the sequence

of Galerkin’s solutions {uN : N ∈ N} is bounded in Xp,µn,νn .

Step 3. Tightness property of Galerkin’s solutions

Now, we consider the set

S = C(0, T ;Rm)× L2(0, T ;V ),

and B(S) the σ-algebra of the Borel sets of S.

For each N , let φN be the map

φN : ΩN → S : ω 7→ (WN (ω, .), uN (ω, .)).

For each N , we introduce a probability measure ΠN on (S,B(S)) by

ΠN (A) = PN (φ−1
N (A))

for all A ∈ B(S). The main result of this subsection is

Theorem 2. : The family of probability measures{ΠN ; N ∈ N} is tight in (S,B(S)).
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Proof. For ε > 0, we should find the compact subsets

Σε ⊂ C(0, T ; Rm), Yε ⊂ L2(0, T ; V )

such that

PN (ω : WN (ω, .) /∈ Σε) ≤ ε

2
, (2.38)

PN (ω : uN (ω, .) /∈ Yε) ≤ ε

2
. (2.39)

The quest for Σε is made by taking account of some fact about the Wiener process such as the

formula

EN |WN (t2)−WN (t1)|2j = (2j − 1)!(t2 − t1)j , j = 1, 2, ..

For a constant Lε depending on ε to be chosen later and n ∈ N , we consider the set

Σε = {W (.) ∈ C(0, T ; Rm) : sup
t1,t2∈[0,T ],|t2−t1|≤ 1

n6

n|W (t2)−W (t1)| ≤ Lε}.

Σε is relatively compact in C(0, T ; Rm) by Arzsela- Ascoli’s Theorem. Furthermore Σε is closed

in C(0, T ; Rm). Therefore Σε is a compact subset of C(0, T ; Rm).

Making use of Markov’s inequality:

P̄ (ω : ξ(ω) ≥ α) ≤ 1
αk
Ē

[
|ξ(ω)|k

]

for a random variable ξ defined on some probability space (Ω̄, F̄ , P̄ ) and positive real α and k, we

get

PN (ω : WN (ω, .) /∈ Σε) ≤PN


⋃

n

{ω : sup
t1,t2∈[0,T ]:|t2−t1|< 1

n6

|WN (t2)−WN (t1)| > Lε

n
}



≤
∞∑

n=1

n6−1∑

i=0

(
n

Lε

)4

EN sup
iT
n6≤t≤ (i+1)T

n6

|WN (t)−WN (iTn−6)|4

≤c
∞∑

n=1

(
n

Lε

)4

(Tn−6)2n6

=
c

L4
ε

∞∑

n=1

1
n2

we choose

L4
ε = 2Cε−1

∞∑

n=1

1
n2

to get (2.38).

Next we choose Yε as a ball of radius Mε in Yµn,νn centered at zero and with µn, νn independent
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of ε, converging to zero and such that
∑

n

√
µn

νn
converges.

From Proposition 3, Yε is a compact subset of L2(0, T ; V ) .

We have further

PN (ω : uN (ω, .) /∈ Yε) ≤PN (ω : ‖uN‖Yµn,νn
> Mε) ≤ 1

Mε
EN‖uN‖Yµn,νn

≤ c

Mε

choosing Mε = 2cε−1, we get (2.39).

From (2.38)and(2.39), we have

PN (ω : WN (ω, .) ∈ Σε;uN (ω, .) ∈ Yε) ≥ 1− ε

and this proves that

ΠN (Σε × Yε) ≥ 1− ε ∀ N ∈ N.

Step 4. Applications of Prokhorov and Skorokhod results

From the tightness property of {ΠN} and Prokhorov’s theorem (see Appendix C), we have

that there exist a subsequence {ΠNj} and a probability measure Π such that ΠNj → Π weakly.

By Skorokhod’s theorem (see Appendix C), there exist a probability space (Ω,F , P ) and

random variables (WNj , u
Nj ), (W,u) on (Ω,F , P ) with values in S such that

the law of (WNj , u
Nj ) is ΠNj

and

the law of (W,u) is Π

(WNj , u
Nj ) → (W,u) in S, P − a.s.. (2.40)

Hence {WNj} is a sequence of an m-dimensional standard Wiener process.

Let F t = σ{W (s), u(s), 0 ≤ s ≤ t} .

Arguing as in [1], we prove that W (t) is an m-dimensional F t-standard Wiener process and the

pair (WNj , u
Nj ) satisfies the equation

uNj (t) + ν

∫ t

0
PNj ÃuNj (s)ds +

∫ t

0
PNj B̃(uNj (s), uNj (s))ds =

∫ t

0
PNj F̃ (s, uNj (s))ds +

∫ t

0
PNj G̃(s, uNj (s))dWNj + u

Nj

0 . (2.41)
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In fact to prove that W (t) is an m-dimensional F t standard Wiener process, it is sufficient to

prove that for λ ∈ Rm, s ≤ t and i2 = −1

E [exp {iλ.(W (t)−W (s))} |Fs] = exp− |λ|2
2

(t− s), (2.42)

where E denotes the mathematical expectation with respect to the probability space (Ω,F , P ).

Let Λs (b(.), z(.)) be any continuous bounded functional on S which depends only on the restric-

tion of b(.), z(.) on (0, s). To prove (2.42), it is sufficient to prove that:

E [exp {iλ. (W (t)−W (s))}Λs (W (.), u(.))] = exp− |λ|2
2

(t− s)EΛs (W (.), u(.)) . (2.43)

But

E
[
exp

{
iλ.

(
WNj (t)−WNj (s)

)}
Λs

(
WNj (.), u

Nj (.)
)]

= exp− |λ|2
2

(t− s)EΛs

(
WNj (.), u

Nj (.)
)

since Λs

(
WNj (.), u

Nj (.)
)

is independent of WNj (t)−WNj (s) and WNj is a Wiener process.

In view of (2.40) and the continuity of Λt, we can pass to the limit in this equality and get

(2.43).

Next, we need to prove that
(
uNj ,WNj

)
satisfies the equation

uNj (t) + ν

∫ t

0
PNj ÃuNj (s)ds +

∫ t

0
PNj B̃(uNj (s), uNj (s))ds

=
∫ t

0
PNj F̃ (s, uNj (s))ds +

∫ t

0
PNj G̃(s, uNj (s))dWNj + u

Nj

0 . (2.44)

We set

EN (t) = uN (t) +
∫ t

0
PN

[
ÃuN (s) + B̃

(
uN (s), uN (s)

)]
ds

− uN
0 − PN

[∫ t

0
F̃

(
s, uN (s)

)
ds +

∫ t

0
G̃

(
s, uN (s)

)
dWN (s)

]

and

XN =
∫ T

0
‖EN (s)‖2

D(A)′ ds.

Obviously almost surely XN = 0; hence in particular

EN
XN

1 + XN
= 0

since XN ≥ 0 and

EN
XN

1 + XN
≤ ENXN .
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Let

ENj (t) = uNj (t) +
∫ t

0
PNj

[
ÃuNj (s) + B̃

(
uNj (s), uNj (s)

)]
ds

− u
Nj

0 − PNj

[∫ t

0
F̃

(
s, uNj (s)

)
ds +

∫ t

0
G̃

(
s, uNj (s)

)
dWNj (s)

]

and

YNj =
∫ T

0
‖ENj (s)‖2

D(A)′ ds.

Our claims will be proved if we can show that

E
YNj

1 + YNj

= 0. (2.45)

An obstacle in the realisation of this goal is the fact that XN is not a deterministic functional

of uN and W̄ in view of the presence of the stochastic integral in XN .

In order to circumvent that we introduce a regularization of G̃ in t given by

G̃ε(u)(t) =
1
ε

∫ t

0
exp

[
− t− s

ε

]
G (s, u(s)) ds.

We have the following properties of G̃ε:

E
∫ T

0
‖G̃ε(u)(t)‖2

V ⊗m ≤ E
∫ T

0
‖G̃(t, u(t))‖2

V ⊗m dt (2.46)

and

G̃ε(u)(.) → G̃(., u(.)) in L2
(
Ω,F , P ; L2(0, T ; V ⊗m)

)
as ε → 0. (2.47)

We denote by XN,ε and YNj ,ε the analog of XN and YNj with G̃ replaced by G̃ε.

Introduce the mapping

ΦN,ε : C(0, T ; Rm)× L2(0, T ;V ) → R

given by

ΦN,ε(WN ; uN ) =
XN,ε

1 + XN,ε
.

Owing to the definition of XN,ε, ΦN,ε is bounded and continuous on C(0, T ; Rm)× L2(0, T ; V ).

Let similarly

ΦNj ,ε

(
WNj , u

Nj
)

=
YNj ,ε

1 + YNj ,ε
.

We have, using the conclusion of Prokhorov’s theorem

E
YNj ,ε

1 + YNj ,ε
= EΦNj ,ε

(
WNj , u

Nj
)

=
∫

S
ΦNj ,ε(ω, x) dΠNj

=ENjΦNj ,ε

(
WNj , u

Nj
)

=ENj

XNj ,ε

1 + XNj ,ε
. (2.48)
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But

E
YNj

1 + YNj

− ENj

XNj

1 + XNj

= E
(

YNj

1 + YNj

− YNj ,ε

1 + YNj ,ε

)
+ E

YNj ,ε

1 + YNj ,ε
− ENj

XNj ,ε

1 + XNj ,ε

+ ENj

(
XNj ,ε

1 + XNj ,ε
− XNj

1 + XNj

)
. (2.49)

Moreover

E
∣∣∣∣

YNj

1 + YNj

− YNj ,ε

1 + YNj ,ε

∣∣∣∣ =E
∣∣∣∣

YNj − YNj ,ε

(1 + YNj )(1 + YNj ,ε)

∣∣∣∣

≤ E ∣∣YNj − YNj ,ε

∣∣

≤ C

(
E

∫ T

0
‖G̃ε(uNj )(t)− G̃(uNj )(t)‖2

V ⊗m dt

) 1
2

(2.50)

and, similarly

ENj

∣∣∣∣
XNj ,ε

1 + XNj ,ε
− XNj

1 + XNj

∣∣∣∣ ≤ C

(
ENj

∫ T

0
‖G̃ε(uNj )(t)− G̃(uNj )(t)‖2

V ⊗m dt

) 1
2

.

Combining these relations with (2.47)-(2.48) and letting ε → 0, it follows from (2.49) that

E
YNj

1 + YNj

= ENj

XNj

1 + XNj

= 0.

This proves (2.45) and hence (2.44).

Step 5. Passage to the limit

From (2.41), it follows that uNj satisfies the results of the Lemmas 2, 3, 4. Therefore we have

for p ≥ 1 the a priori estimates

E sup
0≤t≤T

‖uNj(t)‖p ≤ C; E
(∫ T

0
‖uNj (t)‖2

D(A)dt

)p

≤ C; E sup
0≤θ≤δ

∫ T

0
‖uNj (t+θ)−uNj‖2

D(A)′dt ≤ C(α)δ

(2.51)

thus modulo the extraction of a subsequence denoted again by uNj , we have

uNj → u weakly ∗ in Lp(Ω,F , P ;L∞(0, T ; V ))

uNj → u weakly in Lp(Ω,F , P ; L2(0, T ; D(A)))

E sup
0≤t≤T

‖u(t)‖p ≤ C ; E
(∫ T

0
‖u(t)‖2

D(A)dt

)p

≤ C;

E sup
0≤θ≤δ

∫ T

0
‖u(t + θ)− u(t)‖2

D(A)′dt ≤ Cδ

α
.
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Combining (2.40) with the first estimate in (2.51) and Vitali’s theorem, we have

uNj → u strongly in L2(Ω,F , P ; L2(0, T, V )) (2.52)

and thus modulo the extraction of a subsequence and for almost every (ω, t) with respect to the

measure dP ⊗ dt:

uNj → u in V.

This convergence together with the condition on F̃ , the first estimate in (2.51) and Vitali’s

theorem, give

F̃ (., uNj (.)) → F̃ (., u(.)) strongly in L2(Ω,F , P ; L2(0, T, V ))
∫ t

0
F̃ (s, uNj(s))ds →

∫ t

0
F̃ (s, u(s))ds strongly in L2(Ω,F , P ;L2(0, T, V ))

As

uNj → u weakly in L2(Ω,F , P ; L2(0, T ; D(A)))

then ∫ t

0
ÃuNj (s) ds →

∫ t

0
Ãu(s) ds weakly in L2(Ω,F , P ; L2(0, T ; D(A)′))

We also have
∫ t

0
B̃(uNj (s), uNj (s))ds →

∫ t

0
B̃(u(s), u(s))ds weakly in L2(Ω,F , P ; L2(0, T ; D(A)′))

In fact since L∞(Ω×(0, T ), dP×dt;D(A)) is dense in L2(Ω,F , P ; L2(0, T ; D(A))), and B̃(uNj (s), uNj (s))

is bounded in L2(Ω,F , P ;L2(0, T ;D(A)′)), it suffices to prove that ∀ϕ ∈ L∞(Ω × (0, T ), dP ×
dt; D(A))

E
∫ T

0
〈B̃(uNj (s), uNj (s)), ϕ(s)〉D(A)′ds → E

∫ T

0
〈B̃(u(s), u(s)), ϕ(s)〉D(A)′ds.

Indeed, we have

E
∫ T

0
〈B̃(uNj (s), uNj (s))− B̃(u(s), u(s)), ϕ(s)〉D(A)ds =

E
∫ T

0
〈B̃(uNj (s)−u(s), uNj (s)), ϕ(s)〉D(A)ds+E

∫ T

0
〈B̃(u(s), uNj (s)−u(s)), ϕ(s)〉D(A)ds = I1j+I2j .

I1j = E
∫ T

0
〈B̃(uNj (s)− u(s), uNj (s)), ϕ(s)〉D(A)ds

By the property (2.19) of B̃, we have

I1j ≤ CE
∫ T

0
‖uNj (s)− u(s)‖‖uNj (s)‖D(A)|Aϕ(s)|ds.
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Applying Cauchy-Schwarz’s inequality, we get

I1j ≤ Cϕ

(
E

∫ T

0
‖uNj (s)− u(s)‖2ds

) 1
2
(
E

∫ T

0
‖uNj (s)‖2

D(A) ds

) 1
2

.

Since

uNj → u strongly in L2(Ω,F , P ;L2(0, T ;V ))

and uNj is bounded in L2(Ω,F , P ;L2(0, T ;D(A))), we conclude that

I1j → 0 as j → ∞.

I2j = E
∫ T

0
〈B̃(u(s), uNj − u(s)), ϕ(s)〉D(A)′ds.

Again thanks to the property (2.20) of B̃, as

uNj → u weakly in L2(Ω,F , P ;L2(0, T ; D(A)))

we obtain I2j → 0 as j → ∞ since any strongly continuous linear operator is weakly

continuous. We are now left with the proof of
∫ t

0
G̃(s, uNj (s))dWNj (s) →

∫ t

0
G̃(s, u(s))dW (s) weakly L2(Ω,F , P ; V ).

We consider for that purpose the already introduced regularisation

G̃ε(u)(t) =
1
ε

∫ t

0
exp(− t− s

ε
)G̃(s, u(s)) ds

which satisfies (2.46)-(2.47). Also for Nj fixed

G̃ε(uNj )(.) → G̃(uNj )(.) in L2(Ω,F , P ; L2(0, T ; V ⊗m)) (2.53)

as ε → 0. From the definition of G̃ε, we have
∫ t

0
‖G̃ε(uNj )(s)− G̃ε(u)(s)‖2

V ⊗m ds

≤
∫ t

0
‖G̃(uNj )(s)− G̃(u)(s)‖2

V ⊗m ds

=
∫ t

0
‖G̃(s, uNj (s))− G̃(s, u(s))‖2

V ⊗m ds. (2.54)

Next by integration by parts, we have
∫ t

0
G̃ε(uNj )(s) dWNj (s) =

1
ε
WNj (T )

∫ T

0
G̃(t, uNj (t))e−

T−t
ε dt

− 1
ε

∫ T

0
WNj (t).

(
G̃(t, uNj (t))− 1

ε

∫ t

0
G̃(s, uNj (s))e−

t−s
ε ds

)
dt.

(2.55)
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In view of (2.40), passing to the limit as j →∞ in (2.55), we get
∫ t

0
G̃ε(uNj )(s) dWNj (s) −→

1
ε
W (T )

∫ T

0
G̃(t, u(t))e−

T−t
s dt

− 1
ε

∫ T

0
W (t)

(
G̃(t, u(t))− 1

ε

∫ t

0
G̃(s, u(s))e−

t−s
ε ds

)
dt (2.56)

for almost all (ω, t). The right hand side of (2.56) is equal to
∫ t
0 G̃ε(u)(s) dW (s).

Thus
∫ t

0
G̃ε(uNj )(s) dWNj (s) −→

∫ t

0
G̃ε(u)(s) dW (s) (2.57)

for almost every (ω, t) as j →∞ for fixed ε.

Picking any element ξ ∈ L2(Ω,F , P ; V ), we have

E
((

ξ,

∫ t

0
G̃ε(uNj )(s) dWNj (s)

))
−→ E

((
ξ,

∫ t

0
G̃ε(u)(s) dW (s)

))
(2.58)

as j →∞, for fixed ε. This follows from (2.57) and Vitali’s theorem.

