

LOMBARD C

FURTHER REFINEMENTS AND A NEW EFFICIENT SOLUTION OF A NOVEL MODEL FOR PREDICTING INDOOR CLIMATE

MIng

UP

1990

© University of Pretoria

FURTHER REFINEMENTS AND A NEW EFFICIENT SOLUTION OF A NOVEL MODEL FOR PREDICTING INDOOR CLIMATE

Presented by:

CHRISTOFFEL LOMBARD

In Partial Fulfillment of the Requirements for the Degree: Master of Engineering

In

The Faculty of Engineering Department of Mechanical Engineering of the

UNIVERSITY OF PRETORIA

Promotors:

Prof. E.H. Mathews Dr. J.D. Wentzel

December 1990

i

ABSTRACT

In the first two chapters of this thesis, the novel method, developed by Mathews and Richards¹, for predicting the thermal performance of buildings is introduced. The further enhancement and theoretical clarification of this method is the objective of this thesis. The method is based on a very simple thermo-flow network which models only the most important aspects of heat-flow in buildings. While Mathews and Richards based their network on analysis of the primary aspects of heat-flow in buildings, this thesis derives the simplified model by reduction from a comprehensive model. In this way, the assumptions and limitations is illuminated and the theoretical foundation of the method can be established. As a result of the investigation, a new simplified model with certain theoretical benefits is suggested. In later chapters, the method is extended and refined. Also, a new calculation procedure for finding solutions of the model is presented. In particular the method is extended to include multi-zone heat-flow, structural storage- and variable thermal systems. The new solution method simple and efficient. This thesis is powerful, contributes to the establishment of a viable tool for thermal analysis of buildings.

¹See reference [10] on page 13.

ii

ACKNOWLEDGEMENTS

The author is indebted to Prof. E.H. Mathews who instigated, guided and encouraged this study.

The author gratefully acknowledges the financial contribution from the National Energy Council which made this study possible. The following bodies have also contributed to the Thermal Performance of Buildings project: Department of Public Works and Land Affairs, Department of Finance, Laboratory for Advanced Engineering, University of Pretoria.

The Division for Building Technology at the Council for Scientific and Industrial Research generously made their test facilities available.

The author wishes to express his gratitude to Mr. P G Richards and many other colleagues for many fruitful discussions. It is our hope that this study will be of benefit to all.

iii

TABLE OF CONTENTS

Abstract	i
Acknowledgements	ii
Table of Contents	iii
Summary of the Chapters	xi
Notation, Abbreviations and Nomenclature	xiv
Main Contents	

1	INTRODUCTION: BUILDING THERMAL ANALYSIS	1
	1.1 Historical Perspective	2
	1.2 A Design Tool for Building Thermal Analysis	3
	1.3 The Objectives and Scope of this Study	7
	1.4 The Contributions of this Study	8
	1.5 The Contents of this Thesis	11
	References Chapter 1	13

2	A NEW THEORETICAL FOUNDATION FOR THE THERMAL ANALYSIS METHON) OF						
	MATHEWS AND RICHARDS	15						
	2.1 Background and Objective of this Chapter							
	2.1.1 The Variety of Available Methods for							
	Building Thermal Analysis	15						

iv

	2.1.2	The	Objective of this Chapter	22	
2.2	The Met	hod	of Mathews and Richards	23	
2.3	.3 Assumptions, Limitations and Possible Extensions				
	of the Method				
2.4	.4 A More Comprehensive Theoretical Model				
	2.4.1	The Building Shell			
2.4.2 The Floor				30	
	2.4.3	Hea	t Exchange Between Internal Surfaces	30	
		a)	Radiative Exchange	31	
		b)	Convective Exchange	33	
		c)	Combined Film Coefficient for		
			Interior Surfaces	34	
	2.4.4	The	Forcing Functions	40	
		a)	External Surfaces	40	
		b)	Ventilation	42	
		c)	Internal Loads	44	
	2.4.5	A Co	omprehensive Model	44	
	2.4.6	Sol	ution of the Comprehensive Model	46	
2.5	Derivat	ion (of the Model of Mathews and Richards		
	from th	e Cor	mprehensive Model	47	
	2.5.1	Sinį	gle Zone Approximation	47	
	2.5.2	The	Assumption of Isothermal Mass	49	
	2.5.3	Lumj	ping the Distributed Parameter		
		Stru	1ctures	56	

v

a) Lumping for Walls with Small Biot						
Numbers			58			
	b) Exact Solution of the Heat Conduction					
		Equation with Matrices	62			
	c)	Theoretical Values for the Lumped				
		Elements	66			
	d)	Laminated Structures	73			
	e)	Combining the Surfaces	81			
	f) Lumping of Interior Mass					
2.5.4 The Definition of the Mean Sol-Air						
Temperature						
2.5.5 Interior Heat Transfer						
2.6 A Refined Simple Model						
2.7 Conclusion, Chapter 2						
References Chap	ter :	2	107			
Symbols Chapter	2		110			
Appendices Chapter 2						
2A - Table: Accuracy of Lumping for Walls						
2B - Table: Fourier Moduli for Layers						
2C - Detailed Results for Office						

