FURTHER REFINEMENTS AND A NEW EFFICIENT SOLUTION OF A NOVEL MODEL FOR PREDICTING INDOOR CLIMATE
FURTHER REFINEMENTS AND A NEW EFFICIENT SOLUTION OF A NOVEL MODEL FOR PREDICTING INDOOR CLIMATE

Presented by:
CHRISTOFFEL LOMBARD

In Partial Fulfillment of the Requirements for the Degree:
Master of Engineering

In
The Faculty of Engineering
Department of Mechanical Engineering
of the
UNIVERSITY OF PRETORIA

Promotors:
Prof. E.H. Mathews
Dr. J.D. Wentzel

December 1990
In the first two chapters of this thesis, the novel method, developed by Mathews and Richards\(^1\), for predicting the thermal performance of buildings is introduced. The further enhancement and theoretical clarification of this method is the objective of this thesis. The method is based on a very simple thermo-flow network which models only the most important aspects of heat-flow in buildings. While Mathews and Richards based their network on analysis of the primary aspects of heat-flow in buildings, this thesis derives the simplified model by reduction from a comprehensive model. In this way, the assumptions and limitations is illuminated and the theoretical foundation of the method can be established. As a result of the investigation, a new simplified model with certain theoretical benefits is suggested. In later chapters, the method is extended and refined. Also, a new calculation procedure for finding solutions of the model is presented. In particular the method is extended to include multi-zone heat-flow, structural storage- and variable thermal systems. The new solution method is powerful, simple and efficient. This thesis contributes to the establishment of a viable tool for thermal analysis of buildings.

ACKNOWLEDGEMENTS

The author is indebted to Prof. E.H. Mathews who instigated, guided and encouraged this study.

The author gratefully acknowledges the financial contribution from the National Energy Council which made this study possible. The following bodies have also contributed to the Thermal Performance of Buildings project: Department of Public Works and Land Affairs, Department of Finance, Laboratory for Advanced Engineering, University of Pretoria.

The Division for Building Technology at the Council for Scientific and Industrial Research generously made their test facilities available.

The author wishes to express his gratitude to Mr. P G Richards and many other colleagues for many fruitful discussions. It is our hope that this study will be of benefit to all.
# TABLE OF CONTENTS

Abstract................................................................................................................................. i  
Acknowledgements.............................................................................................................. ii  
Table of Contents................................................................................................................ iii  

Summary of the Chapters..................................................................................................... xi  
Notation, Abbreviations and Nomenclature........................................................................... xiv  
Main Contents

1 INTRODUCTION: BUILDING THERMAL ANALYSIS................................................. 1  
   1.1 Historical Perspective................................................................................................. 2  
   1.2 A Design Tool for Building Thermal Analysis..................................................... 3  
   1.3 The Objectives and Scope of this Study................................................................. 7  
   1.4 The Contributions of this Study.............................................................................. 8  
   1.5 The Contents of this Thesis..................................................................................... 11  
   References Chapter 1..................................................................................................... 13  

2 A NEW THEORETICAL FOUNDATION FOR THE THERMAL ANALYSIS METHOD OF MATHEWS AND RICHARDS......................................................... 15  
   2.1 Background and Objective of this Chapter......................................................... 15  
      2.1.1 The Variety of Available Methods for Building Thermal Analysis................. 15
2.1.2 The Objective of this Chapter......... 22
2.2 The Method of Mathews and Richards............. 23
2.3 Assumptions, Limitations and Possible Extensions of the Method..................... 24
2.4 A More Comprehensive Theoretical Model........... 26
  2.4.1 The Building Shell...................... 27
  2.4.2 The Floor................................. 30
  2.4.3 Heat Exchange Between Internal Surfaces. 30
    a) Radiative Exchange...................... 31
    b) Convective Exchange...................... 33
    c) Combined Film Coefficient for
       Interior Surfaces...................... 34
  2.4.4 The Forcing Functions..................... 40
    a) External Surfaces...................... 40
    b) Ventilation............................ 42
    c) Internal Loads......................... 44
  2.4.5 A Comprehensive Model.................... 44
  2.4.6 Solution of the Comprehensive Model...... 46
2.5 Derivation of the Model of Mathews and Richards from the Comprehensive Model............. 47
  2.5.1 Single Zone Approximation............... 47
  2.5.2 The Assumption of Isothermal Mass........ 49
  2.5.3 Lumping the Distributed Parameter
       Structures............................. 56
a) Lumping for Walls with Small Biot Numbers.......................... 58
b) Exact Solution of the Heat Conduction Equation with Matrices........... 62
c) Theoretical Values for the Lumped Elements............................. 66
d) Laminated Structures.......................... 73
e) Combining the Surfaces........................................ 81
f) Lumping of Interior Mass........................................ 87