In the other hand, we have

E
∥∥∥∥
∫ t

0
G̃(uNj )(s) dWNj (s)

∥∥∥∥
2

≤ E
∫ t

0
‖G̃(uNj )(s)‖2

V ⊗m ds ≤ C,

thus there exists η ∈ L2(Ω,F , P ; V ) such that for all h ∈ L2(Ω,F , P ; V )

E
((

h,

∫ t

0
G̃(uNj )(s) dWNj (s)

))
−→ E ((h, η)) .

We show that

η =
∫ t

0
G̃(u)(s) dW (s).

We have

E
((

h,

∫ t

0
G̃(uNj )(s) dWNj (s)

))
− E

((
h,

∫ t

0
G̃(u)(s) dW (s)

))

= I1 + I2 + I3 (2.59)

where

I1 = E
((

h,

∫ t

0

(
G̃(uNj )(s)− G̃ε(uNj )(s)

)
dWNj (s)

))

I2 = E
((

h,

∫ t

0
G̃ε(uNj )(s) dWNj (s)−

∫ t

0
G̃ε(u)(s) dW (s)

))

I3 = E
((

h,

∫ t

0

(
G̃ε(u)(s)− G̃(u)(s)

)
dW (s)

))
.
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By Cauchy-Schwarz’s inequality and (2.54), we have

I1 ≤C
(
E‖h‖2

) 1
2

(
E

∫ T

0
‖G̃(uNj )(s)− G̃(u)(s)‖2

V ⊗m ds

) 1
2

+ C
(
E‖h‖2

) 1
2

(
E

∫ T

0
‖G̃(uNj )(s)− G̃(u)(s)‖2

V ⊗m ds

) 1
2

+ C
(
E‖h‖2

) 1
2

(
E

∫ T

0
‖G̃ε(u)(s)− G̃(u)(s)‖2

V ⊗m ds

) 1
2

. (2.60)

Letting j →∞ and ε → 0, and using (2.47) and (2.53), we have I1 → 0.

I2 converges to zero by (2.58)

I3 converges to zero by Cauchy- Schwarz’s inequality and (2.47).

Collecting all the convergence results, we deduce that:

u(t) + ν

∫ t

0
Ãu(s)ds +

∫ t

0
B̃(u(s), u(s))ds

=
∫ t

0
F̃ (s, u(s))ds +

∫ t

0
G̃(s, u(s))dW (s) + u0, P − a.s. (2.61)

as equality in D(A)′.

We have B̃(u, u) ∈ L2(Ω,F , P ;L∞(0, T ; D(A)′)), Ãu− F̃ (t, u) ∈ L2(Ω,F , P ; L∞(0, T ;D(A)′)),

G̃(t, u) ∈ L2(Ω,F , P ;L∞(0, T ; V ⊗m)).

Thus, from the classical results in [47] ( see also [61] ), we deduce from (2.61) that u is P − a.s.

continuous with values in V .

Step 6. Existence of the pressure

Here, the proof follows the same line as in [10]. For the existence of the pressure, we use

a generalization of the Rham’s Theorem processes (see [49],Theorem 4.1,Remark 4.3). From

(2.14), we have for all v ∈ V,

〈−∂t(u−α∆u)−ν(Au−α∆(Au))−(u.∇)(u−α∆u)+α(∇u)T . ∆u+F (., u)+G(., u)
dW

dt
, v〉(D′(D))3×(D(D))3 = 0.

We denote

h = −∂t(u− α∆u)− ν(Au−α∆(Au))− (u.∇)(u−α∆u) + α(∇u)T . ∆u + F (., u) + G(., u)
dW

dt
.

We are going to prove that the regularity on u, implies that

h ∈ L2(Ω,Ft, P ;H−1(0, t; (H−2(D))3).
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By (2.5) and (2.6), we have as u ∈ L4(Ω,F , P ; L2(0, T ; D(A))),

(u.∇(u− α∆u)) + (∇u)T . ∆u ∈ L2(Ω,Ft, P ;L1(0, t; (H−1(D))3)),

Au− α∆(Au) ∈ L4(Ω,Ft, P ; L2(0, t; (H−2(D))3)).

We also have

u− α∆u ∈ L4(Ω,Ft, P ; L2(0, t; (L2(D))3))

and

∂t(u− α∆u) ∈ L4(Ω,Ft, P ; H−1(0, t; (L2(D))3)) ∀ t ∈ [0, T ].

Again, as u ∈ L4(Ω,F , P ; C([0, T ]; V )), then it follows that

F (t, u) ∈ L4(Ω,Ft, P ; L2(0, t; (H−1(D))3))

G(t, u)
dW

dt
∈ L4(Ω,Ft, P ; W−1,∞(0, t; (L2(D))3))

for all t ∈ [0, T ].

Then h ∈ L2(Ω,Ft, P ; H−1(0, t; (H−2(D))3), and

〈h, v〉(D′(D))3×(D(D))3 = 0 for all v ∈ V.

Therefore, by a generalization of the Rham’s Theorem processes [49], there exists a

p̃ ∈ L2(Ω,Ft, P ; H−1(0, t; (H−1(D))3) such that P − a.s.

∇p̃ = h and
∫

D
p̃ dx = 0.

This establishes (2.15) and completes the proof of Theorem 1.

2.4.2 Proof of Corollary 1

Proof. We going to prove the pathwise uniqueness which implies uniqueness of weak solutions.

Let LF and LG be two real such that

‖F (t, u)− F (t, v)‖(H−1(D))3 ≤ LF ‖u− v‖,

‖G(t, u)−G(t, v)‖((L2(D))3)m ≤ LG‖u− v‖.

Then F̃ and G̃ defined respectively by (2.17) and (2.22) satisfy

‖F̃ (t, u)− F̃ (t, v)‖V ≤ L
F̃
‖u− v‖,
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‖G̃(t, u)− G̃(t, u)‖V ⊗m ≤ L
G̃
‖u− v‖.

Let u1 and u2 two weak solutions of problem (2.1) defined on the same probability space together

with the same Wiener process and starting from the same initial value u0.

We denote ū = u1 − u2. Take µ > 0 to be defined later and ρ(t) = exp
(
−µ

∫ t
0 ‖u2(s)‖2

D(A) ds
)

,

0 ≤ t ≤ T .

Applying Itô′s formula to the real process ρ(t)‖ū(t)‖2, we obtain from (2.16), (2.20), (2.21), (2.24)

that,

ρ(t)‖ū(t)‖2 + α̃

∫ t

0
ρ(s)‖ū(s)‖2

D(A) ds ≤ L2
G̃

∫ t

0
ρ(s)‖ū(s)‖2 ds

+ 2c̃

∫ t

0
ρ(s)‖u2(s)‖D(A)‖ū(s)‖D(A)‖ū(s)‖ ds

+ 2L
F̃

∫ t

0
ρ(s)‖ū(s)‖D(A)‖ū(s)‖ ds

+ 2
∫ t

0

((
ρ(s)(G̃(s, u1(s))− G̃(s, u2(s))), ū(s)

))
dW (s)

− µ

∫ t

0

∫ t

0
ρ(s)‖u2(s)‖2

D(A)‖ū(s)‖2 ds. (2.62)

for all t ∈ [0, T ].

By Young’s inequality, we have

2c̃‖u2(s)‖D(A)‖ū(s)‖D(A)‖ū(s)‖ ≤ α̃

2
‖ū(s)‖2

D(A) +
2c̃2

α̃
‖u2(s)‖2

D(A)‖ū(s)‖2

and

2L
F̃
‖ū(s)‖D(A)‖ū(s)‖ ≤ α̃

2
‖ū(s)‖2

D(A) +
2L2

F̃

α̃
‖ū(s)‖2.

If we take µ = 2 c̃2

α̃ , we obtain from (2.62)

ρ(t)‖ū(t)‖2 ≤ (L2
G̃
+

2L2
F̃

α̃
)
∫ t

0
ρ(s)‖ū(s)‖2 ds+2

∫ t

0

((
ρ(s)(G̃(s, u1(s))− G̃(s, u2(s)), ū(s))

))
dW.

(2.63)

As 0 < ρ(t) ≤ 1, the expectation of the stochastic integral in (2.63) vanishes and

Eρ(t)‖ū(t)‖2 ≤ (L2
G̃

+
2L2

F̃

α̃
)E

∫ t

0
ρ(s)‖ū(s)‖2 ds.

The Gronwall’s lemma implies that ū(t) = 0 , P -a.s for all t ∈ [0, T ]. And the corollary is

proved.

Remark 2. Using the famous Yamada-Watanabe theorem [44] , Corollary 1 implies the exis-

tence of a unique strong solution of problem (2.1).

 
 
 



Chapter 3

The Stochastic 3D Navier-Stokes-α

model: α tends to 0

3.1 Introduction

The Navier-Stokes-α model are system of partial differential equations designed to capture the

large scale dynamics of the incompressible Navier-Stokes equations. This model was developed

in an effort to provide an efficient numerical simulation of the 3D turbulence and was used as

a closure model for the Reynolds averaged Navier-Stokes. It was tested successfully against

experimental measurements and direct simulations of turbulent channel and pipe flows. Several

analytical and numerical results seem to confirm that the Navier-Stokes-α model gives good

approximation in the study of many problems related to the turbulence flows.

In [34], the Cauchy problem for the deterministic 3D Navier-Stokes-α model with periodic bound-

ary conditions was studied, the global existence, uniqueness and regularity of solutions were

established. Furthermore, the relation between the solutions of the Navier-Stokes-α model and

the solutions of the Navier-Stokes equations was proved as α approaches zero. In particular, the

authors of [34] showed that there exists a subsequence of solutions of the 3D Navier-Stokes-α

model that converges to one of the weak solutions of the 3D Navier-Stokes equations. Later the

authors of [20] showed that the trajectory attractor of the Navier-Stokes-α model converges to

the trajectory attractor of weak solutions of the 3D Navier-Stokes equations as α approaches

zero.

In the stochastic case, the existence and uniqueness of strong solutions to the stochastic 3D

37
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Navier-Stokes-α with Dirichlet boundary conditions started with the work of [10] under Lips-

chitz conditions on the forces. The existence result under more general assumptions on the data

were established in the previous chapter; these results hold in the case of periodic boundary

conditions with the needed notational changes. We shall make use of these existence results

throughout. Other related problems on stochastic 3D Navier-Stokes-α can be found in [11] and

[12]. However, in the stochastic case, there is no work on the convergence of solutions of the

stochastic 3D Navier- Stokes-α model towards the solutions of the stochastic 3D Navier-Stokes

equations as α approaches zero.

In this chapter, we investigate the approximation of the stochastic 3D Navier-Stokes equa-

tions by a sequence of solutions of the stochastic 3D Navier-Stokes-α model as α approaches

zero. For this purpose, we study the weak compactness of weak solutions for the stochastic

3D Navier-Stokes-α model as α approaches zero. This is not derived directly from the priori

estimates obtained in Chapter 2 because some explode when α approaches zero. One the main

difficulties of this chapter lies in obtaining needed a priori estimates in which the constants are

independent of α. One such estimate is the following

Eα sup
0≤|θ|≤δ≤1

∫ T

0
|uα(t + θ)− uα(t)|2D(A)′ dt ≤ Cδ

where C is a constant independent of α,(Ωα,Fα, {Fαt}0≤t≤T , Pα, Wα, uα) is a probabilistic weak

solutions of the Navier-Stokes-α model and Eα is the mathematical expectation with respect to

Pα (see Definition 4 below). To do this, we adopt the method developed for the deterministic

3D Navier-Stokes-α model in [34]. In this method an important role is played by the operator

(I + α2A)−1. Once the a priori estimates are secured, the next task is to obtain the tightness of

the family of probability measures generated by the sequence {uα}α>0 which enables us to make

use of Prokhorov and Skorokhod’s compactness results. The last main issue is the passage to

the limit which turns out to be rather complicated in view of the nature of the nonlinear terms

involved in our model.

The question of asymptotic analysis of partial differential equations when some physical

parameters converge to some limit has always been of great interest. Notable example is the

vanishing viscosity question in Navier-Stokes equations which is still not fully solved when the

problem is assigned Dirichlet boundary conditions for instance. We refer to [24], [41] [70], [71],

and the several references in the last paper. In the stochastic case fewer investigation has been

carried out; we refer to [6] for relevant investigation.
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The chapter is organized as follows. In Section 3.2, we recall the definition of the weak solu-

tions for the stochastic 3D Navier-Stokes equations and formulate the corresponding existence

result. In Section 3.3, we consider the stochastic 3D Navier-Stokes-α model. We formulate the

main properties of this model and the periodic boundary conditions version of the main result of

the authors in [27]. Section 3.3 is the main core of the chapter. Here we obtain uniform a priori

estimates for weak solutions {uα}α>0 of the stochastic 3D Navier-Stokes α model, we derive

the results on the tigthness of the corresponding probability measures and perform the passage

to the limit which establishes the convergence of uα to the weak solutions of the stochastic 3D

Navier-Stokes equations. This gives us another proof of the existence of weak solutions to the

stochastic 3D Navier-Stokes equations.

3.2 The Stochastic 3D Navier-Stokes equations

Let T > 0 be a final time and consider the following viscous stochastic 3D Navier-Stokes equa-

tions in the periodic box T = [0, L]3:




du + [−ν∆u + (u.∇)u +∇p] dt = F (t, u)dt + G(t, u)dW, in T × (0, T ),

∇.u = 0, in T × (0, T ),

u(0) = u0, in T ,

u = u (x, t) is periodic in x ∈ T ,
∫
T u dx = 0,

(3.1)

where x = (x1, x2, x3), u = (u1 (x, t) , u2 (x, t) , u3 (x, t)) and p = p (x, t) are unknown random

fields on T × (0, T ) representing, respectively, the velocity and the pressure, at each point of

an incompressible viscous fluid with constant density filling the domain T . The constant ν

represent the kinematic viscosity of the fluid. The term F (t, u) and G(t, u)dW are external

forces depending eventually on u, where W is an Rm- valued standard Wiener process. Finally,

u0 is a given non random initial velocity field.

We denote by C∞
per(T )3 the space of all T -periodic C∞ vector fields defined on T . We set

V = {Φ ∈ C∞
per(T )3|∇.Φ = 0 and

∫

T
Φ dx = 0}.

We denote by H and V the closure of the set V in the spaces L2(T )3 and H1(T )3 respectively.

We endow H with the L2(T )3 scalar product (., .) and norm |.|. The space V is a Hilbert

space for the scalar product ((u, v))V = (u, v) + α2(∇u,∇v) where its associated norm, which

is in fact equivalent to the usual gradient norm, will be denoted by ‖.‖V . For u, v ∈ V, we
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denote ((u, v)) = (∇u,∇v) and ‖u‖ = |∇u|. We denote by A the stokes operator with domain

D(A) = H2(T )3∩V and P2 : L2(T )3 → H the Leray operator. The operator A is an isomorphism

from V to V ′ and 〈Au, v〉 = ((u, v)) where 〈., .〉 denotes the duality between V and V ′.

We define the bilinear operator B(u, v) : V × V → V ′ as

〈B(u, v), z〉 =
∫

T
z(x).(u(x).∇)v(x) dx

for all z ∈ V . By the incompressibility condition, for all u, v, z ∈ V, we have

〈B(u, v), v〉 = 0,

〈B(u, v), z〉 = −〈B(u, z), v〉.

Alongside the problem (3.1), given at the beginning of the section, we shall consider the

abstract stochastic evolution equation which is formally obtained from (3.1) by projecting over

the space of divergence free fields:




du + νAu(t)dt + B(u(t), u(t))dt = F (t, u)dt + G(t, u)dW,

u(0) = u0.

(3.2)

F and G are two nonlinear operators such that:

F : (0, T )×H → H, measurable, (3.3)

a.e. t, u → F (t, u) : continuous from H to H,

|F (t, u)|H ≤ C(1 + |u|),

G : (0, T )×H → H⊗m, measurable, (3.4)

a.e. t, u → G(t, u) : continuous from H to H⊗m

|G(t, u)|H⊗m ≤ C(1 + |u|).

Finally, we define the concept of solution of the system (3.2) that we need, namely

Definition 3. By a weak solution of the problem (3.2), we shall mean a

system (Ω,F , {Ft}0≤t≤T , P,W, u) where

1) (Ω,F , P ) is a probability space, ({Ft}, 0 ≤ t ≤ T ) is a filtration on (Ω,F , P ),

2) W is an m-dimensional Ft standard Wiener process,
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4) u ∈ Lp(Ω,F , P ;L2(0, T ;V )) ∩ Lp(Ω,F , P ; L∞(0, T ; H)) for all 1 ≤ p < ∞,

5) the following equation holds almost surely

(u(t), ϕ) + ν

∫ t

0
(u(s), Aϕ) ds +

∫ t

0
〈B(u(s), u(s)), ϕ〉D(A)′ ds =

(u0, ϕ) +
∫ t

0
(F (s, u(s)), ϕ) ds +

(∫ t

0
G(s, u(s)) dW (s), ϕ

)

for all ϕ ∈ D(A), t ∈ [0, T ].

We recall the following existence result due to Bensoussan [2].