3	EXTENSION OF THE MODEL TO INCLUDE A FORCING FUNCTION FOR	
	STRUCTURAL STORAGE	113
	3.1 Introduction	113

vi

4.3 Solution of the Multi-Zone Network..... 142

4

vï

4.3.1 The Zone Circuit Operators and Thevenin				
Sources			144	
4.3.2 The Partition Circuit Operators				
	Solution	150		
	a) Finding the Admittance Matrix			
	b)	Calculating Interior Temperature	151	
	c)	Calculating Heat Load	152	
4.4	Compute	r Implementation	153	
4.4.1 Time invariant system				
	4.4.2	Time variant system	154	
4.5 Verification of the New Inter-Zone Heat-Flow				
	Method.		156	
	4.5.1	Experimental Results	156	
	4.5.2	Application of Multi-Zone Procedure to		
		Experimental Model	157	
4.7	Conclus	ion, Chapter 4	161	
References Chapter 4			163	
Symbols Chapter 4			164	
Appendic	ces Chapt	ter 4		
100.00				

4A - Derivation of the Impedance Operator

4B - Demonstration of the Multi-Zone Solution Procedure

4C - Estimation of Interior Surface Coefficient

4D - Multi-Zone Verification Calculation

viii

5	SOLUTIO	N OF THE	THERMAL NETWORK WITH TIME DEPENDENT	
	PARAMET	ERS		166
	5.1	Introduc	tion, Solution of the Model with Constant	
		Paramet	ers: A Systems Approach	168
		5.1.1	Solution for Calculating Indoor	
			Temperature	169
		5.1.2	Load Calculation	171
		5.1.3	The Governing Equation	173
		5.1.4	Proportionally Controlled Active Systems.	176
	5.2	Variabl	e Network	177
		5.2.1	Indoor Temperature	179
		5.2.2	System Load	180
		5.2.3	The General First Order Differential	
			Equation	181
	5.3	Methods	for Solving the Variable Parameter	
		System.		185
		5.3.1	Solutions for Periodic Coefficients	186
		a)	Constant segments	187
		b)	Sinusoidal Variations of the Coefficient.	188
		5.3.2	Solution of the Volterra Integral	
			Equation	190
		5.3.3	The Substitution Theorem	192
		5.3.4	A Recursive Solution	193

ĸ

5.3.5	Fourier Methods and The Modulation	
	Function Equation	195
a)	Phasor Representation of Sinusoidal	
	Signals	195
b)	Expansions for the Transfer Function	197
c)	Separate Treatment of Mean- and Swing	
	Components	201
5.4 A New E	fficient Numerical Algorithm	204
a)	A First Difference Equation	205
b)	A Closed Form Solution for the Initial	
	Value	206
c)	Stability	207
d) A	Accuracy of the Method	208
e)	More Accurate Algorithms	212
f)	Extension to Higher Order Systems	213
g)	Implementation	213
h)	Verification Measurements	214
5.7 Conclusi	ion, Chapter 5	216
References Chapt	er 5	218
Symbols Chapter	5	220
Appendices Chapt	ser 5	

5A - Evaluation of Numerical Solution

х

6	CLOSURE	22
	6.1 The Theoretical Underpinnings of the Method of	
	Mathews and Richards 2	22
	6.2 Structural Storage	24
	6.3 Multi-Zone Thermo-Flow 22	24
	6.4 Numerical Solution of a System with Time	
	Dependent Parameters	24
	6.5 Suggestions for the Future	25
	6.6 The Utility of Highly Simplified Models 29	27
	References Chapter 622	28
	References Chapter 6 22	28

Appendix A - Synopses

Appendix B - Papers to which this study contributed.

C. Lombard, E.H. Mathews - Efficient Steady State Solution of a Time Variable RC Network, for Building Thermal Analysis.

E.H. Mathews, P.G. Rousseau, P.G. Richards, C. Lombard - A Procedure to Estimate the Effective Heat Storage Capability of a Building.

xi

SUMMARY of the CHAPTERS

In the **first chapter** of this thesis an overview of the current status and future prospects of building thermal analysis is given. Within this perspective; the objectives, scope and contributions of this study is presented.

In the second chapter, the origins of the method of building thermal analysis of Mathews and Richards, it's current status and future prospects are discussed, with emphasis on the basic assumptions on which the method is based. The simplified mathematical model of heat flow in buildings. which forms the foundation, is derived from more a comprehensive theory. The original derivation of the method by Mathews and his co-workers was based on apt reasoning about the critical aspects of heat-flow in buildings. It was not derived from first principles. In this thesis, it is attempted to derive this model by reduction from a more extensive and refined model. A relatively simple structure is used in the discussion, in an attempt to reduce the many complications of building thermo-flow to the essentials. The most important aspect of this discussion is the modelling of the storage effect of the massive structures of the building, since this aspect was previously most heavily based on empirical considerations. The validity of the various simplifying assumptions are investigated. Some possible refinements of the model are also pointed out.