2.5.4 The Definition of the Mean Sol-Air Temperature............................ 90

2.5.5 Interior Heat Transfer........................................ 94

2.6 A Refined Simple Model........................................ 102

2.7 Conclusion, Chapter 2........................................ 104

References Chapter 2........................................ 107

Symbols Chapter 2........................................ 110

Appendices Chapter 2

2A - Table: Accuracy of Lumping for Walls
2B - Table: Fourier Moduli for Layers
2C - Detailed Results for Office

3 EXTENSION OF THE MODEL TO INCLUDE A FORCING FUNCTION FOR

STRUCTURAL STORAGE........................................ 113

3.1 Introduction........................................ 113
3.2 The Principles of Structural Storage............. 116
3.3 The Equivalent Electrical Circuit with Structural Storage.............................. 121
  3.3.1 The Definition of the Heat Transfer Coefficient.............................. 121
  3.3.2 Incorporating Structural Storage in the Method............................ 123
3.4 Implementation........................................ 124
  3.4.1 The Daily Cycle................................. 125
  3.4.2 Verification of Software Implementation.. 126
  3.4.3 Measured Heat Transfer Coefficient in a Test Hut.......................... 128
3.5 Some Typical Results................................. 128
  3.5.1 Massive Structure......................... 129
  3.5.2 Lightweight Structure................. 132
3.6 Conclusion, Chapter 3................................. 132
References Chapter 3................................. 134
Symbols Chapter 3................................. 135

4 INTER-ZONE HEAT FLOW........................................ 136
  4.1 Background and Objective of this Chapter........... 136
  4.2 Multi-Zone Extension......................... 138
  4.3 Solution of the Multi-Zone Network............. 142
4.3.1 The Zone Circuit Operators and Thevenin Sources ........................................ 144
4.3.2 The Partition Circuit Operators .................. 147
4.3.3 Solution ...................................................... 150
   a) Finding the Admittance Matrix .................. 150
   b) Calculating Interior Temperature .............. 151
   c) Calculating Heat Load ............................ 152
4.4 Computer Implementation .......................... 153
   4.4.1 Time invariant system ......................... 153
   4.4.2 Time variant system ............................ 154
4.5 Verification of the New Inter-Zone Heat-Flow Method .............................. 156
   4.5.1 Experimental Results ......................... 156
   4.5.2 Application of Multi-Zone Procedure to Experimental Model .......................... 157
4.7 Conclusion, Chapter 4 ............................... 161
References Chapter 4 ........................................ 163
Symbols Chapter 4 ........................................... 164
Appendices Chapter 4
   4A – Derivation of the Impedance Operator
   4B – Demonstration of the Multi-Zone Solution Procedure
   4C – Estimation of Interior Surface Coefficient
   4D – Multi-Zone Verification Calculation
5 SOLUTION OF THE THERMAL NETWORK WITH TIME DEPENDENT PARAMETERS

5.1 Introduction, Solution of the Model with Constant Parameters: A Systems Approach

5.1.1 Solution for Calculating Indoor Temperature

5.1.2 Load Calculation

5.1.3 The Governing Equation

5.1.4 Proportionally Controlled Active Systems

5.2 Variable Network

5.2.1 Indoor Temperature

5.2.2 System Load

5.2.3 The General First Order Differential Equation

5.3 Methods for Solving the Variable Parameter System

5.3.1 Solutions for Periodic Coefficients

a) Constant segments

b) Sinusoidal Variations of the Coefficient

5.3.2 Solution of the Volterra Integral Equation

5.3.3 The Substitution Theorem

5.3.4 A Recursive Solution
5.3.5 Fourier Methods and The Modulation Function Equation.......................... 195
a) Phasor Representation of Sinusoidal Signals........................................ 195
b) Expansions for the Transfer Function.............................................. 197
c) Separate Treatment of Mean- and Swing Components.............................. 201