Theorem 3. We assume that (3.3), (3.4) hold and u0 ∈ H.Then problem (3.2) has a weak

solution in the sense of Definition 3.

Several other authors have dealt with the existence and pathwise uniqueness of solutions of

the stochastic Navier-Stokes equations. We refer to [2], [7], [14], [32], [53], [73]; just to cite a

few.

3.3 The stochastic 3D Navier-Stokes-α model

We consider the family {(uα, pα)}α>0 of solutions of the stochastic 3D Navier-Stokes-α model

in the periodic box T = [0, L]3:




d(uα − α2∆uα) +
[−ν∆(uα − α2∆uα)− (uα × (∇× (uα − α2∆uα))) +∇pα

]
dt =

F (t, uα)dt + G(t, uα) dW in T × (0, T ),

∇.uα = 0 in T × (0, T ),

uα(0) = u0 in T ,

uα = uα (t, x) is periodic in x ∈ T ,
∫
T uα dx = 0.

(3.5)

In system (3.5): α is a fixed positive parameter called ”the sub-grid (filter) length scale” of

the model, a× b is the vector product in R3. Observe that when α = 0, system (3.5) coincides

with the stochastic 3D Navier-Stokes equations.

We denote for u, v ∈ V,

B̃(u, v) = −P(u× (∇× v)).

Recall that

B̃(u, u) = B(u, u).

For convenience, we summarize in the next lemma some results from [34] that we shall need

here.
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Lemma 5. i) The operator B̃ can be extended continuously from V × V with values

in V ′, and in particular it satisfies

|〈B̃(u, v), w〉V ′ | ≤ c|u| 12 ‖u‖ 1
2 ‖v‖‖w‖

|〈B̃(u, v), w〉V ′ | ≤ c‖u‖‖v‖|w| 12 ‖w‖ 1
2

for all u, v ∈ V. Moreover

〈B̃(u, v), w〉V ′ = −〈B̃(w, v), u〉V ′

and in particular,

〈B̃(u, v), u〉V ′ = 0

for all u, v ∈ V.

ii) Furthermore, we have

|〈B̃(u, v), w〉D(A)′ | ≤ c(|u| 12 ‖u‖ 1
2 |v||Aw|+ ‖u‖|v|‖w‖ 1

2 |Aw| 12 )

for all u ∈ V, v ∈ H,w ∈ D(A).

|〈B̃(u, v), w〉D(A)′ | ≤ c‖u‖|v||Aw|

for all u ∈ V, v ∈ H,w ∈ D(A).

In particular

|B̃(u, v)|D(A)′ ≤ c‖u‖|v|

for all u ∈ V, v ∈ H.

Alongside the system (3.5), we shall consider the abstract stochastic evolution equation which

is formally obtained from (3.5) by projecting on the space of divergence free fields:




d(uα + α2Auα) +
[
νA(uα + α2Auα) + B̃(uα, uα + α2Auα)

]
dt =

F (t, uα)dt + G(t, uα) dW,

uα(0) = u0.

(3.6)

We shall define the concept of solution of the system (3.6)
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Definition 4. By a weak solution of problem (3.6), we shall mean a system

(Ωα,Fα, {Fαt}0≤t≤T , Pα,Wα, uα) where

1) (Ωα,Fα, Pα) is a probability space, Fαt is a filtration on (Ωα,Fα, Pα),

2) Wα is an m-dimensional Fαt standard Wiener process,

3) a.e. t, uα(t) is Fαt measurable,

4) uα ∈ Lp(Ωα,Fα, Pα; L2(0, T ; D(A))) ∩ Lp(Ωα,Fα, Pα; L∞(0, T ;V )) for 1 ≤ p < ∞
5) The following equation holds almost surely

((uα(t), ϕ))V +ν

∫ t

0
(uα(s)+α2Auα(s), Aϕ) ds+

∫ t

0
〈B̃(uα(s), uα(s)+α2Auα(s)), ϕ〉D(A)′ ds =

((u0, ϕ))V +
∫ t

0
(F (s, uα(s)), ϕ) ds +

(∫ t

0
G(s, uα(s)) dWα(s), ϕ

)

for all ϕ ∈ D(A), t ∈ [0, T ].

Theorem 4. We assume that (3.3), (3.4) hold and u0 ∈ V . Then problem (3.6) has a weak

solution (Ωα,F , {Fαt}0≤t≤T , Pα,Wα, uα) in the sense of Definition 4.

uα satisfies the following inequalities:

a) Eα sup
0≤t≤T

‖uα(t)‖p
V ≤ Cp,1,

b) Eα

(∫ T

0
|uα(t)|2D(A) dt

)p

≤ Cp,2(α),

c) Eα sup
0≤|θ|≤δ≤1

∫ T

0
|uα(t + θ)− uα(t)|2D(A)′ dt ≤ C3(α)δ,

d) 2νEα

∫ T

0
(‖uα(s)‖2 + α2|Auα(s)|2) ds ≤ C4,

e) Eα

(∫ T

0
(‖uα(s)‖2 + α2|Auα(s)|2) ds

)p

≤ Cp,5,

where the constants Cp,1, C4 and Cp,5 are independent of α and 1 ≤ p < ∞. The constants

C3(α) and Cp,2(α) tend to ∞ when α tends to zero. Eα denotes the expectation with respect to

Pα and 1 ≤ p < ∞.

The proof of this theorem was the object of the preceding chapter. It was based on a careful

blending of the Galerkin approximation scheme together with deep compactness results of both

analytic and probabilistic nature. We note that the existence of strong solution for a similar

model under stronger conditions (Lipschtzity of the functions F and G) was obtained in [10].
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Remark 3. We note that the constants in the right-hand sides of estimates a), d) and e) of

Theorem 4 are independent of α. This fact plays the key role in the proof of the convergence

of solutions of the 3D stochastic Navier-Stokes-α model to the solutions of the 3D stochastic

Navier-Stokes system as α approaches zero. Since the existence involved fixed α the explosion of

C3(α) as α approaches zero was not an obstacle in the proof of Theorem 4.

3.4 Asymptotic behavior of the stochastic 3D Navier-Stokes-α

model.

3.4.1 Weak compactness of weak solutions for the stochastic 3D Navier-

Stokes-α model.

In the section, we prove the tightness of weak solutions of the stochastic 3D Navier-Stokes- α

model as α approaches zero. The crucial point of the proof is to show that the following estimate

holds:

Eα sup
0≤|θ|≤δ≤1

∫ T

0
|uα(t + θ)− uα(t)|2D(A)′ dt ≤ Cδ,

where C is a constant independent of α. Thereby we sharply improve the estimate c) in Theorem

4. This will require skillful technics and is the object of the following

Lemma 6. Let uα be a weak solution for the stochastic 3D Navier-Stokes-α model. We have

Eα sup
0≤|θ|≤δ≤1

∫ T

0
|uα(t + θ)− uα(t)|2D(A)′ dt ≤ Cδ

where C is a constant independent of α; here we extend uα by 0 outside [0, T ].

Proof. We have

d(I + α2A)uα + νA(uα + α2Auα)dt + B̃(uα, uα + α2Auα) dt = F (t, uα) dt + G(t, uα) dW. (3.7)

We recall that I + α2A is an isomorphism from D(A) to H and

‖(I + α2A)−1‖L(H,H) ≤ 1.

From (3.7), we have

duα + νAuαdt + (I + α2A)−1B̃(uα, vα)dt = (I + α2A)−1F (t, uα)dt + (I + α2A)−1G(t, uα) dW,
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where vα = uα + α2Auα.

Owing to the fact that D(A)′ = D
(
A−1

)
we have

|A−1(uα(t + θ)− uα(t))| (3.8)

≤
∫ t+θ

t

(
|A−1(I + α2A)−1F (τ, uα(τ))|+ ν|uα(τ)|+ |A−1(I + α2A)−1B̃(uα(τ), vα(τ))|

)
dτ+

∣∣∣∣
∫ t+θ

t
A−1(I + α2A)−1G(τ, uα(τ)) dW (τ)

∣∣∣∣ .

We estimate the first two terms of the right hand side of (3.8)

|A−1(I + α2A)−1B̃(uα(τ), vα(τ))|

≤ |A−1B̃(uα(τ), vα(τ))| ≤ C|vα(τ)|‖uα(τ)‖

≤ C‖uα(τ)‖ (|uα(τ)|+ α2|Auα(τ)|)

≤ C{|uα(τ)|‖uα(τ)‖+ α‖uα(τ)‖α|Auα(τ)|}

≤ C
(|uα(τ)|2 + α2‖uα(τ)‖2

) 1
2
(‖uα(τ)‖2 + α2|Auα(τ)|2)

1
2 ,

where we have used Lemma 5 (part ii) and Cauchy’s inequality.

On the other hand, we have

|A−1(I + α2A)−1F (τ, uα(τ))| ≤ |A−1F (τ, uα(τ))| ≤ C(1 + |uα(τ)|).

Squaring the both sides of (3.8) and using the above estimates, we have

|A−1(uα(t + θ)− uα(t))|2 ≤ Cθ2 + C1

(∫ t+θ

t
|uα(τ)| dτ

)2

(3.9)

+ ν2

(∫ t+θ

t
|uα(τ)| dτ

)2

+ C4 sup
τ∈[0,T ]

(|uα(τ)|2 + α2‖uα(τ)‖2
) (∫ t+θ

t
(‖uα(τ)‖2 + α2|Auα(τ)|2) 1

2 dτ

)2

+
∣∣∣∣
∫ t+θ

t
A−1(I + α2A)−1G(τ, uα(τ)) dW (τ)

∣∣∣∣
2

.

For fixed δ, taking the supremum over θ ≤ δ yields

sup
0≤θ≤δ

|A−1(uα(t + θ)− uα(t))|2 ≤ Cδ2 + TC1δ
2 sup

τ∈[0,T ]
|uα(τ)|2

+ C4 sup
τ∈[0,T ]

(|uα(τ)|2 + α2‖uα(τ)‖2)
(∫ t+δ

t

(‖uα(τ)‖2 + α2|Auα(τ)|2)
1
2 dτ

)2

+ sup
0≤θ≤δ

∣∣∣∣
∫ t+θ

t
A−1(I + α2A)−1G(τ, uα(τ)) dW (τ)

∣∣∣∣
2

.
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Integrating over t ∈ [0, T ] and taking the mathematical expectation, we deduce

Eα sup
0≤θ≤δ

∫ T

0
|A−1(uα(t + θ)− uα(t))|2 dt ≤ Cδ2 + TCδ2Eα sup

τ∈[0,T ]
|uα(τ)|2+

C4Eα sup
τ∈[0,T ]

‖uα(τ)‖2
V

∫ T

0

(∫ t+δ

t

(‖uα(τ)‖2 + α2|Auα(τ)|2)
1
2 dτ

)2

dt+

Eα

∫ T

0
sup

0≤θ≤δ

∣∣∣∣
∫ t+θ

t
A−1(I + α2A)−1G(τ, uα(τ)) dW (τ)

∣∣∣∣
2

dt.

By Hölder’s inequality, we have

Eα sup
τ∈[0,T ]

‖uα(τ)‖2
V

∫ T

0

(∫ t+δ

t

(‖uα(τ)‖2 + α2|Auα(τ)|2)
1
2 dτ

)2

dt

≤ δ2Eα sup
τ∈[0,T ]

‖uα(τ)‖2
V

∫ T

0

(‖uα(τ)‖2 + α2|Auα(τ)|2) dτ

≤ δ2

(
Eα sup

τ∈[0,T ]
‖uα(τ)‖4

V

) 1
2
(

Eα

(∫ T

0

(‖uα(τ)‖2 + α2|Auα(τ)|2) dτ

)2
) 1

2

.

Using the estimates a) and e) of Theorem 4, we have

Eα sup
τ∈[0,T ]

‖uα(τ)‖2
V

∫ T

0

(∫ t+δ

t

(‖uα(τ)‖2 + α2|Auα(τ)|2)
1
2 dτ

)2

dt ≤ Cδ2

where C is a constant independent of α.

Next, using the martingale inequality, we have

Eα

∫ T

0
sup

0≤θ≤δ

∣∣∣∣
∫ t+θ

t
A−1(I + α2A)−1G(s, uα(s)) dW (s)

∣∣∣∣
2

dt

≤ Eα

∫ T

0

(∫ t+δ

t
|A−1(I + α2A)−1G(s, uα(s))|2 ds

)
dt

≤ CEα

∫ T

0

(∫ t+δ

t
(1 + |uα(s)|2) ds

)
dt

≤ Cδ.

Collecting the two last estimates, we finally obtain

Eα sup
0≤|θ|≤δ≤1

∫ T

0
|uα(t + θ)− uα(t)|2D(A)′ dt ≤ Cδ,

where C is a constant independent of α.

Remark 4. From estimate a) of Theorem 4, we also have

Eα sup
t∈[0,T ]

|uα(t)|p ≤ Cp,1.
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Using the Poincaré’s inequality and the estimate e) of Theorem 4, we also have

Eα

(∫ T

0
‖uα(s)‖2

V ds

)p

≤ CCp,5

where C is a constant independent of α and 1 ≤ p < ∞.

The following compactness result plays a crucial role in the proof of the tightness of the

probability measures generated by the sequence {uα}α>0.

Lemma 7. Let νn and µn two sequences of positives real numbers which tend to 0 as n → ∞.

The injection of 1

D =



q ∈ L∞(0, T ;H) ∩ L2(0, T ;V ); sup

n

1
νn

sup
|θ|≤µn

(∫ T

0
|q(t + θ)− q(t)|2D(A)′ dt

) 1
2

< ∞




in L2(0, T ;H) is compact.

Proof. See Appendix A, Proposition 6. Take B0 = D(A), B1 = V,B2 = H.

Dµn,νn is a Banach space with the norm

‖y‖Dµn,νn
= ess sup

0≤t≤T
|y(t)|+

(∫ T

0
‖y(t)‖2

V dt

) 1
2

+sup
n

1
νn

sup
|θ|≤µn

(∫ T

0
|y(t + θ)− y(t)|2D(A)′ dt

) 1
2

.

Alongside ‖y‖Dµn,νn
, we also consider the space Zp,µn,νn (1 ≤ p < ∞) of random variables y such

that

Eαess sup
0≤t≤T

|y(t)|p < ∞; Eα

(∫ T

0
‖y(t)‖2

V dt

) p
2

< ∞; Eα sup
n

1
νn

sup
|θ|≤µn

∫ T

0
|y(t+θ)−y(t)|2D(A)′dt < ∞.

Endowed with the norm

‖y‖Zp,νn,µn
=

(
Eαess sup

0≤t≤T
|y(t)|p

) 1
p

+

(
Eα

(∫ T

0
‖y(t)‖2

V dt

) p
2

)
+

+ Eα sup
n

1
νn

(
sup
|θ|≤µn

∫ T

0
|y(t + θ)− y(t)|2D(A)′dt

) 1
2

Zp,µn,νn is a Banach space.

Combining the estimates a); e) of Theorem 4 and the estimate of Lemma 6, we have

Proposition 4. For any real p ≥ 1 and for any sequences µn, νn converging to zero such that

the series
∑∞

n=1

√
µn

νn
converges, the sequence (uα)α>0 is bounded in Zp,µn,νn uniformly in α for

all n.
1q is extended by 0 outside (0,T)
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Next we define

S1 = C(0, T ;Rm)× L2(0, T ; H)

equipped with the Borel σ-algebra B(S1).

For α > 0, let

Φα : Ωα → S1 : ω ½ (Wα(ω, .), uα(ω, .)) .

For each α > 0, we introduce the probability measure Πα on (S1,B(S1)) by

Πα(A) = Pα(Φ−1
α (A)),

where A ∈ B(S1).

We have

Theorem 5. The family of probability measures {Πα; α > 0} is tight in (S1,B(S1)).

Proof. For ε > 0, we should find the compact subsets

Σ
′
ε ⊂ C(0, T ; Rm); Y

′
ε ⊂ L2(0, T ; H)

such that

Pα(ω : Wα(ω, .) /∈ Σ
′
ε) ≤

ε

2
, for all α > 0, (3.10)

Pα(ω : uα(ω, .) /∈ Y
′
ε ) ≤ ε

2
, for all α > 0. (3.11)

The quest for Σ
′
ε is made by taking into account some facts about the Wiener process such as

the formula

Eα|Wα(t2)−Wα(t1)|2j = (2j − 1)!(t2 − t1)j , j = 1, 2, .. (3.12)

for all α > 0.

For a constant Lε depending on ε to be chosen later and n ∈ N, we consider the set

Σ
′
ε = {W (.) ∈ C(0, T ;Rm) : sup

t1,t2∈[0,T ],|t2−t1|≤ 1
n6

n|W (t2)−W (t1)| ≤ Lε}

Σ
′
ε is relatively compact in C(0, T ; Rm) by Arzsela- Ascoli’s Theorem. Furthermore Σ

′
ε is closed

in C(0, T ; Rm). Therefore Σ
′
ε is a compact subset of C(0, T ; Rm).