In chapter three, the model is extended to include structural storage. The practical application of structural storage systems in buildings is first briefly touched. It is shown that the usual definition of the convective coefficient, for heat transfer from and to flat surfaces, can not be applied since the thermal model of Mathews and Richards makes no provision for surface temperatures. This problem is easily circumvented by defining the

xii

convective coefficient with respect to the bulk wall temperature. With this definition of the heat transfer coefficient the inclusion of structural storage in the model is straightforward. This chapter concludes with a demon-stration of the viability of structural cooling in two actual buildings, an office block and a shop.

In chapter four, a new method for extending the thermal model to cater for inter-zone heat flow is proposed. The main idea is to first obtain the thermal response of each individual zone, under the assumption that partitions between zones are adiabatic. This can be done with the present method of analysis without any alterations. In a second phase of the calculation, the various zones are combined, the actual heat flow between zones are determined and the final temperatures or loads in each zone are evaluated. This procedure forms a very natural extension of the present single zone method. It can be easily implemented in the case of time-invariant thermo-systems, but it requires the inversion of a complex matrix, the size of which is given by the number of zones. The method is verified by comparing measured temperatures in a two-zone experimental setup with predicted values.

In the introductory sections of **chapter five**, the solution of the thermal network for buildings is discussed from a systems point of view. In particular, it is shown that the various forcing functions can be effectively combined into one. This leads to considerable simplification in the solution of the network and facilitates easy introduction of new forcing functions. In this chapter, a new method of solution for the equivalent thermal network is given. This new method extends the applicability of the model to time variable ventilation of buildings, time variable shell conductance etc. The new calculation method is very efficient and simple. It is based on a first order numerical algorithm but it can be easily extended to higher order numerical methods. The periodicity of the parameters and forcing functions are exploited to derive a closed form solution for the initial value, so that the lengthy period of integration, which is usually

xiii

required to get rid of initial transients, is circumvented. In addition to the numerical method, various other methods for solving the time variable network are discussed. In particular, Fourier methods are also treated in some depth and an alternative method, based on Fourier series expansions, is discussed.

The last chapter, chapter six, concludes by summarizing the main results-, suggestions for the future-, and utility of this thesis.

xiv

NOTATION, ABBREVIATIONS and NOMENCLATURE

Notation

Generally, the following conventions are adhered to, although exceptions exist:

(...) equation numbers
[...] references (given at the end of each chapter), or units in SI system

A decimal point is used and not a comma. Variables are written in *italics*. **Boldface** symbols indicate a vector or a matrix. Operators are written in script font.

Often used symbols [SI units]

- C Thermal capacitance [kJ/K]
- H System transfer function.
- h Heat transfer coefficients in $[W/m^2 \cdot K]$.
- q Heat flow in [W], sometimes per unit area $[W/m^2]$.
- Q Building loads in [W].
- R Thermal resistance [K/W].
- T Usually temperature [°C], sometimes the period of a periodic function [h].
- t Time [h].
- x A spatial dimension [m], or system input function.
- y System output function.

A list of symbols is provided at the end of each chapter.

Abbreviations

ASHRAE	American	Society	of	Heating,	Refrigerating	and
	Air-Conditio	oning Engin	neers.			
CENT	Centre for H	Experiment	al and	d Numerical	Thermo–Flow.	
CIBS	Chartered In	nstitute Bu	ilding	Services.		

xv

CSIR	Council for Scientific and Industrial Research.
HVAC	Heating Ventilating and Air-Conditioning.
LGI	Laboratory for Advanced Engineering.
RC	Resistor-Capacitor lumped model.
RCR	Lumped section consisting of 2 resistors and a capacitor
	as in figure 2.14 page 67, also called T-section.
TTC	Thermal Time-Constant.
TTTCB	Total Thermal Time-Constant.
UP	University of Pretoria.

Nomenclature

cascade matrix	A two-port (see below) model as in figure 2.12
	page 64. Also called a cascade matrix.
load	Heating or cooling load to be supplied by a thermal
	control system, e.g. air-conditioning cooling load.
model of Mathews	
and Richards	Refers to the model presented by Mathews and
	Richards in reference [10] of chapter 2.
network	A graphic model of thermo-flow in buildings
	(thermal network), usually in terms of thermal
	resistances and capacitances.
shell	The structural part of a building which separates
	interior and exterior.
thermal response	The temperature in a building and heat flow into-
	and out of a building.
transmission	
matrix	See 'cascade matrix' above.
T-section	See 'RCR' above, also RCR T-sections, RCR-section
	etc.
two–port	A black box model of a particular structure with
	two boundaries or ports, e.g. a wall where the two
	flat surfaces form the boundaries. A two-port model

xvi

usually employs a 2x2 matrix as a mathematical model of the structure.

partition Refers to a partition between two thermal zones in a building, as opposed to a wall which divides interior and exterior.

zone A region in building which is thermally well connected so that the temperature in the region will always be uniform.