5.4 A New Efficient Numerical Algorithm........................................... 204
a) A First Difference Equation......................................................... 205
b) A Closed Form Solution for the Initial Value...................................... 206
c) Stability............................................................................................. 207
d) Accuracy of the Method................................................................. 208
e) More Accurate Algorithms.............................................................. 212
f) Extension to Higher Order Systems.................................................. 213
g) Implementation.................................................................................. 213
h) Verification Measurements............................................................. 214

5.7 Conclusion, Chapter 5................................................................. 216
References Chapter 5.............................................................................. 218
Symbols Chapter 5.................................................................................. 220
Appendices Chapter 5

5A – Evaluation of Numerical Solution
6 CLOSURE.......................................................... 222

6.1 The Theoretical Underpinnings of the Method of Mathews and Richards.......................... 222

6.2 Structural Storage......................................... 224

6.3 Multi-Zone Thermo-Flow.............................. 224

6.4 Numerical Solution of a System with Time Dependent Parameters............................... 224

6.5 Suggestions for the Future......................... 225

6.6 The Utility of Highly Simplified Models........ 227

References Chapter 6........................................... 228

Appendix A – Synopses

Appendix B – Papers to which this study contributed.


SUMMARY of the CHAPTERS

In the first chapter of this thesis an overview of the current status and future prospects of building thermal analysis is given. Within this perspective; the objectives, scope and contributions of this study is presented.

In the second chapter, the origins of the method of building thermal analysis of Mathews and Richards, its current status and future prospects are discussed, with emphasis on the basic assumptions on which the method is based. The simplified mathematical model of heat flow in buildings, which forms the foundation, is derived from a more comprehensive theory. The original derivation of the method by Mathews and his co-workers was based on apt reasoning about the critical aspects of heat-flow in buildings. It was not derived from first principles. In this thesis, it is attempted to derive this model by reduction from a more extensive and refined model. A relatively simple structure is used in the discussion, in an attempt to reduce the many complications of building thermo-flow to the essentials. The most important aspect of this discussion is the modelling of the storage effect of the massive structures of the building, since this aspect was previously most heavily based on empirical considerations. The validity of the various simplifying assumptions are investigated. Some possible refinements of the model are also pointed out.

In chapter three, the model is extended to include structural storage. The practical application of structural storage systems in buildings is first briefly touched. It is shown that the usual definition of the convective coefficient, for heat transfer from and to flat surfaces, can not be applied since the thermal model of Mathews and Richards makes no provision for surface temperatures. This problem is easily circumvented by defining the
convective coefficient with respect to the bulk wall temperature. With this
definition of the heat transfer coefficient the inclusion of structural storage
in the model is straightforward. This chapter concludes with a demon­
stration of the viability of structural cooling in two actual buildings, an
office block and a shop.

In chapter four, a new method for extending the thermal model to cater
for inter–zone heat flow is proposed. The main idea is to first obtain the
thermal response of each individual zone, under the assumption that
partitions between zones are adiabatic. This can be done with the present
method of analysis without any alterations. In a second phase of the
calculation, the various zones are combined, the actual heat flow between
zones are determined and the final temperatures or loads in each zone are
evaluated. This procedure forms a very natural extension of the present
single zone method. It can be easily implemented in the case of
time–invariant thermo–systems, but it requires the inversion of a complex
matrix, the size of which is given by the number of zones. The method is
verified by comparing measured temperatures in a two–zone experimental
setup with predicted values.

In the introductory sections of chapter five, the solution of the thermal
network for buildings is discussed from a systems point of view. In
particular, it is shown that the various forcing functions can be effectively
combined into one. This leads to considerable simplification in the solution
of the network and facilitates easy introduction of new forcing functions.
In this chapter, a new method of solution for the equivalent thermal
network is given. This new method extends the applicability of the model
to time variable ventilation of buildings, time variable shell conductance
etc. The new calculation method is very efficient and simple. It is based
on a first order numerical algorithm but it can be easily extended to
higher order numerical methods. The periodicity of the parameters and
forcing functions are exploited to derive a closed form solution for the
initial value, so that the lengthy period of integration, which is usually
required to get rid of initial transients, is circumvented. In addition to the numerical method, various other methods for solving the time variable network are discussed. In particular, Fourier methods are also treated in some depth and an alternative method, based on Fourier series expansions, is discussed.