Making use of Markov’s inequality:

P (ω : ξ(ω) ≥ β) ≤ 1
βk

E
[
|ξ(ω)|k

]
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for a random variable ξ on any probability space(Ω, F, P ) and positives numbers α and k, we

get

Pα(ω : Wα(ω, .) /∈ Σ
′
ε) ≤Pα


⋃

n

{ω : sup
t1,t2∈[0,T ]:|t2−t1|< 1

n6

|Wα(t2)−Wα(t1)| > Lε

n
}



≤
∞∑

n=1

n6−1∑

i=0

(
n

Lε

)4

Eα sup
iT
n6≤t≤ (i+1)T

n6

|Wα(t)−Wα(iTn−6)|4

≤c
∞∑

n=1

(
n

Lε

)4

(Tn−6)2n6

=
c

L4
ε

∞∑

n=1

1
n2

where we have used (3.12) and the constant c is independent of α.

We choose

L4
ε =

1
2cε

( ∞∑

n=1

1
n2

)−1

to get (3.10). Here we note that the independence in α is due to the fact that the right hand

side of (3.12) is independent of α.

Next, we choose Y
′
ε as a ball of radius Mε in Dµn,νn centered at zero and with µn, νn independent

of ε, converging to zero and such that the series
∑∞

n=1

√
µn

νn
converges. From Lemma 7, Y

′
ε is a

compact subset of L2(0, T ; H).

We have further

Pα(ω : uα(ω, .) /∈ Y
′
ε ) ≤Pα(ω : ‖uα‖Dµn,νn

> Mε)

≤ 1
Mε

Eα‖uα‖Dµn,νn

≤ 1
Mε

‖uα‖Z1,µn,νn

≤ C

Mε

where C is a constant independent of α ( see Proposition 4 for more details).

Choosing Mε = 2Cε−1, we get (3.11).

From (3.10) and (3.11), we have

Pα(ω : Wα(ω, .) ∈ Σ
′
ε; uα(ω, .) ∈ Y

′
ε ) ≥ 1− ε

for all α > 0 and this proves that

Πα(Σ
′
ε × Y

′
ε ) ≥ 1− ε
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for all α > 0. This completes the proof of the tightness of {Πα;α > 0} in (S1,B(S1)).

3.4.2 Approximation of the stochastic 3D Navier-Stokes equations

In this section, we prove that the weak solutions of the stochastic 3D Navier-Stokes equations is

obtained from a sequence of solutions of the stochastic 3D Navier-Stokes α model as α approaches

zero.

Application of Prokhorov’s and Skorokhod’s results

From the tightness property of {Πα; α > 0} and Prokhorov’s theorem , we have that there exists

a subsequence {Παj} and a measure Π such that Παj → Π weakly. By Skorokhod’s theorem ,

there exist a probability space (Ω̄, F̄ , P̄ ) and random variables (W̃αj , ũαj ), (W̃ , ũ) on (Ω̄, F̄ , P̄ )

with values in S1 such that:

the law of (W̃αj , ũαj ) is Παj ,

the law of (W̃ , ũ) is Π,

(W̃αj , ũαj ) → (W̃ , ũ) in S1, P̄ − a.s.. (3.13)

Hence {W̃αj} is a sequence of an m-dimensional standard Wiener process.

Let

F̄t = σ{W̃ (s), ũ(s) : s ≤ t}.

Arguing as in the proof of Theorem 1, step 5, Chapter 2 , we can prove that W̃ is an m-

dimensional F̄t-standard Wiener process and the pair (W̃αj , ũαj ) satisfies

(ṽαj (t), ϕ) + ν

∫ t

0
(ṽαj (s), Aϕ) ds +

∫ t

0
〈B̃(ũαj (s), ṽαj (s)), ϕ〉D(A)′ ds (3.14)

= (u0 + α2
jAu0, ϕ) +

∫ t

0
(F (s, ũαj (s)), ϕ) ds +

(∫ t

0
G(s, ũαj (s)) dW̃αj (s), ϕ

)
,

for all ϕ ∈ D(A), where

ṽαj (s) = ũαj (s) + α2
jAũαj (s).

The main result of this chapter is

Theorem 6. Assume that (3.3) - (3.4) hold, and u0 ∈ V . Then there is a subsequence of ũαj ,

ṽαj (obtained above) such that as αj → 0, we have :

ũαj → ũ strongly in L2(Ω̄, F̄ , P̄ ; L2(0, T ; H)),

ũαj → ũ weakly in L2(Ω̄, F̄ , P̄ ; L∞(0, T ;H)),
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ũαj → ũ weakly in L2(Ω̄, F̄ , P̄ ; L2(0, T ; V )),

ṽαj → ũ strongly in L2(Ω̄, F̄ , P̄ ; L2(0, T ; V ′)),

ṽαj → ũ weakly in L2(Ω̄, F̄ , P̄ ; L2(0, T ; H)),

where (Ω̄, F̄ , (F̄t)t∈[0,T ], P̄ , W̃ , ũ) is a weak solution for the 3D stochastic Navier-Stokes equations

with the initial value u(0) = u0.

Proof. From (3.14), it follows that ũαj satisfies the estimates

Ẽ sup
0≤s≤T

|ũαj (s)|p ≤ Cp,1; Ẽ
∫ T

0
‖ũαj (s)‖2

V ds ≤ CCp,5

Ẽ sup
0≤s≤T

‖ũαj (s)‖p
V ≤ Cp,1,

Ẽ sup
0≤θ≤δ

∫ T

0
|ũαj (t + θ)− ũαj (t)|2D(A)′ dt ≤ Cδ

Ẽ
(∫ T

0

(‖ũαj (s)‖2 + α2|Aũαj (s)|2
)

ds

)p

≤ Cp,5

Ẽ sup
0≤s≤T

‖ũαj (s)‖2
V + 2νẼ

∫ T

0

(‖ũαj (s)‖2 + α2
j |Aũαj (s)|2

)
ds ≤ C4,

where Ẽ denote the mathematical expectation with respect to the probability space (Ω̄, F̄ , P̄ ).

Thus modulo the extraction of a subsequence denoted again ũαj , we have

ũαj → ũ weakly in Lp(Ω̄, F̄ , P̄ ; L∞(0, T ;H)),

ũαj → ũ weakly in L2(Ω̄, F̄ , P̄ ;L2(0, T ; V )),

ṽαj → ṽ weakly in L2(Ω̄, F̄ , P̄ ; L2(0, T ; H)),

and

Ẽ sup
0≤s≤T

|ũ(s)|p ≤ Cp,1; Ẽ
∫ T

0
‖ũ‖2

V ds ≤ CCp,5

Ẽ sup
0≤θ≤δ

∫ T

0
|ũ(t + θ)− ũ(t)|2D(A)′ dt ≤ Cδ.

By Vitali’s theorem and (3.13), we have

ũαj → ũ in L2(Ω̄, F̄ , P̄ ; L2(0, T ; H)). (3.15)

Thus modulo the extraction of a new subsequence and for almost every (ω, t) with respect to

the measure dP̄ ⊗ dt

uαj → ũ in H.
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This convergence together with the conditions on F and Vitali’s theorem, imply
∫ t

0
F (s, ũαj (s)) ds →

∫ t

0
F (s, ũ(s)) ds in L2(Ω̄, F̄ , P̄ ;L2(0, T ;D(A)′))

Arguing as in the proof of Theorem 1, step 5, Chapter 3 we can prove that
∫ t

0
G(s, ũαj (s)) dW̃αj (s) →

∫ t

0
G(s, ũ(s)) dW̃ (s) weakly star in L2(Ω̄, F̄ , P̄ ; L∞(0, T ; D(A)′)).

We also have

Ẽ
∫ T

0
|A− 1

2 (ṽαj (t)− ũαj (t))|2 dt = α2
j Ẽ

∫ T

0
α2

j‖ũαj (t)‖2 dt.

We then deduce that

ṽαj → ũ in L2(Ω̄, F̄ , P̄ ; L2(0, T ; V ′)) (3.16)

and ṽ(t) = ũ(t) a.e. in dP̄ × dt since Ẽ
∫ T
0 α2

j |Aũαj (t)|2 dt is bounded uniformly in αj . Arguing

as in [20], we are going to prove that
∫ t

0
B̃(ũαj (s), ṽαj (s)) ds →

∫ t

0
B(ũ(s), ũ(s)) ds weakly in Lβ(Ω̄, F̄ , P̄ ;Lβ(0, T ; D(A)′))

for some 1 < β < 2.

Indeed, it suffices to prove that

B̃(ũαj , ṽαj ) → B̃(ũ, ũ) = B(ũ, ũ) weakly in Lβ(Ω̄, F̄ , P̄ ; Lβ(0, T ; D(A)′))

for some 1 < β < 2.

We recall that

ṽαj = ũαj + α2
jAũαj

and

B̃(ũαj , ṽαj ) = B̃(ũαj , ũαj ) + α2
j B̃(ũαj , Aũαj )

= B(ũαj , ũαj ) + α2
j B̃(ũαj , Aũαj ).

We are going to prove that for 1 < β < 2,

α2
j B̃(ũαj , Aũαj ) → 0 strongly in Lβ(Ω̄, F̄ , P̄ ; Lβ(0, T ;D(A)′)) as αj → 0, (3.17)

and

B(ũαj , ũαj ) → B(ũ, ũ) weakly in L2(Ω̄, F̄ , P̄ ;L2(0, T ;D(A)′)) as αj → 0.

We start with (3.17). By part ii) of Lemma 5, we have

‖α2
j B̃(ũαj , Aũαj )‖D(A)′ ≤ Cα2

j‖ũαj‖|Aũαj |.
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Fixing an arbitrary β, 1 < β < 2, we obtain the following chain of inequalities
∫ T

0
‖α2

j B̃(ũαj (t), Aũαj (t)‖β
D(A)′ dt (3.18)

≤ Cβα2β
j

∫ T

0
‖ũαj (t)‖β|Aũαj (t)|β dt

≤ Cβα2β
j

(
sup

0≤t≤T
‖ũαj (t)‖γ

)∫ T

0
‖ũαj (t)‖β−γ |Aũαj (t)|β dt

≤ Cβα2β
j

(
sup

0≤t≤T
‖ũαj (t)‖γ

)[∫ T

0
‖ũαj (t)‖q(β−γ) dt

] 1
q
[∫ T

0
|Aũαj (t)|pβ dt

] 1
p

where γ is an arbitrary number such that 0 < γ < β, and, in (3.18), we have applied the Hölder’s

inequality with 1
p + 1

q = 1 (these numbers will be determined later on).

Continuing the chain of inequalities after, we have
∫ T

0
‖α2

j B̃(ũαj (t), Aũαj (t)‖β
D(A)′ dt (3.19)

≤ Cβα2β
j

(
sup

0≤t≤T
‖ũαj (t)‖2

) γ
2 [∫ T

0
‖ũαj (t)‖q(β−γ) dt

] 1
q
[∫ T

0
|Aũαj (t)|pβ dt

] 1
p

.

We now set p = 2
β , q = 2

2−β . Let the number γ satisfies the equation q(β − γ) = 2, that is,

2
2− β

(β − γ) = 2 ⇐⇒ γ = 2(β − 1).

We see that the inequality 0 < γ < β holds since

γ = 2(β − 1) < β ⇐⇒ β < 2.

Replacing such p, q, and γ into (3.19), we obtain the following estimate:
∫ T

0
‖α2

j B̃(ũαj (t), Aũαj (t))‖β
D(A)′ dt (3.20)

≤ Cβα2−β
j

(
sup

0≤t≤T
α2

j‖ũαj (t)‖2

)β−1 [∫ T

0
‖ũαj (t)‖2 dt

] 2−β
2

[∫ T

0
α2

j |Aũαj (t)|2 dt

]β
2

.

Taking the mathematical expectation in (3.20) and using Hölder′s inequality, we have

Ẽ
∫ T

0
‖α2

j B̃(ũαj , Aũαj (t))‖β
D(A)′ dt

≤ Cβα2−β
j

[
Ẽ

(
sup

0≤t≤T
α2

j‖ũαj (t)‖2

)]β−1 (
Ẽ

[∫ T

0
‖ũαj (t)‖2 dt

]) 2−β
2


Ẽ

(∫ T

0
α2

j |Aũαj (t)|2 dt

) β
2−β




2−β
2

.

Using the estimates on ũαj at the beginning of the proof, we then have

Ẽ
∫ T

0
‖α2

j B̃(ũαj (t), Aũαj (t))‖β
D(A)′ dt ≤ Cα2−β

j , 1 < β < 2.
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Therefore, as αj → 0 the term

α2
j B̃(ũαj , Aũαj ) → 0 strongly in Lβ(Ω̄, F̄ , P̄ ; Lβ(0, T ; D(A)′)).

We readily have from (3.15)

B(ũαj , ũαj ) → B(ũ, ũ) weakly in L2(Ω̄, F̄ , P̄ ; L2(0, T ; D(A)′)).

Collecting all the convergence results, we then have from (3.14) that

(ũ(t), ϕ) + ν

∫ t

0
(ũ(s), Aϕ) ds +

∫ t

0
〈B(ũ(s), ũ(s)), ϕ〉D(A)′ ds =

(u0, ϕ) +
∫ t

0
(F (s, ũ(s)), ϕ) ds +

(∫ t

0
G(s, ũ(s)) dW̃ (s), ϕ

)

for all ϕ ∈ D(A). This concludes the proof of Theorem 6.

 
 
 



Chapter 4

Strong solution for the 3D Stochastic

Leray-α Model

4.1 Introduction

It is computationally expensive to perform reliable direct numerical simulation of the Navier-

Stokes equations for high Reynolds number flows due to the wide range of scales of motion that

need to be resolved. The use of numerical models allows researchers to simulate turbulent flows

using smaller computational resources. In this chapter, we study a particular sub-grid scale

turbulence model known as the Leray-alpha model (Leray-α). This model together with the

Navier-Stokes-α model which was considered in the previous chapters, are strong contenders for

deep understanding of turbulence in Newtonian fluids.

We are interested in the study of the probabilistic strong solutions of the 3D Leray-α equa-

tions, subject to space periodic boundary conditions, in the case in which random perturbations

appear. To be more precise, let T = [0, L]3, T > 0, and consider the system





d(u− α2∆u) +
[−ν∆(u− α2∆u)− u.∇(u− α2∆u) +∇p

]
dt =

F (t, u)dt + G(t, u)dW in (0, T )× T ,

∇.u = 0 in (0, T )× T ,

u(t, x) is periodic in x and
∫
T u dx = 0,

u(0) = u0 in T ,

(4.1)

where u = (u1, u2, u3) and p are unknown random fields on [0, T ]×T , representing, respectively,

the velocity and the pressure, at each point of [0, T ]×T , of an incompressible viscous fluid with
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constant density filling the domain T . The constant ν > 0 and α represent, respectively, the

kinematic viscosity of the fluid and spatial scale at which fluid motion is filtered. The terms

F (t, u) and G(t, u)dW are external forces depending on u, where W is an Rm-valued standard

Wiener process. Finally, u0 is a given random initial velocity field.

The deterministic version of (4.1), i.e. when G = 0, has been the object of intense investiga-

tion over the last years. The initial motivation was to find a closure model for the 3D turbulence

averaged Reynolds model; for more details we refer to [21] and the references therein. A key

interest in the model is the fact that it serves as a good approximation of the 3D Navier-Stokes

equations. It is readily seen that when α = 0, the problem reduces to the usual 3D Navier-

Stokes equations. Many important results have been obtained in the deterministic case. More

precisely, the global well-posedness of weak solutions for the deterministic Leray-α equations has

been established in [75] and also their relation with Navier-Stokes equations as α approaches

zero. The global attractor was constructed in [19] and [21].

The addition of white noise driven terms to the basic governing equations for a physical

system is natural for both practical and theoretical applications. For example, these stochas-

tically forced terms can be used to account for numerical and empirical uncertainties and thus

provide a means to study the robustness of a basic model. Specifically in the context of fluids,

complex phenomena related to turbulence may also be produced by stochastic perturbations.

For instance, in the recent work of Mikulevicius and Rozovskii [57], such terms are shown to

arise from basic physical principals. To the best of our knowledge, there is no systematic work

for the 3D stochastic Leray-α model.

In this chapter, we shall prove the existence and uniqueness of strong solutions to our stochas-

tic Leray-α equations under appropriate conditions on the data, by approximating it by means

of the Galerkin method (see Theorem 7). Here, the word ”strong” means ”strong” in the sense

of the theory of stochastic differential equations, assuming that the stochastic processes are

defined on a complete probability space and the Wiener process is given in advance. Since we

consider the strong solution of the stochastic Leray-alpha equations, we do not need to use

the techniques considered in the case of weak solutions as we did in the previous chapters of

the present thesis. The techniques applied in this chapter use in particular the properties of

stopping times and some basic convergence principles from functional analysis (see [76],[5]). An

important result, which cannot be proved in the case of weak solutions, is that the Galerkin

approximation converge in mean square to the solution of the stochastic Leray-α equations (see

Theorem 8). We can prove such result by using the property of higher order moments for the
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solution. Moreover, as in the deterministic case [75], we study the asymptotic behavior of the

solutions as α approaches 0. More precisely, we show that a subsequence of solutions in question

converges to a probabilistic weak solution for the 3D stochastic Navier-Stokes equations (see

Theorem 9). This is reminiscent of the vanishing viscosity method; see for instance [6], [67].

This chapter is organized as follows. In Section 4.2, we formulate the problem and state the

first result on the existence and uniqueness of strong solutions for the 3D stochastic Leray-α

model. In Section 4.3, we introduce the Galerkin approximation of our problem and derive

crucial a priori estimates for its solutions. Section 4.4 is devoted to the proof of the existence

and uniqueness of strong solutions for the 3D stochastic Leray-α model. In Section 4.5, We

prove the convergence result of Theorem 8. In Section 4.6, we study the asymptotic behavior of

the strong solutions for the 3D stochastic Leray-α model as α approaches 0.

4.2 Statement of the problem and the first main result

Let T = [0, L]3. We denote by C∞
per(T )3 the space of all T -periodic C∞ vector fields defined on

T . We set

V = {Φ ∈ C∞
per(T )3/

∫

T
Φ dx = 0;∇.Φ = 0}.

We denote by H and V the closure of the set V in the spaces L2(T )3 and H1(T )3 respectively.

Then H is a Hilbert space equipped with the inner product of L2(T )3. V is Hilbert space

equipped with inner product of H1(T )3. We denote by (., .) and |.| the inner product and norm in

H. The inner product and norm in V are denoted by ((., .)) and ‖.‖, respectively. Let A = −P∆

be the Stokes operator with domain D(A) = H2(T )3 ∩ V , where P : L2(T )3 → H is the Leray

projector. A is an isomorphism from V to V ′(the dual space of V ) with compact inverse, hence

A has eigenvalues{λk}∞k=1, i.e.,
4π2

L2 = λ1 ≤ λ2 ≤ ... ≤ λn → ∞(n → ∞) and corresponding

eigenfunctions {wk}∞k=1 which form an orthonormal basis of H such that Awk = λkwk.

We also have

〈Av, v〉V ′ ≥ β‖v‖2 (4.2)

for all v ∈ V , where β > 0 and 〈., .〉V ′ denotes the duality between V and V ′.

Following the notations common in the study of Navier-Stokes equations, we set

B(u, v) = P(u.∇)v for all u, v ∈ V.
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Then (see [72],[35],[24])

〈B(u, v), v〉V ′ = 0 for all u, v ∈ V. (4.3)

〈B(u, v), w〉V ′ = −〈B(u,w), v〉V ′ for all u, v, w ∈ V. (4.4)

|(B(u, v), w)| ≤ C|Au|‖v‖|w|, for all u ∈ D(A), v ∈ V , w ∈ H. (4.5)

|〈B(u, v), w〉D(A)′ ≤ C|u|‖v‖|Aw|, for all u ∈ H, v ∈ V , w ∈ D(A). (4.6)

|〈B(u, v), w〉V ′ | ≤ C|u| 14 ‖u‖ 3
4 |v| 14 ‖v‖ 3

4 ‖w‖, for all u ∈ V , v ∈ V , w ∈ V. (4.7)

|(B(u, v), w)| ≤ C|u| 14 ‖u‖ 3
4 ‖v‖ 1

4 |Av| 34 |w|, for all u ∈ V , v ∈ D(A), w ∈ H. (4.8)

Let (Ω,F , P ) be a complete probability space and {Ft}0≤t≤T an increasing and right-continuous

family of sub σ-algebras of F such that F0 contains all the P -null sets of F . Let W be an

Rm-valued Wiener process on (Ω,F , {Ft}0≤t≤T , P ) .E denotes the mathematical expectation

with respect to the probability measure P .

The function spaces used in this chapter are denoted as in the previous chapters.

We make precise our assumptions on F and G. We suppose that F and G are measur-

able Lipschitz mappings from Ω × (0, T ) × H into H and from Ω × (0, T ) × H into H⊗m,

respectively. Namely, assume that, for all u, v ∈ H, F (., u) and G(., u) are Ft-adapted, and

dP × dt−a.e. in dP × dt

|F (t, u)− F (t, v)|H ≤ LF |u− v|, (4.9)

F (t, 0) = 0, (4.10)

|G(t, u)−G(t, v)|H⊗m ≤ LG|u− v| (4.11)

G(t, 0) = 0. (4.12)

Finally, we assume that u0 ∈ L2(Ω,F0, P ;D(A)).

Remark 5. The condition (4.10) is given only to simplify the calculations. It can be omitted;

in which case one could use the estimate

|F (t, u)|2 ≤ 2L2
F |u|2 + 2|F (t, 0)|2

that follows from the Lipschitz condition. The same remark applies to G.
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Alongside problem (4.1), we shall consider the equivalent abstract stochastic evolution equa-

tion




d(u + α2Au) + [νA(u + α2Au) + B(u, u + α2Au)] dt = F (t, u)dt + G(t, u)dW,

u(0) = u0.

(4.13)

We now define the concept of strong solution of the problem (4.13); namely:

Definition 5. By a strong solution of problem (4.13), we mean a stochastic process u such that

1) u(t) is Ft adapted for all t ∈ [0, T ],

2) u ∈ Lp(Ω,F , P ;L2(0, T ;D(A
3
2 ))) ∩ Lp(Ω,F , P ; L∞(0, T, D(A)))

for all 1 ≤ p < ∞,

3) u is weakly continuous with values in D(A),

4) P-a.s., the following integral equation holds

(
u(t) + α2Au(t),Φ

)
+ν

∫ t

0

(
u(s) + α2Au(s), AΦ

)
ds+

∫ t

0

(
B(u(s), u(s) + α2Au(s)), Φ

)
ds =

(
u0 + α2Au0,Φ

)
+

∫ t

0
(F (s, u(s),Φ) ds +

∫ t

0
(G(s, u(s)),Φ) dW (s)

for all Φ ∈ V, and t ∈ [0, T ].

Our first result is the following

Theorem 7. (Existence and uniqueness) Suppose the hypotheses (4.9)-(4.12) hold, and

u0 ∈ L2(Ω,F0, P ;D(A)). Then problem (4.13) has a solution in the sense of Definition 5. The

solution is unique almost surely and has in D(A) almost surely continuous trajectories.

We also prove that the sequence (un) of our Galerkin approximation (see (4.14) below)

approximates the solution u of the 3D stochastic Leray-α model in mean square.

This is the object of the second result of this chapter.

Theorem 8. (Convergence results) Under the hypotheses of Theorem 7, the following con-

vergences hold:

E
∫ t

0
‖un(s)− u(s)‖2

D(A
3
2 )

ds → 0

as n →∞ and

E‖un(t)− u(t)‖2
D(A) → 0

as n →∞, for all t ∈ [0, T ].
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4.3 Galerkin approximation and a priori estimates

We now introduce the Galerkin scheme associated with the original equation (4.13) and establish

some uniform estimates.

4.3.1 The approximate equation

Let {wj}∞j=1 be an orthonormal basis of H consisting of eigenfunctions of the operator A. Denote

Hn = span{w1, ..., wn} and let Pn be the L2-orthogonal projection from H onto Hn.

We look for a sequence (un(t))n of solutions in Hn of the following initial value problem




d vn + [νAvn + PnB(un, vn)] dt = PnF (t, un)dt + PnG(t, un)dW

un(0) = Pnu0

vn = un + α2Aun.

(4.14)

As in Chapter 2, there is a unique continuous (Ft)-adapted process un(t) ∈ L2(Ω,F , P ; L2(0, T ; Hn))

solutions of problem (4.14) (see [44], [46],[63]). The conditions in Chapter 2 did not guaranty

uniqueness. The local Lipschitzity and the linear growth of the nonlinearity provide global

unique solution.

We next establish some uniform estimates on un and vn.

4.3.2 A priori estimates

Throughout this section C, Ci(i = 1, ...) denote positive constants independent of n and α.

Lemma 8. un and vn satisfy the following a priori estimates:

E sup
0≤s≤T

|vn(s)|2 + 4νβE
∫ T

0
‖vn(s)‖2 ds ≤ C1,

E sup
0≤s≤T

|un(s)|2 ≤ C2 ; E sup
0≤s≤T

‖un(s)‖2 <
C3

2α2
,

E sup
0≤s≤T

|Aun(s)|2 ≤ C4

α4
; E

∫ T

0
‖un(s)‖2 ds ≤ C5, (4.15)

E
∫ T

0
|Aun(s)|2 ds ≤ C6

2α2
; E

∫ T

0
|A 3

2 un(s)|2 ds ≤ C7

α4
, .

Proof. To prove Lemma 8, it suffices to establish the first inequality and use the fact that

|vn|2 = |un + α2Aun|2 = |un|2 + 2α2‖un‖2 + α4|Aun|2,
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‖vn‖2 = ‖un‖2 + 2α2|Aun|2 + α4|A 3
2 un|2.

By Itô’s formula, we have from (4.14)

d|vn(t)|2 + 2 [ν〈Avn, vn〉V ′ + 〈B(un, vn), vn〉V ′ ] dt (4.16)

=
(
(2F (t, un), vn) + |PnG(t, un)|2) dt + 2 (G(t, un), vn) dW.

But then, taking into account (4.3), (4.2) and the fact that

(F (s, un(s)), vn(s)) ≤ C(1 + |vn(s)|2),

|PnG(s, un(s))|2 ≤ C(1 + |vn(s)|2),

we deduce from (4.16) that

|vn(t)|2+2νβ

∫ t

0
‖vn(s)‖2 ds ≤ |vn(0)|2+C2T+C3

∫ t

0
|vn(s)|2 ds+2

∫ t

0
(G(s, un(s)), vn(s)) dW (s).

(4.17)

For each integer N > 0, consider the Ft-stopping time τN defined by

τN = inf{t : |vn(t)|2 ≥ N2} ∧ T.

It follows from (4.17) that

sup
s∈[0,t∧τN

|vn(s)|2 + 2νβ

∫ t∧τN

0
‖vn(s)‖2 ds (4.18)

≤ |vn(0)|2 + C8T + C9

∫ t∧τN

0
|vn(s)|2 ds + 2 sup

s∈[0,t∧τN

∣∣∣∣
∫ s

0
(G(s, un(s)), vn(s)) dW (s)

∣∣∣∣

for all t ∈ (0, T ) and all N , n ≥ 1. Taking expectation in (4.18) , by Doob’s inequality it follows

that

E sup
s∈[0,t∧τN ]

∫ s

0
(G(s, un(s)), vn(s)) dW (s)

≤ 3E

(∫ t∧τN

0
(G(s, un(s)), vn(s))2 ds

) 1
2

≤ 3E
(∫ t∧τN

0
|G(s, un(s))|2|vn(s)|2 ds

) 1
2

≤ 1
2
E sup

0≤s≤t∧τN

|vn(s)|2 + C10T + C11E
∫ t∧τN

0
|vn(s)|2 ds.

Next using Gronwall’s lemma, we have that there exists a constant C1 depending on T, C such

that, for all n ≥ 1

E sup
0≤s≤T

|vn(s)|2 + 4νβE
∫ T

0
‖vn(s)‖2 ds ≤ C1.
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The following result is related to the higher integrability of un and vn

Lemma 9. We have

E sup
0≤s≤T

|vn(s)|p ≤ Cp ; E sup
0≤s≤T

|un(s)|p ≤ Cp, (4.19)

E sup
0≤s≤T

‖un(s)‖p ≤ Cp

αp
, (4.20)

E sup
0≤s≤T

|un(s)|pD(A) ≤
Cp

α2p
, (4.21)

for all 1 ≤ p < ∞.

Proof. By Itô’s formula, we have for 4 ≤ p < ∞

d|vn(t)| p2 (4.22)

=
p

2
|vn(t)| p2−2

(
−ν〈Avn, vn〉V ′ − 〈B(un, vn), vn〉V ′ + (F (t, un), vn) +

p− 4
4

(G(t, un), vn)2

|vn(t)|2
)

dt

+
p

2
|vn(t)| p2−2(G(t, un), vn) dW.

By (4.17), (4.17) and Young’s inequality, we have

|vn(s)| p2−2(F (t, un), vn) ≤ C(1 + |vn(s)| p2 )

and
(G(s, un), vn)2

|vn(s)|2 ≤ C(1 + |vn(s)|2),

Taking account of these inequalities together with (4.22) and (4.3), we get

|vn(t)| p2 ≤ |vn(0)| p2 + C

∫ t

0
(1 + |vn(s)| p2 ) ds +

p

2

∫ t

0
|vn(s)| p2−2(G(s, un(s)), vn(s)) dW (s). (4.23)

Taking the supremum, the square and the mathematical expectation in (4.23), and owing to the

martingale inequality we have

E sup
0≤s≤T

∣∣∣∣
∫ s

0
|vn(s)| p2−2(G(s, un(s)), vn(s)) dW (s)

∣∣∣∣
2

≤ 4E
∫ T

0
|vn(s)|p−4(G(s, un(s)), vn(s))2 ds

≤ 4C E
∫ T

0
(1 + |vn(s)|p) ds.

Applying Gronwall’s lemma, it follows that there exists a constant Cp, such that

E sup
0≤s≤T

|vn(s)|p ≤ Cp
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for all p ≥ 4. This being proved for any p ≥ 4, it is subsequently true for any 1 ≤ p < ∞.

Other inequalities are deduced from the relation

|vn(s)|2 = |un(s)|2 + 2α2‖un(s)‖2 + α4|Aun(s)|2.

We also have

Lemma 10.

E
(∫ T

0
‖vn(s)‖2 ds

)p

≤ Cp for 1 ≤ p < ∞.

Proof. From (4.17), we have

(2νβ)p

(∫ T

0
‖vn(s)‖2 ds

)p

≤ Cp

(
|vn(0)|2p + T p +

(∫ T

0
|vn(s)|2 ds

)p
)

+ C
′
p sup

t∈[0,T ]

∣∣∣∣
∫ t

0
(G(s, un(s)), vn(s)) dW (s)

∣∣∣∣
p

. (4.24)

By Burkholder-Gundy’s inequality, we have

E sup
t∈[0,T ]

∣∣∣∣
∫ t

0
(G(s, un(s)), vn(s)) dW (s)

∣∣∣∣
p

≤ Cp1E
(∫ T

0
(G(s, un(s)), vn(s))2 ds

) p
2

≤ Cp2E
(∫ T

0

(
1 + |vn(s)|2p

)
ds

)

≤ Cp2T + Cp2TE sup
s∈[0,T ]

|vn(s)|2p.

Taking the mathematical expectation in (4.24) and using the first inequality of Lemma 9, we

have the inequality sought.

4.4 Proof of Theorem 7

4.4.1 Existence

With the uniform estimates on the solution of the Galerkin approximation in hand, we proceed

to identify a limit u. This stochastic process is shown to satisfy a stochastic partial differential

equations (see (4.32)) with unknown terms corresponding to the nonlinear portions of the equa-

tion. Next, using the properties of stopping times and some basic convergence principles from
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functional analysis, we identify the unknown portions.

We will split the proof of the existence into two steps.

Step1:Passage to the limit

Lemma 11. Under the hypotheses of Theorem 7, there exist adapted processes u,B∗, F ∗ and G∗ with

the regularity:

u ∈ Lp(Ω,F , P ;L2(0, T ;D(A
3
2 ))) ∩ Lp(Ω,F , P ; L∞(0, T ; D(A))), (4.25)

v ∈ Lp(Ω,F , P ; L2(0, T ; V )), (4.26)

v ∈ C(0, T ; H) a.s., (4.27)

u ∈ C(0, T ; D(A)) a.s., (4.28)

and

B∗ ∈ L2(Ω,F , P ;L2(0, T : V ′)), (4.29)

F ∗ ∈ L2(Ω,F , P ; L2(0, T ; H)), (4.30)

G∗ ∈ L2(Ω,F , P ; L2(0, T ; H⊗m)), (4.31)

such that u, B∗, F ∗ and G∗ satisfy:

v(t) + ν

∫ t

0
Av(s) ds +

∫ t

0
B∗(s) ds = v(0) +

∫ t

0
F ∗(s) ds +

∫ t

0
G∗(s) dW (s) (4.32)

where v(t) = u(t) + α2Au(t) and 1 ≤ p < ∞.

Proof. Using (4.7) and Hölder’s inequality, we have

E
∫ T

0
‖PnB(un(t), vn(t)‖2

V ′ ≤ C

(
E sup

t∈[0,T ]
‖un(t)‖4

) 1
2
(
E

(∫ T

0
‖vn(t)‖2 dt

)2
) 1

2

. (4.33)

The later quantity is uniformly bounded as a consequence of Lemmas 9, 10. From (4.33), we

can deduce that the sequence PnB(un, vn) is bounded in L2(Ω,F , P ;L2(0, T ;V ′)). On the other

hand, from Lemmas 8, 9, 10 and the Lipschitz conditions on F and G, we have that the sequence

un is bounded in Lp
(
Ω,F , P ; L2(0, T ; D(A

3
2 )

)
∩Lp (Ω,F , P ;L∞(0, T ; D(A)), the sequence vn is

bounded in L2(Ω,F , P ;L2(0, T ;V ))∩L2(Ω,F , P ; L∞(0, T ; H)), the sequence vn(0) is bounded in

L2(Ω,F0, P ; H), the sequence un(0) is bounded in L2(Ω,F0, P ; D(A)), the sequence PnF (t, un)

is bounded in L2(Ω,F , P ; L2(0, T ; H)) and PnG(t, un) is bounded in L2(Ω,F , P ; L2(0, T ; H⊗m)).