The last chapter, chapter six, concludes by summarizing the main results—, suggestions for the future—, and utility of this thesis.
NOTATION, ABBREVIATIONS and NOMENCLATURE

Notation
Generally, the following conventions are adhered to, although exceptions exist:

(...)
[...]
equation numbers
references (given at the end of each chapter), or units in
SI system

A decimal point is used and not a comma.
Variables are written in italics.
**Boldface** symbols indicate a vector or a matrix.
Operators are written in *script* font.

**Often used symbols** [SI units]

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C$</td>
<td>Thermal capacitance [kJ/K]</td>
</tr>
<tr>
<td>$H$</td>
<td>System transfer function.</td>
</tr>
<tr>
<td>$h$</td>
<td>Heat transfer coefficients in [W/m².K].</td>
</tr>
<tr>
<td>$q$</td>
<td>Heat flow in [W], sometimes per unit area [W/m²].</td>
</tr>
<tr>
<td>$Q$</td>
<td>Building loads in [W].</td>
</tr>
<tr>
<td>$R$</td>
<td>Thermal resistance [K/W].</td>
</tr>
<tr>
<td>$T$</td>
<td>Usually temperature [°C], sometimes the period of a periodic function [h].</td>
</tr>
<tr>
<td>$t$</td>
<td>Time [h].</td>
</tr>
<tr>
<td>$x$</td>
<td>A spatial dimension [m], or system input function.</td>
</tr>
<tr>
<td>$y$</td>
<td>System output function.</td>
</tr>
</tbody>
</table>

A list of symbols is provided at the end of each chapter.

Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASHRAE</td>
<td>American Society of Heating, Refrigerating and Air–Conditioning Engineers.</td>
</tr>
<tr>
<td>CENT</td>
<td>Centre for Experimental and Numerical Thermo–Flow.</td>
</tr>
<tr>
<td>CIBS</td>
<td>Chartered Institute Building Services.</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Explanation</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>CSIR</td>
<td>Council for Scientific and Industrial Research.</td>
</tr>
<tr>
<td>HVAC</td>
<td>Heating Ventilating and Air-Conditioning.</td>
</tr>
<tr>
<td>LGI</td>
<td>Laboratory for Advanced Engineering.</td>
</tr>
<tr>
<td>RC</td>
<td>Resistor-Capacitor lumped model.</td>
</tr>
<tr>
<td>RCR</td>
<td>Lumped section consisting of 2 resistors and a capacitor as in figure 2.14 page 67, also called T-section.</td>
</tr>
<tr>
<td>TTC</td>
<td>Thermal Time-Constant.</td>
</tr>
<tr>
<td>TTTCB</td>
<td>Total Thermal Time-Constant.</td>
</tr>
<tr>
<td>UP</td>
<td>University of Pretoria.</td>
</tr>
</tbody>
</table>

**Nomenclature**

- **cascade matrix**: A two-port (see below) model as in figure 2.12 page 64. Also called a cascade matrix.
- **load**: Heating or cooling load to be supplied by a thermal control system, e.g. air-conditioning cooling load.
- **model of Mathews and Richards**: Refers to the model presented by Mathews and Richards in reference [10] of chapter 2.
- **network**: A graphic model of thermo-flow in buildings (thermal network), usually in terms of thermal resistances and capacitances.
- **shell**: The structural part of a building which separates interior and exterior.
- **thermal response**: The temperature in a building and heat flow into-and out of a building.
- **transmission matrix**: See 'cascade matrix' above.
- **T-section**: See 'RCR' above, also RCR T-sections, RCR-section etc.
- **two-port**: A black box model of a particular structure with two boundaries or ports, e.g. a wall where the two flat surfaces form the boundaries. A two-port model
usually employs a 2x2 matrix as a mathematical model of the structure.

**partition**  Refers to a partition between two thermal zones in a building, as opposed to a wall which divides interior and exterior.

**zone**  A region in building which is thermally well connected so that the temperature in the region will always be uniform.