Thus with Alaoglu’s theorem, we can ensure that there exists a subsequence {un′} ⊂ {un}, and
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the functions u ∈ Lp(Ω,F , P ; L2(0, T ; D(A
3
2 ))) ∩ Lp(Ω,F , P ;L∞(0, T ; D(A))),

v ∈ L2(Ω,F , P ;L2(0, T ;V )) ∩ L2(Ω,F , P ; L∞(0, T ;H)), B∗ ∈ L2(Ω,F , P ;L2(0, T ;V ′)),

F ∗ ∈ L2(Ω,F , P ; L2(0, T ; H)), ρ1 ∈ L2(Ω,F0,H), ρ2 ∈ L2(Ω,F0, D(A)) and

G∗ ∈ L2(Ω,F , P ;L2(0, T ;H⊗m)) such that:

un′ ⇀ u in Lp(Ω,F , P ;L2(0, T ;D(A
3
2 ))) ∩ Lp(Ω,F , P ; L∞(0, T ; D(A))), (4.34)

vn′ ⇀ v in L2(Ω,F , P ; L2(0, T ; V )), (4.35)

Pn′B(un′ , vn′) ⇀ B∗ in L2(Ω,F , P ; L2(0, T ; V ′)), (4.36)

Pn′F (t, un′) ⇀ F ∗ in L2(Ω,F , P ; L2(0, T ; H)), (4.37)

vn′(0) ⇀ ρ1 in L2(Ω,F0,H)

un′(0) ⇀ ρ2 in L2(Ω,F0, D(A))

Pn′G(t, un′) ⇀ G∗ in L2(Ω,F , P ; L2(0, T ; H⊗m)). (4.38)

Using the weak convergence above, we obtain from (4.14)

v(t) + ν

∫ t

0
Av(s) ds +

∫ t

0
B∗(s) ds = v0 +

∫ t

0
F ∗(s) ds +

∫ t

0
G∗(s) dW (s) (4.39)

for all t ∈ [0, T ], where v(t) = u(t) + α2Au(t) and v0 = u0 + α2Au0.

Referring then to the results of [46],[61],[47], we find that v has modification such that v ∈
C(0, T ; H) a.s. which implies that u has modification in C(0, T ;D(A)) a.s..

Step 2 :Proof of B∗= B(u, v), F ∗= F (t, u) and G∗= G(t, u)

For simplicity let us denote by {un} the subsequence {un′}.
Let (X(t))t∈[0,T ] be a process in the space L2(Ω,F , P ;L2(0, T ;V )). Using the properties of A

and of its eigenvectors {w1, w2, ...}(λ1, λ2, ... are the corresponding eigenvalues), we have

‖PnX(t)‖ ≤ ‖X(t)‖; |PnX(t)| ≤ |X(t)|; |X(t)− PnX(t)| ≤ |X(t)| (4.40)

β‖X(t)− PnX(t)‖2 ≤ 〈AX(t)−APnX(t), X(t)− PnX(t)〉V ′

=
i=∞∑

i=n

λi(X(t), wi)2

≤ 〈AX(t), X(t)〉V ′

≤ C‖X(t)‖2.
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Hence for dP × dt a.e. (w, t) ∈ Ω× [0, T ], we have

lim
n→∞ ‖X(w, t)− PnX(w, t)‖2 = 0.

By the Lebesgue dominated convergence theorem, it follows that

lim
n→∞

∫ T

0
‖X(t)− PnX(t)‖2 dt = 0,

lim
n→∞E

∫ T

0
‖X(t)− PnX(t)‖2 dt = 0,

and

lim
n→∞E‖X(t)− PnX(t)‖2 = 0. (4.41)

Applying this result to X = v ∈ L2(Ω,F , P ; L2(0, T ; V )) or X = u, we have

Pnv → v in L2(Ω,F , P ;L2(0, T ;V )), (4.42)

Pnu → u in L2(Ω,F , P ; L2(0, T ; V )). (4.43)

With a candidate solution in hand, it remains to show that

B∗ = B(u, v), F ∗ = F (t, u), G∗ = G(t, u).

In the next lemma, we compare v and the sequence vn = un + α2Aun, at least up to a stopping

time τm ↑ T a.s.; this is sufficient to deduce the existence result. Here, we are adapting techniques

used in [5] and in [10].

Let m ∈ N∗, consider the Ft- stopping time τm defined by

τm = inf{t; |v(t)|2 +
∫ t

0
‖v(s)‖2 ds ≥ m2} ∧ T.

Notice that τm is increasing as a function of m and moreover τm → T a.s. as m tends to ∞.

Lemma 12. we have

lim
n→∞E

∫ τm

0
‖vn(s)− v(s)‖2 ds = 0

Proof. Using (4.42), it suffices to prove that

lim
n→∞E

∫ τm

0
‖Pnv(s)− vn(s)‖2 ds = 0.

Using equations (4.14) and (4.39), the difference of Pnv and vn satisfies the relation

d(Pnv−vn)+[νA(Pnv − vn) + PnB∗ − PnB(un, vn)] dt = Pn(F ∗−F (t, un))dt+Pn(G∗−G(t, un)) dW.
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Let σ(t) = exp{−n1t − n2

∫ t
0 ‖v(s)‖2 ds}, 0 ≤ t ≤ T , with n1 and n2 positive constants to be

fixed later.

Applying Itô’s formula to the process σ(t)|Pnv − vn|2, we have

σ(t)|Pnv(t)−vn(t)|2+2βν

∫ t

0
σ(t)‖Pnv(s)−vn(s)‖2 ds ≤ 2

∫ t

0
σ(s)〈B∗(s)−B(un(s), vn(s)), Pnv(s)−vs〉V ′ ds

+ 2
∫ t

0
σ(s)(F ∗(s)− F (s, un(s)), Pnv(s)− vn(s)) ds + 2

∫ t

0
σ(s)|Pn(G∗(s)−G(s, un(s)))|2 ds

2
∫ t

0
σ(s)(G∗(s)−G(s, un(s)), Pnv(s)− vn(s)) dW − n1

∫ t

0
σ(s)|Pnv(s)− vn(s)|2 ds

− n2

∫ t

0
σ(s)‖v(s)‖2|Pnv(s)− vn(s)|2 ds. (4.44)

We are going to estimate the first three terms of the right hand side of (4.44).

For the first term, using the cancellation property (4.3) and (4.7), we have

〈B∗ −B(un, vn), Pnv − vn〉V ′ (4.45)

= 〈B∗, Pnv − vn〉V ′ + 〈B(un − Pnu, Pnv), vn − Pnv〉V ′ + 〈B(Pnu, Pnv), vn − Pnv〉V ′

≤ 〈B∗, Pnv − vn〉V ′ + C|un − Pnu| 14 ‖un − Pnu‖ 3
4 |Pnv| 14 ‖Pnv‖ 3

4 ‖vn − Pnv‖+ 〈B(Pnu, Pnv), vn − Pnv〉V ′

≤ 〈B∗, Pnv − vn〉V ′ + C

2β
‖v‖2|vn − Pnv|2 +

β

2
‖vn − Pnv‖2 + 〈B(Pnu, Pnv), vn − Pnv〉V ′ .

For the term involving F ∗ and F , using the Lipschitz condition on F , we have

2(F ∗ − F (t, un), Pnv − vn) (4.46)

≤ 2(F ∗ − F (t, u), Pnv − vn) + 2(F (t, u)− F (t, Pnu), Pnv − vn) + 2LF |Pnu− un||Pnv − vn|

≤ 2(F ∗ − F (t, u), Pnv − vn) + 2(F (t, u)− F (t, Pnu), Pnv − vn) + 2CLF |Pnv − vn|2.

For the term involving G∗ and G, using the Lipschitz conditions on G, we have

|Pn(G∗ −G(t, un))|2 (4.47)

≤ 2L2
G|Pnu− un|2 + 2L2

G|u− Pnu|2 + 2(G∗ −G(t, u), Pn(G∗ −G(t, un)))− |Pn(G∗ −G(t, u))|2

≤ 2L2
G|Pnv − vn|2 + 2L2

G|u− Pnu|2 + 2(G∗ −G(t, u), Pn(G∗ −G(t, un)))− |Pn(G∗ −G(t, u))|2.
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Taking into account (4.45)-(4.47), we obtain from (4.44) that

σ(t)|Pnv(t)− vn(t)|2 + 2β
∫ t

0
σ(s)‖Pnv(s)− vn(s)‖2 ds + 2

∫ t

0
σ(s)|Pn(G∗(s)−G(s, u(s)))|2 ds

≤ 2
∫ t

0
σ(s)〈B∗(s), Pnv(s)− vn(s)〉V ′ ds +

C

β

∫ t

0
σ(s)‖v(s)‖2|vn(s)− Pnv(s)|2 ds+

β

∫ t

0
σ(s)‖Pnv(s)− vn(s)‖2 ds

+ 2
∫ t

0
σ(s)〈B(Pnu(s), Pnv(s)), vn(s)− Pnv(s)〉V ′ ds + 4CLF

∫ t

0
σ(s)|Pnv(s)− vn(s)|2 ds

+4
∫ t

0
σ(s)(F ∗(s)−F (s, u(s)), Pnv(s)−vn(s)) ds+4

∫ t

0
σ(s)(F (s, u(s))−F (s, Pnu(s)), Pnv(s)−vn(s)) ds

+ 4L2
G

∫ t

0
σ(s)|Pnv(s)− vn(s)|2 ds + 4L2

G

∫ t

0
σ(s)|u(s)− Pnu(s)|2 ds

+ 4
∫ t

0
σ(s)(G∗(s)−G(s, u(s)), Pn(G∗(s)−G(s, u(s)))) ds

− n1

∫ t

0
σ(s)|Pnv(s)− vn(s)|2 ds− n2

∫ t

0
σ(s)‖v(s)‖2|Pnv(s)− vn(s)|2

+ 2
∫ t

0
σ(s)(G∗(s)−G(s, un(s)), Pnv(s)− vn(s)) dW. (4.48)

Therefore, if we take n1 = 4CLF + 4L2
G and n2 = C

βν , we obtain from (4.48)

Eσ(τm)|Pnv(τm)−vn(τm)|2+3βν

2
E

∫ τm

0
σ(s)‖Pnv(s)−vn(s)‖2 ds+2E

∫ τm

0
σ(s)|Pn(G∗(s)−G(s, u(s)))|2 ds

≤ 2E
∫ τm

0
σ(s)〈B∗(s), Pnv(s)−vn(s)〉V ′ ds++2E

∫ τm

0
σ(s)〈B(Pnu(s), Pnv(s)), vn(s)−Pnv(s)〉V ′ ds

+ 4E
∫ τm

0
σ(s)(F ∗(s)− F (s, u(s)), Pnv(s)− vn(s)) ds

+ 4E
∫ τm

0
σ(s)(F (s, u(s))− F (s, Pnu(s)), Pnv(s)− vn(s)) ds

+4L2
GE

∫ τm

0
σ(s)|u(s)−Pnu(s)|2 ds+4E

∫ τm

0
σ(s)(G∗(s)−G(s, u(s)), Pn(G∗(s)−G(s, u(s)))) ds.

(4.49)

Next, we are going to prove the convergence to zero of each term on the right hand side of (4.49).

Here we use some basic convergence principles from functional analysis (see Appendix C).

For the first two terms, we have

E
∫ τm

0
σ(s)〈B(Pnu(s), Pnv(s))−B∗(s), vn(s)− Pnv(s)〉V ′ ds =

E
∫ τm

0
σ(s)〈B(Pnu(s), Pnv(s))−B(u(s), v(s)), vn(s)− Pnv(s)〉V ′ ds

+ E
∫ τm

0
σ(s)〈B(u(s), v(s))−B∗(s), vn(s)− Pnv(s)〉V ′ ds. (4.50)
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From the properties of B, we have

‖B(Pnu, Pnv)−B(u, v)‖V ′

≤ ‖B(Pnu− u, Pnv)‖V ′ + ‖B(u, Pnv − v)‖V ′

≤ (‖Pnu− u‖‖Pnv‖+ ‖u‖‖Pnv − v‖).

We have from (4.42) and (4.43)

‖I[0,τm]σ(t)B(Pnu, Pnv)−B(u, v)‖V ′ → 0, as n →∞, dt× dP − a.e. (4.51)

‖I[0,τm]σ(t)(B(Pnu, Pnv)−B(u, v))‖V ′ ≤ C‖u(t)‖‖v(t)‖ ∈ L2(Ω,F , P ; L2(0, T ;R)). (4.52)

where I[0, τm] is the indicator of the interval [0, τm]. Using (4.35) and (4.42), we have

vn − Pnv ⇀ 0 in L2(Ω,F , P ; L2(0, T ; V )). (4.53)

Applying the results of weak convergence (see Appendix B), it follows from (4.51)-(4.53) that

lim
n→∞E

∫ τm

0
σ(s)〈B(Pnu, Pnv)−B(u, v), vn(s)− Pnv(s)〉V ′ ds = 0. (4.54)

Also as I[0,τm]σ(t)B(u, v)−B∗ ∈ L2(Ω,F , P ; L2(0, T ; V ′)), we have from (4.53)

lim
n→∞E

∫ τm

0
σ(s)〈B(u(s), v(s))−B∗(s), vn(s)− Pnv(s)〉V ′ ds = 0. (4.55)

On the other hand, from (4.43), the Lipschitz conditions on F , G and the fact that vn−Pnv ⇀ 0

in L2(Ω,F , P ; L2(0, T ; H)), we have

lim
n→∞E

∫ τm

0
σ(s) (G(s, u(s))−G(s, Pnu(s)), vn(s)− Pnv(s)) ds = 0, (4.56)

lim
n→∞E

∫ τm

0
σ(s) (F (s, u(s))− F (s, Pnu(s)), vn(s)− Pnv(s)) ds = 0. (4.57)

Again from (4.53) and the fact that

F ∗ − F (t, u) ∈ L2(Ω,F , P ;L2(0, T ;H)),

G∗ −G(t, u) ∈ L2(Ω,F , P ;L2(0, T ;H⊗m)),

we have

lim
n→∞E

∫ τm

0
σ(s) (F ∗(s)− F (s, u(s)), vn(s)− Pnv(s)) ds = 0, (4.58)

lim
n→∞E

∫ τm

0
σ(s) (G∗(s)−G(s, u(s)), vn(s)− Pnv(s)) ds = 0. (4.59)
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As

Pn(G∗ −G(t, un)) ⇀ 0 in L2(Ω,F , P ;L2(0, T ;H⊗m)),

we also have

lim
n→∞E

∫ τm

0
σ(s) (G∗(s)−G(s, u(s)), Pn(G∗(s)−G(s, un(s)))) ds = 0. (4.60)

From (4.54)-(4.60), and the fact that

exp(−n1T − n2m) ≤ I[0,τm]σ(t) ≤ 1,

we obtain from (4.49),

lim
n→∞E

(|Pnv(τm)− vn(τm)|2) = 0, (4.61)

lim
n→∞E

∫ τm

0
‖Pnv(s)− vn(s)‖2 ds = 0, (4.62)

E
∫ τm

0
|G∗(s)−G(s, u(s))|2 ds = 0. (4.63)

Now from (4.63) and the fact that the sequence τm tend to T , we have

G∗(t) = G(t, u(t))

as elements of the space L2(Ω,F , P ; L2(0, T ; H⊗m)).

Also observe that (4.61) and (4.42) imply that

vnI[0,τm] → vI[0,τm] in L2(Ω,F , P ; L2(0, T ; V )), (4.64)

where I[0,τm] is the indicator function of [0, τm]. Let w ∈ V . We have the following estimate

from B

|〈B(u, v)− PnB(un, vn), w〉V ′ | (4.65)

≤ |〈B(u, v)−B(un, vn), w〉V ′ |+ |〈(I − Pn)B(un, vn), w〉V ′ |

≤ C(‖u− un‖‖v‖+ ‖vn − v‖‖vn‖)‖w‖+ C‖(I − Pn)w‖‖un‖‖vn‖.

Thus from (4.65) and using Hölder’s inequality, we have

E
∫ τm

0
〈B(u(s), v(s))− PnB(un(s), vn(s)), w〉V ′ ds

≤ C

(
E

∫ τm

0
‖u(s)− un(s)‖2 ds

) 1
2
(
E

∫ T

0
‖v(s)‖2 ds

) 1
2

+
(
E

∫ τm

0
‖vn(s)− v(s)‖2 ds

) 1
2
(
E

∫ T

0
‖vn(s)‖2 ds

) 1
2

+ C‖(I − Pn)w‖
(
E

∫ T

0
‖un(s)‖2 ds

) 1
2
(
E

∫ T

0
‖vn(s)‖2 ds

) 1
2

. (4.66)
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Consequently, by (4.64) and (4.66), we have

lim
n→∞E

∫ τm

0
〈B(u(s), v(s))− PnB(un(s), vn(s)), w〉V ′ ds = 0. (4.67)

Taking into account (4.36), it follows from (4.67) that

E
∫ τm

0
〈B(u(s), v(s))−B∗(s), z(s)〉V ′ ds = 0 (4.68)

for all z ∈ DV (Ω×[0, T ]), whereDV (Ω×[0, T ]) is the set of functions ψ ∈ L∞(Ω,F , P ;L∞(0, T ; V ))

with

ψ = wφ, φ ∈ L∞(Ω× [0, T ];R) and w ∈ V.

Therefore, as τm tends to T and DV (Ω × [0, T ]) is dense in L2(Ω,F , P ; L2(0, T ; V )), we obtain

from (4.68) that B(u(t), v(t)) = B∗(t) as elements of the space L2(Ω,F , P ; L2(0, T ; V ′)).

Analogously, using the Lipschitz condition on F and (4.64), we have F (t, u(t)) = F ∗(t) as

elements of the space L2(Ω,F , P ; L2(0, T ; H)). And the existence result follows.

4.4.2 Uniqueness

Let u1 and u2 two solutions of problem (4.13), which have in D(A) almost surely continuous

trajectories with the same initial data u0. Denote

v1 = u1 + α2Au1; v2 = u2 + α2Au2,

v = v1 − v2; u = u1 − u2.

By Itô’s formula, we have

|v(t)|2 + 2
∫ t

0
〈Av(s), v(s)〉V ′ + 2

∫ t

0
〈B(u1(s), v1(s))−B(u2(s), v2(s)), v(s)〉V ′ (4.69)

= 2
∫ t

0
(F (s, u1(s))− F (s, u2(s)), v(s)) ds + 2

∫ t

0
(G(s, u1(s))−G(s, u2(s)), v(s)) ds

+
∫ t

0
|G(s, u1(s))−G(s, u2(s))|2H⊗m ds.

Take λ > 0 to be fixed later and define

σ(t) = exp{− b

β

∫ t

0
‖v1(s)‖2 ds− λt}.

Applying Itô’s formula to the real-valued process σ(t)|v(t)|2, we obtain from (4.69)
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σ(t)|v(t)|2 + 2βν

∫ t

0
σ(s)‖v(s)‖2 ds (4.70)

≤ 2
∫ t

0
σ(s)〈B(u(s), v1(s)), v(s)〉V ′ ds + 2

∫ t

0
σ(s)(F (s, u1(s))− F (s, u2(s)), v(s)) ds

+2
∫ t

0
σ(s)(G(s, u1(s))−G(s, u2(s)), v(s)) dW (s) +

∫ t

0
σ(s)|G(s, u1(s))−G(s, u2(s))|2H⊗m ds

−
∫ t

0

b

β
‖v1(s)‖2|v(s)|2σ(s) ds−

∫ t

0
λσ(s)|v(s)|2 ds.

But from (4.7), we have

〈B(u(s), v1(s)), v(s)〉V ′

≤ C|u(s)| 14 ‖u(s)‖ 3
4 ‖v1(s)‖

3
4 ‖v(s)‖

≤ C|v(s)| 14 |v(s)| 34 ‖v1(s)‖‖v(s)‖

≤ C

2νβ
‖v1(s)‖2|v(s)|2 +

βν

2
‖v(s)‖2,

and from the conditions on F and G, we have

(F (s, u1(s))− F (s, u2(s)), v(s)) ≤ LF |v(s)|2,

|G(s, u1(s))−G(s, u2(s))|H⊗m ≤ LG|v(s)|.

We then obtain from (4.70)

σ(t)|v(t)|2 + 2βν

∫ t

0
σ(s)‖v(s)‖2 ds (4.71)

≤ C̃

β

∫ t

0
σ(s)‖v1(s)‖2|v(s)|2 ds +

νβ

2

∫ t

0
σ(s)‖v(s)‖2 ds + 2 LF

∫ t

0
σ(s)|v(s)|2 ds

+2
∫ t

0
σ(s)(G(s, u1(s))−G(s, u2(s)), v(s)) dW (s) + L2

G

∫ t

0
σ(s)|v(s)|2 ds

−
∫ t

0

b

β
‖v1(s)‖2|v(s)|2σ(s) ds−

∫ t

0
λσ(s)|v(s)|2 ds.

Taking λ = L2
G and b = C̃, we obtain from (4.71)

σ(t)|v(t)|2 +
3νβ

2

∫ t

0
σ(s)‖v(s)‖2 ds (4.72)

≤ 2LF

∫ t

0
σ(s)|v(s)|2 ds + 2

∫ t

0
σ(s)(G(s, u1(s))−G(s, u2(s)), v(s)) dW (s)

for all t ∈ [0, T ].

As 0 < σ(t) ≤ 1, the expectation of the stochastic integral in (4.72) vanishes, and

Eσ(t)|v(t)|2 ≤ 2LGE
∫ t

0
σ(s)|v(s)|2 ds,
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for all t ∈ [0, T ]. The Gronwall’s Lemma implies that

|v(t)| = 0, P − a.s. for all t ∈ [0, T ],

in particular

u(t) = 0, P − a.s. for all t ∈ [0, T ].

This completes the proof of the uniqueness.

4.5 Proof of Theorem 8

To prove the convergence result of Theorem 8, we need Lemma 18 from [5]. We recall the proof

in the appendix.

It follows from (4.62) and (4.42) that

lim
n→∞E

∫ τm

0
‖vn(t)− v(t)‖2 dt = 0. (4.73)

Also from (4.61) and (4.41), we have

lim
n→∞E|vn(τm)− v(τm)|2 = 0. (4.74)

Applying Lemma 18 to Qn(t) =
∫ t
0 ‖vn(s) − v(s)‖2 ds and σm = τm, and taking into account

the estimate of vn in Lemmas 9,10, (4.73) and the uniqueness of v (or u), one obtains that the

whole sequence vn defined in (4.14) satisfies

lim
n→∞E

∫ t

0
‖vn(s)− v(s)‖2 ds = 0

for all t ∈ [0, T ]. Next, using the expression of vn and v, we deduce that

lim
n→∞E

∫ t

0
‖un(s)− u(s)‖2

D(A
3
2 )

ds = 0.

Analogously, applying Lemma 18 to Qn(t) = |vn(t) − v(t)|2 and σm = τm, and taking into

account (4.74), the uniqueness of u and the estimate of vn in Lemmas 9,10 we have that the

whole sequence vn defined by (4.14) satisfies limn→∞ E|vn(t)− v(t)|2 = 0. Using the expression

of vn and v, we have limn→∞ E‖un(t)− u(t)‖2
D(A) = 0 for all t ∈ [0, T ]. This complete the proof

of Theorem 8.
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4.6 Asymptotic behavior of strong solutions for the 3D stochas-

tic Leray-α model as α approaches zero

The purpose of this section is to study the asymptotic behavior of strong solutions {uα}α>0 for

the 3D stochastic Leray-α model as α goes to zero. This will be carried out by investigating the

weak compactness of these strong solutions as α approaches zero. One of the crucial point is to

show that

E sup
0≤|θ|≤δ≤1

∫ T

0
|uα(t + θ)− uα(t)|2D(A)′ dt ≤ Cδ,

where C is a constant independent of α. To do this, we adopt the method developed for the

deterministic 3D Leray-α equations [75]. In this method, an important role is played by the

operator (I + α2A)−1. Here our line of investigation follows Chapters 2 and 3 of this present

thesis.

4.6.1 Tightness of strong solutions for the 3D stochastic Leray-α equations

In this subsection, we prove the tightness of strong solutions of the 3D stochastic Leray-α

equations as α approaches zero. The main result of this subsection is the following lemma

Lemma 13. Suppose the hypotheses (4.9)-(4.12) hold, and u0 ∈ D(A) and non random. Let

uα be a strong solution for the 3D stochastic Leray-α equations. We have 1

E sup
0≤|θ|≤δ≤1

∫ T

0
|uα(t + θ)− uα(t)|2D(A)′ dt ≤ Cδ,

where C is a constant independent of α.

Proof. We recall that D(A)′ = D
(
A−1

)
.

From (4.13), we have

d(I + α2A)uα + νA(uα + α2Auα)dt + B(uα, uα + α2Auα) dt = F (t, uα) dt + G(t, uα) dW. (4.75)

Note that I + α2A is an isomorphism from D(A) onto H and

‖(I + α2A)−1‖L(H,H) ≤ 1.

From (4.75), we have

duα + νAuαdt + (I + α2A)−1B(uα, vα)dt = (I + α2A)−1F (t, uα)dt + (I + α2A)−1G(t, uα) dW,

1uα is extended by 0 outside (0,T)
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where vα = uα + α2Auα.

We deduce that

|A−1(uα(t + θ)− uα(t))| (4.76)∫ t+θ

t

(|A−1(I + α2A)−1F (τ, uα(τ))|+ ν|uα(τ)|+ |A−1(I + α2A)−1B(uα(τ), vα(τ))|) dτ

+
∣∣∣∣
∫ t+θ

t
A−1(I + α2A)−1G(τ, uα(τ)) dW (τ)

∣∣∣∣ .

We estimate the first terms of the left hand side of (4.76) using (4.6) and the Lipschitz condition

on F

|A−1(I + α2A)−1B(uα(τ), vα(τ))| ≤ |A−1B(uα(τ), vα(τ))|

≤ C|uα(τ)|‖vα(τ)‖,

|A−1(I + α2A)−1F (τ, uα(τ))| ≤ |A−1F (τ, uα(τ))| ≤ C(1 + |uα(τ)|).

Collecting the above inequalities and taking the square in (4.76), we have

|A−1(uα(t + θ)− uα(t))|2 ≤ Cθ2 + C1

(∫ t+θ

t
|uα(τ)| dτ

)2

+ ν2

(∫ t+θ

t
|uα(τ)| dτ

)2

+ C

(∫ t+θ

t
|uα(τ)|‖vα(τ)‖ dτ

)2

+
∣∣∣∣
∫ t+θ

t
A−1(I + α2A)−1G(τ, uα(τ)) dW (τ)

∣∣∣∣
2

.

For fixed δ, taking the supremum over θ ≤ δ yields

sup
0≤θ≤δ

|A−1(uα(t + θ)− uα(t))|2 ≤ Cδ2 + TC1δ
2 sup

τ∈[0,T ]
|uα(τ)|2

+ C4 sup
τ∈[0,T ]

|uα(τ)|2
(∫ t+δ

t
‖vα(τ)‖ dτ

)2

+ sup
0≤θ≤δ

∣∣∣∣
∫ t+θ

t
A−1(I + α2A)−1G(τ, uα(τ)) dW (τ)

∣∣∣∣
2

.

For t, we integrate with respect to t over the interval [δ, T − δ] and take the expectation. We

deduce then

E sup
0≤θ≤δ

∫ T

0
|A−1(uα(t + θ)− uα(t))|2 dt ≤ Cδ2 + TCδ2E sup

τ∈[0,T ]
|uα(τ)|2

+ C4E sup
τ∈[0,T ]

|uα(τ)|2
∫ T

0

(∫ t+δ

t
‖vα(τ)‖ dτ

)2

dt

+ E
∫ T

0
sup

0≤θ≤δ

∣∣∣∣
∫ t+θ

t
A−1(I + α2A)−1G(τ, uα(τ)) dW (τ)

∣∣∣∣
2

dt.
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By Hölder′s inequality, we have

E sup
τ∈[0,T ]

|uα(τ)|2
∫ T

0

(∫ t+δ

t
‖vα(τ)‖ dτ

)2

dt

≤ δ2E sup
τ∈[0,T ]

|uα(τ)|2
∫ T

0
‖vα(τ)‖2 dτ

≤ δ2

(
E sup

τ∈[0,T ]
|uα(τ)|4

) 1
2
[
E

(∫ T

0
‖vα(τ)‖2 dτ

)2
] 1

2

.

Using the estimates of Lemmas 8, 9, 10, we obtain

E sup
τ∈[0,T ]

|uα(τ)|2
∫ T

0

(∫ t+δ

t
‖vα(τ)‖ dτ

)2

dt ≤ Cδ2

where C is a constant independent of α.

Next, using martingale inequality, we have

E
∫ T

0
sup

0≤θ≤δ

∣∣∣∣
∫ t+θ

t
A−1(I + α2A)−1G(s, uα(s)) dW (s)

∣∣∣∣
2

dt

≤ E
∫ T

0

(∫ t+δ

t
|A−1(I + α2A)−1G(s, uα(s))|2 ds

)
dt

≤ CE
∫ T

0

(∫ t+δ

t
(1 + |uα(s)|2) ds

)
dt

≤ Cδ.

Collecting the above results, we finally obtain

E sup
0≤θ≤δ≤1

∫ T

0
|uα(t + θ)− uα(t)|2D(A)′ dt ≤ Cδ,

where C is a constant independent of α.

Remark 6. From Lemma 9, we have

E sup
t∈[0,T ]

|uα(t)|p ≤ Cp.

Also from Lemma 8, we have

E
∫ T

0
‖uα(s)‖2 ds ≤ C,

where C is constant independent of α.

From the estimate of Lemma 13 and Remark 6, we derive the following Lemma which will

be useful to prove the tightness of uα.
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Lemma 14. Let νn and µn two sequences of positives real number which tend to 0 as n →∞.

The injection of

D =



q ∈ L∞(0, T ;H) ∩ L2(0, T ;V ); sup

n

1
νn

sup
|θ|≤µn

(∫ T

0
|q(t + θ)− q(t)|2D(A)′ dt

) 1
2

< ∞




in L2(0, T ;H) is compact.

Proof. See Appendix A, Proposition 6. Take B0 = D(A), B1 = V,B2 = H.

We define

S2 = C(0, T ; Rm)× L2(0, T ; H)

equipped with its Borel σ-algebra B(S2).

For α ∈ (0, 1), let

Φα : Ω → S2 : ω ½ (W (ω, .), uα(ω, .)) .

For each α ∈ (0, 1), we introduce a probability measure Πα on (S2,B(S2)) by

Πα(A) = P (Φ−1
α (A))

where A ∈ B(S).

In the next proposition, using the preceding Lemma, we can prove the tightness of Πα. Its proof

follows the same lines as in the proof of Theorem 5, Chapter 2.

Proposition 5. The family of probability measures {Πα; α ∈ (0, 1)} is tight in (S2,B(S2)).

4.6.2 Approximation of the stochastic 3D Navier-Stokes equations

In this section, we prove that the probabilistic weak solutions of the stochastic 3D Navier-

Stokes equations is obtained by a sequence of solutions of the 3D stochastic Leray-α model as

α approaches zero. The result also gives us a new construction of the weak solutions for the 3D

stochastic Navier-Stokes equations.

Application of Prokhorov’s and Skorokhod’s results

From the tightness property of {Πα; 0 < α ≤ 1} and Prokhorov’s theorem, we have that there

exists a subsequence {Παj} and a probability measure Π such that Παj → Π weakly. By

Skorokhod’s theorem, there exist a probability space (Ω̄, F̄ , P̄ ) and random variables (W̃αj , ũαj ),

(W̃ , ũ) on (Ω̄, F̄ , P̄ ) with values in S2 such that:

the law of (W̃αj , ũαj ) is Παj ,
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the law of (W̃ , ũ) is Π,

(W̃αj , ũαj ) → (W̃ , ũ) in S2 P̄ − a.s.. (4.77)

Hence {W̃αj} is a sequence of an m-dimensional standard Wiener process.

Let

F̄t = σ{W̃ (s), ũ(s) : s ≤ t}.

Arguing as in Chapter 2, we can prove that W̃ is an m-dimensional F̄t standard Wiener process

and the pair (W̃αj , ũαj ) satisfies

(ṽαj (t),Φ) + ν

∫ t

0
(ṽαj (s), AΦ) ds +

∫ t

0
B(ũαj (s), ṽαj (s),Φ) ds (4.78)

= (u0 + α2
jAu0,Φ) +

∫ t

0
(F (s, ũαj (s)), Φ) ds +

(∫ t

0
G(s, ũαj (s)) dW̃αj (s),Φ

)
,

for all Φ ∈ V, where

ṽαj (s) = ũαj (s) + α2
jAũαj (s).

The main result of this section is the following theorem

Theorem 9. Suppose the hypotheses (4.9)-(4.12) hold, and u0 ∈ D(A). Then there is a subse-

quence of ũαj denoted by the same symbol such that as αj → 0, we have:

ũαj → ũ strongly in L2(Ω̄, F̄ , P̄ ; L2(0, T ; H)),

ũαj → ũ weakly in L2(Ω̄, F̄ , P̄ ; L2(0, T ; V )),

ṽαj → ũ strongly in L2(Ω̄, F̄ , P̄ ;L2(0, T ;H)),

where (Ω̄, F̄ , (F̄t)t∈[0,T ], P̄ , W̃ , ũ) is a weak solution for the 3D stochastic Navier-Stokes equations

with the initial value u(0) = u0. (See [2] for the definition of weak solution of the 3D stochastic

Navier-Stokes equations).

Proof. From (4.78), it follows that ũαj satisfies the estimates

Ẽ sup
0≤s≤T

|ũαj (s)|p ≤ Cp; (4.79)

Ẽ sup
0≤s≤T

|ṽαj (s)|p ≤ Cp,

Ẽ sup
0≤θ≤δ

∫ T

0
|ũαj (t + θ)− ũαj (t)|2D(A)′ dt ≤ Cδ,

Ẽ
(∫ T

0
‖ṽαj (s)‖2 ds

)
≤ Cp,

Ẽ sup
0≤s≤T

‖ṽαj (s)‖2 + 4νβẼ
∫ T

0
‖ṽαj (s)‖2 ds ≤ C1, (4.80)
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where Ẽ denote the mathematical expectation with respect to the probability space (Ω̄, F̄ , P̄ ).

Thus modulo the extraction of a subsequence denoted again ũαj (with the corresponding ṽαj ),

there exists two stochastic processes ũ, ṽ such that

ũαj ⇀ ũ in Lp(Ω̄, F̄ , P̄ ;L∞(0, T ; H)),

ũαj ⇀ ũ in L2(Ω̄, F̄ , P̄ ; L2(0, T ; V )),

ṽαj ⇀ ṽ in L2(Ω̄, F̄ , P̄ ; L2(0, T ; V )), (4.81)

and

Ẽ sup
0≤s≤T

|ũ(s)|p ≤ Cp; Ẽ
∫ T

0
‖ũ(s)‖2

V ds ≤ C,

Ẽ sup
0≤θ≤δ

∫ T−δ

δ
|ũ(t + θ)− ũ(t)|2D(A)′ dt ≤ Cδ.

By (4.77), the estimate (4.79) and Vitali’s Theorem, we have

ũαj → ũ in L2(Ω̄, F̄ , P̄ ; L2(0, T ; H)). (4.82)

Thus modulo the extraction of a new subsequence and almost every (ω, t) with respect to the

measure dP̄⊗ dt

ũαj → ũ in H.

Taking into account (4.82) and the Lipschitz condition on F , we have
∫ t

0
F (s, ũαj (s)) ds →

∫ t

0
F (s, ũ(s)) ds in L2(Ω̄, F̄ , P̄ ; L2(0, T ; H))

Arguing as in Chapter 2, we can prove that
∫ t

0
G(s, ũαj (s)) dW̃αj (s) →

∫ t

0
G(s, ũ(s)) dW̃ (s) in L2(Ω̄, F̄ , P̄ ;L∞(0, T ; D(A)′)) weakly star.

We also have

Ẽ
∫ T

0
|ṽαj (t)− ũαj (t))|2 dt = α2

j Ẽ
∫ T

0
α2

j |Aũαj (t)|2 dt.

We then deduce that

ṽαj → ũ in L2(Ω̄, F̄ , P̄ ;L2(0, T ;H)) (4.83)

since by the estimate (4.80), we have

Ẽ
∫ T

0
α2

j |Aũαj (t)|2 dt (4.84)
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is bounded uniformly in αj .

From (4.81) and (4.83), we have ṽ(t) = ũ(t) a.e. in dP̄ × dt.

We are going to prove that
∫ t

0
B(ũαj (s), ṽαj (s)) ds ⇀

∫ t

0
B(ũ(s), ũ(s)) ds in L2(Ω̄, F̄ , P̄ ; L2(0, T ; D(A)′)).

Indeed, let Φ ∈ V. From (4.4),(4.6) and (4.8), we have
∫ t

0
〈B(ũαj (s), ṽαj (s)), Φ〉D(A)′ − 〈B(ũ(s), ũ(s)),Φ〉D(A)′ ds

=
∫ t

0
〈B(ũαj (s)− ũ(s), ṽαj (s)), Φ〉D(A)′ds +

∫ t

0
〈B(ũ(s), ṽαj (s)− ũ(s)),Φ〉D(A)′ ds

=
∫ t

0
〈B(ũαj (s)− u(s), ṽαj (s)), Φ〉D(A)′ds−

∫ t

0
(B(ũ(s),Φ), ṽαj (s)− ũ(s)) ds

≤ C

∫ t

0
|ũαj (s)− ũ(s)|‖ṽαj (s)‖|AΦ| ds + C

∫ t

0
‖ũ(s)‖|AΦ||ṽαj (s)− ũ(s)| ds.

Further, by Hölder’s inequality

Ẽ
(∫ t

0
〈B(ũαj (s), ṽαj (s)), Φ〉D(A)′ − 〈B(ũ(s), ũ(s)), Φ〉D(A)′ ds

)
(4.85)

≤ C|AΦ|
(
Ẽ

∫ t

0
|ũαj (s)− ũ(s)|2 ds

) 1
2
(
Ẽ

∫ t

0
‖ṽαj (s)‖2 ds

) 1
2

+C|AΦ|
(
Ẽ

∫ t

0
‖ũ(s)‖2 ds

) 1
2
(
Ẽ

∫ t

0
|ṽαj (s)− ũ(s)|2 ds

) 1
2

.

It then follows from (4.82), (4.83), (4.85)
∫ t

0
B(ũαj (s), ṽαj (s)) ds ⇀

∫ t

0
B(ũ(s), ũ(s)) ds in L2(Ω̄, F̄ , P̄ ; L2(0, T ; D(A)′)).

Collecting all the convergence results and passing to the limit in (4.78) to obtain

(ũ(t),Φ) + ν

∫ t

0
(ũ(s), AΦ) ds +

∫ t

0
〈B(ũ(s), ũ(s)), Φ〉D(A)′ ds = (u0, Φ)

+
∫ t

0
(F (s, ũ(s)), Φ) ds +

∫ t

0
(G(s, ũ(s)),Φ) dW̃ (s).

This completes the proof of Theorem 9.

 
 
 



Chapter 5

Appendices

Here, we summarize some important results that were used in the previous chapters. For the

convenience, we recall some proofs

Appendix A : A compactness result

The following compactness result as been useful in the proof of tightness of a family of proba-

bility measures.

Let B0, B1, B2 be three separables Hilbert spaces such that

B0 ⊂ B1 ⊂ B2, (5.1)

each space being densely embedded in the next one with the continuous injection. We assume,

moreover that

the injection of B1 → B2 is compact. (5.2)

We also identify B2 to its dual.

Proposition 6. ([1], Proposition 3.4; p.274) For any sequences of positives real numbers µn, νn

which tend to zero as n tends ∞, the injection of 1

Z =



q ∈ L2(0, T ;B1) ∩ L∞(0, T ; B2) : sup

n

1
νn

sup
|θ|≤µn

(∫ T

0
‖q(t + θ)− q(t)‖2

B′0
dt

) 1
2

< ∞




in L2(0, T ;B2) is compact.

1q is extended by 0 outside (0,T)
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To prove this proposition, we need the following lemma

Lemma 15. (see [52], p.59) Under the hypotheses (5.1) and (5.2), we have ∀η > 0, there exists

Cη such that

‖v‖B2 ≤ η‖v‖B1 + Cη‖v‖B′0 (5.3)

for all v ∈ B1.

Proof. of Lemma 15

Suppose that (5.3) is false. Then for all n > 0, there exists vn ∈ B1 and Cn →∞ such that

‖vn‖B2 > n‖vn‖B1 + Cn‖vn‖B′0 .

Let

wn =
vn

‖vn‖B1

.

Then

‖wn‖B2 > n + Cn‖wn‖B′0 (5.4)

and ‖wn‖B2 ≤ C‖wn‖B1 ≤ C.

(5.4) implies that

‖wn‖B′0 → 0. (5.5)

But ‖wn‖B1 = 1 and the injection of B1 → B2 is compact, then we can extract a subsequence

of (wn) denoted again by (wn) which converges strongly in B2 and from (5.5) this subsequence

converges to 0, and we have ‖wn‖B2 → 0 which contradict (5.4). And we have the proof of

Lemma 15.

Now, we give the proof of Proposition 6.

Proof. Let (zk) be a sequence in Z. We shall show that we can extract a subsequence which

converges strongly in L2(0, T ; B2).

We can extract a subsequence still denoted (zk) and z such that

zk ⇀ z in L2(0, T ;B1) weakly (5.6)

and

zk ⇀ z in L∞(0, T ; B2) weak − star.

Since the injection of B1 → B2 is compact, from Lemma 15, for any ε > 0, there is a constant

C(ε) such that

‖ϕ‖2
B2
≤ ε‖ϕ‖2

B1
+ C(ε)‖ϕ‖2B′0
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for all ϕ ∈ B1.

Hence
∫ T

0
‖zk(t)− z(t)‖2

B2
dt ≤ ε

∫ T

0
‖zk(t)− z(t)‖2

B1
dt + C(ε)

∫ T

0
‖zk(t)− z(t)‖2

B′0
dt

≤ Cε + C(ε)
∫ T

0
‖zk(t)− z(t)‖2

B′0
dt. (5.7)

We have used the fact that
∫ T
0 ‖zk(t)− z(t)‖2

B1
dt is bounded. Therefore, to prove that the left

hand side of (5.7) tends to 0, it is sufficient to prove that
∫ T

0
‖zk(t)− z(t)‖2

B′0
dt → 0. (5.8)

Consider a function ψ ∈ C∞
0 (R), ψ ≥ 0,

∫ +∞
−∞ ψ(t) dt = 1, supp(ψ) = [−1, 1] and the mollifier

Rεu(t) =
1
ε

∫ +∞

−∞
ψ(

t− s

ε
)u(s) ds

= −
∫ 1

−1
u(t− εs)ψ(s) ds. (5.9)

Pick any function u ∈ L2(0, T ;B′
0) which we extend by 0 outside (0,T). We have

∫ T

0
‖Rεu(t)− u(t)‖2

B∗0
dt ≤ C

∫ 1

−1

[∫ T

0
‖u(t− εs)− u(t)‖2

B′0
dt

]
ds.

We apply it with u = z̃k = zk − z and ε = µn, we have
∫ T

0
‖Rµn z̃k(t)− z̃k(t)‖2

B′0
dt ≤ C

∫ 1

−1

[∫ T

0
‖z̃k(t− µns)− z̃k(t)‖2

B′0
dt

]
ds

≤ 2Cν2
nM. (5.10)

From (5.6), we have

Rµn z̃k(t) =
1
µn

∫ T

0
ψ(

t− s

µn
)z̃k(s) ds ⇀ 0

as k →∞ in B1 weakly for any n ≥ 1, t ∈ [0, T ].

Since the injection of B1 → B2 is compact, the injection of B1 → B′
0 is also compact. Therefore,

we have

Rµn z̃k(t) → 0

as k →∞ in B′
0 strongly.

Then

‖Rµn z̃k(t)‖2
B′0
≤ Cn.

where Cn is a constant independent of k. We have

Rµn z̃k → 0 (5.11)
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as k →∞ in L2(0, T ; B′
0) strongly.

(5.10) and (5.11) imply (5.8). This complete the proof of Proposition 6.

Appendix B: Basic convergence results

For the convenience of the reader, we recall some basic convergence results.

Proposition 7. ([76],Proposition 10.13, P.480) Let (xn) be a sequence in a Banach space S.

Then the following assertions hold:

i) If S is reflexive and (xn) is bounded in S, then (xn) has a weakly convergent subsequence.

If, in addition, every weakly convergent subsequence of (xn) has the same limit x ∈ S, then

(xn) converges weakly to x.

ii) If every subsequence of (xn) has a subsequence which converges strongly to the same limit

x ∈ S, then xn → x.

Proposition 8. ([76], Proposition 21.27, P.261) Let X1 and X2 be Banach spaces and L :

X1 → X2 be a continuous linear operator. If (xn) is a sequence in X1 such that xn ⇀ x in X1,

then L(xn) ⇀ L(x).

Proposition 9. ([76], Proposition 21.23, P.258) Let X be a Banach space

i) Then, it follows from

un ⇀ u in X as n →∞

fn → f in X ′ as n →∞ (5.12)

that 〈fn, un〉 → 〈f, u〉 as n →∞.

ii) If X is reflexive, then it follows from

un → u in X as n →∞

fn ⇀ f in X ′ as n →∞ (5.13)

that 〈fn, un〉 → 〈f, u〉 as n →∞.

iii) If (un) is bounded in X and if there exists u ∈ X and a dense set D in X ′ such that

〈f, un〉 → 〈f, u〉
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as n →∞ for all f ∈ D, then

un ⇀ u in X

as n →∞.

Appendix C: Probabilistic background

We have used in this thesis two deep compactness results due to Prokhorov and Skorokhod. In

order to formulate these results, we need the concept of tightness of probability measures. Let

E be a separable Banach space and let B(E) be its Borel σ-field.

Definition 6. A family of probability measures P on (E,B(E)) is tight if for arbitrary ε > 0,

there exists a compact set Kε ⊂ E such that

µ(Kε) ≥ 1− ε

for all µ ∈ P.
A sequence of measures {µn} on (E,B(E)) is weakly convergent to a measure µ if for all con-

tinuous and bounded functions Ψ on E,

lim
n→∞

∫

E
Ψ(x)µn(dx) =

∫

E
Ψ(x)µ(dx).

The following result due to Prokhorov (see [65]) shows that the tightness property is a

compactness criterion.

Lemma 16. A sequence of measures {µn} on (E,B(E)) is tight if and only if it is relatively

compact, that is there exists a subsequence {µnk
} which weakly converges to a probability measure

µ.

Skorokhod proved in [68] the next result which relates the weak convergence of probability

measures to that of almost everywhere convergence of random variables.

Lemma 17. For an arbitrary sequence of probability measures {µn} on (E,B(E)) weakly con-

vergent to a probability measure µ, there exists a probability space (Ω,F , P ) and random variables

X, X1, ..., Xn, ... with values in E such that the probability law of Xn is µn, the probability law

of X is µ and limn→∞ Xn = X, P − a.s..

Recent account of Prokhorov’s and Skorokhod’s results can be found in [26].

We used the following result from [5] to prove the convergence of our Galerkin schemes (4.14)

introduced in Chapter 4. For the reader’s convenience, we recall the proof.
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Lemma 18. Let (Qn) be a sequence of real-valued processes from the space L2(Ω,F , P ; L2(0, T ;R)).

Let (τM )M and τ be Ft- stopping times such that

lim
M→∞

P (τM < τ) = 0.

We also assume that for each fixed M , we have

lim
n→∞E|Qn(τM )| = 0

and there exists a positive constant C independent of n such that

sup
n∈N

E|Qn(τ)|2 < C.

Then

lim
n→∞E|Qn(τ)| = 0.

Proof. Let ε, δ > 0. There exists M0 ∈ N such that

P (τM0 < τ) ≤ ε

2
.

By the hypothesis it follows that for this M0, we have

lim
n→∞E|Qn(τM0)| = 0.

Consequently, there exists n0 ∈ N such that

1
δ
E|Qn(τM0)| ≤

ε

2

for all n ≥ n0. We write

P (|Qn(τ)| ≥ δ) ≤ ε

2
+ P (|Qn(τM0)| ≥ δ)

≤ ε

2
+

1
δ
E|Qn(τM0)|

≤ ε

2
+

ε

2
= ε (5.14)

for all n ≥ n0. Hence, for all δ > 0 we get

lim
n→∞P (|Qn(τ)| ≥ δ) = 0.

Therefore, the sequence (|Qn(τ)|) converges in probability to zero. From the hypothesis, it

follows that this sequence is uniformly integrable (with respect to ω ∈ Ω). Hence it converges

also in mean to zero that is

lim
n→∞E|Qn(τ)| = 0.
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Appendix D : Uniform integrability and Vitali’s theorem

Let (Ω,F , P ) be a probability space

Definition 7. A family {fj}j∈J of real measurable functions fj on Ω is called uniformly inte-

grable if

lim
M→∞

(
sup
j∈J

{∫

{|fj |>M}
|fj |dP

})
= 0.

One of the most useful tests for uniform integrability is obtained by using the following

concept:

Definition 8. A function ψ :[0,∞) → [0,∞) is called a uniform integrability test function if ψ

is increasing, convex and limx→∞
ψ(x)

x = ∞.

So for example ψ(x) = xp is a uniform integrability test function if p > 1.

The justification for the name in the preceding definition is the following:

Theorem 10. The family {fj}j∈J is uniformly integrable if and only if there is a uniform

integrability test function ψ such that

sup
j∈J

{∫

Ω
ψ(|fj |)dP

}
< ∞.

One major reason for the usefulness of uniform integrability is the following result ( Vitali’s

theorem), which may be regarded as the generalization of the Lebesgue convergence theorem in

integration theory. Its proof can be found in [37]

Theorem 11. ( Vitali’s theorem)

Suppose (fk)k=∞
k=1 is a sequence of real integrables functions on Ω . Let f be a real function on

Ω such that

fk → f in probability.

Then the following are equivalent :

1) (fk) is uniformly integrable.

2) f ∈ L1(Ω,F , P ;R) and fk → f in L1(Ω,F , P ;R).

 
 
 



Conclusion

We proved the existence of probabilistic weak solutions for the stochastic 3D Navier-Stokes-

α model under non Lipschitz conditions on the coefficients. We also studied the asymptotic

behavior of weak solutions to the stochastic 3D Navier-Stokes-α model as α approaches zero in

the case of periodic boundary conditions.

Furthermore, we showed the existence and uniqueness of strong solution to the stochastic 3D

Leray-α equations. We also investigated the asymptotic behavior of the strong solution as α

approaches zero.

In [23], Millet and Chueshov proved the large deviation principle for small multiplicative noise for

a class of abstract nonlinear stochastic models, which covers the 2D Navier-Stokes equations, the

2D Magneto-hydrodynamic models, the 2D Magnetic Bénard problem, the 3D Leray-α model

and some shells models of turbulence. However, this abstract nonlinear stochastic models does

not cover the case of 3D Navier-Stokes-α model. In our future work, we intend to study the large

deviation and the long time dynamic (random global attractor and ergodicity) of this model.
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